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Abstract

Experiments conducted in the Shock Tube Facility at the University of New Mexico

are focused on characterization of shock-accelerated flows. Single-phase (gaseous)

initial conditions consist of a heavy gas column of sulfur hexafluoride seeded with

approximately 11% acetone gas by mass. Visualization of the image plane for gaseous

initial conditions is accomplished via planar laser-induced fluorescence (PLIF) with a

high-powered Nd:YAG ultraviolet laser and an Apogee Alta U-42 monochrome CCD

camera, with a quantum efficiency > 90%. Multi-phase (gas-solid) initial conditions

consist of glass micro-beads deposited on small 1-cm diameter discs of specific surface

chemistry, mounted flush with the bottom wall of the test section. Visualization of

the resulting multi-phase instabilities is achieved via Mie-scattering of visible light

(532nm wavelength) laser pulses and a Hadland Imacon 200, with an effective frame

rate of 200×106 frames per second. Fundamental properties of disparate gas mixtures

of sulfur hexafluoride and helium, subjected to shock wave acceleration, are also

studied, with implications that kinetic molecular theory can account for discrepancies

between theory and experiment.
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Preface

Draw from your past, but do not let your past draw from you.

– Master Bratac

I thought it best, given the unconventional nature of this dissertation, to provide

some context before proceeding further. This thesis is a compilation of first-authored,

peer-reviewed papers, based on the work I have done in the Shock Tube Facility at

UNM for the past 8 years (although they do not comprise the entirety of my research).

The manuscript consists of three parts (5 chapters), each of which involves interaction

of shock waves with specific initial conditions; either single- (gas-gas) or multi-phase

(gas-solid).

One important feature of the Shock Tube Facility at UNM I wanted to discuss

is the modular design of the shock tube itself. There are four main sections: the

driver (high pressure region), the driven (low pressure region), the test section (initial

conditions), and the runoff. The test section is made of polycarbonate and can be

modified to accommodate any type of initial conditions, e.g. a curtain of falling

particles, or a small-diameter column of gas. Another key feature - which makes this

shock tube unique - is that the entire tube can be tilted anywhere from horizontal

(0o) to approximately 45o, in order to simulate oblique (or inclined) shock waves. In

fact, in the experiments described in Part II, Chapters 2 & 3, data were collected at

inclination angles of 20o and 30o.

1



Chapters 1 through 4 are written in a format indicative of a scientific journal:

(1) Background and introduction to the research material, including references to

similar work; (2) Experimental setup and/or theoretical basis; (3) Results of the in-

vestigation and a discussion of the implications; (4) a Conclusion section highlighting

some of the more important observations and a description of future work. Chap-

ter 5 (Part III) is arranged in a slightly unorthodox manner, due to the formatting

rules and submission guidelines for the intended journal; a short introductory sec-

tion is given, followed by the results of the experiment, and a brief conclusion. The

experimental setup, an explanation of the theory involved, and statistical analysis

section are provided afterwards. The citation for each journal article is provided as

a footnote on the first page of each chapter.

Following this is a section devoted to providing the reader with background into

shock wave research, including its significance in the present work.

– Patrick John Wayne

University of New Mexico

Mechanical Engineering Department

Albuquerque, NM

May, 2019
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Significance of Shock Waves

A shock wave is a type of propagating discontinuity which travels faster than the

speed of sound in a local medium. The propagation of a shock wave in any medium

is associated with an instantaneous increase in pressure, temperature, and density;

hence the term discontinuity, an instantaneous transition from one state to another.

A shock tube is used to study planar shock wave interactions with various initial con-

ditions (ICs). These can be single-phase gaseous ICs, or multi-phase ICs, consisting

of a gas and embedded solid phase material. Consider the shock tube depicted in

Fig. 0.1, which is indicative of the experimental shock tube in the Mechanical Engi-

neering Department at the University of New Mexico (UNM). This tube consists of

Figure 0.1: Schematic of the shock tube in the Mechanical Engineering Department
at the University of New Mexico. Length dimensions for each of the four sections
are approximate.

four main sections: the driver, driven, test, and runoff. To begin an experiment, the

driver and driven sections are separated by a thin-film diaphragm (usually made of

polyester, or mylar). The driver is then pressurized to some predetermined pressure
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which depends on the desired strength of the shock wave; the driven, test, and runoff

sections are initially at atmospheric pressure and temperature. Once the pressure in

the driver stabilizes, a puncture rod tipped with a broad arrowhead is pneumatically

fired into the diaphragm.

Two concurrent processes occur when the diaphragm is punctured. These pro-

cesses are depicted in Fig. 0.2, which is a distance versus time (x-t) plot of a Mach

1.40 shock wave experiment on the UNM shock tube. Once the diaphragm is punc-

tured (at x = 0, t = 0), a rarefaction (or expansion) wave is generated, traveling

through the high pressure gas in the driver (Fig. 0.2, left), and a compression (or

shock) wave is produced, traveling in the opposite direction (Fig. 0.2, right), through

the low pressure gas in the driven, test, and runoff sections of the shock tube. Here,

low pressure regions are colored yellow and high pressure regions are colored green.

The rarefaction wave reflects off the back of the driver and travels down the length

of the shock tube. If the driver is too short, the rarefaction wave can catch up with,

and accelerate the incident shock. If the end of the shock tube is closed to the envi-

ronment, the incident shock wave will reflect of the end of the tube and travel in the

opposite direction (Fig. 0.2, right). Flow behind the incident shock wave is subsonic,

with a velocity that depends on the Mach number of the experiment. Online gas

dynamics calculators [1] can be used to determine this speed. For instance, flow

behind the propagating shock wave in Fig. 0.2 travels at approximately 196.0 m/s.

The vertical dotted blue lines correspond to the up- and down-stream locations

of the test section, where shock wave interactions with various initial conditions are

recorded via high resolution cameras. The brown dotted line - which begins at the

diaphragm - represents the edge of the contact surface; the interface separating the

driven gas (air) and the driver gas (nitrogen).
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Figure 0.2: x-t diagram of a Mach 1.40 experiment showing the progression of inci-
dent shock, rarefaction wave, and pressure distribution within the shock tube, where
low pressure regions are colored yellow and high pressure regions are colored green.
The blue dotted lines correspond to the upstream and downstream locations of the
test section imaging window, and the brown dotted line shows progression of the
contact surface. The driver gas is nitrogen and the shock wave propagates through
air.

The study of shock waves and their interactions with various media, such as solid

particles, gases, and even plasma are essential in many engineering, medical, and

physical phenomena. For instance, in the microelectronics industry, shock waves

are used to remove micron-sized dust particles from silicon wafer surfaces [2]. In

supersonic and hypersonic vehicles, aerospikes are used as a means of drag and heat

reduction by creating a detached shock ahead of the body. Extensive experimental [3,

4, 5, 6, 7] and numerical [8, 9, 10, 11] work has shown that the detached shock creates
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a recirculation zone around the forebody of the vehicle, creating a more streamlined

profile, thus reducing drag.

For the past three decades, shock waves have been used in the noninvasive disinte-

gration of kidney stones by means of extracorporeal shockwave lithotripsy (ESWL),

which is underwater focusing (using a shock wave) onto kidney stones from outside

a human body [12, 13]. After the first successful attempt in 1980, ESWL was ex-

panded to other types of stones, including gallbladder stones, pancreatic calculi, and

salivary gland stones [14]. Shock waves have also been used in orthopaedics and trau-

matology, and in the treatment of horse tendons, ligaments, and bones in veterinary

medicine [15].

In the field of astrophysics, several studies [16, 17, 18, 19] have been conducted

into collisionless, relativistic shock waves (which propagate at a significant fraction

of the speed of light), created by powerful sources such as gamma ray bursts, pulsar

wind nebulae, and active galactic nuclei [20]. Shock waves are also generated by

coronal mass ejections [21], and in the interstellar medium, where the strongest

shocks are produced by supernovae [22].

Given the multitude of applications, it would be impractical to assume our current

or future knowledge in shock waves is absolute. Therefore, it seems only prudent to

focus research on specific cases of shock wave interactions. This paper presents

several studies of shock wave effects on various initial conditions, including solid

sphere particles, heavy gas columns consisting of sulfur hexafluoride and acetone

gas, and disparate gas mixtures of sulfur hexafluoride and helium. Each study is a

self-contained manuscript previously published in a peer-reviewed journal, with the

exception of the last, which is currently under review. It would also be reasonable to

preface these studies with an explanation of the motivation behind each, which not

only includes advancing our knowledge of the subject material, but also applications
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of the research to real-world situations.

Shock induced particle lift-off

The interaction of a shock wave with particles on surfaces is of particular interest in

semiconductor and data storage industry, where even a submicron particle may in-

duce fatal damages to the system [23]. In a process called laser shock cleaning (LSC),

a high-powered laser pulse induces optical breakdown of the ambient gas close to the

solid surface to be cleaned [24]. The shock wave created by this optical breakdown

is followed by a high speed flow which detaches particles from the surface. In the

LSC method, the surface is not directly exposed to the laser-pulse irradiation, which

precludes the chance of potential damage in photosensitive parts, and a relatively

large area can be cleaned by a single pulse [24].

In forensic science, particle lift-off from a surface is especially important in the

detection of explosive residue, drugs, and biological contaminants. Shock-induced en-

trainment of particles may provide a suitable non-contact means to transport residue

to analytical instruments, thus enhancing the detectability of contaminants [25].

In the medical industry, understanding how particles of different sizes (respirable

and non-respirable) are lifted off surfaces (shock-induced or otherwise) is of par-

ticular importance as this can be applied directly toward the delivery of medicinal

aerosols into the human lungs by way of dry powder inhalers (DPIs), or metered

dose inhalers (MDIs). For diseases such as asthma, or COPD (chronic obstructive

pulmonary disease), inhalation has become the primary route of administration of

pharmacological agents [27]. Therefore, a base understanding of the physics involved

in DPI and MDI particle flow is crucial for the effective delivery of the medication

into the bloodstream.
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The first part of this dissertation (Chapter 1) focuses specifically on respirable

and non-respirable particle lift-off from micro-rough and smooth surfaces. Each of

the surfaces has identical surface chemistries, with smooth surfaces consisting of a 1

cm diameter mica disc glued to a stainless steel disc, and micro-rough surfaces consist

of a stainless steel disc roughened with 240-grit sandpaper, where surface features

have a representative 2-micron scale. The particles used in this experiment consist

of 3M glass micro-beads, with nominal size ranges of 0.5 µm - 10µm (respirable) and

20 µm - 50 µm (non-respirable).

The heavy gas interface and turbulent mixing

The Richtmyer-Meshkov instability (or RMI) develops when an interface between

two fluids of different densities is impulsively accelerated (like the passage of a shock

wave). This instability was first described by Robert D. Richtmyer in 1954 [28].

Several years later, Richtmyer’s work was confirmed experimentally by Evgeny E.

Meshkov [29]. A misalignment of the pressure and density gradients results in three-

dimensional vorticity deposition on the gas-gas interface [30]. Any perturbation

initially on the interface will be amplified following the passage of the shock wave. As

the interface between the two fluids becomes more distorted, secondary instabilities,

such as the Kelvin-Helmholtz shearing instability (KHI), develop and a region of

turbulence and mixing ultimately results [31].

RMI (and correspondingly KHI) has been observed in many natural and engineer-

ing phenomena, from the evolution of supernova remnants, to high energy density

physics, e.g. inertial confinement fusion (ICF). The goal of ICF is to initiate fusion

in a small (spherical) capsule of deuterium-tritium gas. To reach the conditions of

high temperature and density required for fusion, the capsule needs to be exposed

to an enormous burst of energy (105 J) applied as symmetrically as possible and on
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a time scale on the order of picoseconds (10−12 sec) [32]. As the burst of energy hits

the outer shell of the capsule (ablator), the shell vaporizes and implodes onto the

deuterium-tritium (D-T) fuel, accelerating the fuel toward the center of the sphere,

compressing the gas to extremely high densities and temperatures so that ignition

can occur. However, when the outer shell of the capsule implodes, sending a shock

wave through the D-T fuel, small perturbations along the interface begin to am-

plify – due to RMI and other instabilities – and a mixing layer develops, causing

non-uniform compression of the fuel capsule (Fig. 0.3).

Figure 0.3: Cross-section of a developing mixing layer in an inertial confinement
fusion (ICF) fuel capsule1.

This complication preventing successful ignition (and fusion) requires further

study of RMI and other instabilities that arise due to non-uniform implosion. Part II
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(Chapters 2 & 3) of this dissertation is focused mainly on secondary instabilities, such

as Kelvin-Helmholtz instabilities, developing from inclined shock interaction with a

heavy gas column. The results of the experiments described in this section may aid

future researchers in developing a method of mitigating mixing in ICF experiments,

as well as help describe the evolution of natural astrophysical phenomena.

Gas mixtures and thermodynamic models

Gas mixtures affect our everyday lives and are prevalent throughout the universe -

from the air we breathe to the solar system’s largest anticyclonic storm on Jupiter

(Great Red Spot). Applications range from the automotive industry [33] and SCUBA

diving [14], to turbulence intensification in free convection flows [35, 36]. In many

analytical and computational models used to describe the behavior of gas mixtures,

classical thermodynamic laws, such as Dalton’s law of partial pressures and Ama-

gat’s law of partial volumes, are used to predict properties of the mixture. The third

part of this dissertation describes experiments aimed at determining the viability

of these two laws in predicting post-shock behavior of a disparate gas mixture of

sulfur-hexafluoride (SF6) and helium (He). Specifically by measuring pressure and

temperature immediately before and immediately after shock impact, then compar-

ing these measurements with theoretical predictions based on Dalton’s and Amagat’s

laws.

While this endeavor might not seem so demanding at first, given the availability

of fast-response pressure transducers available on the market, a significant problem

lies in the method of temperature measurement and the time scale on which they are

collected. For instance, a shock wave with a Mach number of 1.2 travels in air (at

1Image taken from: http://flud.aeromech.usyd.edu.au/index.php/projects/

compressible-turbulent-mixing/
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normal atmospheric conditions) at roughly 413 m/s (1,355 ft/s). At this speed, the

shock wave would traverse a distance of 6 meters – the entire length of the shock tube

– in approximately 15 milliseconds. Currently, there exist no viable thermocouples

capable of measurements on this time scale (or anywhere close to it). In addition,

thermocouples are an intrusive measurement device; they must be placed in the bulk

fluid flow to function properly.

The solution to the problem of temperature measurements is the use of an in-

frared detector (IR). Most IR detectors have ultra-fast response times (≤ 1 ms),

and are inherently non-intrusive. They operate by measuring emission of infrared

radiation from a target object, or in this case, fluid. Although this method of tem-

perature measurement seems straight-forward, there is one caveat. Each detector

is specific to the gas mixture being studied. Therefore, knowledge of the infrared

absorption spectrum of the gas components is mandatory. For helium, this does

present a problem. The IR absorption spectrum of helium is known only for very

high temperatures and pressures [37, 38, 39], but there has been some research [40]

documenting the absorption spectrum of sulfur hexafluoride. Figure 0.4 is a plot of

the wavelength-dependent transmission spectrum of infrared light through pure SF6

(digitized and recreated from Ref [40]). Peak absorption (corresponding to minimum

transmission) of IR radiation occurs in the mid-IR range between 10 µm and 11µm.

However, several strong, secondary peaks are visible between 5 µm and 10 µm. The

yellow tinted region in Fig. 0.4 corresponds to the wavelength range (7.5 µm≤ λ ≤

8.5 µm) chosen for these experiments.

Chapter 4 (Part III) provides a detailed description of the experimental setup,

a comprehensive explanation of the theoretical models used, and some preliminary

results. Chapter 5 expands on this work and provides a qualitative explanation for

the observations, based on kinetic molecular theory.
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Figure 0.4: Plot of the infrared transmission spectrum of pure sulfur hexafluoride.
The x-axis is wavelength λ (µm), and the y-axis is percent transmission. This curve
has been digitized and recreated from Ref [40].

