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Abstract

Skin cancer is the most common cancer in the United States with over 3.5M an-

nual cases. Statistics from the Americans Cancer Society indicate that 20% of the

American population will develop this disease during their lifetime. Presently, vi-

sual inspection by a dermatologist has good sensitivity (>90%) but poor specificity

(<10%), especially for melanoma conditions, which is the most dangerous type of

skin cancer with a five-year survival rate between 16–62%.

Over the past few decades, several studies have evaluated the use of infrared

imaging to diagnose skin cancer. Here we use dynamic thermal imaging (DTI) to

demonstrate a rapid, accurate and non-invasive imaging and processing technique to

diagnose melanoma and non-melanoma skin cancer lesions. In DTI, the suspicious

lesion is cooled down and the thermal recovery of the skin is monitored with an

infrared camera. The proposed algorithm exploits the intrinsic order present in the

time evolution of the thermal recoveries of the skin of human subjects to diagnose
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the malignancy and it achieves outstanding performance for discriminating between

benign and malignant skin lesions.

In this dissertation we propose a stochastic parametric representation of the ther-

mal recovery curve, which is extracted from a heat equation. The statistics of the

random parameters associated with the proposed stochastic model are estimated from

measured thermal recovery curves of subjects with known condition. The stochastic

model is, in turn, utilized to derive an analytical autocorrelation function (ACF)

of the stochastic recovery curves. The analytical ACF is utilized in the context of

continuous-time detection theory in order to define an optimal statistical decision

rule such that the sensitivity of the algorithm is guaranteed to be at a maximum

for every prescribed false-alarm probability. The proposed algorithm was tested in

a pilot study including 140 human subjects and we have demonstrated sensitivity in

excess of 99% for a prescribed false-alarm probability of 1% (specificity in excess of

99%) for detection of skin cancer. To the best of our knowledge, this is the highest

reported accuracy for any non-invasive skin cancer diagnosis method.

The proposed algorithm is studied in details for different patient permutations

demonstrating robustness in maximizing the probability of detecting those subjects

with malignant condition. Moreover, the proposed method is further generalized to

include thermal recovery curves of the tissue that surrounds the suspicious lesion as

a local reference. Such a local reference permits the compensation of any possible

anomalous behavior in the lesion thermal recovery, which, in turn, improves both

the theoretical and empirical performance of the method.

As a final contribution, we develop a novel edge-detection algorithm—specifically

targeted for multispectral (MS) and hyperspectral (HS) imagery—which performs

l edge detection based solely on spectral (color) information. More precisely, this

algorithm fuses the process of detecting edges through ratios of pixels with critical

information resulting from spectral classification of the very image whose edges are
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to be identified. This algorithm is tested in multicolor (spectral) imagery achieving

superior results as compared with other alternatives. The edge-detection algorithm is

subsequently utilized in the skin-cancer detection context to define the lesion bound-

ary from a visible color image by exploiting the color contrast between the pigmented

tissue and the surrounding skin. With this automated lesion selection, we develop a

method to extract spatial features equivalent to those utilized by the dermatologists

in diagnosing malignant conditions. These spatial features are fused with the tempo-

ral features, obtained from the thermal-recovery method, to yield a spatio-temporal

method for skin-cancer detection.

While providing a rigorous mathematical foundation for the viability of the dy-

namic thermal recovery approach for skin-cancer detection, the research completed in

this dissertation also provides the first reliable, accurate and non-invasive diagnosis

method for preliminary skin-cancer detection. This dissertation, therefore, paves the

way for future clinical studies to produce new skin-cancer diagnosis practices that

minimize the need for unnecessary biopsies without sacrificing reliability.
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Chapter 1

Introduction

1.1 Motivation

Skin cancer is the most common form of cancer in the United States with over 3.5

million cases of skin cancer reported annually [1]. There is a higher incidence of skin

cancer than the combined occurrence of breast, prostate, lung and colon cancers [2].

Melanoma, which accounts for an estimated 4% of skin cancer cases, is responsi-

ble for approximately 75% of all deaths from skin cancer. The total deaths in the

United States due to melanomas and other types of skin cancer are estimated to

be more than 12,000 for 2014 [1]. Currently, the detection of melanoma relies on a

subjective ABCDE (Asymmetry, Border, Color, Diameter and Evolution, Fig. 1.1)

test performed visually by dermatologists, general practitioners (GP) or primary care

physicians (PCP) [3]. However, the ABCDE test provides a qualitative guideline and

it requires a trained specialist to actually distinguish malignant lesions from benign

nevi. Moreover, the ABCDE approach has a relatively high false-alarm probabil-

ity (0.35–0.44, i.e., a specificity in the range 56% to 65%) and moderate detection

probability (0.47–0.89) [3, 4, 5]. Since a false negative (i.e., a patient with malig-
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Figure 1.1: The ABCDE visual test performed as a first screening mechanism for
the detection of melanoma lesions.

nant condition that is declared to have benign condition) could lead to metastasis

(spreading to other parts of the body) and death, excisional biopsies are routinely

performed even on lesions that are non-cancerous. It was estimated that the number

of biopsies undertaken in nine geographical areas of the US between 1986 and 2001

is close to 60 for every melanoma detected [6].

As in any type of cancer, if malignant lesions can be diagnosed and excised early

in their evolution, patients have a survival rate of almost 100%. Once the cancer ad-

vances into the deeper layers of skin, the risk of metastasis increases and cancer cells

grow promptly into the subcutaneous layers, invading lymphatic and blood-vessels

resulting in a serious and possibly lethal clinical problems [1]. Early diagnosis is

therefore essential to increase the survival rate of skin cancer patients [7]. One of the

critical barriers in early skin-cancer detection is the lack of a non-invasive techniques

that can detect the cancer at an early stage with high detection probability (i.e., the

probability of correctly detecting a malignant lesion) and low false-alarm probability
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(i.e., the probability of declaring a benign lesion as malignant). In this disserta-

tion, we aim to develop a fast, accurate and noninvasive technique that by means

of infrared imaging and optimal decision theory can achieve a maximum detection

probability for a constrained false-alarm probability.

1.2 Prior art

1.2.1 Non-invasive techniques for skin cancer detection

Since biopsies are intrusive and can be painful, different non-invasive techniques are

being researched in order to minimize the number of excess biopsies performed [8, 9].

Some of these techniques include multispectral (MS) imaging [10, 11, 12], digital

dermatoscopy and videodermatoscopy (sequential digital dermatoscopy) [13, 14],

reflectance-mode confocal microscopy [15], ultrasound [16, 17], laser Doppler per-

fusion imaging [18], and optical coherence tomography (OCT) [19, 20], to name a

few. Approximately 25% of dermatologists use a dermatoscope, which consists of

a magnifier, a light source, a transparent plate, and a liquid medium. The der-

matoscope minimizes the light reflection of external sources, such that the suspected

lesions can be inspected without the obstruction normally caused by the normal

reflection of light on the human skin [21]. Its adoption has been limited due to

several factors, including the extensive training requirements and a steep learning

curve for marginal improvements in sensitivity and specificity [5]. MelaFind™, a non-

invasive device approved by the Food and Drug Administration (FDA), employs MS

imaging in the visible and near-infrared range as well as computer vision algorithms

to evaluate clinically atypical pigmented skin lesions and it classifies them based

upon their level of 3D morphological disorganization [22]. The product presents

a high-level of detection probability (>95%) [23], but high false-alarm probability
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(>90%) [24]. MoleMate is a hand-held device that detects melanoma based on im-

ages of the epidermal and dermal melanin and vasculature, and the collagen content

of the lesion [25]. A recent, large clinical trial found no evidence that MoleMate

improved appropriateness of referral by PCPs [26]. Aura is a Raman spectroscopy

system that scans suspicious lesions and produces a risk score related to the prob-

ability that the lesion is malignant, but the device is very expensive and has high

false-alarm probability [27]. Vivosight Multi-Beam System™, another FDA-approved

device, utilizes OCT to achieve a detection probability between 0.79–0.94 and a false-

alarm probability between 0.04–0.15 for non-melanoma skin cancer lesions [28]. The

problem they present is that the suspicious lesion must be probed several times to

achieve such an accuracy, which makes the acquisition time prohibitively high.

1.2.2 The role of infrared imaging in the detection of skin

cancer

In order to address the aforementioned problems, different groups have investigated

the utilization of infrared (IR) thermal imaging to detect skin cancer over the past few

decades [29, 30]. The reason that makes infrared imaging attractive is the fact that it

constitutes a functional and non-invasive imaging method, providing information on

the normal and abnormal physiologic response of the nervous and vascular systems,

as well as the local metabolic rate and inflammatory processes that ultimately appear

as differences in the skin temperature [31]. The first attempts of utilizing IR imaging

for the detection of skin cancer were prevalently static, with point-and-shoot imaging

and subjective IR image evaluation leading the experts to believe that IR imaging

was useless for medical applications [32].

The attention later was turned to the dynamic IR imaging (DTI) approach where

the tissue of a suspicious lesion is cooled (or warmed) in order to observe the thermal
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recovery of the tissue with an IR camera. DTI offers advantages in clinical applica-

tions, for which the duration of the measurement and the ease of use are critical, as

it is much less dependent on ambient temperatures and conditions [30]. The DTI

technique was pioneered by Anbar [33], who described how changes in human skin

temperature convey valuable physiological and pathophysiological information that

can lead to a diagnosis. Buzug et al. [34] studied the thermal recovery curve (TRC)

of basal-cell carcinomas (BCC) lesions after applying an external stimulus to cool

down the lesion and the surrounding tissue. Their work established that the TRC of

a BCC lesion differs from the TRC of the surrounding tissue, which is assumed to

be benign. Similarly, Centigul and Herman [35, 36, 37] studied the TRC of malig-

nant melanoma (MM) lesions, and they observed the same phenomena, i.e., that the

TRC of a benign lesions differs from the TRC of malignant lesions, and such a differ-

ence contain useful information that has the potential to non-invasively differentiate

benign from malignant lesions.

Nevertheless, these methods only partially extracted the information present in

the temporal evolution of the recovery process. More specifically, the existing DTI

techniques have neglected the temporal statistical features inherent in the thermal

recovery process. To fully extract the vital information present in the recovery pro-

cess, which will enable us to make a reliable inference on the malignancy of lesion,

two problems must be solved. First, the recovery process must be viewed as a random

function of time, or a stochastic process, and its temporal statistical properties, such

as its temporal correlations, must be mathematically characterized. Second, such

complete statistical understanding of the thermal recovery process must, in turn, be

utilized in a statistical-inference framework that yields the optimal decision rule for

classifying a lesion as malignant or benign. Both of these problems are formulated

and solved rigorously in this dissertation.
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1.3 Contributions of this dissertation

The main thrust of this dissertation is to develop and test an optimal hypothesis-

testing approach to classify skin cancer lesions based on the TRC of the lesions

obtained through DTI.

The first contribution of this dissertation is the development of a physics-based

stochastic mathematical model that describe the time evolution of the TRCs. Model-

ing the local temperature of the tissue by a heat equation and defining the appropriate

boundary conditions, a mathematical structure of the TRCs was obtained. The lack

of precise knowledge of skin parameters is addressed by considering the unknown

parameters as random variables. The distribution and correlation of these parame-

ters is estimated and utilized in the algorithm development to define an analytical

autocorrelation function that describes the stochastic model.

The second contribution is the proposed solution of the signal-against-signal

hypothesis-testing problem by means of Grenander’s approach [38]. This approach

is studied in detail using different scenarios to train the hypothesis-tester. Through

our method, the continuous-time TRCs are mapped onto a feature space, where

each feature is the projection of the TRC onto the eigenfunctions of the autocor-

relation function associated with each hypothesis. These projections, known as the

Karhunen-Loève coefficients, are combined into a single number, termed the test-

statistics, that can be compared to a threshold to declare the malignancy of the

lesion. Example of continuous-time TRCs are depicted in Fig. 1.2(a), where the

green and red curves represent TRCs of patients with benign and malignant con-

dition, respectively. While these curves suggest some modest level of discernibility

between the two conditions, no clear separation can be visually established. The test-

statistics, which compactly contains the temporal statistical information present in

these curves at different desired levels of granularity, is represented in Fig. 1.2(b).
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(a) (b)

Figure 1.2: Input and output examples for the proposed algorithm for skin cancer
detection: (a) Continuous-time TRCs, which are not clearly separable and (b) nor-
malized test-statistics, which become clearly separable when ten features are used in
the computation of the test-statistics.

For each patient with unknown condition, the corresponding test-statistics is

computed, and the value of such test-statistic is then compared to an optimally se-

lected threshold. The result of the comparison indicates to which hypothesis the

patient’s TRC belongs to. Our method was tested in a pilot study including 140

human subjects and we have demonstrated sensitivity in excess of 99% for a pre-

scribed false-alarm probability below 1% for detection of skin cancer. To the best of

our knowledge, this is the highest reported accuracy for any non-invasive device for

detection of skin cancer. We present the theoretical receiver operating characteristic

(ROC) curve for the proposed method in Fig. 1.3. The ROC curve, is a graphical

plot that illustrates the performance of our method as its discrimination threshold is

varied. It can be noted that as we increase the level of granularity in the computation

of the test-statistics the theoretical performance of the detector is increased

The third contribution of this dissertation is the study of the hypothesis-testing

problem by utilizing a multiple-signal generalization of the first method: It includes
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Figure 1.3: Theoretical receiver operating characteristic (ROC) curve for the pro-
posed method as the number of eigenfunctions is increased in computing the test-
statistics.

one TRC signal from inside the lesion and another from the surrounding tissue. This

approach allows the detection of abnormal features in the TRCs by self-referencing,

that is, comparing the responses of suspected tissue (lesion TRC) and reference tissue

(surrounding TRC) across all the patient dataset. It was observed that the inclusion

of reference TRC helped the hypothesis tester to achieve the same performance of

the previous approach requiring less features extracted from the TRCs.

The fourth contribution of this dissertation is a novel method to fuse mate-

rial/tissue classification with an edge detection algorithm in order to improve the

performance of the later. More precisely, we extend the Spectral Ratio Contrast

(SRC) Algorithm (presented by our group) [42, 43] by utilizing spectral classification

to further enhance the detection of edges that are solely due to material (not inten-

sity) changes. We term this extension the Adaptive Spectral Ratio Contrast (ASRC)

edge detection algorithm since it adaptively changes the SRC algorithm sensitivity

to edges (at each pixel) by considering the material-classification results of the neigh-

boring pixels. The SRC algorithm detects edges that arise from both intensity and

spectral changes while the ASRC algorithm detects edges based on spectral (color)
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Comparison between the edge maps obtained by the ASRC edge detector
and four benchmark edge detectors. (a) DWELL FPA image comprising background,
and granite and limestone rocks. The (invisible) isoluminant edge exists between
granite and limestone rocks and it is marked by the tip of the black arrows; (b)
Canny edge detector [39] applied over the same band of the image presented in (a);
(c) Multicolor gradient (MCG) [40] edge map; (d) HySPADE edge map [41]; (e) the
SRC edge map; and (f) the ASRC edge map.

changes only. A comparison between four different multicolor edge detectors and the

ASRC algorithm is depicted in Fig. 1.4. In these experiments, we have utilized a

320× 256 quantum dots-in-a-well (DWELL) focal-plane array (FPA). The DWELL

sensor was designed and fabricated at the Center for High Technology Materials at

the University of New Mexico [44, 45].

The fifth and final contribution of this dissertation is the utilization of the ASRC

algorithm to perform automatic boundary identification of the suspected lesions by

exploiting the color contrast between the mole and the surrounding tissue. Two

example of the automatic boundary detection are shown in Fig. 1.5. After defining
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Figure 1.5: Examples of two lesion boundaries automatically detected by means of
the ASRC algorithm. These boundaries are used to define spatial properties of the
lesions in a similar way the dermatologist perform the ABCDE test.

the boundary, we define and extract spatial properties of the lesions in a similar

fashion as the dermatologist do it using the ABCDE test. Moreover, we propose and

test a methodology to fuse these spatial features (Asymmetry, Border irregularity,

Color change and Diameter) with the TRC (time Evolution) in a single hypothesis-

testing problem.

In summary, while providing a rigorous mathematical foundation for the via-

bility of the dynamic thermal recovery approach for skin-cancer detection, the re-

search completed in this dissertation also provides the first reliable, accurate and

non-invasive diagnosis method for preliminary skin-cancer detection. This disserta-

tion, therefore, paves the way for future clinical studies to produce new skin-cancer

diagnosis practices that minimize the need for unnecessary biopsies without sacrific-

ing reliability.

1.4 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2 we present the skin-cancer

detection algorithm formulation and the main assumptions. The performance and

robustness of the method is detailed in Chapter 3. In Chapter 4 we generalize the

algorithm to a multiple-signal setting, which has the added feature of self (within-
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patient)-referencing. In Chapter 5 we introduce the ASRC edge-detection algorithm

and analyze its performance using spectral data. Later we utilize the ASRC to

automatically detect the lesion boundaries. The automatic lesion selection is, in

turn, used to define spatial features of the patient lesions. The generalized spatio-

temporal approach is presented at the end of Chapter 5. Finally, in Chapter 6. we

summarize this dissertation and propose future reseasrch directions.

1.5 Products of the dissertation

A comprehensive list of publications and patent applications generated during the

development of this dissertation is presented next.

1.5.1 Patent applications

1. Majeed M. Hayat, Sanjay Krishna, Sebastián E. Godoy and David Ramirez,

“Method for Skin Cancer Detection Based on the Application of Statistical

Decision Theory to Dynamic Infrared Image Sequences,” provisional patent

application, October 20, 2014.

2. Majeed M. Hayat, Sanjay Krishna and Sebastián E. Godoy, “Method to

Fuse Material Classification with Spatio-Spectral Edge Detection in Spectral

Imagery,” utility patent application, July 17, 2014.

3. Sanjay Krishna, Pavan Mutil, Sebastián E. Godoy and Julia Hautmann,

“Methods for Accurate and Simultaneous Measurement of Multiple Properties

of Spray Plume,” utility patent application, November 8, 2014

4. Sebastián E. Godoy and Sanchita Krishna, “Dynamic Infrared Imaging for

Skin Cancer Screening and Diagnosis,” provisional patent application, July 1,
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2014

5. Sanjay Krishna, Sanchita Krishna, Majeed M. Hayat, Pradeep Sen, Maziar
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Aug 2014

4. Stephen Myers, Sebastián E. Godoy, David Ramirez, Greg Von Winckel,

Sanchita Krishna, Marianne Berwick, R. Steven Padilla and Sanjay Krishna,

“Dynamic thermal infrared imaging non-invasively detects skin cancer with

high sensitivity and specificity,” Journal of Investigative Dermatology, vol. 134,

p. 102, Nature Publishing Group, May 1, 2014

5. Biliana Paskaleva, Sebastián E. Godoy, Woo-Yong Jang, Steven C. Ben-

der, Sanjay Krishna and Majeed M. Hayat, “Model-based Edge Detector for

12



Chapter 1. Introduction

Spectral Imagery using Sparse Spatio-spectral Masks,” IEEE Transactions on

Image Processing, vol. 23, no. 5, pp. 2315–2327, May 2014

6. Cesar San Martin, Carlos Deocares, Sebastián E. Godoy, Pablo Meza and

Daniella Bonilla, “Wavelet-FFT Filter Applied to Non Uniformity Correction

in Infrared Imaging System,” Lecture Notes in Computer Science, Volume

7441/2012, pp. 355–363, 2012

7. Ajit V. Barve, Saumya Sengupta, Jun Oh Kim, John Montoya, Brianna Klein,

Mohammed A. Shirazi, Marziyeh Zamiri, Yagya D. Sharma, Sourav Adhikary,

Sebastián E. Godoy, Woo-Yong Jang, Glauco R. C. Fiorante and Sanjay

Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Pho-

todetector,” IEEE Journal of Quantum Electronics, Vol. 48, No. 10, 2012

8. Woo-Yong Jang, Majeed M. Hayat, Sebastián E. Godoy, Payman Zarkesh-

Ha, Steven C. Bender and Sanjay Krishna, “Data-compressive paradigm for

multispectral sensing using tunable DWELL mid-infrared detectors,” Optics

Express, Vol. 19, Issue 20, pp. 19454–19472, 2011

1.5.3 Conference manuscripts

1. R. M. Clark, B. Coffman, D. A. Ramirez, Sebastián E. Godoy, S. A. Myers,

T. McGregor, S. Krishna, P. G. McGuire and T. R. Howdieshell, “Accelerated

Myocutaneous Revascularization Following Graded-Ischemia in db/db Mice,”

Submitted to the 10th Annual Academic Surgical Congress, to be held February

3 to 5, 2015, Encore, Las Vegas, NV

2. Zhaobing Tiang, Ted Schuler-Sandy, Sebastián E. Godoy, C. Kadlec, H.

S. Kim and Sanjay Krishna, “High Operating Temperature InAs/GaSb Type-

II Superlattices,” 18th International Conference on Molecular Beam Epitaxy

(MBE), September 7–12, 2014, Flagstaff, AZ

13



Chapter 1. Introduction

3. Javad Ghasemi, Payman Zarkesh-Ha, Sanjay Krishna, Sebastián E. Godoy,

and Majeed M. Hayat, “A Novel Readout Circuit for On-sensor Multispectral

Classification,” IEEE 57th International Midwest Symposium on Circuits and

Systems (MWSCAS 2014), August 3–6, 2014, College Station, TX

4. Sebastián E. Godoy, David Ramirez, Stephen Myers, Greg von Winckle,

Sanchita Krishna and Sanjay Krishna, “Dynamic Infrared Imaging for Skin

Cancer,” Quantum Structured Infrared Photodetector International Confer-

ence, QSIP 2014 (June 29 – July 3, 2014)

5. Zhaobing Tiang, Ted Schuler-Sandy, Sebastián E. Godoy, C. Kadlec, H.

S. Kim and Sanjay Krishna, “Interband Cascade Infrared Photodetectors and

their Focal Plane Arrays,” Quantum Structured Infrared Photodetector Inter-

national Conference, QSIP 2014 (June 29 - July 3, 2014)

6. Zhaobing Tiang, Sebastián E. Godoy, H. S. Kim, Ted Schuler-Sandy, J.

Montoya and Sanjay Krishna, “Mid-wave infrared interband cascade photode-

tector and focal plane arrays,” Proc. SPIE 9070, Infrared Technology and

Applications XL, 90701K (June 26, 2014)

7. Zhaobing Tiang, Ted Schuler-Sandy, Sebastián E. Godoy, H. S. Kim, J.

Montoya and Sanjay Krishna, “Mid-wave infrared interband cascade photode-

tector and focal plane arrays,” IEEE Photonics Conference (IPC), pp. 598–599,

8–12 September 2013, Bellevue, WA

8. Julia Hautmann, Sebastián E. Godoy, Patricia Marshik, Ramesh Chand,

Jason McConville, Sanjay Krishna, Sanchita Krishna, and Pavan Muttil, “Me-

tered Dose Inhalers: Varying the time between multiple actuations could influ-

ence the emitted dose,” 2013 American College of Clinical Pharmacy (ACCP)

Annual Meeting, Albuquerque, NM. October 13-16, 2013

14



Chapter 1. Introduction

9. Zhaobing Tiang, Ted Schuler-Sandy, Sebastián E. Godoy, H. S. Kim and

Sanjay Krishna, “High-operating-temperature MWIR detectors using type II

superlattices,” Proc. SPIE 8867, Infrared Remote Sensing and Instrumentation

XXI, 88670S (September 19, 2013)

10. Z. Tiang, T. Schuler-Sandy, S. E. Godoy, H. S. Kim, J. Montoya, S. Myers,

B. Klein, E. Plis and S. Krishna, “Quantum-engineered mid-infrared type-

II InAs/GaSb superlattice photodetectors for high temperature operations,”

Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041T (June

18, 2013)

11. Julia Hautmann, Sebastián E. Godoy, P. Marshik, R. Chand, J. McConville,

Sanchita Krishna, Sanjay Krishna, and Pavan Muttil, “Effect of Time Between

Actuation on the Dose Variability for Three Metered Dose Inhalers,” RDD

Europe (2013), vol. 2, pp.429-434

12. Sebastián E. Godoy, Majeed M. Hayat, Woo-Yong Jang and Sanjay Krishna,

“Classifier-enhanced algorithm for compressive spatio-spectral edge detection,”

IEEE Photonics Conference (IPC), 23-27 September 2012, San Francisco, CA

13. Woo-Yong Jang, Majeed Hayat, Sebastián E. Godoy and Payman Zarkesh-

Ha, “Compressive Multispectral Sensing Algorithm with Tunable Quantum

Dots-in-a-Well Infrared Photodetectors,” IEEE Photonics Conference (IPC),

p. 147-148, 9-13 October 2011

15



Chapter 2

Skin-cancer detection using

dynamic infrared imaging

2.1 Introduction

Here we report a method for statistical inference, which uses the technique of dy-

namic thermal imaging (DTI) and it demonstrates a rapid, accurate and non-invasive

imaging system for detection of skin cancer. DTI is a technique in which a thermal

stimulus is applied to the suspected lesion and the thermal recovery is captured as

function of time using an infrared (IR) camera [33]. Even though several groups

have reported that the thermal recovery of a skin-cancer lesion and the surround-

ing healthy skin is different [34, 36, 46, 30], these methods only partially extracted

the information present in the temporal evolution of the recovery process. More

specifically, the existing DTI techniques have neglected the temporal statistical fea-

tures inherent in the thermal recovery process. To fully extract the vital information

present in the recovery process, which will enable us to make a reliable inference

on the malignancy of lesion, two problems must be solved. Firstly, the recovery
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process must be viewed as a random function of time and its temporal statistical

properties, such as its temporal correlations, must be mathematically characterized.

Secondly, such complete statistical understanding of the thermal recovery process

must, in turn, be utilized in a statistical-inference framework that yields the optimal

decision rule for classifying a lesion as malignant or benign. Both of these problems

are formulated and solved in the present work.

Let us explain the concept of DTI and the patient data acquisition before devel-

oping the algorithm.

2.2 Dynamic thermal imaging

Thermal infrared imaging is a non-invasive, non-contact sensing method that cap-

tures the emitted electromagnetic radiation in the infrared region of the spectrum

(i.e., 3–14µm) from an object. Thermal imaging provides a quantitative estimate of

the spatial and temporal temperature profile of the target object. Since the surface

temperature distribution directly depends on the subsurface properties [47], thermal

infrared imaging can be used to unveil those subsurface properties by monitoring

changes in the spatial and/or temporal profiles of the surface temperature.

In general, infrared imaging can be performed either passively (static thermal

imaging) or actively (dynamic thermal imaging, DTI). On one hand, static thermal

imaging involves the monitoring of the target temperature without applying any

external stimulus to the surface of such a target. On the other hand, DTI consists of

monitoring the target temperature after an initial temperature stimulus is applied to

the target (such as deliberate heating or cooling). It was observed that static infrared

imaging was not suitable for dermatological applications due to the poor detection

and high false-alarm probabilities [32]. As a contrast, DTI have demonstrated to

have high potential for this particular application [29, 33, 48]. Moreover, other
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groups [34, 37] have explored the utilization of DTI for the detection of skin cancer,

but, as was aforementioned, they have neglected the temporal statistical features

inherent in the thermal recovery processes.

2.2.1 Image acquisition hardware

We perform DTI with three components. The first component is a cooling unit that

is used to impart the temperature stimulus to the lesion and the surrounding skin

tissue. Two different cooling unit were used in our study. The first one was a a

Ranque-Hilsch vortex tube that generates an oil-free, moisture-free, ultra-quiet air

flow. It was later replaced by a commercially available air-conditioning (AC) unit

due to its portability. It was observed that by properly modifying the time the

cooling unit was applied to the skin, the imparted temperature was almost the same

for both units.

The second component is an infrared marker, which is used for correction of

involuntary movement of the subject (i.e., image registration); the IR evolved from

a canvas paper marker to a square piece of plastic with a square opening in the

middle. Since the only purpose of the marker is to aid in the registration of the

infrared sequence of frames, changing the material of the marker did not change the

acquisition protocol.

The third component includes the imagers. The first imager is a commercial vis-

ible still camera that is used to capture a reference image before the DTI acquisition

commences. The second and most important imager is a longwave infrared (LWIR)

camera that is used to capture a sequence of frames of the thermal recovery of the

skin after the cool stimulus is applied. The LWIR camera consists of a 320×256

focal-plane array (FPA) of quantum-well infrared photodetectors (QWIP) operating

at 60K. The noise equivalent temperature difference (NEDT) of the FPA is 20mK
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and the QWIP camera is fitted with a 50mm, f/2 LWIR lens, yielding an approx-

imate spatial resolution of 300 microns per pixel. The QWIP camera was chosen

for our study because it has higher array uniformity, lower NETD and high spatial

resolution as compared with other IR camera technologies [29, 49].

2.2.2 Imaging procedure

After informed consent, each subject was escorted to a designated room in the UNM

Dermatology Clinic to perform the imaging procedure. The temperature of the

room was controlled to be between 20oC to 22oC to make sure that all the patients

were exposed to the same temperature before applying the cooling stimulus to the

area of interest. At the beginning of the procedure, the square registration marker

was placed around the lesion with the lesion centered in the opening, as shown in

Fig. 2.1(a). A visible image of the lesion was then taken with the digital camera for

reference. After collection of the visible image, a 15 second infrared image sequence

of the marked area was collected to serve as a baseline. Later, the subjects skin

within the marker opening was cooled for the 15 or 110 seconds, depending of the

cooling unit used. After cooling, the exposed area was allowed to warm up naturally

to ambient temperature. During the warm-up phase, thermal images of the skin

were captured for a total of 2 minutes at a rate of 60 frames per second with the

QWIP camera. All the thermal images were recorded using an uncompressed 14-bit

format. The total time required to complete the imaging procedure was less than

five minutes.

If the subject was scheduled for a biopsy, the biopsy was performed following the

data collection by the attending dermatologist and sent to pathology for diagnosis.

The biopsy results were delivered to us within the two weeks following the imaging

procedure. Some patients were clinically diagnosed with a benign condition by the

staff, and, therefore, no biopsy was performed. These patients are considered as
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(a) (b)

(c)

Figure 2.1: Example of a patient dataset: (a) example of one square plastic marker
used in the data acquisition step; (b) first frame of the infrared sequence, note that
the visible and this frame are spatially aligned; and (c) the thermal recovery curves
(TRCs) for the labeled pixels in (b).

control patients and are included in the set of benign patients.

2.2.3 Image registration

Since involuntary movements of the patients cannot be avoided, image registration

must be performed over the infrared sequence of images. Moreover, to correctly refer-

ence the lesion location within the IR sequence (i.e., the mole, which not necessarily

can be spotted in the IR sequence), the visible picture must also be spatially aligned
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with the IR sequence. Therefore, the visible image is considered as an additional

frame for the purposes of the registration process.

