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Abstract

As part of an effort to achieve a better balance between the power demand and

supply, load (demand) control simulation framework is previously developed. In the

framework, HVAC load is used as a control resource, driven by the thermostat logic

modeled within the framework. However, it has not been proved, whether a com-

mercial thermostat is able to perform modeled thermostat’s features. Therefore, it is

desired to integrate a commercial thermostat to the framework, to verify its capabil-

ity of participating and performing the Demand Response (DR) scheme developed. A

‘Nest Learning Thermostat’ is selected as a commercial thermostat. Nest Application

Programming Interface (API) is used to import response of the Nest thermostat, as

well as to input desired settings on the thermostat. A PID control system is imple-

mented to regulate the temperature of a physical chamber, where the Nest thermostat

is installed. As a result, the Nest thermostat is verified to be capable of responding

to the DR signal. Also, simulation of the Nest thermostat is obtained by modeling its

inertial behavior and switching logics empirically observed. A few limitations of the

current study is introduced, and future work to overcome the limitations is proposed.
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Chapter 1

Introduction

In order to reduce carbon emissions, as to mitigate climate change, end-uses of en-

ergy at the residential, commercial, industrial and transportation sectors are being

electrified, leading to the increase in the overall electric power demand. All the while,

the power demand at the residential sector, was responsible for 37% of the electricity

delievered by the U.S. electric grid in 2017 [1]. While the contribution of the residen-

tial sector to the electric load is great, only 6% of households with broadband are

currently participating in a demand response (DR) program—DR indicates manag-

ing the demand side instead of the supply, in order to balance the two—, according to

Parks Associates [2]. One of the reason is because the existing DR strategies are one-

size-fit-all and prioritize load reduction over user comfort [2]. However, studies on the

DR control schemes, seeking the accomodation of both the load reduction and the

user comfort, are actively being conducted with the advance of machine intelligence

technology. Moreover, overall advanced technologies, in such areas as microprocessors

and networks, are accelerating the pervasion of the smart home appliances. In fact,

the U.S. department of Energy (DOE) reported that of the 40 million thermostats

sold in 2015, 40% were smart thermostats [3].
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Chapter 1. Introduction

Many reviewed various DR schemes available. In a study by Shariatzadeh et al. [4],

the existing DR schemes are classfied into the two groups, dispatchable (incentive-

based) DR, and non-dispatchable (time or price-based) DR. The former includes

direct load control (DLC), and interruptible/curtailable service (I/C), the latter in-

cludes time of use (TOU), critical peak pricing (CPP), and real time pricing (RTP).

The home energy management (HEM) technologies currently available on the mar-

ket, are reviewed by Ford et al. [5]. In the review, categorization of the smart home

products available and technologies applied, and their potential for delivering energy

savings and demand shifting, are discussed in detail. Providing reviews on a total of

61 smart thermostats, the authors suggest that the energy savings potential in DR

associated with smart thermostats of all the smart home technologies, is perhaps the

most obvious. The fact that 46% of residential energy usage is from the heating and

cooling [6], supports the suggestion.

With the potential that HVAC systems possess, and the technologies available,

many utility companies are actively conducting residential DR programs via various

smart thermostats. In general, DR programs seek the residential demand reduction,

by pre-cooling / heating and relaxing the setpoints during the peak demand. Larson

et al. [7] introduce DR demonstration projects conducted by National Grid. Two

different DR programs ConnectedSolutions (CS) and Rush Hour Rewards (RHR)

are offered, details such as DR event frequency and duration varying in thermo-

stat model (ecobee, Honeywell, and Nest). Over 2, 000 thermostats were enrolled

in the program in Messachusetts and Rhode Island. The study has revealed impor-

tant findings, regarding how the various program design features affect customer

acceptance of the DR program offerings, such as whether to agree on changing the

setpoint or not. Midstate Electric (MEC) designed and piloted the Peak Hour Re-

wards program, to reduce peak demand across Central Oregon [6]. Lux / Geo-Wifi

programmable thermostat is granted to the participants. Participants are informed

2



Chapter 1. Introduction

prior to a peak demand event, and MEC adjusts the setpoints by two to three degrees

during the peak event. A total of 191 thermostats were enrolled in the program, and

300 − 400kW of load reduction per event on average is reported. Farmers Electric

Cooperative (Farmers EC) partnered with Nest, offering the participants Rush Hour

Rewards (RHR) in Northeast Texas, summer of 2017. Farmers EC notifies Nest up-

coming peak event. Nest then alerts the participants and conducts pre-cooling unique

to each home. Kansas City Power & Light (KCP&L) also offers RHR across east-

ern Kansas and western Missouri. KCP&L accomplished close to 6, 000 thermostats

enrolled [8]. They also reported achieving a 55% cooling load reduction and an an-

nual reduction of 462kWh. KCP&L estimates that customers participating in the

RHR program have attained 1.2kW reduction of power consumption on average per

thermostat. This equates to 15% savings on cooling bills, 10− 12% savings on heat-

ing bills, and an average annual savings of $131 − 145 on their utility bill [9]. Nest

Labs also reported that the load was reduced an average of 55.1% for an average

of 1.18kW per device, from the RHR participants across Austin Energy, Southern

California Edison, and Reliant [2].

While the introduced DR programs, associating with the smart thermostats, are

proved to reduce the HVAC load in some amount, they are not yet able to match the

reduction with an exact amount. DR schemes pursuing precise shaping of a demand,

at the substation or grid level, are currently being conducted by many researchers.

However, their application to the market so far, is not prevailing. Growing power gen-

eration through renewable energy sources (RES), such as solar photovoltaics (PV’s)

and wind turbines, raises the need for those DR programs, due to the intermittency

they bring. Their intermittent power generation leads to fast and irregular change in

power supply, therefore degrading a reliability of a grid system. Mathieu et al. [10]

suggest a development of control framework that enables nondisruptive control of

thermostatically controlled loads (TCLs), such as HVAC. The load is controlled by

3



Chapter 1. Introduction

both decrasing and increasing power use over short time scales, in order to follow

a desired value. This paper also proposes the level of sensing and communications

through a thermostat, that are required to enable fast DR. Bashash et al. [11] intro-

duced a modeling and control of aggregated air conditioning. The authors applied

a sliding mode controller for the real-time management of thermostatic air condi-

tioning loads, responding to the grid’s need for balancing power supply and demand

in real-time. The control of the aggregated air conditioning, is simulated with using

the real wind power data collected by the National Renewable Energy Laboratory

(NREL). A stochatic (probabilistic) DR control strategy, also as to control the power

load, is introduced by Mammoli et al. [12]. Applying the stochastic DR scheme, the

aggregated load control in real-time, specifically at the distribution level, using the

air conditioning load as a controllable resource, is introduced by Yasaei et al. [13].

One of the key features of this work is that the effect of the HVAC deadtime (the

minimum time required between the HAVC switching), which has not been addressed

in many studies so far, is introduced and reflected in the simulation. This work, is

then further developed into a total framework, that simulates the load aggregated

from a residential community, as well as the control of the load, using the stochastic

DR scheme [14].

