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Abstract

In this dissertation, a hierarchical interactive architecture for the future smart grid

is proposed. This hierarchical architecture consists of different layers ranging from

the households, microgrid controller level, feeder level and substation level. The

proposed smart grid architecture is scalable while allowing for sufficient resource

pooling, because in each layer the power generation and consumption sides interact

in a similar manner. Therefore, we develop an abstract Grid model with distributed

energy resources (DER) and storage facilities. A comprehensive real time interactive

scheme is proposed for the abstract Grid model, which addresses several important

topics: (1) load prediction and uncertainty modeling, (2) demand response (DR), (3)

stochastic tracking control of the conventional generation in the presence of DER’s

(both renewable energy and plug-in hybrid electric vehicle (PHEV)) and (4) machine

learning aided decision making for smart-homes.
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In the first part, a series of linear prediction models are presented for the load pre-

diction purposes, including standard autoregressive (AR) process and time varying

autoregressive (TVAR) process, according to different assumptions on the station-

arity of customer load profile: piecewise stationarity, local stationarity and cyclo-

stationarity. Two important issues in AR/TVAR models are addressed: determining

the order of AR/TVAR models and calculating the AR/TVAR coefficients. The

partial autocorrelation function (PACF) is analyzed to determine the model order

and the minimum mean squared error (MMSE) estimator is adopted to derive the

AR/TVAR coefficients, which leads to the Yule-Walker type of equations. In the

second part, a DR scheduling scheme based on the Utility cost minimization with

different customer clustering sizes. A convex optimization problem is formulated and

the optimal demand response profile is in the form of a two-dimensional water-filling

solution either with flat water levels or different water levels for different customers.

A trade-off strategy which attempts to balance the competing objectives (centralized

and distributed) is also provided based on the Price of Anarchy (PoA) analysis. In

the third part, two stochastic tracking schemes are proposed to balance the power

generation and consumption: (1) reference dynamics-based tracking and (2) reference

statistics-based tracking. The proposed optimal tracking control schemes are further

generalized by considering the realistic scenario with asynchronous net load demand

signals from different customers. Based on the separation principle in reference pre-

diction and tracking design, we propose both centralized and distributed reference

prediction schemes based on Kalman filtering technique. In the forth part, with the

hierarchical architecture well developed, the smart-home decision making problem is

addressed by combining solutions to two sub-problems: (1) a hidden mode Markov

decision process (HM-MDP) model based centralized sequential decision making at

the microgrid controller to maximize an accumulated reward of the whole microgrid

and (2) distributed auctioning game design among all smart-homes within the micro-

grid to coordinate their interactions based on the optimal energy decisions obtained
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in the centralized sub-problem.
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Chapter 1

Introduction

The future smart grid will be intelligent, efficient, resilient and green [1], enhancing

every facet of the electric system, including generation, transmission, distribution

and consumption that will transform the current grid to one that functions more

cooperatively, responsively and organically. In traditional electric grid planning,

inefficiencies are abound on both the generation and demand side, i.e. the Utility

and customers interact on a slow time scale and ineffectively. Such interaction is

mainly due to the insufficient information exchange between the generating and

the consuming sides. In addition, highly time-varying demand/consumption profiles

mean that matching power demand is a difficult proposition. For example, the widely

adopted fixed pricing scheme makes the customers indifferent about scheduling their

load demand within a day. Thus, similar consuming patterns among customers make

huge peaks in the overall load demand profile. The need for the power generator to

meet peak demand (as opposed to average demand) to prevent blackouts in the

current paradigm inherently creates gross inefficiencies and is extremely costly for

the Utility companies. For example, the U.S. national load factor is about 55%, and

10% of generation and 25% of distribution facilities are used less than 400 hours per

year, i.e., 5% of the time [2].
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Proliferation of distributed energy resources (DER), in particular renewable dis-

tributed generation, provides great promise in significantly improving the efficiency

of electricity distribution. However, as DER’s proliferate to a significant fraction of

the overall electric energy on the distribution network, without proper procedures in-

tegration may lead to highly imbalanced transient behaviors which may overwhelm

current infrastructure not to mention outages and brown-outs. In a future smart

grid, a customer with renewable generation capability (such as PV panels and wind

turbines) may use predictive strategies to optimize its energy demand requests over

time and determine when to use, sell or store its own renewable generation, flexibly

interacting with the electric-grid and other customers, as opposed to being a passive

energy consumer as today. The information shared among distributed nodes (cus-

tomers) endowed with generation, storage and consumption attributes can result in

a distributed decision and control framework that will lead to both overall energy

and cost efficiencies. Realizing the full potential promised by smart grid concept,

however, requires systematic design principles, a comprehensive protocol framework

for interaction among distributed entities that make up the grid and robust and

computationally efficient control and optimization algorithms. The importance of

this real time interaction framework is expected to become even more significant

as high penetration of renewable generations and PHEVs appear in generation side

and consumption side separately. This is because the distributed nature of power

demands, as well as the intermittence of renewable generation, make both load and

generation profiles fluctuating over time and difficult to be matched with each other.

As renewable generation, which is mostly based on solar, wind and tidal re-

sources, grows at a rapid pace, renewable distributed generation (RDG) becomes a

necessary and desirable component of a cleaner energy future. The benefits of inte-

gration of RDG’s into the grid do not stop simply as another power source. Having

RDG’s at customer customers enable them to be energy-efficient while also achiev-

ing cost-savings. Indeed, this is where the smart grid really turns out to be smart:
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The customers may adopt machine-learning aided predictive strategies to optimize

their energy demand requests to the Utility and determine when to use, sell or store

its own renewable generation. The Utility, in turn, may benefit by scheduling its

demand-response to operate cost-effectively while ensuring better electric quality to

the customers. While RDG’s provide an opportunity to aid in balancing a highly vari-

able load, their inherently intermittent generation profile could potentially become

a source of instability. There are many technical challenges to increased penetration

of RDG, such as voltage rise effects, power quality and power grid protection when

they are to be integrated into the traditional power grid (to form a smart grid).

The most challenging aspect of integrating renewable distributed generators (renew-

ables) is dealing with their inherent intermittent generation profile. Historically, in

the equation of supply and demand, operators have primarily had to deal with the

demand variable. With more integrated renewable distributed generators coming on-

line, however, operators need more efficient and effective control schemes to balance

variables on both sides of the equation [3].

Although a comprehensive formulation and an analysis is not yet available, still

there have been some attempts to understand, model and analyze these effects [4,5].

For example, a multi-stage frequency control framework is presented in [6–8]. How-

ever, it does not address the issue of consumption planning on the customer side.

The uncertainty in supply due to integrated renewable DER’s and the challenges

they impose on the existing distribution infrastructure and the system operator have

been discussed in [9]. The distribution-level smart grid features such as intercon-

nection of distributed generation and active distribution management, automated

meter reading (AMR) systems in network management and power quality moni-

toring were discussed in [10]. In [11], the implementation of vehicle-to-grid (V2G)

power issues, strategies and business models for doing so, for purposes of both stabi-

lizing the grid and supporting large-scale renewable energy were discussed. Various

control-theoretic and system-level problem formulations of smart grid architectures

3



Chapter 1. Introduction

have been discussed in [12] and [13]. In [12], for example, the authors showed that

significant improvements can be made to the operations of a smart grid by providing

information about the likely behavior of renewable energy through both online short-

term forecasting and longer-term assessments. In [13], a distributed control method

was proposed for converter-interfaced renewable generation units with active filtering

capability.

To fully harvest the fruits of RDG integration, the real time interaction between

the customers and the Utility needs to be robust against possible communications,

sensing and actuation delays and errors. Ultimately, of course, the Utility has to

make sure that the power-grid is stable under this real time, distributed and net-

worked interaction among RDG’s, customer appliances and the conventional plant

maintained by the Utility. In this dissertation, a comprehensive real-time interactive

framework is developed for the Utility and customers in a smart grid while ensuring

grid-stability and Quality-of-Service (QoS), as shown in Fig. 5.1.

This hierarchical architecture for the smart grid is scalable while allowing for

sufficient resource pooling [14]. The scalability of the grid requires being able to

easily integrate additional customers into the grid without affecting the established

operational conditions of the grid. Ideally this might be achievable if each individual

household is managed separately, but, of course, this would preclude any resource

pooling, which is one of the most important strategies to energy efficiency in the grid.

A tradeoff to this can be achieved by using the notion of microgrids with DER’s.

Each microgrid is a collection of households with certain self-containing capabili-

ties, which are geographically adjacent and coordinated by a microgrid controller, as

shown in the red box in Fig. 5.1. However, we can also think of each approximately

self-contained microgrid as a broader customer unit coordinated by a feeder-level

controller as shown in the blue box in Fig. 5.1. Similarly, we can scale up to the sub-

station level and above and investigate an entire hierarchical smart grid architecture,
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Figure 1.1: Hierarchical smart grid architecture that is scalable while allowing for
sufficient resource pooling.

as shown in Fig. 5.1.

As we scale up to construct the entire grid, at each level, all branches with the

same structure of one controller and multiple customer units are all approximately

self-contained and are coordinated by the controller at a higher level. For example,

at the microgrid level in Fig. 5.1, all microgrid branches identical to the red box

are approximately self-contained. When the power-load mismatch is too big to be

mitigated within a single microgrid, electric power flow will be routed among dif-

ferent microgrids under the coordination of a feeder-level controller. Similarly, at

the feeder-level in Fig. 5.1, all branches identical to the blue box are approximately

self-contained. Power flow among feeder-level branches are to be coordinated by the
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substation-level controller. Hence, with this hierarchical architecture interpretation,

any decision-making framework designed for a controller and the individual units

below it is applicable to each of the levels in this hierarchical smart grid. Thus,

in the following, we may focus on an abstract model made of a single (micro-grid)

controller and a collection of multiple (smart-home) customers managed by it.

This hierarchical architecture for the Utility-customer interaction is made of

the following sub-components of customer load prediction, demand response, active

power-load balancing and smart-home decision making.

1.1 Uncertainty Modeling and Prediction for Cus-

tomer Load Demand in Smart Grid

Precise prediction and modeling of the uncertainties has always been an important

and challenging issue in power generation planning and load matching in electrical

power grid [2]. In the upgrade from a traditional power grid to a “smarter” grid,

which enables more efficiency and flexibility in grid operation, integrated renewable

distributed generation (RDG) and plug-in hybrid electric vehicle (PHEV) are not

only important features and driving forces, but also sources of uncertainties and

instabilities. Hence, this challenging issue is expected to become more and more

significant as the ever-increasing penetrations of RDG and PHEV appear on power

generation and consumption sides separately. In future smart grid, the “smart home”

is not only the households with “smart devices” such as advanced metering infras-

tructure (AMI) [15], but also distributed unit with local generation (on-site RDG’s)

and storage facilities (PHEV). Customers are capable of making optimal sequential

decisions over a certain period of time, maximizing accumulated benefit based on

the forecasted price information [16]. Note that the optimal sequential decisions are
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made by the smart homes based on predictions of local generation and consump-

tion information. Hence, appropriate models that capture the randomness and time

transient features of both uncertainties are essential for making precise predictions.

The benefits of integration of RDG’s into the grid do not stop simply as another

power source. Having RDG’s at customer premises enable them to be energy-efficient

while also achieving cost-savings. A lot of studies have been reported in the liter-

ature proposing different stochastic models for renewable generation and related

natural phenomena. For example, wind speed distributions are often characterized

by Weibull or Rayleigh distributions [17, 18]. Historical hourly data for the wind

farm site collected over a significant time are normally required to obtain the shap-

ing parameters. In [18], the wind speed probability distributions obtained for the

three diverse geographic locations in Canada, are close to normal distributions. The

solar irradiation forecasting precision varies depending mainly on the quality of data

in reference to the different dynamics of solar irradiation behavior. Beta distribution

validated by different researches as a simple and sufficiently flexible two-parameter

distribution, fits well the empirical data in many situations [19].

Different stochastic approaches have been reported in the literature for cus-

tomer load modeling and two approaches are widely adopted. The first approach

is component-based load modeling approach, which reconstructs the expected daily

electrical loads of a household based on appliance sets, occupancy patterns, and sta-

tistical data. For example, in [20], the authors constructed such electric load profiles

from individual appliance profiles. By considering “availability” and “proclivity”

functions, they predict whether someone is available (at home and awake) and their

tendency to use an appliance at any given time. These functions were applied to

predict individual appliance events, which were then aggregated into a load profile.

The second approach is termed the measurement-based load modeling. In [21], the

authors used this approach to create electrical profiles to examine demand side man-
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agement strategies for Finland. In [22], a methodology of measurement-based load

modeling for transient stability analysis was proposed and Genetic Algorithms (GA)

was used to estimate load model parameters. However, both approaches fail to give

enough emphasis on the power consumption transition property over time.

In this dissertation, two types of approaches are proposed to model the uncer-

tainty in customer load demand. The first approach is based on a first order non-

stationary Markov chain. A maximum likelihood estimator (MLE) is derived to

estimate the time variant transition matrix of the Markov chain. The second ap-

proach is based on time series analysis techniques. We present linear prediction

models such as standard autoregressive (AR) process and time varying autoregres-

sive process (TVAR), according to different assumptions on the stationarity of the

customer load data: piecewise stationarity, local stationarity and cyclo-stationarity.

Two important issues in AR/TVAR models are investigated: AR/TVAR coefficient

estimation and determining the order of AR/TVAR models. The minimum mean

squared error (MMSE) estimator is adopted to derive the AR/TVAR coefficients,

which leads to the Yule-Walker type of equations. For the TVAR model, by do-

ing basis function expansion based coefficient parametrization, we replace the scalar

process with a vector one and turn the original non-stationary problem into a time-

invariant problem. All the proposed models are tested against the same set of real

measured customer load demand data. Prediction performances of different models

are analyzed and compared, advantages and disadvantages are discussed. Both the

non-stationary Markov chain and the linear prediction technique address the time

transition property of the load demands.
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1.2 Price-based Demand Response Scheme Design

in Smart Grid

In most current electricity markets, fixed pricing schemes with constant rates are

being widely used. Customers face retail electricity prices that are flat over months

or even years [23]. A problem with fixed pricing schemes is the disconnection be-

tween short-term marginal electricity production costs and retail rates paid by cus-

tomers, which leads to inefficient overall resource usage. Due to lack of information

on generation costs, electricity consumption behavior of customers may not adjust

to supply-side conditions. Thus fixed constant pricing results in suboptimal cus-

tomer behavior as well as higher electricity costs than they would otherwise be in an

optimally efficient system [24].

There is a growing consensus that Demand Response (DR) can play an important

role in market design [25]. Lack of DR has been shown to be a major contributing

factor for energy-market meltdowns [26]. In [23], for example, DR is defined as

“Changes in electric usage by end-use customers from their normal consumption

patterns in response to changes in the price of electricity over time, or to incentive

payments designed to induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized.” DR not only reduces the capacity

investments in peak generation units to serve occasional heightened demand, but

also provides short-term reliability benefits as it can offer load relief to resolve system

and local capacity constraints. There are two basic demand response options: Price-

based demand response and incentive-based demand response. Price-based demand

response includes real-time pricing (RTP), critical-peak pricing (CPP), and time-

of-use (TOU) rates. Customers can respond to the price structure with changes in

energy use, reducing their electricity bills if they adjust the timing of their electricity

usage to take advantage of lower-priced periods and avoid consuming when prices
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are higher [23]. Incentive-based demand response schemes pay participants to reduce

their loads at times requested by the program sponsor, triggered either by a grid

reliability problem or high electricity prices. DR programs typically specify a method

for establishing customers baseline energy consumption level below which demand

reductions are not allowed. In power systems, the energy requests that customers

send to utility consist of two parts: nonflexible load request and flexible load request

[27]. The nonflexible part is the minimum amount of energy that utility needs to

provide at a specific time. The flexible part can be reallocated over time according

to a certain load management strategy. For any load management strategy there are

two common primary goals: peak load shaving and load profile flattening. Under

real-time pricing, the electricity price is determined by real time load information.

In this dissertation, a block scheduling model is presented for price-based demand

response scheduling. In this model, the size of the time block is set to be small

enough so that all load shifting within the time block can be considered as cost free

and acceptable to customers. The solution to this block processing problem can then

be the basis for implementations of arbitrarily long scheduling periods. Two types of

real-time pricing schemes, linear pricing and threshold pricing, are discussed in this

paper. We consider optimal demand-response when customers cooperate as a group

as well as when each customer is only interested in minimizing its own cost. Naturally

these two scenarios, as shown to lead to centralized and distributed optimizations.

1.3 Optimal Stochastic Tracking for Primary Fre-

quency Control in Smart Grid

In any electric system, the stability of the electrical grid is guaranteed by balancing

the power generation and consumption [28]. Generation units and even load in some
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cases must be manipulated to conduct power balancing so the network user is not

affected by load changes or generation and transmission outages. From the viewpoint

of load matching, various demand response schemes have been proposed to affect

customer load profiles [23, 29–31]. In [32], a three-step methodology was presented

to manage the cooperation among technologies of distributed generation, distributed

electricity storage and demand side load management. From the viewpoint of power

generation control, since massive storage of alternating electricity is difficult, two

separate equilibria should be kept on the grid for stabilizing purpose [33]: (1) The

active power generated should at each moment equal the active power consumed. A

deviation from this equilibrium results in a deviation from the standard frequency (60

or 50 Hz). Hence, keeping this equilibrium between active power consumption and

generation means maintaining frequency. (2) The reactive power on the grid should

be kept in equilibrium as well. Reactive power is an extra load for the grid, leaving

less capacity for active power, resulting in a local voltage drop. Hence, keeping

reactive power in equilibrium means maintaining voltage. Studies on frequency and

voltage control have been reported in many previous work [28,34–37]. In particular,

a comprehensive survey on frequency and voltage control technical features can be

found in [28]. In [34], the authors discuss the issue of excess steady-state voltage rise

and the methods of limitation that can be applied with specific reference to wind

generation. In [36], a strategy for the control of terminal voltage and frequency of a

stand-alone self-excited induction generator-(SEIG) based wind generator, working

with variable speed and load is proposed. In [37], the authors presented a micro

hydro scheme with parallel operation of synchronous and induction generators in

micro hydro scheme.

In most of the literature, frequency and voltage control schemes are usually de-

signed separately because generally they are implemented by generator rotor speed

governor and excitation control system respectively [8, 38–41]. In this paper, we

focus on frequency control (active power control) issues. The frequency control
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usually consists several layers [6–8], including primary control, secondary control,

tertiary control and other possible balancing power reserve planning services. Con-

trol schemes of different levels have different objectives and operating time scales,

as shown in Fig. 4.1. The objective of primary frequency control (with a controlling

period on the order of seconds) is to maintain a balance between generation and

consumption within the synchronous area using turbine speed or turbine governors.

However, primary frequency control stabilizes frequency but does not drive the sys-

tem frequency back to the original set-point value after a disturbance. Secondary

frequency control (with a controlling period on the order of minutes) is needed since

when several generators are doing generation sharing, secondary frequency control

distributes the power imbalance among selected units [6]. The secondary frequency

control can also drive the system frequency back to the original desired value. Ter-

tiary frequency control (with a controlling period in the order of minutes to hours)

is a manual change in the dispatching in order to restore the secondary reserve and

provide a more permanent solution if the imbalance between consumed power and

scheduled power persists. There are several important research issues associated

with both secondary and tertiary frequency control, such as spinning reserve, unit

commitment and economic dispatch. Spinning reserve [42] is the unused capacity pro-

vided by devices that are synchronized to the network and can be quickly activated

on decision of the system operator. Unit commitment and economic dispatch [43] is

to find the optimal dispatch of available generation resources to meet the electrical

load and spinning reserves. Other layers in the frequency control framework include

stand-by supplies and contractual load shedding which have longer control periods

(hours). Unit commitment and economic dispatch are important topics in power

grid generation planning by themselves and will not be discussed in detail here.

Currently the most widely adopted primary frequency control scheme is the

proportional-integral-derivative controller (PID controller) [6]. This is because PID

controller shows relatively good control performance when the dynamics of the plant
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Figure 1.2: Frequency control consists primary control, secondary control, tertiary
control and other planning reserve services.

is unknown or too complicated to analyze. By tuning the three parameters in the

PID controller algorithm, the controller can conveniently provide control action de-

signed for specific process requirements. However, PID controller does not guar-

antee optimality in control and system stability. In this paper, we focus on the

primary frequency control design and propose an optimal stochastic tracking scheme

for synchronous generator active power generation control, assuming the dynamics

of individual synchronous generator. In this tracking scheme we minimize the dif-

ference between the active power generation output and the reference signal which

incorporate the randomness of both load demands and renewable generations. Fur-
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ther analysis on the tracking performance are presented considering synchronous and

asynchronous customer load signals in the reference.

In this dissertation, an optimal stochastic tracking scheme is proposed in an in-

teractive smart grid infrastructure consisting of three parts: (1) The Utility reshapes

the customer load profiles by scheduling a demand response (DR) for the requested

customer loads. (2) Individual smart-home makes optimal sequential decision on

power purchase. (3) Optimal stochastic control schemes for the primary frequency

control (active power control) are designed, in the presence of uncertainties arising

from customer loads and distributed renewable generations. With the first two parts

addressed in our previous work, in this paper, we focus on the primary frequency

control scheme design in the multi-layer control architecture to stabilize frequency

and maintain the active power balance within the distributed areas. We propose two

stochastic tracking schemes based on the state-space representation of a synchronous

generator: (1) reference dynamics-based tracking and (2) reference statistics-based

tracking. We further extend the proposed optimal controllers by considering the real-

istic scenario of asynchronous load signals from different customers. To compensate

for different delays seen by different customer signals, a Kalman filter (KF) based

prediction scheme is proposed to estimate the correct reference signal. We show that

the centralized reference prediction can equivalently be implemented distributively.

1.4 Machine-learning Aided Optimal Customer De-

cisions with an Auctioning Game Design for

Interactive Smart Grids

Proliferation of distributed energy resources (DER), in particular renewable dis-

tributed generation, provides great promise in significantly improving the efficiency
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of electricity distribution. However, as DER’s proliferate to a significant fraction of

the overall electric energy on the distribution network, without proper procedures in-

tegration may lead to highly imbalanced transient behaviors which may overwhelm

current infrastructure not to mention outages and brown-outs. In a future smart

grid, a customer with renewable generation capability (such as PV panels and wind

turbines) may use predictive strategies to optimize its energy demand requests over

time and determine when to use, sell or store its own renewable generation, flexibly

interacting with the electric-grid and other customers, as opposed to being a passive

energy consumer as today. The information shared among distributed nodes (cus-

tomers) endowed with generation, storage and consumption attributes can result in

a distributed decision and control framework that will lead to both overall energy

and cost efficiencies. Realizing the full potential promised by smart grid concept,

however, requires systematic design principles, a comprehensive protocol framework

for interaction among distributed entities that make up the grid and robust and

computationally efficient control and optimization algorithms.

The topic of customer decision making consists of several important subtopics,

including smart-home design [44] and [45], system integration of distributed energy

resources (DER) [46], renewable generation modeling [18,19,47], load demand model-

ing [20] and [21], and plug-in hybrid electrical vehicle (PHEV) vehicle-to-grid (V2G)

management and regulation [48] and [49]. There is a considerable amount of previous

studies reported on these subtopics in literature. For example, a smart-home energy

management system based on a ZigBee sensor network was proposed in [44]. In [45],

the author motivated the use of power line LANs as a basic infrastructure for build-

ing integrated smart homes, proposing protocols capable of supporting power line

communication networks at speeds comparable to wired LANs. These smart-home

models are mostly from the perspective of information gathering and transmission

(e.g., a ZigBee sensor network and a power line LAN). However, it is unclear how

these smart-home models can be evolved to allow real-time decision making that
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makes use of all collected information. In [46], the concept of virtual power plant

(VPP) was developed to enhance the control of DER by the system operators and

other market actors by providing an appropriate interface between these system com-

ponents. However, an equally important issue on the customer side (rather than the

system operator side), which is the distributed self-management of DER’s with local

objectives, remains unaddressed. Various stochastic models for different renewable

generations have been proposed in previous literature. For example, wind speed

distributions are often characterized by Weibull or Rayleigh distributions [17]. The

wind speed probability distributions obtained in [18] for three diverse geographic

locations in Canada have been shown to be close to normal distributions. Beta dis-

tribution has been validated by different research as a simple and sufficiently flexible

two-parameter distribution to fit the empirical solar irradiation behavior data in

many situations [19]. These stochastic models are important, but these papers failed

to present further discussions on how these models can be incorporated in customer

decisions. Similar issue arises with papers focusing on customer load modeling and

prediction, for example in [20] and [21]. In [48], the impact of charging PHEVs on a

distribution transformer under different charging scenarios were examined. In [49],

the author established a series of well-defined electric vehicle loads that were sub-

sequently used to analyze their electric energy usage and storage in the context of

more electrified road transportation. The PHEV management strategies mentioned

above are part of the customer decision making addressed in this paper. However, it

is important to consider more general energy decisions, rather than only focusing on

PHEV charging strategy, taking into account of other factors, such as the impact of

intermittent renewable generations. The work presented by the literature mentioned

above provide an important foundation for upgrading the conventional grid-customer

models to smart customers in a modern smart grid. However, little of these exist-

ing studies has considered a comprehensive cycle of interactions between the Utility

and the distributed entities (customers) taking into account aspects of customer-side
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decision making, Utility-side demand response scheduling, renewable DER integra-

tion and power-load balances for grid-stability and the effects of information and

communication technology (ICT) infrastructure on all these.

With the hierarchical architecture in place, the concept of smart-home is ex-

tended in two aspects: (1) from traditional households with smart-devices, such as

Advanced Metering Infrastructure (AMI), to intelligent entities with instantaneous

and distributive decision making capabilities. (2) from individual households to gen-

eral customer units of possibly large scales. We focus on the problem of real-time

scheduling in an abstract grid model consisting of one microgrid controller and mul-

tiple smart-home customer units. A scalable solution to the real-time scheduling

problem is proposed by combining solutions to two sub-problems: (1) centralized

sequential decision making at the microgrid controller to maximize an accumulated

reward of the whole microgrid and (2) distributed auctioning game design among all

smart-homes to coordinate their interactions based on the optimal energy decisions

obtained in the first centralized sub-problem.

For the centralized decision making problem at the microgrid controller, we adopt

a hidden mode Markov decision process (HM-MDP) model. This real-time decision

making framework can effectively be integrated with demand response (DR) schemes,

which is prediction based and therefore inevitably leads to real-time power-load mis-

matches. With the Baum-Welch algorithm adopted to learn the non-stationary dy-

namics of the environment, we propose a value iteration (VI) based exact solution

algorithm for the HM-MDP problem. Different from the conventional value itera-

tion, the concept of parsimonious sets is used to enable a finite representation of

the optimal value function. Instead of iterating the value function in each time step,

we iterate the representational parsimonious sets by using the incremental pruning

(IP) algorithm. Though this exact algorithm leads to optimal policies giving max-

imum rewards, its complexity suffers from the curse of dimensionality. To obtain
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a low-complexity, real-time algorithm that allows adaptively incorporating new ob-

servations as the environment changes, we resort to Q-learning based approximate

dynamic programming (ADP). Q-learning offers more flexibility in practice because

it does not require specific starting and ending points of the scheduling period.

For the decentralized decision making problem at smart-homes within the micro-

grid, a Vikrey auctioning game is designed to coordinate the actions of the individual

smart-homes to achieve the optimal solution derived by the microgrid controller in

the centralized decision stage under realistic gird interaction assumptions. It is worth

pointing out that application of different auction schemes for smart grid problems

have been reported in [50–52]. For example, auction mechanisms that can be used by

the aggregators for procuring stochastic renewable generations are proposed in [50].