The registration is conducted as follows. First, we use the Harris corner-detector

algorithm [50] to automatically detect the four corners of the plastic marker amongst

the entire sequence of frames. Second, by assuming rigid movement of the scene, we

estimate an affine transformation matrix that maps such a movement between the

corners of consecutive frames (one matrix is estimated for each pair of consecutive

frames) [51]. Third, we utilize the inverse of each transformation matrix to align each

frame with respect to the first frame of the sequence [52]. After registration, both

the visible image and the entire IR sequence are spatially aligned, generating a three-

dimensional (3D) array real numbers that we term the patient dataset. Figure 2.1(b)

depicts the first IR frame after the cooling was removed of the same example case

presented in Fig. 2.1(a); note that both the visible and the first IR frame are spatially

aligned. The thermal recovery curves (TRCs) of the labeled pixels are shown in

Fig. 2.1(b), where it can be noted that there is some non-uniformity in the cooling

process that make these TRCs to start at different initial temperature.

Most of the image registration of the patient dataset utilized in this dissertation

was performed by Dr. David Ramirez.

2.2.4 Camera calibration

In order to have a temperature measurement of the skin surface as accurate as

possible, the QWIP camera must be radiometrically calibrated. As in any FPA,

the camera suffers of the non-uniform response of its detectors (a problem known in

the literature as non-uniformity) and it is compensated by means of non-uniformity

correction (NUC) tables performed and stored during the factory calibration process.

The radiometric calibration is achieved by means of the two-point calibration
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technique [53]. This calibration is performed by placing, in the field-of-view (FOV) of

the camera, a uniform-intensity calibration device such as a black-body source at two

distinct and known temperatures [54]. The gain and the bias of each detector are then

calibrated across the array so that all detectors produce a radiometrically accurate

and uniform readout at the two reference temperatures. The reference temperatures

where chosen to be within the normal temperature of the skin, i.e., 25oC and 40oC.

Examples of thermal recovery curves after the temperature calibration was performed

were already shown in Fig. 2.1(c).

2.3 Postulation of the detection problem

The physical principle that the diagnosis will be based upon is the following. Skin

cancers, like all solid malignant tumors, require a blood supply in order to grow larger

than a few millimeters in diameter [55, 56]. Tumors induce the growth of new capil-

lary blood vessels (a process called angiogenesis) by producing specific angiogenesis-

promoting growth factors. The so-called precancerous lesions of the skin, including

atypical moles, are already angiogenic, as indicated by their higher density of cap-

illaries than surrounding normal skin. New blood vessel growth continues through

the progression from precancerous skin lesions to full-blown skin cancer as depicted

in Fig. 2.2, [57]. The presence of new blood vessels and the increased blood supply

should somewhat change the thermal response of the tumor cells when a stimulus is

applied.

Under this scenario, we can assume that the patient condition is hidden within

TRCs of suspicious lesions. Moreover, we assume that the malignancy of a lesion

can be inferred only by monitoring the tissue of the mole. Thus, let us denote by

Sj(t), j = 0, 1 the average TRCs (across all the pixels within the mole) of patients

with benign and malignant condition, respectively. We account the intrinsic ran-
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(a) (b) (c)

Figure 2.2: Tumor angiogenesis in cancer at different stages: (a) The tumor release
growth factors that activate the growing cells generating blood vessel sprouts. (b)
The blood vessels feed the tumor that growths thanks to cell proliferation. (c) The
tumor becomes vascularized and it starts to metastasize through the blood stream.

domness of these signals by assuming that, under each hypotheses, these signals are

parameterized by different random vectors, i.e., Sj(t) ≡ Sj(t; Θj), j = 0, 1. As a

consequence, the binary detection problem of detecting if a measured TRC, Y (t),

is either from benign tissue (null hypothesis, H0) or malignant tissue (alternative

hypothesis, H1) is formulated by

H0 : Y (t) = S0(t; Θ0) , t ∈ [0, T ] (2.1a)

H1 : Y (t) = S1(t; Θ1) , t ∈ [0, T ] (2.1b)

where T represents the TRCs acquisition time. The alternative hypothesis is assumed

to include all the conditions classified as non-benign, including malignant melanomas

(MM), basal-cell carcinoma (BCC) and squamous-cell carcinoma (SCC) cases.

The continuous-time signals Sj(t; Θj), j = 0, 1 are modeled as stochastic pro-

cesses due to the stochastic nature of the problem, the unknown quantities and the

patient-specific parameters that cannot be determined a priori, as discussed next.
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2.4 Physics-based stochastic model for the skin

thermal recovery

Before developing the algorithm for mapping each TRC to a decision on its condition,

we must develop a physics-based, probabilistic mathematical model for the TRCs.

At this stage, the lesion boundary is defined by visual inspection over the mole

region in the visible image. Since the area that defines the mole may contain malig-

nant and benign tissue we need to look at the aggregated effect of the lesion TRC.

The most natural and simple way to do such an aggregation is by computing the

average TRC over all the pixels within the region that defines the mole. In what

follows, we use the term TRC to refer to the average TRC of a lesion unless the

opposite it is specifically stated.

2.4.1 Heat equation

The mathematical model should incorporate detailed physical and statistical infor-

mation about the TRC signals; however, it must be simple enough to ensure a feasible

solution with the available information. Moreover, the model must be derived based

on the physics that generates the TRCs. First, we are using an infrared camera to

measure thermal evolution through the acquisition of the infrared radiation emitted

by the skin; thus, we can assume that the physics of the problem is governed by a

heat equation, which describes the spatio-temporal thermal response of the human

skin. Second, it is believed that the veins in the fat-dermis layer and the blood-vessels

within the dermis layer (depicted in Fig. 2.3) are the most relevant source of heat

acquired by the infrared camera. Moreover there is no evidence that we can resolve,

using an infrared camera, subcutaneous thermal processes beyond such an interface.

Third, there is evidence suggesting that the in vivo emissivity of the skin is near
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unity [58, 59, 60]. Therefore, it can be assumed that the skin mimics a perfect black-

body source, meaning that all the subcutaneous thermal processes are somewhat

integrated to the surface of the skin. As a consequence, the temperature of the skin

captures the cumulative effect of all the subcutaneous thermal processes, which allow

us to define an effective diffusion constant, D, that consolidates all the skin thermal

parameters (i.e., the effective tissue density, ρ, the effective specific heat of the tissue,

C and the effective thermal conductivity, k).

The model only will be affected by the variations on the depth of the lesion, x,

due to the averaging of TRCs previously discussed. Therefore, the temperature of

the skin sample is assumed to be modeled by the one-dimensional heat equation,

ρC
∂u

∂t
= k

∂2u

∂x2
,

t ∈ [0, T ]

x ∈ [0, H]
,

where T represents the acquisition time and H the bottom of the spatial domain.

(To clarify, x = 0 represents the skin surface.) The effective diffusion constant, D, is

defined by k/ρC.

Figure 2.3: Pictorial representation of the
skin layers, where the network of veins
located in the fat-dermis interface can be
identified. It is believed that these veins
and the blood-vessels within the dermis
layer are the most relevant source of heat
acquired by the infrared camera, which by
thermal diffusion reach the skin surface.
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Since we have stated that we cannot resolve beyond the fat-dermis interface

because of the veins (that carry blood at a temperature determined by the core

of the human body), we set the bottom of our spatial domain to be at fat-dermis

interface; this means H is given by the sum of the thicknesses of the epidermis

and dermis layers. Since this bottom is in contact with the veins of the fat-dermis

interface and zones with a high density of blood vessels, which assure a constant

temperature, termed the blood or core temperature, TB, for all time. This defines

the first boundary condition.

As explained in Section 2.2.2, in our study we perform the initial cooling of the

lesion and acquire the subsequent thermal recovery. Right after the cooling is stopped

the surface of the skin is exposed to the natural convection with the air. Therefore,

the heat flux at the surface, q′′ = −kux(0, t), must be equal to the product of the

convective heat transfer coefficient, h∞, and the temperature difference between the

skin surface, u(0, t), and the temperature of the air, TA.

In summary, the model for the temperature is given by

∂u

∂t
= D∂

2u

∂x2
,
t ∈ [0, T ]

x ∈ [0, H]
(2.2a)

with boundary conditions

q′′ = −kux(0, t) = h∞ (u(0, t)− TA) , (2.2b)

u(H, t) = TB , (2.2c)

ux(H, t) = 0 , (2.2d)

where D = k/ρC is the effective diffusion coefficient. For convenience, we impose the

additional condition (2.2d). At this stage, we have not specified the initial condition

function u0(x) because it is actually unknown. (We will discuss how we address this

later.) Next, we present one alternative to solve (2.2).
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2.4.2 Closed-form analytical solution

The temperature model is solved by dividing the solution into the steady-state solu-

tion, uss(x), and the transient solution, v(x, t), i.e., u(x, t) = uss(x) + v(x, t).

Steady-state solution

The steady-state solution can be easily found by setting ut(x, t) = 0 in (2.2a). There-

fore we need to solve uxx = 0, which have solution of the form uss(x) = Ax + B.

From (2.2c) we have that uss(H) = AH +B = TB, or B = TB −AH. Replacing this

into (2.2b) we have

−kux(0, t) = h∞ (u(0, t)− TA)

∴ −kA = h∞(B − TA) = h∞(TB − AH − TA)

∴ (h∞H − k)A = h∞(TB − TA)

∴ A =
h∞
k

(TB − TA)
h∞H
k
− 1

and B = TB − AH =
TB−h∞H

k
TA

1−h∞H
k

. Then, the steady-state solution is

uss(x) =

(
h∞
k

(TB − TA)
h∞H
k
− 1

)
x+

(
TB − h∞H

k
TA

1− h∞H
k

)
, x ∈ [0, H] . (2.3)

Transient solution

The transient solution, v(x, t), also satisfy (2.2a) but the boundary conditions are

different because of the steady-state solution uss(x). Substituting u(x, t) = uss(x) +

v(x, t) in (2.2c) we have u(H, t) = uss(H) + v(H, t) = TB, but uss(H) = TB, so
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v(H, t) = 0. Doing the same for (2.2b) yields

−kux(0, t) = h∞ (u(0, t)− TA)

−k(ussx(0) + vx(0, t)) = h∞ (uss(0) + v(0, t)− TA)

−kussx(0)− kvx(0, t) = h∞ (uss(0)− TA) + h∞v(0, t)

h∞v(0, t) = −kvx(0, t) ,

where the last equality comes from the fact that uss(x) was defined to satisfy (2.2b),

thus h∞ (uss(0)− TA) + kussx(0) = 0. We now impose the condition that the heat-

flux from the skin into the blood stream is zero for the transient response only,

i.e., vx(H, t) = 0. In summary, the problem to solve for the transient response, is

governed by

∂v

∂t
= D∂

2v

∂x2
,

t ∈ [0, T ]

x ∈ [0, H]
, (2.4a)

with boundary conditions

h∞v(0, t) + kvx(0, t) = 0 , (2.4b)

v(H, t) = 0 , (2.4c)

vx(H, t) = 0 . (2.4d)

The solution is obtained by following the separation of variables approach, i.e., we

assume that the transient solution can be defined as the product of two functions:

v(x, t) = X(x)T (t), transforming the transient equation (2.4a) to XṪ = DX ′′T , or

X′′

X
= Ṫ
DT = α, where the coefficient α is known as the separation constant. These

equation can be written as

X ′′(x)− αX(x) = 0 , x ∈ [0, H] , (2.5a)

Ṫ (t)− αDT (t) = 0 , t ∈ [0, T ] , (2.5b)
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where the boundary conditions (2.4b)-(2.4d) for X(x) 6= 0, x ∈ [0, H] and T (t) 6= 0,

t ∈ [0, T ] are recast as

X ′(0) +
h∞
k
X(0) = 0 , (2.6a)

X(H) = 0 , (2.6b)

X ′(H) = 0 . (2.6c)

We solve (2.5a) first and find the solutions associated with the separation constant

α. In particular, there are three cases of interest:

(i) α = 0. Here (2.5a) becomes X ′′ = 0, which have solutions of the form X(x) =

Cx+D. Using this solution in (2.6c) we have that X ′(H) = D = 0 and from (2.6b)

we have that X(H) = AH = 0. Hence, X(x) = 0, which means that there are no

eigenfunctions associated with α = 0.

(ii) α = µ2 > 0. Here (2.5a) becomes X ′′−µ2X = 0, which has a general solution

of the form X(x) = Ceµx + De−µx. By applying the BCs (2.6b) and (2.6c) to this

solution, we have X(H) = CeµH +De−µH = 0 and X ′(H) = CµeµH −Dµe−µH = 0.

Now, µX(H) + X ′(H) = 2CµeµH = 0. Since µ 6= 0, the only alternative is to have

C = 0. Following the same rationale for µX(H) − X ′(H), we find that D = 0 as

well. Therefore, there are no eigenfunctions for α > 0.

(iii) α = −µ2 < 0. Here the equation becomes Z ′′+µ2Z = 0, which has a general

solution of the form

X(x) = C cosµx+D sinµx .
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Since X ′(x) = −Cµ sinµx + Dµ cosµx, then X ′(0) = Dµ. Thus, (2.6a) becomes

X ′(0) + h∞
k
X(0) = Dµ+ h∞

k
C = 0, or C = − k

h∞
µD. Replacing in (2.6b) we have

X(H) = C cosµH +D sinµH = 0

− k

h∞
µD cosµH +D sinµH = 0

(
sinµH − k

h∞
µ cosµH

)
D = 0 .

To ensure non-trivial solution, we impose D 6= 0, therefore we must find µ such that

sinµH − k
h∞
µ cosµH = 0, or

tanµH =
k

h∞
µ . (2.7)

Given the periodicity of (2.7), we will have infinite solutions 0 < µ1 < µ2 < . . . with

the property

(n− 1)
π

H
< µn < (2n− 1)

π

2H
,

where µn is the n-th solution to the equation. Since the RHS in (2.7) have positive

slope, then

lim
n→∞

µn = (2n− 1)
π

2H
.

Figure 2.4(a) shows an example of the solutions when parameter values from the

literature [36] are used. Once the values µn are computed, we will have solutions of

the form

Xn(x) = Cn cosµnx+Dn sinµnx ,
x ∈ [0, H]

n = 1, 2, . . .
,

known in the literature as the eigenfunctions associated with the negatives eigenval-

ues αn = −µ2
n. Now for the nth eigenvalue, the time ODE (2.5b) becomes

Ṫn +Dµ2
nTn = 0 , t ∈ [0, T ] ,
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which have solutions of the form Tn(t) = e−Dµ
2
nt, where D = k/ρC. By multiplying

these solutions together we have the n-th normal mode solution (nth eigenfunction)

vn(x, t) = Xn(x)Tn(t) =
(
Cn cosµnx+Dn sinµnx

)
e−Dµ

2
nt ,

x ∈ [0, H]

t ∈ [0, T ]

n = 1, 2, . . .

.

We know that if {vn} is a sequence of solutions of the heat equation which satisfy

the specific boundary conditions, then any linear combination of these solutions will

also be a solution. Thus, the superposition of normal modes gives the general solution

for the transient function,

v(x, t) =
∞∑

n=1

(
Cn cosµnx+Dn sinµnx

)
e−Dµ

2
nt ,

x ∈ [0, H]

t ∈ [0, T ]
, (2.8)

where the coefficients Cn and Dn are determined by the generalized Fourier series

expansion of the initial condition function, u0(x), as explained later. By composing

the temperature model using (2.3) and (2.8) we obtain the analytical solution of the

heat-equation problem

u(x, t) =

(
h∞
k

(TB − TA)
h∞H
k
− 1

)
x+

(
TB − h∞H

k
TA

1− h∞
k
H

)

+
∞∑

n=1

(
Cn cosµnx+Dn sinµnx

)
e−Dµ

2
nt , (2.9)

where x ∈ [0, H] and t ∈ [0, T ]. If the initial condition function u0(x) is known, we

have that u0(x) = u(x, 0) = uss(x) +
∑∞

n=1

(
Cn cosµnx+Dn sinµnx

)
, or

uss0 (x) =
∞∑

n=1

(
Cn cosµnx+Dn sinµnx

)
, (2.10)

where uss0 (x) = u0(x)−uss(x). From (2.10) we see that knowing the initial condition,

the coefficients Cn and Dn correspond to the coefficients of the generalized Fourier
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series expansion with basis functions {cosµnz} and {sinµnz}, where {µn} are the

solutions of (2.7). If we can determine a finite number of the coefficients Cn and Dn

required to model the TRCs, say N , then the TRCs’ mathematical model, at the

skin surface will be governed by the structure

u(0, t) = B +
N∑

n=1

Cne
−Dµ2nt , (2.11)

where B = (TB− h∞H
k
TA)/(1− h∞H

k
) as defined in (2.3). Next we utilize test functions

as initial condition function u0(x) in order to study the decay of the Cn coefficients

and determine a proper value for N .

2.4.3 Initial-condition analysis

Given the lack of knowledge regarding the initial temperature profile for the subcuta-

neous layers of the skin, there is no way for us to know a priori the initial condition

function, u0(x). Some approximations have been proposed in the literature [61],

but in general, the level of uniformity of the subcutaneous layers assumed is too

unrealistic to make this alternatives suitable for all the cases.

Here we used four test function including a linear function, a quadratic and cubic

polynomial functions as well as an exponential radial basis function constructed from

the normal cumulative distribution function (CDF) implemented in MatLab. These

four test functions are depicted in Fig. 2.4(b), where the required parameters (e.g.,

skin depth, blood temperature, etc) were obtained from the literature [36]. We

numerically compute the coefficients Cn and Dn using the following rationale. Let us

consider the K equidistant sample points x = [x0 x2 · · · xK ]T of the skin subsurface,

being x0 = 0 and xK = H. Assume that we have numerically solved for the first N

solutions of (2.7), i.e., we have µ = [µ1 µ2 · · · µN ]T , then (2.10) can be numerically

recast as

h = Φb ,
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where h is the sampled test function minus the sampled steady-state solution, Φ is

the basis function matrix of the generalized Fourier series expansion and b is the

array of coefficients to be determined. In symbols,

h =




u0(x1)− uss(x1)
u0(x2)− uss(x2)

...

u0(xK)− uss(xK)



, Φ =

[
cosxµT sinxµT

]
, and, b =




C1

...

CN

D1

...

DN




,

which can be easily solved in Matlab. The first six coefficients for each test function

depicted in Fig. 2.4(b) were computed. The results of the coefficients Cn, n =

1, . . . , 6, are shown in Fig. 2.4(c)-2.4(f) for the four test functions. The actual value

of the coefficients were normalized with respect to the maximum coefficient for each

test function in order to facilitate their comparison.

The most relevant information that can be extracted from this analysis is that

for all the test functions utilized here, two coefficients seem to be sufficient in the

model because they decay rapidly as we increase N . This situation is particularly

true for the case of cubic and exponential functions, which, based on Wilson and

Spence’s work [61], present the most feasible functions as initial condition. As a

consequence, from now on we shall work under the assumption that the solution

of the temperature model (2.11) can be approximated by the constant B plus two

exponential functions, i.e., u(0, t) = B + C1e
−Dµ21t + C2e

−Dµ22t.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Numerical study of parts of the model analytical solution, using literature
parameters for the required quantities. (a) Example solutions, µn for the non-linear
equation (2.7). (b) Test functions used in the initial condition function analysis
where for different initial condition test functions, the decay of the coefficients Cn
is studied using literature parameters. (c)-(f) Coefficient decay for linear, quadratic,
cubic and exponencial test functions, respectively

2.4.4 Stochastic model for the thermal recovery of human

skin

By solving the proposed temperature model with proper boundary conditions we

have determined that the solution at the surface of the skin can be approximated

by a constant and two exponential functions. Nevertheless, when we solved the

temperature model we assumed the knowledge of thermal and physical parameters

of the skin that are either unknown or vary from patient-to-patient. For example,

the effective diffusion coefficient, D, appears in the solution and it is defined as the
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ratio k/ρC, where k is the effective thermal conductivity of the skin, ρ is the effective

tissue density and C is the effective specific heat of the tissue. It is clear that the

value of these parameters cannot be described in a deterministic fashion. A similar

problem appears in (2.7), which requires, for example, the precise knowledge of the

depth of the lesion to compute the values of µ1 and µ2 for the temperature model.

We address these inherent uncertainties by considering each parameter within the

model as a random variable. Therefore, the stochastic-process model for the TRCs

is given by the temporal structure given by the solution of a heat equation and it

is parameterized by a set of five random variables. Thus, the TRCs are modeled

by the stochastic parameters given by S(t; Θ) = θ1 + θ2e
−θ3t + θ4e

−θ5t, where the

entries of the random vector Θ are correlated random variables. Since the random

vector Θ directly depends of the nature of the lesion under study, we assume that

each hypothesis in the detection problem (2.1b) have its particular random vector,

namely Θ0 and Θ1. This implies that the binary hypothesis problem (2.1b) can be

recast as

H0 : Y (t) = S(t; Θ0) = θ0,1 + θ0,2e
−θ0,3t + θ0,4e

−θ0,5t , t ∈ [0, T ] (2.12a)

H1 : Y (t) = S(t; Θ1) = θ1,1 + θ1,2e
−θ1,3t + θ1,4e

−θ1,5t , t ∈ [0, T ] . (2.12b)

The distribution of the random vectors Θj = [θj,1 · · · θj,5], j = 0, 1 must be deter-

mined from patient data with known condition. For our purposes, the ground truth

is taken as the biopsy result and/or the clinical diagnosis determined by the UNM’s

dermatology specialists at the moment of the patient data acquisition.

Random parameters distribution and their correlation

We assume that for each patient with known condition, each pixel within the selected

lesion gives a realization of the random variables of the model. Each realization is

35



Chapter 2. Skin-cancer detection using dynamic infrared imaging

(a) (b) (c)

(d) (e)

Figure 2.5: Histograms of the realizations of each of the random variables within the
TRC model for the null hypothesis, H0.

obtained by doing non-linear fitting of the the measured TRCs of each pixel with the

dual exponential model. In turn, we can utilize the histograms of these realizations

to estimate the marginal distribution of each random variable, under each one of the

hypothesis, if required. For the purposes of illustration we obtained the histograms

for the realizations of 140 patients with known condition, as determined by their

biopsy results. (More details about this patient data will be given later in Chapter 3.)

As an example, we obtained the histograms of the realizations for a dataset of

140 patients, which includes 58 malignant cases and 82 benign cases (more details

will be given later). The resulting histograms for the null and alternative hypothesis

are depicted in Fig. 2.5 and Fig. 2.6, respectively. The correlation between the

coefficients is not shown in the presented figures, but are given in Table 2.1 for Θ0

and in tableTable 2.2 for Θ1.
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(a) (b) (c)

(d) (e)

Figure 2.6: Histograms of the realizations of each of the random variables within the
TRC model for the alternative hypothesis, H1.

Even though the correlation between some parameters is not strong, we have de-

cided to consider all the parameters to be correlated. Such a correlation is partially

accounted in the autocorrelation functions, which we computed in the following sec-

tion by using the structure of the stochastic model. Let us first describe the procedure

we use to solve the detection problem by means of Grenander’s approach.

Table 2.1: Correlation coefficient between the random parameters θ0,`, for ` =
1, 2, . . . , 5, which define the stochastic signal for the hypothesis H0

θ0,1 θ0,2 θ0,3 θ0,4 θ0,5
θ0,1 1.00 -0.98 0.01 0.01 -0.01
θ0,2 1.00 -0.03 0.08 0.02
θ0,3 1.00 -0.10 0.64
θ0,4 1.00 -0.12
θ0,5 1.00
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Table 2.2: Correlation coefficient between the random parameters θ1,`, for ` =
1, 2, . . . , 5, which define the stochastic signal for the hypothesis H1

θ0,1 θ0,2 θ0,3 θ0,4 θ0,5
θ0,1 1.00 -1.00 -0.02 -0.01 -0.01
θ0,2 1.00 0.01 0.03 0.001
θ0,3 1.00 -0.06 0.53
θ0,4 1.00 -0.07
θ0,5 1.00

2.5 Solution of the detection (statistical-inference)

problem

2.5.1 Background

With the stochastic model for the random processes under each hypothesis at hand,

we proceed to solve the detection problem of classifying the TRC of a suspicious le-

sion to be either benign or malignant. The main difference of our detection problem

and the continuous-time problems one can find in the literature is the presence of a

stochastic signal under both hypotheses. Hence, each hypothesis have an autocorre-

lation function (determined by means of the corresponding stochastic signals).

Three main approaches to address the problem with two autocorrelation func-

tions have been proposed in the literature. The first approach, termed the Grenan-

der’s approach [38], utilizes an orthogonal series expansion (more precisely, the

Karhunen-Loève expansion) to transform the continuous-time random processes into

statistically-equivalent discrete sequences, which compactly contain all the statistical

information from the continuous-time random processes. This sequence of coefficients

is later utilized to construct an optimal detector under a certain prescribed rule.

The second approach, termed the reproducing-kernel Hilbert space (RKHS) ap-

proach [62], defines the likelihood ratio test in terms of norms of the observed random
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processes, which may have different definition on each RKHS. (In simple terms, a

RKHS as a Hilbert space of functions with all evaluation functionals bounded and

linear that is generated by one autocorrelation function.) For example for the unequal

covariance problem the test-statistics can be defined by [63]

Z = ‖X‖2R0
− ‖X‖2R1

,

where ‖ · ‖2Rj
represents the square of the norm defined under the RKHS associated

with the autocorrelation Rj. The success of this approach is directly linked to the

definition of the norms of the data vectors in the RKHS under each hypothesis,

which are hard or even impossible to obtain for complex autocorrelation functions.

The closed-form solution for these norms have been obtained for very specific struc-

tures of the ACFs and their extension to complex structures is not trivial. See, for

example [62, 63, 64] for further details. As such, given the complexity of our auto-

correlation functions (which we will introduce in the next section) this approach is

not applicable to our specific problem.

The third approach is termed the whitening-filter approach and it was proposed

by Van Trees [65]. The idea is to define a filter, hw(t, u), such that the autocorrelation

function of the null-hypothesis is a white process. In symbols, if we denote by

S∗(t; Θ0) the output of this filter when S(t; Θ0) is the input, we choose hw(t, u)

such that R∗0(t, u) = E [S∗(t; Θ0)S
∗(u; Θ0)] = δ(t − u). Once this filter is defined,

the equivalent detection problem becomes a classical detection problem, because H∗0

has white ACF and H∗1 has ACF given by R∗1(t, u) = E [S∗(t; Θ1)S
∗(u; Θ1)]. It is

clear that this approach requires the computation of integral convolutions to use

the whitening filter. The main difficulty of this approach is that the optimality

of the method is directly linked to the inverse of the whitening filter; this means

that solving this problem requires to solve inverse integral equations, which can be

difficult if not impossible to solve because this is, in general, an ill-posed problem.

This problem is similar in nature to the solution of integral inverse problems in
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image processing which are ill-posed and are directly affected by the presence of

noise. (See, for example, [66] for an introductory survey of these type of problems.)

As a consequence, this alternative is not feasible to implement and, it if is, then

there is no guarantee that the filter is reversible, which will make this approach to

be non-optimal.

In this work, we solve the detection problem by following Grenander’s approach

because its optimality is guaranteed if one work the solution under the correct as-

sumptions. Let us explain this approach with more details and the main assumptions

we followed that make this alternative the optimal solution for our problem.

2.5.2 Grenander’s approach

As it was explained above, Grenander’s approach [38] utilizes an orthogonal series

expansions of the random processes under each hypothesis known as the Karhunen-

Loève (KL) expansion. After this expansion, the continuous-time random processes

are represented by a discrete-sequence of coefficients termed the KL coefficients.

These coefficients, in turn, compactly contain all the statistical information extracted

from the stochastic TRCs and can be utilized in an optimal statistical decision theory

framework to address the detection problem.

In simple terms, the steps required to solve the problem are under this approach

are: (1) Obtain the autocorrelation function (ACF) that characterize the stochastic

processes under each hypothesis; (2) Utilize Mercer’s theorem to characterize the

autocorrelation functions by its corresponding eigenvalue-eigenfunction pairs1; (3)

Apply the KL expansion and Grenander’s theorem to construct the likelihood ratio of

the problem; and (4) Utilize optimal statistical inference (optimum decision theory)

1For simplicity, in what follows, we term the eigenvalue-eigenfunction pairs as the eigen-
pairs.
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to declare the malignancy of a lesion by means of the likelihood ratio test.

In what follows, we propose and develop each one of these steps in detail.

2.6 Autocorrelation functions

2.6.1 Analytical form of the autocorrelation function

By definition, the ACF of a zero-mean stochastic process S(t; Θj) is defined by

Rj(t, u) = E [S(t; Θj)S(u; Θj)], where E [·] denotes the mathematical expectation.

Expanding this expression, the jth ACF is defined by

Rj(t, u) = E [S(t; Θj)S(u; Θj)]

= E
[(
θj,1 + θj,2e

−θj,3t + θj,4e
−θj,5t

) (
θj,1 + θj,2e

−θj,3u + θj,4e
−θj,5u

)]

= E
[
θj,1

2
]

+ E
[
θj,1θj,2e

−θj,3u
]

+ E
[
θj,1θj,4e

−θj,5u
]

+ E
[
θj,1θj,2e

−θj,3t
]

+ E
[
θj,2

2e−θj,3(t+u)
]

+ E
[
θj,2θj,4e

−θj,3te−θj,5u
]

+ E
[
θj,1θj,4e

−θj,5t
]

+ E
[
θj,2θj,4e

−θj,5te−θj,3u
]

+E
[
θ2j,4e

−θj,5(t+u)
]
, (2.13)

for (t, u) ∈ [0, T ]. From (2.13) we observe that we require to know the expectation of

the product of two, three and four random variables. The procedure to address these

products when computing the ACF for our modeled stochastic processes is explained

in detail next.