Note: Raw data from each experiment, Matlab code used to analyze results, and

statistical information for all variables is available upon request.
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from a Surface
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Chapter 1

Shock-driven particle transport off

smooth and rough surfaces2

The behavior of respirable particles being swept off a surface by the passage of a

shock wave presents an interesting but little-studied problem. This problem has

wide-ranging applications, from military to aerospace, and is being studied both

numerically and experimentally. Here we describe how a shock tube facility was

modified to provide a dependable platform for such a study, with highly repeat-

able and well-characterized initial conditions. During the experiments, particle size

distribution, surface chemical composition (that determines adhesion force between

the particles and the surface), and the Mach number are closely controlled. Time-

resolved visualization of the particle cloud forming after the shock passage provides

insights into the physics of the flow, including the effect of the adhesion force on the

growth of the cloud.

2Originally published as: P. Wayne, P. Vorobieff, H. Smyth, T. Bernard, C. Corbin,
A. Maloney, J. Conroy, R. White, M. Anderson, and S. Kumar, ”Shock-Driven Particle
Transport Off Smooth and Rough Surfaces,” Journal of Fluids Engineering , American
Society of Mechanical Engineers, Vol. 135, 061302-1 (2013).

18



Chapter 1. Shock-driven particle transport off smooth and rough surfaces

1.1 Introduction

The study of particle/surface interactions has considerable relevance for practical

applications in the fields of aerospace science, environmental health, chemical and

biological warfare, respiratory drug delivery – such as dry-powder inhalers – and

even the day-to-day operations at Transportation Security Administration (TSA)

security checkpoints at airports and sea terminals, where particles re-aerosolized from

a surface of an item under inspection can both yield useful information and present

a threat. The need to understand how particles of different sizes are lifted from

surfaces by shock waves is of particular interest in modeling a battlefield environment.

The explosive forces from grenades, land mines, and even artillery fire can dislodge

particles of different sizes, lifting them off surfaces into the post-shock flow. These

particles, especially those of respirable size, can represent a significant threat to the

troops on the ground, as well as the machinery that must operate on the battlefield.

Among the potentially harmful particle types are not just chemical and biological

warfare agents. Any particle of size that is sufficiently small to reach the deep lung

of humans can do harm [1, 2, 3], or, on the contrary, be used for drug delivery [4].

At the same time, there are practically no systematic experimental studies of

shock-driven particle advection or re-aerosolization from a surface in open literature.

Shock-driven acceleration of individual spheres off a surface has been studied to assess

the drag coefficient of a sphere in a non-stationary flow [5]. Also an applied problem

rather similar to the one discussed in the present paper has been studied in some

detail in relation to dust explosions, where dust particles are lifted from a surface by a

passing shock wave generated by a gas explosion. In one such study [6], a layer of dust

(black coal or silicon) was deposited onto a surface of a shock tube, and a parametric

study of the post-shock propagation of the cloud was conducted for a range of Mach

numbers from 1.4 to 1.6 and for dust layer thicknesses 0.1, 0.4, and 0.8 mm. That
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study found a substantial (on the order of 1 ms) delay between the shock passage

and the dust cloud formation. The vertical velocity characterizing the cloud growth

was also quantified, with prominent differences due to the cloud material. This

study [6] was followed up by a numerical investigation [7], where the numerical

results were compared with experiment, and the influence of different factors on

the numerical model was considered. It was found that the addition of Saffman

and Magnus lift forces to the model did not produce a significant improvement,

while accounting for particle collisions produced better agreement with experiment.

Several other noteworthy numerical studies have been conducted [8, 9, 10, 11, 12],

taking into account effects of turbulence [9] and wall roughness [12]. Because of

industrial and other applications,the interest to this problem is considerable, which

makes the scarcity of well-quantified experimental studies even more notable.

In these and related problems, the formation of a dusty suspension behind a tran-

sient shock wave [13] is generally explained by the action of a system of compression

and expansion waves formed due to successive reflection of the leading shock wave

from the solid surface and cloud boundary.

The more general problem of shock-particle interaction has attracted more atten-

tion, especially recently [14, 15, 16, 17, 18, 19, 20, 21], with studies of both initially

densely-packed and disperse particles presenting a considerable challenge both to ex-

perimentalists and to numericists because of the range of spatial and temporal scales

in the problem and of the number of factors that have to be taken into consideration.

Flow interaction with particles can be quite complicated, for example, including situ-

ations when a bow shock forms around a cluster of particles [14], and situations when

the shock interacts with a disperse cloud of particles by accelerating the gas, with

the particles lagging behind [16, 17, 19]. Again, numerical works dominate here, and

relatively few experiments are available for quantitative validation of computational

results.
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To gain a better physical understanding of the process of shock-driven advection

of particles from a surface, it would be interesting to consider a problem where the

initial conditions (ICs) in the experiment can be well characterized in terms of particle

size, substrate features, and adhesion between the particles and the surface. The

desire to present an experimental case that quantitatively describes all the aspects

of a deliberately limited parameter space motivates the present study.

As part of a collaboration between the research groups at the Mechanical En-

gineering Department at the University of New Mexico (UNM) and at the College

of Pharmacy, University of Texas (UT) - Austin, the authors modified an existing

shock tube experimental facility to make it possible to observe and record the be-

havior of particles initially resting on a horizontal surface, as they are impacted by

a shock wave and transported into the shock-driven flow. This ongoing investigation

into particle advection will ultimately address the effects of variations in particle

size, surface chemistry and roughness, as well as reactions to shock waves of different

strength.

The question the present paper addresses is whether it is possible to discern vari-

ation in the particle cloud behavior due to a change in just one parameter (surface

roughness). The narrative begins with a description of how the experiment was cre-

ated, including an explanation of the challenges that needed to be overcome, followed

by a detailed description of the entire data acquisition process and a demonstration

of the results pertaining to the apparent relationship between the surface – particle

adhesion force and the growth rate of the forming particle clouds.
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1.2 Experimental Setup

The UNM shock tube [22] is a facility primarily dedicated to studies of shock inter-

action with gaseous density interfaces (Richtmyer-Meshkov instability (RMI) and its

recently discovered multiphase flow analog [19]; also see Section 1.4 for more details).

During experiments, the driver section (Fig. 1.1, right) is pressurized with helium to

a prescribed pressure. A Mylar diaphragm initially separates the driver section from

the driven section (which is filled with air at atmospheric pressure). The diaphragm

is then punctured by a solenoid-driven puncturer, releasing a planar shock wave.

Figure 1.1: Schematic of the shock tube facility. Shock direction is from right to
left.

The UNM shock tube has a square cross-section (7.62 cm). The driver section

pressure prior to the diaphragm puncture is monitored with an Omega PX303 elec-

tronic pressure transducer. The maximum design Mach number of the facility with

helium as the driver gas, as determined by the peak pressure the driver section can

sustain, is M = Us/a = 4.1, where M is the Mach number, Us is the velocity of

the shock front, and a is the speed of sound in air. The creation of the experiment

was initially very simple. The shock tube already had timing (Stanford Research

DG-535 digital delay generators) and diagnostic instrumentation (National Instru-

ments NI-5133 digital oscilloscope and two Omega DPX101-250 pressure transducers
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with Omega ACC-PS1 power supplies), but was not properly set up to conduct the

particle/surface interaction experiment. Figure 1.1 shows a schematic of the shock

tube proper. The test section, made of clear polycarbonate, is removable and can be

modified to permit experimentation with any number of initial conditions.

The first task in conducting surface advection studies lay in fabricating a test

section that would make it possible to insert surface samples of prescribed size,

roughness, and chemical properties flush with the bottom wall. That necessitated

fabrication of adapters for the surface samples produced and characterized at UT-

Austin (the samples were mounted on 10mm round stainless steel plates). Initially,

for that purpose we used a simple aluminum plate and a nylon set screw mounted

underneath the test section (Fig. 1.2), and a small aluminum rod used to hold the

surface during the particle deposition process, transfer to the shock tube, and release

of the shock. The central hole of the test section adapter was machined at just over

10mm in diameter, with a threaded hole drilled into the side of the plate to allow

installation of a nylon set screw. This simple design allowed seating of the particle-

laden surface flush with the bottom of the test section for every shot.

A rare-earth neodymium magnet was pressure-seated in the tip of the aluminum

holder, allowing a secure hold on the surfaces for testing. The same holder was used

to deposit the particle layer onto the surface using an ultrasonic bath, or sonicator.

The sonicator uses sonic waves to disperse particles into a small cloud within the

scintillating vial used to hold the particles, depositing them onto the surface.

Once the particles have been deposited onto the reference surface, the aluminum

holder is securely placed into the test section (Fig. 1.5, right), making sure the surface

is flush with the bottom wall. A diaphragm is then inserted between the driven and

pressurized section (refer to Fig. 1.1) of the shock tube. The diaphragm is made of

Mylar film or of plastic-coated paper, depending on the Mach number desired. The
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Figure 1.2: Experimental arrangement for inserting surface samples with a layer
of particles into the test section. Top: image and schematic of the mounting rod.
Bottom: closeup of test section with adapter for the mounting rod, as seen from
below. Arrow indicates the rod insertion direction.
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pressurized section of the tube is pressurized to a prescribed pressure point, with

the pressure calculated using finite strength shock tube theory [23]. An electronic

trigger activates the solenoid that drives the puncturer via a thin puncture rod in

the pressurized section. The puncturer pierces the diaphragm and releases a shock

wave that travels down the length of the tube toward the test section, impacting and

accelerating the particles deposited on the sample surface. The pressure transducers

are located 2.6 m apart on top of the driven section (Fig. 1.1, middle). They record

the pressure pulses produced by the shock wave as it travels downstream. This data

is subsequently recorded and displayed on an oscilloscope integrated with a laptop

computer. The pressure trace information is subsequently used to confirm the exact

Mach number of the shot.

The next subsections explain the details concerning the surfaces and particles

used for the experiment.

1.2.1 Surface Chemistry and Particle Size

For initial experiments, a set of two surfaces with different roughness characteristics

was selected (Fig. 1.3): smooth and rough. The smooth surfaces are comprised of a

1-cm diameter mica disc glued to a smooth stainless steel disc. The surface of the

mica is then covered with a smooth silver coating, a 10.1 nm layer of gold, and a

dodecanethiol outer layer. To prepare the surfaces with standardized surface chem-

istry, self-assembled monolayers (SAMs) of 1-dodecanethiol were formed by simply

incubating the prepared surfaces with 1-dodecanethiol creating a uniform hydropho-

bic surface. Different surface chemistries will be investigated in later experiments

using SAMs and thiol chemistry. The surface produced this way is smooth on the

microscopic level, with average deviations from perfectly flat not exceeding 1nm. The

micro-rough surface has the same surface chemistry as the smooth surface, but is in-
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stead a stainless steel disc roughened with 240-grit sandpaper. The silver, gold, and

dodecanethiol coatings are the same, but the surface features of the rough surface

have a representative 2-micron scale.

Figure 1.3: View of micro-rough (left) and smooth (right) surfaces

The particles used in the experiment are small glass beads. They were classified

into two categories, respirable and non-respirable. For a particle to be respirable into

the human airways, the particle must have an aerodynamic radius between 0.5 and

5 microns. It is around this particle size range that the physics of particle behavior

transitions from a gravity influenced system (above 10 microns) to a Van der Waals

- or weak electric force - dominated system [24]. This means that for smaller-sized,

respirable particles, the weak adhesive forces that attract them to the surface disc

can significantly influence how they are advected within the shock-driven flow.

Non-respirable particles are around 20 microns in diameter, and thus less inter-
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esting in the context of investigating the effect of weak adhesive forces on the growth

of the particle cloud. Thus in the following sections we will focus on the behavior of

smaller (respirable) particles deposited onto smooth and rough surfaces.

1.2.2 Measurement of adhesion force

The adhesion force between the prepared surfaces and chosen particles was assessed

with the colloidal probe technique [25], which employs the atomic force microscope

(AFM) to probe the single-particle adhesion forces. The AFM uses a cantilever

probe (sharp probe tips allow high topographical resolution, dull tips allow force

measurement) which interacts with a surface; this interaction provides data about

topography, elasticity, adhesion, or several other characterizations. A laser is focused

onto the backside of the cantilever, and as the tip moves (due to surface interaction),

the reflection of the laser onto a position-sensitive diode changes, providing a voltage

difference.

Figure 1.4 illustrates the measurement of adhesion force using the colloid probe

technique. A probe with a particle glued to its tip is initially suspended above the

surface (A). The surface is raised until the probe pops into contact due to attractive

forces, which causes a dip in the deflection signal (B). The surface continues to rise,

which deflects the cantilever in the opposite direction, until a predefined contact

force is achieved (C). The surface is then retracted. Adhesion force keeps the parti-

cle attached to the surface, until the bending force in the cantilever overcomes the

adhesion, and the tip snaps from the surface (D). The deflection signal can be cali-

brated to a z−axis distance (nm), which allows the measurement of the distance at

which the colloid probe detached from the surface. Using Hooke’s Law, and knowing

the spring constant of the cantilever (which was previously calibrated), the force of

adhesion, Fad, is determined. The results presented in this paper were acquired at
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Figure 1.4: View of atomic-force microscope cantilever tip with attached particle
and schematic of a colloidal-probe adhesion force measurement. A. Cantilever tip
initially not in contact with sample surface. B. Sample is slowly raised towards the
tip; cantilever snaps onto the surface due to attractive forces. C. Sample continues
to raise, cantilever beam deflects to a set point (pre-defined force). D. Sample is
lowered, particle adheres until it snaps off surface. Then Fad = −kz (Hooke’s Law).

the University of Texas AFM facility with an Agilent 5500 atomic force microscope.

1.2.3 Deposition of the Particle Layer

As stated previously, an ultrasonic bath (sonicator) was used to deposit the particles

on the surface samples. Figure 1.5 shows a schematic of this process. The same

aluminum rod used to mount the surfaces within the test section is also used in the

sonication process. The surface is attached to the tip of the rod and then inserted into

a low-potassium glass scintillation vial, filled with a small amount (∼ 1 mg) of the
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Figure 1.5: Sonication and shock acceleration processes. Left – schematic of scintil-
lation vial with surface sample attached to mounting rod during particle deposition
in sonicator. Right – mounting rod with surface sample and deposited monolayer of
particles in test section (blue line denotes shock front).

particles. Once the vial is placed into the ultrasonic bath, the sonic motion disperses

the particles into a thin cloud. The particles are attracted to the top of the surface by

weak electrostatic forces. The goal of the sonication process is to produce a uniform

coat of particles on the entire sample. The coating quality is checked visually with the

naked eye and with a 30× optical microscope. Sonication times can run anywhere

from 20 seconds to 15 minutes. The authors tried to find a correlation between

sonication times and either ambient temperature or humidity, but could not obtain

a statistically meaningful answer, leaving the variation in sonication time a subject

for further study. The properties of the surrounding environment are likely to play

a role in particle distribution, but this role is rather subtle within the controlled lab

environment, where the temperature only fluctuates within ±2◦C from the average

value of 20◦C, and the relative humidity does not usually exceed 19%. However, the

distance between the surface and the bottom of the scintillation vial is extremely

important to particle deposition, as described below.
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1.2.4 Data Collection Process

The initial conditions and evolving shock-accelerated particle clouds are imaged with

an ultra high-speed Hadland IMACON 200 imaging camera, which is capable of

framing rates up to 200 million frames per second. The CCD (charge-coupled device)

chip on the camera has 14 separate CCD planes. The optical signal is passed through

a microchannel intensifier, making it possible to individually adjust gain for each

CCD. The camera also provides control for frame exposure durations, timing, and

aperture (the latter is the same for each frame). Therefore, the individual frames

can be set to capture the initial conditions before the shock wave impacts them, and

any subsequent frames set in microsecond intervals to capture the evolution of the

particle cloud.