In [51] and [52], double auction is adopted for distributed energy resources (DERs)

management and Plug-in hybrid electric vehicles (PHEVs), respectively. However,

most of these are focused on the solution derivation of auctions and fail to address

the connection between the centralized and distributed decision schemes, which is

important for the hierarchical architecture of the modern smart grid. In this dis-

sertation, we show that though truthful bidding is a weakly dominant strategy for

all smart-homes in the auctioning game, collusive equilibria do exist and can jeop-

ardize the effectiveness and efficiency of the trading opportunity allocation. Anal-

ysis on the structure of the Bayesian Nash equilibrium solution set shows that the

Vickrey auctioning game can be made more robust against collusion by customers

(anticipating distributed smart-homes) by introducing a positive reserve price. The

corresponding auctioning game is then shown to converge to the unique incentive

compatible truthful bidding Bayesian Nash equilibrium, without jeopardizing the

auctioneer’s (microgrid controller’s) profit. The performance analysis of both the

proposed centralized and distributed decision making schemes are presented. This

two-step solution approach is shown to be scalable to more complicated smart grid

architectures beyond the assumed abstract model.
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1.5 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:

• In this dissertation, two types of approaches are presented to model the uncer-

tainty in customer load demand. The first approach is based on a first order

non-stationary Markov chain. A maximum likelihood estimator (MLE) is de-

rived to estimate the time variant transition matrix of the Markov chain. The

second approach is based on time series analysis techniques. We present lin-

ear prediction models such as standard autoregressive (AR) process and time

varying autoregressive process (TVAR), according to different assumptions on

the stationarity of the customer load data: piecewise stationarity, local station-

arity and cyclo-stationarity. Two important issues in AR/TVAR models are

investigated: AR/TVAR coefficient estimation and determining the order of

AR/TVAR models. The minimum mean squared error (MMSE) estimator is

adopted to derive the AR/TVAR coefficients, which leads to the Yule-Walker

type of equations. For the TVAR model, by doing basis function expansion

based coefficient parametrization, we replace the scalar process with a vector

one and turn the original non-stationary problem into a time-invariant prob-

lem. All the proposed models are tested against the same set of real measured

customer load demand data. Prediction performances of different models are

analyzed and compared, advantages and disadvantages are discussed. Both the

non-stationary Markov chain and the linear prediction technique address the

time transition property of the load demands.

• In this dissertation, a block scheduling model is presented for price-based de-

mand response scheduling. In this model, the size of the time block is set to

be small enough so that all load shifting within the time block can be con-

sidered as cost free and acceptable to customers. The solution to this block
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processing problem can then be the basis for implementations of arbitrarily

long scheduling periods. Two types of real-time pricing schemes, linear pric-

ing and threshold pricing, are discussed in this paper. We consider optimal

demand-response when customers cooperate as a group as well as when each

customer is only interested in minimizing its own cost. Naturally these two

scenarios, as shown to lead to centralized and distributed optimizations.

• In this dissertation, an optimal stochastic tracking scheme is proposed in an

interactive smart grid infrastructure consisting of three parts: (1) The Utility

reshapes the customer load profiles by scheduling a demand response (DR)

for the requested customer loads. (2) Individual smart-home makes optimal

sequential decision on power purchase. (3) Optimal stochastic control schemes

for the primary frequency control (active power control) are designed, in the

presence of uncertainties arising from customer loads and distributed renew-

able generations. With the first two parts addressed in our previous work, in

this paper, we focus on the primary frequency control scheme design in the

multi-layer control architecture to stabilize frequency and maintain the active

power balance within the distributed areas. We propose two stochastic tracking

schemes based on the state-space representation of a synchronous generator:

(1) reference dynamics-based tracking and (2) reference statistics-based track-

ing. We further extend the proposed optimal controllers by considering the

realistic scenario of asynchronous load signals from different customers. To

compensate for different delays seen by different customer signals, a Kalman

filter (KF) based prediction scheme is proposed to estimate the correct refer-

ence signal. We show that the centralized reference prediction can equivalently

be implemented distributively.

• In this dissertation, a comprehensive real-time interactive framework is devel-

oped for the Utility and customers in a smart grid while ensuring grid-stability
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and Quality-of-Service (QoS). First, we propose a hierarchical architecture for

the Utility-customer interaction consisting of sub-components of customer load

prediction, renewable generation integration, power-load balancing and demand

response (DR). With the hierarchical architecture developed, the concept of

smart-home is extended in two aspects: (1) from traditional households with

smart-devices, such as Advanced Metering Infrastructure (AMI), to intelligent

entities with instantaneous and distributive decision making capabilities. (2)

from individual households to general customer units of possibly large scales.

We focus on the problem of real-time scheduling in an abstract grid model con-

sisting of one microgrid controller and multiple smart-home customer units. A

scalable solution to the real-time scheduling problem is proposed by combin-

ing solutions to two sub-problems: (1) centralized sequential decision making

at the microgrid controller to maximize an accumulated reward of the whole

microgrid and (2) distributed auctioning game design among all smart-homes

to coordinate their interactions based on the optimal energy decisions obtained

in the first centralized sub-problem.

1.6 Structure of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 proposes two

types of approaches are presented to model the uncertainty in customer load demand:

(1) the first order non-stationary Markov chain model and (2) time series analysis

technique based approach. In Chapter 3, a block scheduling model is presented for

price-based demand response scheduling with the two dimensional water filling results

analyzed in detail. In Chapter 4, an optimal stochastic tracking scheme is proposed

in an interactive smart grid infrastructure with both synchronous and asynchronous

reference signals. In Chapter 5, we present the machine learning aided smart-home
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decision making scheme with an auctioning game design. Finally, we conclude the

dissertation in Chapter 6.
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Chapter 2

Uncertainty Modeling and

Prediction for Customer Load

Demand

2.1 Introduction

Precise prediction and modeling of the uncertainties has always been an important

and challenging issue in power generation planning and load matching in electrical

power grid [2]. In the upgrade from a traditional power grid to a “smarter” grid,

which enables more efficiency and flexibility in grid operation, integrated renewable

distributed generation (RDG) and plug-in hybrid electric vehicle (PHEV) are not

only important features and driving forces, but also sources of uncertainties and

instabilities. Hence, this challenging issue is expected to become more and more

significant as the ever-increasing penetrations of RDG and PHEV appear on power

generation and consumption sides separately. In future smart grid, the “smart home”

is not only the households with “smart devices” such as advanced metering infras-
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tructure (AMI) [15], but also distributed unit with local generation (on-site RDG’s)

and storage facilities (PHEV). Customers are capable of making optimal sequential

decisions over a certain period of time, maximizing accumulated benefit based on

the forecasted price information [16]. Note that the optimal sequential decisions are

made by the smart homes based on predictions of local generation and consump-

tion information. Hence, appropriate models that capture the randomness and time

transient features of both uncertainties are essential for making precise predictions.

The benefits of integration of RDG’s into the grid do not stop simply as another

power source. Having RDG’s at customer premises enable them to be energy-efficient

while also achieving cost-savings. A lot of studies have been reported in the liter-

ature proposing different stochastic models for renewable generation and related

natural phenomena. For example, wind speed distributions are often characterized

by Weibull or Rayleigh distributions [17, 18]. Historical hourly data for the wind

farm site collected over a significant time are normally required to obtain the shap-

ing parameters. In [18], the wind speed probability distributions obtained for the

three diverse geographic locations in Canada, are close to normal distributions. The

solar irradiation forecasting precision varies depending mainly on the quality of data

in reference to the different dynamics of solar irradiation behavior. Beta distribution

validated by different researches as a simple and sufficiently flexible two-parameter

distribution, fits well the empirical data in many situations [19].

Different stochastic approaches have been reported in the literature for cus-

tomer load modeling and two approaches are widely adopted. The first approach

is component-based load modeling approach, which reconstructs the expected daily

electrical loads of a household based on appliance sets, occupancy patterns, and sta-

tistical data. For example, in [20], the authors constructed such electric load profiles

from individual appliance profiles. By considering “availability” and “proclivity”

functions, they predict whether someone is available (at home and awake) and their
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tendency to use an appliance at any given time. These functions were applied to

predict individual appliance events, which were then aggregated into a load profile.

The second approach is termed the measurement-based load modeling. In [21], the

authors used this approach to create electrical profiles to examine demand side man-

agement strategies for Finland. In [22], a methodology of measurement-based load

modeling for transient stability analysis was proposed and Genetic Algorithms (GA)

was used to estimate load model parameters. However, both approaches fail to give

enough emphasis on the power consumption transition property over time.

In this study, we propose two types of approaches to model the uncertainty in

customer load demand. The first approach is based on a first order non-stationary

Markov chain. A maximum likelihood estimator (MLE) is derived to estimate the

time variant transition matrix of the Markov chain. The second approach is based

on time series analysis techniques. We present linear prediction models such as stan-

dard autoregressive (AR) process and time varying autoregressive process (TVAR),

according to different assumptions on the stationarity of the customer load data:

piecewise stationarity, local stationarity and cyclo-stationarity. Two important is-

sues in AR/TVAR models are investigated: AR/TVAR coefficient estimation and

determining the order of AR/TVAR models. The minimum mean squared error

(MMSE) estimator is adopted to derive the AR/TVAR coefficients, which leads to

the Yule-Walker type of equations. For the TVAR model, by doing basis function ex-

pansion based coefficient parametrization, we replace the scalar process with a vector

one and turn the original non-stationary problem into a time-invariant problem. All

the proposed models are tested against the same set of real measured customer load

demand data. Prediction performances of different models are analyzed and com-

pared, advantages and disadvantages are discussed. Both the non-stationary Markov

chain and the linear prediction technique address the time transition property of the

load demands.
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The rest of the chapter is organized as follows: In section 2.2, we present the

non-stationary Markov chain model. Linear prediction models based on the standard

autoregressive linear prediction models according to piecewise stationary and locally

stationary assumptions on the customer load data are presented in section 2.3. In

section 2.4, we discuss the TVAR model based on the cyclo-stationary assumption

which is more general and realistic than previous assumptions. In section 2.5, we

analyze and compare the prediction performances of all the approaches proposed.

The conclusions of this chapter are given in section 2.6.

2.2 First-order non-stationary Markov Chain based

Model

2.2.1 Maximum Likelihood Estimation of Transition Matrix

Determining the transition matrix is one of the key issues in Markov chain modeling.

It becomes more challenging in our problem because the customer load demands show

high non-stationarity. Significant variations in power consumption can be observed

between peak times (afternoon and evening) and non-peak times (midnight and

early in the morning). Thus, we need to estimate the transition matrices of the

Markov Chain based on transition histories of all time steps. We derive the maximum

likelihood estimation (MLE) of the transition matrix for one time step, and the same

structure holds for all other MLE’s in the rest of the time steps.

Denote by {pij|0 ≤ i, j ≤ m} the entries of transition matrix and denote by Xt

the state in step t, where pij is the transition probability from state i to state j

and m is the number of states. For any pair of initial and final states x1 and xn,

the likelihood is given by L(p) = Pr(X1 = x1)
∏n

t=2 pxt−1xt
. Define the transition
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counts nij as the number of times that state i is followed by state j, then rewrite the

maximum likelihood estimation problem as

maximize
pij

Pr(X1 = x1)
m∏

i=1

m∏

j=1

p
nij

ij (2.1)

subject to
∑

j

pij = 1, i = 1, 2, . . . ,m (2.2)

Notice that the optimal estimation p̂ij that maximizes the log-likelihood log(L(p))

also maximizes the likelihood function, where

log(L(p)) = log(Pr(X1 = x1)) +
∑

i,j

nij log(pij) (2.3)

Then this convex optimization problem can be solved by introducing a new objec-

tive function L(p) = log(L(p))−
∑m

i λi(
∑

j pij−1), where λ1, λ2, . . . , λm are Lagrange

multipliers. Taking into account both zero derivative conditions ∂L(p)/∂pij = 0 and

the probability transition matrix constraints
∑

j pij = 1, for i = 1, 2, . . . ,m, we have

nij/p̂ij−λi = 0 and
∑m

j=1 nij/λi = 1 for all i. Thus, the MLE estimator of transition

matrix is given by

p̂ij = nij/
∑

j

nij (2.4)

2.2.2 Prediction Performance Test against Real Measured

Data

To validate the proposed Markov chain model with the transition matrix estimator

derived above, we select some real measured data of 30 days from the huge data pool
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of the Electric Reliability Council of Texas [53], in which both forecasted and actual

power loads from clusters of households were recorded every 15 minutes for nearly

200 different locations. The Markov chain we adopt has 96 time steps corresponding

to all 15 minute intervals in a day. Since in practice the number of states need to be

finite, we first quantize data into a finite number of levels which are defined as states.

The states are determined as follows: The entire range from minimum to maximum

load demand is uniformly divided into consecutive intervals. The mean values of the

uniformly divided intervals are adopted as the states of the Markov chain model. All

data samples in a interval are then represented by the state value of that interval.

Starting with the same initial distribution of the data, we generate load distributions

using the derived MLE estimators of transition matrices for all time steps using half

of the available data and thereafter find the load distribution in each time step of

the Markov chain. The statistics of the distributions are then compared to that of

the other half of the data.

Well matched results with average mean error below 1% and average standard

deviation error below 10% can be observed. Figure 2.1 shows the mean values and

standard deviations over time of the real load distribution and the predicted load

distribution generated by a Markov chain with 6 states, with average mean error of

0.53% and average standard deviation error of 8.1%. Moreover, we also investigate

the dependence of the performance of Markov chain models with different number

of states. Figure 2.2 shows the variations of average errors in mean and standard

deviation respectively, as the number of Markov chain state increases from 3 to 10. It

can be seen that both errors decrease as the number of states increases. This matches

our intuition because a bigger number of states means a smaller quantization interval

size, including a smaller quantization error.
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Figure 2.1: Mean values and standard deviations of real load and load predicted
based on a 6-state Markov chain.

2.3 Linear Prediction Techniques for Customer Load

Demand Modeling

Though the non-stationary Markov chain model provides a time varying linear de-

scription of the time transient property of the load demand probability distribution,

it does not provide an easy way to predict the customer load demand directly based

on the immediate load data history. Time series analysis techniques, however, pro-

vide good alternative approaches by which the future load demands are predicted

by a linear function based on past load data record. For the prediction period with

general length of several days, the standard autoregressive process model can not be
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Figure 2.2: Errors in average mean value and standard deviation both decrease as
the number of the Markov chain state increases.

directly used for load demand prediction because of the non-stationary load profile

within the prediction period. Thus, we divide the entire load demand profile into

consecutive short segments. The load data within the short segments are assumed

to be stationary, which indicates piecewise stationarity over the entire prediction

period. For each stationary segment, we apply a p-order AR model for the customer

load demand modeling. Denote by s(i) as the load demand at time instant i, then

the AR model can be written as
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s(i) =

p
∑

j=1

φ(j)s(i− j) + v(i) (2.5)

where φ(1), φ(2), . . . , φ(p) are the parameters of the model and v(i) is the white noise.

To apply the AR model, there are two key issues to be addressed: determining the

order p of the AR model and calculating the model coefficients φ(i), i = 1, 2, . . . , p.

To determine the model order, different approaches have been developed, such as

Akaike information criterion (AIC), Bayesian information criterion (BIC) and partial

autocorrelation function (PACF) approach [54].

2.3.1 Determining the AR Model based on PACF Analysis

In this work, we determine the model order based on the partial autocorrelation

function (PACF) analysis. The PACF of lag k of a stationary sequence is defined as

the autocorrelation of lag k with the linear dependence of lower order autocorrelation

removed [55]. Mathematically, denoted by β(k) the PACF of lag k, we have

β(1) = Corr[s(i), s(i+ 1)], for k = 1

β(k) = Corr[s(i)− Ls(i+1),...,s(i+k−1)(s(i)),

s(i+ k)− Ls(i+1),...,s(i+k−1)(s(i+ k))], for k ≥ 2

(2.6)

where Ls(n0),s(n0+1),...,s(n1)(s(m)) denotes the projection of s(m) onto the space spanned

by s(n0), s(n0+1), . . . , s(n1), or equivalently, denotes the best (in terms of minimizing

MSE) linear estimate of s(m) based on s(n0), s(n0 + 1), . . . , s(n1). We may write

ŝ(m) = Ls(n0),s(n0+1),...,s(n1)(s(m)) =

n1∑

i=n0

a(i)s(i)
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where a(i), i = s(n0), s(n0 + 1), . . . , s(n1) are determined by minimizing E{(s(m)−

ŝ(m))2}. Thus, the PACF at lag k may be interpreted as the correlation between

s(i) and s(i+k) with the effect of the intermediate variables s(i+1), . . . , s(i+k−1)

“filtered out”. This is essential because usually the correlation of high order lags

could be merely due to the propagation of the autocorrelation at lower order lags.

It has been shown in [56] that for an autoregressive process of order p, the PACF

β(k) will be nonzero for k ≤ p and zero for k > p. Thus, to fit the stationary data

sequence in each segment, we determine the order of the AR model by analyzing the

empirical PACF of the data with some approximate cutoff. We analyze the same

set of real measured data as we used in the non-stationary Markoc chain approach.

Figure 2.3 shows the empirical PACF of one stationary segment, with the threshold

predefined (red dashed line), the reflection coefficients (The reflection coefficients

constitute unbiased estimates of the partial correlation coefficients.) with lags greater

than 4 are smaller than the threshold and are considered as zeros. Thus the AR model

order for that stationary segment is 4.

2.3.2 Autoregressive Process Coefficient Estimation

Three methods of autoregressive-parameter estimation from data samples are usu-

ally considered in the literature, the least-square approach, the Yule-Walker approach

and Burg’s method [57]. The least-square approach and the Yule-Walker approach

are pretty similar and differ only in the way how the autocovariance function is esti-

mated. In least-square approach, unbiased estimate of the autocovariance function is

used. While biased estimate of the autocovariance function is used in the Yule-Walker

approach. The Levinson-Durbin algorithm provides a fast solution of a system of

linear equations (e.g. Yule-Walker equation) containing a Toeplitz-style matrix. In

contrast to the least-square and Yule-Walker method, which estimate the autore-
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Figure 2.3: Empirical PACF of one stationary interval, with the threshold predefined
(red dashed line), the reflection coefficients (PACF) with lags greater than 4 are
smaller than the threshold value and are considered as zeros.

gressive parameters directly, Burg’s method first estimates the reflection coefficients,

which are defined as the last autoregressive-parameter estimate for each model order

p. From these, the parameter estimates are determined using the Levinson-Durbin

algorithm. To keep the discussion within the available space, we implement the

Yule-Walker approach in this study.

We first make the data in each stationary segment zero-mean, by replacing s(i)

with s̃(i) = s(i)− s̄, where s̄ = 1
N

∑N

i=1 s(i). We calculate the sample autocovariances

C(τ) = 1
N

∑N−τ
i=1 s̃(i)s̃(i+ τ), for τ = 0, 1, . . . , p. Then the Yule-Walker equation can

be written as follows, which can be solved using the Levinson-Durbin algorithm.
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We test the AR model with piecewise stationarity assumption against the same

set of real measured data. The load profile is divided into 12 stationary intervals.

For each segment, the AR order is determined based on the empirical PACF and

the AR coefficients are determined based on part of the data. The predicted load

profile is then compared to the rest of the data. Figure 2.4 shows the prediction

performance of AR model with piecewise stationarity assumption. It can be observed

that jumps exist between segments because different segments have different set of

AR coefficients.

2.3.3 Predicted Load Profile Smoothing: a Local Stationar-

ity Assumption

As mentioned in the prediction performance analysis for the AR model with piecewise

stationarity assumption, there are abrupt jumps between consecutive segments in

the predicted load profile because of the piecewise stationarity assumption. This

is not a realistic assumption, because even though faster or slower changing rates

can be observed in a real load profile, abrupt jumps in power consumption rarely

appear. The smoothness of load profile becomes more apparent when more customers

get involved. Because abrupt changes in individual consumption behavior may get

averaged out in the total load consumption, when most of the customers have smooth

load profiles at that time instant.

Thus, instead of assuming piecewise stationarity, we assume that the customer
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Figure 2.4: Prediction performance of AR model with piecewise stationarity assump-
tion. It can be observed that jumps exist between segments because different AR
coefficients are applied for different segments.

load profile is locally stationary, which means the data in a segment can be considered

to be stationary as long as the segment is small enough. Based on this assumption, we

can still apply the AR model for small time segments as we did before. The difference

is that now a sliding window is applied to ensure a certain length of overlapping

between consecutive segments. Figure 2.5 shows the prediction performance of the

AR model with locally stationarity assumption, with much smoother predicted load

profile and smaller prediction error. The sliding window size is the same as the

segment length and the sliding step size is one forth of the segment length.
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Figure 2.5: Prediction performance of AR model with locally stationarity assump-
tion. The sliding window size is the same as the segment length and the sliding step
size is 4.

2.4 Time Varying Autoregressive (TVAR) Pro-

cess for Customer Load Demand Modeling

Though the prediction performance of the standard AR model is acceptable, di-

viding the load profile into segments, both under piecewise and locally stationarity

assumptions, may degrade the prediction efficiency especially when the size of the

segment need to be sufficiently small to guarantee the stationarity. For a prediction

period with general length of several days, dividing the prediction period into a large
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number of segments might not be efficient enough for real time operation in practice.

However, close observation on the load profiles over consecutive days shows that the

power consumption pattern over consecutive days have similar patterns (load varia-

tion profiles). Thus, we can assume that the load demands are cyclo-stationary with

cyclic period of one day. Under this assumption, we can develop a prediction model

based on the load data in one day, and the same model parameters can be adopted

for load prediction in the following days. In this way, load prediction can be imple-

mented in a very efficient way even for relatively long prediction periods. As the load

profile within a day is non-stationary, we generalize the AR model by allowing the

AR coefficients to be time variant, which leads to a TVAR process [54, 58]. Denote

by s(i) the load demand at time instant i, we assume a p-order TVAR model, which

can be written as

s(i) =

p
∑

j=1

φj(i)s(i− j) + v(i) (2.8)

where φj(i), j = 1, 2, . . . , p are the coefficients of the model, which are functions of

both lag j and time i. v(i) is the zero-mean white Gaussian noise. To estimate these

time variant coefficients, we can further approximate each coefficient by a weighted

combination of a set of q + 1 independent “basis” functions fn(i), n = 0, 1, . . . , q.

Thus we have φj(i) =
∑q

n=0 φjnfn(i), where φjn’s are time invariant. Thus, we can

rewrite the TVAR process as

s(i) =

p
∑

j=1

(

q
∑

n=0

φjnfn(i))s(i− j) + v(i) (2.9)

=
[
ST
i−1, S

T
i−2, . . . , S

T
i−p

]
·Θ+ v(i) (2.10)

where
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Si = [f0(i)s(i), f1(i)s(i), . . . , fq(i)s(i)]
T , (2.11)

Θ = [φ10, . . . , φ1q, φ20, . . . , φ2q, . . . , φp0, . . . , φpq]. (2.12)

Now we can see the advantage of the “basis” function parameterizations: A linear

non-stationary problem becomes a linear time-invariant problem by replacing a scalar

process with a vector one [58]. To estimate the time invariant coefficients Θ that

gives the optimal prediction ŝ(i) =
[
ST
i−1, S

T
i−2, . . . , S

T
i−p

]
·Θ, it is therefore meaningful

to minimize the variance of the prediction error s(i)− ŝ(i). We therefore obtain the

optimum vector Θ as the solution of an equation of the Yule-Walker type
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(2.13)

Note that in the TVAR process modeling, in addition to time variant coefficient

estimation, there are other key issues to be addressed such as determining the order

of the model and the selection of the set of basis functions [58]. To determine the

optimal order p of the TVAR process that describes the behavior of the time series the

best, the PACF analysis approach mentioned before can still be adopted. However,

different from the PACF for stationary data sequence, the PACF for a non-stationary

data sequence is not only a function of lag k, but also a function of time instant t.

Let us denote the PACF of a non-stationary data sequence by β(t, t− k). From the

results in [55], it follows that a process s(i) is autoregressive of order p if and only if

its PACF β(·, ·) satisfies the following two conditions:
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(1) ∀t ∈ Z and ∀k > p, β(t, t− k) = 0, (2.14)

(2) ∀k ≤ p, ∃t ∈ Z s.t. β(t, t− k) 6= 0. (2.15)

According to [55], we can estimate the TVAR order of the entire load profile by

averaging the AR orders of stationary segments generated by a sliding window. For

another issue of selecting the basis function set, there are also a lot of choices. The

most common ones include orthogonal polynomial functions, trigonometric functions,

non-periodic Fourier basis and so on. Considering the cyclostationarity of the load

data, we select the trigonometric functions. Note that the lowest frequency compo-

nent of the basis function set should have a frequency that is of an integer multiple

of the cyclic frequency of the load profile, in order to catch the periodicity of the

load profile.

In the following, we test the proposed TVAR model against the same set of real

measured data. In our simulation, the order of the applied TVAR model is 4. In the

trigonometric basis function set, we set the lowest frequency component to be 6 times

of the cyclic frequency. The expectation in the coefficient estimation are replaced by

the sample means. From the 30 days of data, part of the data are used for training,

and then the obtained TVAR model is test against the rest of the data. The top

plot in Figure 2.6 shows the comparison between the actual and the predicted load

profiles, with first 5 days’ data as the training data. The bottom plot shows that the

prediction MSE decreases as the length of training increase from 2 to 6 days.

It is worth pointing out that the prediction under the cyclostationarity assump-

tion gradually becomes off from the real measured data when the prediction period

becomes too long, i.e. over months or seasons. This is because customer power

consumption pattern do change from season to season. Note that verifying the cy-

clostationarity of a data sequence in a meaningful way is not an easy topic and out of
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Figure 2.6: The top plot shows the prediction performance of the 4-order TVAR
model, with the data of the first 5 days as training data. The bottom plot shows
prediction error (MSE) decreases as the length of training increases from 2 to 6 days.

the scope of this work, since huge amount of other information is required to go with

it. Interesting readers are referred to [59] and related references there. Hence even

though the TVAR model increases the prediction efficiency, updates on the model

coefficients are still necessary periodically (say, monthly) in practice.
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Figure 2.7: Prediction performance comparison among different modeling ap-
proaches. 20% of the selected data is used for training, the predicted load profiles
are compared to the average of the rest 80% of the data.

2.5 Prediction Performance Comparison among Dif-

ferent Modeling Approaches

We compared the prediction performances of different modeling approaches we pro-

posed, with the same simulation setup. 20% of the selected data is used for training,

the predicted load profiles are compared to the average of the rest 80% of the data.

The prediction performances of different modeling approaches are shown in Fig. 2.7.

The advantages and disadvantages of all approaches are summarized in Fig. 2.8.
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Figure 2.8: Advantages and disadvantages of different modeling approaches.

Based on the analyses on different load modeling and prediction schemes pre-

sented above, we can conclude that both non-stationary Markov chain and the time

series analysis techniques provide good modeling of the time transient features of

customer load demand. The transition matrix estimation in the former approach de-

scribes how the distribution of load demands evolves over time, the latter approach

provides linear prediction schemes which predict future load based on the immediate

load history. Among the three linear prediction models we proposed, though the

model with locally stationarity assumption improve the performance compared to

the model with piecewise stationarity assumption by smoothing the predicted load

profile, both AR based model have the disadvantage of degrading the prediction ef-

ficiency because the coefficient estimation is implemented for each short stationary

segment. The TVAR based prediction model is based on the cyclo-stationarity of
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load profiles, and overcomes this disadvantage while guaranteeing good prediction

performance.