In the framework introduced by Mammoli et al. [14], the thermostat modeled for

the residential houses is assumed to be capable of, first, reporting its status to outside

world, second, receiving external signals, and third, performing simple calculation.

However, it is not yet verified whether these features, modeled for the simulated ther-

mostat, are performable by commercially available thermostats or not. Therefore, the

present study’s main contributions are, first, to integrate a commercial smart ther-

mostat to the existing aggregated load control simulation framework, and second, to

verify the usability of a commercial smart thermostat in the framework, and finally,

to study characteristics of its response.
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Chapter 1. Introduction

The 3rd generation ‘Nest Learning Thermostat’ is selected as a commercial smart

thermostat to be integrated and studied, which will be referred to as the Nest ther-

mostat throughout the study. The Nest thermostat is attractive in that it provides

an Application Programming Inteface (API) to the developers, which enables data

acquisition and switching of the thermostat through the third party platform. Also,

as of 2016, it was reported that more than 30% of homes in the U.S. have access

to a Nest thermostat rebate or RHR program, with the addition of more than 50

utility partners, including Commonwealth Edison, Enbridge Gas Distribution, and

Vectren [15]. In addition, the number of customers enrolled in Nest’s RHR programs

was found to be more than doubled from 2015 [15]. Considering Nest’s success in

the DR program, considerable market share, and growth in the business, conducting

studies on the Nest thermostat is expected to bring better understandings of the

current DR program, as well as the novel ideas of how to improve the program.

In the present thesis, the aggregated load control simulation framework which is

developed previously, is introduced in Chapter. 2. The implementation of a physical

chamber, where the Nest thermostat is installed, follows in Chapter. 3. The chamber

serves as a residential house for the Nest thermostat, and its temperature is regulated

by a PID controller. After experimental setups are established, the integration of the

Nest thermostat to the framework through Nest API, is demonstrated in Chapter. 4.

Results of aggregated load control simulation with the Nest thermostat synthesized,

an unexpected observation made through experiments, and the limitations of the

current study, are discussed in Chapter. 5. Lastly, the present study is concluded in

Chapter 6, and a possible future work is also proposed in the same chapter.

5



Chapter 2

Aggregated Load Control

Simulation Framework

In the present chapter, the Aggregated load control simulation framework previously

developed [14], is introduced. The framework consists of the two major components,

the load generator and the aggregator. From the generator, six representative resi-

dential loads, namely water heaters, HVAC, refrigerators, clothes washer / dryers,

electric ranges, and lights, are statistically produced. The six energy uses are gener-

ated for each of multiple homes in a residential community, which represent the DR

program participants. A probabilistic control signal for the load aggregated from the

community, is yielded in the aggregator, with the HVACs serving as control resources.

2.1 Residential Load Generator

For the purpose of the present study, details are given only to the part associat-

ing with the HVAC, among the six residential loads. A schematic illustration of the
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Chapter 2. Aggregated Load Control Simulation Framework

Figure 2.1: Statistically drawn house occupancy schedule, setpoint/deadband, and
current house model temperature are sent to the load aggregator. Based on its control
error, the load aggregator decides whether to activate or deactivate the HVAC loads.
The simulated thermostat logic responds to the signal from the load aggregator, and
its response is sent to the model. These steps are repeated in a time loop.

HVAC load simulation is shown in Fig. 2.1. The number of load occurrences per day,

the load start time and the load duration for each house are characterized by the as-

sociated probability density functions (PDFs). Sample PDFs for a residential HVAC

load are shown in Fig. 2.2. At the beginning of each day, a schedule for each meter

and each load is drawn from PDFs. For the case of an HVAC event, the activation in

the schedule represents the change in the setpoint / deadband. The deadband in the

field of HVAC, means the temperature range where neither heating nor cooling is

required. However, in the present study, it is used to indicate the temperature range

where the HVAC switching does not occur, or the range desired by the user. The

HVAC schedule activation also may be referred to as the space occupancy, since the

deadband is set to a narrower (comfort-oriented) range during schedule activation,

assuming that the user is present in the space. For example, as shown in Fig. 2.3, on

7
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Figure 2.2: PDFs and CDFs of the number of residential HVAC load occurrences per
day, the start time of the load occurence and the duration of the load. The residential
HVAC load schedule in particular indicates the residential space occupancy.

a particular day, a specific house can be occupied twice, from 4:30 for 4.5 hours, and

from 14:30 for 2 hours. A temperature setpoint and associated deadband are gener-

ally set to the value desired by user, although in some cases these could be modified

for DR control purposes. DR control can take various forms, such as a change in

the setpoint / deadband or by switching the HVAC operation back and forth. In the

previous work, the deadband was simply set wider when unoccupied to reduce the

HVAC load, as a normal smart thermostat would do, while the state of the HVAC

compressor is switched depending not only on the thermal response model, that is

followed in the next paragraph, but also on whether higher or lower load is required

8



Chapter 2. Aggregated Load Control Simulation Framework

Figure 2.3: An example of the statistically drawn house occupancy schedule for a
specific meter on a specific day.

by the distribution system (e.g. substation), that will be introduced in Section. 2.2.

For this study, it is assumed that all houses are equipped with an HVAC system

based on an electrically powered heat pump for space temperature regulation. This

setup is widely used in areas with moderate climate, and will become increasingly

prevalent with increasing electrification of energy services. The thermal response of

an air conditioned space can be described by

Ms
dTs(t)

dt
= Q̇L − Q̇R, (2.1)

Q̇L = Ks[Ta − Ts(t)], (2.2)

Q̇R = Π× Λ× COP× PAC. (2.3)

In this model, derived from the physical nature of the system, Ms is the effective

heat capacity of the conditioned space, Ts(t) is the temperature of the conditioned

space, t is the time, Q̇L is the thermal energy exchange between the conditioned

space and its surrounding, Ta is the ambient temperature outside of the building, Ks

models the heat exchange between the building and the external air, Q̇R is the rate

9
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of energy outflow or inflow from the space via the HVAC, COP is the coefficient of

performance of the HVAC system, and PAC is the electric power consumed by the

compressor. It is assumed that the heat pump utilizes a fixed-speed compressor, so

that PAC stays constant. Π indicates whether the HVAC mode is cooling or heating,

and Λ is a state function that indicates whether the compressor is on or off. The

HVAC mode is determined by

Π =

1, if Ta − Ts(t) > 0

−1, if Ta − Ts(t) < 0,
(2.4)

where the HVAC is in the cooling mode when Π = 1, or in the heating mode when

Π = −1. The switching logic for the simulated thermostat, when the HVAC is in the

cooling mode, is described by

Λ =

0, if Ts(t) < TL

1, if Ts(t) > TU,
(2.5)

where TL and TU are the lower and upper deadband limits for the space temperature

control. When the temperature is within the deadband, the state function Λ at a

particular time step remains the same as its previous value, i.e. switching only occurs

when the temperature reaches the deadband limits. In similar manner, when HVAC

is in heating mode,

Λ =

1, if Ts(t) < TL

0, if Ts(t) > TU.
(2.6)

The HVAC load for an individual house, at a particular time step, is then calculated

by

LHVAC = Λ× PAC. (2.7)

10
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2.2 Aggregator

During operation, the information from every house model whether the HVAC com-

pressors are on or off, and whether they are switchable or not (if it has passed the

deadtime since the last switching), are reported to the aggregator. The aggregator,

then makes a decision on whether and how much to collectively activate or deactivate

HVAC loads. DR program participating thermostats are informed with this decision

(DR signal), then finalizes HVAC state following the stochastic switching process.