For the experiments described here, the test section is illuminated with a vertical

laser sheet produced by two 532nm double-pulsed lasers (New Wave Research Gemini

PIV). This leaves four laser pulses at our disposal, allowing the capture of four

nominally identical frames of initial conditions followed by four dynamic frames of

post-shock particle cloud evolution. These laser pulses are timed to expose four

different CCD planes of the IMACON camera. The images are stored on a hard

drive of the computer attached to the camera in grayscale TIFF format (1260×900

resolution, 10 bits per pixel) for later data analysis and image processing.

As an alternative to the Imacon 200, an Apogee Alta U42 camera was used. It

has a single CCD, facilitating the capture of only two images per experiment (initial

conditions and dynamic exposure). The advantages of the Apogee camera are higher

spatial resolution (4 megapixels vs. 1 pigapixel for the Imacon), more grayscale bits

per pixel (16 vs. 10), and very low noise levels. Unlike the Imacon, the single CCD of

the Apogee camera is not intensified, but has a very high quantum efficiency (∼90%).

The images characterizing the late-time evolution of the particle cloud were acquired
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with this camera, using the same laser illumination as described above, but only

with two images captured per experiment – initial conditions and a single dynamic

exposure.

1.2.5 Recovery Process

After each firing of the shock tube, the aluminum holder is recovered from the test

section and the reference surface cleaned, prior to any further particle deposition.

The cleaning process is relatively straightforward. The sample is cleaned with gentle

application of compressed air. If visual inspection reveals any remaining particles, a

small CCD sensor swab moistened with 96% ethanol is gently run across the reference

surface to wipe away any debris left behind after the shock passage, then dried using

a small can of compressed air. A final evaluation of the surface is performed (by

optical microscopy) to verify that the surface is clean, then particles are re-deposited

onto the surface via the ultrasonic bath and the entire process is repeated.

1.2.6 Additional considerations for the experimental proce-

dure

Although these processes seem simple at first, there are plenty of opportunities for

mistakes. Several unexpected challenges in implementing the experimental procedure

were encountered during the experiments. The first such challenge, mentioned above,

is the variability in the time it takes to deposit a monolayer of particles onto a

surface. As the environment within the laboratory is reasonably well controlled in

terms of temperature and humidity, this variability likely related to some feature of

the sonication process itself. Another significant problem that emerged during the

sonication was the fragility of the scintillation vials. The authors determined that
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each scintillation vial should be used for no longer than two minutes at a time in the

sonication bath (or the vial would shatter). Vials would need to be exchanged during

the sonication process, if particle deposition did not complete within a two-minute

interval.

Fragility of the test surfaces themselves also presented a challenge in shock-driven

flow studies. After repeated experiments with the same surface, especially at high

Mach numbers, the fragile protective layer of dodecanethiol and the gold/silver coat-

ings underneath became damaged. Figure 1.6 shows two micro-rough surface samples

that have been used for a number of experiments (top left) and two unused samples

(top right). These problems with reference surfaces are not limited to rough coat-

ings. The smooth coated mica surfaces are exceptionally fragile to the shock wave

and cleaning processes. The mica/stainless steel interface is particularly susceptible

to any shearing force, like that created after the shock wave encounters the surface

covered with particles. If the surface does not sit flush with the bottom of the test

section, there exists a risk of losing a portion of the mica disc to the shock-driven

flow (as shown in Fig. 1.6, bottom left).

Another challenge faced during experiments with particle/surface interactions

was apparently caused by static electricity. The test section of the shock tube is made

of strong polycarbonate, but the only method of cleaning the test section involved

the use of a micro-fiber sweep. This process created a large enough electrostatic

force to dislodge the particles from the surface when inserted into the test section.

This may seem like a trivial concern, but the amount of particles dislodged from the

surface ranged anywhere from 10% to 50% of the total coat. To correct this problem,

the aluminum flange of the test section was grounded directly to the distribution

board located in the lab. This method did somewhat improve the situation, but a

more permanent solution was needed. High-pressure air lines provided an alternative

method of cleaning the test section, one that would not damage the polycarbonate
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Figure 1.6: Top – view of rough surfaces with depleted outer layers (left) and unused
rough surfaces (right). Bottom – view of a smooth surface with a broken mica disc
(left) and a fresh smooth surface (right). Arrows point to the depleted or damaged
areas.

walls, or deposit static electricity.

With the additional challenges described in this subsection carefully addressed,

the initial conditions produced by the experimental setup described above are highly

repeatable, producing consistent data from experiment to experiment. The following

sections detail some of the data acquired, focusing on the differences in the post-

shock flow that are likely attributable to differences in the adhesion force between

the particles and the surface.

1.3 Experimental observations

Visualization of the images reveals subtle details of particle cloud formation, includ-

ing features such as shear-induced vortices. Early-time evolution of the clouds shown
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in the first figures is captured with the Imacon 200 camera, the late-time images are

acquired with the Apogee camera.

The first image sequence (Fig. 1.7) reveals the onset of particle-cloud transport

off a smooth reference surface. The particle-laden surface is approximately 1-cm in

diameter as shown (upper left. t = 0). After the shock wave has passed the initial

conditions, the particle cloud increases in both height (spanwise - normal to the

surface) and length (streamwise). Each dynamic exposure is separated by exactly 50

µs. The timing of the first exposure has some variability due to small fluctuations

in the triggering system. Notice that by the last frame (lower right), most, if not all

of the particles have been completely transported off the smooth surface.

Figure 1.7: Image sequence of respirable particle transport by a Mach 1.67 shock
off a smooth surface. Flow direction is from left to right, the first frame depicts the
initial conditions just before the shock arrives, the time intervals between dynamic
frames are 50 microseconds. Horizontal extent of each image is 6.5 cm. In each
image, the extent of the space occupied by the particles is marked by a blue dotted
line (before cloud forms) or rectangle (for images of clouds). Inserts show frame
fragments containing the particles with 2× enlargement and inversion, to simplify
interpretation. The image of the initial conditions (top left) has been subtracted
from each dynamic image to reduce glare.
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The next set of images shows respirable particle transport off a micro-rough

surface. Notice that in the first hundred microseconds after the shock, the leading

edge of the cloud propagating downstream in Fig. 1.8 is not completely clear of the

reference surface, but the overall cloud size appears larger.

Figure 1.8: Image sequence of respirable particle transport by a Mach 1.67 shock
off a rough surface. Flow direction is from left to right, the first frame depicts the
initial conditions just before the shock arrives, the time intervals between dynamic
frames are 50 microseconds. Horizontal extent of each image is 6.5 cm. In each
image, the extent of the space occupied by the particles is marked by a blue dotted
line (before cloud forms) or rectangle (for images of clouds). Inserts show frame
fragments containing the particles with 2× enlargement and inversion, to simplify
interpretation. The image of the initial conditions (top left) has been subtracted
from each dynamic image to reduce glare.

These early-time image sequences captured with the Imacon camera are comple-

mented by later-time images captured with the Apogee camera. Figure 1.9 shows a

comparison of two flow visualization pictures at about 300 µs. These images show

the differences in particle cloud extent and propagation speed more clearly, with the

particle cloud lifted off the rough surface both moving and expanding faster. Late-

time images also show formation of vortices (likely shear-driven) near the top edge
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of the cloud. The next section describes quantitative measurements of cloud size

extracted from the images.

Figure 1.9: Initial conditions image (a) and comparison of two late-time images of
respirable particle transport by a Mach 1.67 shock off a smooth surface (b) and off a
rough surface (c). Flow direction is from left to right. Images (a) - (c) are inverted for
ease of interpretation, black arrows show the streamwise extent of the particle cloud.
The first non-inverted image (d) is a close-up of the particle cloud from the rough
surface case (c). Note that the laser-illuminated particle clouds reflect in the far wall
of the test section, producing a “ghost” image of the cloud, labeled “reflection” in
(c). Images (e) and (f) show additional examples of clouds with Kelvin-Helmholtz
vortex formation. Yellow arrows point to vortices.

1.4 Analysis of respirable particle cloud growth

The cloud dimensions (width – streamwise, and height – normal to the shock tube

wall) were assessed as Fig. 1.10 illustrates. From each dynamic image used for

quantification, the background image taken immediately before the experiment was

subtracted. Then a bounding box containing the cloud was selected by one of the

authors, and within this box, a simple technique was applied to find the leading,

the trailing, and the top edge of the cloud (the bottom edge of the cloud always
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being the shock tube wall). For example, to trace the top edge of the cloud, for

each vertical column of pixels inside the bounding box, a pixel intensity minimum

(corresponding to the particle-free flow) and maximum (corresponding to the cloud)

were found. The vertical coordinate of the pixel where the intensity value decreased

by half from the maximum was stored. This procedure was repeated for each column

in the bounding box, and the maximum resulting coordinate was used to determine

the cloud height. A similar procedure was applied to pixel rows in the bounding

box to determine the streamwise extent of the cloud. The result was then checked

by the program operator for consistency with visual observations and rejected if

there was no such consistency. Overall, less than 2% of the instantaneous images

were rejected. Our initial assertion upon seeing the images in the previous section,

with the long and wide cloud shape, was that the particles stay confined within the

boundary layer. To check this assertion, prior to analyzing the cloud growth, let us

consider the shock-accelerated flow, specifically its mean velocity and boundary layer

width near the walls. Given the well-characterized pre-shock conditions, as well as

the confirmed Mach number from pressure traces, the pressure and the velocity of

the piston flow following the passage of the shock are easy to determine [23]. Thus,

for a Mach number of 1.67, the freestream velocity of the flow is 306 m/s.

Assessing the extent of the wall boundary layer evolving after the passage of

the shock is generally a non-trivial problem involving unsteady effects coupled with

compressibility and heat transfer effects. Luckily, extensive studies (see Refs. [26, 27]

and citations therein) of the boundary layer development behind a moving shock

wave have been conducted. As the result of these studies, correlations have been

developed for estimating shock-tube boundary layer parameters both for laminar

[26] and turbulent [27] cases. The estimates of boundary layer parameters obtained

from these studies agree to within a few percent with experimental values. Thus the

same correlations were used to estimate the boundary layer thickness in the present

work.
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Figure 1.10: Schematic of thresholding procedure to determine the particle-cloud
width and height. The vertical line denotes the streamwise (x) location where the
cloud upper edge coordinate is sought. The blue line shows the variation of pixel
intensity in the corresponding pixel column, the edge ymax of the cloud at the given
x is where the intensity decreases to half between its maximum and minimum in
the direction away from the surface. The highest value of ymax within the horizontal
extent of the cloud gives the cloud height. The cloud image is inverted, with the
darker area corresponding to the cloud.

For a given time t after the shock, the distance x between the “edge” of the

boundary layer and the location of interest in the flow would be the distance from

that location to the shock front (where the boundary layer thickness is zero). For

example, consider t = 300 µs (the timing close to that of the dynamic images in

Fig. 1.9). At that time, the shock is at a distance of 0.17 m from the surface

sample. At the same time, the middle of the particle cloud lifted off the rough

surface (Fig. 1.9, bottom left) is 0.07 m downstream from the surface sample, and

x = 0.17 − 0.07 = 0.1 m. Given the known conditions in the shocked flow (air

at 0.31 MPa and 421 K), the kinematic viscosity is ν = 9.26 × 10−6 m2/s. The

correlations of Mirels [26, 27] produce the estimates for the boundary layer thickness
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as 0.18 mm and 1.47 mm for the laminar and turbulent cases, respectively, for the

present experimental conditions. Consider Rex = Ux/ν, the Reynolds number (Re)

based on the piston velocity U and the distance from the edge of the boundary

layer x. For the chosen time and location, Rex ∼ 3.3 × 106, which indicates that

the boundary layer should transition to turbulence. However, it is not clear whether

sufficient time will have elapsed for this transition to develop, so the laminar estimate

(0.18 mm) and the turbulent estimate (1.47 mm) can be treated as upper and lower

bounds on the boundary layer thickness.

The boundary layer thickness can also be estimated with momentum integral

[28] method, which would only rely on our knowledge of the boundary conditions on

the surface (no-slip) and on the edge of the boundary layer (piston velocity), and

post-shock pressure. Then we assume that the average velocity profile inside the

boundary layer can be approximated by a second-order polynomial, and solve for

the coefficients of the polynomial using the momentum integral and the boundary

conditions (no-slip at the boundary, smooth transition to freestream velocity at the

edge). Thus one can arrive at an approximate solution for the average boundary

layer thickness δ [29]

δ

x
=

√
30√
Rex

≈ 5.48√
Rex

(1.1)

This method disregards compressibility and heat transfer effects (although it is

“blind” to whether the flow is laminar or turbulent, if the average profile is con-

sidered), and it leads to an estimate of δ ∼ 0.30 mm, roughly consistent with the

laminar result of Mirels [26]. An explicitly laminar, incompressible result not taking

heat transfer into account can also be produced by considering the similarity solution

of Stokes’ first problem [30] for an impulsively started boundary layer:

δ = 3
√
νt (1.2)

where t is the time after impulsive acceleration. In our case for the timing of the
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Figure 1.11: Evolution of the particle cloud widths. Solid and dashed horizontal
lines refer to average heights after 150 µs for the cases of rough and smooth surfaces
respectively.

images in Fig. 1.9, t = 300 µs and δ ∼ 0.16 mm, again, consistent with the laminar

estimate, despite the very crude assumptions involved.

At the same time, the observed maximum height of the cloud (distance from

surface to edge) is 5.2 ± 0.6 mm for the case of the rough surface at this timing,

and 4.5 ± 0.6 cm for the case of the smooth surface (figures after ± describing the

standard deviation). Figure 1.11 shows the growth trends for the clouds, and for

both cases, the cloud height (spanwise) growth is significantly slowed after about

150 µs. In both cases, the observed height of the cloud exceeds the boundary layer

thickness estimated with either laminar formulas [26, 30], the integral method [29],

or the turbulent correlation [27].

It is also notable that the cloud heights lifted off the rough and the smooth

surfaces are different, and, based on the data shown in Fig. 1.11, the averages of

cloud heights for times after 150 µs are statistically distinct (t−test [31]) for the
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Figure 1.12: Downstream positions of leading and trailing edges of respirable particle
clouds vs. time after shock acceleration. Cases of smooth and rough surfaces are
considered. Tinted areas serve as guides for the streamwise extent of the particle
clouds.

rough and the smooth surface at a 95% confidence level. Note that the late-time

data analyzed here were acquired one set of measurements (time, cloud leading edge,

trailing edge, height) per experiment, thus the entries comprising the datasets for

height measurements are statistically independent.

The differences become even more prominent when we consider the evolution

of the width (streamwise extent) of the cloud. Figure 1.12 shows a comparison of

experimental data recording the downstream position of the leading and trailing

edges of the particle cloud.

While after 150 microseconds the growth of the cloud height significantly slows

down, the widths continue to grow in a nearly linear fashion. The cloud of particles

advected off the rough surface grows appreciably faster than that for the smooth-
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surface case. Propagation velocity estimates based on the leading edge positions

after 150 µs are about 298 m/s for the rough surface and 210 m/s for the smooth

surface.

Results of the experimental observations that are summarized in Table 1.1 show

that there is a considerable difference between both the cloud height and the prop-

agation speed of the leading edge of the cloud for the rough- and smooth-surface

samples. What is the physical mechanism responsible for that difference? The only

thing that differs in the two series of experiments is the material of the sample patch,

and with it – the adhesion force between the particles and the surface. This force

was carefully measured using atomic force microscopy, and the results are presented

in the last column of Table 1.1. The adhesion force is appreciably stronger between

the respirable particles and the smooth surface, and this is what likely accounts for

the slower growth of the cloud in this case.

Could the difference in the surface roughness of the sample play a role in the

development of the boundary layer and thus affect the cloud height? In addition

to obtaining the turbulent boundary layer estimate using the correlations of Mirels

[27], the estimate of the viscous sublayer thickness at the same observation location

was obtained as ∼ 3.6 µm using the same study. In the present work the maxi-

mum roughness height of the surfaces is ∼ 2 µm, suggesting that the test surfaces

are hydrodynamically smooth for the purposes of the boundary layer development.