Expectation of the product of random variables

Let us determine the expectation of the product of four random variables X, Y ,

U and V , i.e., we want to determine an analytical expression for E [XY UV ] from
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pairwise relations between these random variables. It is known that cov (X, Y ) =

E [XY ] − E [X]E [Y ], thus the expectation for the product of two random variables

is

E [XY ] = E [X]E [Y ] + cov (X, Y ) . (2.14)

Let us define the random variables ∆X = X−E [X], ∆Y = Y −E [Y ], ∆U = U−E [U ]

and ∆V = V − E [V ]. In terms of these zero-mean random variables, the product

XY can be also expressed by XY = (∆X + E [X])(∆Y + E [Y ]) = E [X]E [Y ] +

E [X] ∆Y +E [Y ] ∆X+∆X∆Y . Subtracting (2.14) from this last expression we have

XY − E [XY ] = E [X] ∆Y + E [Y ] ∆X + ∆X∆Y − cov (X, Y ) . (2.15)

Similarly, for U and V we have

UV − E [UV ] = E [U ] ∆V + E [V ] ∆U + ∆U∆V − cov (U, V ) . (2.16)

If we multiply (2.15) and (2.16) and take expectation we obtain

cov (XY,UV ) = E [X]E [U ] cov (Y, V ) + E [X]E [V ] cov (Y, U) + E [Y ]E [U ] cov (X, V )

+ E [Y ]E [V ] cov (X,U) + E [∆X∆Y∆U∆V ] + E [X]E [∆Y∆U∆V ]

+ E [Y ]E [∆X∆U∆V ] + E [U ]E [∆X∆Y∆V ] + E [V ]E [∆X∆Y∆U ]

− cov (X, Y ) cov (U, V ) . (2.17)

One case of interest is when Y = 1 in (2.17), which means that E [Y ] = 1, ∆Y = 0

and cov (Y, ·) = 0; therefore we have

cov (X,UV ) = E [U ] cov (X, V ) + E [V ] cov (X,U) + E [∆X∆U∆V ] . (2.18)

Now, we use the derived relations to define the product of three and four random
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variables. The expectation of the product of three random variables will be

E [XUV ] = E [X(UV )] = E [XZ]
(2.14)
= E [X]E [Z] + cov (X,Z)

= E [X]E [UV ] + cov (X,UV )

(2.14)
= E [X] (E [U ]E [V ] + cov (U, V )) + cov (X,UV )

(2.18)
= E [X]E [U ]E [V ] + E [X] cov (U, V ) + E [U ] cov (X, V )

+E [V ] cov (X,U) + E [∆X∆U∆V ] . (2.19)

For the product of four random variables we have

E [XY UV ] = E [(XY )(UV )]
(2.14)
= cov (XY,UV ) + E [XY ]E [UV ]

(2.14)
= cov (XY,UV ) + (cov (X, Y ) + E [X]E [Y ])(cov (U, V ) + E [U ]E [V ])

(2.17)
= E [X]E [U ] cov (Y, V ) + E [X]E [V ] cov (Y, U) + E [Y ]E [U ] cov (X, V )

+ E [∆X∆Y∆U∆V ]

+ E [Y ]E [V ] cov (X,U) + E [X]E [∆Y∆U∆V ] + E [Y ]E [∆X∆U∆V ]

+ E [U ]E [∆X∆Y∆V ] + E [V ]E [∆X∆Y∆U ] + E [U ]E [V ] cov (X, Y )

+ E [X]E [Y ] cov (U, V ) + E [X]E [Y ]E [U ]E [V ] , (2.20)

which under the assumption that the four random variables are Gaussian (2.20) can

be reduced to

E [XY UV ] = E [X]E [Y ] cov (U, V ) + E [X]E [U ] cov (Y, V ) + E [X]E [V ] cov (Y, U)

+ E [Y ]E [U ] cov (X, V ) + E [Y ]E [V ] cov (X,U) + E [U ]E [V ] cov (X, Y )

+ cov (X, Y ) cov (U, V ) + cov (X,U) cov (Y, V ) + cov (X, V ) cov (Y, U)

+ E [X]E [Y ]E [U ]E [V ] . (2.21)

From (2.14), (2.19) and (2.20) one can obtain the expressions for each term within

the expectation formula without any assumption regarding the distribution of these
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random variables. If we assume that the parameters depicted in Fig. 2.5 and Fig. 2.6

are Gaussian, then one can use the simplified version of the expectation of the prod-

uct given by (2.21). The first observation that worth mentioning is that after the

random parameters for the stochastic model are characterized, the computation of

the analytical ACF only requires the computation of the expectation and pairwise

covariances of those parameters.

An new assumption is introduced here. We assume that the correlation function

between benign and malignant patients can be neglected when compared to the

autocorrelation function of each hypothesis. In symbols, we assume that

Rk,`(t, u) , E [S(t; Θk)S(u; Θ`)] = 0 (2.22)

for k 6= `. This assumption states that patients with benign and malignant conditions

are uncorrelated. As a consequence, the jth hypothesis is statistically characterized

in full by its corresponding ACF, Rj, defined in (2.13).

Autocorrelation function

We estimate the ACF by applying the formulas for the expectation of the product

of random variables to each expectation in (2.13) as follows.

The first term in (2.13) is E
[
θj,1

2
]
, which can be easily estimated from the patients

with known diagnosis. The second term is

E
[
θj,1θj,2e

−θj,3u
]

= E [XUV ] = E [X]E [U ]E [V ] + E [X] cov (U, V )

+E [U ] cov (X, V ) + E [V ] cov (X,U)

= E [θj,1]E [θj,2]E
[
e−θj,3u

]

+E [θj,1] cov
(
θj,2, e

−θj,3u
)

+E [θj,2] cov
(
θj,1, e

−θj,3u
)

+E
[
e−θj,3u

]
cov (θj,1, θj,2) . (2.23)
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Where the expectation of the exponential function of a random variable is given by

E
[
e−θj,3u

]
= exp

[
−uµj,3 + u2

σ2
j,3

2

]
, (2.24)

with µj,3 = E [θj,3] and σ2
j,3 = var [θj,3]. Under the assumption of Gaussian parame-

ters, the random variable θj,k, e
−θj,3u can be approximated to as a random variable

that follows a Normal-Lognormal distribution [67, 68, 69].

The random variable Z is said to follow a Normal-Lognormal (NLN) distribution

if Z = XeY , where the two random variables X and Y are jointly Gaussian random

variables, i.e., [67]

 X

Y


 ∼ N




 µX

µY


 ,


 σ2

X ρXY σXσY

ρXY σXσY σ2
Y




 ,

where ρXY is the correlation coefficient between X and Y . From Chen’s work we

know that [67]

cov (Z) = cov
(
XeY

)
= ρσXσY exp

[
µY +

σ2
Y

2

]

where ρ is the correlation coefficient between X and ln(Y ) Thus, the pairwise co-

variances in (2.23) can be approximated by [67]

cov
(
θj,k, e

−θj,3u
)

= ρk,3σj,kuσj,3 exp

[
−uµj,3 + u2

σ2
j,3

2

]

where ρk,3 is the estimated correlation coefficient between θj,k and ln(θj,3).

Replacing everything back into (2.23), the second term of the ACF is

E
[
θj,1θj,2e

−θj,3u
]

= µj,1µj,2 exp

[
−uµj,3 + u2

σ2
j,3

2

]

+µj,1ρ2,3σj,2uσj,3 exp

[
−uµj,3 + u2

σ2
j,3

2

]

+µj,2ρ1,3σj,1uσj,3 exp

[
−uµj,3 + u2

σ2
j,3

2

]

+cov (θj,1, θj,2) exp

[
−uµj,3 + u2

σ2
j,3

2

]
, (2.25)
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where cov (θj,1, θj,2) can be estimated from the data.

Using the same procedure, the third term can be expressed as

E
[
θj,1θj,4e

−θj,5u
]

= µj,1µj,4 exp

[
−uµj,5 + u2

σ2
j,5

2

]

+µj,1ρ4,5σj,4uσj,5 exp

[
−uµj,5 + u2

σ2
j,5

2

]

+µj,4ρ1,5σj,1uσj,5 exp

[
−uµj,5 + u2

σ2
j,5

2

]

+cov (θj,1, θj,4) exp

[
−uµj,5 + u2

σ2
j,5

2

]
. (2.26)

Similarly, the fourth term in (2.13) is

E
[
θj,1θj,2e

−θj,3t
]

= µj,1µj,2 exp

[
−tµj,3 + t2

σ2
j,3

2

]

+µj,1ρ2,3σj,2tσj,3 exp

[
−tµj,3 + t2

σ2
j,3

2

]

+µj,2ρ1,3σj,1tσj,3 exp

[
−tµj,3 + t2

σ2
j,3

2

]

+cov (θj,1, θj,2) exp

[
−tµj,3 + t2

σ2
j,3

2

]
. (2.27)

The fifth term in (2.13) is

E
[
θj,2

2e−θj,3(t+u)
]

= µ2
j,2 exp

[
−(t+ u)µj,3 + (t+ u)2

σ2
j,3

2

]

+2µj,2ρ2,3σj,2(t+ u)σj,3 exp

[
−(t+ u)µj,3 + (t+ u)2

σ2
j,3

2

]

+cov
(
θ2j,2
)

exp

[
−(t+ u)µj,3 + (t+ u)2

σ2
j,3

2

]
. (2.28)
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The seventh term in (2.13) is

E
[
θj,1θj,4e

−θj,5t
]

= µj,1µj,4 exp

[
−tµj,5 + t2

σ2
j,5

2

]

+µj,1ρ4,5σj,4tσj,5 exp

[
−tµj,5 + t2

σ2
j,5

2

]

+µj,4ρ1,5σj,1tσj,5 exp

[
−tµj,5 + t2

σ2
j,5

2

]

+cov (θj,1, θj,4) exp

[
−tµj,5 + t2

σ2
j,5

2

]
. (2.29)

The ninth term in (2.13) is

E
[
θj,4

2e−θj,5(t+u)
]

= µ2
j,4 exp

[
−(t+ u)µj,5 + (t+ u)2

σ2
j,5

2

]

+2µj,4ρ4,5σj,4(t+ u)σj,5 exp

[
−(t+ u)µj,5 + (t+ u)2

σ2
j,5

2

]

+cov
(
θ2j,4
)

exp

[
−(t+ u)µj,5 + (t+ u)2

σ2
j,5

2

]
. (2.30)

Now we turn our attention to the case of four random variables within the ex-
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pectation. The sixth term in (2.13) is

E
[
θj,2e

−θj,3tθj,4e
−θj,5u

]
= E [XY UV ]

= E [X]E [Y ] cov (U, V ) + E [X]E [U ] cov (Y, V )

+E [X]E [V ] cov (Y, U) + E [Y ]E [U ] cov (X, V )

+E [Y ]E [V ] cov (X,U) + E [U ]E [V ] cov (X, Y )

+cov (X, Y ) cov (U, V ) + cov (X,U) cov (Y, V )

+cov (X, V ) cov (Y, U) + E [X]E [Y ]E [U ]E [V ]

= µj,2 exp

[
−tµj,3 + t2

σ2
j,3

2

]
cov
(
θj,4e

−θj,5u
)

+µj,2µj,4cov
(
e−θj,3t, e−θj,5u

)

+µj,2 exp

[
−uµj,5 + u2

σ2
j,5

2

]
cov
(
e−θj,3t, θj,4

)

+µj,4 exp

[
−tµj,3 + t2

σ2
j,3

2

]
cov
(
θj,2, e

−θj,5u
)

+ exp

[
−tµj,3 + t2

σ2
j,3

2

]
exp

[
−uµj,5 + u2

σ2
j,5

2

]
cov (θj,2, θj,4)

+µj,4 exp

[
−uµj,5 + u2

σ2
j,5

2

]
cov
(
θj,2e

−θj,3t
)

+cov
(
θj,2, e

−θj,3t
)
cov
(
θj,4, e

−θj,5u
)

+cov (θj,2, θj,4) cov
(
e−θj,3t, e−θj,5u

)

+cov
(
θj,2, e

−θj,5u
)
cov
(
e−θj,3t, θj,4

)

+µj,2 exp

[
−tµj,3 + t2

σ2
j,3

2

]
µj,4 exp

[
−uµj,5 + u2

σ2
j,5

2

]
.

Here, all the terms are already defined in the previous paragraphs except for the

term cov
(
e−θj,3t, e−θj,5u

)
, which we define next. Under the assumption of Gaussian

random variables, with θj,k ∼ N (µj,k, σ
2
j,k), k = 3, 5, the random variables eθj,kt

are log-Normal random variables and the covariance between them is given by the
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formulae

cov
(
e−θj,3t, e−θj,5u

)
= E

[
e−θj,3t

]
E
[
e−θj,5u

]
(ecov(θj,3,θj,5) − 1)

= exp

[
−tµj,3 + t2

σ2
j,3

2

]
exp

[
−uµj,5 + u2

σ2
j,5

2

]
(ecov(θj,3,θj,5) − 1) ,

(2.31)

where cov (θj,3, θj,5) can be estimated from the data. Replacing this expression back

in (2.31) we obtain the expression to compute the sixth term of (2.13). The eigth

term is computed exactly in the same way, making the appropriate changes in the

variables as done for the other terms. Using all the described assumptions and

derived expressions we can define the analytical ACF by adding up (2.25)-(2.31) The

resulting ACF from the parameters of patients with known benign and malignant

conditions are depicted in Fig. 2.7(a) and Fig. 2.7(b), respectively. Please recall that

benign conditions are considered to define the null hypothesis (H0) and that the

malignant conditions (including MM, BCC and SCC conditions) are considered to

define the alternative hypothesis (H1). In both cases, the acquisition time was set to

be 100 seconds in order to avoid small differences that affected the image registration

over the actual 120 seconds used as the acquisition time.

2.6.2 Mercer’s theorem

Let us assume that the stochastic signals under each hypothesis are zero-mean

second-order random processes. Therefore, the jth ACF (j = 0, 1) can be expanded

by the absolutely convergent series (Mercer’s theorem) [70]

Rj(t, u) =
∞∑

k=1

λj,kφj,k(t)φj,k(u) , (t, u) ∈ [0, T ]2 , (2.32)

where {λj,k}∞k=1 and {φj,k}∞k=1 are the eigenvalues and the corresponding orthonor-

mal eigenfunctions of the jth ACF, Rj. The eigenvalues and eigenfunctions are the
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(a) (b)

Figure 2.7: (a) Autocorrelation function for the null-hypothesis (H0) estimated from
patient data with known benign condition. (b) Autocorrelation function for the
alternative-hypothesis (H1) estimated from patient data with known malignant con-
dition.

solutions of the integral equation

λj,kφj,k(t) =

∫ T

0

Rj(t, u)φj,k(u) du , t ∈ [0, T ] , (2.33)

with
∫ T
0
φj,k(t)φj,`(t) = δk,`, where δk,` is the Kronecker delta. This equation is known

as a Fredholm integral equation of the second kind. The expansion (2.32) is known

as the Mercer’s theorem and it is the key enabling theorem to solve our problem.

Details on how we solve (2.33) are given later in Subsection 2.6.4, whereas other

alternatives to solve this equation numerically can be found, for example in [71].

2.6.3 Karhunen-Loève expansion of the thermal recovery

curves

The two sets of eigenfunctions, namely {φ0,k}∞k=1 and {φ1,k}∞k=1, are two complete

sets because the corresponding ACFs, R0 and R1, respectively, are symmetric and

positive definite [70, 72]. The completeness of these two sets allow us to represent

any process with any of these sets (in the mean-square sense). We represent each
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signal with its corresponding set, namely, for the jth hypothesis

Sj(t; Θj) =
∞∑

k=1

Sj,kφj,k(t) , t ∈ [0, T ] , (2.34)

where the expansion coefficients Sj,k are known as the Karhunen-Loève (KL) co-

efficients associated with the stochastic process Sj(t; Θj). The KL coefficients are

computed as the projections of each process on its respective basis functions, namely

Sj,k =

∫ T

0

φj,k(t)Sj(t; Θj) dt ,
k = 1, 2, . . .

j = 0, 1
. (2.35)

One of the main properties related with the KL expansion for random processes is

that the expansion coefficients have zero mean and are uncorrelated. More details

can be found elsewhere [70] and are included here for completeness. The mean of the

coefficients is E [Sj,k] = E
[∫ T

0
φj,k(t)Sj(t; Θj) dt

]
=
∫ T
0
φj,k(t)E [Sj(t; Θj)] dt = 0,

owing the assumption the our random processes have zero mean. The correlation of

these coefficients is on the other hand,

cov (Sj,k, Sj,`) = E [Sj,kSj,`] = E

[∫ T

0

φj,k(t)Sj(t; Θj) dt

∫ T

0

φj,`(u)Sj(u; Θj) du

]

=

∫ T

0

φj,k(t)

∫ T

0

E [Sj(t; Θj)Sj(u; Θj)]φj,`(u) du dt

=

∫ T

0

φj,k(t)

∫ T

0

Rj(t, u)φj,`(u) du dt = λ`δk,` . (2.36)

The KL expansion enables us to conveniently decouple randomness (compactly con-

tained in the KL coefficients, Sj,k) and time-variations (embodied in the sequence of

eigenfunctions, φj,k(t)) for the TRCs under each hypothesis. As such, the KL ex-

pansion enables us to equivalently view the continuous-time TRC stochastic signals

Sj(t; Θj) for j = 0, 1, as sequences of uncorrelated random variables, namely the KL

coefficients Sj,k, for j = 0, 1 and k = 1, 2, . . . . These two sequences of KL coefficients

in effect constitute the set of statistical features that fully describe the TRC for each

patient under each hypothesis. With such statistical equivalence between a TRC and
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its KL sequences, we can employ optimal-inference theory to announce the hypoth-

esis based on the KL coefficients of an observed TRC. The established procedure

for doing so is to construct the likelihood ratio associated with the equivalent KL

representation, as detailed in Section 2.7. Next we describe how we have obtained

the eigenfunctions and eigenvalues for both hypotheses.

2.6.4 Numerical solution of the Fredholm integral equation

of the second kind

For this study, we solve (2.33) numerically following the Nystrom method which is

explained below [73]. The method requires the choice of some approximation for the

integral by means of a quadrature rule,

∫ T

0

y(u) du ≈
N∑

`=0

w`y(u`) = wTy , (2.37)

where w = [w1 w2 · · · wN ]T and y = [y(u1) y(u2) · · · y(uN)]T , with the points

{u`} as samples points in time within a grid and the weight {w`} are those from

the quadrature approximation. For example, under an uniform grid of N points the

trapezoidal rule for numerical integration is

∫ T

0

y(u) du ≈ T

2N
[y(u0) + 2y(u1) + 2y(u1) + · · ·+ 2y(uN−1) + y(uN)] ,

thus the vector of weights can be w = T
2N

[1 2 2 · · · 2 1]. Now, applying the

quadrature rule (2.37) to the equation (2.33) we get

λj,kφj,k(t) ≈
N∑

`=0

w`Rj(t, u`)φj,k(u`) ,

which can be evaluated at the quadrature points to get

λj,kφj,k(ti) ≈
N∑

`=0

w`Rj(ti, u`)φj,k(u`) , i = 0, 1, 2, . . . , N .
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The last equation is a linear system of N equations with N unknown, which in vector

form becomes

λj,kΦj,k = R∗jΦj,k , (2.38)

where

Φj,k ,




φj,k(t0)

φj,k(t1)
...

φj,k(tN)



, (2.39)

and

R∗j ,




Rj(t0, u0)w0 Rj(t0, u1)w1 · · · Rj(t0, uN)wN

Rj(t1, u0)w0 Rj(t1, u1)w1 · · · Rj(t1, uN)wN
...

...
. . .

...

Rj(tN , u0)w0 Rj(tN , u1)w1 · · · Rj(tN , uN)wN



. (2.40)

Note that since the weights {w`} are not equal for most quadrature rules, the matrix

R∗j in (2.38) is, in general, not symmetric; indeed, if we define W = diag(w), then

R∗j = RjW , where the entries of the matrix Rj are Rj(n,m) = Rj(tn, um). It is

important to mention that this method will, in general, give us N eigenvalues (recall

that N is the number of quadrature points used). It is stated by Press et al. [73] that

for square-integrable kernels, as in our case, this method provides a good approxi-

mations to the N eigenvalues of the integral equation (2.33). For other alternatives

to numerically solve (2.33) see, for example, Delves and Mohamed [74] or Chen et

al. [71]. We solve (2.38) with MatLab’s eig function for the same patient dataset uti-

lized to compute the ACFs presented in Fig. 2.7. The resulting, six most important

eigenfunctions (provided that we have sorted the eigenvalues in descending order)

for the null and alternative hypotheses are depicted in Fig. 2.8(a) and Fig. 2.8(b),

respectively.
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(a) (b)

Figure 2.8: First six, most important eigenfunctions for both hypotheses, (a) null
hypothesis and (b) alternative hypothesis. The importance of each eigenfunction is
determined by the value of its corresponding eigenvalue.

In theory, each autocorrelation function can be expanded by its eigenvalues and

eigenfunctions which form a complete orthonormal set [72]. Since each ACF create

a complete basis function set, both sets can be used to compute the KL coefficients.

Nevertheless, since the ACFs are estimated from a small number of patient data by

computing the means and pairwise covariances between the model parameters they

are not “rich enough” to allow us to estimate a big number of eigenvalues. As such,

there is a practical limit in the number of eigenpairs that can be reliably extracted

from the estimated ACFs. (The variability of the eigenvalue-eigenfunction pairs is

studied in detail in Section 3.4.1.) This practical limit in the number of eigenvalues

force us to limit the KL expansions to the most important coefficients as discussed

later in the construction of the likelihood ratio.

Table 2.3: Eigenvalues sorted by their magnitude, corresponding to those eigenfunc-
tions depicted in Fig. 2.8

k 1 2 3 4 5 6
λ0,k 955.47 38.89 2.24 0.55 0.02 7.47×10−4

λ1,k 1609.30 44.69 5.70 1.22 0.03 2.25×10−3
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2.7 Likelihood ratio

The likelihood ratio is an explicit function of all the KL coefficients and all the

eigenvalues and it is constructed as follows. With the statistical equivalence between

a TRC and its KL sequences, we can recast the detection problem (2.12) as [75]

H0 : S0,k , k = 1, 2, . . . (2.41a)

H1 : S1,k , k = 1, 2, . . . (2.41b)

The main difficulty at this stage is the application of Grenander’s theorem as we

require to have the probability density function of the KL coefficients under each

hypothesis and for each k = 1, 2, . . . . As explained by Poor [70], with the exception

of some particular cases, it is extremely difficult, if not impossible, to find even the

marginal density of one of the KL coefficient. Thus without further assumptions,

one cannot proceed to find likelihood ratios in this way. An important exception

to this difficulty is when the random processes Sj(t; Θj) are Gaussian. A process,

say Sj(t; Θj), is a Gaussian random process if every linear functional of Sj(t; Θj)

is a Gaussian random variable [72]. Namely, if Sj =
∫ T
0
g(u)Sj(u; Θj) du, where

g(u) is any function such that E
[
S2
j

]
< ∞ and Sj is a Gaussian random variable,

then the process Sj(t; Θj) is Gaussian. Since integration is a linear operation, if we

assume that Sj(t; Θj) is a Gaussian random process, then the KL coefficients will

be also Gaussian and the density under each hypothesis can be easily specified by

the mean and the covariances of the KL coefficients, E [Sj,k] = 0 and cov (Sj,kSj,`) =

λkδk,`, respectively. Since we are assuming the processes are Gaussian and the KL

coefficients are uncorrelated, they also are independent random variables, with Sj,k ∼
N (0, λj,k); thus, the original continuous-time detection problem becomes the discrete

(but infinite) detection problem between two Gaussian distributions with different

(diagonal) covariance matrices; hence, for the observation process Y (t), we have the
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discrete detection problem

H0 : Y0,k ∼ N (0, λ0,k) , k = 1, 2, . . . (2.42a)

H1 : Y1,k ∼ N (0, λ1,k) , k = 1, 2, . . . (2.42b)

where the KL coefficients of the observation Y (t), namely Yj,k, j = 0, 1 are the expan-

sion coefficients of Y (t) under the jth hypothesis, namely Yj,k =
∫ T
0
φj,k(t)Y (t) dt,

j = 0, 1. This discrete detection problem have a likelihood ratio defined by

L(Y ) ,
p1(Y )

p0(Y )
=

∏∞
k=1

1√
2πλ1,k

exp
[
−1

2

Y 2
1,k

λ1,k

]

∏∞
k=1

1√
2πλ0,k

exp
[
−1

2

Y 2
0,k

λ0,k

]

=
∞∏

k=1

(
λ0,k
λ1,k

)1/2

exp

[
1

2

∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)]
(2.43)

where Y denotes {Yk}∞k=1, the vector that contains all the KL coefficients. By in-

spection, one can see that the first restriction required to ensure the convergence

of (2.43) is that λ1,k > λ0,k for k = 1, 2, . . . , and the convergence of the second term

is ensured if
∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)
<∞ ,

because the logarithm function is monotonic. The convergence in mean-square of

each term within the summation can be proven by following the same procedure as

in Poor [70] (pp. 305-306) by letting X̂2
k = Y 2

j,k and λk = λj,k, for j = 0, 1 in Equation

(VI.D.20), and will not be shown here.

2.7.1 Test statistic for the detection problem

The dependence of the likelihood ratio on the KL coefficients and the eigenvalues

is further simplified to produce the test-statistic, and the latter is compared to a

single pre-specified threshold and the result of the comparison is used to declare the
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hypothesis associated with the TRC, as studied next for a Neyman-Pearson (NP)

decision rule. Let us denote the optimal threshold determined by the NP decision

rule by η.

The test statistics is obtained as usual by separating the terms that depend on

the KL coefficients of the observation process and letting the remaining terms be

absorbed by the threshold. We take logarithm in (2.43) we obtain

logL(Y ) = log

[
∞∏

k=1

(
λ0,k
λ1,k

)1/2
]

+
1

2

∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)

=
1

2

∞∑

k=1

log

[
λ0,k
λ1,k

]
+

1

2

∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)
(2.44)

Now, the test statistics, Z is defined by

Z =
∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)
R η . (2.45)

where the threshold η must be determined under an optimal prescribed decision rule.

As was discussed before, there is a practical limit in the number of eigenpairs

one can reliably extract from the estimated ACFs. The KL expansion offers the

optimality-under-truncation property, i.e., the mean-square error resulting from a

finite representation of the process is minimized [72]. Such a property allow us to

still optimally represent our processes and our resulting test-statistics, when the most

important eigenpairs are used (i.e., those corresponding to the eigenvalues with the

highest value). As a consequence, we define the truncated version of the test-statistics

as

Z(K) =
K∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)
, (2.46)

where the superscript (K) means that the first K KL coefficients and eigenvalues

of each hypothesis where used to define the test statistics. The truncated version

57



Chapter 2. Skin-cancer detection using dynamic infrared imaging

of the test statistics is used later to implement the algorithm. Next, by using the

theoretical test statistics we define our optimal decision rule.

2.8 Neyman-Pearson decision rule

In this section, we describe how to optimally define the threshold, η such that de-

tection probability is maximized for a fix, prescribed false-alarm probability. The

procedure to do so, is to first obtain the distribution of the test-statistics under

each hypothesis. Later, the optimal decision rule is obtained as a function of this

distributions as described in the following sections.

2.8.1 Neyman-Pearson lemma

Let us state the Neyman-Pearson (NP) lemma to set the baseline for the upcoming

discussion. Assume that we observe a random variable distributed according to one

of two distributions, namely Hj : Y ∼ pj, for j = 0, 1. Consider the likelihood ratio

test

L(Y ) ,
p1(Y )

p0(Y )

H1
≷
H0

τ ,

with τ > 0 chosen so that the false alarm probability PF = Pr(L(Y ) > τ |H0) ≤ α.

In simple words, the false-alarm probability is the probability of declaring H1 given

that H0 is true. The detection probability (the probability of correctly declaring H1

when H1 is true) is defined by PD = Pr(L(Y ) > τ |H1). The NP lemma states that

does not exist another test with PF ≤ α such that the PD is higher that the one

achieved by the likelihood ratio test (LRT). That is, the LRT is the most powerful

test with probability of false-alarm less than or equal to α. The proof of this lemma

can be found, for example, in [70] and will be omitted here. It is clear that the

definitions of PF and PD require us to know the distribution of either the likelihood
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ratio or the test-statistics, which is what we address next.

2.8.2 Distribution of the test-statistics under each hypothe-

sis

If H0 is true, we know that the incoming signal, Y (t), will be equal to S0(t; Θ0).

Thus, the KL coefficients in (2.45) are

Y0,k =

∫ T

0

φ0,k(t)Y (t) dt =

∫ T

0

φ0,k(t)S0(t; Θ0) dt

=

∫ T

0

φ0,k(t)

[
∞∑

`=1

S0,`φ0,`(t)

]
dt =

∞∑

`=1

S0,`

∫ T

0

φ0,k(t)φ0,`(t) dt

=
∞∑

`=1

S0,`δk,` = S0,k , (2.47)

where we have used the KL expansion of S0(t; Θ0) and the orthonormality of the

eigenfunction set {φ0,k}∞k=1. The other KL coefficient is

Y1,k =

∫ T

0

φ1,k(t)Y (t) dt =

∫ T

0

φ1,k(t)S0(t; Θ0) dt

=

∫ T

0

φ1,k(t)

[
∞∑

`=1

S0,`φ0,`(t)

]
dt =

∞∑

`=1

S0,`

∫ T

0

φ1,k(t)φ0,`(t) dt

=
∞∑

`=1

S0,`δk,` = S0,k , (2.48)

where we have assumed that the sets {φ0,k}∞k=1 and {φ1,k}∞k=1 are cross-orthogonal.

Numerically, we have observed this cross-orthogonality for the first 12 eigenfunctions,

which are precisely the number of reliable eigenfunctions one can estimate from our

data. (We will explore this details carefully in Chapter 3.) The cross-orthogonality

(numerically computed from the computed eigenfunctions) can be seen in Fig. 2.9

for a particular combination of patients used as training.
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Figure 2.9: Study of the cross-orthogonality between the sets {φ0,k}∞k=1 and {φ1,k}∞k=1

computed numerically for the estimated eigenfunctions

Under this assumptions, therefore, the KL coefficients under H0 are Y0,k = Y1,k =

S0,k, k = 1, 2, . . . . As such, the test statistics under H0, denoted by Z0, is given by

Z0 =
∞∑

k=1

(
Y 2
0,k

λ0,k
−
Y 2
1,k

λ1,k

)
=
∞∑

k=1

(
S2
0,k

λ0,k
−
S2
0,k

λ1,k

)

=
∞∑

k=1

(
1− λ0,k

λ1,k

)
S2
0,k

λ0,k
. (2.49)

Given that we have assumed the processes to be Gaussian, and, as a consequence

the KL coefficients are also Gaussian, then the random variables S2
0,k/λ0,k, for k =

1, 2, . . . are χ2-distributed because the variance of the kth KL coefficient S0,k is

precisely λ0,k. Moreover, as was previously discussed, λ1,k > λ0,k, for k = 1, 2, . . .

in order to ensure the convergence of the likelihood ratio; thus, the weights in the

summation are positive. If we denote the χ2-distributed random variables by Xk,
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then (2.49) can be recast as

Z0 =
1

2

∞∑

k=1

akXk , (2.50)

where ak = 2(1 − λ0,k/λ1,k) > 0 are the coefficients of a linear combination of χ2-

distributed random variables. (The pdf for this linear combination is discussed later.)