2.6 Conclusion

In this chapter, we proposed two types of approaches to model the uncertainty in

customer load demand. The first approach was based on a first order non-stationary

Markov chain. A maximum likelihood estimator (MLE) was derived to estimate the

time variant transition matrix of the Markov chain. The second approach was based

on time series analysis techniques. We presented linear prediction models such as

standard autoregressive (AR) process and time varying autoregressive (TVAR) pro-

cess, according to different assumptions on the stationarity of customer load profile:

piecewise stationarity, local stationarity and cyclo-stationarity. Prediction perfor-

mances of different models were analyzed and compared, advantages and disadvan-

tages were discussed.
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Chapter 3

Price-based Demand Response

Scheme Design in Smart Grid

3.1 Introduction

In most current electricity markets, fixed pricing schemes with constant rates are

being widely used. Customers face retail electricity prices that are flat over months

or even years [23]. A problem with fixed pricing schemes is the disconnection be-

tween short-term marginal electricity production costs and retail rates paid by cus-

tomers, which leads to inefficient overall resource usage. Due to lack of information

on generation costs, electricity consumption behavior of customers may not adjust

to supply-side conditions. Thus fixed constant pricing results in suboptimal cus-

tomer behavior as well as higher electricity costs than they would otherwise be in an

optimally efficient system [24].

There is a growing consensus that Demand Response (DR) can play an important

role in market design [25]. Lack of DR has been shown to be a major contributing

factor for energy-market meltdowns [26]. In [23], for example, DR is defined as
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“Changes in electric usage by end-use customers from their normal consumption

patterns in response to changes in the price of electricity over time, or to incentive

payments designed to induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized.” DR not only reduces the capacity

investments in peak generation units to serve occasional heightened demand, but

also provides short-term reliability benefits as it can offer load relief to resolve system

and local capacity constraints. There are two basic demand response options: Price-

based demand response and incentive-based demand response. Price-based demand

response includes real-time pricing (RTP), critical-peak pricing (CPP), and time-

of-use (TOU) rates. Customers can respond to the price structure with changes in

energy use, reducing their electricity bills if they adjust the timing of their electricity

usage to take advantage of lower-priced periods and avoid consuming when prices

are higher [23]. Incentive-based demand response schemes pay participants to reduce

their loads at times requested by the program sponsor, triggered either by a grid

reliability problem or high electricity prices. DR programs typically specify a method

for establishing customers’ baseline energy consumption level below which demand

reductions are not allowed. In power systems, the energy requests that customers

send to utility consist of two parts: nonflexible load request and flexible load request

[27]. The nonflexible part is the minimum amount of energy that utility needs to

provide at a specific time. The flexible part can be reallocated over time according

to a certain load management strategy. For any load management strategy there are

two common primary goals: peak load shaving and load profile flattening. Under

real-time pricing, the electricity price is determined by real time load information.

In this chapter, a block scheduling model of load management is presented for

price-based demand response scheduling. In this model, the size of the time block is

set to be small enough so that all load shifting within the time block can be considered

as cost free and acceptable to customers. The solution to this block processing

problem can then be the basis for implementations of arbitrarily long scheduling
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periods. Two types of real-time pricing schemes, linear pricing and threshold pricing,

are discussed in this paper. We consider optimal demand-response when customers

cooperate as a group as well as when each customer is only interested in minimizing

its own cost. Naturally these two scenarios, as shown to lead to centralized and

distributed optimizations.

The rest of this chapter is organized as follows: In Section 3.2, the system model

and the problem formulation for block scheduling are presented. In order to minimize

the Utility’s cost, a convex optimization problem is formulated and solved analyti-

cally in section 3.3. A searching method is presented to find the water levels of the

water-filling solutions numerically in section 3.4. In section 3.5, the original problem

is decoupled and the customer-wise power allocation is optimized by a two dimen-

sional water-filling solution. Performance analysis and comparison with simulation

results are also presented. The conclusions from this chapter are given in section 3.6.

3.2 Problem Formation

We assume an electricity market consisting of one electrical Utility and K customers.

A block processing model is adopted here in which load demands are scheduled in

a periodic block-by-block manner. Each block consists of I time intervals and the

size of each time interval is T hours. The interaction model between the Utility

and customers can be described as follows [60–62]: At the beginning of each time

block, all customers submit their predicted load demands of the current time block

to the Utility based on their energy requirements and electricity pricing information.

The predicted load demands from customers consist of two parts: nonflexible load

demands and flexible load demands. The nonflexible load demands are the basic

energy requirements of customers, which specify how much electrical energy is needed

during each time interval of a time block. We denote by lNi,k and l̃Fi,k (i = 1, 2, . . . , I,
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k = 1, 2, . . . , K) the nonflexible and flexible load demands from customer k in time

interval i, denote by lNi =
∑K

k=1 l
N
i,k and l̃Fi =

∑K

k=1 l̃
F
i,k the total nonflexible and

flexible load demands over all customers in time interval i, similarly lN =
∑I

i=1 l
N
i

and l̃F =
∑I

i=1 l̃
F
i denote the total nonflexible and flexible load demands during that

time block. We assume that the Utility guarantees supporting all nonflexible load

demands during each specified time interval. Thus, in any time interval the sum

of nonflexible load demands over all customers is assumed to be no greater than

the generation capacity. On the other hand we assume that no customer cheats on

its nonflexible load demand, e.g. declaring more nonflexible load demand than its

actual basic requirement. The demand management scheme design with self-oriented

customers, meaning that customers might cheat to increase their own profits, is

investigated in our early work [31] and [14]. From the beginning of a time block

all customers want their flexible load demands be supported as early as possible.

Energy supply from the Utility during later time intervals induces a delay cost which

is an increasing function of both the delay time and the amount of energy that

has been delayed, due to the dissatisfaction of customers. The delay cost defined

above is important for the demand management scheme design as it addresses the

requirement for a timely energy supply [63].

With the household load demand prediction technique developed in the previous

section, the Utility and customers interact as follows: Customers submit their pre-

dicted load demands (both flexible and nonflexible loads) to the Utility by using the

linear prediction techniques. Upon receiving customers’ load demands, the Utility

checks the generation capacity constraint and determines an optimal generation pro-

file that minimizes its cost over time. On the generation side, the objective of the

Utility is to minimize its cost. On the consumption side, the objective of customers

is to maximize the profit, in terms of individual profits and/or the social welfare de-

fined for the entire collection of customers. The whole interaction procedure between

the Utility and customers is illustrated in Fig. 3.1.
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Figure 3.1: Interaction model between the electrical Utility and customers.

3.3 Utility Cost Minimization: Load Demand Schedul-

ing over Time

As discussed in the problem formulation section, upon receiving the predicted load

demands from all customers, the Utility can apply the DR scheduling for the purposes

of peaking shaving and load profile flattening. In this section, we formulate and solve

the problem of minimizing the Utility cost by scheduling the flexible load demands

over time intervals within the processing block, assuming specific generation cost and

delay cost forms. The amount of flexible load demand after load reallocation in time

interval i is denoted by xi and we assume that the Utility provides constant power of
lNi +xi

T
within each time interval. We assume that in time interval i, the generation cost

per unit energy (in monetary measure) is a linear function of the total load demands

in that time interval, say, α(lNi + xi), where α is a positive scaling factor [30]. Thus

the generation cost for time interval i and for the entire time block are given by

Cg,i = α(lNi + xi)
2 and Cg =

∑I

i=1 Cg,i respectively. Moreover, we assume that if xi

amount of load demands have been delayed by i time intervals, the associated delay
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cost is given by Cd,i = iTxiγ
−(I−i)T , where γ is the positive delay cost scaling factor.

Thus the total delay cost for a processing block is Cd =
∑I

i=1 Cd,i. It is worth pointing

out that, though in practice the cost terms could have different forms according to

specific scenarios, the cost function defined in this paper is actually independent from

the solution approach developed in this paper. When the total load demands (the

nonflexible plus the flexible) in a time block is greater than the total energy that can

be generated during that time block, no optimal reallocation solution exists unless

the Utility cuts down the flexible load demands. For fairness, the following strategy

is adopted: If the total amount of load demand is greater than the total generation

capability, the Utility will cut every customer’s flexible load demand by the same

proportion to keep the total load demand equal to the generation capability, i.e, if

l̃F + lN > ILM , where LM is the constant generation capacity of Utility in each time

interval. The new flexible load demand is lF =
∑K

k=1 l
F
k and lFk = l̃Fk − β(l̃Fk + lNk )

where β = l̃F+lN−ILM

l̃F+lN
for all k. Based on this centralized load cutting scheme, we may,

without loss of generality, assume that the load demand in any time interval never

exceed the generation capacity and thus drop the generation capacity constraint.

Denoting by weighted sum C = Cg + δCd the total cost of Utility, where δ is the

weight coefficient for delay cost, we have the following optimization problem

minimize
x

C(x) = α

I∑

i=1

(xi + lNi )
2 + δ

I∑

i=1

(iTxiγ
−(I−i)T )

subject to − xi ≤ 0, i = 1, 2, . . . , I,

I∑

i=1

xi − lF = 0.

With the primal problem being convex, the optimal primal and dual solutions

are achieved if and only if the following Karush-Kuhn-Tucker (KKT) conditions are

held [64]:
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I∑

i=1

x∗i − lF = 0 (3.1)

−x∗i ≤ 0, ∀i,

λ∗i ≥ 0, ∀i,

−λ∗ix
∗
i = 0, ∀i,

∂L(x∗, λ∗, v∗)

∂x∗i
= 0, ∀i.

Solving the KKT conditions above, the optimal solution can be written as

x∗i =







0 if w∗ < ŵi

w∗ − ŵi if w∗ ≥ ŵi,
(3.2)

where ŵi = lNi + δ
2α
(iTγ−(I−i)T ) and w∗ is the unique solution to

I∑

i=1

max(0, w∗ − ŵi) = lF , (3.3)

Note that, the left hand side of (3.3) is a piecewise-linear increasing function of

w∗, with breakpoints at lNi,k, ensuring the uniqueness of its solution. In general, there

may not be a closed form solution for w∗, requiring numerical computation. For

δ = 0 (i.e., delay cost is completely ignored), the solution (3.2) reduces to

x∗i =







0 if w∗ < lNi

w∗ − lNi if w∗ ≥ lNi ,
(3.4)

This solution structure (3.4) is well known in information theory and is referred

to as the water-filling solution [65]: We can think of lNi as the height of the bottom
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level at location i along the time axis within the processing block. Starting from

zero, we allocate flexible loads to the location with the lowest nonflexible load. As

flexible loads increase, some of them are put into locations with higher nonflexible

loads. We continue to allocate flexible loads in this way until we have allocated all

of lF . At this time, the height of the flat flexible load level would be the solution

w∗ of (3.4). This process is similar to the way in which water distributes itself in a

vessel. The depth of water at location i is then the optimal value x∗i .

To better interpret the solutions above, we consider an electricity network during

a time block of I = 24 intervals with T = 1 hour. The customers’ load demands of

different time intervals are generated according to different distributions correspond-

ing to time dependent electrical energy consumption behavior. Given a set of initial

load demands, the optimal allocation results for different δ values are shown in Fig.

3.2. It is seen that the solution (3.2) is slightly different from the water-filling result

as there is no constant water level when delay cost is considered. This is because

the allocation results xi (i = 1, 2, . . . , I) is determined not only by the nonflexible

load lNi , but also by another time interval dependent term δ
2α
(iTγ−(I−i)T ). Indeed,

solution (3.2) is of a water-filling like form if we interpret ŵi = lNi + δ
2α
(iTγ−(I−i)T ) as

the new modified nonflexible load in which δ
2α
(iTγ−(I−i)T ) acts as an additional time

related nonflexible load. The water level drops over time since later time intervals

induce greater additional nonflexible load demands. It can be seen that the water

level gets steeper as the delay cost weight δ increases. However, once the load de-

mand of a time interval achieves LM , no more load demands can be allocated to that

interval. Thus after δ increases to a certain value, the optimal load profile becomes

saturated (fixed). In this saturated profile, all except the last time interval with pos-

itive flexible load demands get LM amount of flexible load demands. The generation

cost also achieves its maximum value corresponding to the saturated profile.

Figure 3.3 shows the saturated load profile (with LM normalized to 1) and gen-
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eration costs (with the minimum normalized to 1) for different values of δ, given the

average initial load demands. Note that the generation cost is nondecreasing over δ’s,

which is intuitively reasonable because the Utility has smaller and smaller flexibility

on the scheduling operation as δ increases.

Figure 3.2: Optimal load profile comparison for different delay cost weights (δ’s): a)
Initial load demand from customers. b) Optimal load profile with no delay cost. c)
Optimal load profile with delay cost weight δ = 1. d) Optimal load profile with delay
cost weight δ = 3.

3.4 A Numerical Searching Method for Water-

filling Solutions

As mentioned above, there is no closed form expression for the water level in the

water-filling solution. In this section, we propose a searching method to find the

water level. To keep the discussion general enough, we consider a threshold pricing
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Figure 3.3: Saturated optimal load demand profile (upper) and generation cost for
different δ’s (lower)

scheme in this section. The linear pricing scheme we discussed earlier is actually a

special case of the threshold pricing scheme with a threshold level of 0.
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3.4.1 Threshold Pricing Scheme

Given initial load requests from customers, for a small enough load tuple ∆l, all

loads {lFi }’s and {lNi }’s can be represented as multiples of ∆l. We label the m-th

load tuple in time interval i by emi , for i = 1, 2, . . . , I and m = 1, 2, . . . ,Mi, where

Mi =
lFi +lNi
∆l

. In time interval i, there is a threshold Li which can also be represented

as multiples of ∆l, say Li = M̃i∆l. We denote the price level of emi by nm
i . The price

level nm
i for tuple emi is given by

nm
i =







0 if m ≤ M̃i

m− M̃i if m > M̃i ,
(3.5)

= [m− M̃i]
+ . (3.6)

Denote by Lmax the maximum load capacity of Utility and Lmax = Mmax∆l. Then

we have that nm
i ≤Mmax for ∀i,m, as shown in Fig. 3.4.

The threshold pricing scheme can be described as follows: In time interval i, a

constant basic unit price P0 ($/kWh) applies for all emi ’s below threshold Li. The

unit price for the m-th load tuple emi in time interval i above threshold Li is given by

Pm
i = P0+nm

i ∆P , where ∆P ($/kWh) is the increment in unit price. Denoted by xi

the flexible load request that Utility will schedule in time interval i, the consumption

cost related to time interval i is given by Ci = P0(l
N
i + xi), if l

N
i + xi ≤ Li; and

Ci = P0Li +
∑Mi−M̃i

nm
i =1 (P0 + nm

i ∆P )∆l, if lNi + xi > Li.

3.4.2 Water Level Searching Methods

We define the vacancy (shown in Fig. 3.4) value in time interval i as vi = Mi + 1.

Based on the observation that the only way of decreasing the generation cost is to
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Figure 3.4: An illustration of threshold pricing scheme with discrete load tuples and
vacancies. The threshold Li,k is set to be constant over all time intervals which could
be dynamic in general.

shift some emi ’s from higher price levels to vacancies with lower price levels, we have

the following proposition:

Proposition 1. In the block scheduling for threshold pricing scheme, the total con-

sumption cost of all customers is minimized if and only if max
i

Mi ≤ min
i

vi.

Proof. Necessity: Assume we have minimized the generation cost but there are some

time-customer pairs i1 and i2 such that Mi1 > vi2 , then by shifting the load tuple

e
Mi1

i1
from price level Mi1 to the vacancy vi2 we can further decrease the cost, this

contradicts the minimum cost assumption.

Sufficiency: If the price cost function is not minimized, then there exists some load
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shifting strategy that enable us to further decrease the generation cost. Thus there

exists time-customer pairs i3 and i4 such that Mi3 > vi4 . Thus if max
i

Mi ≤ min
i

vi

holds, there will be no load shifting strategy that could further decrease the cost

function, meaning the current generation cost is the minimum.

For the threshold pricing scheme, the optimal load profiles are of two categories

according to whether the increment in unit price applies or not.

No increment in unit price applies

In the initial load profile, if all emi ’s above the threshold can be allocated into vacan-

cies below the threshold, then all the flexible loads in the optimal load profile will

be in price level 0. All optimal load profiles that satisfy this property are considered

as being optimal, meaning the optimal solution is not unique.

Increment in unit price applies

In the initial load profile, if the emi ’s above the threshold are more than the vacancies

below the threshold, then some flexible load tuples will cause price increments at

some time intervals in the optimal load profile.

A slight variation of proposition 1 tells more about the optimal load profile in this

case: Noticing that max
i

Mi ≤ min
i

vi ⇔ max
i

vi ≤ min
i

vi+1, the optimal load profile

is flat in a ∆l-flat sense. By “∆l-flat” we mean that max
(i1),(i2)

|(lNi1+xi1)−(l
N
i2
+xi2)| ≤ ∆l.

As ∆l → 0, we have max
i

vi = min
i

vi. Thus, the optimal load profile again converges

to a water-filling result. Hence, the optimization problem to minimize the Utility

generation cost can be stated as follows: Given initial load request information:

price levels nm
i ’s (Mi’s) and vacancy levels vi’s for t = 1, 2, . . . , T with threshold level

Li, by doing a load reallocation which is also an updating process of nm
i ’s and vi’s,
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we can minimize the total consumption cost of all time intervals if and only if the

achieved load profile (possibly not unique) with M∗
i ’s and v∗i ’s satisfy the optimization

condition: max
t

M∗
i ≤ min

i
v∗i .

To find the optimal load profile, we may start from min
i

vi and search upward to

max
i

vi until the testing level v∗i satisfies the following conditions:

1. In the initial load request profile, the number of emi ’s above the testing level

v∗i is strictly less than the number of all vacancies on and below testing level v∗i .

2. In the initial load request profile, the number of emi ’s on and above the testing

level v∗i is equal to or greater than the number of all vacancies below testing level v∗i .

3.4.3 Simulation Results

The searching process and the termination condition described above gives the water

level in the “∆l-flat” sense. In the following, we simulated the proposed load manage-

ment strategy for an electric Utility with the threshold generation cost model during

a period of I = 24 hours with each time interval T = 1 hour, and for a electricity

market of 20 customes. Load tuple size is set to be ∆l = 1 KWh. The Utility has a

maximum capacity Lmax = 60 KWh. The threshold was set to be Li = 15 KWh, ∀t.

For each time interval, the flexible and nonflexible loads were generated according

to uniform distributions U(0, ut) and ut’s were adjustable. As Lmax is normalized to

1, all loads can be expressed as certain percentages of maximum Utility capacity.

Fig. 3.5 shows that in the initial load request profile, the number of flexible loads

above the threshold (Li = 15 KWh) is greater than the number of vacancies below the

threshold. Thus, in the optimal load profile, extra increment in unit generation cost

will apply. However, since the nonflexible loads are not high, the optimal load profile

keep “∆l”-flat. Since the goal of DR is peak-load shaving and load-profile flattening,
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we may set lower threshold Li’s for heavy load time intervals (for example, during

day and evening hours) and higher threshold Li’s for lighter load time intervals

(for example, during midnight hours) [66]. Such dynamic price-thresholding can

naturally incentivize the customers to schedule their demand-responses in a way

that will lead to peak-load shaving and load profile flattenning. An example of the

dynamic threshold pricing is shown in Fig. 3.6. It can be observed that customers

are encouraged to make use of off-peak time intervals. It is worth pointing out that

though the profile in the right plot seems non-flat, it is actually flat in a price-level

sense, as the surface of the flexible loads is in the same price level.

Figure 3.5: “∆l”-flat optimal profile with increment in unit generation cost.
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Figure 3.6: Optimal load profile with dynamic threshold pricing scheme. Though
the profile in the right plot seems non-flat, it is actually flat in a price-level sense, as
the surface of the flexible loads is in the same price level.

3.5 Customer Side Power Allocation: a Two-dimensional

Water-filling Solution

The one-dimension water-filling solution presented above actually reveals a central-

ized optimization approach for power allocation among distributed customers. Con-

sider the following optimization problem with K customers in the electricity market,
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minimize
x

C(x) = α

K∑

k=1

I∑

i=1

(xi,k + lNi,k)
2+

δ
K∑

k=1

I∑

i=1

(iTxi,kγ
−(I−i)T ) (3.7)

subject to − xi,k ≤ 0, i = 1, 2, . . . , I, k = 1, 2, . . . , K,

K∑

k=1

I∑

i=1

xi,k − lF = 0.

It can be observed that this optimization problem is just an extension of the

previous one but with one more dimension of customers. Again, by solving the KKT

conditions, solutions with similar structures can be derived. In the special case with

δ = 0, the two-dimensional water-filling solution is given by (3.8), as shown in Fig.

3.7.

x∗i,k =







0 if w∗ < lNi,k

w∗ − lNi,k if w∗ ≥ lNi,k ,

= [w∗ − lNi,k]
+ . (3.8)

If we sum the two-dimension water-filling profile over all customers, we get a

one-dimensional profile, as shown in Fig. 3.8. Comparing Fig. 3.2(b) and Fig. 3.8,

it can be concluded that the minimum Utility cost specified by the two-dimension

water-filling solution is higher than the minimum Utility cost specified by the one-

dimensional water-filling solution. Because in the former scenario the water level is

strictly flat, while in the later scenario the water level of the one dimensional profile is

not completely flat. This deviation between one-dimension and two-dimension water-

filling solutions actually reveals how the Utility cost minimization can be affected by

the customer clustering.
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Figure 3.7: Two-dimensional water-filling solution that indicates how loads from
different customers are scheduled over the processing time block.

3.5.1 Customer Clustering Effect

It is worth pointing out that if we switch the order of minimization and summation

in the optimization problem (3.7), meaning that either we do the minimization for

each customer first and then take the sum of them, or we just minimize the total cost

of all customers. These two objective functions lead to different optimal solutions.

The optimization problem (3.7) actually corresponds to the scenario in which all

K customers are considered in one cluster. Denote by C∗ the minimum cost corre-

sponding to the scenario that all K customers are in one cluster, which is defined as

follows (For simplicity, in this section we ignore the delay cost.),
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Figure 3.8: The non-flat one-dimension profile as a result of summing the two-
dimension water-filling profile over all customers.

C∗ = min
i,k

K∑

k=1

I∑

i=1

α(lNi,k + xi,k)
2 (3.9)

For comparison purpose, we consider another extreme case in which there is only

one customer in each cluster. Denote by C̃∗ the minimum cost corresponding to the

scenario that every single customers is one cluster, which is defined as

C̃∗ =
K∑

k=1

C̃∗k =
K∑

k=1

min
xi,k

I∑

i=1

α(lNi,k + xi,k)
2 (3.10)

62



Chapter 3. Price-based Demand Response Scheme Design in Smart Grid

If we assume that the generation capacity of the Utility is higher than the max-

imum total load requests from all customers at each time instant, the optimization

problem (3.10) can be decoupled into K individual optimization problems, each cor-

responding to one cluster. For each cluster, we solve an optimization problem of the

following form

minimize
x

C̃∗k = min
xi,k

I∑

i=1

α(lNi,k + xi,k)
2 , (3.11)

subject to − xi,k ≤ 0, i = 1, 2, . . . , I ,

I∑

i=1

xi,k − lF = 0 .

These decoupled optimization problems can be solved by using the same tech-

nique and the solution structure corresponding to (3.10) is given by a two dimensional

water-filling result but with different water levels for different clusters (different cus-

tomers in this case), as shown in Fig. 3.9.

In general, the minimum cost increases as the size of the cluster increases from 1 to

K, so that C∗ ≤ C̃∗. This performance degradation of the distributed solution comes

from the fact that, instead of the global cost, costs of clusters are minimized. We refer

to this performance degradation as the Price of Anarchy (PoA). This inefficiency can

be characterized by the quantity C̃∗−C∗

C∗
, which is the normalized extra cost of opting

for distributed objectives over the global objective. Fig. 3.10 shows the normalized

extra cost as the customer cluster size increases from 1 to 20. A local water-filling

solution applies within each customer cluster. It can be observed that the POA

decreases monotonically as the group size increases.

Based on the analysis presented above on the price-based DR scheme we pro-

posed, it will be very interesting to further generalize the problem by assuming

that all distributed customers have the decision making capabilities and compete
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Figure 3.9: Two-dimensional water-filling with different water levels for different
customers.

for electric power. In this scenario, the optimization problem becomes a game and

a Bayesian Nash equilibrium is needed to achieve the optimal DR scheduling and

power allocation. In [31], we presented a Vickrey auctioning game combining the

two objective functions of Utility cost minimization and customer profit maximiza-

tion. Due to space limit, we are going into the details of the game theoretic approach

in this paper. Interested readers are referred to [31] for more details.
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Figure 3.10: Price of anarchy (POA) decreases as the size of the customer cluster
increases.

3.6 Conclusion

In this chapter, based on the proposed load demand prediction techniques, we de-

signed a DR scheduling scheme based on the Utility cost minimization with different

customer clustering sizes. A convex optimization problem was formulated and the

optimal demand response profile was in the form of a two-dimensional water-filling

solution either with flat water levels or different water levels for different customers.

Price of Anarchy (PoA) analysis was presented to balance both the centralized and

distributed competing objectives.
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Chapter 4

Optimal Stochastic Tracking for

Primary Frequency Control

4.1 Introduction

In traditional electric grid planning, the Utility and customers interact on a slow time

scale due to insufficient information exchange between the power generation and the

consumption sides [2]. Other limiting factors are the uncertainties raised due to

the ever-increasing and fluctuating load demands and renewable generations, which

are mostly based on solar, wind and tidal resources [19, 67]. Such uncertainties will

become more significant as more and more integrated distributed energy resources

(DERs), e.g. plug-in hybrid electrical vehicles (PHEVs), are connected to the grid.

Thus system operators need more efficient and effective control schemes to balance

variables on both generation and consumption sides. These schemes help to overcome

many technical challenges with increased penetration of renewable generations and

PHEVs, such as voltage rise effects, power quality and power grid protection.

In any electric system, the stability of the electrical grid is guaranteed by bal-
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ancing the power generation and consumption [28]. Generation units and even load

in some cases must be manipulated to conduct power balancing so the network user

is not affected by load changes or generation and transmission outages. From the

viewpoint of load matching, various demand response schemes have been proposed

to affect customer load profiles [23, 29–31]. In [32], a three-step methodology was

presented to manage the cooperation among technologies of distributed generation,

distributed electricity storage and demand side load management. From the view-

point of power generation control, since massive storage of alternating electricity

is difficult, two separate equilibria should be kept on the grid for stabilizing pur-

pose [33]: (1) The active power generated should at each moment equal the active

power consumed. A deviation from this equilibrium results in a deviation from the

standard frequency (60 or 50 Hz). Hence, keeping this equilibrium between active

power consumption and generation means maintaining frequency. (2) The reactive

power on the grid should be kept in equilibrium as well. Reactive power is an

extra load for the grid, leaving less capacity for active power, resulting in a local

voltage drop. Hence, keeping reactive power in equilibrium means maintaining volt-

age. Studies on frequency and voltage control have been reported in many previous

work [28, 34–37]. In particular, a comprehensive survey on frequency and voltage

control technical features can be found in [28]. In [34], the authors discuss the issue

of excess steady-state voltage rise and the methods of limitation that can be applied

with specific reference to wind generation. In [36], a strategy for the control of termi-

nal voltage and frequency of a stand-alone self-excited induction generator-(SEIG)

based wind generator, working with variable speed and load is proposed. In [37], the

authors presented a micro hydro scheme with parallel operation of synchronous and

induction generators in micro hydro scheme.