Moreover, the streamwise extent of the sample is only 1 cm, thus making roughness

differences even less likely to affect the boundary layer growth.

It is also noteworthy that for both surface types we considered, the material of

the particle cloud does not reach the freestream velocity during the time interval we

investigated (about 300 µs), and shear between the cloud and the main flow moving

with the freestream (piston) velocity leads to formation of vortices at the edge of
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Table 1.1: Summary of experimental observations of respirable particle propagation.
Cloud height and cloud propagation speed estimates are based on data at times after
150 µs.

Surface type Cloud height
(mm)

Cloud leading edge
velocity (m/s)

Adhesion force (nN)

Rough 5.2± 0.6 298± 8 8± 4

Smooth 4.5± 0.6 210± 7 47± 9

the cloud (Fig. 1.9, top right). From this behavior, one could infer that the particles

and the air in the cloud exhibit a behavior similar to that recently described for a

multiphase-flow analogues of Richtmyer-Meshkov [19] and Rayleigh-Taylor [32] in-

stabilities, wherein a gas carrying embedded particles or droplets exhibits a behavior

similar to that of a single-phase gas, but with added density. In reality, after shock

acceleration, particles lifted by the flow initially lag behind the embedding air, but

for a sufficient particle seeding density (which still can be below 5% by volume),

the exchange of momentum between particles and air leads to the air-particle mix

moving at a uniform velocity, lower than that of the unseeded freestream flow.

1.5 Conclusions and future work

We presented an experimental study of clouds forming after a shock wave passes

a surface sample onto which a monolayer of respirable particles was deposited via

sonication. To the best of our knowledge, this is the first such study to have been

conducted. The streamwise (parallel to the surface) and spanwise (normal to the

surface) extent of the cloud is characterized quantitatively based on analysis of in-

stantaneous flow images acquired at different times after a Mach 1.7 shock arrival.
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Chapter 1. Shock-driven particle transport off smooth and rough surfaces

The growth of the clouds appears to be affected by several factors, of which

the most influential appears to be the adhesion force between the particles and

the surface. Surface samples with stronger initial particle-surface adhesion produce

smaller and slower-moving particle clouds. It is also noteworthy that the particle

clouds for all the conditions we observed extended well beyond the theoretically

estimated boundary layer threshold. These behaviors may suggest that a recently

discovered particle lag instability in shock-accelerated multiphase media may play a

role in the evolution of the flow.

Future work will address the influence of other parameters of the system, such

as particle size and composition, the Mach number, the properties of ambient air

(humidity, temperature) and so on. The problem also could benefit from modeling

the boundary layers and particle cloud, and from a more thorough examination of

the 3D structure of the cloud. Investigations of how the particle(s) detach from the

surface could also benefit from additional considerations that would address several

questions, such as the differences between a single particle liftoff and that of a layer

of particles, or the details of how the adhesion force is overcome by hydrodynamic

forces. Conceivably, the latter study could warrant a numerical approach resolving

the microscale, e.g., a molecular dynamics (MD) simulation.
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Chapter 2

Oblique shock interaction with a

cylindrical density interface3

A cylindrical, initially diffuse density interface is formed by injecting a laminar jet

of heavy gas into the test section of a shock tube. The injected gas is mixed with

a fluorescent gaseous tracer, small liquid droplets, or smoke particles. The shock

tube is tilted with respect to the horizontal. Thus the axis of the gravity-stabilized

heavy gas jet is at an oblique angle with the plane of the arriving shock front. The

flow structure forming after the oblique shock wave interaction with the column of

heavy gas is revealed by visualization in multiple planes. We observe the formation

of the well-known counter-rotating vortex columns (same as caused by normal shock

waves). However, along with them, periodic co-rotating vortices form in the vertical

plane in the flow downstream of the oblique shock. The size of these vortices varies

both with the Mach number and with the initial angle between the column and the

shock front.

3Originally published as: P. Wayne, D. Olmstead, C.R. Truman, P. Vorobieff, and S.
Kumar, ”Oblique shock interaction with a cylindrical density interface,” WIT Transactions
on Engineering Sciences, WIT Press, vol. 89, pp. 161-169, 2015, DOI 10.2495/MPF150141.
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Chapter 2. Oblique shock interaction with a cylindrical density interface

2.1 Introduction

Richtmyer-Meshkov instability (RMI) occurs when an interface between two fluids

of different densities is impulsively accelerated. This acceleration can be the result

of an impulsive body force, or a passing shock wave [1]. RMI develops on the in-

terface between a light fluid and a heavy fluid, regardless of the respective direction

of the density gradient and the acceleration. This instability is physically relevant

for many natural and engineering phenomena, including evolution of supernova rem-

nants, deflagration to detonation transition, inertial confinement fusion (ICF). RMI

also plays an important role in mixing during combustion (for a summary, refer to

Refs. [2, 3] and citations therein). RMI usually develops in combination with several

other hydrodynamic instabilities, one of which is the well-known Kelvin-Helmholtz

instability (KHI). KHI occurs when there is a significant velocity difference on the

interface between two fluids. Shear created at the interface by this velocity difference

induces vorticity which eventually leads to the formation of “cat’s eye” vortices [4].

KHI is present in the cloud bands of giant planets and has been observed in targets

accelerated by laser ablation [5].

The recent experiments conducted at the shock tube facility at the University

of New Mexico have been focused on oblique shock interactions with a column of

heavy gas (sulfur hexafluoride SF6) surrounded by air. The oblique shock-accelerated

gas columns reveal the expected evolution of Richtmyer-Meshkov instabilities, with

many features similar to earlier studies with quasi-two-dimensional initial conditions.

The oblique case also possesses small-scale three-dimensional (3D) features, physi-

cally and morphologically identical to Kelvin-Helmholtz vortices, that develop on the

edges of the column. These instabilities present themselves as periodic waves that

grow with time and evolve into vortices that cascade down the entire length of the

gas column. This paper focuses on these small-scale Kelvin-Helmholtz instabilities,
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Chapter 2. Oblique shock interaction with a cylindrical density interface

including a description of the experimental setup, data for 20◦ and 30◦ oblique shock

angles, and a detailed description of the periodic behavior, including Mach number

dependence.

2.2 Experimental Arrangement and Diagnostics

The University of New Mexico Shock Tube Facility is primarily dedicated to the

study of RMI. It has been used in several studies of shock wave interactions with

a multiphase or heavy gas column [6, 7]. The shock tube itself can operate in a

horizontal position or can be inclined to any angle θ, up to 45◦ above horizontal.

Fig. 2.1 shows the shock tube inclined to 30◦. Under normal operation, the driver

section is pressurized with helium to a predetermined pressure (depending on the

desired Mach number). A thin polyester diaphragm separating the driver and driven

sections is then punctured, sending a planar normal shock down the length of the

tube. Two pressure transducers, located approximately 2.6 m apart on the top of

the driven section, record the pressure pulse from the shock wave as it passes. This

information is displayed, stored, and is used to trigger the diagnostics and verify the

velocity of the shock. The inclined angle of the shock tube, coupled with the planar

normal shock impacting the initial conditions (oriented vertically and stabilized by

gravity), results in an oblique interaction between the shock and the density interface.

In the experiments described here, initial conditions (ICs) in the test section of

the shock tube are formed by vertical injection of sulfur-hexafluoride (SF6) infused

with about 1% acetone gas. The governing parameters of each experiment are the

Mach number and the Atwood number. The Mach nubmer here is M = U/a, where

U is the shock front speed as it propagates through the driven section and a is the

speed of sound in air. The Atwood number is A = (ρ2 − ρ1)/(ρ2 + ρ1), where ρ2

and ρ1 are the densities of the heavy and light gas, respectively. For SF6 and air,
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Chapter 2. Oblique shock interaction with a cylindrical density interface

A = 0.67.

Figure 2.1: Shock tube inclined to 30◦. The driver and driven sections are separated
by a polyester diaphragm. Pressure transducers are located on top of the driven
section. Flow direction is from left to right.

The shock-accelerated column of heavy gas is illuminated by a New Wave Re-

search Gemini 200 UV laser. Planar Laser-Induced Fluorescence (PLIF) images of

the column are collected using a four-megapixel Apogee Alta U-42 astronomy cam-

era, with a nominal quantum efficiency of 90%.

The Mach number for each experiment varies by no more than 0.5% from the

nominal value, and up to 20 images per Mach number and θ have been used to

produce the results presented in the next section, as each experimental run produced

one dynamic image at a prescribed timing after shock acceleration.
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2.3 Results and Discussion

Misalignment of the pressure p and density ρ gradients in the column of heavy

gas accelerated by an oblique shock results in three-dimensional vorticity deposition

(Fig. 2.2). The baroclinic vorticity deposited by the shock interaction is proportional

to the cross-product ∇ρ×∇p. While in the plane of the cross-section of the column

(Fig. 2.2a, top right), this leads to formation of a counter-rotating vortex pair, in

the vertical plane (Fig. 2.2a, bottom right), vortex sheets form on the upstream and

downstream sides of the column.

As the result, shear layers form on the density interfaces in the vertical plane

(Fig. 2.2b), leading to velocity differences between the lighter air and the heavier

column material, and to formation of KHI. For example, the air is traveling down

the upstream side of the column, resulting in small-amplitude perturbations evolving

into vortices. The kinetic energy of the air moving down the edge of the column fuels

the vortex growth via shear.

Figure 2.2: Sketch of three-dimensional vorticity deposition showing (a) pressure and
density gradients [8] and (b) air moving down the upstream edge of the column.
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High repeatability of the initial conditions allows the reconstruction of time his-

tory of the flow based on the experimental images acquired at different times after

shock arrival for each prescribed M and θ. The quantitative parameter of interest

here is the wavelength λ of KHI. Wavelengths are measured as the linear distance

between the centers of consecutive vortices using ImageJ software [9]. The measure-

ment area is 1.0 cm × 1.5 cm (Fig. 2.3) both for the θ = 20◦ and θ = 30◦ cases,

allowing to use a sequence of five consecutive vortices to produce a total of four mea-

surements per image. Measurements were then averaged for each image and sorted

according to θ and M . Temporal evolution of the flow was presented in terms of non-

dimensional time parameter τ , derived from the linear growth theory of RMI [10]:

τ = kA∆V (t− t0) (2.1)

Figure 2.3: Areas of interest where measurements of KHI were taken for (a) 30◦ and
(b) 20◦ inclination angles. The full cross-sectional extent of the test section of the
shock tube is 7.62 cm, images at 20◦ were taken at a higher resolution, but the area
of interest has the same physical dimensions.
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Here k = 2π/d is the perturbation wavenumber, where d is the diameter of

the initial conditions (and the dominant length scale), ∆V is the Mach number-

dependent piston velocity, and the expression (t− t0) is the time after shock arrival

at the center of the heavy gas column.

Figure 2.4: Temporal evolution of KHI for M = 2.00, θ = 30◦. Each image is labeled
with actual time after shock acceleration and dimensionless time τ (Eq. 2.1).

Figure 2.4 shows a sequence of six vertical plane images captured at a 30◦ inclina-

tion angle at Mach number M = 2.00. KHI first presents itself as small perturbations

at the top of the column and moves vertically down the upstream edge (t = 90 µs

after shock impact). The instabilities quickly evolve into “cat’s eye” vortices, in-

dicative of KHI (t = 99, 100 µs). At later times, same-sign vortices begin to merge

55



Chapter 2. Oblique shock interaction with a cylindrical density interface

(t = 112 µs). The resulting larger-scale vortices start to mix (t = 124µs), resulting

in apparent transition to turbulence (t = 180 µs).

Figure 2.5 shows a comparison of KHI vortices observed at several Mach numbers

at a 30◦ inclination angle. As the Mach number increases, the respective wavelength

decreases. This behavior is expected since the dominant length scale amplified by

the KHI is the size of the cross-section of the shock-compressed SF6 column. At

higher Mach numbers, there is greater compression and accordingly the dominant

post-shock length scale is reduced [8].

Figure 2.5: Comparison of KHI vortices at different Mach numbers (as labeled) for
30◦ inclined shock tube. Mach number increases from left to right.

Similar trends can be observed in KHI images acquired at a 20◦ inclination angle,

with one notable difference. For a Mach = 1.13 shock wave, the waves that formed

on each sides of the high-density region (Fig. 2.6) quickly evolved to produce stag-

gered counter-rotating vortex pairs. This behavior precipitated mixing and turbulent

transition for this case. Images at later times reveal turbulent transition occurring

well before that at 30◦ inclination for the same Mach number.

Measurements of wavelength λ are presented in Fig. 2.7. Here wavelength is

normalized by the nominal (pre-shock) diameter of the initial conditions. Horizontal

error bars correspond to standard deviation of Mach number while the vertical error
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bars are the standard deviation of λ. Power-law fits are superimposed with each data

set (Fig. 2.7, θ = 30◦, and Fig. 2.7, θ = 20◦) to serve as visual aids.

Figure 2.6: Comparison of KHI vortices at different Mach numbers (as labeled) for
30◦ inclined shock tube. At M = 1.13, vortices form on both sides of the high density
region.

For inclination angle θ = 30◦, wavelengths ranged from 1.60 mm for Mach 1.13

to 0.97 mm for Mach 2.00. The average standard deviation of λ for 30◦ and 20◦

inclination angles is 101.2 µm and 43.58 µm respectively. Measurements taken at

20◦ show that the wavelengths are significantly smaller than those at 30◦ inclination,

varying by as much as 49%. For Mach = 1.13, λ = 1.10 mm, and for Mach = 2.00,

λ = 0.49 mm.

While existing theory [8] explains the Mach number dependence for each θ, expla-

nation of the smaller scale of vortices for θ = 20◦ will require additional consideration.

In the limiting case of a planar normal shock (θ = 0), there would be no macroscopic

baroclinic vorticity deposition in the vertical plane, and thus no shear layers. It is

possible that the length scale amplified by the KHI is not the compressed size of the

gas column dc, but rather this length scale projected on the direction along the col-

umn where KHI evolves, dc tan θc, where θc is the tilt angle of the shock-accelerated

column.
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Figure 2.7: KHI wavelength λ vs. Mach number M for (a) 30◦ and (b) 20◦ inclination.
The data suggest that λ decreases as inclination angle θ → 0. Power-law fits are
used as a visual aid.

2.4 Conclusions

We have conducted an experimental study of the formation of Kelvin-Helmholtz

secondary instability in the flow produced by oblique planar shock interaction with

an initially cylindrical density interface. While some of the results are well explained

by existing theory, additional studies will be conducted to clarify the nature of the

observed relationship between the dominant KHI wavelength and the tilt angle of

the gas column with respect to the shock front.
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Chapter 3

Oblique shock interaction with a

laminar cylindrical jet4

We present an experimental study of planar shock interaction with an initially cylin-

drical, diffuse density interface, where the angle α between the plane of the shock

and the axis of the cylinder can be zero (planar normal interaction) or non-zero

(oblique interaction). The interface is formed by injecting a laminar jet of a heavy

gas mixture (sulfur hexafluoride, acetone, nitrogen) into quiescent air. The jet is

stabilized by an annular co-flow of air to minimize diffusion. Interaction between the

pressure gradient (shock front) and density gradient leads to vorticity deposition, and

during the subsequent evolution, the flow undergoes mixing (injected material - air)

and eventually transitions to turbulence. Several parameters affect this evolution,

including the angle α, the Atwood number (density ratio), and the Mach number of

the shock. For quantitative and qualitative characterization of the influence of these

4Originally published as: P. Wayne, D. Olmstead, C.R. Truman, P. Vorobieff, and
S. Kumar, ”Oblique shock interaction with a laminar cylindrical jet,” AIP Conference
Proceedings: Shock Compression of Condensed Matter , American Institute of Physics, Vol.
1793, No. 1, p. 150004, 2017.
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parameters, we use flow visualization in two planes that relies on planar laser-induced

fluorescence (PLIF) in acetone, which forms part of the injected material.