The sequence of the DR control process is :

1. At timestep k the substation reports its control error E - namely the difference

between a desired load and the current aggregated load.

2. The aggregator calculates the maximum positive and negative response capac-

ities (i.e. the maximum load increase or reduction obtainable from the HVACs

of the community) P and N , respectively, from information reported by each

smart thermostat (HVAC on / off status, and HVAC switchability) participat-

ing in the control program.

3. The aggregator calculates the fraction F that represents the probability of

the HVAC switching, i.e., higher |F| leads to more switching of HVACs. F is

defined by

F =


min(R,E)
P , if E > 0

max(−R,E)
N , if E < 0,

(2.8)

where R is the maximum ramping rate of the system. The aggregator broad-

casts F to all thermostats.

4. Each thermostat draws a random number I between 0 and 1, from a uniform

distribution. If I < |F|, the HVAC is switched from off to on at timestep k+1,

11
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if the error is positive (F > 0), or from off to on, otherwise (F < 0). Switching

occurs only within the temperature deadband.

An example of the aggregated load control from the two hundred house models

with stochastic switching algorithm, is shown in Fig. 2.4. Here, the sinusoidal signal

as a desired load, represents a possible high frequency component of a power supply

at a substation. The HVAC load is expected to track the highly frequent signal, since

it provides fast reponse due to its high power draw. Note that components that are

too high in capacity or frequency, are filtered from the aggregated load reported from

the substation, since it is not reasonable to expect an HVAC to generate neither an

infinite amount of load nor an infinite frequency load. In Fig. 2.4b, it is shown that

the aggregated load tracks desired signal very well from 10.5 to 13 hours, while there

exists some greater control error from 8 to 10.5 hours. It is observed that this neg-

ative control error occurs due to the lack of a resource, that is available for turning

off, in contrast to barely no error when the system has enough resources. The ther-

mal response of a random house model from the community, is shown in Fig. 2.5.

When the aggregated load control is not activated, the simulated thermostat sets the

HVAC to the cooling mode following Eqn. 2.4, then the house model behaves exactly

as demonstrated in Eqn. 2.5. As shown in Fig. 2.5a, the HVAC turns off when the

space temperature is lower than the lower deadband, turns on when higher than the

upper deadband, and keeps the previous state within the deadband, i.e., switching

does not occur within the deadband. On the other hand, when the aggregated control

is activated, the HVAC switching occurs also within the deadband, responding to the

DR signal broadcasted by the aggregator.
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(a) Aggregated load control not applied

(b) Aggregated load control applied

Figure 2.4: Load aggregated from 200 house models, is controlled with HVAC load
as a control resource. The sinusoidal signal represents a possible high frequency com-
ponent of a desired demand. Components that are too high in capacity or frequency,
are filtered from the aggregated load. The aggregated load is capable of tracking the
desired signal, when there exists enough resources (available for on and off).

13



Chapter 2. Aggregated Load Control Simulation Framework

(a) Aggregated load control not applied

(b) Aggregated load control applied

Figure 2.5: When the aggregated load is not controlled, the HVAC switching occurs
only when the space temperature reaches the boundaries of the deadband. On the
other hand, switching occurs also within the deadband, when control on the load is
activated.
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Chapter 3

Experimental Setup

3.1 Chamber Temperature PID controller

The Nest thermostat is installed in a physical chamber. This chamber mimics the

real-time conditions of a house model, whose temperature is modeled by Eqn’s. 2.1-

2.3. The Nest thermostat yields the actual response, that is desired to be utilized

within the HVAC load simulation. The temperature inside the chamber is controlled

by using two fan / heat exchanger combinations. The cooling and heating fan, pushes

air through a chilled-water and a heated-water heat exchanger, respectively, then

into the chamber. A visual illustration of the physical setup is shown in Fig. 3.1 and

detailed descriptions follow.

3.1.1 Temperature Measurement

Chamber temperature is measured from type T thermocouples, that are located in

strategic locations inside the chamber, as shown in Fig. 3.1. Analog signals from

thermocouples are converted to digital signals by the amplifier ‘MAX31856’. The
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Figure 3.1: Illustration of the environmental chamber that simulates the tempera-
ture of a certain house model. The chamber temperature is controlled by two fans,
providing the physical environment for the Nest thermostat.

amplifier is connected to the Raspberry Pi GPIO (General-Purpose Input/Output)

pins, then they communicate through the SPI (Serial Peripheral Interface). Converted

signals are obtainable in Python script using the library ‘Adafruit MAX31856’, dis-

tributed by John Robinson [16]. An example of reading temperatures from two ther-

mocouples, in a Python script using ‘Adafruit MAX31856’, is given in List. 3.1. In

SPI communication, four ports CLK(Serial Clock), DI(Master Output Slave Input),

DO(Master Input Slave Output), and CS(Slave Select), should be designated. Lines

5-8 show how GPIO pins are assigned to these ports. Line 5 indicates that GPIO pin

number 6, 17, 5 and 4 in BCM (Broadcom) mode, that can be seen in Fig. 3.2 [17],

are assigned as CLK, CS, DO and DI, respectively. When using multiple amplifiers

(thermocouples), ports CLK, DO and DI can be shared, but an individual CS should

be assigned per thermocouple as shown in Line 6. The object TempRead56 is initialized,

16
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Figure 3.2: Raspberry Pi GPIO pin numbers. Numbers 1 through 40 in the middle,
specify GPIO pin numbers in Board mode. Numbers on the outter left and right
side, specify pin numbers in BCM mode. For example, GPIO pin 19 in Board mode
is pin 10 in BCM mode.

i.e., def init (self) is executed, when it is first called as shown in Line 13. Line 14

executes def TempC(self), then temperatures measured from each thermocouple are

saved in variables tr.Tc1 and tr.Tc2, and obtainable as shown in Line 15-16.

1 from Adafruit MAX31856 import MAX31856 as MAX31856
2

3 class TempRead56: # MAX31856 : higher resolution amplifier
4 def init (self):
5 software spi1 = {"clk": 6, "cs": 17, "do": 5, "di": 4}
6 software spi2 = {"clk": 6, "cs": 27, "do": 5, "di": 4}
7 self.sensor1 = MAX31856(software spi=software spi1)
8 self.sensor2 = MAX31856(software spi=software spi2)
9 def TempC(self):
10 self.Tc1 = self.sensor1.read temp c()

17

13
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11 self.Tc2 = self.sensor2.read temp c()
14

15 >>> tr=TempRead56()

16 >>> tr.TempC()

17 >>> tr.Tc1, tr.Tc2

18 (22.890625, 22.828125)

19 >>> tr.TempC()

20 >>> tr.Tc1, tr.Tc2

21 (22.921875, 22.8671875)

Listing 3.1: Temperature reading by using Python library ‘Adafruit MAX31856’

Figure 3.3: An analog temperature is converted to the digital signal with noises.
The figure shows a signal, filtered by the linear recursive bandpass time-series digital
filter, with coefficients a = 0 and b = 0.3.