Similarly, if H1 is true, we have that the KL coefficients are

Y0,k =

∫ T

0

φ0,k(t)Y (t) dt =

∫ T

0

φ0,k(t)S1(t; Θ0) dt

=

∫ T

0

φ0,k(t)

[
∞∑

`=1

S1,`φ1,`(t)

]
dt =

∞∑

`=1

S1,`

∫ T

0

φ0,k(t)φ1,`(t) dt

=
∞∑

`=1

S1,`δk,` = S1,k ,

where again we assumed cross-orthogonality of the eigenfunctions, and

Y1,k =

∫ T

0

φ1,k(t)Y (t) dt =

∫ T

0

φ1,k(t)S1(t; Θ0) dt

=

∫ T

0

φ1,k(t)

[
∞∑

`=1

S1,`φ1,`(t)

]
dt =

∞∑

`=1

S1,`

∫ T

0

φ1,k(t)φ1,`(t) dt

=
∞∑

`=1

S1,`δk,` = S1,k ,

thus, the test-statistics under H1 is given by

Z1 =
∞∑

k=1

(
S2
1,k

λ0,k
−
S2
1,k

λ1,k

)
=
∞∑

k=1

(
λ1,k
λ0,k
− 1

)
S2
1,k

λ1,k
=

1

2

∞∑

k=1

bkXk , (2.51)

where bk = 2(λ1,k/λ0,k − 1) > 0 are the coefficients of another linear combination

of χ2-distributed random variables. In summary, the test-statistics under each hy-

pothesis is a linear combination of χ2-distributed random variables, with different

set of positive coefficients. For a finite number of KL coefficients (2.50) and (2.51)

are quadratic forms of the Gaussian random variables, S0,k and S1,k, k = 1, 2, . . . , K.
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(Recall that the KL coefficients are uncorrelated and Gaussian, therefore they are also

independent.) The distribution of quadratic forms of i.i.d. Gaussian random vari-

ables with positive coefficients was studied by Pachares [76] and his main results are

summarized in the Appendix A. Pachares’ main result is that a finite linear combina-

tion of independent χ2-distributed random variables with weights a = [a1 a2 · · · aK ],

Sr =
1

2

[
a1χ

2
m1

+ a2χ
2
m2

+ · · ·+ aKχ
2
mK

] ,

has a cumulative distribution function (CDF) given by

G(τ ;a) = Pr(Sr ≤ τ) =

√
τM

am1
1 · · · amK

r

∞∑

k=0

(−τ)k

k!

E [S∗r ]k
Γ(M/2 + k + 1)

, (2.52)

where M =
∑

imi, S
∗
r =

∑
i a
−1
i χ2

mi
and E [S∗r ]k is the kth moment of S∗r (see (A.1)

in Appendix A for more details). We use this CDF in the next section to define the

optimum decision rule based on the Neyman-Pearson lemma.

2.8.3 Optimal decision rule

Now we turn back into the NP lemma. At this stage we truncate the number of KL

coefficients and see how the performance, i.e., PF and PD change with respect to the

number of these coefficients. We denote by K the number of eigenvalue-eigenfunction

pairs used in the next computations. The false-alarm probability is given by

PF , Pr(L(Y ) > τ |H0) = Pr(Z0 > η) = 1−Pr(Z0 ≤ η)
(2.50)
= 1−G(η;a) , (2.53)

where a = [a1 a2 · · · aK ] are the coefficients from the test statistics, with ak =

2(1− λ0,k/λ1,k), as defined in (2.49). Similarly, the detection probability is given by

PD , Pr(L(Y ) > τ |H1) = 1− Pr(Z1 ≤ η)
(2.51)
= 1−G(η; b) , (2.54)

where b = [b1 b2 · · · bK ], with bk = 2(λ1,k/λ0,k − 1). Now, for a prescribed level of

false-alarm, say α, the NP lemma tell us that the optimal threshold, η0, will be given
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Figure 2.10: False-alarm and detection probabilities parameterized by the threshold
value, η, for different number of eigenfunctions used in the construction of the test-
statistics (2.46)

by

η0 = G−1(1− α;a) , (2.55)

where G−1 represent the inverse of the CDF function (2.52). When using this op-

timum threshold, by the NP lemma, the detection probability PD = 1 − G(η0; b) is

maximum amongst all the other possible test one may design. The complexity of

implementing (2.52) makes the implementation of its inverse function an almost im-

possible task. Therefore, we numerically solve the equivalence by parameterizing the

false-alarm and detection probabilities by the threshold, η. Figure 2.10 depicts the

how the false-alarm and detection probabilities are parameterized by η for different

number of used eigenfunctions. (Recall that the number of eigenfunctions determine

the number of weights {ak} and {bk} that we use in the function (2.52).)

Once the desired false-alarm probability is specified, say PF = α, the parameter-

ized optimum threshold, η0 can be obtained from Fig. 2.10 and (2.55). Such an opti-

mum threshold is later used to classify patient data by comparing the test-statistic of

a patient with unknown diagnosis: if the test statistic exceeds the optimum threshold

63



Chapter 2. Skin-cancer detection using dynamic infrared imaging

Figure 2.11: The theoretical receiver-operating characteristic (ROC) curve graph-
ically shows the expected performance of the detector as we increase the number
of eigenvalue-eigenfunction pairs. The bigger the number of the pairs utilized to
construct the test-statistics, the more statistical features utilized and the better the
performance of the algorithm

then is classified as malignant. More details are given in the following section.

With the parameterized false-alarm and detection probabilities, one can construct

the so-called receiver-operating characteristic (ROC) curve, a standard measure of

the decision-rule performance that depicts the direct relationship between the theo-

retical false-alarm probability and the corresponding (theoretical) detection proba-

bility. The ROC curve of a perfect classifier correspond to a line that achieves 100%

detection (sensitivity) for any value of the false-alarm probability (i.e., PD = 1.0 for

PF ∈ (0, 1)). We show the ROC curve corresponding to the parameterized prob-

abilities in Fig. 2.11, where it can be noted that, as expected, as we include more

eigenvalue-eigenfunction pairs, more features are extracted from the TRC and the

theoretical performance is improved, plateauing at a level, say at the Kth pair. The
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Table 2.4: Computed area under the ROC curve for the presented ROC curves. The
plateau of the performance is observed to occur after 12 eigenfunctions

Number of pairs AUC
1 0.50
2 0.56
3 0.67
4 0.72
5 0.76
6 0.81
7 0.83
8 0.84
9 0.85
10 0.90
11 0.96
12 0.98
13 0.98
14 0.98
15 0.98

plateau can be easily observed by computing the area under the ROC curve (AUC),

which is a metric of the accuracy of the test (a perfect classifier will have AUC equal

to unity). A rule-of-thumb to evaluate the performance of a classifier by the AUC is

that an excellent classifier will have an AUC in the range 0.9-1.0, a good classifier

have an AUC 0.80-0.89 and a fair classifier will present an AUC in the range 0.60-

0.79. A classifier with an AUC below 0.59 is considered poor or simply worthless.

The resulting AUC for the presented ROC curves are shown in Table 2.4 where it

can be seen that the performance of the classifier plateau occurs after 12 eigenvalue-

eigenfunction pairs (K = 12) are utilized, and that for K > 10 the detector can

be classified to have an excellent performance. We explore the variability of the

theoretical performance in detail in Chapter 3. Next we explain how the eigenvalue-

eigenfunction pairs and the optimum threshold can be utilized to classify the patient

data.
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Figure 2.12: Block diagram of the detection stage of the proposed algorithm. The
KL coefficients are computed by using the eigenfunctions of each hypothesis. These
coefficients and the eigenvalues are used to compute the patient’s test-statistics,
which is later compared with the optimum threshold to declare the malignancy

2.8.4 Summary of the steps followed to detect malignancy

Let us explain in detail how a patient with unknown diagnosis can be diagnosed with

the proposed approach. Let the average TRC of this patient be denoted by Y (t).

At this stage, we assume that the autocorrelation functions were correctly estimated

from patient data with known condition (i.e., training patient data), and that the

eigenvalues-eigenfunction pairs were also obtained and sorted based on the value

of the eigenvalues. We denote the number of the stored (and sorted) pairs under

each hypothesis by K. We also assume that the optimum threshold, η0 was already

defined by means of the NP decision rule as described in the previous section.
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We first utilize the eigenfunctions to compute the KL coefficients under each

hypothesis, i.e., Yj,k =
∫ T
0
φj,k(t)Y (t), for j = 0, 1 and k = 1, 2, . . . , K. This compu-

tation is depicted graphically in Fig. 2.12 (left dashed block). It is worth to reiterate

that the set of KL coefficients represent the most important statistical features that

completely describe the statistical content within the TRC Y (t)2. We next utilize the

KL coefficients and the corresponding eigenvalues to construct the test-statistics as

defined in (2.46). Such a calculation is depicted in Fig. 2.12 (middle dashed block).

The test-statistics is later compared with the optimum threshold, η0. This last step

is named the decision stage and it is depicted in Fig. 2.12 (right dashed block). By

the extraction of the KL coefficients and the thresholding of the test statistics by

the optimally defined threshold, the detection problem is guaranteed to ensure the

maximum achievable detection probability, and, as such, it presents an upper bound

in the expected performance of the detector.

2.9 Concluding remarks

In this chapter we have introduced the concept of dynamic thermal imaging, the

acquisition hardware utilized during the actual patient data acquisition and the pre-

processing applied to the infrared sequence before commencing the development of

the algorithm.

We proposed a physics-inspired stochastic mathematical model that describes the

stochastic thermal recovery of the patient tissue after a cool stimuli is applied. Using

this stochastic model for the thermal random processes monitored by the infrared

camera, we have we postulated the detection problem we aim to solve. Moreover,

we have proposed a way to determine the analytical expression of an autocorrelation

2As such, they can be used to feed any out-of-the-shelf classifier to detect the malignancy
of a suspicious lesion. This idea is expanded in the last chapter in the section of proposed
future work.
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function for stochastic processes with a parameterized model.

By numerically extracting the eigenvalues and eigenfunctions of each autocorrela-

tion function, and by using Grenander’s theorem and the Karhunen-Loève expansion

we have presented the NP optimal decision rule to maximize the number of malignant

cases that are correctly classified while constraining the number of false positives that

are declared.

In the next chapter, we explore the performance of the designed algorithm under

different operation scenarios of the developed algorithm.
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Chapter 3

Performance and robustness

analysis for the method

3.1 Introduction

In this Chapter we demonstrate the efficacy and delimit the scope and robustness

of the skin cancer detection algorithm. To this end, we focus our attention in three

different scenarios to evaluate the algorithm performance. First, we perform the

separability analysis of the patient data. This is made by training the algorithm

with a set of patients and then testing the performance by means of the empirical

ROC curve of the very same patients used in the training. Second, we study the

effect in the performance by changing the training size (i.e., the number of patients

used in training) and by using different permutations of patients as training/testing.

Third, we study how selecting the lesion boundary affects the performance of the

algorithm.

In all of the previous settings we evaluate the variability in the theoretical and

empirical performance. The theoretical performance is measured by the theoretical

69



Chapter 3. Performance and robustness analysis for the method

false-alarm and detection probabilities, as well as the ROC curves and the corre-

sponding AUCs. The metrics we utilize to evaluate the empirical performance of the

algorithm are the empirical false-alarm and detection probabilities, which we define

next.

3.2 Empirical performance metrics

For the purpose of this study, our gold standard is the biopsy result performed at the

UNM Dermatology Clinic. With the biopsy result and the result of our algorithm

we classify the patients as:

1. Those that are malignant (by biopsy) and are declared as malignant by the

algorithm are known as the true positives (TP);

2. Those that are malignant and are declared as benign by the algorithm are the

false negatives (FN);

3. Those that are benign and are declared as benign are the true negatives (TN);

and

4. Those that are benign and are declared as malignant are the false positives

(FP).

With these four quantities, we compute the empirical detection probability as the

ratio between the true positives and all the malignant patients, i.e., PD,e = TP/(TP+

FN), where the subscript e denotes the empirical nature of the definition. Similarly,

the empirical false-alarm probability is computed as the ratio of the true negatives

and all the benign cases, PF,e = TN/(TN + FP ). The empirical ROC curve is

obtained by plotting the empirical detection probability with respect to the empirical
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false-alarm probabilities. We obtain the empirical AUC by numerically integrating

(with the trapezoidal quadrature rule) the empirical ROC curves.

3.3 Separability analysis of the method

We begin our study of the algorithm performance by performing the separability

analysis, which is the study of the the discernibility between the two hypothesis by

testing the algorithm with the very same patient data that was used to train such

an algorithm. Here we utilize all the 140 patient data with known condition used to

describe the algorithm in the previous chapter.

Let us detail some information regarding the actual patient dataset acquired at

the UNM Dermatology Clinic by the author.

3.3.1 Patient data cohort

A cohort study with 140 subjects is performed to investigate the proposed approach.

Fifty eight percent of the subjects were male and, from the biopsy result, out of the

140 subjects 82 had benign condition and 58 had malignant condition. Out of those

58 subjects with malignant condition, 6 were diagnosed with malignant-melanomas

(MM), 42 with basal-cell carcinoma (BCC) and 10 with squamous-cell carcinoma

(SCC).

The majority of the infrared sequences utilized in this dissertation were acquired

by the author at the UNM Dermatology Clinic in a period of 2 years (2012-2014).
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3.3.2 Eigenvalue-eigenfunction pairs selection

In Chapter 2 we presented the ACFs computed from all the 140 subject data (see

Fig. 2.7). Here we want to investigate the maximum number of reliable eigenvalue-

eigenfunction pairs that can be extracted from these ACFs. In what follows we term

an eigenvalue-eigenfunction pair as an eigenpair.

Provided that we sorted the first sixteen eigenvalues as presented in Table 3.1,

in Fig. 3.1 we present the corresponding eigenfunctions for both hypotheses. It can

Figure 3.1: Eigenfunctions computed for each hypothesis sorted by the value of
their corresponding eigenvalue. It can be noted that after the twelfth eigenpair the
eigenfunctions account for noise, and, therefore, they cannot be considered as reliable
anymore
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Table 3.1: Eigenvalues corresponding to the eigenfunctions depicted in Fig. 3.1.
These eigenvalues were computed using all 140 patients with known condition

k λ0,k λ1,k
1 955.47 1609.33
2 37.89 44.69
3 2.24 5.70
4 0.55 1.22
5 1.68×10−2 3.45×10−2

6 7.47×10−4 2.25×10−3

7 3.58×10−5 8.97×10−5

8 1.31×10−6 1.99×10−6

9 4.54×10−8 7.52×10−8

10 1.11×10−9 6.39×10−9

11 2.68×10−11 6.38×10−10

12 1.64×10−12 3.94×10−11

13 1.62×10−12 2.85×10−12

14 6.44×10−13 2.64×10−12

15 5.82×10−13 1.50×10−12

16 4.58×10−13 1.20×10−12

be noted from the presented plots that both eigenfunction sets are essentially the

same under each hypothesis, but as we require more eigenfunctions from the ACFs

a slight phase difference start to appear. This result is consistent with the numerical

cross-orthogonality observed and presented in Fig. 2.9. Once the phase difference

becomes notorious (e.g., for K > 10) the eigenfunctions loose their similarity, and,

as a consequence, the cross-orthogonality is also lost.

We have discussed in the previous subsection that the size of the patient dataset

under each hypothesis is small. The main problem related with this situation is

that the statistical information obtained from the dataset is not “rich enough” to

permit an appropriated estimation of the ACFs. This poor estimation of the ACFs,

in turn, affects the reliability of the eigenvalue-eigenfunction pairs. As such, as

can be observed in Fig. 2.9, after the twelfth eigenvalue, the eigenfunction start to

be noisy. It is expected that after having more patient data available with sufficient
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Figure 3.2: Fast-Fourier transform computed over the eigenfunction sets presented
in Fig. 3.1. The scale is the same in the resulting plots to facilitate comparison

variability, this problem can be undertaken due to the increase statistical information.

Probably, a different approach in estimating the ACF can also improve the number

of reliable eigenfunctions. The later approach is suggested in the future work section

in Chapter 6.

Since we have the limitation of noisy eigenfunctions after the Kth eigenvalue,

we propose to find such a K by means of the Fourier transform of the estimated

eigenfunctions. We computed the FFT of each eigenfunction, namely Φj,k(f) =

FFT [φj,k(t)], for j = 0, 1 and k = 1, . . . , 16. The resulting FFTs are shown in

Fig. 3.2, where we used the same scale for all the spectra in order to facilitate the

comparison. As the eigenvalue number is increased, the peak spectrum of each eigen-
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(a) (b)

Figure 3.3: Proposed analysis alternatives to select the number of reliable eigenvalues
based on the spectral content of the corresponding eigenfunctions

function is slightly shifted and reduced in amplitude, so one alternative to determine

K is by looking into abrupt changes in the peak of the spectrum of the set of eigen-

functions. This alternative is shown in Fig. 3.3(a), where it can be noted that the

peak spectra for the benign case (blue line) drops abruptly at k = 12, and that it is

also detected by the absolute difference between the two peak spectra (black line).

An alternative approach to detect the number of reliable eigenvalues is by exploit-

ing the spectral similitude observed within each eigenfunction corresponding to the

same eigenvalue number. As we estimate more eigenvalues for each hypothesis, the

spectra of the corresponding eigenfunctions start to depart slightly. The breaking

point of having a noisy eigenfunction can be easily detected as the difference of the

spectral increases abruptly. This is because a noisy eigenfunction will have its spec-

tral content dispersed among different frequencies instead of collocated around zero.

Therefore, if we compute the norm of the difference between the absolute value of

the spectral we can easily find the noisy eigenfunction by finding the maximum of

such a norm, as shown in Fig. 3.3(b). It is clear that this approach will only work if

one of the eigenfunction becomes noise but the other stays with low noise content.
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In what follows, we select the noiseless eigenvalues and functions by using the for-

mer method, i.e., by comparing the absolute difference of the eigenfunction spectra.

We now utilize this to perform the sensitivity analysis

3.3.3 Separability analysis

By limiting our attention to the first twelve eigenvalue-eigenfunction pairs, we com-

puted the KL coefficients of all the 140 patients and constructed their respective

test-statistics. As the specified false-alarm is changed, so does the optimum NP

decision threshold, and, thus, the empirical detection probability. When doing so,

we can generate the empirical ROC curve, which is the plot of the prescribed false-

alarm probability versus the empirical detection probability as depicted in Fig. 3.4(a).

When the purely empirical ROC curve is generated (that is, the empirical false-alarm

vs. empirical detection probabilities) the resulting performance is a slightly degraded

as shown in Fig. 3.4(b). Please note that the NP decision rule does not impose any

direct restriction to the empirical false-alarm probability and the computed value is

simply a direct consequence of the definition of the test-statistics and the threshold

that optimizes the detection probability. The degradation of the empirical false-

alarm probability as compared with the prescribed one is a direct consequence of the

assumptions made in the algorithm development and will affect directly the empiri-

cal performance of the algorithm. Other decision rules may introduce constraints to

the empirical false-alarm probability directly, or indirectly by means of, for example,

minimizing the error probability, which is PE = P (H1|H0) + P (H0|H1) where we

recognize the false-alarm probability in the first term.

In order to illustrate the result of the sensitivity analysis with more detail, we

have generated Table 3.2 where we present the empirical detection probability PD,e

for different levels of prescribed false-alarm probabilities (specifically, PF = 0.1, PF =

0.05 and PF = 0.01). For comparison, we have also included the empirical detection
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(a) (b)

Figure 3.4: Sensitivity analysis resulting ROC curves when using the (a) prescribed
(theoretical) false-alarm probability versus the empirical detection probability, and
(b) the empirical false-alarm and detection probabilities.

probability when the prescribed false-alarm is enforced over the empirical false-alarm

probability, PF,e. Clearly, the later achieve worse performance than the former, but

Table 3.2: Empirical detection probability, PD,e, for different levels of prescribed FA,
PF , and empirical FA, PF,e

Number of Empirical detection probability for
used Prescribed FA, PF Empirical FA, PF,e

eigenfunctions 0.1 0.05 0.01 0.1 0.05 0.01
1 0.14 0.12 0.05 0.00 0.00 0.00
2 0.14 0.10 0.07 0.00 0.00 0.00
3 0.29 0.17 0.09 0.22 0.09 0.03
4 0.28 0.22 0.16 0.33 0.24 0.21
5 0.28 0.21 0.17 0.71 0.57 0.31
6 0.26 0.21 0.19 0.84 0.84 0.71
7 0.29 0.22 0.19 0.95 0.95 0.91
8 0.34 0.22 0.21 0.97 0.97 0.97
9 0.53 0.40 0.24 0.98 0.98 0.98
10 0.91 0.91 0.86 1.00 1.00 1.00
11 1.00 1.00 1.00 1.00 1.00 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00
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since it is the real performance of the algorithm it worth attention. Please note that

perfect detection of all the malignant cases is achieved (i.e., PD,e = 1.0) when ten

eigenvalue-eigenfunction pairs or more are used to determine the test statistics. This

detection is achieved for an empirical false-alarm probability of PF,e = 0.01. In simple

terms, this means that the proposed algorithm permits the correct detection of all

58 malignant lesions in the dataset, at the cost of missing 1 patient with benign

condition out of the 82 benign cases present in the dataset. To the best of our

knowledge, this is the best performance ever reported for a non-invasive technique

in skin cancer detection.

3.4 Robustness of the algorithm to random per-

mutations of the training set from the total

set

In the the previous study we have utilized all subject data to train and then test the

proposed algorithm. In this study we divide the patient data (140 subjects; 58 with

malignant and 82 with benign condition) in training and testing sets following the

following criteria:

1. Train with 110 subjects (55M and 55B) and test with 30 subjects;

2. Train with 100 subjects (50M and 50B) and testing with 40 subjects;

3. Train with 80 subjects (40M and 40B) and testing with 60 subjects;

4. Train with 60 subjects (30M and 30B) and testing with 60 subjects,

where in all the cases the set with malignant condition is forced to have at east

a few MM, a few BCC and a few SCC cases; more precisely, we force the traning
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set to have the same percentile distribution of lesions found in our dataset. For

example our dataset has 6 MM out of the 58 subject with malignant diagnosis; thus

we force our split to have a 10.34% of MM in the training set, which for the case

of 60 subjects means that at least 3 MM must be included in the training. For the

set of benign cases, we force to have at least one half of control samples (those with

benign clinical diagnosis instead of formal biopsy result). These two conditions are

included to ensure that the training and testing sets have an equivalent variability

of cases under both hypotheses.

In addition, we have performed 200 different permutations of the patient data

to define each one of the different four settings, allowing us to study the robustness

of the presented algorithm under different operation conditions. In what follows we

present the variability in the eigenvalue-eigenfunction pairs as well as the variability

in the theoretical and empirical performance for all these settings.

3.4.1 Eigenvalue-eigenfunctions pairs

The distributions of the random parameters that define the stochastic signals change

as we permute the patients from the training set. Such a change will change the es-

timated autocorrelation function, which, in turn, will alter the estimated eigenvalue-

eigenfunction pairs. Therefore, we first investigate the variability of these pairs for

each of the training/testing settings we described above. The minimum, maximum

and mean value of each one of the first twelve eigenvalues for training sizes of 60, 80,

100 and 110 subjects are shown in Tables 3.3-3.6, respectively.

For the first five eigenvalues, the variabilities are small as compared with the

variation for other eigenvalues, where there are orders of magnitude between the

minimum and maximum value. Indeed, it can be noted from the presented tables

that the variability of the eigenvalues becomes severe as we require more eigenvalues
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Table 3.3: Eigenvalue variability over 200 permutations for a training size of 60
subjects

k minλ0,k maxλ0,k E [λ0,k] minλ1,k maxλ1,k E [λ1,k]
1 860.45 1365.75 1062.93 1235.09 2698.75 1897.37
2 12.93 41.64 28.59 31.41 68.45 52.13
3 1.40 3.49 2.36 3.99 20.42 11.59
4 0.14 1.02 0.38 0.71 2.74 1.79
5 1.67e-03 4.14e-02 1.32e-02 3.06e-02 1.20e-01 7.03e-02
6 3.25e-05 1.35e-03 2.94e-04 1.04e-03 8.82e-03 3.95e-03
7 5.78e-07 4.66e-05 7.92e-06 1.56e-05 3.58e-04 1.45e-04
8 3.39e-09 9.07e-07 1.54e-07 4.82e-07 6.90e-06 3.00e-06
9 2.20e-11 2.33e-08 2.56e-09 1.57e-08 4.09e-07 1.71e-07
10 7.58e-13 3.94e-10 2.71e-11 6.14e-10 2.13e-08 8.36e-09
11 5.62e-13 1.16e-11 1.39e-12 1.45e-11 3.06e-09 7.01e-10
12 4.69e-13 2.03e-12 9.66e-13 1.56e-12 1.47e-10 1.81e-11

Figure 3.5: Variability of the eigenfunctions for the 200 permutations on the 60
training/80 testing setting. The blue and red lines represent the variability of φ0,k

and φ1,k, respectively, for k = 1, 2, . . . , 12.
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Table 3.4: Eigenvalue variability over 200 permutations for a training size of 80
subjects

k minλ0,k maxλ0,k E [λ0,k] minλ1,k maxλ1,k E [λ1,k]
1 890.84 1345.32 1103.11 1324.74 2331.21 1899.43
2 21.26 46.29 34.56 41.28 64.38 53.30
3 1.60 4.04 2.68 4.70 16.33 11.54
4 0.23 1.24 0.55 0.81 2.48 1.83
5 5.75e-03 4.26e-02 1.97e-02 3.50e-02 1.02e-01 7.35e-02
6 4.41e-05 1.50e-03 6.76e-04 1.35e-03 6.75e-03 4.40e-03
7 2.41e-06 6.40e-05 2.23e-05 3.40e-05 3.02e-04 1.73e-04
8 1.50e-08 1.85e-06 5.20e-07 1.03e-06 5.87e-06 3.65e-06
9 1.30e-10 5.81e-08 1.05e-08 7.16e-08 3.65e-07 2.29e-07
10 1.88e-12 3.75e-09 2.42e-10 2.59e-09 1.88e-08 1.17e-08
11 5.98e-13 5.29e-11 4.04e-12 6.72e-11 2.90e-09 1.24e-09
12 3.99e-13 2.80e-12 1.21e-12 2.36e-12 1.15e-10 3.94e-11

Figure 3.6: Variability of the eigenfunctions for the 200 permutations on the 80
training/60 testing setting. The blue and red lines represent the variability of φ0,k

and φ1,k, respectively, for k = 1, 2, . . . , 12.
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Table 3.5: Eigenvalue variability over 200 permutations for a training size of 100
subjects

k minλ0,k maxλ0,k E [λ0,k] minλ1,k maxλ1,k E [λ1,k]
1 893.77 1371.49 1113.82 1461.09 2040.84 1862.96
2 26.61 42.87 36.59 44.97 57.93 52.85
3 1.84 4.50 2.87 6.94 13.65 11.76
4 0.33 0.94 0.62 1.20 2.08 1.85
5 8.57e-03 3.83e-02 2.43e-02 5.68e-02 8.76e-02 7.53e-02
6 1.58e-04 1.52e-03 9.30e-04 2.18e-03 5.88e-03 4.89e-03
7 4.10e-06 6.08e-05 3.46e-05 5.67e-05 2.60e-04 2.05e-04
8 8.88e-08 1.78e-06 9.09e-07 1.48e-06 5.09e-06 4.11e-06
9 9.83e-10 5.72e-08 2.13e-08 9.72e-08 3.26e-07 2.55e-07
10 1.41e-11 3.86e-09 7.62e-10 4.21e-09 1.66e-08 1.30e-08
11 8.75e-13 6.42e-11 1.37e-11 3.33e-10 2.43e-09 1.67e-09
12 6.53e-13 2.87e-12 1.23e-12 1.40e-11 9.73e-11 6.48e-11

Figure 3.7: Variability of the eigenfunctions for the 200 permutations on the 100
training/40 testing setting. The blue and red lines represent the variability of φ0,k

and φ1,k, respectively, for k = 1, 2, . . . , 12.
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Table 3.6: Eigenvalue variability over 200 permutations for a training size of 110
subjects

k minλ0,k maxλ0,k E [λ0,k] minλ1,k maxλ1,k E [λ1,k]
1 907.07 1353.96 1112.31 1474.71 1937.50 1847.76
2 28.83 50.31 37.61 47.13 55.03 52.18
3 1.88 3.83 2.95 7.08 12.51 11.56
4 0.35 0.96 0.67 1.37 1.93 1.84
5 1.09e-02 3.60e-02 2.54e-02 5.96e-02 8.17e-02 7.69e-02
6 1.90e-04 1.53e-03 1.04e-03 2.34e-03 5.38e-03 4.93e-03
7 5.16e-06 6.03e-05 3.79e-05 5.38e-05 2.39e-04 2.12e-04
8 8.25e-08 1.76e-06 1.04e-06 2.69e-06 4.69e-06 4.29e-06
9 7.78e-10 5.64e-08 2.59e-08 1.65e-07 3.00e-07 2.72e-07
10 1.44e-11 3.92e-09 1.19e-09 8.16e-09 1.55e-08 1.41e-08
11 8.82e-13 6.45e-11 2.12e-11 5.64e-10 2.23e-09 1.91e-09
12 6.07e-13 3.44e-12 1.40e-12 1.61e-11 8.89e-11 7.21e-11

Figure 3.8: Variability of the eigenfunctions for the 200 permutations on the 110
training/30 testing setting. The blue and red lines represent the variability of φ0,k

and φ1,k, respectively, for k = 1, 2, . . . , 12.
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from the ACFs. We believe that this tremendous variability is mainly due to the

estimated ACF with a limited number of patient data. We believe that the more

patients become available, the better the ACF will be estimated and the less the

variability of the eigenvalues should be.

A similar problem is presented with the eigenfunctions, which slightly vary for the

first five eigenvalues but present big changes for higher orders. Such a change occurs

to ensure that the corresponding eigenvalues are positive (recall that the autocorrela-

tion function is symmetric and positive definite, and, as such, its eigenvalues must be

real and positive). This variability is mainly due to the method we have developed to

estimate the autocorrelation function, which relies in the numerical computation of

the means and cross-covariances between the random parameters that characterize

the TRC under each hypothesis. As we change the patients inside the training set,

the sample mean and sample covariance of the parameters is dramatically changed

due to the small number of patients we have to training. In fact, it can be noted

from comparing Figs.3.5–3.8 that, as more patients are included into the training

set, the estimated eigenfunctions become more reliable. Hence, we expect that as

more patient data is acquired, the estimation of the eigenvalue-eigenfunction pairs

will become more reliable and the performance of the algorithm will be superior.