3.1 Introduction

Richtmyer-Meshkov instability (RMI) develops when an interface between two fluids

of different densities is impulsively accelerated. This impulsive acceleration can be

the result of an impulsive body force, or of the passage of a shock wave [1]. This

instability develops on the interface between a light fluid and a heavy fluid, regardless

of the respective density gradient and the acceleration [2]. In our experiments, a

misalignment of the pressure (shock) and density (gas column) gradients results

in three-dimensional vorticity deposition on the gas-gas interface. RMI has been

observed in many natural phenomena and engineering problems, including large-

scale astrophysical structures, fuel-air mixing and combustion in scramjets [3], and

experiments in inertial confinement fusion (ICF). While RMI is the dominant feature

in many shock tube experiments with a laminar cylindrical jet, other instabilities can

be driven by RMI, including Kelvin-Helmholtz instability (KHI). KHI occurs when

there is significant velocity difference along the interface between two fluids [2]. Shear

created by the velocity difference, induces vorticity on the interface that eventually

leads to formation of large co-rotating waves, called billows [4]. KHI have been also

observed in cloud bands of giant planets, and targets accelerated by laser ablation

[5].

Recent experiments conducted in the shock tube facility at the University of New

Mexico (UNM) focus mainly on oblique shock interaction with a heavy gas column,

specifically sulfur hexafluoride (SF6) infused with acetone gas. Planar laser-induced

fluorescence (PLIF) images of the shock-accelerated column reveal the expected evo-

lution of Richtmyer-Meshkov instabilities, but also small-scale, three-dimensional fea-
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tures, characteristic of Kelvin-Helmholtz waves (billows). These instabilities present

themselves as periodic waves that grow with time and evolve into vortices that roll

down the entire [vertical] length of the gas column [2]. Experiments and data analysis

described here focus on how RMI and KHI affect the shock-accelerated column.

The shock tube at UNM is approximately 5.8 meters long and can be operated

in a horizontal position, or can be inclined to any angle α from 0◦ to 45◦ above

horizontal. Figure 3.1(a) is a simple schematic showing the different sections of the

shock tube, the angle of inclination α, and the direction of flow. Under normal op-

eration, the driver section is pressurized to a predetermined pressure, which depends

on the desired Mach number. A thin-film polyester diaphragm separating the driver

and driven sections is then punctured, sending a normal shock down the length of

the tube. Two high-frequency response pressure transducers, located on the top of

the driven section, record the pressure pulse of the shock wave as it passes. This

information is used to verify the velocity of the shock and trigger other experimental

diagnostics.

Figure 3.1: (a) Schematic of shock tube at UNM showing the angle of inclination
α, and the driver, driven, test, and run-off sections, respectively. (b) Cross-section
view of the test section (7.62 cm × 7.62 cm), showing the vertical and centerline
imaging planes. (c) Schematic of the shock tube test section, where ∆V = velocity
of air behind the shock (piston velocity), ρ1 = density of air at room temperature
and pressure, and ρ2 = density of the injected material.
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In the experiments described here, the initial conditions (ICs) consist of SF6,

infused with 11% acetone gas by mass. Figure 3.1(b) is an illustration of the injection

area of the test section. The ICs are injected vertically down into the test section and

stabilized by a co-flow of air. The angle between the axis of the jet and the plane of

the shock is also α. PLIF images of the shock-accelerated gas column consist of time-

resolved sets of centerline and vertical plane images. Figure 3.1(c) is a cross-section

view of the test section, showing the orientation of these two planes.

The governing parameters for these experiments are the Mach number, the At-

wood number, and non-dimensional time τ . The Mach number is M = u/a, where u

= the velocity of the shock front and a= the speed of sound in air at room tempera-

ture and pressure. The Atwood number is A = (ρ2 − ρ1) /(ρ2 + ρ1), where ρ2 is the

density of the heavy gas and ρ1 is the density of the light gas. Atwood number for

pure SF6 initial conditions (with 11% acetone gas by mass) is 0.61. Non-dimensional

time τ here is τ = kA∆V (t1 − t0), where the wavenumber k = 2π/6.25 mm (nominal

diameter of ICs = 6.25 mm), ∆V is the piston velocity, and (t1 − t0) corresponds to

time after shock impact.

3.2 Experimental Results

Three-dimensional vorticity is deposited on the gas column by the oblique shock wave

due to a misalignment of the pressure and density gradients. This baroclinic vorticity

is proportional to the cross-product ∇p×∇ρ [6]. In the centerline plane, this results

in the formation of a relatively large counter-rotating vortex pair (CRVP), indicative

of RMI. However, in the vertical plane, co-rotating vortices form on the upstream

and downstream sides of the column (for a more detailed summary, refer to Refs.

[2],[7]). These vortices begin as small perturbations on the interface that grow with

time and evolve into structures morphologically identical to Kelvin-Helmholtz waves.
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Oblique shock experiments were carried out for two inclination angles: α = 20◦

and α = 30◦. Four representative Mach numbers were chosen: M = 1.13 (lowest

possible Mach number with the current setup), M = 1.45, M = 1.70, M = 2.00. All

PLIF images presented here were taken using an Apogee Alta U42 CCD high quan-

tum efficiency (∼95%) camera. A frequency-quadrupled, double-pulsed Nd:YAG

laser operating at 266 nm wavelength (UV) was used as light source. The laser beam

was expanded into a light sheet illuminating a planar cross section of the flow. For

each data set (Mach number, imaging plane), qualitative and quantitative analysis

was conducted.

3.2.1 Qualitative Data

Figure 3.2 illustrates the evolution of the column in both vertical (top row) and

centerline (bottom row) planes, from shock impact to turbulent transition. Here,

the Mach number is M = 1.13, the Atwood number is 0.61, and the inclination

angle is 20◦. Each image was obtained in a separate experiment and post-shock

timings (given in microseconds) were matched for each vertical/centerline pair. Flow

direction is from left to right.

In the centerline plane, just after shock impact, a small spike forms due to shock

focusing, but quickly collapses back into the high density region, likely due to the

flow produced by the CRVP that rapidly develops prominent spiral shaped features

extending into the cores of each vortex. The spiral structures continue to wrap into

the vortex cores until small-amplitude secondary instabilities form on the outer edges

of the CRVP and inside the cores. A relatively short time later, the spiral structures

and quasi-symmetric morphology of the column succumb to mixing and transition

to turbulence.
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Figure 3.2: Sequence of images showing evolution of the heavy gas column accelerated
by an oblique shock. Top: vertical plane, bottom: centerline plane. Here M = 1.13,
A = 0.61, and α = 20◦. Lighter colors (see color bar) correspond to regions of high
SF6/acetone concentration, and darker colors correspond to regions of lower density,
with pure air colored black.

In the vertical plane, evidence of spike formation can be seen on edge for t =

175 µs; the thin line just downstream of the high density region on the bottom half

of the image. Later, small perturbations on the upstream and downstream edges

of the column begin to develop. These perturbations, amplified by shear on the

interface, begin to form billows and waves (indicative of KHI) that quickly grow and

combine, before mixing and transitioning to turbulence. These features are more

prominent on the interface in the direction from which the shock arrived. Billows

on the other side of the column appear smeared, likely due to interaction with the

CRVP in the centerline plane (Fig. 3.2). The spacing between the centers of Kelvin-

Helmholtz vortex pairs, or wavelength λ (Fig. 3.3), was quantified for each Mach

number and angle of inclination.

Analysis of the experimental images revealed KHI wavelengths depended on sev-

eral factors, the most prevalent being the Mach number of the shock wave and the

angle of inclination α. Figure 3.3 suggests that as the Mach number increases, wave-

length decreases. Here, α = 20◦ and A = 0.61; similar trends were discovered for the
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Figure 3.3: Image showing the effect of Mach number on KHI wavelength λ. As the
Mach number increases, wavelength decreases. Inclination angle here is 20◦ and the
Atwood number is 0.61. Mach numbers from left to right are M = 1.13, M = 1.45,
M = 1.70, and M = 2.00.

30◦ case. Analysis also shows that as the angle of inclination (α) decreases, so does

the corresponding wavelength, regardless of Mach number.

3.2.2 Quantitative Analysis

In the centerline plane, the dominant feature was the large CRVP due to RMI. Its

growth was quantified in many earlier studies (mostly for planar normal interaction).

To match results from previous experiments and to validate numerically predicted

values [6], measurements of several features were acquired, including the spanwise

extent (or width) and streamwise extent of the CRVP, the full linear extent of the

plume, and characteristics of secondary features (for a more thorough explanation

of these features, refer to Refs. [6], [7], and [8]). Figure 3.4 shows measured values

of the spanwise width (w) of the CRVP as a function of non-dimensional time τ .

Filled circles on the graph correspond to data at angle of inclination α = 20◦, while

filled triangles correspond to α = 30◦. Nondimensionalization for the vertical axis

σ is chosen to produce the best collapse for the growth rates at τ < 100, σ =
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w/(dICM
1/2). Here dIC is the diameter of the initial conditions. Notice that in these

coordinates the respective growth rate for each Mach number and inclination angle

α seems to follow the same trend.

Figure 3.4: (a) Centerline plane: graph of CRVP spanwise width w vs. dimensionless
time τ , for each Mach number and inclination angle α. (b) Vertical plane: graph
of normalized KHI wavelengths with respect to Mach number for inclination angles
α = 20◦ (red line), and α = 30◦ (blue line). Here, λc = λ/(

√
MDc tanφ).

In the vertical plane, the most obvious target for analysis is the wavelength λ,

or the linear distance between the centers of pairs of Kelvin-Helmholtz vortices.

Five consecutive pairs were chosen within a 1.0 cm ×1.5 cm area of interest within

each image. For an inclination angle α = 30◦, wavelengths varied from 1.60 mm

for Mach 1.13, to 0.97 mm for Mach 2.00, decreasing with Mach number. Kelvin-

Helmholtz instability amplifies perturbations at all wavelengths, thus the mechanism

for selection of λ and its Mach number dependence must be explained.

One scale that is immediately apparent is the compressed diameter (or, more

accurately, compressed stream wise extent) of the shock-accelerated column, Dc.

The compressed diameter is simply the smallest linear distance from the upstream

side of the column to the downstream side. In the images, this can be measured
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by finding the exact location where the shock wave exits the gas column. This

quantity is of interest to verify theoretical predictions of Ref. [8] and also as a basis

for determining the dominant length scale associated with structures (waves) seen in

the vertical plane. Figure 3.4b is a graph of non-dimensionalized wavelength λc versus

Mach number for each inclination angle α. The quantity λc is the experimentally

measured wavelength λ normalized by the theoretical compressed diameter Dc, the

square root of the Mach number, and the tangent of the theoretical turning angle φ,

which is the angle between the axis of the uncompressed (pre-shock) and compressed

(post-shock) gas column. Notice the trend is identical for both inclination angles.

Here, the vertical error bars are the standard deviation in λ (normalized by Dc,M
1/2,

and tanφ) and the horizontal error bars correspond to the standard deviation in Mach

number. Collapse of the curves strongly suggests that the chosen scaling is physically

relevant.

3.3 Conclusions

Experimental studies of oblique shock interaction with a heavy-gas column show that

three-dimensional vorticity deposition introduces significant changes into the flow

evolution (compared with the better studied planar normal case). One prominent

feature is the roll-up of shear-driven vortices in the vertical plane, whose scaling

is dependent on Mach number and tilt angle. A scaling dependent on the square

root of the Mach number produces good results in collapsing the data, suggesting

that this dependence, originally proposed by [6, 9], has physical relevance. Future

work with the same data sets will include structure function analysis [10], mixing

interface length measurements [11], and quantification of interfacial fractal properties

[12], with focus on transition from deterministic, fully three-dimensional vortex-

dominated flow to turbulence.
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Chapter 4

Investigation of Dalton and

Amagat’s laws for gas mixtures

with shock propagation5

Dalton’s and Amagat’s laws (also known as the law of partial pressures and the law of

partial volumes respectively) are two well-known thermodynamic models describing

gas mixtures. Our current research is focused on determining the suitability of these

models in predicting effects of shock propagation through gas mixtures. Experiments

are conducted at the Shock Tube Facility at the University of New Mexico (UNM).

The gas mixture used in these experiments consists of approximately 50% sulfur

hexafluoride (SF6) and 50% helium (He) by mass. Fast response pressure transducers

are used to obtain pressure readings both before and after the shock wave; these data

are then used to determine the velocity of the shock wave. Temperature readings

5Originally published as: P. Wayne, S. Cooper, D. Simons, I. Trueba-Monje, J. H.
Yoo, P. Vorobieff, C. R. Truman, and S. Kumar, ”Investigation of Dalton and Amagat’s
laws for gas mixtures with shock propagation,” Computational Methods and Experimental
Measurements, vol. 6, issue 1, pp. 1-10, 2018, DOI 10.2495/CMEM-V6-N1-1-10.
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are obtained using an ultra-fast mercury cadmium telluride (MCT) infrared (IR)

detector, with a response time on the order of nanoseconds. Coupled with a stabilized

broadband infrared light source (operating at 1500 K), the detector provides pre-

and post-shock line-of-sight readings of average temperature within the shock tube,

which are used to determine the speed of sound in the gas mixture. Paired with

the velocity of the shock wave, this information allows us to determine the Mach

number. These experimental results are compared with theoretical predictions of

Dalton’s and Amagat’s laws to determine which one is more suitable.

4.1 Introduction

Dalton’s law was observed in 1801 by an English chemist, physicist, and meteorologist

John Dalton. In 1802, he reported his findings [1] in Memoirs of the Literary and

Philosophical Society of Manchester. This law of additive (partial) pressures states

that the total pressure of a gas mixture is equal to the sum of the pressures each gas

would exert if it existed alone at the mixture temperature and volume.

In 1880, a French physicist Émile Hilaire Amagat published his findings while

researching the compressibility of different gases. Amagat’s law of additive (partial)

volumes is similar to Dalton’s law, stating that the total volume of a gas mixture is

equal to the sum of the volumes each gas would occupy if it existed alone at the tem-

perature and pressure of the mixture [2]. Although science has evolved considerably

since the 1800s, very little is known about the behavior of multicomponent gases

in various conditions, especially when these gases experience near-instantaneous in-

creases (or decreases) in properties such as pressure, density, and temperature.

The goal of the experiment described here is to determine the accuracy of Dalton’s

law and Amagat’s law in prediction of the properties of a gas mixture subject to shock
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wave propagation. Shock wave effects on gaseous mixtures are important not only

for the fundamental understanding of the physics involved, but also for real-world

applications such as scramjet/ramjet engine inlets [3], and pneumatic systems and

piping [4]. These experimental data can also be used for numerical validation to

better predict these effects in computational fluid dynamics (CFD) simulations.

4.2 Theory

Dalton’s law and Amagat’s law can be expressed by the following equations:

Dalton’s law: Pm =
k∑
i=1

Pi (Tm, Vm) (4.1)

Amagat’s law: Vm =
k∑
i=1

Vi (Tm, Pm) (4.2)

where Pi and Vi correspond to pressure and volume of the individual gas compo-

nents, Pm and Vm correspond to the pressure and volume of the gas mixture, and

Tm is the temperature of the mixture. A system obeying Eqn. (4.1) exactly is known

as an ideal mixture, irrespective of whether its components individually behave as

ideal gases [5]. The ideal gas equation of state (EOS) is expressed as PV = nRT ,

where n = the amount of the gas (in moles) and R = 8.314 J/mol·K is the uni-

versal gas constant. For ideal gas systems, both Eqn. (4.1) and Eqn. (4.2) provide

exact results, but only approximate solutions for real gases, due to intermolecular

forces, compressibility, and non-equilibrium thermodynamic effects. Real gases can

be expressed more precisely by a modified form of the ideal gas EOS,

PV = znRT (4.3)

z =
PV

nRT
(4.4)
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where z is the compressibility factor of the gas. Applying Eqn. (4.4) to both Dalton

and Amagat’s laws gives the compressibility factor of the gas mixture as

Dalton: zm(P, T ) =
∑
i

xizi(Pi, Tm) (4.5)

Amagat: zm(P, T ) =
∑
i

xizi(Pm, Tm) (4.6)

where zm and zi are the compressibility factors of the mixture and component gases,

respectively, and xi = ni/n is the mole fraction of the component gas with respect to

the mixture. Equation (4.5) implies that the compressibility factor of a gas mixture

is approximated by the weighted average of the compressibility factors of the compo-

nents, each evaluated at the appropriate partial pressure [5]. In contrast, Eqn. (4.6)

implies the compressibility factors of the component gases are evaluated at the total

pressure of the mixture.