18
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Fig. 3.3 shows the temperature curve of the chamber, measured with the amplifier

‘MAX31856’, and its first derivative.The amplifier provides fairly precise resolution

of 0.008◦C, however as shown in the figure, the gradient of the measured temperature

chatters between positive and negative values, with maximum magnitude of 0.2◦C

per second, i.e., the temperature could increase 0.2◦C in a second then decrease 0.2◦C

at the next time step, then keep oscillating. This behavior is not physically realistic,

therefore it is considered that there exists noise interruption within the amplifier.

This noise can be filtered via linear bandpass time-series digital filter. The most

general linear filter takes a form of

yn =
M∑
k=0

ckxn−k +
N∑
j=1

djyn−j, (3.1)

where x is an unfiltered value, and y is a filtered value. In the case of IIR (Infinite

Impulse Response) recursive filtering, when M = 2 and N = 2, coefficients ck and

dk are determined as below

c0 =
b

(1 + a)(1 + b)

c1 = 0

c2 =
−b

(1 + a)(1 + b)

d1 =
(1 + a)(1− b) + (1− a)(1 + b)

(1 + a)(1 + b)

d2 = −(1− a)(1− b)
(1 + a)(1 + b)

,

(3.2)

where positive numbers a and b, correspond to lower and upper cutoff frequency,

respectively, i.e., from the unfiltered signal, components with frequency lower than

a and higher than b will be filtered [18]. The digital filter with coefficients a = 0 and

19
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b = 0.3, gives a much smoother temperature curve with less magnitude in chattering

as shown in Fig. 3.3.

3.1.2 Fan Control

Two 12V fans are controlled by a motor driver IC (Integrated Circuit) ‘L293D’. The

motor driver is connected to the Raspberry Pi GPIO, and is controllable in a Python

script using the library ‘RPi.GPIO’. The fan speed is modified by PWM (Pulse-width

modulation), by adjusting the duty cycle. An example of controlling two motors in

a Python script using ‘RPi.GPIO’ is shown in List. 3.2.

1 import RPi.GPIO as GPIO
2

3 class ChamberHvac:
4 def init (self):
5 GPIO.setmode(GPIO.BCM)

6 GPIO.setup(18,GPIO.OUT,initial=GPIO.LOW) # assign GPIO pin

numbers

7 GPIO.setup(20,GPIO.OUT,initial=GPIO.LOW)

8 GPIO.setup(19,GPIO.OUT,initial=GPIO.LOW)

9 GPIO.setup(21,GPIO.OUT,initial=GPIO.LOW)

10 self.fc=GPIO.PWM(18,100)
11 self.fh=GPIO.PWM(19,100)
12 self.fc.start(0)
13 self.fh.start(0)
14 def AC(self,sign):
15 GPIO.output(18,GPIO.HIGH)

16 GPIO.output(20,GPIO.HIGH)

17 GPIO.output(21,GPIO.LOW)

18 self.fc.ChangeDutyCycle(sign)
19 def HT(self,sign):
20 GPIO.output(19,GPIO.HIGH)

21 GPIO.output(21,GPIO.HIGH)

22 GPIO.output(20,GPIO.LOW)

23 self.fh.ChangeDutyCycle(sign)
24 def Quit(self):
25 self.fc.stop()

20
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26 self.fh.stop()
29 GPIO.cleanup()

30

31 >>> ch = ChamberHvac() # Call the object and initialize

32 >>> ch.AC(100) # runs cooling fan at pwm 100

33 >>> ch.HT(50) # stops cooling fan and operates heating fan at pwm 50

34 >>> ch.Quit() # stops fans in operation and clean up GPIO pins

Listing 3.2: Fan operation by using Python library ‘RPi.GPIO’

Figure 3.4: The motor driver ‘L293D’ is connected to the GPIO, then controls the
fan motors.

In the function def init (self) as shown in Lines 4-13, GPIO pins are assigned

to ‘L293D’. GPIO 18, 20 and GPIO 19, 21, associate with the cooling fan and the

heating fan, respectively. Connections between ‘L293D’ and GPIO pins are shown in

Fig. 3.4. Fucntion def AC(self,sign) operates the cooling fan, at the duty cycle taken

as an argument (sign). This sign must be an integer between 0 and 100. Line 17

indicates that the function stops the heating fan, if is operating, so that only either

the cooling fan or the heating fan operates. Line 31 calls the object Chamber Hvac and

executes def init (self). Line 32 and 33 runs cooling fan at a duty cycle of 100%,

and heating fan at a duty cycle of 50%, respectively. Line 34 stops any fan that

is running, and cleans up the GPIO pins, so that GPIO pins assigned to ‘L293D’

are now emptied. The entire circuit connections of the thermocouples, ‘MAX31856’,

motors, ‘L293D’ and Raspberry Pi GPIO, is shown in Fig. 3.5.
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Figure 3.5: An illustration of the temperature measurement and fan control asso-
ciating with the Raspberry Pi GPIO. Interaction with the thermocouple amplifiers
and the motor driver, is available through Python libraries such as ‘RPi.GPIO’ and
‘Adafruit MAX31856’
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3.1.3 Plant Design

Now, with the given hardware setup, it is possible to modify the temperature inside

the chamber. First, On-Off control method is applied and the result is shown in

Fig. 3.6. Here, the chamber temperature is trying to track the desired temperature

at 27◦C. When the error is positive or negative, the cooling or heating fan operates

at a constant duty cycle. When the fans run with a duty cycle of 50%, the chamber

temperature oscillates around the desired temperature resulting in a maximum error

of 4 ◦C. With the duty cycle of 10%, it oscillates with a lower frequency but results in

a higher maximum error of 5 ◦C. The result shows that the desired chamber temper-

ature is unobtainable through the On-Off controller. Therefore it is desired to design

a temperature control plant that outputs the variable fan speeds corresponding to

the error.