In most of the literature, frequency and voltage control schemes are usually de-

signed separately because generally they are implemented by generator rotor speed

governor and excitation control system respectively [8,38]. In this paper, we focus on
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frequency control (active power control) issues. The frequency control usually con-

sists several layers [6–8], including primary control, secondary control, tertiary con-

trol and other possible balancing power reserve planning services. Control schemes

of different levels have different objectives and operating time scales, as shown in

Fig. 4.1. The objective of primary frequency control (with a controlling period on

the order of seconds) is to maintain a balance between generation and consumption

within the synchronous area using turbine speed or turbine governors. However, pri-

mary frequency control stabilizes frequency but does not drive the system frequency

back to the original set-point value after a disturbance. Secondary frequency con-

trol (with a controlling period on the order of minutes) is needed since when several

generators are doing generation sharing, secondary frequency control distributes the

power imbalance among selected units [6]. The secondary frequency control can also

drive the system frequency back to the original desired value. Tertiary frequency

control (with a controlling period in the order of minutes to hours) is a manual

change in the dispatching in order to restore the secondary reserve and provide a

more permanent solution if the imbalance between consumed power and scheduled

power persists. There are several important research issues associated with both

secondary and tertiary frequency control, such as spinning reserve, unit commit-

ment and economic dispatch. Spinning reserve [42] is the unused capacity provided

by devices that are synchronized to the network and can be quickly activated on

decision of the system operator. Unit commitment and economic dispatch [43] is

to find the optimal dispatch of available generation resources to meet the electrical

load and spinning reserves. Other layers in the frequency control framework include

stand-by supplies and contractual load shedding which have longer control periods

(hours). Unit commitment and economic dispatch are important topics in power

grid generation planning by themselves and will not be discussed in detail here.

Currently the most widely adopted primary frequency control scheme is the

proportional-integral-derivative controller (PID controller) [6]. This is because PID
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Figure 4.1: Load frequency control consists of primary control, secondary control,
tertiary control and other planning reserve services.

controller shows relatively good control performance when the dynamics of the plant

is unknown or too complicated to analyze. By tuning the three parameters in the

PID controller algorithm, the controller can conveniently provide control action de-

signed for specific process requirements. However, PID controller does not guar-

antee optimality in control and system stability. In this paper, we focus on the

primary frequency control design and propose an optimal stochastic tracking scheme

for synchronous generator active power generation control, assuming the dynamics

of individual synchronous generator. In this tracking scheme we minimize the dif-

ference between the active power generation output and the reference signal which
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incorporate the randomness of both load demands and renewable generations. Fur-

ther analysis on the tracking performance are presented considering synchronous and

asynchronous customer load signals in the reference.

The rest of the chapter is organized as follows: In section 4.2, we propose a

comprehensive real-time interactive framework for smart-grid while ensuring grid-

stability and Quality-of-Service (QoS). In section 4.3 emphasis is placed on develop-

ing dynamic models taking into account the uncertainties in renewable distributed

generations and customer load demands. In section 4.4, based on the dynami-

cal model of the synchronous generator, two stochastic tracking control schemes

are proposed: (1) reference dynamics-based tracking and (2) reference statistics-

based tracking. The proposed tracking schemes are further extended by introducing

asynchronous customer load demand signals in section 4.5. Simulation results are

presented in section 4.6 showing the performances of both prediction and tracking

schemes. The conclusions from this chapter are given in section 4.7.

4.2 A Comprehensive Interactive Architecture for

Smart Grid

Although a comprehensive formulation and an analysis is not yet available for smart-

grid, still there have been several attempts to understand, model and analyze vari-

ous aspects of smart-grid in [4,5,68]. An adaptive stochastic control framework was

presented in [69] which was mainly focused on self-healing, prediction and cyber-

security of power grids. In [68], the author presented the concept of energy internet,

which modeled energy flows from suppliers to customers as data packets in the In-

ternet. The uncertainty in supply due to these integrated renewable DERs and the

challenges they imposed on the existing distribution infrastructure and the system
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operator have been discussed in [9]. The distribution-level smart-grid features such

as interconnection of distributed generation and active distribution management, ad-

vanced metering infrastructure (AMI) systems in network management and power

quality monitoring were discussed in [10]. In [11], the implementation of vehicle-to-

grid (V2G) power issues, strategies and business models for doing so, for purposes of

both stabilizing the grid and supporting large-scale renewable energy were discussed.

Various control-theoretic and system-level problem formulations of smart-grid archi-

tectures have been discussed in [70, 71]. In [12], the authors showed that significant

improvements can be made to the operations of a smart-grid by providing informa-

tion about the likely behavior of renewable energy through both online short-term

forecasting and longer term assessments. In [13], a distributed control method was

proposed for converter-interfaced renewable generation units with active filtering

capability. It is worth pointing out, however, that little work has considered a com-

prehensive cycle of interactions between the Utility and the smart homes taking into

account all aspects of customer-side decision making, Utility-side demand response

scheduling, distributed energy resources (DERs) for grid-stability and the effects of

ICT infrastructure on these.

In this work, we propose a comprehensive real-time interactive framework for

smart-grid while ensuring grid-stability and Quality-of-Service (QoS). This control

scheme takes into account the intermittent and random nature of renewable gen-

erations and individual customer load demands. Figure 4.2 shows the interaction

framework, extending the framework in [72], between distributed customers and the

Utility, addressing the demand response scheduling and real-time power generation

control respectively.

This comprehensive scheme would give rise to a variety of questions for both the

Utility as well as for the individual smart-homes in how to best maximize local goals.

The overall framework can be implemented in three steps, as shown in Fig. 4.2.
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Figure 4.2: Interaction framework for distributed customers and supporting conven-
tional generation facilities.

1. At the beginning of each scheduling interval, the Utility broadcasts electricity

price information for several time intervals in advance. Based on the information on

prices, as well as predicted load demands, local renewable generation and budgets,

customers submit their initial load demand requests to the Utility for each time

interval of the scheduling period. Having on-site renewable DERs, each customer is

able to at least partly support its own load demand by consuming locally generated

renewable energy. When a customer has excess renewable generation, it may decide

what portion of its locally generated renewable energy is to be sold to the grid and

what portion to be stored in its own distributed storage for future use, in order to

optimize long-term accumulated benefit.

2. Based on the initial load demands from customers, the Utility schedules the
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Demand Response (DR) for load reallocation over time intervals and among differ-

ent customers. The objective here is to effectively reshape the load demand profiles

by shaving peak loads and flattening the load profiles. In [31], we propose an auc-

tioning game based DR scheme, which integrates minimizing the Utility’s cost and

maximizing the social welfare of competing customers.

3. In each time interval, the primary control scheme is implemented for each

generator to match the active power generation to the reference load assigned for

frequency control purpose. For an individual generator, the reference signal for active

power generation is random and time-varying. This defines a stochastic reference

tracking control problem for synchronous generator in the presence of transmission

and sensor measurement feedback delays and errors as well as incomplete knowledge

on plant models.

With the first two steps addressed in our previous work [16, 30, 31, 72–74], in

this paper we focus on step 3 on developing optimal tracking control schemes for

generation facilities to track the time variant load demands. The tracking scheme

design becomes challenging when the demand signals from distributed customer loca-

tions experience different time delays during data measurement at sensors and data

transmission over communication channels, thus becoming asynchronous.
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4.3 Dynamical Models for Central Power Plant

and Customer Net Load Demands

4.3.1 State-space Representation of a Synchronous Genera-

tor

As mentioned in previous sections, the active power imbalance is distributed among

selected generators in generation-sharing mode. In primary frequency control stage,

we focus on the real-time control scheme design (with controlling periods on the

order of seconds) for individual generator, whose dynamics is fast enough to respond

to variations in load demands and renewable generations. In this section, we assume

the commonly used third-order nonlinear model of a synchronous generator [75]. The

nomenclature is defined as follows: rd, rq and r
′

d are the augmented reactance, i.e.

the line and transformer reactance are added with them. δ is the rotor angle with

respect to the machine terminal. ω is the relative speed of the rotor in rad/s. v
′

q is

the transient internal voltage of armature. EFD is the equivalent electromotive force

(EMF) in the excitation coil. id, iq are the direct and quadrature axis stator currents.

J, I are the rotor inertia and the damping factor. Pe is the terminal active power.

T
′

do is the direct-axis transient time constant. Te is the output electric torque. Tm is

the input mechanical torque. vt is the generator terminal voltage.

With all parameters above defined in per unit values, the third order nonlinear

model is described by the following equations [76]:

δ̇ = ω, ω̇ =
1

J
(Tm − Te − TD) , v̇

′

q =
1

T
′

do

(

EFD − v
′

q −
(

rd − r
′

d

)

id

)

(4.1)

74



Chapter 4. Optimal Stochastic Tracking for Primary Frequency Control

where

id =
v
′

q − vt cos δ

r
′

d

, iq =
vt sin δ

rq
, v̇

′

q =
1

T
′

do

(

EFD − v
′

q −
(

rd − r
′

d

)

id

)

(4.2)

For a single synchronous generator, it is assumed that the field voltage, rotor

angle and the electrical power can be measured. Thus, we define the system state xc,

input uc and output yc as xc = [x1, x2, x3]
T = [δ, ω, v

′

q]
T , uc = [u1, u2]

T = [EFD, Tm]
T

and yc = Pe.

By linearizing the nonlinear equations above near a certain operating point “o”,

we have the linear system and output equations as

ẋc = Acxc +Bcuc, yc = Ccxc, (4.3)

where

Ac =








0 1 0

−K1

J
− I

J
−K2

J

−K4

T
′

do

0 − 1

K3T
′

do







, Bc =








0 0

0 1
J

1

T
′

do

0







, Cc =

[

K1 0 K2

]

(4.4)

The parameters are defined as follows:

K1 =
vt
r
′

d

x3o cosx1o +
v2t
2

(
1

rq
−

1

r
′

d

)

sin (2x1o) , (4.5)

K2 =
vt
r
′

d

sin x1o, K3 =
r
′

d

rd
, K4 =

(

rd − r
′

d

) vt sin x1o

r
′

d

(4.6)

Considering most controllers are implemented digitally, usually with microproces-

sors, we can further get the discrete time system equations by sampling the original

continuous time system. The dynamic equations are given by x(i+1) = Ax(i)+Bu(i)

and y(i) = Cx(i), where x(i) = xc (kh), u(i) = uc (kh), y(i) = yc (kh), A = eAch,

B =
∫ h

0
eAcτBcdτ and C = Cc.
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4.3.2 Time Varying Autoregressive (TVAR) Process for Cus-

tomer Load Demand Modeling

Two approaches are widely adopted in the literature for load demand modeling

[22, 73, 77–79]. The first approach is component-based load modeling, which re-

constructs the expected daily electrical loads of a customer based on appliance sets,

occupancy patterns, and statistical data. For example, in [20], the authors con-

structed such electric load profiles from individual appliance profiles. The second

approach is termed the measurement-based load modeling. In [22], a methodology of

measurement-based load modeling for transient stability analysis was proposed and

Genetic Algorithms (GA) was used to estimate the model parameters. Considering

the time correlation in customer power consuming behavior, in this work, we develop

a time series analysis based approach for the customer load demand modeling, which

provides an efficient way to predict the customer load demand directly based on the

immediate load data history.

With the TVAR model for the household load demands in place, we can define

the state xl(i) = [s(i−1), s(i−2), . . . , s(i−p)]T , so that a state-space representation

of the customer load demand can be written as

xl(i+ 1) = Al(i)xl(i) + wl1(i),

zl(i) = Cl(i)xl(i), yl(i) = zl(i) + wl2(i) (4.7)

The parameters are given by
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Al(i) =











φ1(i) φ2(i) . . . φp(i)

1 0 . . . 0
...

...
. . .

...

0 0 1 0











, wl1(i) =











v(i)

0
...

0











(4.8)

Cl = [φ1(i), φ2(i), . . . , φp(i)], wl2(i) = v(i) (4.9)

4.3.3 Renewable Generation Modeling

The intermittence of renewable generation mainly comes from the uncertainty of

environment, such as variations of wind speed, solar irradiation and cloud move-

ment. Modeling these weather factors are difficult by themselves and are out of the

scope of this paper. Thus, here we give a brief overview of related models. Wind

speed distributions are often characterized by Weibull or Rayleigh distributions [47].

Historical hourly data for the wind farm site collected over a significant time are

normally required to obtain the shaping parameters. In [18], the wind speed proba-

bility distributions obtained for the three diverse geographic locations in Canada, are

close to Gaussian distributions. Beta distribution validated by different researches as

a simple and sufficiently flexible two-parameter distribution, fits well the empirical

data of solar irradiation in many situations [19].

The active power generated by conventional generator, modeled by (4.3), needs

to track a desired reference signal to keep the system frequency stable. This reference

signal is defined as a fraction of the net load demands (the difference between the

total load demands and local renewable generations) from local customers being

supported by all generators considered. Thus, the dynamics and the statistics of

the stochastic reference signal can be obtained from the associated information of

customer load demands and renewable generations. Depending on what information
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(dynamics or statistics) is indeed available, we may develop different tracking control

schemes for primary frequency control in the following section.

4.4 Stochastic Tracking for Primary Frequency Con-

trol of the Power Generation Facility

As demonstrated in previous sections, The objective of primary frequency control is

to maintain a balance between generation and consumption (demand) and stabilizes

the system frequency at a stationary value1 after a disturbance or incident in the

time-frame of seconds, but without restoring the system frequency to the nominal

value. Thus the active power generated by the conventional generator is supposed

to track the reference signal which depends on the total net load demands of local

customers. The tracking control problem is shown in Fig. 4.3, where zr is the ref-

erence signal for active power generation. It is worth pointing out that in a general

multi-layer frequency control framework, the deviation of terminal frequency from

the frequency set point (50 or 60 Hz) is usually used as the feedback signal in the

control loop for both primary and secondary control. This is definitely necessary

for secondary control because its most important objective is to restore the system

frequency from a temporarily stable level resulting from the primary control back to

the nominal frequency level. In traditional primary frequency control, the frequency

deviation is also used to define the droop which is the controller gain in the feedback

loop [28]. This droop is a function of both the deviation in frequency and the nom-

inal generator output power (reference signal of active power generation). However

adjusting the droop settings is not always easy because it often requires that the

1Generally speaking, the steady-state frequency deviation level depends on both the
primary frequency control of the generation unit and the frequency sensitivity of the load.
Since these two factors are decoupled, we ignore the frequency sensitivity of the load and
focus on the control design of the primary frequency control.
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plant be shut down. Hence, for the primary control stage only, we directly consider

the deviation between active power generation and consumption as the feedback sig-

nal, which is possible based on the active power output measurement [80, 81]. By

doing this we incorporate the uncertainties of load demands and renewable genera-

tions in the active power generation reference signal and balance the power without

relying on system tests operated by Transmission System Operator (TSO). In this

section, we consider the scenario in which the load demand signals from distributed

customers are fully synchronous, meaning the net load demand signals from different

customers experience the same time delay. Perfect knowledge of the reference signal

is also assumed. We will consider different optimal controller design for asynchronous

scenario in the next section.

Figure 4.3: Tracking control diagram: The power generation control is implemented
by feedback control design. z is the system output, which is the active power gen-
eration. The deviation in active power and load serves as the feedback signal. A
Kalman filter is adopted to estimate the system state based on the noisy and incom-
plete observation of the system output.
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4.4.1 Reference-Dynamics based Tracking

Recall that the state-space representation of the dynamical system of the conven-

tional synchronous generator can be written as

x(i+ 1) = Ax(i) + Bu(i) + w1(i),

z(i) = Cx(i), y(i) = z(i) + w2(i), (4.10)

where z(i) is the system output and y(i) is the noisy output measurement when we

try to access the active power output. Process noise w1 and measurement noise w2

are both zero mean white noises with auto-covariance matrix intensities V1, V2. The

cross covariance matrix of w1 and w2 is V12. The initial state x(0) is a random vector

with mean x̄0 and covariance matrix Q0. The control interval is i ∈ [i0, i1].

To be specific, and to keep the discussion within the available space, let us assume

that the renewable DERs of interest are wind turbines at distributed customer loca-

tions. Other renewable sources with dynamical generation, such as tidal resources,

can be incorporated in a similar way. Since synchronous generators can also be

used in a wind-energy plant, the state-space representation can still be used. Due

to the geographic diversity, wind turbines at different locations may have various

generator inputs. If we assume that within the controlling period the wind changes

rapidly (which leads to uncorrelated increments) and is omni-directional (justifying

zero mean), then the input of each wind turbine can be approximated as being white

Gaussian 1. Thus a linear dynamical system for the renewable generation can be

written as

1Gaussian distribution has been widely used in the literature for wind speed modeling
[17,18]. For very short time scale, the assumption of uncorrelated increments in wind speed
is relatively strong. But as the time scale of controlling period increases, this assumption
becomes more and more reasonable.
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xw(i+ 1) = Awxw(i) + ww1(i),

zw(i) = Cwxw(i), yw(i) = zw(i) + ww2(i). (4.11)

With the dynamic models of renewable generator (4.11) and customer load de-

mand (4.7) developed above, the net load demand, denoted by ynet and ynet = yl−yw,

of a single customer can be written as the output of the following dynamic system




xl(i+ 1)

xw(i+ 1)





︸ ︷︷ ︸

xnet(i+1)

=




Al 0

0 Aw





︸ ︷︷ ︸

Anet




xl(i)

xw(i)





︸ ︷︷ ︸

xnet(i)

+




wl1(i)

ww1(i)





︸ ︷︷ ︸

wnet1(i)

,

znet(i) = zl(i)− zw(i) = [Cl,−Cw]
︸ ︷︷ ︸

Cnet




xl(i)

xw(i)



 ,

ynet(i) = znet(i) + wl2(i) + ww2(i)
︸ ︷︷ ︸

wnet2(i)

.

(4.12)

The reference signal of individual synchronous generator, which depends on the

total net load demand (reference signal for individual generator is assigned by TSO),

can be written as the output of a dynamical model defined in (4.13), by doing system

augmentation over independent customers.

xr(i+ 1) = Arxr(i) + wr1(i),

zr(i) = Crxr(i), yr(i) = zr(i) + wr2(i). (4.13)

All the other quantities Vr1, Vr2 and Vr12 are similarly defined with the ones

for synchronous generators. Thus, the original frequency regulation problem can
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be formulated as an optimal stochastic tracking problem with incomplete and noisy

observations, in which we want to minimize the quadratic control cost

U = E

{
i1∑

i=i0

(z(i)− zr(i))
T R1(i) (z(i)− zr(i)) + uT (i)R2(i)u(i)

}

(4.14)

where the control accuracy measure matrix R1(i) is positive semi-definite and the

control effort measure matrix R2(i) is positive definite. To solve this problem, we

can consider the augmented system:




x(i+ 1)

xr(i+ 1)





︸ ︷︷ ︸

x̃(i+1)

=




A 0

0 Ar





︸ ︷︷ ︸

Ã




x(i)

xr(i)





︸ ︷︷ ︸

x̃(i)

+




B

0





︸ ︷︷ ︸

B̃

u[i] +




w1(i)

wr1(i)





︸ ︷︷ ︸

w̃1(i)

,

z̃(i) = z(i)− zr(i) = [C,−Cr]
︸ ︷︷ ︸

D




x(i)

xr(i)



 ,




y(i)

yr(i)





︸ ︷︷ ︸

ỹ(i)

=




C 0

0 Cr





︸ ︷︷ ︸

C̃




x(i)

xr(i)





︸ ︷︷ ︸

x̃(i)

+




w2(i)

wr2(i)





︸ ︷︷ ︸

w̃2(i)

.

(4.15)

With the augmented system above, the original objective (A.7) can be rewritten

as U = E
{
z̃T (i)R1(i)z̃(i) + uT (i)R2(i)u(i)

}
, where system state is incomplete, noisy

and need to be reconstructed based on the measurements. The original tracking

problem has been converted into an output regulator problem of the augmented

system (4.15), in which z̃(i) is the controlled variable and ỹ(i) is the noisy observation.

The initial state and covariance matrix are given by x̃0 and Q̃0. We assume that the

initial state is uncorrelated with both process noise and measurement noise. Thus,

[w̃1(i), w̃2(i)] is a joint white noise vector process. The covariance matrix intensities

of the initial state and white noises are given by
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According to the separation principle [82], the solution to this problem is given

by u(i) = −F (i)ˆ̃x(i), i = i0, i0 + 1, . . . , i1, where feedback gain is given by

F (i) =
{

R2(i+ 1) + B̃T [DTR1(i+ 1)D + P (i+ 1)]B̃
}−1

· B̃T
[
DTR1(i+ 1)D + P (i+ 1)

]
Ã.

(4.16)

The sequence of matrices P (i) satisfy the matrix difference equation

P (i) = ÃT [DTR1(i+ 1)D + P (i+ 1)][Ã− B̃F (i)], (4.17)

with terminal cost weight matrix P (i1) = P1 = DTR1(i1)D. Furthermore, ˆ̃x(i) is the

minimum mean square linear estimation of x̃(i) given ỹ(i), i = i0, i0 + 1, . . . , i1 − 1.

Since we assume the nonsingular case (Ṽ2(i) > 0), ˆ̃x(i) can be obtained as the output

of the optimal observer [82]:

ˆ̃x(i+ 1) = Ãˆ̃x(i) + B̃u(i) +K(i)
[

ỹ(i)− C̃ ˆ̃x(i)
]

. (4.18)

Denoting by e(i) the reconstruction error e(i) = x̃− ˆ̃x, then the optimal observer

minimizes the mean square reconstruction error E{eT (i)W (i)e(i)} = tr [Q(i)W (i)]

for any predefined positive definite matrices W (i). The optimal gain matrices K(i)

can be obtained from the recurrence relations:

K(i) =
[

ÃQ(i)C̃T + Ṽ12(i)
] [

Ṽ2(i) + C̃Q(i)C̃T
]−1

, (4.19)

Q(i+ 1) =
[

Ã−K(i)C̃
]

Q(i)ÃT + Ṽ1(i)−K(i)Ṽ T
12(i), (4.20)

where Q = E

{

(x̃− ˆ̃x)(x̃− ˆ̃x)T
}

is the second order moment matrix of the recon-

struction error with the initial value Q(i0) = Q̃0. The initial condition of the observer

state is ˆ̃x = ¯̃x0.
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Figure 4.4 shows the tracking performance averaged over 100 realizations of the

stochastic reference. It can be seen that the tracking error decreases to zero over

time. In this simulation, the synchronous generator parameters in wind power plant

and conventional plant are the same. In practice, matrix parameters in (4.10) can

be calculated according to real impedance and admittance values. The parameters

in the dynamic system of load demands are the same with the TVAR parameters we

obtained in previous sections.

Figure 4.4: Tracking performance averaged over 100 realizations of the stochastic
reference. It can be seen that the tracking error decreases to zero over time. In this
simulation, the synchronous generator parameters in wind power plant and conven-
tional plant are the same. In practice, parameters can be calculated according to
real impedance and admittance values.
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4.4.2 Reference-Statistics based Tracking

Note that the tracking scheme proposed above is based on the reference dynamics,

which are usually based on the internal structure of renewable generators. In prac-

tice, modeling renewable generation as a dynamical process could be difficult. Some

renewable generation does not follow a dynamical process by nature. For example,

the energy conversion on solar panels from irradiation to electricity falls into the pho-

toelectric effect. On the other hand, the statistics of the distributions of renewable

generations and load demands are generally available as we discussed in previous

sections. For example, if the renewable generation is predicted from weather forecast

data, then the reference signal distributions may be calculated based on customer

load distributions obtained from real measured data [83]. To incorporate more renew-

able resources into the discussion, as well as making the tracking easier to implement

in practice, we propose a stochastic based tracking controller based on the mean pro-

cess and the second order moment of the reference signal, which are assumed to be

known at the beginning of the control interval. Denote by z̄r and Mz the mean

process and the second order moment matrix respectively, the control performance

index (A.7) can be rewritten as

U = E

{
i1∑

i=i0

(z(i)− zr(i))
T R1(i) (z(i)− zr(i)) + uT (i)R2(i)u(i)

}

=
∑{

tr (R1Mz)− z̄Tr R1z̄r + (z − z̄r)
T R1 (z − z̄r) + uTR2u

}
(4.21)

It can be observed that the optimal control law of this mean square optimization

problem is the same to a deterministic tracking problem where the known deter-

ministic state reference signal is the mean process of the stochastic reference. The

corresponding deterministic tracking objective can be written as
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U
′

=
∑

[(z − z̄r)
T R1 (z − z̄r) + uTR2u], (4.22)

and we know from [84] that the optimal control law is given by

u(i) = −H(i)x̂(i) +Hg(i)g(i+ 1), (4.23)

where

H(i) =
[
R2(i) + BTP (i+ 1)B

]−1
BTP (i+ 1)A, (4.24)

Hg(i) =
[
R2 +BTP (i+ 1)B

]−1
BT . (4.25)

The sequence of matrices P (i) satisfy matrix difference Riccati equation with

terminal condition P (i1) = CTR1(i1)C:

P (i) = ATP (i+ 1)
[
I +BR−12 (i)BTP (i+ 1)

]−1
A+ CTR1(i)C (4.26)

g(i) can be obtained by solving the following difference equation with boundary

condition g(i1) = CTR1(i1)z̄r(i1):

g(i) = AT
[
I − [P−1(i)(i+ 1) + BR−12 (i)BT ]−1

· BR−12 (i)BT
]
g(i+ 1) + CTR1(i)z̄r(i).

(4.27)

Based on the separation principle of controller and observer design, the ob-

server can be implemented separately with the form of x̂(i + 1) = Ax̂(i) + Bû(i) +
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K(i) (y(i)− Cx̂(i)). In the presence of observation noise, the optimal observer design

is the same as in the case of reference dynamics-based tracking scheme.

The top figure in Fig. 4.5 shows the tracking performance for one realization of the

stochastic reference signal. The bottom figure shows the tracking error averaged over

100 realizations. Comparing Fig. 4.4 and Fig. 4.5, we can see the difference in track-

ing performances. In reference-dynamics based tracking scheme, the tracking error

decreases to zero as the tracking proceeds over time. While in reference-statistics

based tracking scheme, the tracking error fluctuates around zero after a certain point

with a stable average error of around 6%. This is because in reference-statistics based

tracking scheme, what is really being tracked is the mean process of the stochastic

reference signal. The tracking error will not converge to zero because there is always

a deviation between individual realization and the mean process. It is worth pointing

out that this is the price we pay for replacing the precise dynamic information with

relatively simple statistical information of the reference signal.

4.5 Reference Prediction In the Presence of Asyn-

chronous Load Demand Signals

Note that the two tracking schemes developed above are based on the strong as-

sumption that the perfect reference signal is available for active power control. This

means the load demand signals from distributed customers are assumed to be fully

synchronous (experiencing the same measurement and transmission delays), which,

however, may not hold in practice. In this section, we relax the assumption and

investigate the scenario with asynchronous customer load demand signals that expe-

rience different time delays arising from sensor measurement and data transmission,

as shown in Fig. 4.6. We assume a simple model of an electricity market made of
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Figure 4.5: Tracking performance based on reference-statistics information. The top
figure shows the tracking performance for one realization of the stochastic reference
signal. The bottom figure shows the tracking error averaged over 100 realizations.

M customers with renewable DER capabilities integrated in to a grid supported by

conventional generation facilities. It is worth pointing out that this simple model

may be considered as a building block in a realistic Grid since the real power grid

with more complicated and possibly hierarchical structure can be decomposed into

smaller units with this type of simple structure. An example is a microgrid with

local conventional generation facilities [85]. We can define the dynamical model for

customer j, j = 1, 2, . . . ,M in a similar way as we define (4.10) and (4.13).
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Figure 4.6: Net load demand signals from different customer locations experience
different time delays arising from sensor measurement and data transmission.

xrj(i+ 1) = Arjxrj(i) + wrj(i),

yrj(i) = Crjxrj(i) + vrj(i), zrj(i) = Crjxrj(i), (4.28)

where yrj(i) is the net-load demand of the j-th household in time interval i. wrj(i)

and vrj(i) are process and measurement noises, both of which are assumed to be

white Gaussian with covariance matrices Qrj and Rrj . We assume that wrj(i), vrj(i)
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and the initial state xrj(i0) are mutually independent. Thus in the objective function

(A.7), we have zr(i) =
∑M

j=1 zrj(i).