The test gas used in these experiments is a mixture of sulfur hexafluoride (SF6)

and helium (He). The concentration of each gas in the mixture, if evaluated using

Eqn. (4.5), is approximately 50% SF6 and 50% He. On the other hand, if the proper-

ties are evaluated using Eqn. (4.6), the concentration of SF6 and He is approximately

55% and 45%, respectively.

4.2.1 Shock Wave Theory

Creation of shock waves in a shock tube can be considered as a one-dimensional

Riemann problem [6]. Initially, two gases at different pressures are separated by a

thin membrane (or diaphragm). At time t = 0, the membrane is removed and the

gases are allowed to come into contact. At this instant, a disturbance is formed as the

high pressure gas moves towards the low pressure gas. This original disturbance splits

into two opposite waves: a rarefaction (or expansion) wave and a compression (or
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shock) wave. The rarefaction wave, which expands the gas at higher pressure, grows

thicker while the shock wave, traveling through the low pressure gas at supersonic

speed, grows thinner [7], accelerating and compressing the fluid. Shock waves can

be described as discontinuities in fluid flow, in which properties such as density,

pressure, and temperature increase instantaneously across the shock front. Since the

regime is supersonic, properties in the low pressure gas (downstream of the shock

wave) remain constant until the shock passes.

Generally, in shock wave analysis, a control volume is established containing

the shock region and an infinitesimal amount of fluid on each side of the shock [8].

Applying the conservation equations for mass, momentum, and energy to this control

volume (assuming steady, one-dimensional, adiabatic flow) result in three governing

equations:

ρ1u1 = ρ2u2 (4.7)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (4.8)

h1 +
1

2
u2

1 = h2 +
1

2
u2

2 (4.9)

where ρ is the density of the fluid, u is the fluid velocity, p is the pressure, and h is the

enthalpy. The subscripts 1 and 2 correspond to conditions before (downstream) and

after (upstream) the shock, respectively. Equations (4.7) through (4.9) are referred

to as the Shock Wave equations. The unknown variables in this case are ρ2, p2, u2,

and the difference in enthalpy ∆h = h2 − h1. Therefore, an additional equation is

needed to solve the problem; the change in enthalpy equation, which is given by

dh = cpdT + (1− αT ) vdp =⇒ ∆h =

∫ 2

1

cpdT +

∫ 2

1

(1− αT ) vdp (4.10)

where cp represents the specific heat at constant pressure, α is the isobaric thermal

expansion coefficient, T is the temperature, and v is the specific volume [6].In order
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to characterize the properties of the gas mixture, Equation (4.10) requires the ap-

plication of a thermodynamic model, such as either Dalton’s law or Amagat’s law.

However, if the temperature T2, pressure p2, and velocity u2 can be determined ex-

perimentally, Eqns. (4.7)-(4.10) can be solved directly and compared to theoretical

predictions from both thermodynamic models.

Pressure measurements in a shock tube are relatively simple to acquire, through

the use of high-frequency response pressure transducers (PTs). Various models and

configurations of these transducers are commercially available. Temperature on the

other hand, is a completely different story. The use of a thermocouple probe is an in-

vasive procedure, which could drastically alter flow physics. Furthermore, there exist

no commercially available thermocouples that possess the necessary response time

(on the order of microseconds) and are robust enough to survive conditions within

the shock tube. An alternative method of temperature measurement is required.

This method must be non-invasive, so as to not disturb the flow within the shock

tube, and it must have ultra-fast response times to accurately measure temperature

across the shock wave. Infrared (IR) detectors offer a solution to both of these prob-

lems. They provide line-of-sight measurements of average temperature within the

shock tube, and characteristic response times on the order of nanoseconds.

What follows is a description of an experimental setup in the Shock Tube Facil-

ity at the University of New Mexico Mechanical Engineering Department in which

an infrared detector is used to provide temperature measurements both before and

after shock passage. These experimental results are then compared with theoretical

predictions of Dalton’s law and Amagat’s law in an effort to determine which law is

more suitable for gas mixtures.
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4.3 Experimental Arrangement and Diagnostics

The infrared detector used in these experiments (manufactured by InfraRed Asso-

ciates, Inc.) utilizes an ultra-fast response liquid nitrogen (LN2) cooled photocon-

ductive mercury cadmium telluride (MCT) sensor, with a nominal operating tem-

perature of 77 K. A response time of 60 nanoseconds makes this type of thermal

sensor ideal for experiments conducted in a shock tube. However, each sensor is

unique to the gas mixture tested and information about the infrared absorption (or

transmission) spectrum of the gas itself is necessary. In order to obtain accurate

results (and due to the sensitivity of the sensor itself), only a small fraction of the

IR spectrum should be considered. This is accomplished by the use of a Germanium

narrow band-pass filter mounted on the front of the sensor housing. Preliminary

research [9] shows that peak absorption (∼ 98%) of IR in sulfur hexafluoride (SF6)

occurs between λ = 10 µm and λ = 11 µm wavelength. However, absorption drops

to ∼ 80% in the range 7.5 µm ≤ λ ≤ 8.5 µm. This wavelength range was chosen in

an effort to properly characterize the amount of IR light transmitted (and absorbed)

through the test gas.

LN2-cooled IR sensors of this type measure line-of-sight transmission of infrared

radiation. As the transmission of light through a participating medium decreases,

the corresponding signal from the detector also decreases (which implies absorption

of IR radiation increases). In order to analyze signals from the detector, it must be

calibrated using the test gas, with known temperatures and pressures. Consequently,

a calibration experiment was devised and implemented prior to any experiments

conducted on the shock tube. Figure 4.1 shows the calibration experiment. The

calibration cylinder seen in the center of the image consists of six main components:

a small aluminum cylinder (4” in diameter, 0.5” thick) wrapped in an ultra-high

temperature heater tape, a larger aluminum cylinder (7” in diameter, 0.5” thick),
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two aluminum side plates, and two optical window mounts housing zinc selenide

(ZnSe) windows, which operate as bandpass filters for infrared wavelengths between

λ = 7 µm and λ = 12 µm. The linear distance between the inner faces of the ZnSe

windows is exactly 3 inches, which corresponds to the distance between the inside

walls of the shock tube. The radiation source used in both the calibration and shock

tube experiments is a Thorlabs SLS203L compact stabilized broadband infrared light

source, with a color temperature of 1500 K.

Figure 4.1: Experimental setup used to calibrate the MCT detector.

4.3.1 Calibration Procedure

Prior to each calibration experiment, the IR source is activated and allowed to sta-

bilize for approximately 45 minutes. The glass dewar housing the MCT detector
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(Fig. 4.1) is filled with liquid nitrogen and stabilized during this time period. If

high temperature readings are needed, the heater tape is also activated via a PID

(proportional-integral-derivative) heater temperature controller and allowed to reach

thermal equilibrium at the prescribed temperature. The MCT detector and IR source

are aligned perpendicular to the optical windows along the same axis. A Vincent

Associates Uniblitz LS6 laser shutter (6 mm aperture, 1.7 ms open time) is placed

along the optical axis in front of the MCT detector, which effectively simulates an in-

stantaneous increase in temperature, as would be seen by the sensor when the shock

wave passes. To maintain repeatability and reduce sources of error, the detector,

shutter, and IR source are anchored in the same configuration for the duration of

the calibration experiments.

The procedure begins with a thorough mixing of the SF6/He test gas. The

calibration cylinder inner chamber is completely evacuated using a vacuum pump

(assuming a near-perfect vacuum). The gas mixture is then injected into the cylinder

chamber to one of ten prescribed operating pressures. The laser shutter can then be

activated at any time, allowing infrared radiation to pass from the source, through the

test chamber containing the gas mixture, and onto the MCT sensor, located on the

front of the glass dewar. The pre-amplified electrical signal from the detector is sent

to a National Instruments USB-5132 digital oscilloscope and read by corresponding

NI-Scope software. The signal (measured in Volts) from the detector is proportional

to the amount of infrared radiation transmitted through the test gas (via emission

from the gas itself and from the IR source). Assuming the test gas follows the theory

of infrared absorption spectroscopy, the signal from the detector should decrease as

the temperature of the gas in the calibration chamber increases.

Two thermocouples, mounted parallel to the optical axis, are placed inside the

calibration cylinder test chamber. One thermocouple measures the temperature of

the gas mixture, the other is used by the heater PID controller to maintain the
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desired set temperature. Eight prescribed calibration temperatures were chosen,

starting from room temperature (∼ 22◦C) to approximately 160◦C, in 20◦C incre-

ments. Six samples were taken for each pressure/temperature combination. The

calibration pressures were chosen according to previous experiments of this type [6];

these pressures range from 5.70 psia to 86.0 psia.

4.3.2 Shock Tube Procedure

Figure 4.2 is an image showing the collective components used for conducting exper-

iments in the shock tube. In order to maintain consistency, the infrared detector,

ZnSe optical windows, infrared light source, and laser shutter are arranged in the ex-

act same configuration as was used in the calibration experiment (including matching

distances between components).

In the current configuration, the shock tube consists of two main sections, the

driver section and the driven section. During each experiment, the driver and driven

sections are separated by a thin-film (0.01” thick) polyester diaphragm. Each section

is then evacuated using a vacuum pump until an assumed near-perfect vacuum is

reached. The driver section is then filled with helium to a predetermined pressure

(146 psia, 166 psia, or 186 psia) depending on the desired strength (or Mach number)

of the shock wave . Once this pressure has been reached, the driven section is

pressurized with the SF6/He gas mixture to one of three prescribed pressures: 5.70

psia, 11.4 psia, and 17.1 psia (monitored by a digital pressure gauge, accurate to

± 0.25%). For reference, these correspond to the initial conditions for each test.

Once this pressure has been reached and the driven section is allowed to stabilize, a

pneumatically-driven stainless steel rod, tipped with a broad arrowhead is fired into

the diaphragm, sending a planar shock down the length of the driven section. Four

high-frequency response pressure transducers located on the top of the driven section
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record the pressure pulse from the shock wave as it passes. These data can then be

used to determine the shock speed (u2) and corresponding pressure jump across the

shock front (via manufacturer-supplied calibration curves). Ambient temperature

Figure 4.2: Shock tube experimental setup showing the driver and driven sections
of the tube as well as the configuration of the detector and infrared source, located
coincident with the 4th downstream pressure transducer.

readings (T1) of the test gas (via the MCT detector) are taken just prior to the

shot. These data, when combined with readings of temperature after shock passage

(T2) are used to determine the actual temperature jump across the shock front. The

location of the detector is coincident with the position of the 4th pressure transducer,

downstream of the diaphragm.
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4.4 Results and Discussion

What follows is a summary of the process used to analyze and plot calibration curves

for the detector, according to the prescribed pressure in the calibration cylinder.

Calibration curves were obtained for each prescribed chamber pressure, both with

and without radiation from the IR source. This allows characterization of IR emission

from the test gas as well as absorption of infrared light.

The outline for shock tube experiments consists of testing three separate Mach

numbers, each paired with three different initial pressures (5.70 psia, 11.4 psia, 17.1

psia) in the driven section of the shock tube. To clarify, the pressure in the driver

section depends on the desired strength (or Mach number) of the shock wave; either

146 psia, 166 psia, or 186 psia. However, the actual speed of sound in the mixture is

unknown. Therefore, the Mach number in each experiment can only be determined

through post-processing and analysis.

Previous experiments [6] have shown that the pressure across the shock front, p2

varies according to the strength of the shock wave and the initial conditions inside the

driven section. In order to obtain accurate measurements of post-shock temperature

T2 during experiments, the infrared detector must be calibrated at each known value

of p2. Table 4.1 outlines the various pressures tested during the calibration process.

Each data sample was imported into Matlab and filtered using a 50 point moving

average Savitzky-Golay smoothing algorithm to reduce noise in the signal. Figure 4.3

is an example of the application of this algorithm, showing a drastic reduction in

signal noise. The maximum value of each processed signal was determined and used

to plot calibration curves. In order to minimize error, only the first 2 ms of the 10 ms

total time window were chosen. These curves will be used to analyze temperature

(and pressure) data obtained in the shock tube experiments.
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Table 4.1: Pressures tested in the calibration process, according to driver pressure
and initial conditions.

pdriver (psia) Initial Conditions (p1) Calibration Chamber Pressure (pc)

5.70 psia 48.0 psia

146 11.4 psia 56.0 psia

17.1 psia 61.0 psia

5.70 psia 56.0 psia

166 11.4 psia 68.0 psia

17.1 psia 74.0 psia

5.70 psia 61.0 psia

186 11.4 psia 79.0 psia

17.1 psia 86.0 psia

Figure 4.3: A sample signal from the MCT detector shown (a) before and (b) after
application of the Savitzky-Golay smoothing algorithm.
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Figure 4.4 is a calibration curve (both with and without the IR source) corre-

sponding to a calibration cylinder chamber pressure of 48.0 psia. The x-axis is the

temperature within the chamber (◦C), and the y-axis is the signal from the detector

(V). Upward-facing triangles correspond to data obtained with the IR source, while

dark blue squares correspond to data obtained without the IR source (self-emission

of infrared from the test gas itself). Correlation coefficients (R2) for both curves are

also shown to demonstrate highly accurate linear curve fits.

Figure 4.4: Calibration curve(s) generated using Matlab for 48.0 psia calibration
cylinder chamber pressure. Upward facing triangles correspond to measurements
taken with the infrared source and dark blue squares correspond to measurements
taken with the source. Six samples at each temperature increment were taken.

4.5 Future Work

As this research is ongoing, future work will include experimental measurements of

post-shock temperature in a gas mixture of sulfur hexafluoride and helium, subject to

a moving normal shock. Figure 4.5 below is a preliminary sample trace showing the
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response of the 4th downstream pressure transducer (blue line) and MCT detector

(red line). Note that the MCT detector is placed coincident with the location of the

pressure transducer. Here, increases in signal correspond to higher values of pressure

and temperature. Driver and driven (test) pressures for this experiment were 166

psia and 11.4 psia, respectively.

Figure 4.5: Sample graph of the pressure and temperature traces obtained in a shock
tube experiment, with a driver pressure of 166 psia. The pressure of the test gas in
the driven section was 11.4 psia (local atmospheric pressure).

Several concentrations of each component gas will be tested, including mixtures

of 25%/75% and 75%/25% SF6/Helium by molar mass, respectively. These data will

be used to calculate speed of sound in the mixture and corresponding Mach number

of the shock wave. The results will be compared with theoretical predictions using

both Dalton’s law of partial pressures and Amagat’s law of partial volumes, in an

effort to determine which law is more suitable.
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Chapter 5

Dalton’s and Amagat’s laws fail in

gas mixtures with shock

propagation6

As a shock wave propagates through a gas mixture, pressure, temperature, and den-

sity increase across the shock front. Rankine-Hugoniot (R-H) relations quantify these

changes, correlating post-shock quantities with upstream conditions (pre-shock) and

incident shock Mach number [1, 2, 3, 4, 5]. These equations describe a calorically

perfect gas, but deliver a good approximation for real gases, provided the upstream

conditions are well-characterized with a thermodynamic mixing model. Two classic

thermodynamic models of gas mixtures are Dalton’s law of partial pressures and

Amagat’s law of partial volumes [6]. Here we show that neither thermodynamic

model can accurately predict the post-shock quantities of interest (temperature and

6To be published as: P. Wayne, S. Cooper, D. Simons, I. Trueba-Monje, G. Vigil, D.
Freelong, P. Vorobieff, C. R. Truman, V. Vorob’ev, and T. Clark, ”Dalton’s and Amagat’s
laws fail in gas mixtures with shock propagation,” Science Advances (Under Review 8 July
2019), Manuscript No. aax4749.
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pressure), on time scales much longer than those associated with the shock front

passage, due to their implicit assumptions about behavior on the molecular level, in-

cluding mixing reversibility. We found that in non-reacting binary mixtures of sulfur

hexafluoride (SF6) and helium (He), kinetic molecular theory (KMT) can be used

to quantify the discrepancies found between theoretical and experimental values for

post-shock pressure and temperature. Our results demonstrate the complexity of

analyzing shock wave interaction with two highly disparate gases, while also provid-

ing starting points for future theoretical and experimental work and validation of

numerical simulations.