Figure 3.6: On-Off controller trying to track the desired temperature signal. The
cooling fan operates when the error is positive, heating fan when negative. In both
cases, fans run at a steady duty cycle. The value of the duty cycle affects only the
amplitude of oscillation, leading to an unsettling of the chamber temperature.
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In the experimental setup shown in Fig. 3.1, temperatures of water running

through the heat exchangers remain steady, therefore, the speed of the fan deter-

mines the rate of temperature change of the chamber. The relation between the fan

speed and the rate of temperature change, can be found from the heat transfer model

of the system. By the first law of thermodynamics, the energy balance in the control

volume is expressed as

dEcv

dt
= Ėin − Ėout. (3.3)

With the chamber defined as a control volume as shown in Fig. 3.7, Eqn. 3.3 can be

written as

Mchcp
dTch

dt
= ṁch,incpTch,in − ṁch,outcpTch,out

= ṁchcp(Tch,in − Tch,out),

(3.4)

where Mch is the mass of the air inside the chamber, cp is the specific heat capacity of

the air, Tch is the chamber temperature, ṁch,in and ṁch,out are mass flow rate coming

in and out of the chamber, respectively, Tch,in and Tch,out are the temperature at the

inlet and outlet, respectively, and it is assumed to be ṁch,in = ṁch,out. If the heat

exchanger can be considered as a group of tubes, the heat transfer occuring inside

each tube, can be defined as an internal forced convection. It is assumed that the

surface temperature of the heat exchanger is constant, then the relation between

temperature at the inlet and outlet of the tube is expressed as

Thx,out = Tsurf − (Tsurf − Thx,in)exp
(
− hAsurf

ṁcp

)
, (3.5)
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Figure 3.7: Chamber control volume. Mass flow rate ṁ through the heat exchanger
and the chamber, is assumed to be constant. Thx,in is steady at the indoor temper-
ature, Thx,out = Tch,in is obtainable by modeling heat transfer at the heat exchanger
as an internal forced convection flow, and Tch,out is measured experimentally.

Figure 3.8: Specification of an isosceles triangular tube. The heat exchanger consists
of 880 tubes.

where Thx,in and Thx,out are temperatures at the inlet and outlet of the heat exchanger,

respectively, Tsurf is the surface temperature of the heat exchanger, h is the convec-

tive heat transfer coefficient, Asurf is the surface area of the tube, ṁ is the mass

flow rate through the tube, and cp is the specific heat capacity of the air since the

air is pushed through the heat exchanger. The heat exchanger selected, consists of

isosceles triangular tubes shown in Fig. 3.8. For the flow through noncircular tubes,

the Reynolds number is defined as

Re = VavgDhν
−1 (3.6)
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where Vavg is the average speed of the flow across the cross sectional area, ν is the

kinematic viscosity of the air, hydraulic diameter Dh = 4Acp
−1, Ac is the cross

sectional area, and p is the perimeter of the tube. In the case of internal flow in a

tube, flow is laminar for Re < 2300, or fully turbulent for Re > 10000, or transient

in between. To define whether the flow is laminar or turbulent, Reynolds numbers,

within the range of fan operation, is calculated by using Eqn. 3.6, and results are

tabulated in Table. 3.1. Note that the relation ρairV̇– hx = ṁhx = 880ṁtube holds where

ρair is the air density, V̇– hx is the total volumetric flow rate coming through the heat

exchanger from the fan, ṁhx is the total mass flow rate, and ṁtube is the mass flow

rate of a single tube. Various mass flow rate is represented in terms of duty cycle

(fan speed). From the table, it is shown that Reynolds numbers are always smaller

than 2300 within the given fan speed range, therefore the flow is laminar. When the

Air properties Tube properties

ρair

[kg/m3]
cp

[J/kgK̇]
νair

[m2/s]
kair

[W/mK̇]
Pr

p
[m]

Ac

[m2]
Dh

[m]
L

[m]
Lh

[m]
Lt

[m]

1.2047 1.0063 1.5111× 10−5 0.025596 0.71559 18.02× 10−3 11.04× 10−6 2.45× 10−3 0.02 0.012− 0.12 0.0086− 0.086

Duty cycle 10 20 30 40 50 60 70 80 90 100

V̇– hx

[m3/s]
0.0059 0.0118 0.0177 0.0236 0.0295 0.0354 0.0413 0.0472 0.0531 0.059

Vavg

[m/s]
0.607 1.215 1.822 2.429 3.036 3.644 4.251 4.858 5.466 6.073

ṁhx

[×10−2kg/s]
0.711 1.422 2.132 2.843 3.554 4.265 4.975 5.686 6.397 7.108

ṁtube

[×10−5kg/s]
0.808 1.615 2.423 3.231 4.038 4.846 5.654 6.462 7.269 8.077

Re
[−]

98.5 197.0 295.5 394.0 492.4 590.9 689.4 787.9 886.4 984.9

Nu
[−]

7.79 8.05 8.30 8.56 8.81 9.07 9.32 9.58 9.83 10.09

h

[W/mK̇]
81.42 84.08 86.74 89.41 92.07 94.73 97.40 100.06 102.72 105.39

NTU
[−]

3.611 1.865 1.282 0.991 0.817 0.700 0.617 0.555 0.506 0.467

Table 3.1: System properties associated with the heat transfer, with varying mass
flow rate (duty cycle).

flow is laminar, hydrodynamic and thermal entry lengths are Lh ≈ 0.005ReDh and

Lt ≈ 0.005RePrDh, respectively, where Pr is the Prandtl number of the air. The flow

is determined to be fully developed, if both the hydrodynamic and the thermal entry

lengths are shorter than the tube length. Otherwise, if either the hydrodynamic or
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the thermal entry lengths is longer than the tube length, then the flow is determined

to be still developing. From Table. 3.1, Lh ranges from 0.012− 0.12m, and Lt ranges

from 0.0086 − 0.086m, within the range of fan operation. It is not provided in the

table, however, except at the duty cycle of 10%, Lh and Lt are greater than 0.02m,

which is the length of the tube. Therefore for convenience, the flow is considered as

the developing flow. When the flow is laminar and developing, Nusselt number is

defined by

Nu = 7.54 +
0.03(dh/L)RePr

1 + 0.016[(Dh/L)RePr]2/3
, (3.7)

where h = kNuDh
−1, and k is the thermal conductivity of the air. Using Eqn. 3.5,

Thx,out can be calculated, where Thx,in is constant at an indoor temperature. Once

Thx,out is found, the chamber temperature change rate dTch/dt, at a certain mass flow

rate (fan speed), can be obtained from Eqn. 3.4. Here, Tch,in = Thx,out and Tch,out is

measured experimentally. The relation between dTch/dt and the fan speed, can be

established by repeating the process at various fan speeds. The result is shown in

Fig. 3.9a for cooling, and in Fig. 3.9b for heating. As shown in the figure, in the case

of cooling, dTch/dt increases as the duty cycle increases, however with duty cycle

greater than 30%, dTch/dt starts to decrease as the difference between Thx,out and

Tch,out decreases. Similar behavior is observed for heating. The magnitude of dTch/dt

increases until the duty cycle is 30%, then decreases with duty cycle greater than

30%. dTch/dt is also found experimentally, and the observation is given in Fig. 3.10.

The chamber temperature and its first derivative (dTch/dt) is measured by time,

with the fan speed fixed. In the case of cooling, dTch/dt increases as the fan speed

increases, until the duty cycle is 40−60%, then decreases with the higher duty cycle.

In the case of heating, dTch/dt increases until the duty cycle increases to 100%. The

chamber temperature behaves as expected from the heat transfer model, with some

degree of disagreement in values given in Fig. 3.10. A linear plant is designed based
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on the observation, and is shown in Fig. 3.11. Considering that dTch/dt does not

show big difference when the duty cycle is 40 − 60% in the case of cooling, and

40 − 80% when heating, the maximum duty cycle for both cases are set to 40%.