Next, we study the theoretical performance variability over the 200 permutation for

each training size.

3.4.2 Theoretical performance

It was already shown in the previous section that as we utilize different permutations

of patients and different number of patients to train the algorithm, there is consid-

erable variations in the estimated eigenvalue-eigenfunction pairs. To asses how such

a variability affects the theoretical performance, we utilize the estimated eigenvalue-

eigenfunction pairs for each one of the permutations and computed the theoretical
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Figure 3.9: Mean ROC curves (over 200 different patient permutations) for different
training sets with 60, 80, 100 and 110 patients.

false-alarm and detection probabilities.

The theoretical performance variability as a function of the size of the training set

is assess by the mean ROC curves for different number of eigenvalue-eigenfunction

pairs, as depicted in Fig. 3.9. Beside some small variabilities, the mean theoretical

performance is consistent across the changes in the the training size, but the real

difference can be observed when the area under the curve and its mean absolute error

over the 200 permutations is computed. Hence, we quantify the variability in the

theoretical performance by computing the mean AUC, for each training size, over the

200 permutations. The results are summarized in Table 3.7, where it can be clearly

observed that the average performance when 60 patients are used in the training is

better, but the mean absolute error (shown within the parenthesis) demonstrate that

there is more variability in the performance due to the reduced number of patients. It

can be noted from the same table that the theoretical performance slightly changes
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Table 3.7: Variability of the AUC over 200 permutations measured by the mean AUC
and the mean absolute error (given within the parenthesis) for different training sizes
and different number of used eigenvalue-eigenfunction pairs.

Number of used Size of the training set
eigenfunctions 60 patients 80 patients 100 patients 110 patients

1 0.51 (± 0.06) 0.50 (± 0.06) 0.50 (± 0.01) 0.50 (± 0.01)
2 0.61 (± 0.11) 0.59 (± 0.07) 0.58 (± 0.01) 0.57 (± 0.01)
3 0.76 (± 0.11) 0.74 (± 0.10) 0.73 (± 0.02) 0.72 (± 0.02)
4 0.84 (± 0.11) 0.80 (± 0.10) 0.79 (± 0.02) 0.78 (± 0.02)
5 0.89 (± 0.14) 0.85 (± 0.13) 0.84 (± 0.03) 0.83 (± 0.02)
6 0.94 (± 0.15) 0.90 (± 0.16) 0.89 (± 0.03) 0.88 (± 0.03)
7 0.96 (± 0.16) 0.93 (± 0.17) 0.92 (± 0.03) 0.91 (± 0.02)
8 0.98 (± 0.12) 0.95 (± 0.16) 0.94 (± 0.03) 0.93 (± 0.02)
9 0.99 (± 0.04) 0.98 (± 0.11) 0.96 (± 0.02) 0.96 (± 0.02)
10 0.99 (± 0.03) 0.99 (± 0.05) 0.98 (± 0.01) 0.97 (± 0.01)
11 0.99 (± 0.02) 0.99 (± 0.03) 0.98 (± 0.01) 0.99 (± 0.01)
12 0.99 (± 0.02) 0.99 (± 0.01) 0.99 (± 0.00) 0.99 (± 0.00)

when we use 100 or 110 patients in the training set, which is consistent with the

reduced variability in the eigenvalues and eigenfunctions that we discussed earlier.

Next, we utilize the same settings to evaluate the changes in the empirical per-

formance as determined by the empirical detection probability.

3.4.3 Empirical performance

Using the same setting from the previous section, here we measure the variability

in the empirical detection probability, computed for different levels of prescribed

false-alarm probability. In what follows we present the tables with the results, which

include the mean empirical detection probability (over all 200 permutations) and the

corresponding mean absolute error within the parenthesis. The mean absolute error

(MAE) for our purposes is defined as

MAE =
1

L

L∑

i=1

|P (i)
D,e − P̄D,e| , (3.1)
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Table 3.8: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 80 patients are used in the training and 60 in the testing stage.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.05 PF = 0.01

1 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
2 0.02 (± 0.04) 0.02 (± 0.04) 0.02 (± 0.04)
3 0.42 (± 0.14) 0.42 (± 0.14) 0.42 (± 0.14)
4 0.46 (± 0.12) 0.46 (± 0.12) 0.46 (± 0.12)
5 0.80 (± 0.11) 0.80 (± 0.11) 0.80 (± 0.11)
6 0.91 (± 0.09) 0.91 (± 0.09) 0.91 (± 0.09)
7 0.94 (± 0.11) 0.94 (± 0.11) 0.94 (± 0.11)
8 0.81 (± 0.31) 0.81 (± 0.31) 0.81 (± 0.31)
9 0.86 (± 0.24) 0.86 (± 0.24) 0.86 (± 0.24)
10 0.85 (± 0.25) 0.85 (± 0.25) 0.85 (± 0.25)
11 0.90 (± 0.19) 0.90 (± 0.19) 0.90 (± 0.19)
12 0.86 (± 0.23) 0.86 (± 0.23) 0.86 (± 0.23)

where P̄D,e represents the mean empirical detection probability, computed over the

200 permutations and P i
D,e is the ith permutation. Clearly here L = 200.

Table 3.9: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 100 patients are used in the training and 40 in the testing stage.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.05 PF = 0.01

1 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
2 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
3 0.15 (± 0.09) 0.10 (± 0.08) 0.13 (± 0.07)
4 0.29 (± 0.12) 0.28 (± 0.12) 0.26 (± 0.10)
5 0.69 (± 0.16) 0.68 (± 0.16) 0.67 (± 0.16)
6 0.89 (± 0.09) 0.89 (± 0.09) 0.89 (± 0.09)
7 0.96 (± 0.08) 0.96 (± 0.08) 0.96 (± 0.08)
8 0.85 (± 0.25) 0.85 (± 0.25) 0.85 (± 0.25)
9 0.88 (± 0.22) 0.88 (± 0.22) 0.88 (± 0.22)
10 0.93 (± 0.14) 0.93 (± 0.14) 0.93 (± 0.14)
11 0.86 (± 0.24) 0.86 (± 0.24) 0.86 (± 0.24)
12 0.89 (± 0.20) 0.89 (± 0.20) 0.89 (± 0.20)
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Table 3.10: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 110 patients are used in the training and 30 in the testing stage.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.05 PF = 0.01

1 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
2 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
3 0.19 (± 0.19) 0.17 (± 0.19) 0.16 (± 0.18)
4 0.29 (± 0.21) 0.28 (± 0.20) 0.26 (± 0.20)
5 0.76 (± 0.21) 0.75 (± 0.21) 0.73 (± 0.21)
6 0.89 (± 0.15) 0.89 (± 0.15) 0.89 (± 0.15)
7 0.97 (± 0.06) 0.97 (± 0.06) 0.97 (± 0.06)
8 0.84 (± 0.26) 0.84 (± 0.26) 0.84 (± 0.26)
9 0.90 (± 0.18) 0.90 (± 0.18) 0.90 (± 0.18)
10 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
11 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
12 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

3.4.4 Additional results over a different set of patients

Here, we present the classification results of the proposed method over eleven new

patient TRCs that were acquired at the UNM Dermatology Clinic while our method

was developed. Out of those 11 patients, 5 of them were diagnosed with malignant

condition. It is important to mention that none of these patients were used in the

training of the algorithm and that their biopsy result is utilized here only to evaluate

the method performance.

In the following table, we report the empirical detection probability averaged over

all 200 permutations when 110 patients are used in training the algorithm. We focus

our attention to the the range of 5–12 eingepairs because they should present the

best performance as predicted by our previous results. In fact, once again, a perfect

detection of the malignant lesions is achieved by the algorithm.
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Table 3.11: Mean of the empirical detection probability for different levels of pre-
scribed false-alarm probability when 110 patients are used in the training the eleven
additional patients are used in the training.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.05 PF = 0.01

5 0.31 0.25 0.18
6 0.31 0.25 0.20
7 0.29 0.23 0.21
8 0.35 0.29 0.20
9 0.48 0.50 0.42
10 0.97 0.97 0.97
11 1.00 1.00 1.00
12 1.00 1.00 1.00

3.4.5 Discussion

It was demonstrated by changing the size of the training size that the more the

patients that are used to train the algorithm, the better the reliability in estimating

the eigenvalue-eigenfunction pairs and the variability in the theoretical performance

is minimized as measured by the mean absolute error of the AUC.

The empirical performance achieved by the method when 100 or 80 patients

are used to train the algorithm serves as another evidence that a reduce number

of patients does not include all the statistical information required to estimate the

autocorrelation functions. In the empirical performance evaluation, it seems that

ten eigenfunctions is a magic number that ensures that all the malignant cases are

detected when 110 patients are used to train the algorithm. Nevertheless, it seems

that this behaviour is due to the lack of reliability in estimating beyond the tenth

eigenfunction for the benign hypothesis, as was observed in Section 3.4.1 (see, for

example, Fig. 3.8). Once the eigenfunctions of one hypothesis becomes noisy, the

value of the projection coefficients (namely the KL coefficients) abruptly depart from

the value of the coefficients of the other hypothesis, leading to an abrupt change

in the test-statistics, which, may yield to the perfect classification of the lesions.
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One important thing to mention is the resolution of the error for the presented

empirical results. For example, when 100 patients are used in the training, only 8

malignant patients are left for testing the algorithm. That means that if one patient

is misclassified as benign, the empirical detection probability will drop from 1.0 (8

out of 8 malignant cases detected) to 0.875 (7 out of 8 malignant cases detected).

Under this scenario, if one patient is misclassified the empirical detection probability

will match the theoretical detection probability.

It is expected that as we collect more patient data, the algorithm ACFs and the

corresponding eigenpairs will reach a plateau, leading to an stable and reliable esti-

mation of the performance of the proposed method. At this stage, our performance

metrics are only estimates, making hard to predict an expected performance for a

large dataset of patients.

3.5 Robustness of the method to variations in the

selection of the lesion boundary

3.5.1 Background

As it was described in Chapter 2, the fist step required to compute the average

TRC of a patient is to select the lesion boundary. In the presented studies, we did

so by manually defining the boundary of the pigmented area from the visible color

picture, which is spatially aligned with respect to the infrared sequence by the image

registration procedure. In this section we investigate the robustness of the method

to changes in such a selection. The rationale behind the study is given next. On one

hand, if the boundary of the lesion is selected to be bigger that the boundary of the

pigmented area, such that it contains pigmented and non-pigmented tissue, some of
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the pixels used to compute the TRC will be from benign tissue. These benign pixels

will clearly affect the average TRC and, as a consequence, the characterization of

malignant lesions. On the other hand, if the boundary is selected to be small such

that the pixels inside such a selection are purely of malignant tissue, one may expect

to have a better characterization of the lesion, but at the tradeoff of having less pixels

to compute the average TRC, such an average may not be totally representative of

the lesion either.

Here, for each patient, we defined four different boundaries for the lesions to

assess the variability in the following way. From the original boundary used in the

previous studies we determined the centroid and the area (in pixels) of the region

that defines the lesion boundary. By using the same centroid, we adjusted the radii of

the region at four different values, chosen such that the area of the resulting regions

are one quarter, one half, the double and four times the area of the original selection.

These four regions define the four different boundaries for the presented study. In

Fig. 3.10 we show by the red lines the four boundaries defined for one patient as

an example. The black line on each picture is the original boundary selection made

for this specific patient. As before we explore the variability of the eigenvalues and

eigenfunctions, the variability in the theoretical and empirical detection probability.

3.5.2 Eigenvalue-eigenfunctions pairs

First, we want to study how the eigenvalues and eigenfunctions change as we have

more or less surrounding tissue. Benign lesions and the surrounding tissue should

present the same characteristics on their TRCs because both should have similar

subcutaneous characteristics. (Authors have declared that the surrounding skin is

actually benign tissue [34, 35].) As such, it is expected to observe some degree of

insensitivity to the changes in the lesion selection for the eigenpairs of the benign
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Figure 3.10: Example of the four areas selected for this study on an actual patient
visible image. The selection of the regions (red line) are made such that the area of
each selection is (from left to right) one quarter of the original selection, one half,
the double and four times the area of the original selection. The original boundary
selection is shown in black for each picture as a reference.

hypothesis. On the other hand, by including surrounding tissue to the malignant

lesions, we are modifying their average TRC, so the eigenpairs of the malignant

hypothesis should be more sensitive to the changes we are introducing here.

Let us focus our attention to Table 3.12 and Fig. 3.11 were we present the changes

in the eigenvalues and eigenfunctions, respectively, for the benign hypothesis. As

predicted by our rationale regarding the benign nature of the surrounding tissue, the

eigenvalues for the benign hypothesis present minimum variability. For example, the

maximum difference for the first, most important eigenvalue is max ∆λ0,1 < 5% for

a 400% increment in the selected area (an equivalent increment in the selection area

radii of 37 pixels). The same observation can be extended to the eigenfunctions of

the benign hypothesis, Fig. 3.11, where one observe virtually no variability for the

first 7 most important eigenfunctions. The first real change in the eigenfunction set

occurs for the eight eigenfunction, and it is only a phase change, similarly to the

one observed when changing the permutation of patients in the training performed

in the previous stage. Such a small difference in the eigenvalue and eigenfunctions

guarantees that the impact in the theoretical performance (from the perspective of

the benign hypothesis) will be minimal for different selections of the lesion.
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Table 3.12: Variability of the eigenvalues for the benign hypothesis when the lesion
selection area is changed between one quarter until four times the original area
utilized in the previous studies.

k
λ0,k

Quarter Half Original area Twofold Fourfold
1 1128.6 1118.1 1103.4 1076.5 1049.5
2 44.5141 43.5454 41.4486 39.6900 38.4422
3 3.4695 3.3634 3.2924 3.1513 2.8122
4 0.6371 0.6132 0.5735 0.5247 0.4733
5 0.0351 0.0335 0.0321 0.0291 0.0253
6 0.0016 0.0015 0.0014 0.0012 0.0010
7 0.3316×10−4 0.3020×10−4 0.2716×10−4 0.2593×10−4 0.2611×10−4

8 0.1279×10−5 0.0938×10−5 0.0782×10−5 0.0818×10−5 0.0815×10−5

9 0.7397×10−7 0.5502×10−7 0.2422×10−7 0.1238×10−7 0.1×10−7

10 0.8287×10−9 0.7194×10−9 0.5672×10−9 0.2495×10−9 0.1526×10−9

11 0.7274×10−11 0.6929×10−11 0.7980×10−11 0.9319×10−11 0.3899×10−11

12 0.1514×10−11 0.1758×10−11 0.1170×10−11 0.1099×10−11 0.1270×10−11

Figure 3.11: Comparison of the eigenfunctions of the benign hypothesis for the four
different areas defined in this study.
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Table 3.13: Variability of the eigenvalues for the malignant hypothesis when the
lesion selection area is changed between one quarter until four times the original
area utilized in the previous studies.

k
λ1,k

Quarter Half Original area Twofold Fourfold
1 2045.2 1981.8 1904.7 1814.6 1740.8
2 54.4070 54.4183 52.9904 51.1407 47.7552
3 15.0219 13.8023 12.4111 10.2148 8.6727
4 2.3186 2.1633 1.8864 1.5662 1.4030
5 0.1205 0.1003 0.0793 0.0631 0.0549
6 0.0077 0.0065 0.0053 0.0038 0.0029
7 0.3666×10−3 0.2916×10−3 0.2356×10−3 0.1708×10−3 0.1313×10−3

8 0.1155×10−4 0.0638×10−4 0.0448×10−4 0.0369×10−4 0.0341×10−4

9 0.8122×10−6 0.4618×10−6 0.2881×10−6 0.1843×10−6 0.1339×10−6

10 0.5395×10−7 0.3232×10−7 0.1395×10−7 0.0688×10−7 0.0606×10−7

11 0.5234×10−8 0.3890×10−8 0.2206×10−8 0.1090×10−8 0.0895×10−8

12 0.2027×10−9 0.1303×10−9 0.0888×10−9 0.0578×10−9 0.0415×10−9

Figure 3.12: Comparison of the eigenfunctions of the malignant hypothesis for the
four different areas defined in this study.
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Now we turn our attention to the eigenvalues and eigenfunctions from the ma-

lignant hypothesis, shown un Table 3.13 and Fig. 3.12, respectively. The first ob-

servation one can made is that, for the same average change in the radii of the

selection area (i.e., 37 pixels) the maximum variability for the first eigenvalue is

max ∆λ1,1 > 8%, almost the double of the benign case, but still small enough to

have little effect over the eigenfunctions, as can be noted in Fig. 3.12, where, as for

the benign hypothesis, the set is virtually the same except for changes in the phases,

which can be easily accounted in the algorithm implementation.

The small variability observed in the eigenpairs under both hypotheses predict

an small variability in the theoretical performance of the algorithm, which we study

next.

3.5.3 Theoretical performance

We asses the changes in the theoretical performance by obtaining the ROC curves

of the approach for each one of the four new regions. We specifically select a single

permutation with 100 patients used in the training and 40 in the testing. The idea

is, as it was stated before, to evaluate the changes that are only due to the changes

in the selection of the lesion and not to changes in the training.

As before, we present the theoretical variability by show the obtained ROC curves

(including the obtained with the original lesion selection, for this permutation, as

a reference). Such ROC curves are shown in Fig. 3.13. As it was predicted by the

study of the eigenvalues and eigenvectors performed in the previous section it can

be noted that the obtained ROC curves are essentially equal for the first two rows

presented in the figure. Small changes start to appear when more eigenpairs are used,

observing an interesting change in the slope for the smaller regions, plateauing at

lower detection probabilities as their counterparts with higher number of pixels (i.e.,
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Figure 3.13: Theoretical performance variability as a function of the area utilized to
define the boundary of the lesions when we use from four up to twelve eigenfunctions.

the selection with bigger areas). This observation can be justifies by the fact that

having less pixels to compute the average TRCs yields to an inaccurate aggregation

of the effects of the TRCs. Such a lower detection probability in the plateau is

compensated by a faster rate in reaching such a plateau, which can be observed

when the AUC is computed (see Table 3.14). It can be concluded, therefore, that

since there is a small variability in the eigenpairs when we change the selection of

the lesion, then the theoretical performance is virtually insensitive to those changes.

The small changes in the AUC quantify such an insensitivity. Next we explore the

variability of the empirical detection probability for the same permutation of patients

utilized in this section.
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Table 3.14: AUC of the theoretical ROC curves for the four different selection regions
utilized. The original selected area is included as a reference

k Quarter Half Original area Twofold Fourfold
1 0.51 0.51 0.51 0.50 0.50
2 0.58 0.58 0.57 0.57 0.56
3 0.77 0.77 0.76 0.74 0.73
4 0.82 0.82 0.81 0.80 0.78
5 0.89 0.88 0.87 0.85 0.83
6 0.94 0.94 0.94 0.92 0.91
7 0.97 0.97 0.96 0.95 0.95
8 0.98 0.98 0.98 0.97 0.97
9 0.99 0.99 0.99 0.98 0.98
10 0.99 0.99 0.99 0.99 0.99
11 0.99 0.98 0.99 0.99 0.99
12 0.99 0.99 0.99 0.99 0.99

3.5.4 Empirical performance

As before, we evaluate the empirical performance by means of the empirical detection

probability for different levels of prescribed false-alarm probabilities of 0.1, 0.05 and

0.01 (i.e., a specificity of 90%, 95% and 99%, respectively). To focus our attention to

nine, ten and eleven eigenfunctions to see how the region that defines the lesion affects

the empirical performance with respect to the one achieved for this permutation with

the original area.

The results are summarized in Table 3.15. It can be observed that the empirical

performance for 10 and 11 eigenpairs remains intact. The unchanged performance

for these number of features is expected from the observation made earlier regarding

the small variability of the eigenpairs and the theoretical performance. If there is no

change in these two stages, then KL coefficients for the patients and the optimum

threshold will be virtually the same as the original setting. Nevertheless, it can be

observed that when 9 eigenpairs are used, then there is a slight variability in the

obtained performance. The original PD,e = 0.875 achieved with the original lesion
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Table 3.15: Empirical detection probability for different levels of prescribed false-
alarm probability when 100 patients are used in the training and 40 in the testing
stage as a function of the lesion selection

Number of used False-alarm probability
Area eigenfunctions PF = 0.1 PF = 0.05 PF = 0.01

Quarter 9 0.625 0.25 0.25
10 1.00 1.00 1.00
11 1.00 1.00 1.00

Half 9 0.625 0.125 0.125
10 1.00 1.00 1.00
11 1.00 1.00 1.00

Original area 9 0.875 0.5 0.375
10 1.00 1.00 1.00
11 1.00 1.00 1.00

Twofold 9 0.625 0.375 0.25
10 1.00 1.00 1.00
11 1.00 1.00 1.00

Fourfold 9 0.625 0.125 0.125
10 1.00 1.00 1.00
11 1.00 1.00 1.00

(recall that this implies 7 true positive and one false negative) changes to the case

of having 5 true positives and 3 false negatives. This dramatic drop in performance

is due to the small number of patients utilized in testing the algorithm.

3.5.5 Discussion

It was observed that for one particular setting, the eigenvalues and eigenfunction

variability was small for a relatively small variation in the selected area. It can

be concluded, therefore, that the small variability in the eigenpairs as we change

the selection of the lesion, makes the theoretical performance virtually insensitive,

which yield to a robust almost invariant empirical performance when ten eigenpairs

are used. (Recall that ten eigenpairs were recomended in the previous study as the

optimal number of features per hypothesis to correctly classify all the malignant
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lesions.)

As a final remark of the present study, we want to mention that even though

the changes in the area look big in terms of number of pixels, the real changes (in

terms of physical area) is significantly smaller. Indeed, the average change in radii

is around 37 pixels, which in physical terms means an average change of about 1cm.

3.6 Concluding remarks

We first performed a separability analysis of the proposed algorithm and proposed

a method to determine the maximum number of reliable eigenfunctions based on

their spectra. It was observed that the eigenfunctions of both ACFs were virtually

the same. Later, it was noted that as we reduce the number of patients, these two

sets of eigenfunctions departed in amplitude and their cross orthogonality was lost.

As such, there is a practical minimum number of patients that must be utilized to

reliably define the eigenpairs for each hypothesis. The author believes that once this

practical minimum is attained, both sets of eigenfunctions will be the same, and the

problem will be solvable by selecting one of these sets. Unfortunately, there is no

way to demonstrate this from a practical perspective without having more patient

data.

It was observed in the separability analysis that the algorithm can correctly clas-

sify all the malignant cases for different levels of prescribed false-alarm probability

as we introduce more statistical information: when using 10 eigenpairs per hypoth-

esis the algorithm achieves PD,e = 1.0. This means that the algorithm is capable of

detecting all 58 malignant lesions. It is worth mentioning that the error resolution

is low, because if we fail one of these 58 patients, then the empirical detection prob-

ability will drop to PD,e = 0.98, which is the theoretical predicted value as shown in

Fig. 2.11.
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The proposed decision rule does not impose any restriction over the empirical

false-alarm probability. Hence, any departure from the stated assumptions makes

the empirical performance to be degraded as compared with the constrained, theo-

retical performance. A practical way to address this is by estimating the practical

distributions and possible correlation of the KL coefficients under both hypothesses.

This requires to have a sufficient number of patient, which, unfortunately, are not

available at this stage. The empirical distribution of the KL coefficients can be used

instead of the assumed Gaussianity. The modified likelihood ratio and correspond-

ing test-statistics will present, for sure, a more realistic empirical performance of

the presented in this dissertation. Moreover, this approach will set the actual per-

formance and impact of this work f applied in future clinical studies. It is worth

mentioning that other decision rules can be designed in order to evaluate the per-

formance of the algorithm under different objectives. For example, one may directly

impose restrictions over the false-alarm probability by, for example minimizing the

error probability

At the end of this chapter it was observed that the performance of the algorithm

is virtually insensitivity for small changes in the selected area of the lesion. For

example, it was observed that the theorerical performance presented a maximum

change in performance (measured by the AUC) of 5% for a maximum change of 30%

in the radii of the selected region (measured by the number of pixels).
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Chapter 4

Generalization of the method to

self-referenced dual-signal setting

4.1 Introduction

It was demonstrated in the previous chapter that the skin cancer detection approach

leads to the most accurate and robust results presented so far. Nevertheless the

requirement of twenty KL coefficients per patient (ten KL coefficients per hypothe-

sis) is excessive when the reliability of the estimated eigenvalue-eigenfunction pairs

beyond seven eigenfunctions is not high.

In this chapter, we study the inclusion of a reference signal to the detection prob-

lem, obtained locally from the very same patient under study. More precisely, for

each hypothesis, we define a self-reference signal from the tissue that surrounds the

suspicious lesions. The hope is that the by self-referencing the patient’s TRC, abnor-

mal features from the lesion TRCs can be compensated out and, as a consequence,

less KL coefficients are required to correctly detect the malignant lesions.
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Including the reference signal from the surrounding tissue into the detection prob-

lem can be stated by the following hypothesis-testing problem

H0 : Y (t) = S(t; Θ0) =


 S(1)(t; Θ

(1)
0 )

S(2)(t; Θ
(2)
0 )


 , t ∈ [0, T ] , (4.1a)

H1 : Y (t) = S(t; Θ1) =


 S(1)(t; Θ

(1)
1 )

S(2)(t; Θ
(2)
1 )


 , t ∈ [0, T ] , (4.1b)

where the entries of the vector of random processes under the jth hypothesis, namely

S(1)(t; Θ
(1)
j ) and S(2)(t; Θ

(2)
j ), are defined to be the lesion and the reference TRC, re-

spectively, under the jth hypothesis. As before, we define the lesion TRC as the

average TRC over all the pixels within the lesion boundary. Similarly, we define the

reference TRC as the average TRC over all the pixels outside the lesion boundary.

Examples of dual TRCs for two subjects with benign condition and two subjects

with malignant condition are shown in Fig. 4.1. We begin the algorithm generaliza-

tion by first describing how to represent vector random processes in terms of series

expansions.

4.2 Representation of vector random processes

In the present section, we follow Van Tress [72] explanation of vector random pro-

cesses (specifically Chapter 3) and it is included here for completeness.

Consider the vector containing N random process

X(t) =




X1(t)

X2(t)
...

XN(t)



, (4.2)
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Figure 4.1: Examples of dual TRC from two subjects with benign condition (top
row) and two patients with malignant condition (bottom row).

which can be generated, for example, by N sensors located at different spatial loca-

tions. We are interested to obtain a series expansion representation for this vector

process such that the classical detection theory can be applied as before. The mean

of the random process, mX(t) = E [X(t)], is assumed to be zero. The autocorrelation
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of this vector process is defined as the N ×N matrix

R(t, u) , E
[
X(t)XT (u)

]

=




E [X1(t)X1(u)] E [X1(t)X2(u)] · · · E [X1(t)XN(u)]

E [X2(t)X1(u)] E [X2(t)X2(u)] · · · E [X2(t)XN(u)]
...

...
. . .

...

E [XN(t)X1(u)] E [XN(t)X2(u)] · · · E [XN(t)XN(u)]



.(4.3)

The complexity of the vector processes can be passed to the eigenfunctions (i.e.,

represent the signals by vector eigenfunctions and scalar eigenvalues) or to the eigen-

values (i.e., represent the signals by scalar eigenfunctions and matrix eigenvalues).

Van Tress [72] and Oya et al. [77] stated that the optimal way to address this prob-

lem is by means of the former, since it was proved by Kelly and Root [78] that the

vector eigenfunction with scalar eigenvalue representation is a generalization of the

KL expansion.

Hence, let us assume that we have a complete set of vector eigenfunctions {Φk}∞k=1

to represent the vector random process, where each vector eigenfunction is defined

by

Φk(t) =




φ
(1)
k (t)

φ
(2)
k (t)

...

φ
(N)
k (t)



, (4.4)

and the vector random process X(t) can be expanded over this vector eigenfunctions

by

X(t) =
∞∑

k=1

XkΦk(t) . (4.5)

The corresponding expansion coefficients associated with this representation are
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given by

Xk ,
∫ T

0

ΦT
k (t)X(t) dt =

∫ T

0

XT (t)Φk(t) dt. (4.6)

As before, we want the projection coefficients to be uncorrelated, i.e., E [XkX`] =

λ`δk,`, thus

λ`δk,` = E [XkX`] = E

[∫ T

0

ΦT
k (t)X(t) dt

∫ T

0

XT (u)Φ`(u) du

]

=

∫ T

0

∫ T

0

ΦT
k (t) E

[
X(t)XT (u)

]
Φ`(u) dt du

=

∫ T

0

ΦT
k (t)

[∫ T

0

R(t, u)Φ`(u) du

]
dt . (4.7)

As in the scalar case, we will achieve the desired uncorrelated coefficients if the

quantity within the brackets in (4.7) equals λ`φ`(t), or
∫ T

0

R(t, u)Φ`(u) du dt = λ`Φ`(t) , (4.8)

which is the equivalent of the eigenvalue-eigenfunction integral equation for vector-

valued processes. According to Van Tress [72] and Oya et al. [77] this representation

satisfy Mercer’s theorem; as a consequence

R(t, u) = E
[
X(t)XT (u)

]
=
∞∑

k=1

λkΦk(t)Φ
T
k (u) . (4.9)

A useful property of this expansion is that the expansion coefficients are scalar, which

is a property we exploit in the following section.

4.3 Dual-signal detection problem

4.3.1 Autocorrelation functions

In the same way that we solved the single-signal detection problem, in this ap-

proach we assume that each hypothesis have its own autocorrelation function, namely
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Figure 4.2: Matrix of autocorrelation functions for the benign (left) and the ma-
lignant (right) hypotheses. The presented functions were computed using all 140
patients with known diagnosis.

R0(t, u) and R1(t, u), with Rj(t, u) = E
[
Sj(t; Θj)S

T
j (t; Θj)

]
, for j = 0, 1. Hence,

Rj(t, u), j = 0, 1 is 2×2 matrix of autocorrelation functions. Since each entry of this

matrix is simply an scalar autocorrelation function, we can define the entire matrix

in the same way we did for the single signal approach. The obtained autocorrelation

functions for the vector representation of are depicted in Fig. 4.2 for the benign and

the malignant hypotheses.

As before, each autocorrelation will have its own set of orthonormal eigenfunc-

tions. The kth vector eigenfunction for the jth autocorrelation function, namely

Φj,k(t) =
[
φ
(1)
j (t) φ

(2)
j (t)

]T
, is determined by the eigenvalue-eigenfunction integral

equation

λj,kΦj,k(t) =

∫ T

0

Rj(t, u)Φj,k(u) du .