5.1 Introduction

In 1802, John Dalton’s publication in Memoirs of the Literary and Philosophical

Society of Manchester formulated the law of additive (or partial) pressures [7], stating

that the total pressure in a non-reactive gas mixture – at constant temperature and

volume – is equal to the sum of the partial pressures of the component gases.

In 1880, French physicist Émile Hilaire Amagat published his findings while re-

searching the compressibility of different gases [6]. Amagat’s law of partial volumes

states that the total volume of a gas mixture is equal to the sum of the partial

volumes each gas would occupy if it existed alone at the temperature and pressure

of the mixture [8]. While some advancements have been made in experiments of

shock interaction with a single-component gas [9, 10], much less is known about

multi-component gas mixtures.

Shock interactions with gas mixtures are relevant to many engineering problems,

including gas-cooled reactor power plants [11, 12], mixing processes in supersonic and

hypersonic combustion [13, 14, 15, 16], and astrophysical phenomena [17, 18]. Our
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experiment was originally designed to determine which thermodynamic law (Dalton

or Amagat) is more suitable for predicting properties of gas mixtures interacting

with a planar shock wave. Post-shock properties are obtained using the Rankine-

Hugoniot equations [1, 2, 3, 4, 5] , which calculate post-shock values, such as pressure,

temperature, and density, based on incident shock Mach number and upstream (pre-

shock) conditions.

For a proper comparison of theoretical and experimental values of post-shock

properties, pressure and temperature must be measured immediately before (down-

stream of), and immediately after (upstream of) the shock front. Pressure mea-

surements are not difficult: high frequency response pressure transducers (PTs) are

readily available. Temperature measurements are more challenging. Thermocou-

ples are intrusive and lack the necessary response time [O(10−6) sec)]. Infrared (IR)

detectors, on the other hand, have ultra-fast response times [O(10−8 sec)], and are in-

herently non-intrusive. Here we present temperature measurements using an Infrared

Associates Mercury-Cadmium-Telluride (MCT), liquid-nitrogen-cooled infrared de-

tector operating at 77 K, with a response time of 60 ns (60 × 10−9 sec). Coupled

with a Thorlabs stabilized broadband infrared light source, with a color temperature

of 1500 K, the MCT detector provides line-of-sight bulk temperature measurements

both before and after the shock.

For our experiment, we selected two highly disparate gases forming a binary

gas mixture: sulfur hexafluoride (SF6) and helium (He). SF6 and He are relatively

inexpensive, non-toxic, and have highly contrasting properties: molecular weight,

viscosity, specific heat, presenting an extreme (and hopefully easy to interpret) case

of a mixture with easily distinguishable components. Two molar concentrations of

each gas were chosen; 50%/50% (50/50) and 25%/75% (25/75) sulfur hexafluoride

to helium respectively.
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The shock tube consists of two sections: driver and driven. The driver section

is pressurized (with nitrogen) to a value depending on the desired strength of the

shock wave. The driven section is pressurized with the test gas mixture, up to one

of 3 different initial pressures: 39.3 kPa, 78.6 kPa, or 118 kPa (the average local

atmospheric pressure in the lab is approximately 78.6 kPa). A thin-film polyester

diaphragm separates the two sections. Once both sections have been evacuated

using a vacuum pump, the driver is then filled with the driver gas, and the driven

section is filled with our test gas mixture. When the driver and driven sections are

at the desired pressure, a pneumatically-driven stainless steel rod, tipped with a

broad arrowhead, ruptures the diaphragm, sending a planar shock into the driven

section. Four pressure transducers, located on the top of the driven section, record

the pressure pulse from the shock wave as it passes. The MCT detector and IR source

are located coincident with the 4th downstream pressure transducer, providing nearly

instantaneous temperature measurements immediately before, and immediately after

the shock. For details of experimental methods and theoretical evaluation of post-

shock properties, refer to the Methods and Materials section.

Each gas mixture was tested at three driver pressures (1006 kPa, 1145 kPa, 1282

kPa), and each of the these was applied to three initial pressures (39.3 kPa, 78.6 kPa,

118 kPa) in the driven section, providing experimental datasets at 9 distinct pressure

ratios (overpressures Pr), where pressure ratio is defined as the ratio of driver pressure

to the driven pressure (Pr = Pdriver/Pdriven). Figure 5.1A is an experimental signal

trace at a pressure ratio of Pr = 10.9, for a 50%/50% mixture of SF6/He.
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Figure 5.1: Time history of recorded signals and post-shock pressure de-
pendence on initial pressure ratio. A. Sample pressure transducer (PT) and
MCT detector signal traces, showing locations of incident and reflected shocks, as
well as the 2 ms averaging window (dashed blue lines) used in data analysis. The
black line is the signal trace from the 4th downstream PT, and the magenta line is
the MCT signal trace. B.-D. Post-shock pressure, P2, versus pressure ratio, Pr for a
50/50 (by mole) binary mixture of SF6 and helium, respectively. E.-G. Post-shock
pressure versus pressure ratio for a 25/75 binary mixture of SF6 and helium. In
all panels (B.-G.), black symbols correspond to experimental values, blue symbols
represent Dalton’s law predictions, and red symbols denote Amagat’s law predic-
tions. Vertical error bars correspond to total uncertainty in post-shock pressure P2.
Horizontal error bars are omitted as they do not extend past the physical size of the
symbols. The driven pressure associated with each dataset is displayed above the
corresponding panel.
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The black line shows the signal (V from the 4th downstream pressure transducer

(PT), the magenta line – the signal (V) from the MCT detector. Average values

of the signals from each PT are determined in a 2 millisecond window after shock

impact (dashed blue line). This average value, combined with a calibration curve for

each PT (provided by the manufacturer), provides us with the post-shock pressure,

P2 (kPa). To obtain the incident shock velocity, u1 (m/s), the distance between two

successive pressure transducers is divided by the time it takes the shock wave to

travel between them. Measurements of temperature for the MCT are obtained by

taking the maximum value of the signal within the same 2 ms window (Fig. 5.1A). A

rigorous calibration experiment was conducted with the MCT detector and IR light

source to determine post-shock temperature, T2 (K).

5.2 Results

Multiple experiments were conducted for each gas mixture; a minimum of 6 exper-

iments for each of the 9 pressure ratios. Pr ranges from 8.54 to 32.6 for the 50/50

SF6/He mixture, and from 8.56 to 33.0 for the 25/75 SF6/He mixture. Experimen-

tal results in Figs. 5.1-5.4 were produced by statistical analysis [19] of the dataset

of measurements described above and correspond to mean values for each pressure

ratio. Theoretical predictions are calculated as follows: the equations of state (EOS)

are used to characterize the component gases. An ideal gas EOS is used for helium,

while a virial expansion - up to the 4th virial coefficient - is used for sulfur hex-

afluoride. Inputs for the EOS are the initial pressure (P1) and temperature (T1) in

the driven section fo the shock tube. Once the components have been characterized

(the process includes calculations of density, specific heat ratio, thermal expansion

coefficient, isothermal compressibility, and speed of sound for both He and SF6), we

use Dalton’s and Amagat’s laws to determine thermodynamic coefficients for the gas
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mixture. Specifically, we are interested in the specific heat ratio - γ - and the speed

of sound - a. These values, combined with the incident shock speed (u1), are used as

inputs to the Rankine-Hugoniot equations, which are then used to determine post-

shock temperature and pressure. Predictions displayed in Figs. 5.1-5.4 correspond

to mean values for each pressure ratio. This process, and corresponding statistical

analysis, is explained in detail in the Materials and Methods section.

Figure 5.1(B-G) are plots of post-shock pressure (P2) versus pressure ratio (Pr)

for the 50/50 mix (B,C,D) and the 25/75 mix (E,F,G). The corresponding initial

pressures (in the driven section) are displayed above each panel (B-G). Vertical error

bars correspond to total uncertainty in post-shock pressure. Horizontal error bars

corresponding to uncertainty in pressure ratio (Pr) do not extend past the physical

size of the symbols and are therefore omitted. Note the strong disagreement not

only between experimental values and theoretical predictions, but also between the

two mixture concentrations. Not only do these results disagree with both Dalton’s

law and Amagat’s law well beyond experimental uncertainty, the disagreement varies

with experimental value, leaving no clear answer: which law describes the experiment

better overall?

Figure 5.2 shows the relationship between post-shock pressure (P2) and incident

shock speed (u1) for A. the 50/50 SF6/He mixture and B. the 25/75 SF6/He mixture.

In both plots, black symbols denote experimentally measured values, blue symbols

correspond Dalton’s law predictions, and red symbols represent Amagat’s law pre-

dictions. Vertical error bars in both plots denote total uncertainty in post-shock

pressure. Horizontal error bars (on experimental values) correspond to total uncer-

tainty in incident shock speed. Note that horizontal error bars for both Dalton’s

and Amagat’s laws are withheld, as the uncertainty in incident shock speed for both

thermodynamic laws are identical to those for experimental measurements. Black

arrows in Figs. 5.2A. and 5.2B. (upper left corner of each panel) show the direction
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Figure 5.2: Post-shock pressure variation with incident shock speed. A.
Post-shock pressure (P2) versus incident shock speed (u1) for a 50/50 (by mole)
binary mixture of SF6 to helium, respectively. B. Post-shock pressure versus in-
cident shock speed for a 25/75 binary mixture of SF6 to helium. In both plots,
experimental values are given by black symbols, blue symbols correspond to Dal-
ton’s law predictions, and red symbols represent Amagat’s law predictions. Black
arrows show the direction of increasing driver pressure from 1006 kPa to 1282 kPa.
Vertical error bars correspond to the total uncertainty in post-shock pressure P2 (ex-
perimental measurements and theoretical predictions), which includes random and
systematic uncertainties. Horizontal error bars correspond to total uncertainty in
velocity measurements. Horizontal error bars for theoretical predictions are omitted,
as the uncertainty in incident shock speed for both thermodynamic laws are identical
to that of the experimental measurements.
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of increasing driver pressure, from 1006 kPa to 1282 kPa. While it seems that ex-

perimental values are closer to Dalton’s law predictions for the 78.6 kPa and 118

kPa data sets, data for 39.3 kPa is inconclusive. Again note the discrepancies be-

tween respective initial pressures and between the two mixtures. The next step is to

evaluate post-shock temperature and compare with theoretical predictions.

Figure 5.3A. is a plot of post-shock temperature, T2, versus pressure ratio for the

50/50 SF6/He mixture and Fig. 5.3B. is the same plot for the 25/75 SF6/He mix-

ture. Vertical error bars for experimental measurements and theoretical predictions

correspond to total uncertainty in post-shock temperature. Note the inputs used to

calculate predictions for both Dalton’s and Amagat’s laws are the initial pressure

(P1) and temperature (T1) in the driven section of the shock tube, which are mea-

sured values. Therefore, these predictions will not fit smoothly on a curve; the curve

fits shown in Fig. 5.3A. and 5.3B. serve merely as visual aids.

Again there is strong disagreement between experimentally obtained values of

post-shock temperature and theoretical predictions. For the 50/50 mixture, it seems

experimental values are closer to Dalton’s law predictions, and for the 25/75 mixture,

experimental values are closer to Amagat’s law predictions; these discrepancies are

not random. What could be responsible for this systematic disagreement?
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Figure 5.3: Post-shock temperature dependence on initial pressure ratio. In
both plots, black symbols correspond to experimental values, blue symbols represent
to Dalton’s law predictions, red symbols denote Amagat’s law predictions. Blue and
red dotted lines in both plots are curve fits to Dalton’s and Amagat’s law predictions,
respectively; they are simply used as guides to the eye. Vertical error bars correspond
to total uncertainty in post-shock temperature T2, which includes both random and
systematic uncertainties. A. post-shock temperature (T2) versus pressure ratio (Pr)
for a 50/50 binary mixture of SF6 to helium. Here, experimental values are closer to
Dalton’s law predictions. B. post-shock temperature versus pressure ratio for a 25/75
binary mixture of SF6 to helium. In contrast to data presented in A, experimental
values for a 25/75 mixture are closer to Amagat’s law predictions.

5.3 Discussion

A compelling theoretical analysis of finite-strength shock propagation through a

binary gas mixture was published by Sherman [20] (1960) for inert gas mixtures

consisting of argon (Ar) and helium (for a range of molar concentrations of each

component). Using a continuum approach, Sherman focused on determining the

structure of a shock wave of arbitrary strength, which includes ordinary-, baro-, and

thermal-diffusion effects. He concluded that baro-diffusion speeds up the heavier

component, and slows down the lighter component relative to the mass velocity of
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the mixture [20]. He also determined thermal-diffusion will have the opposite effect,

slowing down the heavier component and speeding up the lighter. Therefore, ther-

mal diffusion would (at least partially) counteract baro-diffusion within the shock

wave. Sherman calculated his results through numerical integration of the Navier-

Stokes equations. A primary assumption associated with this analysis was in always

imposing thermal equilibrium between species through the shock wave. However,

Sherman indicates these assumptions (and corresponding analysis) may not be valid

for strong shock waves, or for mixtures with large molecular mass ratios. In fact,

he states that one might intuitively expect that the maximum shock strength for

which these calculations give realistic predictions would be reduced (somewhat sig-

nificantly) as the molecular mass ratio increases, due to the difficulty in maintaining

thermal equilibrium between the gas components [20].

In 1967, Bird [21] produced an interesting attempt to model shock propagation

through a binary mixture of 50/50 Ar-He, representing the gas molecules as rigid

elastic spheres - with the appropriate masses and diameters - and compared his

results with the analytical predictions of Sherman. His model did not have the

same temperature constraints as Sherman, and predicted even greater differences

in velocity, temperature, and concentration profiles than the analytical profiles of

Sherman. Furthermore, Bird’s findings suggest the temperature non-equilibrium

between species increases with low concentrations of the heavy gas component and

that this [non-equilibrium] can persist for a considerable distance downstream of the

shock [21]. For reference, the molecular mass ratio with respect to binary mixtures

of Ar-He is approximately 10, while the molecular mass ratio associated with the

current work (SF6 - He) is around 36.5.

The studies conducted by Sherman and Bird reasonably concluded that shock

propagation through gas mixtures with relatively massive molecules would cause

differences in their behavior, but the results only pertained to gas molecule velocity,
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concentration, and temperature profiles - on time (and length) scales much smaller

than these considered in the current work. Perhaps the results shown in Figs. 5.1-

5.3, taken in context with these early studies, suggest a different explanation, beyond

experimental uncertainty.

Is a kinetic molecular theory (KMT) [22, 23] explanation possible? Dalton’s and

Amagat’s laws predate KMT, but each law makes implicit assumptions about re-

versibility. Both laws assume thermodynamic equilibrium. However, while Dalton’s

law assumes the gases are always perfectly mixed, Amagat’s law assumes the gases

will separate over time. This assertion is interesting because that is exactly what

we see in experiments. The molecular mass of sulfur hexafluoride is approximately

36.5 times greater than that of helium. If the gases are not constantly mixed, they

will begin to separate (under normal conditions, the gases will separate within a few

minutes). Prior to taking measurements described here, our initial guess was that

Amagat’s law might provide a better prediction for these dissimilar gases. The time

scale of that separation, however, is much longer than the time scale of the experi-

ment associated with the shock passage, thus leading to both Dalton’s law (infinite

separation time) and Amagat’s law (the gases in the mixture are in effect always

separated) failing to produce a match with experiment.