Performance of the control with the plant designed, is shown in Fig. 3.12. Even as

the plant is capable of adjusting the fan speed corresponding to the error, it still

results in the oscillating chamber temperature. Therefore, the proportional control

is applied, and it is shown in Fig. 3.12 that the oscillation reduces and settles with

smaller proportional gain. However, it still is not capable of reducing the steady state

error, thus the PID controller is applied to overcome the problem.
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(a) Cooling fan

(b) Heating fan

Figure 3.9: A relation between the mass flow rate in terms of fan speed, and the
chamber temperature change rate. For the cooling fan, |dTch/dt| increases until the
duty cycle increases up to 30%, and decreases with the higher duty cycle. The same
result is observed for the heating as well.
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(a) Cooling fan

(b) Heating fan

Figure 3.10: dTch/dt corresponding to various fan speeds. The chamber temperature
responds as expected from the theory. When cooling, dTch/dt increases until the duty
cycle is 50%. When heating, dTch/dt increases until the duty cycle is 100%.
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Figure 3.11: The plant is capable of adjusting the fan speed corresponding to an
error. The plant is designed linearly, and based on the experimental observation, the
maximum cooling and heating fan speed is set to 40% duty cycle.

Figure 3.12: The chamber temperature can be settled to the desired signal with the
proportional control, however it is not capable of eliminating the steady state error.
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3.1.4 PID control system

Earlier, it is shown that the proportional control is not adequate to achieve desired

temperature response. To obtain reasonable control on the chamber temperature,

PID control method is applied. The PID controller implemented, simply solves the

following equation,

u(t) = KPe(t) +Ki

∫ t

t−∆t

e(τ)dτ +Kd
de(t)

dt
, (3.8)

where u(t) is a new input to the control plant, e(t) is the temperature error, and ∆t is

a time constant. The PID gains Kp, Ki and Kd are tuned experimentally, so that the

chamber temperature can precisely track the house model temperature. The chamber

temperature is the average temperature from a set of T-type thermocouples, placed

at strategic locations within the chamber, as shown in Fig. 3.1. The performance

of a properly tuned PID controller, with Kp = 0.1, Ki = 0.004, Kd = 0.7, is shown

in Fig. 3.13. Then it is also tested whether the PID controller with tuned gains,

is capable of implementing the temperature profile from the house model, and the

result is shown in Fig. 3.14. From the figure, it is shown that the PID controller with

tuned gains tracks the house model reasonably.
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Figure 3.13: With gains of Kp = 0.1, Ki = 0.004, Kd = 0.7, the PID control system
tracks the constant desired temperature reasonably.

Figure 3.14: With gains of Kp = 0.1, Ki = 0.004, Kd = 0.7, the PID control system
is also capable of implementing the house model temperature inside the chamber.
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3.2 Nest settings

A 3rd generation Nest Learning Thermostat is selected as a physical commercial

thermostat. An electrical circuit of the HVAC system with a heat pump in an actual

residential space, and the wiring of the Nest thermostat to the HVAC, is shown in

Fig. 3.15. The 24V AC power supply from the transformer, runs through terminals

R and C, which are used to power the thermostat. Terminal W1, Y1 and G are used

for sending signals to the heating element relay, to the compressor relay and the

fan relay of the heat pump system, respectively. In the present experiment, the Nest

thermostat terminals are not connected to an actual HVAC, but the Nest thermostat

still generates HVAC control signals in response to its environment. These signals

are obtainable through the voltage measurement in relevant terminals, or through

the utilization of the Nest API. The latter method is used in this work, with details

covered in the following section. By detecting connections in its terminals, the Nest

thermostat knows what kind of HVAC system it is controlling. In order to let the

Nest thermostat know that it is associating with a heat pump system, open-ended

wires are connected to terminal W1, Y1 and G, as shown in Fig. 3.15 [19]-[20].

(a) (b)

Figure 3.15: The Nest thermostat wiring for an actual HVAC system with a heat
pump and a fan. Its response is also reachable through the Nest API.
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Nest Synthesis to Simulation

Framework

Given this physical environment for the Nest thermostat, it is now necessary to in-

tegrate the response of the Nest thermostat to the overall framework. The Nest API

is the key tool utilized in the integration process. Steps taken for this purpose are

described in the present chapter.

4.1 Nest API

The Nest thermostat supports the API development through the REpresentational

State Transfer (REST) network HyperText Transfer Protocol (HTTP), which allows

a user to read or write on the Nest thermostat without physically contacting it.

Through REST HTTP, a client (the thermostat itself, or a third-party agent such

as an aggregator) can make requests to specific server URLs. The data can be ma-

nipulated on the server itself, or transfered back to the client [21]. Nest provides
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Figure 4.1: Before making requests to the data, an authorization must be made. An
access token yielded from the authorization enables requests to the Nest API.

relevant URLs to API developers. While HTTP requests can be made via various

platforms, in the present work, HTTP requests have been made in Python through

the ‘requests’ library [21]. A client is created in the Nest Developers website, that is

assigned with a unique client ID, a client secret and an authorization URL. Before

access to private data of the Nest thermostat is available through the API, an access

token must be obtained [22]. The Nest API uses the OAuth 2.0 protocol for the

authorization process. With the client ID, the client secret ID and the authoriza-

tion code, an access token is granted by making requests. The authorization code is

obtained by getting into the authorization URL, after providing the user consent.

An example of requesting an access token in a Python script is given in List. 4.1.

The request made with the client ID, client secret and authorization code, returns

in an access token as shown in Lines 14-15. Once the access token is obtained, it is
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possible to make requests to the Nest API, then access private data, such as setpoint

or HVAC state, of a specific Nest thermostat as illustrated in Fig. 4.1. An example

of reading data from the Nest thermostat, in a Python script is given in List. 4.2.

Data are pulled in a JavaScript Object Notation (JSON) object, through the ‘GET’

method of the REST API. An example of the private data in JSON object, read

from the Nest thermostat, is shown in List. 4.3. Here, a device ID and a structure

ID of the Nest thermostat can be obtained, that are required to write on the Nest

thermostat. Device ID indicates the corresponding thermostat, and the structure ID

indicates the space where the device is installed. With the ID’s obtained, data can

be pushed in through the Nest thermostat, using the ‘PUT’ command of the REST

API. An example of writing the setpoint and the away status on the thermostat, in

a Python script, is shown in List. 4.4. The error handling can be done by checking

the request status code, as shown in Lines 14-15 of List. 4.2, and 15-16 of List. 4.4.