Because of the measurement noises, as well as possibly different delays expeXri-

enced by sensor readings from distributed customers, the load demand signals re-

ceived by the generation side are asynchronous and noisy versions, denoted by

yrj(i − dj), where dj is the delay corresponding to the j-th customer. These asyn-

chronous load demand signals can not be directly added up since they represent load

demands in different time intervals. Thus, to solve the original stochastic track-

ing control problem defined in (A.7), a prediction scheme is required to recover the

non-delayed reference signal before any control efforts can be implemented. In this

section, we will focus on the reference prediction scheme design, which gives the

minimum mean square error (MMSE), to recover the correct reference signal for the

power generation tracking control. We start by considering a simplified scenario in

which only one customer j is sending the load demand signal, which serves as the

reference signal to be tracked by the conventional generator.

4.5.1 Reference Prediction with a Single Customer Load

Signal

Based on the customer dynamics (4.28), we define a new dynamical system whose

state and output are defined as x
′

rj
(i) = [(xrj(i−dj))

T , (xrj(i−dj+1))T , . . . , (xrj(i))
T ]T

and y
′

rj
(i) = yrj(i− dj). The system equations are then given by

x
′

rj
(i+ 1) = A

′

rj
x
′

rj
(i) + w

′

rj
(i),

y
′

rj
(i) = C

′

rj
x
′

rj
(i) +D

′

rj
v
′

rj
(i), (4.29)

z
′

rj
(i) = zrj(i) = Crjxrj(i) = C

′′

rj
x
′

rj
(i),
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where y
′

rj
(i) is the measurement of the delayed customer demand signal. z

′

rj
(i) is the

non-delayed demand signal and thus is what we want to reconstruct. The system

and measurement matrices, as well as the process and measurement noises are given

by

A
′

rj
=











Arj 0 . . . 0

0 Arj . . . 0
...

...
. . .

...

0 0 0 Arj











, C
′

rj
= [Crj ,0, . . . ,0] (4.30)

D
′

rj
= [I,0, . . . ,0], C

′′

rj
= [0, . . . ,0, Crj ] (4.31)

w
′

rj
(i) =











wrj(i− dj)

wrj(i− dj + 1)
...

wrj(i)











, v
′

rj
(i) =











vrj(i− dj)

vrj(i− dj + 1)
...

vrj(i)











(4.32)

With the system defined above, we can express the estimate of the non-delayed

customer signal as a function of the estimate of the state of the new system, given

by ẑ
′

rj
(i) = C

′′

rj
x̂
′

rj
(i). Thus, the original prediction problem has been transformed

into an optimal estimation problem of system (4.29).

4.5.2 Kalman Filter Design for Reference Prediction

For system (4.29), the Kalman filter can be used to estimate the state based on the

output measurements. Define Q
′

rj
= diag[Qrj(t− dj), Qrj(t− dj +1), . . . , Qrj(t)] and

R
′

rj
= Rrj(i − dj) as the covariance matrices of wrj(i) and D

′

rj
v
′

rj
(i) respectively.
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Denote by x̂
′

rj
(i|i− 1) the a priori state estimate at time i given observations before

time i, and by x̂
′

rj
(i|i) the a posteriori state estimate at time i given observations up

to and including at time i. These estimates are then given recursively by [86]

x̂
′

rj
(i|i) = x̂

′

rj
(i|i− 1) +Krj(i)(y

′

rj
(i)− C

′

rj
x̂
′

rj
(i|i− 1)) (4.33)

x̂
′

rj
(i+ 1|i) = A

′

rj
(i)x̂

′

rj
(i|i) (4.34)

where Krj(i), i = i0, i0 + 1, . . . , i1 is the Kalman gain matrix. The initialization for

the recursion is known and given by x̂
′

rj
(0| − 1) = E[x

′

rj
(0)]. Define the covariance

matrix of the prediction error and filtering error as

Prj(i|i− 1) = Cov{x
′

rj
(i)− x̂

′

rj
(i|i− 1)}

Prj(i|i) = Cov{x
′

rj
(i)− x̂

′

rj
(i|i)}

(4.35)

The prediction error covariance matrices can be computed jointly with the fil-

tering error covariance matrix from the following recursion with the initialization

Prj(0| − 1) = Cov{x
′

rj
(0)}.

Prj(i|i) = Prj(i|i− 1)−Krj(i)C
′

rj
Prj(i|i− 1) (4.36)

Prj(i+ 1|i) = A
′

rj
Prj(i|i)(A

′

rj
)T +Q

′

rj
(4.37)

The Kalman gain matrix Krj(i) is given by

Krj(i) = Prj(i|i− 1)(C
′

rj
(i))T · [C

′

rj
(i)Prj(i|i− 1)(C

′

rj
(i))T +Rrj ]

−1 (4.38)

Now with the MMSE state estimate x̂
′

rj
(i) available, we can reconstruct the op-

timal prediction of the non-delayed reference signal as ẑrj(i) = ẑ
′

rj
(i) = C

′′

rj
· x̂

′

rj
(i).

92



Chapter 4. Optimal Stochastic Tracking for Primary Frequency Control

Figure 4.7: The tracking control framework with multiple asynchronous signals from
different customers. A centralized Kalman filter is implemented to optimally recon-
struct the reference which the conventional active power generation needs to track.

4.5.3 Reference Prediction with Multiple Delayed House-

hold Signals

Based on the results above, we can generalize the reference prediction problem

by incorporating multiple asynchronous distributed customer demand signals with

different delays. Similarly, we can define the transformed system for each house-

hold as in (4.29) and construct an augmented system as follows, with the aug-

mented state and output defined as xr(i) = [(x
′

r1
(i))T , (x

′

r2
(i))T , . . . , (x

′

rM
(i))T ]T and

yr(i) = [(y
′

r1
(i))T , (y

′

r2
(i))T , . . . , (y

′

rM
(i))T ]T ,
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xr(i+ 1) = Arxr(i) + wr(i), (4.39)

yr(i) = Crxr(i) + vr(i), zr(i) = C
′′

r xr(i). (4.40)

The system and measurement matrices, as well as the process and measurement

noises are given by

Ar =











A
′

r1
0 . . . 0

0 A
′

r2
. . . 0

...
...

. . .
...

0 0 0 A
′

rM











, wr(i) =











w
′

r1
(i)

w
′

r2
(i)
...

w
′

rM
(i)











(4.41)

Cr =











C
′

r1
0 . . . 0

0 C
′

r2
. . . 0

...
...

. . .
...

0 0 0 C
′

rM











, vr(i) =











D
′

r1
v
′

r1
(i)

D
′

r2
v
′

r2
(i)

...

D
′

rM
v
′

rM
(i)











, (4.42)

C
′′

r = [C
′′

r1
, C

′′

r2
, . . . , C

′′

rM
] (4.43)

With the linear augmented system well defined, the KF technique can be similarly

applied to reconstruct the MMSE estimate of the reference signal as we did for the

single customer scenario, which is given by ẑr(i) = C
′′

rj
x̂r(i). Fig. 4.7 shows the

overall control framework with the prediction block involved. Because of the linearity

and the fact that the dynamical systems of different customers are independent

with each other, this centralized Kalman filter implementation is equivalent to a

distributed scheme in which a distributed KF is implemented for each household

demand signal. The reference signal for the central power plant generation tracking
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Figure 4.8: The tracking control framework with multiple asynchronous signals from
different customers. Distributed Kalman filters are implemented to optimally re-
construct the non-delayed signal for each customer. The synchronous non-delayed
signals are added up to construct the reference which the conventional generation
needs to track.

turns out to be the sum of all reconstructed individual household demand signals.

The distributed Kalman filter implementation is shown in Fig. 4.8.

The separate design in reference prediction and tracking control, which has the

“prediction before control” structure is not only natural and intuitive, but also is

overall optimal with respect to the original objective function (A.7). The proof is

omitted due to the space limit.
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4.6 Simulation Results of Reference Prediction based

Tracking

We simulate the prediction and tracking schemes presented in previous sections for

the assumed electricity market. The customer load demands are generated with the

TVAR model. The TVAR model parameters are obtained based on the load data

selected from the huge data pool of the Electric Reliability Council of Texas [53].

The dynamics of renewable generators and the conventional generators can be the

same or different depending on the types of generators adopted.

With 10 customers in the electricity market, Fig. 4.9 shows the tracking per-

formance for a scenario in which the conventional generator and the distributed

renewable generators considered have different dynamics. We generate the different

parameter matrices by perturbing the eigenvalues of one parameter matrix. Also,

we assume that the load demand signals sent from distributed customers experi-

ence different but fixed delays. Figure 4.10 shows the prediction performance of the

equivalent distributed Kalman filter implementation. It can be observed that differ-

ent customers have different prediction errors due to their different system dynamics.

Figure 4.11 presents the tracking error per customer as a function of the number of

customers. The tracking error is approximately constant as the number of customers

increases from one to ten. This matches our intuition since customers are assumed

to be independent with each other.

4.7 Conclusion

An optimal stochastic tracking scheme was proposed in an interactive smart grid

infrastructure. Optimal stochastic control schemes for the active power control (pri-
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Figure 4.9: Tracking performance of the conventional power generation control. The
conventional power plant and the distributed ten renewable DERs have different
dynamics. Load demand signals sent from different customers experience different
delays.

mary frequency control) were designed, in the presence of uncertainties arising from

customer load demands and distributed renewable generations, to stabilize frequency

and maintain a balance between generation and consumption within the distributed

synchronous area. We proposed two stochastic tracking schemes based on the state-

space representation of a synchronous generator: (1) reference dynamics-based track-

ing and (2) reference statistics-based tracking. We further extended the proposed

optimal controllers by considering the realistic scenario of asynchronous load demand

signals from different households. To compensate for different delays seen by differ-

ent household signals, a Kalman filter (KF) based prediction scheme was proposed
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Figure 4.10: Reference prediction performance of a distributed Kalman filter imple-
mentation.

to generate the correct reference signal and we showed that the centralized reference

prediction could equivalently be implemented distributively. Simulation results were

presented to show the performances of the proposed prediction and tracking schemes.
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Figure 4.11: The tracking error is approximately constant as the number of customers
increases from one to ten since customers are assumed to be independent with each
other.
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Chapter 5

Machine-learning Aided Optimal

Customer Decisions

5.1 Introduction

Proliferation of distributed energy resources (DER), in particular renewable dis-

tributed generation, provides great promise in significantly improving the efficiency

of electricity distribution. However, as DER’s proliferate to a significant fraction of

the overall electric energy on the distribution network, without proper procedures in-

tegration may lead to highly imbalanced transient behaviors which may overwhelm

current infrastructure not to mention outages and brown-outs. In a future smart

grid, a customer with renewable generation capability (such as PV panels and wind

turbines) may use predictive strategies to optimize its energy demand requests over

time and determine when to use, sell or store its own renewable generation, flexibly

interacting with the electric-grid and other customers, as opposed to being a passive

energy consumer as today. The information shared among distributed nodes (cus-

tomers) endowed with generation, storage and consumption attributes can result in
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a distributed decision and control framework that will lead to both overall energy

and cost efficiencies. Realizing the full potential promised by smart grid concept,

however, requires systematic design principles, a comprehensive protocol framework

for interaction among distributed entities that make up the grid and robust and

computationally efficient control and optimization algorithms.

Although a comprehensive formulation and an analysis is not yet available, still

there have been some attempts to understand, model and analyze these effects [4,5].

For example, a multi-stage frequency control framework is presented in [6–8]. How-

ever, it does not address the issue of consumption planning on the customer side.

The uncertainty in supply due to integrated renewable DER’s and the challenges

they impose on the existing distribution infrastructure and the system operator have

been discussed in [9]. The distribution-level smart grid features such as intercon-

nection of distributed generation and active distribution management, automated

meter reading (AMR) systems in network management and power quality moni-

toring were discussed in [10]. In [11], the implementation of vehicle-to-grid (V2G)

power issues, strategies and business models for doing so, for purposes of both stabi-

lizing the grid and supporting large-scale renewable energy were discussed. Various

control-theoretic and system-level problem formulations of smart grid architectures

have been discussed in [12] and [13]. In [12], for example, the authors showed that

significant improvements can be made to the operations of a smart grid by providing

information about the likely behavior of renewable energy through both online short-

term forecasting and longer-term assessments. In [13], a distributed control method

was discussed for converter-interfaced renewable generation units with active filtering

capability.

The topic of customer decision making consists of several important subtopics,

including smart-home design [44] and [45], system integration of distributed energy

resources (DER) [46], renewable generation modeling [18,19,47], load demand model-
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ing [20] and [21], and plug-in hybrid electrical vehicle (PHEV) vehicle-to-grid (V2G)

management and regulation [48] and [49]. There is a considerable amount of pre-

vious studies reported on these subtopics in literature. For example, a smart-home

energy management system based on a ZigBee sensor network was proposed in [44].

In [45], the author motivated the use of power line LANs as a basic infrastruc-

ture for building integrated smart homes, proposing protocols capable of supporting

power line communication networks at speeds comparable to wired LANs. These

smart-home models are mostly from the perspective of information gathering and

transmission (e.g., a ZigBee sensor network and a power line LAN). However, it is

unclear how these smart-home models can be evolved to allow real-time decision

making that makes use of all collected information. In [46], the concept of virtual

power plant (VPP) was developed to enhance the control of DER by the system

operators and other market actors by providing an appropriate interface between

these system components. However, an equally important issue on the customer side

(rather than the system operator side), which is the distributed self-management

of DER’s with local objectives, remains unaddressed. Various stochastic models for

different renewable generations have been proposed in previous literature. For exam-

ple, wind speed distributions are often characterized by Weibull, Rayleigh or normal

distributions [17,18]. Beta distribution has been validated by different research as a

simple and sufficiently flexible two-parameter distribution to fit the empirical solar

irradiation behavior data in many situations [19]. These stochastic models are im-

portant, but these papers failed to present further discussions on how these models

can be incorporated in customer decisions. Similar issue arises with papers focusing

on customer load modeling and prediction, for example in [20] and [21]. In [48],

the impact of charging PHEVs on a distribution transformer under different charg-

ing scenarios were examined. In [49], the author established a series of well-defined

electric vehicle loads that were subsequently used to analyze their electric energy

usage and storage in the context of more electrified road transportation. The PHEV
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management strategies mentioned above are part of the customer decision making

addressed in this paper. However, it is important to consider more general energy

decisions, rather than only focusing on PHEV charging strategy, taking into account

of other factors, such as the impact of intermittent renewable generations. The work

presented by the literature mentioned above provide an important foundation for up-

grading the conventional grid-customer models to smart customers in a modern smart

grid. However, little of these existing studies has considered a comprehensive cycle

of interactions between the Utility and the distributed entities (customers) taking

into account aspects of customer-side decision making, Utility-side demand response

scheduling, renewable DER integration and power-load balances for grid-stability

and the effects of information and communication technology (ICT) infrastructure

on all these.

This chapter discusses the following:

1. A comprehensive architecture that addresses not only the generation control

and the consumption planning separately, but also the interaction and integra-

tion of the two within a unified framework.

2. A hierarchical architecture, as shown in Fig. 5.1, that not only assures the

scalability of the grid model, but also allows for sufficient resource pooling

among customer units. This enables us to focus on an abstract power grid

model consisting of one controller and multiple customer units without loss of

generality.

3. An extension to the concept of “smart-home”. In most current smart grid

literature, the term “smart-home” is used to refer to households with “smart

devices” such as Advanced Metering Infrastructure (AMI) [15, 87], which en-

ables remote meter reading and electricity bill estimation based on real-time

pricing information. In this paper, the concept of “smart-home” is extended in
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Figure 5.1: Hierarchical smart grid architecture that is scalable while allowing for
sufficient resource pooling.

two aspects: First, smart-home is capable of not only intelligently managing

its own energy consumption, but also actively interacting with the grid in real-

time. Second, the concept of “smart-home” can scale up to a broader customer

unit consisting of a cluster of households. For example, a microgrid can also

be a broad smart customer unit in the feeder-level.

4. A hidden mode Markov decision process (HM-MDP) based model for the smart

grid real-time planning. The HM-MDP model allows for the two-step decision

framework containing both centralized sequential decision making at the con-

troller and the auctioning game design among distributed customers.

5. A novel auctioning game for distributed customers to compete for limited en-
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ergy trading opportunities. The proposed auctioning game with a reserved

price has several advantages: (1) being robust to adding/removing customers,

(2) being robust against collusion by customers with untruthful bidding strate-

gies, and (3) converging to the unique Bayesian-Nash equilibrium.

It is worth pointing out that application of different auction schemes for smart

grid problems have been reported in [50–52]. For example, auction mechanisms

that can be used by the aggregators for procuring stochastic renewable generations

are proposed in [50]. In [51] and [52], double auction is adopted for distributed

energy resources (DERs) management and Plug-in hybrid electric vehicles (PHEVs),

respectively. However, most of these are focused on the solution derivation of auctions

and fail to address the connection between the centralized and distributed decision

schemes, which is important for the hierarchical architecture of the modern smart

grid.

The rest of this chapter is organized as follows: In section 5.2, we present our

hierarchical interactive smart grid architecture with the proposed two-step decision-

making framework. The fine-scale planning at the customer level is formulated as

a sequential decision making problem in section 5.3. In section 5.4, a hidden mode

Markov decision process (HM-MDP) model is investigated. In section 5.5, we analyze

the non-stationary environment dynamics. A value iteration based exact solution

algorithm is presented in section 5.6. In section 5.7, we further investigate a Q-

learning based approximate dynamic programming (ADP) algorithm. In section 5.8,

with a hidden mode Markov decision process (HM-MDP) framework well investigated

for the centralized microgrid controller sequential decision making, we present a

Vickrey auctioning game for the distributed customer decision making problem and

the truthful bidding strategy is discussed in detail. In section 5.9, a detailed analysis

on the solution set of the Bayesian Nash equilibria is presented. By introducing

a reserve price, the Vickrey auction is shown to be more robust against collusive
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customers and converges to the unique truthful bidding Bayesian Nash equilibrium.

The conclusions from this study are given in section 5.10.

5.2 A Hierarchical Interactive Architecture

5.2.1 A Hierarchical Smart Grid Architecture

A hierarchical architecture for the smart grid that is scalable while allowing for

sufficient resource pooling is shown in Fig. 5.1 [14]. The scalability of the grid

requires being able to easily integrate additional customers into the grid without

affecting the established operational conditions of the grid. Ideally this might be

achievable if each individual household is managed separately, but, of course, this

would preclude any resource pooling, which is one of the most important strategies

to energy efficiency in the grid. A tradeoff to this can be achieved by using the notion

of microgrids with DER’s. Each microgrid is a collection of households with certain

self-containing capabilities, which are geographically adjacent and coordinated by

a microgrid controller, as shown in the red box in Fig. 5.1. However, we can also

think of each approximately self-contained microgrid as a broader customer unit

coordinated by a feeder-level controller as shown in the blue box in Fig. 5.1. Similarly,

we can scale up to the substation level and above and investigate an entire hierarchical

smart grid architecture, as shown in Fig. 5.1.

As we scale up to construct the entire grid, at each level, all branches with the

same structure of one controller and multiple customer units are all approximately

self-contained and are coordinated by the controller at a higher level. For example,

at the microgrid level in Fig. 5.1, all microgrid branches identical to the red box

are approximately self-contained. When the power-load mismatch is too big to be

mitigated within a single microgrid, electric power flow will be routed among dif-
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ferent microgrids under the coordination of a feeder-level controller. Similarly, at

the feeder-level in Fig. 5.1, all branches identical to the blue box are approximately

self-contained. Power flow among feeder-level branches are to be coordinated by the

substation-level controller. Hence, with this hierarchical architecture interpretation,

any decision-making framework designed for a controller and the individual units

below it is applicable to each of the levels in this hierarchical smart grid. Thus,

in the following, we may focus on an abstract model made of a single (micro-grid)

controller and a collection of multiple (smart-home) customers managed by it.

It is also important to notice that this hierarchical architecture can be robust

against cascading failures in a power grid due to its design based on self-containment

at various granular levels. When the deviation is too large to be mitigated, the Utility

can temporarily isolate the individual branch, in which the initial failure started,

from the grid to prevent cascading failures. Therefore, this hierarchical structure

significantly enhances the power grid reliability by routing power flow within and

across different customer units to mitigate uncertainties.

5.2.2 A Utility-Customer Interaction Model between the Gen-

eration and Consumption Sides

Utility-customer (generation-consumption) interaction is an important aspect of smart

grid design. The interaction between the generation and consumption sides can lead

to more efficient power-load scheduling compared to conventional power grid plan-

ning, which is purely matching generation to demand. However, the Utility-customer

interaction varies depending on different time scales of the interaction periods, as well

as different customer units at different levels of the hierarchical architecture. For ex-

ample, in a microgrid, the smart-homes are the customer units at the microgrid

level while the microgrid is a customer unit at the feeder-level (one level above).
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To address different interactions between the generation and consumption sides, in

this section, we propose a two-stage model for the Utility-customer interaction, con-

sisting of the initial scheduling (long-term planning) and the real-time scheduling

(short-term planning).

Initial Scheduling: Prediction based Long-term Planning

In the initial interaction (long-term planning) stage, demand response (DR) schemes

are implemented and it is desired that the customer loads always stay relatively

flat. Note that, a flat load profile with low peak-to-average ratio means a need

for relatively low generation capacity reserve, leading to more efficient operations

of conventional generation facilities and a less number of idle generators for most

of the time. Usually, peak load shaving and load profile flattening can be achieved

by incorporating demand response (DR) schemes that are based on the predicted

renewable generation. Various demand response (DR) schemes have been reported in

literature [30,60,88–92] based on different pricing schemes such as time-of-use (TOU),

peak-time pricing and real-time pricing [93]. In [30, 31], we presented optimization-

based and game theoretic DR schemes for the Utility to achieve this goal. In these

DR schemes, customers pay less (or receive incentive payments) if they strictly fulfill

their energy commitments. Similarly, they will have to pay extra as a penalty if

they fail to honor the agreement reached during the long-term planning. However,

DR schemes only provide a nominal operating point for the nodes in the grid (i.e.

the flat load profiles for customers) without allowing for the real-time fluctuations

and intermittence in the grid due to the inevitable mismatches between the actual

and predicted renewable generations. Interaction at this level usually happens at the

beginning of each scheduling period [30,60,91,92] and is called the initial interaction

or long-term planning in our interaction framework.
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Real-time Scheduling: Short-term Planning

The DR schemes in the initial scheduling provide a nominal operating point for the

nodes in the grid (the flat customer load profiles). However, since all DR schemes are

based on the prediction of the renewable generations within the scheduling period

(for example, a 12-hour or 24-hour period), they may not properly handle the real-

time fluctuations and intermittence in power grid due to the inevitable mismatches

between the actual and predicted renewable generations. This can be overcome, and

the overall efficiency and stability can be improved, by allowing for (near real-time)

interactions at a finer time scale (short-term) between the Utility and customers

(generation and consumption sides).

From the perspective of the Utility (conventional generation side), both frequency

control and voltage control schemes are needed for keeping active and reactive power-

load balances [6,7,16,73]. From the perspective of customers (consumption side), who

are most likely self-oriented, the objective is to make optimal decisions to maximize

the accumulated profits (or minimize the payments) by taking advantage of their local

DER’s. Given the relatively flat load profiles computed by DR schemes, a customer

can decide to sell part of its excess renewable energy to the grid and storing the rest

for future use, according to the real-time pricing information.

It is worth pointing out that though the real-time decision schemes are important

supplements to the DR schemes, they are different not only in scales of scheduling

period but also in their functionalities. The DR scheme design (long-term planning)

provides a nominal operating point (flat load profiles) for the nodes. In real-time

scheduling, on the other hand, if local generations are less than the nominal load

demands computed in the long-term planning, customers do not have much flexibility

other than to buy electricity they need from the Utility. However, if local renewable

generations are more than the nominal load demands, customers can flexibly decide

109



Chapter 5. Machine-learning Aided Optimal Customer Decisions

how much of their own excess energy to be sold. Therefore, no matter in what

scenario (buying or selling), the real-time scheduling is always based on the flat load

profiles computed by the DR schemes.

5.2.3 A Two-step Decision Framework for Real-time Schedul-

ing

Various DR schemes for the long-term planning problem have already been reported

in literature [30, 60, 88–92]. In this chapter, however, our focus is on the real-time

scheduling problem in the above assumed abstract grid model (consisting of one

controller and multiple customer units). Within this abstract model, there are two

main decision problems (for real-time scheduling) to be addressed: (1) centralized

controller decisions and (2) distributed customer decisions.

Take a microgrid as an example. On one hand, as a customer unit at the feeder-

level, the microgrid controller needs to make sequential decisions to maximize the

accumulated reward of the entire microgrid. At each time step the microgrid con-

troller decides how much electric energy need to buy or sold by the microgrid, taking

into account of all local DER’s within the microgrid (first problem). On the other

hand, smart-homes (customers) with excess energy also need to make distributed

decisions when the microgrid controller needs to sell part of the excess energy. The

distributed decisions indicate how much excess energy each smart-home contributes

to the total amount of electric energy to be sold by the whole microgrid (second prob-

lem). To address both the centralized and distributed decision making problems, we

propose a two-step decision framework for real-time scheduling, as shown in Fig. 5.2.

The centralized microgrid controller decision making problem is shown in the upper

level in Fig. 5.2 and the distributed smart-home decision making problem is shown

in the lower level in Fig. 5.2. In light of the discussion on how the abstract model
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Figure 5.2: A two-step decision framework for a microgrid addressing (1) centralized
microgrid controller decisions and (2) distributed smart-home decisions.

can represent scaled up units in the hierarchical model, the optimal decision making

strategies developed for this abstract model can also be applied to different levels in

the hierarchical smart grid with relevant modifications.

5.3 Centralized Sequential Decision Making at Mi-

crogrid Controller: Problem Formulation

The sequential decision making problem faced by a microgrid controller is illustrated

in Fig. 5.3. The objective is to maximize the accumulated profit of the entire mi-

crogrid (consisting of multiple smart-home customers) over a predefined scheduling
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Figure 5.3: Microgrid controller makes optimal sequential decision to maximize the
total accumulated reward over the scheduling period.

period of length T . In time interval t (1 ≤ t ≤ T ), the microgrid controller takes

into account of all available local information, such as energy storage, renewable gen-

eration and load demands within the microgrid. Depending on whether the stored

energy and local renewable generation are enough to support the total load demands,

the microgrid controller either decides to sell part of its total excess energy to the

grid or buys electricity it needs from the Utility, taking into account the possibly

time variant pricing information.

Without loss of generality, for an arbitrary microgrid controller, we denote by

L(t) ∈ [Lmin, Lmax], Er(t) ∈ [Emin
r , Emax

r ], and Es(t) ∈ [0, Emax
s ] the total load de-

mand, renewable energy generation and stored energy, respectively, of this microgrid

in time interval t. The renewable generation Er(t) and the load demand L(t) are both

stochastic in nature [17,18,94]. We further define the excess energy in time interval t

as Ex(t) = Er(t) +Es(t)−L(t), where Ex(t) ∈ [Emin
r − Lmax, Emax

r + Emax
s − Lmin].

Note that negative excess energy implies buying energy from the Utility.