We solve this integral equation by the Nystrom method, which was introduced in

Section 2.6.4 for the single TRC approach. The resulting first sixteen eigenfunctions

for the benign and malignant hypothesis are depicted in Fig. 4.3 and Fig. 4.4, respec-

tively. It can be noted, that the resulting vector eigenfunctions can only be reliably

extracted from the autocorrelation functions until a certain number of eigenvalues.
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Figure 4.3: Benign vector eigenfunctions

As in the single TRC approach, twelve eigenfunctions is the upper limit. We will

see later, that as we reduce the number of patients to train the algorithm, complex

components start to appear in the eigenfunctions.

The resulting vector eigenfunctions allow us to represent the dual TRC under

each hypothesis with scalar expansion coefficients by

S(t; Θj) =
∞∑

k=1

Sj,kΦk(t) . (4.10)

Since this series representation for vector random processes can be considered as a

generalization of the KL expansion [72, 77], then the scalar expansion coefficients

contain all the statistical features of the dual TRC, in a similar way that the KL
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Figure 4.4: Malignant vector eigenfunctions

coefficients contained the statistical temporal features in the single TRC approach.

As a consequence, we can also solve the dual TRC problem by solving the statistical

equivalent problem of detecting the malignancy of the lesion based on the expansion

coefficients. In symbols, the dual TRC detection problem can be recast as

H0 : S0,k , k = 1, 2, . . . (4.11)

H1 : S1,k , k = 1, 2, . . . (4.12)

where, as before, we assume that the expansion coefficients are Gaussian as a con-

sequence of assuming that the TRCs are Gaussian random processes. The mean of
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the expansion coefficients under the jth hypothesis is

E [Sj,k] = E

[∫ T

0

ΦT
k (t)S(t; Θj) dt

]

=

∫ T

0

ΦT
k (t)E [S(t; Θj)] dt = 0 , (4.13)

by the assumption that the Gaussian random processes that define the entries of the

dual TRC have zero mean. The covariance between these coefficients under the same

hypothesis is

cov (Sj,k, Sj,`) = E [Sj,kSj,`]

= E

[∫ T

0

ΦT
k (t)S(t; Θj) dt

∫ T

0

ST (u; Θj)Φ`(u) du

]

=

∫ T

0

∫ T

0

ΦT
k (t)E

[
S(t; Θj)S

T (u; Θj)
]
Φ`(u) du dt

=

∫ T

0

ΦT
k (t)

∫ T

0

Rj(t, u)Φ`(u) du dt

=

∫ T

0

ΦT
k (t)λj,`Φ`(t) dt

= λj,`δj,` .

Now, since the expansion coefficients are also Gaussian, they are independent. It

is clear now, that under the series expansion utilized in this approach, we have

transformed the original dual TRC problem onto a new problem of scalar and in-

dependent coefficients, that follow a Gaussian distribution with variance equal to

the corresponding eigenvalues. This is exactly the same problem that we already

solved for the single TRC approach, and therefore, the mathematical structure of

the likelihood ratio and the distribution of the test-statistic are the same. Moreover,

we utilize the same structure of the NP decision rule, because the resulting test-

statistics is a linear combination of χ2-distributed random variables (just as in the

single-TRC approach) but with different eigenvalues, and, as a consequence, different

coefficients for the CDFs defined in (2.52).
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In the following sections, we evaluate the theoretical and empirical performance

for the dual TRC approach and compare its performance with the single-TRC ap-

proach introduced in Chapter 2.

4.4 Theoretical performance

Here we use the same training settings used in Chapter 3, i.e., we train the algorithm

using 60, 80, 100 and 110 patients and for each training size we perform the same 200

permutations of patients to evaluate the performance variability. We compare the

theoretical performance by means of the ROC curves between the original (single

TRC) algorithm and the generalization presented in this chapter. In Fig. 4.5 we

present the ROC curve comparison for the single-TRC approach (blue ROC) and the

dual-TRC approach (red ROC) for different number of used eigenfunctions. Please

note that we are showing here the average ROC curves over the 200 permutations.

The results for 80, 100 and 110 patients used to train both algorithm are shown

in Fig. 4.6, Fig. 4.7 and Fig. 4.8, respectively. The results demonstrate that the dual

TRC approach actually improves the theoretical performance upon the single TRC

approach when the same combination of patients is utilized to train the skin-cancer

detector under both methods. It can be noted from the presented results that the

theoretical performance of the dual TRC approach is better that the theoretical per-

formance of the single TRC approach when a few eigenvalue-eigenfunction pair are

used. As we increase the number of these pairs, the difference in the performance be-

tween both approaches becomes smaller. We compare the two approaches by means

of the mean AUC for both hypothesis as we increase the number of eigenfunctions.

The mean AUC over 200 permutations when 60, 80, 100 and 110 patients are used

in the training is depicted in Fig. 4.9. It can be observed in this figure that the dual-

TRC approach requires one eigenpair less than the signal-TRC approach to achieve
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Figure 4.5: Comparison of the mean ROC curves when 60 training are used to train
the single-TRC algorithm (blue) and the dual-TRC algorithm (red).

the same performance when 60 patients are used. For example, to achieve an average

AUC of 0.9 the single-TRC approach requires 5 eigenpairs. The dual-TRC approach

can achieve a theoretical AUC of 0.93 with only 4 eigenpairs.

This observation becomes more relevant as we include more patients in training

the algorithms. For example, when we use 110 patients in training the method we

Figure 4.6: Comparison of the mean ROC curves when 80 training are used to train
the single-TRC algorithm (blue) and the dual-TRC algorithm (red).
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Figure 4.7: Comparison of the mean ROC curves when 100 training are used to train
the single-TRC algorithm (blue) and the dual-TRC algorithm (red).

can note in Fig. 4.9(bottom-right) that the dual-TRC approach achieves the same 0.9

AUC with two eigenpair less than the single-TRC counterpart. Please note that the

comparison between the single and dual TRC approaches is made only for the first

eigenpairs only. The reason to do so is that after certain number of eigenvalues, for

a few permutations of patients, the eigenfunctions started to show some imaginary

component. Since the imaginary part in the eigenfunctions were in the scale 10−13,

Figure 4.8: Comparison of the mean ROC curves when 110 training are used to train
the single-TRC algorithm (blue) and the dual-TRC algorithm (red).
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Figure 4.9: Comparison of the single TRC and the double TRC approach by using
the mean AUC for different number of used eigenvalue-eigenfunction pairs, using 60
patients in the training (top-left), 80 patients (top-right), 100 patients (bottom-left)
and 110 patients (bottom-right).

the author believes that this problem may occur because of the numerical integration

performed by the Nystrom method and the trapezoidal quadrature rule. When other

rules where explored the complex eigenfunctions were gone but the orthogonality of

the components was lost. As a consequence, we utilized the trapezoidal quadrature

rule and searched for the maximum number of real eigenfunctions for each case.

Moreover, when the training size was increased to 100 or 110 patients, we were able

to extract a nine real eigenfunctions, which suggest that the problem may also be

related with the statistical information contained within the estimated ACFs, which
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may not be rich enough to permit the computation of dual-eigenfunctions.

Some conclusions can be drawn with the results presented so far. It is clear

that the mean performance over the same 200 permutations is improved with the

help of the self-reference signal introduced in this chapter. The most important

characteristic of the proposed alternative is that the detection is still performed over

an scalar expansion coefficient, which has equivalent statistical features of the dual

TRCs in a similar fashion as the KL coefficients characterized the single TRCs. It is

clear that this approach present the same limitations that the single TRC approach

developed in Chapter 2 regarding the presence of signal under both hypotheses. As

before, if the ACFs have their particular sets of eigenvalues and eigenfunctions, the

expansion coefficients may not be totally representative of both hypothesis. It may be

worth exploring the alternative of whitening one of the ACFs and solve the equivalent

problem as it was discussed before. This idea is proposed in the last chapter, under

the future work research ideas.

Next, we compute the empirical performance of the dual TRC approach and

compare it with the performance of the single TRC approach.

4.5 Empirical performance

In this section we compare the empirical performance, (measured by the empirical

detection probability) of the dual TRC and compare the results to those from the

single TRC approach. We restrict our attention o the first eigenpairs due to the

numerical limitation discussed in the previous section.

We present the mean and mean absolute error of the same 200 permutations

when 80, 100 and 110 patients are used to train both algorithm. We use the same

permutations of patients to train and test both algorithm in order to highlight only
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the difference in their performance without introducing artificial changes due to

better training patients.

In Table 4.1 we present the results when 80 patients are used in the training. For

comparison purposes we include the empirical detection probability of the single-

TRC approach. (Here s-TRC and d-TRC stand for single and dual TRC approach,

respectively.) The first difference observed is the clearly improved performance of

the dual TRC approach, achieving almost perfect detection with few eigenpairs. For

example, for a empirical false-alarm probability of 0.01, the single TRC approach

achieves an average detection probability of 0.94 (± 0.11) for 7 eigenpairs. The dual

TRC approach on the other hand achieves a 0.99 (± 0.01) when 5 eigenpairs are

utilized. This difference in performance with less eigenpairs is the same observed in

the theoretical performance study. Similar observations can be made for the case

when 100 patients are utilized in training both algorithms. Interestingly, for the

case of 7 eigenpairs, the performance of the single TRC approach is better than

the performance of the dual TRC approach. Please recall that for this setting only

40 patients are used in the testing and only 8 of them are malignant. Therefore

Table 4.1: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 80 patients are used in the training and 60 in the testing stage. Here, s-TRC
and d-TRC stand for single TRC and double TRC approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC d-TRC s-TRC d-TRC
1 0.00 (± 0.00) 0.98 (± 0.03) 0.00 (± 0.00) 0.95 (± 0.05)
2 0.02 (± 0.04) 0.97 (± 0.04) 0.02 (± 0.04) 0.94 (± 0.06)
3 0.42 (± 0.14) 0.98 (± 0.03) 0.42 (± 0.14) 0.94 (± 0.05)
4 0.46 (± 0.12) 0.82 (± 0.12) 0.46 (± 0.12) 0.78 (± 0.12)
5 0.80 (± 0.11) 0.99 (± 0.01) 0.80 (± 0.11) 0.99 (± 0.01)
6 0.91 (± 0.09) 0.96 (± 0.05) 0.91 (± 0.09) 0.96 (± 0.05)
7 0.94 (± 0.11) 0.90 (± 0.13) 0.94 (± 0.11) 0.90 (± 0.13)
8 0.81 (± 0.31) 0.90 (± 0.11) 0.81 (± 0.31) 0.90 (± 0.11)
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Table 4.2: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 100 patients are used in the training and 40 in the testing stage. Here, s-TRC
and d-TRC stand for single TRC and double TRC approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC d-TRC s-TRC d-TRC
1 0.00 (± 0.00) 0.97 (± 0.05) 0.00 (± 0.00) 0.91 (± 0.09)
2 0.00 (± 0.00) 0.96 (± 0.06) 0.00 (± 0.00) 0.90 (± 0.09)
3 0.15 (± 0.09) 0.96 (± 0.05) 0.13 (± 0.07) 0.89 (± 0.09)
4 0.29 (± 0.12) 0.81 (± 0.13) 0.26 (± 0.10) 0.74 (± 0.13)
5 0.69 (± 0.16) 0.99 (± 0.01) 0.67 (± 0.16) 0.99 (± 0.01)
6 0.89 (± 0.09) 0.97 (± 0.05) 0.89 (± 0.09) 0.97 (± 0.05)
7 0.96 (± 0.08) 0.88 (± 0.15) 0.96 (± 0.08) 0.88 (± 0.15)
8 0.85 (± 0.25) 0.84 (± 0.15) 0.85 (± 0.25) 0.84 (± 0.15)
9 0.88 (± 0.22) 0.92 (± 0.12) 0.88 (± 0.22) 0.92 (± 0.12)

an average empirical detection probability of 0.88 indicates that, in average one

malignant patient was misclassified as benign.

The real difference is observed when 110 patients are utilized to train the al-

Table 4.3: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 110 patients are used in the training and 30 in the testing stage. Here, s-TRC
and d-TRC stand for single TRC and double TRC approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC d-TRC s-TRC d-TRC
1 0.00 (± 0.00) 0.95 (± 0.09) 0.00 (± 0.00) 0.90 (± 0.15)
2 0.00 (± 0.00) 0.94 (± 0.10) 0.00 (± 0.00) 0.89 (± 0.15)
3 0.19 (± 0.19) 0.96 (± 0.07) 0.16 (± 0.18) 0.90 (± 0.15)
4 0.29 (± 0.21) 0.79 (± 0.21) 0.26 (± 0.20) 0.74 (± 0.21)
5 0.76 (± 0.21) 1.00 (± 0.00) 0.73 (± 0.21) 1.00 (± 0.00)
6 0.89 (± 0.15) 0.96 (± 0.06) 0.89 (± 0.15) 0.96 (± 0.06)
7 0.97 (± 0.06) 0.74 (± 0.29) 0.97 (± 0.06) 0.74 (± 0.29)
8 0.84 (± 0.26) 0.86 (± 0.19) 0.84 (± 0.26) 0.86 (± 0.19)
9 0.90 (± 0.18) 0.84 (± 0.23) 0.90 (± 0.18) 0.84 (± 0.23)
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gorithm. In this case, a perfect classification of all malignant cases is achieved in

all 200 permutations with only 5 eigenpairs per hypothesis. The same performance

was achieved by the single-TRC approach with 110 training patients with exactly

the double of the eigenpairs. It seems, therefore, that the inclusion of the reference

signal can actually compensate some anomalous behavior of the the lesion TRCs.

4.6 Concluding remarks

In this chapter, we have introduced and discussed an approach to represent vector

random processes that in the literature is treated as the vector generalization of

the KL expansion. Using this representation we have solved the detection problem

in which each hypothesis is characterized by a dual TRC. In this work, we have

defined the two random signals to be the lesion average TRC and a reference TRC

obtained locally from the lesion’s surrounding tissue. The approach followed in this

chapter have the property of using scalar expansion coefficients, equivalent to the KL

coefficients for the scalar TRC approach. Hence, after the expansion is applied to

the vector random processes, the dual-TRC detection problem becomes equivalent

to the single-TRC detection problem explored and presented in Chapter 2. As a

consequence, once the expansion coefficients are characterized, they contain most of

the statistical information of both of the signals of each hypothesis, and the solution

is trivial because all the properties and limitations discussed for the single TRC

approach hold for this new alternative.

We explored both the theoretical and empirical performance of the proposed al-

ternative using the same training settings utilized to test the robustness of the single-

TRC approach. By comparing the theoretical performance by means of the AUC for

different number of eigenvalue-eigenfunction pairs, the dual-TRC approach achieves

the same performances as the single-TRC approach by requiring less eigenpairs. The
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empirical performance follows the same trend, allowing, for example, 100% detection

of malignant patients using one half of the eigenpairs that the single-TRC approach

required for the same training/testing setting.

It is clear that utilizing the same approach, any array of detectors can be exploited

to solve different sensing problems. For example, the entire FPA of the IR camera can

be considered as a column array of sensors, whose spatial correlations are accounted

in the model of the random processes. By using vector eigenfunctions the entire array

(or portions of it) can be represented with scalar expansion coefficients allowing, for

example, to represent areas with similar conditions with a single scalar (but random)

variable. This seems to be an interesting idea to explore in the context of multicolor

(spectral) classification.

One major point that must be mentioned here, is that this alternative was proven

to be optimal (as stated by Van Tress [72] and Oya et al. [77]) but the author of

this dissertation did not have access to the original manuscript that does so. As

a consequence, some optimality condition may have been overpassed without the

required attention. Thus, the results presented in this chapter must be considered as

an upper bound for the field performance achievable in a real-life implementation.
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Chapter 5

Generalization of the method to

include spatial features of the

lesion

5.1 Introduction

In this chapter we explore the spatial features of the lesions by analyzing the visible-

color image acquired for each patient. This exploration is made with two main

purposes in mind: (1) Automatically define a boundary for the every suspicious le-

sion based on the color contrast between the pigmented and the surrounding tissue

and (2) utilize the shape of the boundary to extract spatial features that characterize

the lesions; this leads to mimicking what dermatologists perform when diagnosing

a suspicious mole. By automatically defining the lesion boundaries, both the single

and the dual-TRC approaches (discussed in Chapters 2 and 4, respectively) will be

benefiting by minimizing the user interaction and subjectivity, which may affect the

expected performance by introducing external factors not addressed in this disserta-
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tion.

We divide this chapter in two main parts. In the first part is covered entirely in

Section 5.2 and it introduces a novel method to fuse material/tissue classification with

an edge-detection algorithm in order to improve the performance of the latter. More

precisely, we extend the Spectral-Ratio Contrast (SRC) algorithm (presented by our

group) [42, 43] by utilizing spectral classification to further enhance the detection of

edges that are solely due to color (not intensity) changes. In the second part of this

chapter, we utilize the ASRC algorithm to perform automatic boundary identification

of the suspected lesions by exploiting the color contrast between the pigmented lesion

and that of the surrounding tissue. After defining the boundary, we define and

extract spatial features of the lesions following the general guidelines of the ABCDE

rule [3]. We conclude this chapter by developing and testing a method to fuse the

spatial features with the temporal features (i.e., the KL coefficients) extracted in the

skin-cancer detection method developed in Chapter 2.

5.2 Adaptive spectral-ratio contrast algorithm for

boundary detection

5.2.1 Mathematical preliminaries

A multicolor image is normally referred in the literature as a multispectral (MS) or

hyperspectral (HS) image, spanning from hundreds to thousands of spectral bands

(color slices). A MS or HS image, also termed an image cube, is a 3D array of real

numbers that we denote by u ∈ IRI×J×K , where I and J represent the number of

horizontal and vertical pixels, respectively, in the spatial domain, and K represents

the number of spectral bands. We denote any element of the cube u as uk(i, j), where
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u ∈ IRI×J×K

kth color slide

(i, j)th pixel

i
j
k

Figure 5.1: Pictorial representation of the three-dimensional array of numbers that
describe the datacube in spectral imagery

1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 < k ≤ K. The value of uk(i, j) is referred to as the

intensity of the kth band at spatial location (i, j). For a fixed spatial location (i, j),

the K-dimensional vector u(i, j) = (u1(i, j), . . . , uK(i, j)) is termed a hyper-pixel.

Meanwhile, for a fixed band index k, the two-dimensional array uk(·, ·) defines the

kth image plane (color slice) of the spectral image. Fig. 5.1 depicts the data cube u.

The goal of this work is to define an edge map,

F : IRI×J×K 7→ {0, 1}I×J ,

that assigns the value 1 to the pixel location (i, j) if u(i, j) belongs to an edge, while

assigning the value 0 otherwise. In this work we define an edge to be either a jump

in the broadband intensity (as in the conventional definition of an edge for gray-scale

images) or a change in the material that exhibit color contrast but not necessarily

luminance contrast (as in isoluminant edges).
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5.2.2 The spectral-ratio contrast algorithm

In this section, we review germane aspects of the spectral-ratio contrast (SRC) al-

gorithm in order to later describe the insets into the SRC workflow that the ASRC

algorithm introduces. More details about the SRC algorithm can be found in the

Appendix B.

For two types of materials A and B, the SRC algorithm builds the edge map

FAB in three stages: (i) model-based edge signature identification, (ii) sparse spatio-

spectral mask development, and (iii) edge discrimination. The SRC and the ASRC

algorithms share the first two stages, but they differ in the third stage, where the

latter involves spectral classification before discriminate the edges. First, the model-

based edge signature identification of the SRC algorithm is a learning step in which

a small set of ratios of spectral-band outputs that most profoundly identify edges

between each pair of materials is selected. This selection is made judiciously and

sparingly recognizing the very few bands, across all bands, that permit a good dis-

crimination between each pair of materials. Through this process, the SRC algorithm

achieve substantial levels of data compression at the edge extraction stage. As an

example, assume that at this stage the SRC algorithm identifies that the spectral-

band ratios ap/bq and ar/bs are the optimal in terms of separating A and B, then the

edge-signature for this problem will be the set of triplets {(p, q, ρ1), (r, s, ρ2)}, where

ρ1 = ap/bq and ρ2 = ar/bs, respectively.

Second, the sparse spatio-spectral mask is developed by merging the set of bands

identified in the previous stage with a regular spatial mask. For example, if a common

3×3 spatial mask is combined with the edge-signature, at the (i, j) spatial location

one can form the ratios of pixels (one for each pair of oposite pixels) u(i−1, j)/u(i+

1, j) and u(i + 1, j)/u(i − 1, j) in the vertical direction, u(i, j − 1)/u(i, j + 1) and

u(i, j + 1)/u(i, j − 1) in the horizontal direction, etc. If the spectral-band ratios are
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(i, j)(i, j − 1) (i, j + 1)

(i− 1, j)

(i+ 1, j)

band q

band p

band s

band r

up(i−1,j)
uq(i+1,j)

ur(i−1,j)
us(i+1,j)

Figure 5.2: Pictorial representation of the fusion between the vertical pixel pair
within a 3×3 spatial mask and the edge-signature identified in the first stage of the
SRC algorithm to form the sparse spatio-spectral mask

computed for all the band-pairs of the edge signature at all the pixel pairs of oppossite

pixels of the spatial mask, then the sparse spatio-spectral mask KAB is obtained. A

pictorial representation of the development of such a mask for one of the possible

vertical pair of pixels is depicted in Fig. 5.2. When this procedure is applied to all

the pixel pairs within the spatial mask, the ratios between each of the pixel pairs of

the spatial mask, at each of the band pairs given in the edge signature generates a

matrix of spectral-ratio signatures. For example, using the horizontal and vertical

pairs of hyper-pixels within the 3×3 mask and the example edge-signature explained
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above, i.e., {(p, q, ρ1), (r, s, ρ2)}, the resulting matrix will be

KAB(u)(i, j) =




up(i−1,j)
uq(i+1,j)

ur(i−1,j)
us(i+1,j)

up(i,j−1)
uq(i,j+1)

ur(i,j−1)
us(i,j+1)

up(i+1,j)

uq(i−1,j)
ur(i+1,j)
us(i−1,j)

up(i,j+1)

uq(i,j−1)
ur(i,j+1)
us(i,j−1)




, (5.1)

where each row is constructed as depicted in Fig. 5.2. The use of both ratios on each

direction (e.g., u(i− 1, j, ·)/u(i + 1, j, ·) and u(i + 1, j, ·)/u(i− 1, j, ·) in the vertical

direction) is required to account for the two possible material configurations. In

general, the application of the spatio-spectral mask with M pixel pair and R band

pairs in the edge signature, to each location (i, j), results in a 2M × R matrix of

“features.” (Compare this to a gray-scale image when the application of a spatial

mask to a pixel results in a scalar.)

Third, the edge discrimination stage utilizes the KAB(u)(i, j) mask to determine

whether the (i, j) location belongs to a edge or not. This is done by matching the

outputs of the mask KAB(u)(i, j) with the ratios of the edge signature. In the ideal

case when no noise is present and the image under test is comprised only of hyper-

pixels with the exact same value of the characteristic hyper-pixels (i.e., a and b)

as shown in Fig. 5.3, the output of the spatio-spectral mask will perfectly match

the values of the ratios obtained from the edge signature. To illustrate this point,

assume the same example given earlier, where the spatio-spectral mask is given by

(5.1). When we have a horizontal edge, the second and fourth rows of KAB(u)(i, j)

in (5.1) will have a value that is not meaningful, but the first or third rows will

match the ratio from the edge signature, [ρ1 ρ2]. Indeed, if the upper neighbor is

from material A and the lower neighbor is from material B, then the first row of

(5.1) will be [ap/bq ar/bs] (which matches the edge signature) and the third row will

be [bp/aq br/as]. Conversely, when the upper neighbor is from material B and the
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a a a

b b b

b b b

a a a

Figure 5.3: Pictorial representation of an horizontal edge (dashed line) within a 3×3
spatial mask for the noiseless case. The drawing on the left represents the case of
having material A on top and B on the bottom part. The drawing on the right
represent the oppossite situation

lower neighbor is from material A, the computed ratios are switched, which means

that the third entry of (5.1) will match the ratios from the edge signature. This

example shows that if an edge is present then at least one row of KAB(u)(i, j) will

perfectly match the ratios from the edge signature. When noise is present, we allow

a matching tolerance to account for the similarity between the outcome of the mask

and the edge signature ratios.

The different ratios of KAB(u)(i, j) that match the ratios from the edge signature

are accounted in a M ×R indicator matrix whose binary entries are defined by

δmr (i, j) =





1, if |κAB(i, j;m−, r)− ρr| < ε ,

1, if |κAB(i, j;m+, r)− ρr| < ε ,

0, otherwise ,

(5.2)

where m∓ and r represent the mth pixel pair from the spatial mask and the rth band

pair of the edge signature, respectively. For the same example worked above, this is

translated into κAB(i, j;m∓, r) = up(i∓ 1, j)/uq(i± 1, j) and ρr = ρ1, etc. Here, the

tolerance parameter, ε, accounts for both the natural variability of the data and the

presence of noise in the spectral data for materials A and B.

Ideally, if the mth hyper-pixel pair belongs to the same material type, then the

test in (5.2) will return the value of zero. Conversely, if the hyper-pixels forming
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the pair are from the two different materials, either the entry κAB(i, j;m−, r) or

κAB(i, j;m+, r) will be equal to the corresponding ratio ρr from the edge signature.

As such, for a given pair of pixels, the number of non-zero elements in the associated

mth row of the indicator matrix reveals the number of times the response of the mask

KAB(u)(i, j) has matched (within the specified tolerance ε) the spectral ratios from

the edge signature. By counting the number of ones of each row (i.e., the number

of times this match occurs), we know the strength of the edge on that particular

pixel. This is accounted by the matrix infinity norm as explained in detail in the

Appendix B.

5.2.3 The adaptive spectral-ratio contrast algorithm

Background

Mainly due to the noise in the spectral image, the computed ratios of the SRC

algorithm may match those from the edge signature even when there is no edge

present within the 3D mask. If we can somehow adaptively change the SRC threshold

depending on the material composition of the scene, these false edges can be avoided.

As such, we want to add an new layer of processing within the SRC in order to

restrict the algorithm to capture edges that are due solely to material changes (and

not intensity changes). By specializing the algorithm to material changes, we increase

its tolerance to noise and the corresponding false edges are minimized.

In order to capture solely the changes between materials in the new algorithm, we

utilize material classification of neighboring pixels to adaptively pre-qualify the spec-

tral ratios before computing the indicator matrix (5.2). We term the new algorithm

the adaptive SRC (ASRC) algorithm, because it adaptively define thresholds for the

spectral ratios based on the classification of the very same scene. The use of classifi-

cation to enhance other tasks such as segmentation is an area that has already been
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studied [79, 80]. For example, Loog and Ginneken [79] utilized a k-nearest neighbor

classifier to generate an initial segmentation of ribs in chest radiographs, which is

iteratively updated using other features such as spatial distribution of the pixels by

means of different classifiers. Here, we fuse classification into the SRC algorithm to

minimize the effect of the misidentified pixels from the former algorithm and improve

the edge identification stage of the latter.

The ASRC algorithm

Let us consider the feature matrix of the (i, j)th location, KAB(u)(i, j), as given in

(5.1). We want to rank the entries κAB(i, j;m∓, r) of the feature matrix with the

following two objectives in mind: (i) promoting the thresholding of ratios (as edge

candidates) when the spatio-spectral mask contains hyper-pixels from two distinct

materials and (ii) discouraging the thresholding of ratios when the mask contains

hyper-pixels from only one type of material.

To do so, we embed the data-dependent multiplicative factors γi,jm,r with the tol-

erance ε in (5.2), which results in its redefinition as

δmr (i, j) =





1, if |κAB(i, j;m−, r)− ρr| < γi,jm,rε ,

1, if |κAB(i, j;m+, r)− ρr| < γi,jm,rε ,

0, otherwise ,

where we use the same multiplicative factor, γi,jm,r, for both tests in order to maintain

the independence on the direction of the transition between materials. The mathe-

matical definition of the multiplicative factors γi,jm,r is as follows. Let Nu(i, j), Nl(i, j),

Nr(i, j) and N`(i, j) denote four neighborhoods surrounding the (i, j)th hyper-pixel

of interest. The subscripts u, l, r and ` stand for upper, lower, right and left neighbor-

hoods, respectively. The understanding is that Nu(i, j) contains neighboring pixels

above the hyper-pixel (i, j), N`(i, j) contains neighboring pixels to the left of pixel
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(i, j), and so on. We do not impose any restrictions on the four neighborhoods at this

point. Let the function C : IRS 7→ {0, 1} be a classifier that maps each hyper-pixel to

a class of materials, where outputs 0 and 1 represent classes A and B, respectively.

Now for any collection of indices N , we denote the class of N by C(N), which is

defined according to a certain prescribed classification rule.

Next, define

γi,jm,r =
(
C(Nu)⊕ C(Nl)

)∨(
C(Nr)⊕ C(N`)

)
, (5.3)

where ⊕ denotes the “exclusive OR” operation and the symbol “
∨

” represents the

“OR” operation. For simplicity of the notation, we have discarded the (i, j) de-

pendence of each neighborhood set N in (5.3) with the understanding that each

neighborhood is defined on a pixel-by-pixel basis.

From (5.3), γi,jm,r will be unity (in which case the (m, r)th pixel-band pair at

the (i, j) location qualifies for thresholding as usual) if at least one of the opposite

neighborhoods are classified as two different materials. On the other hand, γi,jm,r will

be zero (in which case the (m, r)th pixel-band pair at the (i, j) location does not

qualify for thresholding) if the declared class of each neighborhood is in agreement

with the declared class of its opposite neighborhood. As a consequence, the ASRC

will operate as the the SRC algorithm only if the outcome of the classifier indicates

the possible presence of an edge, suppressing edges that are due to an intensity

change. This will also reduce the detection of false edges.

The fact that the ASRC algorithm is restricted to identifying edges based on color

only is similar to that of the HySPADE algorithm [41]; however, the algorithms are

conceptually different. A key difference between the ASRC and the HySPADE al-

gorithms is that the former utilizes the sparse, 3D mask of ratios to fuse spectral

and spatial information to nonlinearly extract edge information while the latter algo-

rithm utilizes only spectral information to compute spectral angles, which are linear
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spatio-spectral features. Even though the HySPADE algorithm performs equally

well compared to the SRC algorithm, its performance is worse than that of the

ASRC algorithm in the presence of isoluminant edges. Moreover, as presented in

the Section 5.2.5, the HySPADE algorithm requires a high number of operations per

pixel (> 109 operations per pixel in our examples), as compared with the operations

required by the proposed algorithms (< 90 operations per pixel in our examples).