The status code returns a value of 200 if the request is successfully made; the value

other than 200 indicates that there has been an error during the execution.
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1 import requests
2 # own info

3 client id = "your client id"

4 client secret = "your client secret"

5 auth url = "your authorization url"

6 # go to auth url then get auth code

7 auth code = "your authorization code"

8 # requesting access token (response is access token)

9 url = "https://api.home.nest.com/oauth2/access token"

10 payload = "code=%(AUTH CODE)s&client id=%(CLIENT ID)s&client secret=%(

CLIENT SECRET)s&grant type=authorization code" %{’AUTH CODE’:
auth code ,’CLIENT ID’:client id ,’CLIENT SECRET’:client secret}

11 headers = {’content−type’: ’application/x−www−form−urlencoded’}
12 response = requests.request("POST", url, data=payload, headers=headers)

13

14 >>>print(response.text)
15 >>>{"access token":"your access token","expires in":315360000}

Listing 4.1: The process of making a request to obtain an access token in Python
script [23]. The client ID, client secret and authorization code is required. The
authorization code is obtained from the authorization URL. With the access token
granted, access to private data of the Nest thermostat is available.
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1 import json
2 import requests
3

4 url = "https://developer−api.nest.com/"
5 token = "your access token"

6 headers = {’Authorization’: ’Bearer {0}’.format(token), ’content−Type’:
’application/json’}

7 initial response = requests.get(url, headers = headers, allow redirects

= False)

8 testdata = initial response.text

9 testdata = json.loads(testdata) # into dic

10

11 device = testdata[’devices’][’thermostats’][’your device id’]

12 structure = testdata[’structures’][’your structure id’]

13

14 >>> print(’initial response.status code’)
15 200

16 >>> device[’hvac mode’],device[’hvac state’],structure[’away’]

17 ’eco’,’off’,’away’

Listing 4.2: Reading private data from the Nest thermostat in a Python script [24].
The device ID and the structure ID, that are required to write on the thermostat, can
be obtained through this process. The status code of 200 indicates that the process
was successful.
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1 {
2 "devices": {
3 "thermostats": {
4 "your device id": {
5 "ambient temperature c": 21.0,

6 "device id": "your device id",

7 "eco temperature high c": 30.0,

8 "eco temperature low c": 16.0,

9 "hvac mode": "eco",

10 "hvac state": "off",

11 "is online": true,

12 "previous hvac mode": "cool",

13 "structure id": "your device id",

14 "target temperature c": 24.5,

15 "target temperature high c": 26.0,

16 "target temperature low c": 23.5,

17 "temperature scale": "C"

18 }
19 }
20 },
21 "structures": {
22 "your structure id": {
23 "away": "away",

24 "postal code": "87106",

25 "structure id": "your structure id"

26 }
27 }
28 }
29 }

Listing 4.3: Private data of the Nest thermostat, read in JSON object.
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1 import json
2 import requests
3

4 url = "https://developer−api.nest.com"
5 device id = "your device id"

6 structure id = "your structure id"

7 token = "your access token"

8 setpoint = 20.0

9 away =’home’

10

11 payload = "{\"devices\":{\"thermostats\":{\"%(device id)s\":{\"
target temperature c\": %(setpoint)f}}},\"structures\":{\"%(
structure id)s\":{\"away\": \"%(away)s\"}}}" %{’device id’:device id
,’structure id’:structure id , ’away’:away, ’setpoint’:setpoint}

12 headers = {’Authorization’: ’Bearer {0}’.format(token), ’content−Type’:
’application/json’}

13 initial response = requests.put(url, headers = headers, data=payload,

allow redirects = False)

14

15 >>> print(initial response.status code)
16 200

17 >>> print(initial response.text)
18 {"devices":{"thermostats":{"your device id":{"target temperature c":

20.000000}}},"structures":{"your structure id":{"away": "home"}}}

Listing 4.4: Writing data on the Nest thermostat in a Python script [25]. With the
example given, the setpoint of the device and the away status of the structure, will
be set to 20◦C and to ‘home’, respectively. The device ID and the structure ID that
are required to write on the thermostat, are obtainable from the reading process.
The status code of 200 indicates that the process was successful.
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4.2 Nest Data

Nest thermostat data associated, are tabulated in Table. 4.1. The ‘hvac mode’ and

the ‘hvac state’ correspond to Π and Λ, from Eqn. 2.4 and Eqn’s. 2.5-2.6, respec-

tively. A total of five HVAC modes, are offered in the Nest thermostat. When the

HVAC mode is set to ‘Heat’ or ‘Cool’, the Nest thermostat utilizes a single setpoint

(labeled as ‘target temperature c’, value in ◦C), activating only heating or cooling,

respectively. In ‘Heat-Cool’ or ‘Eco’ mode, the setpoints for both heating and cooling

are utilitzed, therefore the HVAC system can either heat or cool the space. Users

may want to set the setpoints to the less-comfort oriented values, in ‘Eco’ mode.

Setpoints in the ‘Eco’ mode are non-writable through the API, but are changeable

directly at the physical thermostat or the mobile application provided by the Nest.

Note that the Nest thermostat does not support the user set deadband, but only

the setpoints. The three HVAC states indicate whether the HVAC compressor is

on (heating / cooling) or off. Also note here, that the HVAC state cannot be des-

ignated by the user, since it is driven by logics inside the Nest thermostat. The

‘ambient temperature c’ is the space temperature measured by the thermostat. The

Nest thermostat senses the human occupancy via near-field activity, far-field activity

and ambient light sensor, then sets away status of the structure, where it is installed,

to ‘Home’ when occupied, or ‘Away’ otherwise. However the away status can be set

manually by the user as well. In the present work, the thermostat is not allowed to

make decision on the occupancy, but the occupancy schedule from the load gener-

ator will be pushed to the thermostat through the API. When the away status has

turned to ‘Away’ from ‘Home’, the Nest thermostat automatically switches HVAC

mode to ‘Eco’ regardless of the previous mode. However, the user can deactivate this

automatic mode switching, and it is deactivated in the present study. By the way,

‘Eco’ mode is independent of the away status, meaning that the user can set the

HVAC mode to non-‘Eco’ mode, even when the space is unoccupied, if it is desired.
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Device
Thermostat

Returns/Range Access Note

hvac mode ‘heat’,‘cool’,‘heat-cool’,‘eco’,‘off’ read/write

hvac state ‘heating’,‘cooling’,‘off’ read-only

ambient temperature c number read-only

target temperature c number/9-32 read/write hvac mode=‘heat’ or ‘cool’

target temperature low c
/target temperature high c

number/9-32 read/write
hvac mode=‘heat-cool’

min gap between low/high = 1.5

eco temperature low c
/eco temperature high c

number/4-21/24-32 read-only hvac mode=‘eco’

Structure Returns/Range Access Note

away ‘home’,‘away’ read/write

Table 4.1: Data utilized in the integration. Reading or writing the data is available through the Nest API.
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Figure 4.2: The aggregated load control is applicable to the Nest thermostat, by
modifying the setpoints based on the probability of swithing, which is broadcasted
by the aggregator. To do so, bounds to the setpoints need to be given.