The Markov properties of load demands and renewable generations [95–97] enable
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us to characterize the transitions of the quantities defined above by a Markov decision

process (MDP) (possibly non-stationary). Denote by s(t) the state of the MDP,

which is defined as a two dimensional vector s(t) = [Es(t), Er(t)− L(t)]. The state

space is denoted by

s1(t) = Es(t), s2(t) = Er(t)− L(t), (5.1)

where s1(t) ∈ S1 = [0, Emax
s ] and s2(t) ∈ S2 = [Emin

r − Lmax, Emax
r − Lmin]. Thus we

have

Ex(t) = s1(t) + s2(t). (5.2)

Though Er(t), Es(t) and L(t) are continuous-valued quantities, we can quantize

the state space into discrete levels. On one hand, a certain level of granularity,

say, a “basic energy unit”, is essential in practice for energy operations to be effec-

tive enough for planning at different levels. On the other hand, the error can be

made sufficiently small by making the quantization level as small as desired. It is

worth pointing out that power scheduling at different levels of the hierarchical ar-

chitecture have different scales. Hence, the basic energy unit could be different for

customer units at different levels. For example, the basic energy unit for a single

household could be relatively small compared to that of a microgrid as a customer

unit. Similarly, in large scale grid scheduling (i.e. microgrids, feeder-level grids and

substation-level grids), the basic energy unit could be relatively large, helping to

reduce the size of the discrete-state space S.

As mentioned earlier, positive excess energy of a microgrid can be fully or partly

stored for its own use in future or be sold to the Utility, depending on the specific

decisions of the microgrid controller. Depending on the sign (+ or −) of Ex(t), a
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microgrid switches between two operating modes: the buying-mode and the selling-

mode. A microgrid is said to be in buying-mode when Ex(t) is negative and in selling-

mode when Ex(t) is positive. For a microgrid in buying-mode, the only available

action is to buy the energy it needs from the Utility. However, for a microgrid in

the selling-mode, we can define a decision variable a(s(t), t) for the selling-mode

microgrid controller as the number of basic energy units to be sold to the Utility,

where the action a(s(t), t) is not only a function of time but also a function of the

current state s(t). Note that, though the maximum value for a(s(t), t) is Ex(t) and

therefore time varying, we can still define an overall time invariant action space as

A =
[
0, 1, 2, . . . , Emax

r + Emax
s − Lmin

]
, (5.3)

where Emax
r +Emax

s − Lmin is assumed to be an integer multiple of the basic energy

unit. Then in time interval t+ 1, the available energy from storage is given by

s1(t+ 1) = Es(t+ 1)

= max [0, Ex(t)− a(s(t), t)]

= max [0, s1(t) + s2(t)− a(s(t), t)] . (5.4)

This MDP model is shown in Fig. 5.4 and the corresponding time variant state

transition function is given by (5.5).

s(t+ 1) = [s1(t+ 1), s2(t+ 1)] ,

=
[
max

(
0,min

(
s(t) · [1, 1]T − a(s(t), t), Emax

s

))
, Er(t+ 1)− L(t+ 1)

]

(5.5)

114



Chapter 5. Machine-learning Aided Optimal Customer Decisions

Figure 5.4: The non-stationary Markov decision process (MDP) model for the cen-
tralized controller decision making problem.

Given the distribution information of the random quantity s2(t+1) = Er(t+1)−

L(t + 1) [94], the state transition with probability P a
ss
′ of this MDP is defined as a

mapping from the set of current states and actions to the state space, S × A → S.

For each time interval, in addition to the local information we defined above, the

microgrid controller also receives pricing information from the Utility for the current

and future time intervals within the scheduling period. In general, there are two

types of prices: the buying price pb(t) and the selling price ps(t). The buying price is

defined as the price at which the Utility buys energy from the microgrid. The selling

price is defined as the price at which the Utility sells energy to the microgrid. As the

fixed pricing scheme is being replaced by dynamic pricing schemes in practice [31],

both buying and selling prices can be time varying. In this chapter, we make following

important assumptions:
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1. Microgrids are allowed to purchase electric energy only for consumption and not

for investment. Therefore, microgrids buy electric energy from the Utility only

when their local renewable generations are less than their total load demands.

2. Microgrids are allowed to store only their own excess local renewable genera-

tions. Therefore, microgrids will store energy only when they have excess local

renewable generations after supporting their own total load demands.

3. Microgrids are allowed to trade electric energy only with the Utility. Direct

trading among microgrids without coordination of a higher level (feeder-level)

controller is not allowed.

It is worth pointing out that, the third assumption that “energy trading among

microgrids is not allowed” does not mean “energy flow among microgrids is not

allowed”. Indeed, appropriate energy routing among different branches of the entire

grid is important to ensure resource pooling and the stability of the entire grid.

Selling excess electric energy back to the Utility does not mean transmitting all

excess power back to a certain “center point” and then redistributing over the entire

grid. The role of the Utility is to make sure that energy routing among customer

units (e.g., microgrids) is under the coordination of a higher level controller.

Rt =







pb(t)a(s(t), t) if s2(t) ≥ 0 ,

pb(t)a(s(t), t) + ps(t)|s2(t)| if s2(t) < 0, s1(t) + s2(t) ≥ 0 ,

ps(t)s1(t) if s1(t) + s2(t) < 0

= pb(t)a(s(t), t)I{s2(t)≥0} + pb(t)a(s(t), t)

+ps(t)|s2(t)|I{s2(t)<0,s1(t)+s2(t)≥0} + ps(t)s1(t)I{s1(t)+s2(t)<0}. (5.6)

Given the pricing information defined above, the reward function Rt(st, a(s(t), t))
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of the microgrid in time interval t can be defined as in (5.6), where I(·) is the indicator

function defined as in

IE =







1 if event E is true

0 if event E is false .
(5.7)

The first two terms in (5.6) correspond to the selling mode and the third term

corresponds to the buying mode. Generally, the reward is defined as the sum of two

parts:

1. How much the microgrid has gained by selling part of the excess energy;

2. How much the microgrid has saved by consuming the stored energy compared

to buying the same amount of energy from the Utility.

Note that the reward is 0 when the microgrid needs to buy energy from the Utility.

This is because that reward is a function of the action and when the microgrid needs

more electric energy, there is no other action but to buy the required electricity

from the Utility. The microgrid can really make active decisions only when there are

excess energy to be sold. When there is no choice (or unique choice), it makes sense

the reward to be a constant value (which is zero). In particular, negative rewards

will be inconsistent with this problem formulation.

A decision rule is a mapping from the set of states to the set of actions, dt : S→ A

[98]. A policy π is a sequence of decision rules π = (d1, d2, . . . , dT ) for the entire

planning period, where dt is the decision rule for the time step t. For each policy

we define a value function (expected return) which is the expected discounted sum

(with discount factor γ, 0 < γ ≤ 1) of rewards of the microgrid over the scheduling

period given the current state s:
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Ṽ π
t (s) = Eπ

{
T−1∑

τ=0

γτRt+τ (st+τ , at+τ )|st = s

}

(5.8)

The objective of each microgrid is to find an optimal policy π∗ that maximizes

the value function:

π∗ = argmax
π

Ṽ π (5.9)

Let us denote by Ṽ ∗ = Ṽ π∗ the optimal value function. For a finite horizon

scheduling, i.e. with finite T , the optimal policy is usually non-stationary because

the “number of steps to go before termination” is different at each time interval.

5.4 A Hidden Mode Markov Decision Process (HM-

MDP) Model for Centralized Decision Mak-

ing

In the above MDP model (5.5) for microgrid sequential decision making problem, we

naturally include all local information, such as L(t), Er(t) and Es(t), into the state

of a microgrid. As a result, this proposed MDP is difficult to solve due to its non-

stationarity: Both the state transition probability matrix and the reward function

are time varying. The non-stationary dynamics come from the fact that both load

demand L(t) and renewable generation Er(t) are, in general, non-stationary stochas-

tic processes. For example, the load demand during a day can change dramatically

from peak hours (afternoon and evening) to non-peak hours (midnight and early in

the morning) [97] and the renewable generation can be heavily dependent on weather

conditions [73, 94, 99].
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In addition to various renewable generation models (Weibull, Rayleigh and Beta

distributions) proposed in literature mentioned earlier, stochastic approaches have

also been reported in the literature for household load modeling and two approaches

are widely adopted. The first approach is component-based load modeling approach,

which reconstructs the expected daily electrical loads of a household based on appli-

ance sets, occupancy patterns, and statistical data. For example, in [20], the authors

constructed such electric load profiles from individual appliance profiles. By consid-

ering availability and proclivity functions, they predict whether someone is available

(at home and awake) and their tendency to use an appliance at any given time. These

functions were applied to predict individual appliance events, which were then ag-

gregated into a load profile. The second approach is termed the measurement-based

load modeling. In [21], the authors used this approach to create electrical profiles

to examine demand side management strategies for Finland. In [22], a methodology

of measurement-based load modeling for transient stability analysis was proposed

and Genetic Algorithms (GA) was used to estimate load model parameters. In [97]

we also proposed a time series technique based model to describe the randomness

in load demand. Moreover, the dynamic pricing information provided by the Utility

can also be time varying.

In the following we propose to transform the above non-stationary MDP into a

stationary hidden mode MDP so that efficient solution algorithms can be developed.

5.4.1 Hidden Modes and State Transitions in a Non-stationary

Environment

Generally, it is very difficult to solve MDP problems with arbitrarily changing dy-

namics [99]. Most standard MDP studies assume stationary dynamics (i.e., MDP

transition matrix P and reward function R are time invariant). Solution methods for
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non-stationary MDP problems are usually obtained only under certain assumptions.

With more information about how the dynamics change, better modeling and solu-

tions can be expected. One important class of algorithms for MDP with unknown and

time variant environment are model-based [100]: For example, they compute policies

by first estimating transition and reward functions and then solving the estimated

MDP. Model based approaches do not need too much specific information about

how the dynamics change. However, these algorithms are particularly vulnerable to

fast-changing dynamics, since they typically employ maximum likelihood estimates

of parameters of the model, based on the past experience. Thus, it is very likely to

average into a large body of outdated prior data. If customers do not know how the

dynamics change but know the rate of changes, an on-line algorithm can be employed

to keep track of the changes by giving higher weights on the near history [101]. Other

approaches for solving MDP with non-stationary dynamics have also been reported

in literature: In [102], the model uncertainty is represented by a Dirichlet distribu-

tion over possible models. Parameters of the distribution are updated directly as new

experience is acquired. To cope with non-stationarity, the parameters are decayed

as time goes. In [103], the non-stationarity is handled by assuming arbitrary but

bounded variations in the transition probabilities. In [104], the change of dynamics

is assumed to be always confined to a small number of choices, named environment

modes, that evolves itself over time according to a Markov chain. MDP’s specified

by different modes have different transition matrices and reward functions but share

the same state and action spaces.

In our problem, it is intuitive that we include all local information (L(t), Er(t)

and Ex(t)) in the state, but it is incomplete because there are other factors that

affect the decisions of the microgrid controller, that are not considered as part of

the state. These factors include weather conditions and various events that influence

either renewable generations or customers’ energy consumption behaviors. These

external factors are not local information for microgrid controller and might not be
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Figure 5.5: The hidden mode Markov decision process (HM-MDP) model for the
centralized controller sequential decision making problem.

as fully observable as the local information is. However, they do provide us with

the possibility to convert the original non-stationary MDP model to a stationary

one. This may allow for the use of more efficient solution algorithms rather than

pure model-based approaches which are vulnerable to fast-changing dynamics [100].

To incorporate these external factors, we define a generalized state consisting of two

parts [104]: the internal state which is the original state as defined earlier and the

environment which contains all external factors. It is worth pointing out that one

difficulty in this state generalization is in quantizing the environmental factors. There

are many factors coupled with each other in the environment making it even difficult

to just determine the number of dimensions of the representation vector space [18].

However, observations on environmental transitions reveal a possible environment

characterization with the concept of an environment mode. Since Markov models

have been widely used in weather forecasting and household load prediction [95–97],

we can reasonably assume that the environment can be characterized by a set of
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environment modes, denoted by m(t). The transition behavior of the environment

among these modes can be characterized by a Markov model. Moreover, since the

Utility determines the real-time electricity prices according to the total load demands

and renewable generations, both buying and selling prices are actually functions of

the environment mode. Unlike the state s(t), which is based only on local informa-

tion and fully observable by the microgrid controller, the environment mode m(t)

is hidden from microgrids (as it is not local information of microgrids) and can be

only estimated based on observations of other information, such as renewable gener-

ations and energy consumptions. As a result, the environment mode transition can

be characterized by a Hidden Markov Model (HMM) [105].

5.4.2 A Hidden Mode Markov Decision Process (HM-MDP)

Model for Microgrid Controller Decision-making

With the fully observable internal state and the hidden environment mode as defined

above, we may adopt a hidden mode Markov decision process (HM-MDP) model to

solve the microgrid controller centralized sequential decision making problem [104–

106]. In addition to the tuple {S,A, P, R}, now we also define the environment

mode space denoted by M. As shown in Fig. 5.5, the proposed HM-MDP transition

consists of two layers: the microgrid layer (internal state transition layer) and the

environment layer (environment mode transition layer).

Assume that at any time t, the environment mode is m and the microgrid state

is s. Based on the observable state s the microgrid controller makes a decision a

and receives an immediate reward Rm(s, a). Then at time t + 1, the environment

mode changes from m to m
′

with a transition probability of xmm
′ and the microgrid

state changes from s to s
′

with a transition probability of P a,m
′

ss
′ . Note that the

immediate reward function Rm(s, a) is indexed by mode m because the electricity
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prices (both the selling price and the buying price) can be functions of environment

mode m, as the Utility usually takes these external factors into account to determine

the prices [93]. Similarly, the state transition probability P a,m
′

ss
′ is indexed by the

successor mode m
′

. This is because the transition probability is determined by the

random quantity (Er(t+1)−L(t+1)) which can be a function of the successor mode

m
′

at time t+ 1.

Note that the transition of environment mode is independent from the internal

state, but the transition of internal state is dependent on the corresponding successor

environment mode. This is seen by noting that the probability distribution for

the random quantity (s2(t) = Er(t) − L(t)) depends on the environment mode.

This probability distribution affects the distribution of the internal state transition.

Similarly, s1(t) = Es(t) is dependent on the previous environment mode through

the state in previous step s(t − 1). From Fig. 5.5 we can see that the probability

distribution of (s2(t)) actually determines how the HM-MDP process evolves over

time:

1. The current energy storage s1(t) = Es(t) and the probability distribution of

(s2(t)) corresponding to the current environment mode m(t) determines the

probability distribution of current state s(t).

2. The current excess energy Ex(t), current decision a(t) and the probability dis-

tribution of (s2(t+ 1)) corresponding to the next environment mode m(t+ 1)

determines the transition probability of the internal state from s(t) to s(t+1).
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5.5 Partially Observable Environment and Belief

Mode Estimation

Since the environment mode is hidden from the microgrid, we define the belief mode

in a similar way the belief state is defined for partially observable Markov decision

processes (POMDP) [98]. The belief mode µ, which is a probability distribution over

the environment modes, is a sufficient statistic for the optimal decision making in an

HM-MDP [98]. The set of all possible belief modes is referred to as the belief mode

space denoted by B. We then define a decision policy for an HM-MDP as a mapping

from S× B to A, that prescribes an action for each pair of state and belief mode.

Knowing the transition matrix of the HMM of the environment mode is a prereq-

uisite for calculating the belief mode transition rule. Therefore, there are two steps

to calculating the belief mode:

1. HMM model learning of the environment mode;

2. Estimation of the new belief mode. Based on the observable state and the

estimated belief mode, microgrid controller then make sequential decisions to

maximize the accumulated rewards.

In general, the transition probabilities of the Markov chain developed for the en-

vironment mode modeling, though fixed, are unknown in advance. There are usually

two ways to obtain this transition matrix. One approach is based on the parameter

estimation of the Markov model of environment uncertainties [94]. Thus the accu-

racy of the transition matrix estimation depends on how well these uncertainties are

modeled. The other approach, which is more robust against modeling error, is based

on online learning, in which the current environment mode is inferred by observ-

ing the state transition history. Baum-Welch algorithm, which is adopted in this
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chapter, represents this second approach [105], in which the mode HMM transition

probability xmm
′ is estimated based on maximum likelihood (ML) criterion. In the

following, we focus on the second step: Bayesian estimation of the belief mode.

5.5.1 HMM Transition Probability Learning: Baum-Welch

Algorithm

In general, the transition probabilities of the Markov chain corresponding to the en-

vironment mode, though fixed, are unknown in advance. There are usually two ways

to obtain this transition matrix. One approach is based on the parameter estimation

of the Markov model of environment uncertainties [94]. Thus the accuracy of the

transition matrix estimation depends on how well these uncertainties are modeled.

Another approach, which is more robust against modeling error, is based on online

learning, in which the current environment mode is inferred by observing the state

transition history. Baum-Welch algorithm represents this second approach [105], in

which the mode HMM transition probability xmm
′ is estimated based on maximum

likelihood criterion, i.e. find the values of model parameters that maximize the like-

lihood of the observed data. It has been shown in [105] that the iterative parameter

estimation procedure in Baum-Welch algorithm either increases the likelihood func-

tion or leave it constant. In the latter case, then parameter set is a fixed point [105].

Due to space limit, we omit the detailed steps of the Baum-Welch algorithm here.

Interested readers are referred to [104,105].

5.5.2 Bayesian Estimation of the Belief Mode

Assume that from time t to t + 1, the environment mode changes from the current

mode m to another hidden mode m′ independent of the current and next internal
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state transitions. When an action a is executed by the microgrid controller at time t,

the state changes from the current state s to another observable state s
′

. We denote

by µa
s
′ the next belief mode determined by the action a and the next state s

′

given

the current state s and the current belief mode µ. Using the Bayes’ formula, the

m
′

-th component of the next belief mode µa
s
′ is given by

µa
s
′ (m

′

) =
Prob(s

′

,m
′

|s, µ, a)
∑

m
′′ Prob(s′ ,m′′ |s, µ, a)

=

∑

m xmm
′P a,m

′

ss
′ µ(m)

∑

m
′′

∑

m xmm
′′P a,m

′′

ss
′ µ(m)

(5.10)

where P a,m
′

ss
′ is the conditional probability that the internal state transfers to s

′

given

that the current state is s and the microgrid controller takes action a and environment

mode changes to m
′

and can be calculated empirically based on real measured data.1

Note that in deriving (5.10) we have used the facts that: (1) The transition of

environment mode from m to m
′

(with probability xmm
′ ) does not depend on the

current state s and action a, so that Prob(m
′

|s,m, a) = Prob(m
′

|m) = xmm
′ ; (2)

The transition of state from s to s
′

(with probability P a,m
′

ss
′ ) does not depend on the

current mode m, Prob(s
′

|s,m, a,m
′

) = Prob(s
′

|s, a,m
′

) = P a,m
′

ss
′ . This is because

the transition of environment mode is determined by external factors such as weather

conditions, which are independent from the microgrid state and the microgrid con-

troller action. However, the transition of belief mode and the resultant belief mode

do depend on the resultant state s
′

. This is because the belief mode is an estimate

of the hidden environment mode, which is made by the microgrid controller based

on the observation of its own state (local information).

1Strictly speaking, we need to consider the case that the state transition from s to

s
′

happens with a probability of 0, meaning P
a,m

′

ss
′ = 0, ∀m ∈ M and the denominator

in (5.10) is 0. In this case, the term P
a,m

′

ss
′ is independent of m and (5.10) reduces to

µa
s
′ (m

′

) =
∑

m x
mm

′µ(m)
∑

m
′′
,m

x
mm

′′µ(m) .
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5.5.3 Maximum Likelihood Estimation of Transition Matrix

P a,m
′

ss
′

Recall that P a,m
′

ss
′ is the conditional probability that the internal state transfers to

s
′

given that the current state is s and the microgrid controller takes action a and

environment mode changes to m
′

. This can be calculated empirically by using the

standard maximum likelihood estimation (MLE) based on measured data. Denote

by {pss′ |0 ≤ s, s
′

≤ l} the entries of transition matrix P a,m
′

ss
′ for arbitrary mode m

′

and action a. Denote by Si the state in step i, where pss′ is the transition probability

from state s to state s
′

and l is the number of states. For any pair of initial and final

states s1 and sj, the likelihood is given by L(p) = Pr(S1 = s1)
∏j

i=2 psi−1si . Define

the transition counts nss
′ as the number of times that state s is followed by state s

′

.

Then we may rewrite the maximum likelihood estimation problem as

maximize
p
ss
′

Pr(S1 = s1)
l∏

s=1

l∏

s
′=1

p
n
ss
′

ss
′ (5.11)

subject to
∑

s
′

pss′ = 1, s = 1, 2, . . . , l (5.12)

Notice that the optimal estimation p̂ss′ that maximizes the log-likelihood log(L(p))

also maximizes the likelihood function, where

log(L(p)) = log(Pr(S1 = s1)) +
∑

s,s
′

nss
′ log(pss′ ) (5.13)

Hence, this convex optimization problem can be solved by introducing a new

objective function L(p) = log(L(p))−
∑l

s λs(
∑

s
′ pss′−1), where λ1, λ2, . . . , λl are La-

grange multipliers. Taking into account both zero derivative conditions ∂L(p)/∂pss′ =
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0 and the probability transition matrix constraints
∑

s
′ pss′ = 1, for s = 1, 2, . . . , l,

we have nss
′/p̂ss′ −λs = 0 and

∑l

s
′=1 nss

′/λs = 1 for all s. Thus, the MLE estimator

of transition matrix is given by

p̂ss′ = nss
′/

∑

s
′

nss
′ (5.14)

5.5.4 Connection between the HM-MDP and the POMDP

Formulations

It can be easily seen that HM-MDP is a special case of the partially observable

Markov decision processes (POMDP). Indeed, it is always possible to convert an

HM-MDP into a POMDP with an augmented state space S×M [104,106]. The new

state space of the POMDP is the product of the original state space and mode space,

containing all possible mode-state pairs. The observation space of the POMDP is the

state space S as in the original problem the state is fully observable. The action space

of the POMDP is the same with the original action space A. The transition probabil-

ity from one POMDP state (one mode-state pair for HM-MDP) to another POMDP

state (another HM-MDP mode-state pair) is simply the corresponding mode tran-

sition probability xmm
′ multiplied by the corresponding state transition probability

P
a,m

ss
′ . This is because the state transition and mode transition are independent of

each other, in spite of the fact that state transition is a function of the successor

mode.

While POMDPs are superior in terms of representational power, in our non-

stationary problem, HM-MDP is a more natural formulation to incorporate local

information and external factors. More importantly, however, HM-MDPs require

fewer parameters in model learning. In general, an HM-MDP contains (|S|2 · |M| ·
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|A|+ |M|2) number of parameters, which is much fewer than (|S|2 · |M|2 · |A|) number

of parameters required for the corresponding POMDP. This simplification was shown

to have significant speedup in model learning in [104,106].

5.6 Optimal Policies for Microgrid Controller De-

cision Making: Exact Solution Algorithm

In this section we present an exact algorithm for solving the above formulated HM-

MDP problem for an individual microgrid. From the Optimality Principle, the op-

timal value function satisfies the following backward induction recursion called the

Bellman equation [107]:

V ∗t (s) = max
a






R(s, a) + γ

∑

s
′∈S

P a
ss
′V ∗t+1(s

′

)






(5.15)

where V ∗t is the optimal value with t steps to go before termination. A difficulty in

evaluating the Bellman equation for the HM-MDP model (the counterpart of (5.15)

for HM-MDP) is that we cannot perform summation over the continuous joint space

S × B. However, given any pair (s, µ), since the action and state sets are finite,

from (5.10) we know that there are only a finite number of possible successor pairs

(s
′

, µa
s
′ ). Thus the Bellman equation for the HM-MDP model can be expressed as

(5.16) in which the state has been replaced by the (state, belief mode) pair compared

to (5.15). We can further rewrite (5.16) as (5.17) by using (5.18). Similarly, the

transition probability Prob(s
′

|s, µ, a) and the immediate reward R(s, µ, a) can be

rewritten, respectively, as (5.19) and (5.20).
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V ∗t (s, µ) = max
a






R(s, µ, a) + γ

∑

(s′ ,µ′ )∈(S,B)

Prob(s
′

, µ
′

|s, µ, a)V ∗t+1(s
′

, µ
′

)







(5.16)

= max
a






R(s, µ, a) + γ

∑

s
′∈S

Prob(s
′

|s, µ, a)V ∗t+1(s
′

, µa
s
′ )







(5.17)

Prob(s
′

, µ
′

|s, µ, a) =







Prob(s
′

, µa
s
′ |s, µ, a) = Prob(s

′

|s, µ, a) if µ
′

= µa
s
′

0 if µ
′

6= µa
s
′

(5.18)

Prob(s
′

|s, µ, a) =
∑

m∈M

Prob(s
′

|s,m, a)µ(m) =
∑

m∈M

∑

m
′′∈M

P a,m
′′

ss
′ xmm

′′µ(m)

(5.19)

R(s, µ, a) =
∑

m∈M

Rm(s, a)µ(m), (5.20)

where Rm(s, a) is the immediate reward when the action a is taken in state s while

the environment mode is m.

It is worth pointing out that (5.17) still can not be directly solved easily because

V ∗(t) is a function of continuous-valued belief mode. Therefore, a finite representa-

tion for the optimal value function V ∗(t) is required for the one step value function

iteration in (5.17). In the rest of this section, we first present a finite representation

for the optimal value function (5.17). Based on this finite representation, we will

develop an update rule for the value iteration algorithm for the Bellman equation

(5.17).
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5.6.1 Finite Representation of Value Functions

The key to implementing a value iteration algorithm based on (5.17) is to construct

a finite representation for the optimal value function V ∗(t). In general, the existence

of such a finite representation is not guaranteed for arbitrary optimal value functions.

However, a sufficient condition to guarantee the existence of a finite representation

is that the optimal value function is piecewise linear and convex (PWLC) [108].

The convexity property implies that the value function is the upper surface of those

linear value planes. Thus, in a PWLC optimal value function V ∗(s, µ) with the state

s given, each linear segment is a hyper-plane in an |M|-space and can be represented

by an |M|-vector of coefficients. We say that a collection of sets {Ωs|s ∈ S} represents

the value function if for any µ [98]:

V ∗t (s, µ) = max
ωs∈Ωs

∑

m∈M

µ(m)ωs(m) = max
ωs∈Ωs

µ · ωs (5.21)

where ωs ∈ Ωs, ωs = [ωs(1), ωs(2), . . . , ωs(|M|)], and Ωs represents the set of vectors

or hyper-planes that comprise a PWLC value function V ∗(s, µ). For each vector

ωs ∈ Ωs, we define the witness region W (ωs,Ωs) as a set of belief modes, in which

ωs dominates over other vectors, as shown below,

W (ωs,Ωs) = {µ|µ · ωs > µ · ω̃s, ∀ω̃s ∈ Ωs − {ωs}, µ ∈ B} (5.22)

A vector ω̃s is said to be dominated if for ∀µ ∈ B, µ · ω̃s ≤ max
ωs∈Ωs

µ · ωs. In

other words, a dominated vector has an empty witness region. For any PWLC value

function V ∗t that can be represented by a certain vector set collection {Ωs|s ∈ S}, we

can find infinitely many such representation vector sets by adding dominated vectors

to Ωs and all these set collections can represent V ∗t . However, among all these
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sets there is a unique minimal set Ω∗s,t for each state s, in which all vectors have

nonempty witness regions. We use the term parsimonious set [98] when referring to

this unique minimal subset of all vector sets representing a value function. It has

been shown in [108] that any PWLC value function indeed has a unique parsimonious

representation.