5.2.4 Application of the algorithm to spectral data

Let us take a temporary departure from the main subject of this dissertation in order

to demonstrate the power of the ASRC algorithm in detecting edges from multicolor

images. The spectral component is not part of this dissertation, but is utilized here

with the purpose of evaluating the ASRC performance and compare it with other

similar alternatives.

We compare the outcome of the ASRC algorithm with the edge maps obtained by

the Canny algorithm [39] (applied to selected bands), the SRC algorithm, the MCG

algorithm [40] and the HySPADE algorithm [41]. We restrict our attention to edge

signatures with unity length using two bands (i.e., S = 2 and R = 1), which is the

minimum value required by the SRC and ASRC algorithms. Moreover, we utilize

a 3 × 3 spatial mask to construct the joint spatio-spectral mask, KAB. Within the

spatial mask, we identify four directions (each one associated with a pair of pixels):

horizontal, vertical and the two diagonals, i.e., M = 4. For the ASRC algorithm, we

select the distance-based Euclidean classifier for its simplicity and the good results

observed; the neighborhood sets required for the classifier are defined within the same

3× 3 spatial mask used in the SRC algorithm. This choice of spatial mask, classifier

and neighborhood sets is also considered for the complexity analysis in Section ??.

The objective of this section is to show that the ASRC algorithm perfoms as
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well as the SRC, MCG and HySPADE algorithms for scenes with normal complex-

ity, and in cases when the scene contains isoluminant edges, the ASRC algorithm

outperforms all the reference algorithms. In our study, we employ raw imagery from

the AHI sensor and the DWELL sensor (more details to follow). In order to cre-

ate a more challenging scenario for the algorithms, we also normalize the data by

their broadband intensity [45]. More precisely, following the notation introduced in

Section 5.2.1, the intensity of the kth band at spatial location (i, j), uk(i, j), is nor-

malized by the broadband intensity
∑K

k=1 uk(i, j) such that the normalized intensity

is defined as,

uk(i, j) =
uk(i, j)
K∑

k=1

uk(i, j)

. (5.4)

The normalized hyperpixels, uk(i, j) = [u1(i, j) · · ·uK(i, j)], will minimize the role

of broadband emissivity in the discrimination process and emphasizes the spectral

contrast.

For the AHI dataset, we only perform a qualitative comparison of the algorithms

since the ground-truth information is not available for this dataset. On the other

hand, for the data from the DWELL sensor we perform both qualitative and quan-

titative assessment of the proposed algorithms and the benchmark algorithms as the

ground-truth information is available.

Results using AHI data

The AHI sensor consists of a long-wave IR (7µm-11.5µm) pushbroom HS imager and

a visible high-resolution CCD linescan camera. The HS imager has a focal-plane array

(FPA) of 256×256 elements with spectral resolution of 0.1µm [81]. For this study,

we utilize AHI data that contains three different classes: building (B), ground (G)

and road (R). We utilize the 200 low-noise bands out of the 256 available bands. The

130



Chapter 5. Generalization of the method to include spatial features of the lesion

calculated edge signatures (band indices and the corresponding responding ratios)

for each pair of materials are summarized in Table 5.1.

Figure ?? shows a comparison among the edge maps obtained by the Canny, the

HySPADE, the MCG, the SRC and the ASRC algorithms for the raw sensor data

(first and second columns) and for the normalized data (third and fourth columns).

The Canny algorithm is applied to the same depicted image, which corresponds to the

image plane at band 14. Recall that the MCG and the SRC algorithms detect edges

characterized by both intensity and spectral changes. The HySPADE and ASRC

algorithms, on the other hand, detect edges that exhibit a change in the spectral

content only.

From the results presented in Fig. 5.4 we observe that the Canny edge detector

performs very well when applied to the AHI raw image for spectral band 14 (row

I, column b). However, when the algorithm is applied to the intensity-normalized

image, the performance of the Canny algorithm significantly degrades (row I, column

d). This degradation is a result of the fact that the Canny algorithm detects intensity

changes only, and it is expected to perform optimally for high intensity contrast

images such as the image in row I, column a.

The MCG and the SRC algorithms produce virtually the same edge maps when

applied to raw sensor data (second row, columns a and b), with a clear computational

Table 5.1: The edge signatures between classes B, G and R obtained for the AHI
data

Signatures Triplets (p1, q1, ρ1)
Raw data Normalized data

EBG (17, 16, 0.6941) (3, 4, 0.8609)
ERG (47, 46, 0.7949) (3, 4, 0.8949)
EBR (17, 16, 0.8706) (16, 17, 0.9588)
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(a) (b) (c) (d)

I
I
I

I
I
I

Figure 5.4: Comparison between the
ASRC, the SRC, the Canny, the MCG
and the HySPADE edge detectors for the
raw sensor data (first two columns) and
the normalized sensor data (third and
forth column) for the AHI imagery. First
row, from left to right: raw AHI data
(band 14); Canny edge map for raw AHI
data at band 14; normalized AHI data at
band 14; Canny edge map for AHI nor-
malized data at band 14; Second row from
left to right: MCG and SRC edge maps
for AHI raw dataset; MCG and SRC edge
maps for AHI normalized dataset; Third
row from left to right: HySPADE and
ASRC edge maps for AHI raw dataset;
HySPADE and ASRC edge maps for AHI
normalized dataset.

advantage seen in the SRC algorithm by requiring only two spectral bands, whereas

the MCG algorithm requires all the 200 available bands. When normalized data

is used (second row, c and d columns), few edges in some areas are missed either

by the SRC or the MCG algorithms. Nonetheless, the edge maps between the two

algorithms are again comparable. Moreover, the results for the normalized case are

very similar to those for the raw data case. These results show the advantage of the

methods that utilize both intensity and spectral information over purely gray-scale

algorithms such as Canny.
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The ASRC algorithm (row III, column b) performs significantly better compared

to the HySPADE algorithm (row III, column a) when applied to the AHI raw data.

The edge map obtained by HySPADE exhibits noise and some of the edges that

were detected by SRC, MCG and ASRC are missed by HySPADE. The advantage of

ASRC over HySPADE continues to be pronounced when both algorithms are applied

to the normalized data (row III, columns d and c). The edge maps obtained by the

ASRC algorithm applied to raw and normalized data (row III, columns b and d) are

virtually identical. This is due to the fact that the ASRC algorithm detects edges

based on changes of the spectral content only. As for HySPADE, the application of

the algorithm to the normalized AHI data results in a slight degradation of the edge

detection but overall reduction of the noise in the edge map compared to application

to the raw AHI data (row III, column a); however, as in the case of ASRC, the

edge maps are comparable. It is important to note that the edge maps obtained

by the MCG, the SRC and the ASRC algorithms are very similar for both raw and

normalized AHI data cases.

The ASRC algorithm offer a performance advantage over the other algorithms

for images that contain isoluminant edges as seen next for the DWELL imagery.

Results using DWELL data

The DWELL sensor used in these experiments was designed and fabricated at the

Center for High Technology Materials at the University of New Mexico [44, 45]. The

DWELL photodetector offers a unique property of spectral tunability that is con-

tinuously controllable through the applied bias voltage. This feature of the DWELL

is a result of the quantum-confined Stark effect [82]. In essence, a single DWELL

photodetector can be thought of as a continuously tunable MS spectral detector,

albeit with overlapping spectral bands [45].
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Datasets Sobel algorithm Canny algorithm

Figure 5.5: Two datasets used in the current study: the first dataset is comprised
of B, G and L classes (top row) and the second dataset is comprised of B, G, L
and P classes (bottom row). First column: images acquired with the DWELL FPA
(with enhanced contrast to show details) operating at an applied bias of 1.0V . The
isoluminant edges (not visible) are marked by the tips of the black arrows. Second
column: edge map obtained by the Sobel gray-scale edge detector; third column:
edge map obtained by the Canny gray-scale edge detector.

In these experiments we utilize a 320× 256 DWELL FPA to image two different

arrangements of rocks, as shown in Fig. 5.5 (first column). The first arrangement

(top-left) is comprised of granite (G) and limestone (L) rocks (approximately 1–2

inch in diameter). The surrounding background (B) in this image corresponds to the

opening of a blackbody source. The second arrangement (bottom-left) is comprised

of the rocks phyllite (P), granite (G) and limestone (L), surrounded by the same

background (B) as that in the first arrangement. Both examples contain an invisible

isoluminant edge between the granite and the limestone rocks that exists on the

tip of the black arrows. The edge maps shown in Fig. 5.5 were obtained by using

the Sobel (second column) and the Canny (third column) edge detectors applied to

raw DWELL-sensor data when the FPA is operated at 1.0V . The corresponding

spectral response of the sensor at the applied bias of 1.0V is shown in Fig. 5.6.
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Figure 5.6: Spectral response of the
DWELL photodetector at an applied bias
of 1.0 V

Note that the Sobel edge detector has entirely missed the edge between granite and

limestone rocks in both examples. Moreover, it has also failed to detect strong edges

between both the granite-phyllite pair and the limestone-phyllite pair. However, the

more sophisticated Canny edge detector picks up these strong edges, and it partially

detects the isoluminant edge in the first examples. Nevertheless, it does not detect

the isoluminant edge in the second example.

By operating the DWELL sensor at ten different bias voltages, we generated

a multispectral cube to test the proposed algorithms. The obtained edge signa-

ture triplets for all the possible combinations of material pairs for both datasets are

summarized in Table 5.2. In what follows, we will term the DWELL imagery that

contains background, granite and limestone classes, as shown in Fig. 5.5 (top-left),

the first DWELL dataset, and we term the imagery that contains background, phyl-

lite, granite and limestone, as shown in Fig. 5.5 (bottom-left), the second DWELL

dataset.

The results for the first DWELL dataset for raw sensor data are shown in Fig. 5.7.

The first row of edge maps shows the results of the application of the Canny edge

detector to four randomly selected bands. It is important to note that some bands

present a high number of false edges, whereas for other bands the isoluminant edges

are detected. As such, the Canny algorithm can generate good edge maps, depending
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Table 5.2: Edge signatures among the B, P, G, and L classes obtained for the DWELL
datasets

Triplets (p1, q1, ρ1)
Signature Raw data Normalized data
EGB (6, 7, 0.2747) (1, 10, 0.1434)
ELB (6, 7, 0.2636) (1, 10, 0.1395)
ELG (5, 6, 0.7577) (9, 10, 0.9109)
EPL (4, 5, 0.5703) (9, 10, 0.8444)
EPB (6, 7, 0.3168) (1, 10, 0.2283)
EPG (4, 5, 0.6006) (9, 10, 0.8590)

on the bands used, but there is no standard way to select those bands that guarantee

a good performance.

The second and third rows in Fig. 5.7 show the results for the MCG and HyS-

PADE algorithms, respectively, at different threshold values in order to unveil the

isoluminant edge between the granite and limestone rocks. The MCG algorithm (sec-

ond row) picks up the weak edge only after its tolerance is increased to a degree that

results in the detection of a significant number of false edges (second row, fourth col-

umn). On the other hand, HySPADE offers a less-noisy edge map compared to the

MCG algorithm; nonetheless, the background-granite and granite-limestone edges

are not well defined, as shown in the third row, fourth column. Moreover, the high

computational cost of the HySPADE algorithm makes it hard for the user to fine

tune its tolerances, which is a clear disadvantage of the HySPADE algorithm. (More

details regarding computational costs are given in Section ??.) We also observe that

at the cost of a slight increase in the number of false edges, the SRC algorithm

can clearly define the background-granite edge with respect to the granite-limestone

edge (fourth row, fourth column). Finally, the results of the ASRC algorithm (fifth

row, fourth column) are better than all the previous algorithms in terms of clearly

defining both the strong and weak edges. The ASRC algorithm also discards all of

the false edges in the the background.
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Figure 5.7: Comparison between the Canny algorithm applied to individual bands
(first row), MCG algorithm (second row), HySPADE algorithm (third row), SRC
algorithm (fourth row) and ASRC algorithm (fifth row) for the dataset containing
granite and limestone rocks (first dataset). The Canny algorithm was applied to the
images at bands 1, 6, 8 and 9, respectively. The MCG and HySPADE results are
presented for a sequence of increasingly permissive tolerances in order to unveil the
isoluminant edge. Last two rows show the SRC and ASRC edge maps: first column,
the edges EGB; second column, the edges ELB; third column, the edges ELG; fourth
column, the combined edge maps.
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Table 5.3: Performance comparison table for the results of five algorithms (Canny,
MCG, HySPADE, SRC and ASRC) for the dataset containing B, G and L classes
(raw data)

Algorithm Detection probability False-alarm probability
Canny (band 9) 0.4533 0.0082
MCG 0.9600 0.6112
HySPADE 0.7867 0.0565
SRC 0.9467 0.0862
ASRC 0.9733 0.0244

By utilizing the available ground-truth information for the DWELL datasets, we

derived reference edge maps for the scenes under study. These edge maps are utilized

to compute the empirical detection and false-alarm probabilities, PD and PF , respec-

tively, for the five algorithms (Canny applied on different bands, MCG, HySPADE,

SRC and ASRC). The detection probability (also known as the sensitivity of the al-

gorithm) corresponds to the probability that an actual edge (provided by the ground

truth) is detected by the algorithm under evaluation. The false-alarm probability

(also known as the complement of the specificity of the algorithm) is the probability

that the algorithm detects a non-existing edge. For each algorithm, we have tuned

the respective parameters in order to unveil the isoluminant edges (the assessment

was made by visual inspection). We have conditioned the algorithms’ parameters to

detect isoluminant edges because they present one of the most challenging problems

in multicolor edge detection. The metrics PD and PF were computed by comparing

the ground-truth edge-map with the algorithm outcome on a pixel-by-pixel basis.

From the results presented in Table 5.3 we see that the best performance achieved

by the Canny algorithm is when it is applied to band 9 (PD = 0.4533 and PF =

0.0082). It is important to note that the Canny algorithm, applied to this band,

is capable to partially detect the isoluminant edge (see Fig. 5.7, top-right). How-

ever, without previous knowledge of the scene and the results of the application of

the Canny algorithm to every band, it would be difficult to guess which band gives
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the best results. The MCG algorithm, on the other hand, cannot detect the iso-

luminant edges without producing a high number of false edges. Indeed, when the

isoluminant edge is detected (second row, fourth column) the MCG performance is

given by a high detection (PD = 0.9600) but also with a high false-alarm probability

(PF = 0.6112). At the cost of a tremendous increase of computation complexity (see

Section ??), the HySPADE algorithm outperforms the Canny algorithm in terms

of sensitivity (PD = 0.7867) and the MCG algorithm in terms of low false alarm

probability (PF = 0.0565). In contrast, the SRC algorithm outperforms the pre-

vious algorithms in terms of both simplicity and sensitivity with PD = 0.9467, at

the cost of a slight increase in the false-alarm probability (PF = 0.0862) in compar-

ison to HySPADE. The ASRC algorithm outperforms all the other four algorithm

in terms of highest detection and lowest false-alarm probability, PD = 0.9733 and

PF = 0.0244, respectively.

The edge-detection results for the second DWELL dataset (comprinsing phyl-

lite, granite and limestone) are presented in Fig. 5.8 for intensity-normalized data.

Table 5.4 summarizes the detection and false-alarm probabilities achieved by each

one of the five algorithms for this dataset. The second dataset is more challenging

than the first dataset because the two classes with the isoluminant edge (i.e., granite

and limestone rocks) are now positioned against a phyllite backdrop that exhibits

less contrast than the blackbody. Moreover, the data is intensity normalized. As

before, the Canny edge detector achieves good performance when applied to band 9

(PD = 0.7854 and PF = 0.0301). It is very interesting to note that (for this band)

the Canny algorithm is capable detecting the isoluminant edge between the granite

and limestone rocks almost fully. This is because the normalization process smooths

some intensity peaks and improves the contrast between granite and limestone (for

this particular band) as a secondary effect. This result proves that the first category

of algorithms (those that do not use spectral information) can achieve good detection

as long as the best band is identified through pre-processing of the data, which can
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Table 5.4: Performance comparison table for the results of five algorithms (Canny,
MCG, HySPADE, SRC and ASRC) for the dataset containing B, P, G and L classes
(normalized data)

Algorithm Detection probability False-alarm probability
Canny (band 9) 0.7854 0.0301
MCG 0.8802 0.5046
HySPADE 0.7445 0.0833
SRC 0.8593 0.0873
ASRC 0.8919 0.0652

be a very difficult requirement.

As for the MCG-generated edge maps, Fig. 5.8 (second row), the weak edge is

detected only when the false-alarm probability reaches unacceptable levels. The

HySPADE algorithm performs worst than the MCG algorithm (PD = 0.7445 and

PF = 0.0833) and it is not capable of detecting the isoluminant edge. In contrast,

the SRC algorithm recovers the strong edges as well as the weak edge between the

granite and limestone rocks. Indeed, Fig. 5.8 (fourth row) shows a high-resolution

weak edge captured by the SRC algorithm. The achieved detection and false-alarm

probabilities of the SRC algorithm (PD = 0.8593 and PF = 0.0873) corroborate this

observation. It is important to note that event though the SRC algorithm is able to

detect isoluminant edges for challenging scenarios, it still suffers from detecting false

edges for each pair of materials, as observed in both examples. However, the ASRC

algorithm reduces the detection of false edges substantially (PF = 0.0652 for ASRC

compared to PF = 0.0873 for SRC), owing to the fusion of material classification in

the edge-detection process. The ASRC is also able to improve the detection of edges,

as noted by the improved detection probability (PD = 0.8919 for ASRC compared

to PD = 0.8593 for SRC).
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Figure 5.8: Comparison among the Canny algorithm applied to individual bands
(first row), MCG algorithm (second row), HySPADE algorithm (third row), SRC
(fourth row) and ASRC (fifth row) for the dataset containing Phyllite, Granite and
Limestone rocks (second dataset). The MCG and HySPADE results are presented
for a sequence of increasingly permissive tolerances in order to unveil the isoluminant
edge. Last two rows show the SRC and ASRC edge maps: first column, the edges
EPG; second column, the edges EPL; third column, the edges ELG; fourth column,
the combined edge maps.

From these results, we can conclude that the SRC algorithm outperforms the
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MCG and HySPADE algorithms for the task of detecting edges using spectral data

with minimal intensity contrast. Moreover, it performs as good as the Canny edge

detector without the difficult requirement for pre-selecting the optimal band. More-

over, at the cost of a slight increase in computational cost, the ASRC algorithm

outperforms all other four algorithms presented in this paper.

Next, we compare the multicolor algorithms (SRC, ASRC, MCG and HySPADE)

in terms of their computational costs.

5.2.5 Complexity analysis

In this section, we estimate the complexity of the feature extraction stage in the

SRC and ASRC algorithms and compare it to those for the MCG and the HySPADE

algorithms. Since the edge signature identification is made offline and before the

edge-identification stage, we do not include its computational cost. For simplicity,

in the cost estimates we will regard the cost of all operations (e.g., multiplication,

addition, etc.) as equal.

The SRC operations per pixel include the 2MR ratios required to form the matrix

KAB(u)(i, j) in (B.4), plus the 4MR computations required to form ∆
(
KAB(u)

)
(i, j)

in (B.5), plus the MR operations required to define the edges in (B.7). The total

number of operations for the SRC algorithm is 7MR operations per pixel.

The ASRC computations include those from the SRC algorithm (7MR opera-

tions per pixel) plus those required to compute and utilize the parameters γi,jm,r. To

calculate these parameters, we first require the classification and label comparison of

the pixels within the mask, a task that will cost 2M+6R operations per pixel. Next,

the computation of the γi,jm,r parameter requires 11MR operations per pixel (two

XOR operations and one OR operation for each entry in (B.5)). The total number

of operations for the ASRC algorithm is therefore 2M + 6R+ 18MR operations per
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Table 5.5: Comparison table for the total number of operations required for the SRC,
ASRC, MCG and HySPADE algorithms

Total number of operations per pixel
Examples (M = 4 and R = 1)
AHI data DWELL data

Algorithm General expression (K = 200) (K = 10)
SRC 7MR 28 28

ASRC 2M + 6R + 18MR 86 86
MCG 10K + 9 2,009 109

HySPADE IJ(3IJ + 6K + 3) > 109 > 1010

pixel.

Meanwhile, the MCG algorithm requires 10K−3 operations to compute the first

fundamental form for each hyper-pixel, nine operations to compute the corresponding

eigenvalues, and three operations to compute the monitor function and apply the

threshold. The total number of operations for the MCG algorithm is therefore 10K+9

operations per pixel. (Please refer to Appendix ?? for further details.)

Next, for each hyper-pixel, the HySPADE algorithm requires the computation

of IJ spectral angles (each spectral angle costs 6K + 1 operations), plus the 2IJ +

1 operations per pixel of the SA-cube to compute the one-dimensional derivative

approximation, plus the IJ + 1 operations required to account for the statistical

accumulation of each pixel within the SA-cube. The total number of operations for

the HySPADE algorithm is therefore IJ(3IJ+6K+3) operations per pixel. (Please

refer to Appendix ?? for further details.)

In Table 5.5 we present a summary of the estimated values for the four algo-

rithms considering the same AHI and DWELL experiments we previously discussed

in Section 5.2.4. The proposed algorithms do not change their respective computa-

tional costs for the two examples because the edge signature identification removes

the dependency of the algorithms on the actual number of bands of the data. From
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the presented table, we can observe that the SRC algorithm gives a 71 fold gain in

computational efficiency over the MCG algorithm for the two class edge detection

problem over the AHI data, whereas the ASRC algorithm gives a 23 fold gain.

5.2.6 Discussion

We have introduced the ASRC algorithm, which is a specialized version of the SRC

algorithm, aimed at detecting edges that are due to a change in the material only.

The ASRC aims to reduce the detection of false edges due to unwanted changes

in the intensity. As an heritage from the SRC algorithm, the ASRC algorithm

utilize spectral library information to construct a sparse, non-separable and 3D edge

operator while exploiting the concept of spectral ratio contrast.

Whereas the SRC algorithm performs as well as the MCG or HySPADE algo-

rithms for moderately challenging edges the ASRC algorithm, which also involves

classification-based step, is capable of minimizing the false-alarm edges, outperform-

ing the SRC, MCG and HySPADE algorithms.

Let’s return to the main topic of this dissertation after that brief digression. In

the next section, we utilize the ASRC algorithm to automatically select the lesion

boundaries by exploiting the RGB color difference between the pigmented and the

surrounding tissue.

5.3 Automatic lesion boundary selection

Since the ASRC algorithm exploits the color contrast between two materials, it is an

excellent candidate to automatically detect the edge of the lesions under study from

the visible-color image. To this end, we only define the edges based on the visible
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color image. Let us enumerate the steps and slight modifications that the ASRC

algorithm requires to enable the automatic boundary identification of the pigmented

lesion.

1. The ASRC involves a learning stage to identify the most relevant pair of bands;

nonetheless, for a visible color image there are only 3 bands that are normally

labeled as RGB (Red, Green and Blue) so we decided to utilize all three RGB

bands.

2. As a consequence, the edge signatures will have nine triplets. Namely, if we

denote characteristic pixels of the pigmented lesion and the surrounding skin

by a = [aR aG aB] and b = [bR bG bB], respectively, then the edge signature

becomes εAB = {(aR, bR, ρ1 = aR/bR), . . . , (aB, bB, ρ9 = aB/bB)} as described

in (B.2).

3. A preliminary mask is required in order to extract, on a patient-by-patient ba-

sis, the hyper-pixels that characterize the pigmented lesion and the surrounding

skin, namely a = [aR aG aB] and b = [bR bG bB]. We refer to the extraction of

these characteristic pixels as the training of the ASRC.

4. The characteristic ratios are determined by the nine possible ratios that can

be defined by these characteristic pixels, as explained in Step 2.

In preliminary results while utilizing the Euclidean-based classifier (as in the

spectral examples presented in the previous section), the boundary of the mole was

not correctly selected. Therefore, it was decided to utilize a more sophisticated

classifier termed the support-vector machine (SVM) classifier. The SVM classifier is

a well-known binary classifier that by using data points that are close to the boundary

between the two classes (these data points are termed the support vectors) achieves

great performance by searching for the optimal separating plane between these two

classes. See, for example, [83] for an introductory coverage of the SVM classifier.
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Figure 5.9: Examples of the automatic boundary selection performed by means of
the ASRC algorithm with an SVM classifier.

We have trained the ASRC algorithm (including the spectral ratios and the SVM

classifier) with the boundaries that were manually defined when computing the mean

TRCs in Chapter 2. The ASRC computed the edge by determining those pixels

within the color-image that define the greatest contrast in color. Some example

images of the automatic boundary selected by the ASRC algorithm are shown in

Fig. 5.9.

Next, we utilize the automated selection to define spatial features of the pig-

mented lesions that mimic those features utilized by the specialists when screening

for possible malignant lesions using the ABCDE rule.

5.4 Definition of lesion spatial features

The Skin Cancer Foundation proposes four spatial features that should be considered

by the specialists when diagnosing suspicious lesions and by the general public for

self-screening [84]. These spatial features are:

Asymmetry of the pigmented lesion is in general accentuated for malignant tissue.

Border of the lesions is, in general, more irregular in malignant lesions than in

benign lesions.
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Color change can be present in malignant lesions. In general, benign lesions present

an uniform color.

Diameter of the lesions is, in general, bigger for malignant lesions that the diameter

of benign lesions.

The author believes that the random nature in the cancer cell growth leads to an

irregular pigmentation of the malignant cells, which, in turn, leads to lesions that

are asymmetric, with irregular border, with different coloration and bigger than their

benign counterparts.

We mimic these spatial features for each patient by first defining an ellipse with

the minimum area that contains the automated identified boundary. Once this ellipse

is constructed, we compute its centroid, minor and major axis length and its area

in pixels. With this information from the containing ellipse at hand, we define the

spatial features as follows. The asymmetry is accounted by the ellipse eccentricity,

e, which is defined as

e =

√
1− b

a
, (5.5)

where a and b are the length of the major- and minor-axis lengths, respectively.

The eccentricity is zero for perfect circles and close to one if the ellipse is totally

asymmetrical. We measure the border irregularity of the lesion by comparing the

perimeter of the automatically-detected boundary and the perimeter of the ellipse.

(If the automatically-generated boundary of a lesion is irregular then its perimeter

length will be high when compared to the perimeter of the containing ellipse.)

The color change is accounted by means of the spectral angle (SA) between pixels.

The SA permits to determine the color similarity between two pixels by calculating

the angle between them (assuming them as vectors in a space with dimensionality

equal to the number of bands) [85]. For visible-color images, the cosine of the spectral
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angle between two pixels, say a = [aR aG aB]T and b = [bR bG bB]T , is defined as

cosαa,b =
aTb

‖a‖‖b‖ . (5.6)

If the color (spectrum) of these two pixels is similar then their spectral angle will

be close to zero. By using the centroid of the containing ellipse as a reference point,

we account the color change of the lesion by computing the spectral angle between

each pixel and the pixel at the centroid. If the color of the lesion is uniform then the

minimum and maximum values of SA will be similar. As the color changes, so does

SA and the gap between the minimum and maximum values of SA begins to widen.

Hence, we propose as a metric of the variability of the color of a lesion the difference

maxi αi−mini αi, where αi is the SA between the ith pixel inside the lesion and the

centroid pixel.

The diameter of the lesions is simply measured by the length of the major axis

of the containing ellipse. Since each pixels sees around 300 microns of the tissue, the

diameter in pixels is converted to the approximated physical diameter.

All the qualifications of the spatial features were defined in a way that their value

increases as the signs of malignancy appear (based on the recommendations of the

Skin Cancer Foundation).

5.5 Fusion of spatial features in the skin-cancer

detection method

Here, we develop a method that merges the spatial features described above with the

temporal features extracted from the TRCs. To this end, we assume that the spatial

and temporal features are separable, i.e., they can be independently extracted and

later merges without accounting their possible correlation.
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To this end, we assume that the spatial features are also random variables. We

denote the spatial features under the jth hypothesis by Θs,j =
[
θ
(1)
s,j θ

(2)
s,j θ

(3)
s,j θ

(4)
s,j

]T
,

where θ
(1)
s,j is the measure of lesion asymmetry, θ

(2)
s,j is the border irregularity measure,

and so on. We use the subscript “s” to emphasize their spatial nature and differ-

entiate them from the model random paramters defined for the stochastic model in

Section 2.4.

In both the skin-cancer detection algorithm developed in Chapter 2 and its gen-

eralization developed in Chapter 4 all the temporal information was compactly con-

tained in the KL coefficients. As a consequence, regardless of the algorithm selected

to extract the temporal components, they will be represented by their KL coeffi-

cients, Sj,k ∼ N (0, λj,k) for j = 0, 1 and k = 1, 2, . . . . In this generalization we aim

to fuse the spatial and temporal features to define a consolidated detection problem.

Since there is no a priori knowledge of the spatial random variables at this point, we

assume they follow a Gaussian distribution with mean µs,j = E [Θs,j] and covariance

matrix Σs,j = cov (Θs,j). Under the assumption that there is no correlation between

the spatial and the temporal components, we propose to state the spatio-temporal

detection problem by the discrete binary hypothesis-testing problem:

H0 : Y ∼ N (µ0,Σ0) , (5.7a)

H0 : Y ∼ N (µ1,Σ1) , (5.7b)

where the mean under the jth hypothesis is

µj =




0
...

0

µ
(1)
s,j

...

µ
(4)
s,j




, (5.8)

149



Chapter 5. Generalization of the method to include spatial features of the lesion

Table 5.6: Correlation coefficients between the spatial features extracted from pa-
tients with benign condition.

θ
(1)
s,j θ

(2)
s,j θ

(3)
s,j θ

(4)
s,j

θ
(1)
s,j 1.00 -0.16 0.03 0.08

θ
(2)
s,j 1.00 0.02 0.80

θ
(3)
s,j 1.00 0.06

θ
(4)
s,j 1.00

and the corresponding covariance matrix is block-diagonal owing the assumption of

that the spatial and temporal components are uncorrelated. For the jth hypothesis

(j = 0, 1) the covariance matrix is

Σj =




λj,1

λj,2
. . .

λj,K

Σs,j




, (5.9)

where the upper-left block is the covariance matrix of the temporal component and

the lower-right block is the covariance matrix of the spatial component. Note that

at this stage we are assuming directly that only the K most important eigenvalues

of each hypothesis are utilized.

The detection problem presented in (5.7) has a well-known likelihood ratio [86];

nevertheless, in our approach the observation vector, Y , is obtained from both eigen-

function sets. Therefore one must be careful before applying off-the-shelf approaches.