What relaxation time scale is relevant for the equilibrium status of a shocked gas

mixture? Relaxation time is defined as the time within which a perturbed gas will

reach statistical (thermodynamic) equilibrium [24]. In binary gas mixtures whose

constituents have widely different molecular masses (MSF6 � MHe), disparate re-

laxation times are manifest, governing the approach to equilibrium of the various

degrees of freedom [25]. According to Mora and Fernández-Feria [25], for such mix-

tures, the process of equilibration can be characterized by three different relaxation

times: two for self-equilibration of the component gases, and a third one associated

with the slower process of interspecies equilibration. For this analysis, these relax-

100



Chapter 5. Dalton’s and Amagat’s laws fail in gas mixtures with shock propagation

ation times are the post-shock mean free time (or average time between molecular

collisions) for each of the gas components (τHe and τSF6) and the change in collision

time between them (∆τ = τHe − τSF6). What is remarkable about this method is

that the mean free time is temperature and pressure dependent (see Methods).

Figure 5.4: Kinetic theory correlations with incident shock speed.A. change
in collision time, ∆τ = τHe − τSF6 , for a 50/50 (by mole) binary mixture of SF6

to helium, respectively. B. change in collision time for a 25/75 binary mixture of
SF6 to helium. In both plots, experimental values are given by black symbols, blue
symbols denote Dalton’s law predictions, and red symbols represent Amagat’s law
predictions. Vertical error bars correspond to total uncertainty in ∆τ , and horizontal
error bars correspond to total uncertainty in velocity measurements. Similar to
Fig. 5.2, horizontal error bars for theoretical predictions are omitted, and black
arrows show the direction of increasing driver pressure from 1006 kPa to 1282 kPa.
These data closely resemble the trends we observe above (Figs. 1-3).

Figure 5.4 is a plot of the change in collision time, ∆τ (in picoseconds), versus

incident shock velocity (u1) for A. the 50/50 SF6/He mixture and B. the 25/75

SF6/He mixture. Symbol type and color in Fig. 5.4 have been arranged similar to

Fig. 5.2. Again, the black arrow in both plots points in the direction of increasing

driver pressures. Note again the systematic discrepancies in these data, consistent
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with the spread of experimental data points. The negative values for ∆τ are due

to the fact that the average collision time for SF6 is an order of magnitude greater

than that of He. While Figs. 5.1-5.3 show discrepancies produced by Dalton’s and

Amagat’s laws in predicting post-shock properties (pressure and temperature) on a

macroscopic scale, Fig. 5.4 provides a context for these discrepancies, relating them to

the simplest quantitative parameter describing the disparity between component gas

behavior on a microscopic scale. Therefore, if the component gases behave differently,

i.e. have a large difference in response time, on a microscale, is it not reasonable to

assume these discrepancies manifest on a macroscale? This hypothesis is reinforced

by the results obtained from Sherman [20] and Bird [21], especially considering the

large molecular mass difference between the species.

The simple explanation that kinetic molecular theory can provide is that differ-

ences in the response time of the molecules account for the disagreement between

theory and experiment. This explanation appears to agree with our data, at least

qualitatively. These observations show that Dalton’s and Amagat’s laws fail to accu-

rately describe the behavior of a gas mixture that underwent shock acceleration, with

implications that the same failure can manifest in other non-equilibrium situations.

5.4 Materials and Methods

5.4.1 Experimental setup

Two gas mixtures were tested: 50%/50% and 25%/75% sulfur hexafluoride (SF6) to

helium (He), by mole, respectively. Experiments were conducted at the Shock Tube

Facility in the Mechanical Engineering Department at the University of New Mexico

(UNM). The shock tube itself is approximately 5.2 m long, with a 2 m long driver
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section, and a 3.2 m long driven section (7.62 cm inside square cross-section).

To begin an experiment, we separate the driver and driven sections of the shock

tube with a thin-film polyester diaphragm. Both sections are then evacuated using an

ITT Pneumotive vacuum pump to -78.6 kPa. The driven (test) section is filled with

the test mixture to a predetermined pressure (39.3 kPa, 78.6 kPa, or 118 kPa). The

driver is filled with nitrogen to another predetermined pressure (1006 kPa, 1145 kPa,

or 1282 kPa). The pressure in the driver section depends on the desired strength

(or Mach number) of the shock wave [6]. Once the pressure in both sections has

stabilized, a pneumatically-driven stainless steel rod tipped with a broad arrowhead

punctures the diaphragm, sending a normal shock down the length of the driven

section. Four pressure transducers (with a response time ≤ 1 µs), located on the top

of the driven section (≈ 0.8 meters apart), record the pressure history of the shock

wave as it passes. These data can then be used to determine the velocity of the

shock wave, u1, and the post-shock pressure, P2. The MCT detector and IR source

are placed on opposite sides of the shock tube, perpendicular to the optical axis and

located coincident with the 4th downstream pressure transducer. Two zinc selenide

(ZnSe) optical windows are placed on either side of the shock tube, mounted flush

with the inside of the test section. These optical windows are used to create an air-

tight, unobstructed light path from the IR source, through the test gas in the driven

section, to the sensor on the MCT detector. They are also used as broadband filters

to decrease the wavelength range of the incoming light from the IR source to between

7 µm and 12 µm (the IR source outputs light between 0.5 µm and approximately

20 µm). A germanium notch filter, mounted on the MCT detector itself, further

reduces the range of incoming light to between 7.5 µm and 9.0 µm. Note the target

range for these experiments was chosen between 7.5 µm and 8.5µm, based on the

infrared absorption spectrum of sulfur hexafluoride [26].

Calibration curves that relate the signal (V) from the pressure transducers to
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pressure (kPa) in the driven section are provided for each transducer by the man-

ufacturer. For the MCT detector, a calibration experiment was conducted to de-

termine the relationship between signal (V) and temperature (K). This experiment

used an aluminum cylinder with ZnSe optical windows mounted on each side, with

components and geometry identical to that of the shock tube setup described above.

The cylinder chamber is evacuated with a vacuum pump and filled with the test

gas mixture at a prescribed pressure (target pressures were determined from previ-

ous experiments [27]). A helical coil resistance heater, placed on the inside of the

calibration cylinder, is then activated to increase the temperature of the test gas

to a predetermined value. A Vincent Associates Uniblitz LS6 laser shutter (6 mm

aperture, 1.7 ms open time) is placed along the optical axis in front of the MCT

detector, which effectively simulates an instantaneous increase in temperature, as

would be seen by the sensor when the shock wave passes [6]. Once the laser shutter

is activated, the signal from the detector is recorded and used as a baseline for that

pressure-temperature (P-T) combination. For each gas mixture, data was obtained

at up to 25 P-T combinations, with a minimum of six measurements at each combi-

nation. This method provided ample data to determine a calibration curve for each

gas mixture.

5.4.2 Thermodynamic models

The following theoretical analysis was used to determine post-shock pressure and

temperature for both Dalton’s and Amagat’s laws. Equations of state (EOS) are

needed to characterize the gas components; the Ideal Gas (Eqn. 1) EOS was used
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for helium and a virial expansion (Eqn. 2) was used for sulfur hexafluoride.

Pν = RT (5.1)

P =
RT

ν

(
1 +

B(T )

ν
+
C(T )

ν2
+
D(T )

ν3
+
E(T )

ν4

)
(5.2)

Here, P is the pressure (N/m2), ν is the specific volume (m3/mol), R = 8.314

J/mol-K is the universal gas constant, T is the temperature (K), B(T ) is the second

virial coefficient, C(T ) is the third virial coefficient, and so forth [28]. Algebraic

expressions of the temperature provided by the hard-core square well (HCSW) model

intermolecular potential are used to represent B(T ) and C(T ), while D(T ) and E(T )

are represented as polynomial functions of the inverse temperature [29].

B(T ) = b0[1− (λ3 − 1)∆] (5.3)

C(T ) =
1

8
b2

0(5− c1∆− c2∆2 − c3∆3) (5.4)

D(T ) =
3∑

n=0

dnT
−n (5.5)

E(T ) =
3∑

n=0

enT
−n (5.6)

where ∆ = eε/kbT − 1 (kb is Boltzmann’s constant) and the coefficients c1, c2, and c3

are given by

c1 = λ6 − 18λ4 + 32λ3 − 15 (5.7)

c2 = 2λ6 − 36λ4 + 32λ3 + 18λ2 − 16 (5.8)

c3 = 6λ6 − 18λ4 + 18λ2 − 6 (5.9)

Values for dn (n = 1, 2, 3), en (n = 1, 2, 3), b0, λ, and ε/kb are provided by Hurly et

al [29].
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Inputs for the EOS are the initial pressure (P1) and temperature (T1) of the test

gas in the driven section. Once the component gases have been characterized, we

use Dalton’s law and Amagat’s law to determine thermodynamic coefficients for the

mixture. We are specifically looking for the speed of sound a, and the specific heat

ratio, γ. These variables, coupled with the incident shock speed u1 (determined

from experiment) are used as inputs for the Rankine-Hugoniot equations (Eqns.10-

13), which relate post-shock properties in terms of initial conditions (pre-shock) and

incident shock Mach number M1.

M1 =
u1

a
(5.10)

M2
2 =

M2
1 + 2/(γ − 1)

[2γ/(γ − 1)]M2
1 − 1

(5.11)

T1

(
1 +

γ − 1

2
M2

1

)
= T2

(
1 +

γ − 1

2
M2

2

)
(5.12)

P1

P2

=
1 + γM2

2

1 + γM2
1

(5.13)

The subscripts 1 and 2 correspond to conditions before and after the shock, respec-

tively. Once the post-shock temperature (T2) and pressure (P2) for each thermo-

dynamic law (Dalton and Amagat) have been calculated, we can directly compare

the results with experimental values. All theoretical calculations and analysis of

experimental data (including statistical analysis) were performed in MATLAB.

5.4.3 Kinetic molecular theory

Central to kinetic molecular theory are the following assumptions [30]:

• The size of the particle is negligibly small, i.e. the particles themselves occupy

no volume, even though they have mass. At the maximum concentration of
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molecules in our experiments, the Van der Waals correction to pressure asso-

ciated with molecular volume would not exceed 2.5%.

• The average kinetic energy of a particle is proportional to the temperature (K).

• Particle collisions are perfectly elastic; they may exchange energy, but there is

no overall loss of energy .

The following equations were used for kinetic theory analysis. The mean free

path (l) is given by

l =
kbT√
2πd2P

(5.14)

where kb ≈ 1.381 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant, T is the tem-

perature (K), d is the kinetic diameter, which for helium is 0.260×10−9 m and for

SF6 is 0.550×10−9 m, and P is the pressure (Pa).

Mean molecular speed (µm) is obtained via

µm =

√
8TRs

π
(5.15)

where Rs is specific gas constant: for helium, Rs = 2.0773 × 10−3 J/kg-K, and for

SF6, Rs = 56.9269 J/kg-K.

Average collision time (τ) is calculated using

τ =
l

µm
(5.16)

The change in average collision time, ∆τ is simply the average collision time of

helium, τHe, minus the average collision time of sulfur hexafluoride, τSF6

∆τ = τHe − τSF6 (5.17)
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5.4.4 Statistical analysis

A comprehensive statistical analysis was performed on all experimental data, accord-

ing to steps outlined in Wheeler and Ganji [19].

Statistical analysis on all measurements (pressure, temperature, and velocity)

begins with outlier rejection using the Modified Thompson Tau technique [19]. In

this method, for any n measurements, with a mean value x̄ and standard deviation

S, the data is arranged in ascending order (x1, x2, ...,xn). The extreme (highest

and lowest) values are suspected outliers. For these suspected points, a deviation is

calculated as

δi = |xi − x̄| (5.18)

and the largest value is selected. This value is compared with the product of τ

(tabulated with respect to n) times the standard deviation S. If the value of δ

exceeds τS, then this value can be rejected as an outlier (only one value is eliminated

for each iteration). The mean and standard deviation of the remaining values are

then recomputed and the process is repeated until no more outliers exist. Note that

n decreases with each outlier rejection.

Pressure measurements were obtained using multiple devices. Therefore, an es-

timation of the combined degrees of freedom according to the Welch-Satterthwaite

formula (Eqn. 18) is necessary [19].

νx =

[
m∑
i=1

S2
i

]2

m∑
i=1

(S4
i /νi)

(5.19)

where νi is the degrees of freedom for the measuring device, and νx is the value of

the combined degrees of freedom for variable x. Degrees of freedom for temperature

and velocity measurements is simply νx = n− 1. When νx has been determined, the
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students t-distribution value (t) is found based on a 95% level of confidence. The

total random uncertainty in the mean value Px̄ is computed by

Px̄ = ± Sx√
n

(5.20)

where Sx/
√
n is the estimate of the standard deviation of the mean.

Systematic uncertainty for each variable is determined using the mean value for

the measurement and manufacturer supplied information, such as linearity, hystere-

sis, and uncertainty in the measuring device. Sources of systematic error are pressure

transducers, pressure gauges, oscilloscopes, and the MCT detector. Total systematic

error is given by

Bx =

[
k∑
i=1

B2
i

]1/2

(5.21)

where Bi is the systematic error for measuring device i. Once all sources of random

and systematic error have been determined, the total uncertainty in the mean (Wx̄)

is given by

Wx̄ =
(
B2
x + P 2

x̄

)1/2
(5.22)

The mean value for a given set of measurements is used in all plots, and error bars

represent total uncertainty (±) in the mean value.

Table 5.1 details the number of measurements n, degrees of freedom ν (combined

or otherwise), and the t-distribution value for post-shock pressure P2, incident shock

speed u1, and post-shock temperature T2, for the 50/50 binary mixture of SF6 and

helium. Pr denotes the pressure ratio according to mean values of driver and driven

pressures for a given set of experiments. Table 5.2 details statistics for a 25/75

mixture of SF6 and helium. All statistical analysis was performed in MATLAB.
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Table 5.1: Statistical information of experimental measurements for a 50/50 binary
mixture of SF6 and helium, where n is the number of samples, ν is the degrees of
freedom (combined or otherwise), and t is the student’s t-distribution value.

Pr (50/50) nP2 νP2 tP2 nu1 νu1 tu1 nT2 νT2 tT2

32.61 15 6 2.4469 5 4 2.7764 5 4 2.7764

16.27 23 10 2.2281 4 3 3.1824 7 6 2.4469

10.88 20 10 2.2281 6 5 2.5706 5 4 2.7764

29.24 20 16 2.1199 5 4 2.7764 6 5 2.5706

14.60 21 11 2.2010 5 4 2.7764 5 4 2.7764

9.70 21 10 2.2281 5 4 2.7764 6 5 2.5706

25.60 22 15 2.1314 6 5 2.5706 6 5 2.5706

12.83 22 15 2.1314 5 4 2.7764 6 5 2.5706

8.54 22 17 2.1098 6 5 2.5706 6 5 2.5706
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Table 5.2: Statistical information of experimental measurements for a 25/75 binary
mixture of SF6 and helium, where n is the number of samples, ν is the degrees of
freedom (combined or otherwise), and t is the student’s t-distribution value.

Pr (25/75) nP2 νP2 tP2 nu1 νu1 tu1 nT2 νT2 tT2

33.03 20 12 2.1788 6 5 2.5706 6 5 2.5706

16.32 24 20 2.0860 4 3 3.1824 5 4 2.7764

10.88 18 8 2.3060 6 5 2.5706 6 5 2.5706

29.16 28 21 2.0796 6 5 2.5706 6 5 2.5706

14.59 19 10 2.2281 6 5 2.5706 6 5 2.5706

9.73 21 12 2.1788 6 5 2.5706 6 5 2.5706

25.59 21 11 2.2010 6 5 2.5706 6 5 2.5706

12.79 20 13 2.1604 4 3 3.1824 6 5 2.5706

8.56 18 10 2.2281 6 5 2.5706 6 5 2.5706
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