5.6.2 PWLC Properties of HM-MDP Optimal Value Func-

tions

The parsimonious representations of optimal value functions in (5.17) provides us

the possibility to update the parsimonious sets of optimal value functions in each

iteration, instead of updating the value functions themselves. Before we implement

this approach, however, we need the following theorem:

Proposition 2. For an HM-MDP with arbitrary but finite scheduling period of T ,

the optimal finite horizon value function V ∗(t) is PWLC.

Note that the HM-MDP model is a special case of the more general POMDP

model [104] and the PWLC property for the POMDP has been proved before in [98].

However, in the following we present a detailed proof for the theorem proposed for

the HM-MDP above because the proof itself provides an update rule for HM-MDP

value function iteration based on finite representations.
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V ∗t (s, µ) = max
a

V a,∗
t (s, µ), V ∗,at (s, µ) =

∑

s
′

V ∗,a,s
′

t (s, µ), (5.23)

V ∗,a,s
′

t (s, µ) =
1

|S|
R(s, µ, a) + γProb(s

′

|s, µ, a)V ∗t+1(s
′

, µa
s
′ ) (5.24)

V ∗,a,s
′

t (s, µ) =
1

|S|

∑

m

µ(m)Rm(s, a) + γ
∑

m
′

(
∑

m

xmm
′P a,m

′

ss
′ µ(m)

)

ω∗
s
′
,t+1

(µa
s
′ ,m

′

)

=
∑

m

µ(m)




1

|S|
Rm(s, a) + γ

∑

m
′

xmm
′P a,m

′

ss
′ ω∗

s
′
,t+1

(µa
s
′ ,m

′

)



 = µ · ωa,s
′

s,t (µ) (5.25)

Proof. Inspired by the work in [98], we prove this theorem by induction and for

each time step we break the value function (5.17) down into a series of related value

functions as shown in (5.23) and (5.24), where V ∗,at (s, µ) is the value of performing

action a in state belief-mode pair (s, µ) at time t and then performing optimally

thereafter. V ∗,a,s
′

t (s, µ) is the expected reward attributable to resultant state s
′

when

action a is performed in state belief-mode pair (s, µ) and the optimal actions are

performed thereafter. For time t = T , only immediate rewards matter as there is no

future rewards. Based on (5.20) and (5.24) we have

V ∗,a,s
′

T (s, µ) =
1

|S|

∑

m∈M

Rm(s, a)µ(m) (5.26)

It can be seen that V ∗,a,s
′

T (s, µ) is a linear function of µ and is therefore trivially

convex. Based on the two propositions proposed in [98], which say that finite sum

and finite union operation preserve the PWLC property, we know V ∗,aT (s, µ) and

V ∗T (s, µ) are both PWLC. The inductive step assumes that V ∗t+1(s, µ) is PWLC and

it has the finite representation as
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V ∗t+1(s
′

, µa
s
′ ) = max

ω
s
′
,t+1

∈Ω
s
′
,t+1

µa
s
′ · ωs

′
,t+1 (5.27)

If we let ω∗
s
′
,t+1

(µ) = argmax
ω
s
′
,t+1

∈Ω
s
′
,t+1

µ · ωs
′
,t+1, then we get

V ∗t+1(s
′

, µa
s
′ ) = µa

s
′ · ω∗

s
′
,t+1

(µa
s
′ ) (5.28)

Substituting (5.10), (5.19), (5.20) and (5.28) into (5.24) and letting ω∗
s
′
,t+1

(µa
s
′ ,m

′

)

be the m
′

-th component of ω∗
s
′
,t+1

(µa
s
′ ), we have (5.25). The representation vector of

V ∗,a,s
′

t (s, µ) is ωa,s
′

s,t (µ) with its m-th component given by

ωa,s
′

s,t (µ,m) =
1

|S|
Rm(s, a) + γ

∑

m
′

xmm
′P a,m

′

ss
′ ω∗

s
′
,t+1

(µa
s
′ ,m

′

) (5.29)

Similarly, based on the same two propositions, we can show that the value

function V ∗,a,s
′

t is PWLC given that V ∗t+1 is PWLC. Thus the theorem has been

proved.

Note that though the updating rule presented in (5.25) is for finite horizon prob-

lem, it can be also useful in infinite horizon scenarios because it at least generates

an improved approximation that is closer to the optimal value function.

5.6.3 Representation Set Iteration and Pruning

As mentioned earlier, our approach to obtain the optimal value function is to char-

acterize the set of representation sets of the value function at each time instant. We

achieve this by an iteration algorithm for these representation sets starting from the
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time t = T . It is worth pointing out that the proof presented above actually provides

an update rule to compute a representation set of V ∗t (s, µ), denoted by Ωs,t, based

on the parsimonious representation of V ∗t+1(s, µ), denoted by Ω∗s,t+1. Based on this

representation set iteration, the optimal value and optimal action of the proposed

HM-MDP problem are given by

V ∗t (s, µ) = max
ωs,t∈Ωs,t

ωs,t · µ, a∗t (s, µ) = argmax
a∈A

V ∗,at (s, µ) (5.30)

However, the representation sets Ωs,t generated by this procedure are not neces-

sarily parsimonious. This could make the search for optimal representation vector

inefficient. Thus, it is necessary to follow the representation set iteration with a set

pruning step for each time t to make the algorithm easy to implement. In the set

pruning step, given an arbitrary representation set Ωs,t for a PWLC value function

V ∗t (s, µ), we attempt to prune the set Ωs,t to the unique parsimonious representation

Ω∗s,t.

Denoting by
{
Ω∗s,t|s ∈ S

}
the parsimonious representation sets, based on the de-

composition presented in (5.24), we have

Ω∗s,t = purge
(
∪a∈AΩ

∗,a
s,t

)
, Ω∗,as,t = purge

(⊕{
Ωa

s,t|s ∈ S
})

(5.31)

where
{
Ωa

s,t|s ∈ S
}
contains all vectors ωa

s,t(µ) for all (s, µ) pair and the operator
⊕

is defined as the cross sum over the sets:

⊕{
Ωa

s,t

}
=






ω∗,as,t |ω

∗,a
s,t =

∑

s
′

ω∗,a,s
′

s,t , s
′

∈ S, s ∈ S






. (5.32)
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The operation purge(Ω̃s) is defined as the procedure to find the unique parsimo-

nious subset Ωs given an arbitrary representation set Ω̃s.

We give a brief description of notation to be used and then follow [109] in present-

ing the pruning algorithm in Algorithm 1. Vector comparisons are componentwise:

i.e. ω1 ≥ ω2 if and only if for all m ∈ M, ω1(m) ≥ ω2(m). For any m ∈ M, the

em is the m-th unit vector. Set subtraction is defined as Ω1\Ω2 = {ω ∈ Ω1|ω /∈ Ω2}.

The function find-belief-mode(ω
′

s, Ω̃s) finds a belief mode in the witness region of ω
′

s,

which can be implemented by linear programming approaches. There are also sev-

eral other algorithms to prune the given vector sets to their parsimonious subsets,

such as batch enumeration [110], Sondik’s one-pass algorithm [111] and witness algo-

rithm [112]. However, the incremental pruning algorithm developed in [109] allows

solving problems that could not be solved within reasonable time limits using other

algorithms mentioned above.

5.6.4 Performance Analysis

We implement the above value iteration algorithm and compare its performance

with a greedy algorithm and a random decision policy. In the greedy algorithm

the microgrid controller makes the decision to maximize the immediate reward in

the current time interval (selling all the excess energy to the Utility) in each time

step, whereas in random decision policy the microgrid controller makes a random

decision on the portion of excess energy to be sold. Simulation parameters of the

microgrid is set as follows: renewable generation Er(t) ∈ [50kWh, 100kWh], storage

capacity Emax
s = 300kWh, load demand L(t) ∈ [50kWh, 150kWh]. Based on the real

measured load data in Texas [53], we defined 3 Gaussian distributions with different

statistics for the microgrid loads, with relatively high probability on low, medium

and high load demand values, respectively. Similarly we define 3 distributions for
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Algorithm 1 purge(Ω̃s)

Ωs ← Φ

for all m ∈M do

ωs ← argmax
ωs∈Ω̃s

em · ωs; Ωs ← Ωs ∪ {ωs}

Ω̃s ← Ω̃s\{ωs}

end for

while Ω̃s 6= Φ do

for all ω
′

s ∈ Ω̃s do

µ← find-belief-mode(ω
′

s, Ω̃s)

if µ = null then

Ω̃s ← Ω̃s\{ω
′

s}

else

ωs ← argmax
ω
′

s∈Ω̃s

µ · ω
′

s; Ωs ← Ωs ∪ {ωs}

Ω̃s ← Ω̃s\{ωs}

end if

end for

end while

return Ωs

renewable generations based on the Weibull distribution of wind speed [47] and the

Beta distribution of solar radiation [19]. As a result, 9 environment modes in total are

defined. Buying price pb(t) and selling price ps(t) are defined for each environment

mode, ranging from 10 to 18 cents per kWh [113]. The expected accumulated reward

with discount factor γ = 0.9 are calculated by averaging over 100 decision process

realizations with the same initial conditions.

The performance comparison among three decision making strategies is shown in

Fig. 5.6, with scheduling period length ranging from 2 to 10. We set the quantization
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Figure 5.6: Expected accumulated reward comparison among value iteration, greedy
algorithm and random decision strategy for scheduling period from 2 to 10 steps.

level for energy space as 10kWh. Similarly, the action space A = [0, 1] is equally

quantized with granularity of 0.1. In spite of the relatively long simulation running

time, we can see that the value iteration based exact algorithm shows much better

performance in accumulated rewards, no matter what the scheduling period length

is.
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5.7 Approximate Dynamic Programming (ADP)

for Infinite Horizon Scheduling

As shown above, the value iteration algorithm leads to an optimal solution that

maximizes microgrid rewards. It also enables theoretical analysis of the solution

properties of the sequential decision making problem. However, there are several

issues that limits its application in practice. First, it’s complexity suffers from the

Curses of Dimensionality. In our problem, the exact algorithm has exponential

computational complexity in terms of the sizes of both the state space and the

action space [99]. Moreover, the witness region searching becomes time inefficient

when the scheduling period is long. Second, the performance of the exact algorithm

depends heavily on precise transition probabilities (both state and mode transitions),

which might be inaccurate as they are either estimated from the past experience or

dependent on the uncertainty models which could contain modeling errors. Third,

the value iteration algorithm is optimal in the specific scenario in which the sequential

decisions are made in a period-by-period manner. This formulation naturally fits very

well to the most common day-by-day type of scheduling, in which all decisions for the

day are made at the beginning of the day without considering the information of the

next day. But in more general scenarios, adaptive incorporation of new information

might be required. An alternative approach that may help resolving this issue is the

receding horizon scheme, in which a scheduling period with length T is allowed to

move forward as a sliding window over time. In each step the same value iteration

proposed above still applies. However, the receding horizon scheme actually pays a

price for being adaptive since the computational complexity is even higher than the

original day-by-day type of scheduling, especially when the sliding step size is small.

To take into account all three issues mentioned above: computational complexity,

dependence on transition probability and being adaptive to new information, in this
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section we resort to machine learning. In particular, we use approximate dynamic

programming (ADP) and propose a Q-learning algorithm to solve the HM-MDP

problem. Approximate dynamic programming is based on an algorithmic strategy

that steps forward through time, by making approximations of both value functions

and transition probabilities in conventional value iteration [99]. Different ADP algo-

rithms have been proposed depending on which part of the Bellman equation (value

function, policy function or transition probability) is approximated and what type

of approximation is used (e.g., lookup table, parametric or nonparametric form).

The ADP algorithm greatly reduces the computational complexity and approximate

the transition probability to make the expectation calculation easier in the Bellman

equation. Moreover, going forward in time makes it possible to expand the horizon

to infinity, which overcomes the drawbacks of day-by-day and receding horizon type

of scheduling schemes. It is worth pointing out that infinite horizon does not mean

making plans for a infinite long time, but enables a decision making strategy to work

without having to specify either starting or ending point. As a result, new observa-

tions can easily be incorporated as the algorithm moves forward over time [107].

5.7.1 Q-learning Algorithm for Model-free Decision Making

Among various ADP algorithms, Q-learning enables the microgrid controller to learn

to act optimally in the presence of Markov dynamics by experiencing the conse-

quences of actions without requiring them to build models first [114]. We define a

Q-function as the value function V ∗,a(s, µ) given the (state, belief mode) pair and

the action, as shown in equation (5.33).

Q(s, µ, a) = R(s, µ, a) + γ
∑

s
′∈S

Prob(s
′

|s, µ, a)V ∗(s
′

, µa
s
′ ) (5.33)
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The objective in Q-learning is to estimate the above Q values for an optimal pol-

icy. To implement the Q-learning algorithm, a lookup table (Q-table) is constructed.

The elements of the Q-table are the Q-values corresponding to all possible (state,

mode, action) or (s,m, a) triples. In essence, the microgrid controller tries an action

a when in a particular (state, belief mode) pair (s, µ) and evaluates its consequences

in terms of the immediate reward it receives and its estimate of the value of the

(state, belief mode) pair (s
′

, µa
s
′ ) to which it is taken. The Q-values are updated

according to equation (5.34) and the corresponding Q-table elements are updated

according to the belief mode µ(m),m ∈ M. By trying all possible actions for all

(state, belief mode) pairs repeatedly, Q-learning can learn what action is the best

for each (state, belief mode) pair.

The experience of the microgrid controller consists of a sequence of distinct stages,

or episodes, and in each episode (indexed by n), a learning rate of αn is used to update

a lookup table by incorporating new observations on reward. An exploration factor ε

is used to balance the exploitation and exploration: The microgrid controller makes

its decision according to the lookup table with probability 1−ε and randomly explore

other actions with probability ε. Algorithm (2) shows how the microgrid controller

implements the Q-learning during the n-th episode.

Being model-free, Q-learning absorbs any changes in the non-stationary environ-

ment and provides the microgrid with an efficient algorithm to make optimal deci-

sions when model information is limited. Generally, for a stationary MDP with fully

observable states, the Q-learning algorithm indeed converges to the optimal policy if

the sequence of episodes that forms the basis of learning includes an infinite number

of episodes for each starting triple (s, µ, a) [107]. However, as with the POMDP prob-

lem, there is no guarantee of convergence for Q-learning in the HM-MDP problem

without additional assumptions such as linear value function approximations [115].

As a result, Q-learning can be a suboptimal solution to our problem.
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Algorithm 2 Q-learning

observes the current state s and estimate the belief mode pair µ

based on the pair (s, µ), the agent selects and performs an action a

observes the subsequent state s
′

and resultant estimated belief mode µa
s
′

receives an immediate reward R(s, µ, a)

adjusts its old Qn−1 values using a learning factor αn, according to (5.34)

Qn(s, µ, a)

=












(1− αn)Qn−1(s, µ, a)+

αn

[

R(s, µ, a) + γmax
a
′

Qn−1(s
′

, µa
s
′ , a

′

)

]




 if




(s, µ, a) =

(sn, µn, an)





Qn−1(s, µ, a) otherwise ,







(5.34)

5.7.2 Performance Analysis

With the same simulation setup used in section Section IV.D, we present the perfor-

mance of the Q-learning algorithm compared to the exact value iteration, greedy and

the random decision algorithms in Fig. 5.7. As a balance between the convergence

rate and enough weights of history data, the learning rates are set as αn = 0.3, ∀n.

Before the comparison, a training period of 104 time steps is applied for the Q-

learning algorithm with the exploration factor εn = 0.1, ∀n to balance the exploita-

tion and exploration. Because of the high computational complexity of the exact

algorithm, the maximum scheduling period length is 10. Though not as good as the

exact algorithm, the Q-learning algorithm shows better performance than both the

greedy and random algorithms.

We further investigate the performances (without the exact VI algorithm due to

its high computational complexity) with longer scheduling periods (up to 20 steps),
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Figure 5.7: Expected accumulated reward comparison among value iteration, Q-
learning, greedy and random decision algorithms for scheduling period from 2 to 10
steps.

as well as the influence of the length of the training period in Fig. 5.8. It can be seen

from Fig. 8(a) that, the Q-learning algorithm shows better performance compared

to the greedy algorithm and the random decisions. Moreover, it can be observed

that, because of the discount factor, the accumulated reward gradually saturates

as the the length of the scheduling period increases. Fig. 8(b) shows that, for the

same initial parameters and a scheduling period of T = 10, the accumulated reward

increases as the length of the training period increases from 10 to 104.

143



Chapter 5. Machine-learning Aided Optimal Customer Decisions

Figure 5.8: Left plot: expected return comparison among Q-learning, greedy and
random decision algorithms. Right plot: the accumulated reward (T = 10) increases
as the training period for the Q-learning increases from 10 to 104.

5.8 Distributed Optimal Decision Making: An Auc-

tioning Game Design

Based on the optimal sequential decisions of the microgrid controller obtained by

solving the HM-MDP model as discussed in the previous section, in this section

we focus on the decision scheme design for distributed customers (smart-homes).

When the microgrid controller decides to sell part of the total excess energy of the

entire microgrid, this distributed decision scheme is especially important to decide

how many excess energy units each smart-home contributes to the total amount of

energy to be sold, considering the fact that smart-homes are all self-oriented. Several
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important issues need to be addressed about the distributed decision scheme design:

1. First, the optimal distributed scheme needs to be robust to adding/removing

smart-homes. This is because the number of smart-homes within a microgrid

could be large and the status of smart-homes (buying-mode or selling-mode)

also vary over time.

2. Second, the optimal distributed scheme needs to allow all participating selling-

mode smart-homes to specify how eager they are to sell their excess energy

units. Because usually not all excess energy units can be sold, a fair and

efficient distributed decision scheme needs to make sure that the excess energy

units to be sold are those units that the selling-mode smart-homes are highly

eager to sell. Hence, to quantitatively describe the eagerness of selling-mode

smart-homes, we need to define a metric of eagerness. It is worth pointing out

that not only could the eagerness-metrics be different among different selling-

mode smart-homes, even for the same selling-mode smart-home, the eagerness-

metric might vary as the number of remaining excess energy units changes.

Therefore, according to different eagerness-metrics of distributed smart-homes,

the microgrid controller needs to guarantee that the energy units sold always

correspond to high eagerness metrics.

3. Third, the optimal distributed scheme needs to be robust against collusive

smart-homes. This is because that individual selling-mode smart-homes are all

self-oriented and interested in maximizing their own benefits. Thus, selling-

mode smart-homes might not necessarily telling their true eagerness metrics

and they might tell the untrue values if doing so results in higher benefits.

Denote by Et
l the total amount of excess energy (assuming Et

l is an integer mul-

tiple of the basic energy units) that the microgrid will sell to the outside grid. Recall

that Et
l is obtained from the optimal solution of the centralized decision problem, in
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which the microgrid controller decides how much electric energy need to buy or sold

by the microgrid in order to maximize the accumulated reward of the entire micro-

grid. Since this Et
l number of energy units comes from possibly different selling-mode

smart-homes, we can define the number of trading opportunities to be Et
l , where each

trading opportunity corresponds to the trading of a single basic energy unit. The

eagerness metric of a selling-mode smart-home associated to each trading opportu-

nity is defined as the valuation (measured in money unit) of the trading opportunity

that the smart-home has. The valuation that the smart-home has associated to an

individual trading opportunity is defined as how much the smart-home expects to get

from selling its excess energy unit. The valuations of the Et
l trading opportunities

are private information of smart-homes and are usually determined by factors such

as energy storage, power consumptions and so on. For example, when a smart-home

needs to sell its excess energy units more urgently, it will associate higher values

to these trading opportunities. Hence, the eagerness-metrics it associates to these

trading opportunities are also higher. With the eagerness-metric defined above, the

original distributed decision making problem is equivalent to an optimal allocation

problem, in which Et
l number of trading opportunities are to be allocated among

selling-mode smart-homes.

5.8.1 Vickrey Auction based Distributed Allocation Scheme

Considering all the desired properties required by the distributed decision making

scheme, we propose a Vickrey auction based allocation scheme for distributed smart-

homes in the microgrid, as shown in Fig. 5.2. Assume that out of the total K number

of smart-homes, there are K̂t number of selling-mode smart-homes in time interval

t participating in the Vickrey auction competing for Et
l number of trading opportu-

nities. Note that in a one-shot auction in each time interval, selling excess energy

always increases the smart-home’s immediate reward. Thus, every smart-home wants
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to sell as much excess energy as possible for its own benefit. However, from the mi-

crogrid controller’s perspective, to maximize the total accumulated reward in a long

run, Et
l number of energy units must be sold to the grid at time t (this is what

the first step solution determines). Since Et
l is no greater than the total excess en-

ergy Ex(t) among all smart-homes in the microgrid, only part of the excess energy

units can be sold. Selling-mode smart-homes compete for the Et
l number of trading

opportunities by telling that how much money (the bids) they are willing to pay

for each of the trading opportunities. Selling-mode smart-homes determine the bids

based on their own valuation associated to each trading opportunity. These bids are

not necessarily equal to their valuations. Thus, selling-mode smart-homes need to

take into account the payments they need to make for the trading opportunities and

the profits they may have by selling their excess energy units. Here the profits of

a smart-home equal to the difference between the total valuations associated to all

trading opportunities it obtains and the total payments it makes.

In the Vickrey auction, the k-th (k = 1, 2, . . . , K̂t) selling-mode smart-home sub-

mits Et
l number of bids bnt,k’s (n = 1, 2, . . . , Et

l ) to indicate how much it is willing to

pay for each additional trading opportunity in time interval t. Thus, bid bnt,k is the

amount of money the selling-mode smart-home k is willing to pay for its n-th trading

opportunity. Let bt,k = (b1t,k, b
2
t,k, . . . , b

Et
l

t,k) denote the E
t
l dimensional bid vector with

nonnegative elements of selling-mode smart-home k at time interval t. We assume

that the components in the bid vector is always non-increasing in index and denote

by B the bid vector space. B is a subspace of the Et
l dimensional real vector space

R
Et

l

+ , which contains all Et
l dimensional real vectors with nonnegative components.

Mathematically, we have

B := {bt,k ∈ R
Et

l

+ |b
1
t,k ≥ b2t,k ≥ · · · ≥ b

Et
l

t,k, ∀k = 1, 2, . . . , K̂t} (5.35)
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Note that, in practice restricting bid vectors to have non-increasing components

makes sense. This is because the selling-mode smart-home’s valuations attached

to individual trading opportunities is non-increasing as the smart-home gets more

and more trading opportunities. For example, if a selling-mode smart-home has

no trading opportunity, it needs to sell its excess energy the most urgently and its

valuation for its first trading opportunity is the highest. As it sells out more and more

excess energy, its storage facility gets released gradually and the marginal valuation

(marginal eagerness-metric) is thus non-increasing. If a selling-mode smart-home k

is only interested in selling et,k (et,k ≤ Et
l ) number of excess energy units in the

auction at time t, then the last Et
l − et,k elements of its bid vector are all zeros.

A total of K̂t ×Et
l bids b

n
k ’s (k = 1, 2, . . . , K̂t;n = 1, 2, . . . , Et

l ) are placed for the

action at time t, and the Et
l number of trading opportunities are assigned to the Et

l

highest of these bids, which are deemed winning bids. Ties are broken by choosing

with equal probability among all tying bids. The number of trading opportunities

assigned to a selling-mode smart-home is equal to the number of winning bids sub-

mitted by that selling-mode smart-home. Thus if selling-mode smart-home k has

nk ≤ Et
l of the highest bids, then it gets nk units of trading opportunities in time

interval t.

Denote by c−k the Et
l dimensional competing bid vector, which consists of the

Et
l highest others’ bids, facing selling-mode smart-home k, so that c−k1 is the highest

of the other bids, c−k2 is the second highest of the other bids, and so on. To win

exactly n trading opportunities, selling-mode smart-home k’s n-th highest bid must

defeat the n-th lowest competing bid. If selling-mode smart-home k wins nt,k trading

opportunities, then the the payment gk it makes is the sum of nk highest losing bids

of the other smart-homes [116], which is given by
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gk =

nk∑

n=1

gnk =

nk∑

n=1

c−k
Et

l
−nk+n

, (5.36)

where gnk is the payment for the n-th trading opportunity.

5.8.2 Truthful Bidding Strategy for Vickrey Auction

In the auction in each time interval, all selling-mode smart-homes have their own

valuations, which determine the bidding strategies, corresponding to all Et
l number

of trading opportunities. In the microgrid, selling-mode smart-homes do not know

other’s valuations precisely (incomplete information) since valuations of different

smart-homes are determined by their own energy storage status (private valuation).

Denoted by vt,k = [v1t,k, v
2
t,k, . . . , v

Et
l

t,k ] the private valuation vector of selling-mode

smart-home k at time interval t, where vnt,k represents the marginal value of ob-

taining the n-th trading opportunity. These marginal values are assumed to be

non-increasing for similar reasons that we assumed non-increasing marginal bids so

that

v1t,k ≥ v2t,k ≥ · · · ≥ v
Et

l

t,k , k = 1, 2, . . . , K̂t. (5.37)

The total value to the selling-mode smart-home k of obtaining exactly nt,k ≤ Et
l

trading opportunities is then the sum of the first nt,k marginal values:
∑nt,k

j=1 v
j
t,k.

Note that symmetry on valuations is usually assumed in Vickrey auction literature

[116,117], in which vt,k’s are independently and identically distributed (i.i.d) on the

valuation set

Vt,k = {vt,k ∈ [0, ωt]
Et

l : ∀n, vnt,k ≥ vn+1
t,k }, (5.38)
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where ωt is the maximum valuation for all selling-mode smart-homes. However, the

i.i.d symmetric condition is too strong for our problem since the valuations of dif-

ferent selling-mode smart-homes could be different depending on individual energy

consumption and storage information. Thus we drop the condition of identical dis-

tribution and assume more general asymmetric selling-mode smart-homes—smart-

home k’s valuation vector vt,k is independently drawn from some distribution that

has positive density everywhere on the set Vt,k.

The Vickrey auction in each time interval actually forms a game with incomplete

information, in which every selling-mode smart-home wants to maximize its own pay-

off. Here a smart-home’s payoff equals the sum of valuations obtained from winning

trading opportunities minus the total payment. To better analyze the formulated

Vickrey auctioning game, we first introduce several important concepts from game

theory and then propose an important proposition.

1. Bayesian Nash equilibrium: A Bayesian Nash equilibrium for a game with

incomplete information is a strategy profile for each player that maximizes the

expected payoff for each player given the strategies played by other players

[116,118,119].

2. Strictly dominant strategy: A strictly dominant strategy is an action strategy

that gives higher reward than any other strategy [118].

3. Weakly dominant strategy: A weakly dominant strategy is an action strategy

that gives reward no lower than any other strategy [118].

With these concepts introduced above, we present an incentive compatibility

proposition for Vickrey auction, along with its proof [116].

Proposition 3. The Vickrey auction is incentive compatible, meaning truthful bid-

ding (bidding the real valuation) maximizes each selling-mode smart-home’s payoff

150



Chapter 5. Machine-learning Aided Optimal Customer Decisions

and is a weakly dominant strategy for every selling-mode smart-home.

Proof. Consider selling-mode smart-home k and the competing bids c−k facing it.