By exploring the correlation coefficients between the spatial features, one can

note that they have modest correlation except for the border irregularity and the

diameter of the lesion (see Table 5.6). The author believes that this is an artificial

correlation due to the poor illumination and the natural curvature of the skin, which

for large lesions affects the color contrast between the pigmented and surrounding
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tissue. Moreover, when the visible images were acquired, there was no control over

the illumination, making this correlation more accentuated than what it actually is.

As a consequence, we assume that the spatial covariance is also diagonal. If it turns

out that the spatial covariance matrix is not diagonal, then we can define the modal

matrix

V =


 IK

Vs


 ,

where Vs is such that V T
s Σs,jVs = Λs, where Λs is the diagonal spatial eigenvalue

matrix for the spatial covariance matrix. After the diagonalization the test-statistics

for the spatio-temporal detection problem is

Z = logL(Y ) =
K′∑

k=1

(Y0,k − µ0,k)
2

σ2
0,k

− (Y1,k − µ1,k)
2

σ2
1,k

, (5.10)

where K ′ = K + 4 (the sum of temporal and spatial features). It is clear that, under

the stated assumptions, both expressions in the argument of the summation are χ2-

distributed random variables. In a similar way as in the single-TRC approach, the

test-statistics will be a linear combination of χ2-distributed random variables with

coefficients ak = 1
2

(
1− σ2

0,k

σ2
1,k

)
under H0, and with coefficients bk = 1

2

(
σ2
1,k

σ2
0,k
− 1
)

under

H1. Next, we utilize these expressions next to evaluate the theoretical performance

of the spatio-temporal approach.

5.6 Theoretical performance

In this section we evaluate the theoretical performance of the spatio-temporal ap-

proach. The detection problem is slightly different as compared with the detection

problem in continuous-time presented in the previous two chapters but the decision

rule is determined in the same manner.

We present a comparison between the theoretical ROC curves of the spatio-
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Figure 5.10: Theoretical performance comparison by means of the ROC curves
between the single-TRC approach (red), the dual-TRC approach (black) and the
spatio-temporal approach (blue) for different number of eigenpairs (1–6) utilized to
construct the test-statistics.

temporal (ST) approach and the previous two algorithms in Fig. 5.10 for changing

the eigenvalue-eigenfunction pairs from one up to six, and in Fig. 5.11 for seven up to

twelve eigenfunctions. For this study the spatial features where always included and

we only introduced more temporal features by incrementing the number of eigen-

pairs. The results depicted in this figures is the average ROC curve over the 200

permutations of 110 patients used in training the algorithm.

It is observed from the presented results that for small number of temporal eigen-

functions, the ST approach performs slightly better than that of the dual-TRC ap-

proach (see, Fig. 5.10 (top-left) for the case of one eigenfunction). As the number

of temporal components is increased the theoretical performance of the ST and the

dual-TRC approaches is similar. After the temporal components are sufficient to un-

dermine the contribution of the spatial features, the ST and the single-TRC approach
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Figure 5.11: Theoretical performance comparison by means of the ROC curves be-
tween the single-TRC approach (red), the dual-TRC approach (blue) and the spatio-
temporal approach (black) for different number of eigenpairs (7–12) utilized to con-
struct the test-statistics.

achieve virtually the same performance. See, for example, Fig. 5.10 (bottom-right)

for the case of six eigenpairs. As expected, for higher number of eigenpairs the ST

generalization does not present any improvement over the single-TRC approach.

In Fig. 5.12 we show the mean AUC (over 200 permutations) as a function of

the eigenvalue-eigenfunction pairs for the four training settings explained before.

We observe that for all the cases, when a single eigenpair is used, the ST approach

outperforms the other two alternatives. As we increase the number of eigenpairs,

the ST approach presents a performances that appears to be between the other two

alternatives. The performance of all three algorithms plateau at an average AUC of

0.99.

Next, we explore the mean empirical detection probability over the same 200

permutations of patients created for all three methods.
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Figure 5.12: Comparison of the spatio-temporal (ST) approach, the single TRC
and the double TRC approach by using the mean AUC for different number of used
eigenvalue-eigenfunction pairs: using 60 patients in the training (top-left), 80 patients
(top-right), 100 patients (bottom-left) and 110 patients (bottom-right).

5.7 Empirical performance

As it was observed in the theoretical performance analysis, the inclusion of spatial

features aided the algorithm when a small number of eigenfunctions were used. As

the temporal features have sufficient weight to diminish the contribution of the spatial

features, the temporal features were dominating the overall performance. Interest-

ingly, we observe the same trend for the empirical results. Let us focus our attention

in Table 5.7. For the first three eigenfunctions we note that the ST approach present
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Table 5.7: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 80 patients are used in the training and 60 in the testing stage. Here, s-TRC
and ST stand for the single-TRC and spatio-temporal approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC ST s-TRC ST
1 0.00 (± 0.00) 0.69 (± 0.10) 0.00 (± 0.00) 0.38 (± 0.12)
2 0.02 (± 0.04) 0.68 (± 0.09) 0.02 (± 0.04) 0.39 (± 0.13)
3 0.42 (± 0.14) 0.56 (± 0.11) 0.42 (± 0.14) 0.26 (± 0.10)
4 0.46 (± 0.12) 0.23 (± 0.09) 0.46 (± 0.12) 0.12 (± 0.07)
5 0.80 (± 0.11) 0.23 (± 0.10) 0.80 (± 0.11) 0.12 (± 0.06)
6 0.91 (± 0.09) 0.25 (± 0.10) 0.91 (± 0.09) 0.14 (± 0.07)
7 0.94 (± 0.11) 0.25 (± 0.09) 0.94 (± 0.11) 0.16 (± 0.07)
8 0.81 (± 0.31) 0.25 (± 0.09) 0.81 (± 0.31) 0.18 (± 0.07)
9 0.86 (± 0.24) 0.63 (± 0.33) 0.86 (± 0.24) 0.56 (± 0.36)
10 0.85 (± 0.25) 0.99 (± 0.01) 0.85 (± 0.25) 0.99 (± 0.01)
11 0.90 (± 0.19) 1.00 (± 0.00) 0.90 (± 0.19) 1.00 (± 0.00)
12 0.86 (± 0.23) 0.99 (± 0.01) 0.86 (± 0.23) 099 (± 0.01)

better empirical performance than the single-TRC approach. Unfortunately, this

increased performance is totally lost as more temporal features are introduced. The

same can be observed in Table 5.8 and Table 5.9 for the case of training the al-

gorithm with 100 and 110 patients, respectively. (Nevertheless, this performance

does not surpass the empirical performance achieved by the dual-TRC approach.)

In addition, the spatial features seem to diminish the empirical performance of the

presented algorithm, as it can be noted in Table 5.9, when for 10 eigenfunctions, the

ST approach does not reach perfection as the single and dual-TRC approaches do.

5.8 Concluding remarks

In this chapter, we have explored the inclusion of spatial features into the skin cancer

detection algorithm (termed the single-TRC approach) in order to propose and test
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Table 5.8: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 100 patients are used in the training and 40 in the testing stage. Here, s-TRC
and ST stand for the single-TRC and spatio-temporal approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC ST s-TRC ST
1 0.00 (± 0.00) 0.69 (± 0.15) 0.00 (± 0.00) 0.38 (± 0.17)
2 0.00 (± 0.00) 0.68 (± 0.15) 0.00 (± 0.00) 0.37 (± 0.16)
3 0.15 (± 0.09) 0.53 (± 0.15) 0.13 (± 0.07) 0.23 (± 0.13)
4 0.29 (± 0.12) 0.19 (± 0.11) 0.26 (± 0.10) 0.10 (± 0.09)
5 0.69 (± 0.16) 0.18 (± 0.12) 0.67 (± 0.16) 0.09 (± 0.08)
6 0.89 (± 0.09) 0.17 (± 0.12) 0.89 (± 0.09) 0.09 (± 0.09)
7 0.96 (± 0.08) 0.16 (± 0.11) 0.96 (± 0.08) 0.09 (± 0.08)
8 0.85 (± 0.25) 0.16 (± 0.10) 0.85 (± 0.25) 0.13 (± 0.09)
9 0.88 (± 0.22) 0.34 (± 0.25) 0.88 (± 0.22) 0.28 (± 0.23)
10 0.93 (± 0.14) 0.98 (± 0.03) 0.93 (± 0.14) 0.98 (± 0.04)
11 0.86 (± 0.24) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
12 0.89 (± 0.20) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

a spatio-temporal approach to undertake the detection. We introduced an extension

to the SRC algorithm that exploits color contrast in multicolor RGB images in order

to detect the edges due to color changes instead of intensity changes. This edge-

detection algorithm, termed the ASRC algorithm, is virtually insensitive to intensity

changes as observed in the presented results. We later exploited this property of

the ASRC algorithm to define an automatic boundary selector, which defines the

lesions’ boundary over the visible image by looking solely on the color difference

between the pigmented and the surrounding tissue. This automatic lesion selector

requires the user to define a training mask to learn, on a patient-by-patient basis, the

color characteristics of each region. When the training mask is defined, the lesion

selection is generated as an output.

By using the automatically selected lesion, we proposed and mathematically de-

fined four spatial features that mimic the spatial features utilized by the physicians
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Table 5.9: Mean and mean absolute error (given within the parenthesis) of the em-
pirical detection probability for different levels of prescribed false-alarm probability
when 110 patients are used in the training and 30 in the testing stage. Here, s-TRC
and ST stand for the single-TRC and spatio-temporal approaches, respectively.

Number of used False-alarm probability
eigenfunctions PF = 0.1 PF = 0.01

s-TRC ST s-TRC ST
1 0.00 (± 0.00) 0.68 (± 0.20) 0.00 (± 0.00) 0.38 (± 0.24)
2 0.00 (± 0.00) 0.66 (± 0.19) 0.00 (± 0.00) 0.42 (± 0.22)
3 0.19 (± 0.19) 0.57 (± 0.23) 0.16 (± 0.18) 0.27 (± 0.18)
4 0.29 (± 0.21) 0.14 (± 0.18) 0.26 (± 0.20) 0.08 (± 0.12)
5 0.76 (± 0.21) 0.13 (± 0.17) 0.73 (± 0.21) 0.08 (± 0.12)
6 0.89 (± 0.15) 0.12 (± 0.16) 0.89 (± 0.15) 0.08 (± 0.12)
7 0.97 (± 0.06) 0.13 (± 0.16) 0.97 (± 0.06) 0.07 (± 0.11)
8 0.84 (± 0.26) 0.14 (± 0.17) 0.84 (± 0.26) 0.09 (± 0.14)
9 0.90 (± 0.18) 0.26 (± 0.27) 0.90 (± 0.18) 0.21 (± 0.25)
10 1.00 (± 0.00) 0.94 (± 0.11) 1.00 (± 0.00) 0.92 (± 0.14)
11 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
12 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

when diagnosing a suspicious lesion. The set of four spatial features were fused

with the temporal features extracted by the previous methods to propose and test

spatio-temporal approach for skin cancer detection. Unfortunately, the ST-approach

only helped with some modest levels of performance improvement when only a few

eigenvalue-eigenfunction pairs we used. As more eigenpairs were included, the ST

approach performed equally well (theoretical performance) or worse (empirical per-

formance) than the temporal approach proposed originally.

There are several reasons that explain the degraded performance when spatial

features are included with eigenpairs. The most important reason is that when

the physicians utilize the ABCDE test, they do not only review those four spatial

features, but also take into account the clinical history of the patients, their family

history and other possible moles that may serve as local reference to see how abnormal

a suspicious mole can be.
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On one hand, we don’t see any advantage of including spatial information into

the skin-cancer detection problem. As a consequence, the major contribution of

this chapter to the skin cancer detection problem is the automatic lesion boundary

identification. On the other hand, both the original skin-cancer detection method,

developed in Chapter 2, and its generalization developed in Chapter 4 that includes

a self-referenced TRC, had already achieved, to the best of our knowledge, a perfor-

mance superior to any other alternative proposed in the literature.
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Summary and future work

6.1 Summary

In this dissertation we have proposed and tested a skin-cancer detection algorithm

that uses dynamic thermal imaging and achieves promising results. We have devel-

oped a physics-based stochastic mathematical model that describe the time evolution

of the thermal recovery curves (TRCs) and used the pairwise correlation of those pa-

rameters to define an analytical structure of the autocorrelation function (ACF) that

describes the TRCs.

With this at hand, we have solved the continuous-time detection problem that

aims to classify, in an optimal way, the average TRC of a subject to be either ma-

lignant or benign. We have proposed and tested three different alternatives to solve

such a problem. The first alternative uses the analytical ACF under each hypothesis

and it is solved by means of Grenander’s approach. This alternative was studied in

detail and it presents one of the major contributions of this dissertation.

The second proposed alternative to solve the detection problem is by introducing
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a second TRC under each hypothesis as a reference of the surrounding tissue. This

is presented as a generalization of the previous approach. The self-referencing TRC

obtained from the tissue that surrounds the mole tissue boosted the performance of

the skin-cancer detector when compared to the performance of the first alternative.

The third and last alternative studied here introduces spatial features to the

detection problem and it is solved assuming separability between the spatial and

temporal components. We have introduced the adaptive version of the SRC algo-

rithm (termed the ASRC algorithm) that fuses classification and edge-detection and

used it to automatically detect the lesion boundaries by exploiting the color contrast

between the mole tissue and the surrounding skin. After defining the boundary by

means of the ASRC algorithm, we define and extract spatial properties of the lesions

in a similar fashion as the dermatologist do it when applying the ABCDE test. More-

over, we propose and test a methodology to fuse these spatial features (Asymmetry,

Border irregularity, Color change and Diameter) with the TRC (time Evolution) in

a single hypothesis-testing problem. While the performance of this alternative was

as good as expected the proposed automatic boundary selection constitute another

major contribution of this dissertation.

In summary, while providing a rigorous mathematical foundation for the via-

bility of the dynamic thermal recovery approach for skin-cancer detection, the re-

search completed in this dissertation also provides the first reliable, accurate and

non-invasive diagnosis method for preliminary skin-cancer detection. This disserta-

tion, therefore, paves the way for future clinical studies to produce new skin-cancer

diagnosis practices that minimize the need for unnecessary biopsies without sacrific-

ing reliability.

160



Chapter 6. Summary and future work

6.2 Future work

Some possible future research ideas that continue or improve what was presented in

this dissertation are briefly described below.

The whitening approach was described as a possible alternative to solve the un-

equal covariance detection problem. As we discussed it may be hard if not

impossible to implement, but it is an approach should be followed with detail

before discarding it completely.

Application of machine learning algorithms to the KL coefficients sounds a rea-

sonable idea since they statistically characterize the TRCs under two hypoth-

esis. Binary classifiers such as SVM classifiers may lead to good results in

discriminating between benign and malignant conditions.

Estimate the pdf of the KL coefficients numerically should improve the per-

formance of the algorithm once enough patient data is acquired. The direct

estimation of their distribution will avoid the introduced errors due to Gaussian

assumptions.

The spatio-temporal approach may be explored in more detail considering sce-

narios like that the spatial and temporal feautures are not separable. By defin-

ing joint features by means of a multiple-signal setting with spatial correlation

may lead to improved results in the detector.
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Appendix A

Probability distribution function

of a linear combination of

Chi-square–distributed random

variables

Here we present the mathematical formulation of the cumulative distribution function

(CDF) for a linear combination of Chi-square distributed random variables. We

follow the notation presented in the seminal papers presented by Robbins [87] and

Pachares [76].

A.1 Mathematical formulation

Let Sr = 1
2

(
a1χ

2
m1

+ a2χ
2
m2

+ · · · arχ2
mr

)
, where the χ2

mi
, for i = 1, . . . , r are inde-

pendent random variables having a central chi-square distribution with mi degrees

of freedom. Let S∗r = 1
2

(
a−11 χ2

m1
+ a−12 χ2

m2
+ · · · a−1r χ2

mr

)
, M =

∑r
i=1mi, and ai > 0.
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Then, the CDF of Sr, Gr(τ), is defined as

Gr(τ) = Pr(Sr ≤ τ) =

√
τM

am1
1 · · · amr

r

∞∑

k=0

(−τ)k

k!

E [S∗r ]k
Γ(M/2 + k + 1)

, (A.1)

where E [S∗r ]k represents the kth moment of S∗r and Γ(·) is the Gamma function. The

series in (A.1) is proved to converge absolutely by Pachares [76].

A.2 Efficient software implementation

In order to compute E [S∗r ]k, we utilize its cumulants. The jth cumulant is given by

κj = 1
2
(j − 1)!

∑r
i=1mia

−j
i [76]. The relationship between the kth moment, E [S∗r ]k,

and the jth cumulant, κj, is given by [88]

E [S∗r ]k =
k−1∑

j=0

(
k − 1

j

)
E [S∗r ]j κk−j

=
k−1∑

j=0

(k − 1)!

j!(k − 1− j)!E [S∗r ]j

(
1

2
(k − j − 1)!

r∑

i=1

mia
−(k−j)
i

)

=
1

2

k−1∑

j=0

(k − 1)!

j!
E [S∗r ]j

(
r∑

i=1

mia
−(k−j)
i

)
, (A.2)

where by convention E [S∗r ]0 = 1. Let us define m = [m1 m2 · · · mr]
T and a =

[a1 a2 · · · ar]T , and denote by a−j the vector a−j = [a−j1 a−j2 · · · a−jr ]T then the CDF

given in (A.1) can be computed as

Gr(τ) =

√
τM

am1
1 · · · amr

r

∞∑

k=0

(−τ)k

2kΓ(M/2 + k + 1)

[
k−1∑

j=0

E [S∗r ]j
j!

mTa−(k−j)

]
.

The probability density function (PDF) of the distribution is obtained simply by

computing the first derivative of (A.1) with respect to the parameter τ .
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A.3 Monte Carlo-based validation

Two simple experiments were created to validate the coded CDF and PDF Matlab

functions.

In the first experiment, a serie of 104 realizations of central chi-squared random

variables was generated in Matlab. Each realization was then multiplied by a con-

stant (4 in this example) to generate realization of the random variable Z = 2χ2.

Using all these realizations of the random variable Z, we obtained the estimated

PDF by the normalized histogram (blue columns in Fig. A.1(a)). We then utilized

the model of the PDF to compute the theoretical distribution. The result is shown

by the red line in Fig. A.1(a).

In the second experiment, we wanted to create the random variable Z = 3χ2
1 +

χ2
2 + 2χ2

3 + 4χ2
4, where χ2

i , for i = 1, . . . , 4 are independent chi-square distributed

random variables. The estimated PDF (obtained again by the normalization of the

histogram over the 104 realizations) and the modeled PDF are shown in Fig. A.1(b)

by the blue columns and the red line, respectively.
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(a) (b)

Figure A.1: Experimental validation of the CDF and PDF implementation for a
linear combination of Chi-squared distributes random variables. (a) Estimated and
modeled PDFs for the random variable Z = 2χ2, and (b) estimated and modeled
PDFs for the random variable Z = 3χ2

1 + χ2
2 + 2χ2

3 + 4χ2
4 where χ2

i , for i = 1, . . . , 4
are independent chi-square distributed random variables
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Appendix B

The spectral-ratio contrast

algorithm

B.1 Introduction

The goal of any edge detector is to define an edge map,

F : IRI×J×K 7→ {0, 1}I×J ,

that assigns the value 1 to the pixel location (i, j) if u(i, j) belongs to an edge, while

assigning the value 0 otherwise.

For two types of materials A and B, the SRC algorithm builds the edge map

FAB in three stages: (i) model-based edge signature identification, (ii) sparse spatio-

spectral mask development, and (iii) edge discrimination.

For simplicity, we first describe the SRC algorithm assuming only two distinct

materials A and B in scenes, and later we describe the extensions to multiple mate-

rials.
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B.2 Model-based edge signature identification

Given two distinct materials A and B in a scene that is probed by a sensor, we seek

those bands for A and B whose ratios can best identify the spatial locations that

correspond to the boundary points between the two materials. Let a = (a1, . . . , aK)

and b = (b1, . . . , bK) denote hyper-pixels corresponding to materials A and B, re-

spectively. For example, the vector a can be obtained by taking the average of all

hyper-pixels as material A is probed by the sensor.

We next define the spectral ratio index between materials A and B as the K ×K
matrix

A/B ,




a1
b1
· · · a1

bK
...

. . .
...

aK
b1
· · · aK

bK




. (B.1)

We define the signature of the edge between materials A and B as a small collection

of size R, where R� K, of elements of (B.1) that can reliably identify, as described

below, the spatial indices of the edge between materials A and B. We denote the

edge signature by

EAB = {(p1, q1, ρ1), . . . , (pR, qR, ρR)}, (B.2)

where pr and qr are the band indices associated with the ratios ρr = apr/bqr , r =

1, . . . , R. The integer R is the length of the edge signature.

The selection of the triplets (pr, qr, ρr), r = 1, . . . , R, is made as follows. First,

we select S bands {i1, . . . , iS}, where the materials A and B exhibit maximum sep-
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aration, i.e.,

i1 = arg max
1≤i≤K

|ai − bi| ,

i2 = arg max
1≤i≤K,
i 6=i1

|ai − bi| ,

...

iS = arg max
1≤i≤K

i 6=i1,...,iS−1

|ai − bi| .

Clearly, in the case of HS imagery the search for the best S bands will be in a larger

space compared to the case of MS imagery, but the same procedure is utilize in

both types of imagery. Hence, once the edge signature is obtained the complexity

associated with processing MS and HS imagery are identical.

Next, we compute the spectral ratios using all possible band combinations: ρpq =

aip/biq , 1 ≤ p, q ≤ S . Without loss of generality, we may assume that all ratios are

less than or equal to unity. (If ρpq > 1 for some p and q, we simply replace it by its

reciprocal.) Finally, we define EAB by selecting the R ratios that exhibit the strongest

spectral contrast between the classes. To rank the ratios according to their spectral

contrast, we note that owing to the convention that ρpq ≤ 1, the ratios closest to

zero correspond to the strongest spectral contrast between any two bands. Thus, we

select the first pair of bands, {p1, q1}, as the pair corresponding to the smallest ratio,

ρ1 = ρp1q1 = arg min
1≤p,q≤S

ρpq ,

the second pair of bands {p2, q2} as the pair corresponding to the next smallest ratio,

ρ2 = ρp2q2 = arg min
1≤p,q≤S
p6=p1
q 6=q1

ρpq ,

and so on. We combine the ordered band indices and the corresponding ranked ratios

to define the R triplets in the edge signature (B.2). Since all the ratios are less than

or equal to unity, it can be easily shown that the definition of the edge signature is

invariant under the change in the order of the materials A and B.
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B.3 Sparse spatio-spectral mask development

We denote a spatial mask,M, at a pixel (i, j) as a list of pixel pairs surrounding the

pixel of interest. More precisely, M(i, j) is the union of M neighborhoods of pixels,

M(i, j) = ∪Mm=1 Nm(i, j), where each neighborhood consists of two distinct pixels

surrounding (i, j), i.e., Nm(i, j) = {um−(i, j), um+(i, j)}. For example, one can define

a 3× 3 mask centered at the pixel (i, j) that excludes the center pixel by taking the

union of four neighborhoods, N1 = {u1−(i, j), u1+(i, j)} = {u(i − 1, j), u(i + 1, j)},
N2 = {u2−(i, j), u2+(i, j)} = {u(i, j − 1), u(i, j + 1)}, etc.

Next, we define the operation of the joint spatio-spectral mask at the (i, j)-th

pixel by computing the ratios between each of the M pixel pairs of the spatial mask

M, at each of the R band pairs given in the edge signature EAB. For example,

using the pair of hyper-pixels defined by N1 and the pair of bands given by first

triplet of the edge signature, (p1, q1, ρ1), one can define the ratios u1−p1 (i, j)/u1+q1 (i, j)

and u1+p1 (i, j)/u1−q1 (i, j). Namely, the application of the spatio-spectral mask to each

location (i, j) results in a 2M×R matrix of “features.” (Compare this to a gray-scale

image when the application of a spatial mask to a pixel results in a scalar.) Now the

application of the spatio-spectral mask to the entire image cube defines the mapping

KAB : IRI×J×K 7→
(
IR2M×R)I×J , (B.3)

where the (i, j)th entry of KAB(u) will be a 2M ×R feature matrix of spectral ratios
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given by

KAB(u)(i, j) =




u1−p1 (i, j)

u1+q1 (i, j)
· · · u1−pR (i, j)

u1+qR (i, j)
...

. . .
...

uM−p1 (i, j)

uM+
q1

(i, j)
· · · uM−pR (i, j)

uM+
qR

(i, j)

u1+p1 (i, j)

u1−q1 (i, j)
· · · u1+pR (i, j)

u1−qR (i, j)
...

. . .
...

uM+
p1

(i, j)

uM−q1 (i, j)
· · · uM+

pR
(i, j)

uM−qR (i, j)




. (B.4)

For convenience, we denote the entries of the matrix KAB(u)(i, j) as

κAB(i, j;m−, r) = um−pr (i, j)/um+
qr (i, j) ,

and

κAB(i, j;m+, r) = um+
pr (i, j)/um−qr (i, j) .

The use of both κAB(i, j;m−, r) and κAB(i, j;m+, r) in (B.4) is required to account

for the two possible material configurations at the mth hyper-pixel pair. Specifically,

the first ratio captures the case when the hyper-pixel um−(i, j) is, for example, from

material A and um+(i, j) is from material B, whereas the second ratio is needed to

account for the possibility that um−(i, j) is from material B and um+(i, j) is from

material A. Therefore, the use of the two ratios removes dependence on the direction

of the transition between A and B, and it is similar to the use of the magnitude in

the gradient operator to achieve its rotational invariance.

B.4 Edge identification

The third stage of the SRC algorithm is the utilization of the sparse spatio-spectral

mask, KAB, to identify the edges between materials A and B. The proposed edge-
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identification process is based on the following rationale. In the ideal case when no

noise is present and the image under test is comprised only of hyper-pixels with the

exact same value of the characteristic hyper-pixels a and b, the output of the spatio-

spectral mask will perfectly match the values of the ratios obtained from the edge

signature. To illustrate this point, assume the same example given earlier, where

the spatio-spectral mask is given by (5.1). When we have a horizontal edge, the

second and fourth ratios will have a value that is not meaningful, but the first or

third ratio will match the ratio from the edge signature, ρp1q1 = ap1/bq1 . Indeed, if

the upper pixel is from material A and the lower pixel is from material B, then the

first entry of (5.1) will be u1−p1 (i, j)/u1+q1 (i, j) = ap1/bq1 (which matches ρp1q1) and the

third entry will be u1+p1 (i, j)/u1−q1 (i, j) = bp1/aq1 . Conversely, when the upper pixel

is from material B and the lower pixel is from material A, the computed ratios are

switched, which means that the third entry of (5.1) will match ρp1q1 . This example

shows that if an edge is present then at least one row of KAB(u)(i, j) will perfectly

match the ratios from the edge signature.

When noise is present, we allow a matching tolerance to account for the simi-

larity between the outcome of the mask and the edge signature ratios. This can be

accomplished by defining the mapping

∆ :
(
IR2M×R)I×J 7→

(
{0, 1}M×R

)I×J
,

where the (i, j)th entry of KAB(u) is used to form the M×R binary indicator matrix

∆
(
KAB(u)

)
(i, j) =




δ11(i, j) · · · δ1R(i, j)

δ21(i, j) · · · δ2R(i, j)

...
. . .

...

δM1 (i, j) · · · δMR (i, j)




(B.5)
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and the entries δmr (i, j) are assigned the values of 0 or 1 according to the rule

δmr (i, j) =





1, if |κAB(i, j;m−, r)− ρr| < ε ,

1, if |κAB(i, j;m+, r)− ρr| < ε ,

0, otherwise .

(B.6)

Here, the tolerance parameter, ε, accounts for both the natural variability and the

presence of noise in the spectral data for materials A and B.

Ideally, if the mth hyper-pixel pair belongs to the same material type, then the

test in (B.6) will return the value of zero. Conversely, if the hyper-pixels forming

the pair are from the two different materials, either the entry κAB(i, j;m−, r) or

κAB(i, j;m+, r) will be equal to the corresponding ratio ρr from the edge signature

EAB. As a result, the above test will return the value 1 for the elements δmr in the mth

row of (B.5). As such, for a given pair of pixels, the number of non-zero elements

in the associated mth row of the indicator matrix reveals the number of times the

response of the mask KAB(u)(i, j) has matched (within the specified tolerance ε) the

spectral ratios from the edge signature EAB.

Because the pixel pairs used to form the rows of the mask correspond to different

edge orientations (horizontal, vertical or diagonal), the number of ones in each row of

(B.5) indicates the strength of the edge at position (i, j) for that particular direction.

One way to account for such strength is by computing the matrix infinity norm of

(B.5). Specifically, we define the mapping

Φ :
(
{0, 1}M×R

)I×J 7→ {0, 1}I×J ,

which converts the indicator matrix (B.5) into an edge map by

Φ
(

∆
(
KAB(u)

))
(i, j) =





1, if ‖∆
(
KAB(u)

)
(i, j)‖∞ ≥ R̃

0, otherwise ,
(B.7)
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where for any matrix A, ‖A‖∞ = max1≤i≤M
∑R

j=1 |aij|, and R̃ ≤ R is a specified

threshold. With the definition in (B.7), the (i, j) location will belong to the collection

EAB of edges if the edge strength in at least one direction, as measured by the number

of ones in the rows of (B.5), exceeds the threshold R̃. If none of the edge strengths

exceeds R̃, then the (i, j) site does not belong to EAB. The value of the threshold

R̃ can be used to adjust the sensitivity of the edge detector to noise. For example,

increasing R̃ makes the algorithm less sensitive to noise but more restrictive.

Finally, we define the edge map as the composition

FAB = Φ ◦∆ ◦ KAB .

Note that KAB is the only problem-specific component in FAB; the functions ∆ and Φ

are not problem specific. Because the edge signatures are determined independently

for each pair of materials and the information from different color slices is properly

fused, the SRC algorithm is particularly well-suited for scenes that contain both weak

edges (e.g., isoluminant edges) and strong edges.

B.5 Extension of the algorithm to multiple mate-

rials

We limit the description of the extension of the algorithm to multiple materials to

the case of three distinct materials A, B and C. The extension to the general case is

straightforward. Due to the invariability of the detector for the order of the materials,

for three distinct materials A, B and C there are three possible edges: EAB, EAC and

EBC . In this case we obtain three edge signatures, EAB, EAC and EBC , from which

we define three joint spatio-spectral masks KAB, KAC , and KBC . We then use these

masks to identify the hyper-pixels belonging to the edge EAB between materials A

and B, the hyper-pixels from the edge EAC between materials A and C, and the
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hyper-pixels from the edge EBC between materials B and C. The final edge map is

obtained by the union of the three edges:

EABC = EAB ∪ EAC ∪ EBC .
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