Suppose that when smart-home k submits a bid vector bk,t = vk,t, it is assigned nk

trading opportunities. According to the Vickrey pricing rule, its payment is given

by
∑nk

n=1 c
−k
Et

l
−nk+n

[116]. It is the case that for all n ≤ nk, v
n
k ≥ c−k

Et
l
−nk+n

(where,

c−k
Et

l
−nk+n

= gnk ), whereas for all n > nk, v
n
k < c−k

Et
l
−nk+n

(where, c−k
Et

l
−nk+n

= gnk ). Now

suppose selling-mode smart-home k were to submit a bid vector bk,t 6= vk,t such that

it is assigned the same number of trading opportunities as when it submitted its true

value vector vk,t, then the payment it pays for these trading opportunities would

be unaffected, as would its overall payoff. If selling-mode smart-home k were to

submit a bk,t 6= vk,t so that it is assigned a greater number of trading opportunities,

say n
′

k > nk, then the payments it would pay for the first nk trading opportunities

would be unchanged, and so would the payoff derived from these. For any trading

opportunity n > nk, the payment gnk exceeds (or at best equals) the n-th marginal

value vnt,k, so the payoff from these n
′

k − nk trading opportunities would be negative

(or at best zero). As a result, the overall surplus would be lower (or at best, the

same) than that if it were to bid truthfully. Finally, if selling-mode smart-home k

were to submit a bk,t 6= vt,k such that it is assigned a smaller number of trading

opportunities, say n
′

k < nk, then the payments it would pay for the first n
′

k ones

would be unchanged and therefore so would the payoff derived from these. But the

payoff from any trading opportunity n < nk was positive and is now forgone. Thus by

winning fewer trading opportunities selling-mode smart-home k’s overall payoff would

be lower than if it were to bid truthfully. Based on the argument above, truthful

bidding is a weakly dominant strategy for every selling-mode smart-home.

As shown above, the truthful bidding strategy forms a Bayesian Nash equilibrium.

Figure 5.9 shows an example of an individual smart-home in a Vickrey auction bid-

ding for two trading opportunities. The competing bids from other selling-mode
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Figure 5.9: Incentive compatibility of the Vickrey auction. The normalized truthful
bidding strategy point (1, 1) maximizes the payoff of the individual smart-home.
However, it is only weakly dominant because bidding strategies represented by other
points in the same plane, within which the truthful bidding point stays, achieve the
same maximum payoff.

smart-homes are assumed to be fixed. As we can see, with the bids normalized by

the real valuations of the first and second trading opportunities, the truthful bidding

strategy b = (1, 1) leads to the maximum payoff (bottom right plot). Deviation from

the truthful bidding point (1, 1) might increases the number of trading opportunities

obtained by the smart-home (top left plot), however, the individual payoff (bottom

right plot) becomes lower. Moreover, we can see that the truthful bidding strategy

is only a weakly dominant strategy, because other bidding strategies represented by

the points in the same plane, within which the truthful bidding point stays, achieve

the same maximum payoff.
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5.9 Bayesian Nash Equilibria Solution Set Struc-

ture Analysis

Though every selling-mode smart-home’s payoff is maximized by the truthful bidding

strategy, there is no guarantee that such Vickrey auctioning games always converge

to the truthful bidding equilibrium. This is because truthful bidding is only a weakly

dominant strategy and truthful bidding equilibrium is not the unique Bayesian Nash

equilibrium in a Vickrey auction. Therefore detailed analysis on the entire equilib-

rium solution set of Vickrey auction is required.

5.9.1 The Two Types of Bayesian Nash Equilibria

Following [120], we divide the Bayesian Nash equilibria in the Vickrey auction so-

lution set into two categories. Equilibria in the first category can be described as

follows: There exists at least one selling-mode smart-home k who has at least one

bid bnt,k ∈ (0, ωt) with positive probability. There is a threshold b∗t ∈ (0, ωt) for all

selling-mode smart-homes such that all participants bid truthfully for which they

have a valuation exceeding b∗t . Furthermore, there is a unique distinct selling-mode

smart-home k̂ who bids b∗t on any trading opportunity for which his valuation is

below the threshold. The remaining selling-mode smart-homes bid zero on any trad-

ing opportunity for which their valuation is below the threshold. Put in a more

mathematical format:

bn
t,k̂

=







vn
t,k̂

if vn
t,k̂
∈ [b∗t , ωt]

b∗t if vn
t,k̂
∈ [0, b∗t ),

(5.39)

for all n = 1, 2, . . . , Et
l and
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bnt,k =







vnt,k if vnt,k ∈ (b∗t , ωt]

0 if vnt,k ∈ [0, b∗t ],
(5.40)

for all k 6= k̂ and all n = 1, 2, . . . , Et
l , where ωt is the highest valuation over all

smart-homes and

b∗t := inf{b ∈ (0, ωt)|∃k, n s. t. ∀ε > 0,Prob{bnt,k ∈ [b, b+ ε]} > 0}. (5.41)

It can be proved that any bid strategy profile that can be described as above forms

an Bayesian Nash equilibrium [120]. Conversely for any equilibrium in which certain

bnk ∈ (0, ωt) with positive probability for some selling-mode smart-home k and trading

opportunity n, there is a profile of bid functions in the first category that describes

the behavior of each selling-mode smart-home for almost all valuations, allowing

variants (deviating behavior) on sets of measure zero of valuations. Specifically,

as in reality selling-mode smart-homes usually have continuous distribution over

the valuation set, there usually exists at least one selling-mode smart-home whose

valuation distribution over (0, ωt) assigns positive probability to arbitrarily small

positive values. In this case, we have b∗t = 0 and the first category equilibria reduce

to the truthful bidding equilibrium.

For all equilibria that are not of the first type, there is zero probability of

positive bids below the highest valuation ωt. Each selling-mode smart-home k

(k = 1, 2, . . . , K̂t) bids at or above the highest valuation ωt on n̂t,k number of trading

opportunities and bids zero on the remaining ones in such a manner that the total

number of positive bids across all selling-mode smart-homes equals the number of

trading opportunities to be sold, i.e.
∑K̂t

k=1 n̂t,k = Et
l . The second type of Bayesian

Nash equilibria reveals the possibility that the Vickrey auction might end up with a
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collusive equilibrium that selling-mode smart-homes bid untruthfully and all trading

opportunities are sold with zero payment.

5.9.2 Vickrey Auction Equilibrium Analysis

Vickrey auction with truthful bidding equilibrium has many good properties. For

example, it is an efficient mechanism as it maximizes the social welfare (maximizing

the sum of participants’ values [116, 118, 119]). It is also incentive compatible as

bidding the real values is a weakly dominant strategy for all smart-homes [116, 118,

119]. However, as mentioned above, Vickrey auction is vulnerable to collusion by

selling-mode smart-homes. In the first type of Bayesian Nash equilibria, if the number

of bids above the threshold is less than the number of trading opportunities for sale,

then some selling-mode smart-homes will get some trading opportunities for free. In

the second category of Bayesian Nash equilibria, all winning smart-homes pay zero

payment for the trading opportunities they win. Generally speaking, equilibria of

both categories are collusive in the sense that there are positive probabilities that

smart-homes get some trading opportunities with zero payment.

The collusive equilibria jeopardize the distributed control framework in two ways:

(1) The collusive equilibria fails to achieve the most important goal of the distributed

decision scheme, which is to guarantee that the trading opportunities are allocated

to selling-mode smart-homes who value them the highest (with highest eagerness-

metric). (2) The collusive equilibria does not guarantee the profit of the auctioneer

(the microgrid controller). Though in our problem, the profit of the auctioneer (the

microgrid controller) is not one of the objectives to be maximized, zero payments are

not desired either considering reasonable operation cost of the microgrid controller.
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5.9.3 Vickrey Auction with a Reserve Price

To address the two issues raised from collusive Bayesian Nash equilibria, we further

extend the Vickrey auctioning game design by introducing a reserve price. It can be

proved that the Vickrey auction can be made more robust against collusive selling-

mode smart-homes by introducing a positive reserve price by the microgrid controller

[120, 121]. Suppose the microgrid controller sets a positive reserve price rt for the

auction in time interval t such that each selling-mode smart-home has to pay at least

the reserve price for any trading opportunity obtained. Without loss of generality,

bids below the reserve price, or not bidding, are identified with bidding zero. Refer

to n
′

t the number of bids at or above rt. Then at the end of the auction, there are

µt = min{n
′

t, E
t
l} units are sold to the selling-mode smart-homes with the µt highest

bids. A selling-mode smart-home who wins nk units pays
∑nk

j=1 max{c−k
Et

l
−nk+j

, rt}.

It can be shown that with a positive reserve price rt, the Vickrey auction with

more than two participants converges to a unique Bayesian Nash equilibrium, in

which selling-mode smart-homes refrain from bidding on any trading opportunity for

which their valuation is less than rt and otherwise bid their valuation for each trading

opportunity [120]. Introducing a reserve price not only guarantees the uniqueness

of equilibrium solution of Vickrey auction, therefore making the Vickrey auction

more robust to collusion by selling-mode smart-homes, but also guarantees a certain

amount of benefit of the microgrid controller.

In sum, the Vickrey auction with a reserve price gives a better allocation scheme

in the following aspects: (1) The Vickrey auction with a reserve price is robust to

collusion by selling-mode smart-homes. (2) The Vickrey auction with a reserve price

is incentive compatible, meaning assigning trading opportunities to smart-homes

with highest eagerness-metrics. (3) The Vickrey auctioning game with a reserve

price converges to the unique Bayesian Nash equilibrium. (4) The Vickrey auction

with a reserve price guarantees a certain amount of benefit of the microgrid controller.
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The only possible issue with the Vickrey auction with a reserve price is that, when

the reserve price is too high, it is possible that the number of bids above the reserve

price is less than Et
l , therefore the trading opportunities assigned to selling-mode

smart-homes is not enough. However, in our problem formulation, the auctioneer’s

profit is not one of the objectives of the distributed decision framework, thus there

is no reason for the microgrid controller to set a high reserve price. In the worst

case that this situation happens, repeated Vickrey auctions can be adopted and the

reserve price can be adjusted until all Et
l trading opportunities are assigned.

5.9.4 Performance Analysis

We implement the Vickrey auction (without collusion) for a microgrid model with

10 smart-homes bidding for 20 trading opportunities. The truthful valuations on the

trading opportunities are within [0, 1]($). For comparison purpose, we also analyze

the performance of two other auction schemes: discriminatory auction and uniform-

price auction [116]. In discriminatory auction, smart-homes pay what they bid while

in uniform-price auction, smart-homes pay the same highest losing bid for every

trading opportunity they get. In the three different auctions, the trading opportu-

nities, payments, payoffs of each of the 10 smart-homes, as well as the social welfare

of the microgrid are compared, as shown in Fig. 5.10. Vickrey auction maximizes

the social welfare of 18.87($), compared with 17.68($) of discriminatory auction and

17.87($). It is worth pointing out that in the truthful bidding equilibrium of the

Vickrey auction reveals another good property in the bidding behavior of individual

smart-homes, which is Individual Rationality, meaning the payoff function is always

non-negative (as shown in the bottom plot).

In Fig. 5.11, we investigate the influence of the reserve price on the profit of the

auctioneer in a one shot Vickrey auction with different time interval sizes within the
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Figure 5.10: The truthful bidding equilibrium of the Vickrey auction maximizes
the social welfare of the entire microgrid, while keeping the individual rationality of
smart-homes.

processing block. As the reserve price (normalized by the highest value) increases

from 0 to 1, after certain point, the number of trading opportunities that can be

successfully allocated to smart-homes decreases from 20 to 0, which corresponds to

the extreme case with reserve price higher than the highest possible value.
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Figure 5.11: As the reserve price (normalized by the highest value) increases from 0
to 1, after certain point, the number of trading opportunities that can be successfully
allocated to smart-homes decreases from 20 to 0, which corresponds to the extreme
case with reserve price higher than the highest possible value.

5.10 Conclusion

In this chapter, we developed a hierarchical interactive architecture the Utility and

the distributed smart-homes in a smart grid while ensuring grid-stability and Quality-

of-Service (QoS). With an abstract model consisting of one controller and multiple

smart-homes developed, we formulated a two-step decision framework for the real-

time scheduling. The two-step decision framework consisted of (1) centralized con-

troller sequential decisions and (2) distributed smart-home decisions. We developed a

hidden mode Markov decision process (HM-MDP) model for customer real-time deci-
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sion making. We first proposed a value iteration (VI) based exact solution algorithm,

with the Baum-Welch and the incremental pruning (IP) algorithms adopted to learn

the non-stationary dynamics and to iterate the representation sets, respectively. We

further discussed the Q-learning based approximate dynamic programming (ADP)

algorithm with relatively low computational complexity. Compared to greedy or ran-

dom decision strategies, the Q-learning algorithm offered much more flexibility and

adaptiveness with relatively good performance.

With the solution algorithm design for the HM-MDP model well developed, we

then focused on the Vickrey auction design for distributed smart-homes. The solu-

tion set of the Vickrey auctioning game was divided into two categories and detailed

analysis on the Bayesian Nash equilibria were presented, which showed that the

truthful bidding strategy was a weakly dominant Bayesian Nash equilibrium. To

overcome the vulnerability of the Vickrey auction against collusion by selling-mode

smart-homes, the developed Vickrey auction was extended by introducing a reserve

price, which guaranteed robustness of the auction and the convergence of the auc-

tioning game to the unique truthful bidding equilibrium.
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Summary of the Dissertation and

Research Directions

In this dissertation, we have developed a hierarchical interactive architecture for

future smart grids. In the followings, we summarize the main aspects and contribu-

tions of this dissertation. We also propose possible research directions that can be

addressed in the near future.

6.1 Summary of the Dissertation

In Chapter 2, we proposed two types of approaches to model the uncertainty in cus-

tomer load demand. The first approach was based on a first order non-stationary

Markov chain. A maximum likelihood estimator (MLE) was derived to estimate the

time variant transition matrix of the Markov chain. The second approach was based

on time series analysis techniques. We presented linear prediction models such as

standard autoregressive (AR) process and time varying autoregressive (TVAR) pro-

cess, according to different assumptions on the stationarity of customer load profile:

161



Chapter 6. Summary of the Dissertation and Research Directions

piecewise stationarity, local stationarity and cyclo-stationarity. Prediction perfor-

mances of different models were analyzed and compared, advantages and disadvan-

tages were discussed.

In Chapter 3, we designed a DR scheduling scheme based on the Utility cost

minimization with different customer clustering sizes. A convex optimization prob-

lem was formulated and the optimal demand response profile was in the form of a

two-dimensional water-filling solution either with flat water levels or different water

levels for different customers. Price of Anarchy (PoA) analysis was presented to

balance both the centralized and distributed competing objectives.

In Chapter 4, an optimal stochastic tracking scheme was proposed in an inter-

active smart grid infrastructure. Optimal stochastic control schemes for the active

power control (primary frequency control) were designed, in the presence of uncer-

tainties arising from customer load demands and distributed renewable generations,

to stabilize frequency and maintain a balance between generation and consump-

tion within the distributed synchronous area. We proposed two stochastic tracking

schemes based on the state-space representation of a synchronous generator: (1) ref-

erence dynamics-based tracking and (2) reference statistics-based tracking. We fur-

ther extended the proposed optimal controllers by considering the realistic scenario

of asynchronous load demand signals from different households. To compensate for

different delays seen by different household signals, a Kalman filter (KF) based pre-

diction scheme was proposed to generate the correct reference signal and we showed

that the centralized reference prediction could equivalently be implemented distribu-

tively. Simulation results were presented to show the performances of the proposed

prediction and tracking schemes.

In Chapter 5, we developed a hierarchical interactive architecture the Utility

and the distributed smart-homes in a smart grid while ensuring grid-stability and

Quality-of-Service (QoS). With an abstract model consisting of one controller and
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multiple smart-homes developed, we formulated a two-step decision framework for

the real-time scheduling. The two-step decision framework consisted of (1) central-

ized controller sequential decisions and (2) distributed smart-home decisions. We

developed a hidden mode Markov decision process (HM-MDP) model for customer

real-time decision making. We first proposed a value iteration (VI) based exact

solution algorithm, with the Baum-Welch and the incremental pruning (IP) algo-

rithms adopted to learn the non-stationary dynamics and to iterate the represen-

tation sets, respectively. We further discussed the Q-learning based approximate

dynamic programming (ADP) algorithm with relatively low computational complex-

ity. Compared to greedy or random decision strategies, the Q-learning algorithm

offered much more flexibility and adaptiveness with relatively good performance.

With the solution algorithm design for the HM-MDP model well developed, we then

focused on the Vickrey auction design for distributed smart-homes. The solution set

of the Vickrey auctioning game was divided into two categories and detailed analysis

on the Bayesian Nash equilibria were presented, which showed that the truthful bid-

ding strategy was a weakly dominant Bayesian Nash equilibrium. To overcome the

vulnerability of the Vickrey auction against collusion by selling-mode smart-homes,

the developed Vickrey auction was extended by introducing a reserve price, which

guaranteed robustness of the auction and the convergence of the auctioning game to

the unique truthful bidding equilibrium.

6.2 Future Research Directions

The work that is presented in this dissertation can be extended along several direc-

tions, focusing on either frequency control, load prediction or smart-home decision

making.
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6.2.1 Particle Filtering

In Chapter 4, we did the linearization of the nonlinear dynamics of the synchronous

generator at the operation point. One extension is to consider the nonlinear dynam-

ics of the generator and design both optimal nonlinear controller and system state

estimator. Particle filtering technique is one option for the nonlinear tracking control

with hidden system state.

6.2.2 Cyclo-stationarity in Load Demand Prediction

It is worth pointing out that, in Chapter 2, the prediction under the cyclostationarity

assumption gradually becomes off from the real measured data when the prediction

period becomes too long, i.e. over months or seasons. This is because customer

power consumption pattern do change from season to season. Note that verifying

the cyclostationarity of a data sequence in a meaningful way is not an easy topic

and out of the scope of this work, since huge amount of other information is required

to go with it. Interesting readers are referred to [59] and related references there.

Hence even though the TVAR model increases the prediction efficiency, updates on

the model coefficients are still necessary periodically (say, monthly) in practice.

6.2.3 Decentralized Partially Observable Markov Decision

Process (Dec-POMDP) in Smart-home Decision Mak-

ing

In designing the distributed smart-home decision making schemes, another option is

to model the decision process as a Dec-POMDP, instead of applying game theoretic

approach. There can be different problem formulations depending on how we define
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the objective function, observation function and action function. Decentralized con-

trol of cooperative systems captures the operation of a group of decision-makers that

share a single global objective. The difficulty in solving optimally such problems

arises when the agents lack full observability of the global state of the system when

they operate. The general problem has been shown to be NEXP-complete [122].
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A Proof of the Separation Principle
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Appendix A

Proof of the Separate Design of

Control and Reference Prediction

The conventional generation facilities system dynamics can be written as

x(i+ 1) = Ax(i) + Bu(i) + w1(i) (A.1)

y(i) = Cx(i) + w2(i) (A.2)

z(i) = Cx(i) (A.3)

where z(i) is the active power generated by the conventional generation facilities and

y(i) is the noisy observation. Similarly, we may define the reference system dynamics,

which is an augmented system incorporating all customers, as
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xr(i+ 1) = Arxr(i) + wr(i) (A.4)

yr(i) = Crxr(i) + vr(i) (A.5)

zr(i) = Crxr(i) (A.6)

where wr(i) and v(i) are process and measurement noises, both of which are assumed

to be white Gaussian noises.

The objective function we want to minimize is given as follows, which is a con-

ditional mean given the system output observation y(i) and the delayed reference

signal yr(i− d).

U = E{

i1∑

i=i0

(z(i)− zr(i))
T R1 (z(i)− zr(i)) + uT (i)R2u(i)|y(i), yr(i− d)}

(A.7)

where the control accuracy matrix R1 is positive semi-definite and the control effort

matrix R2 is positive definite. Thus, to solve this stochastic tracking control problem,

a prediction\estimation scheme is required to recover the non-delayed reference signal

before any control can be implemented. This “prediction before control” structure

is pretty natural and intuitive. We can show that the original objective function can

be equivalently transformed into this structure.

A.1 Direct Proof of Separate Design of Control

and Reference Prediction

Given the objective function (A.7), we define the Hamiltonian as
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H (x∗(i), u∗(i), λ∗(i+ 1)) =

E{(z∗(i)− zr(i))
T R1 (z

∗(i)− zr(i)) + (u∗)T (i)R2u
∗(i)

+ (λ∗(i+ 1))T [Ax∗(i) + Bu∗(i) + w1(i)]|y(i), yr(i− d)}

(A.8)

From the fundamental theorem of the calculus of variations, we know that for

extremization of functionals, the first variation must be equal to zero. Thus we can

apply the Euler-Lagrange (EL) equation to the Hamiltonian H with respect to the

variables x(i), u(i) and λ(i). Thus, we get

λ∗(i) =
∂H (x∗(i), u∗(i), λ∗(i+ 1))

∂x∗(i)
(A.9)

0 =
∂H (x∗(i), u∗(i), λ∗(i+ 1))

∂u∗(i)
(A.10)

E{x∗(i+ 1)|y(i+ 1)} =
∂H (x∗(i), u∗(i), λ∗(i+ 1))

∂λ∗(i)
(A.11)

Substituting z(i) = Cx(i) into the equations above and exchanging the order of

taking derivatives and expectations, we have the equations follows,

λ∗(i) = 2CTR1CE{x∗(i)|y(i)}

− 2CTR1E{zr(i)|yr(i− d)}+ ATλ∗(i+ 1)
(A.12)

0 = 2R2u
∗(i) + BTλ∗(i+ 1) (A.13)

E{x∗(i+ 1)|y(i+ 1)} = AE{x∗(i)|y(i)}+Bu∗(i) (A.14)
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Note that in derivation above, we drop some condition terms in the conditional

expectation, considering the controlled system and the reference system are inde-

pendent with each other, which means E{x∗(i)|y(i), yr(i − d)} = E{x∗(i)|y(i)} and

E{zr(i)|y(i), yr(i− d)} = E{zr(i)|yr(i− d)}. The noise term is also dropped because

of the white Gaussian noise assumption.

Combining (A.13) and (A.14) we have

E{x∗(i+ 1)|y(i+ 1)} =

AE{x∗(i)|y(i)} −
1

2
BR−12 BTλ∗(i+ 1)

(A.15)

From (A.13) we have the open loop optimal control law as

u∗(i) = −
1

2
R−12 BTλ∗(i) (A.16)

and optimal costate λ∗(i) and optimal state x∗(i) can be obtained by iteratively

solving the difference equations (A.12) and (A.15).

In order to obtain the closed-loop configuration, we need to try to express the

costate λ∗(i) in the optimal control (A.16) in terms of the state estimate E{x∗(i)|y(i)}.

The final condition

λ(i1) = R1E{x(i1)|y(i1)}) (A.17)

prompts us to express

λ(i) = P (i)E{x(i)|y(i)}), (A.18)
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where P (i) is yet to be determined. This linear transformation is called the Ricatti

transformation.

By doing some straight forward derivation, we have

P (i)E{x∗(i)|y(i)} =

R1E{x
∗|y(i)} − 2CTR1E{zr(i)|yr(i− d)}

+ ATP (i+ 1)[I +
1

2
BR−12 BTP (i+ 1)]−1

· AE{x∗(i)|y(i)}

(A.19)

Given the boundary condition, we can solve this difference equation for P (i)

iteratively. Thus, the closed-loop optimal control law is given by

u∗(i) = −
1

2
R−12 BTA−T [(P (i)

− 2CTR1C)E{x∗|y∗} − 2CTR1CrE{xr(i)|yr(i− d)}]

(A.20)

Now we can see that the optimal control input to minimize the objective func-

tion (A.7) can be find based on the conditional means of the system state and the

reference signal, which can be obtained by a minimum mean square error estimator.

Since the system and reference dynamics are all linear systems, then the Kalman

filter is the best linear MMSE. To sum up, in the original optimal tracking control

scheme design with asynchronous reference signal, the predictor design for the ref-

erence prediction, observer design for the state estimation and controller design for

output tracking control can be implemented separately. This separation principle of

reference prediction, state observation and controller design is overall optimal for the

original objective function (A.7).
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A.2 Backward Proof of the Separate Design in

Control and Reference Prediction

Rewrite the objective function as U =
∑i1

i=i0
J(i) and J(i) = E{(z−zr)

TR1(z−zr)+

uT (i)R2u(i)|y(i), yr(i− d)}. Substituting z(i) = Cx(i) and zr(i) = Crxr(i), then we

have

J(i) = E{(z(i)− zr(i))
TR1(z(i)− zr(i)) + uT (i)R2u(i)|y(i), yr(i− d)}

= E{(z(i)− Crxr(i))
TR1(z(i)− Crxr(i)) + uT (i)R2u(i)|y(i), yr(i− d)}

(A.21)

Denote by x̂r(i) the MMSE estimate of xr(i) given the observation of the delayed

reference signal yr(i− d), denote by x̃r(i) the estimation error. Then we have

J(i) = E{(z(i)− Crx̂r(i))
TR1(z(i)− Crx̂r(i))|y(i), yr(i− d)}

− E{(Crx̃r(i))
TR1(z(i)− Crx̂r(i))|y(i), yr(i− d)}

− E{(z(i)− Crx̂r(i))
TR1(Crx̃r(i))|y(i), yr(i− d)}

+ E{(Crx̃r(i))
TR1(Crx̃r(i))|y(i), yr(i− d)}

+ E{uT (i)R2u(i)|y(i), yr(i− d)}

(A.22)

Considering that the controlled system and the reference system are independent

with each other, we can drop some condition terms in the above expectations. Note

that the second and third terms

E{(Crx̃r(i))
TR1(z(i)− Crx̂r(i))|y(i), yr(i− d)} (A.23)

and
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E{(z(i)− Crx̂r(i))
TR1(Crx̃r(i))|y(i), yr(i− d)} (A.24)

are both zeros. This can be shown by taking into account the zero mean property

of the estimation error and the orthogonality principle of the MMSE estimator. We

take the second term as an example.

E{(Crx̃r(i))
TR1(z(i)− Crx̂r(i))|y(i), yr(i− d)} (A.25)

= E{(x̃r(i))
T (Cr)

TR1z(i)|y(i), yr(i− d)}−

E{(x̃r(i))
T (Cr)

TR1Crx̂r(i)|y(i), yr(i− d)} (A.26)

= (E{x̃r(i)})
T (Cr)

TR1z(i)− tr{(Cr)
TR1CrE{x̂r(i)(x̃r(i))

(T )}|y(i), yr(i− d)}

(A.27)

= 0 (A.28)

The forth expectation term E{(Crx̃r(i))
TR1(Crx̃r(i))|y(i), yr(i−d)} can be writ-

ten as tr{(Cr)
TR1(Cr)V } where V = E{x̃r(i)(x̃r(i))

T |y(i), yr(i−d)} is the conditional

covariance matrix of the reconstruction error x̃r(i).

Thus the original objective function (A.7) can be equivalently transformed to the

following form, with the MMSE estimator applied.

U =

i1∑

i=i0

E{[(z(i)− Crx̂r(i))
TR1(z(i)− Crx̂r(i))

+ uT (i)R2u(i)]|y(i), yr(i− d)}+ tr{

i1∑

i=i0

[(Cr)
TR1(Cr)V ]}

(A.29)

It can be seen that the last term in this expression is independent of the control

applied to the system. The objective function (A.29) (as well as (A.7)) can be

minimized by the control input u that minimizes the first expectation term
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E{

i1∑

i=i0

[
(z − Crx̂r)

TR1(z − Crx̂r) + uTR2u
]
|y(i), yr(i− d)} (A.30)

which is a standard linear quadratic output tracking problem with the MMSE esti-

mate ẑr as the tracking reference signal.

Note that in the proof above we assume we have perfect observation of the state, if

the system state is not directly available, an optimal observer is needed to reconstruct

the state for the controller design. Similarly we can show that the separation principle

also holds for the observer and controller design. To sum up, in the original optimal

tracking control scheme design with asynchronous reference signal, the predictor

design for the reference prediction, observer design for the state estimation and

controller design for output tracking control can be implemented separately. This

separation principle of reference prediction, state observation and controller design

is overall optimal for the original objective function (A.7).
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