4.3 Stochastic switching model for the Nest ther-

mostat

The Nest thermostat has its own features, that are different from the thermostat

simulated in the framework. Therefore it is neccessary to model a stochastic switch-

ing logic suitable for the Nest thermostat. As mentioned earlier, a direct HVAC

state designation is not obtainable. Instead, the setpoint can be modified, to achieve

the HVAC state switching. First, a random number I can be drawn outside of the

thermostat – since an individual developer is not yet allowed to plant any custom

algorithms within the Nest thermostat. If the HVAC state is decided to be switched,

i.e., if I < |F|, then the new setpoint is determined, following

Tset,new =

Tset,min, if F > 0

Tset,max, if F < 0,
(4.1)

in the case of cooling. Tset,min and Tset,max are the arbitrary marginal setpoints that
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bound the space temperature, functioning similar to the deadband (Fig. 4.2). In the

case of heating, the new setpoint will be selected by

Tset,new =

Tset,max, if F > 0

Tset,min, if F < 0.
(4.2)

Alternatively, the setpoint can be dynamically adjusted, instead of using I draw

process. Considering that F indicates the probability of switching, and also assuming

that the larger change in the setpoint would result in the higher probability of state

switching, the increment of the setpoint can be determined as

∆Tset =
|Treference − Tset,current|
|F|max − |F|min

×F , (4.3)

where −1 ≤ F ≤ 1, Treference is the marginal reference value of the setpoint, and

Tset,current is the current setpoint before responding to the aggregated load control.

Following this idea, in the case of cooling, a new setpoint can be determined as

Tset,new =

Tset,current − (Tset,current − Tset,min)×F , if F > 0

Tset,current − (Tset,max − Tset,current)×F , if F < 0.
(4.4)

If the HVAC is desired to be turned on or off, the setpoint will be set to the lower or

higher value, respectively, following Eqn. 4.4. In the case of heating, the new setpoint

will be calculated by

Tset,new =

Tset,current + (Tset,upper − Tset,current)×F , if F > 0

Tset,current + (Tset,current − Tset,lower)×F , if F < 0.
(4.5)
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In the meanwhile, the information whether the Nest thermostat is switchable or

not, is defined manually outside of the thermostat. The switchability of the ther-

mostat is certainly considered inside the Nest thermostat, however it is not always

available. For example, if the user moves the setpoint and the HVAC switching is

desired, but it has not passed the deadtime since the last HVAC switching, then

the thermostat indicates on its screen, that the HVAC operation has been delayed

for some amount of time. In other words, the switchability is unavailable, unless

some action (e.g. changing the setpoint) is done. Even worse, this information is not

obtainable through the API. Therefore, in the current study, the time between the

state changes is manually counted, with the deadtime set to five minutes, as in the

simulated thermostat.
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4.4 Integration

Having established that data can be pushed in to or pulled from the Nest thermostat

using the Nest API, the integration of the Nest thermostat to the simulation frame-

work, can now proceed. In this process, the thermostat logic in the load simulation

for one of the house models, is replaced with the physical Nest thermostat. Note that

200 meters (house models) are used in the simulation, and the thermostat of Meter

23 in particular, is substituted with the Nest thermostat. A schematic illustration is

shown in Fig. 4.3, and the sequence of the integration is:

1. An initial temperature of the house model and the initial thermostat status are

sent to the environmental chamber, and to the Nest thermostat, respectively.

Then the initialization is done accordingly (Table. 4.2).

2. The daily occupancy schedule is drawn from the statistical information in the

load generator.

3. The sepoint / deadband, and the occupancy status, are sent to Meter 23, and

is ready to be written in the Nest thermostat (Table.4.3).

4. Meter 23 receives a stochastic switch request (F) from the aggregator, and

calculates the new setpoint / deadband accordingly, then writes the information

on the Nest thermostat (Table. 4.6).

5. The response (HVAC mode / HVAC state) is read from the Nest thermostat,

and sent to the thermal house model of Meter 23, then the space temperature

at the next time step is calculatd.

6. Chamber tracks the temperature of the house model through the PID con-

troller.
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7. Meanwhile, HVAC state of the Nest thermostat and its switchability is reported

to the aggregator (Table. 4.4).

8. The aggregator at the same time, receives the aggregated load, and calculates

its control error. It is also reported with the HVAC information (HVAC state

/ HVAC switchability) from 200 house models (Table. 4.5), then creates and

broadcasts the stochastic switch request (F) to the thermostats of house models

(Table. 4.6).

9. Repeat steps 3 to 8.

To simulate the physical separation of the load generator (200 houses), the aggre-

gator, and the HVAC of Meter 23, each model is installed on individual Raspberry

Pi’s [26] as shown in Fig. 4.4. Communication between models are done via Secure

Copy Protocol (SCP), which supports file transfers between remote hosts on a net-

work [27]. Examples of data transferred are tabulated in Table. 4.2- 4.6. The load

generator and the aggregator are modeled in Fortran scripts, and Meter 23 is written

in a Python script. It is possible to execute a SCP command line inside the Fortran

or Python script, however it requires a password of the remote host, every time it

is executed. In order to handle this problem, an Expect script is executed inside the

Fortran script. Expect is a program to automate interactions with programs that

expose a text terminal interface [28], and it automatically provides a password when

the script is executed. An example is given in List. 4.5. An example of secure copying

files in the Python script using libraries ‘paramiko’ and ‘scp’ is shown in List. 4.6

as well. The outdoor temperature is obtained by the weather API provided by the

Nest, and its usage is shown in List. 4.7. To run the simulation in real-time, the time

trigger implemented by Ayon [26], which is given in List. 4.8, is utilized. The time

trigger independently runs outside the simulation, outputing file ‘timehascome.csv’,

each time the seconds digit of the computer clock changes. Each Raspberry Pi’s

has its own trigger running in the background, and will start its loop when the file
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Meter
Space

temperature
Setpoint R ins A HX T mass

23 23.3929138 21.6705360 2.18746376 310.662842 838285.125

Table 4.2: Randomly generated initial values for Meter 23, is passed to Meter 23
from the load generator, in a file ‘meter23 init.csv’.

Occupancy Setpoint Lower deadband Upper deadband

F 21.2895031 16.0000000 26.0000000

Table 4.3: The house occupancy, setpoint and the deadband are transferred from the
load generator to Meter 23, in a file ‘meter23 occup.csv’.

‘timehascome.csv’ is found. The file, then will be deleted, after being found in each

Raspberry Pi’s.
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Figure 4.3: In the load control framework, the simulated thermostat logic is re-
placed with the physical Nest thermostat. The Nest thermostat receives or sends
data through the Nest API. The model temperature is implemented in a physical
chamber via the PID controller, providing the Nest thermostat an environment to
yield an actual response.
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Figure 4.4: The load generator, the aggregator and the HVAC system of Meter 23,
are installed in individual Raspberry Pi’s. Pi’s communicate by transferring files
via SCP. The figure demonstrates the flow of files in real time. Each component is
triggered every second.
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Meter AC on AC switchability

23 1 0

Table 4.4: HVAC state and HVAC switchability, are transferred from the Nest ther-
mostat of Meter 23 to the aggregator, in a file ‘meter23 status.csv’.

Meter AC on AC switchability

1 0 0
2 1 0
...

...
...

199 0 1
200 0 0

Total power

191265.812

Table 4.5: HVAC state, HVAC switchability of 200 house models (except Meter
23), and the total aggregated load, are transferred from the load generator to the
aggregator, in a file ‘TCL status.csv’. HVAC state and switchability are data reported
from smart thermostats in the model to the aggregator, and the total load is reported
from the substation to the aggregator.

F

0.0286

Table 4.6: Stochastic switch request broadcasted by the aggregator, in a file ‘broad-
cast ctrl.csv’.

52



Chapter 4. Nest Synthesis to Simulation Framework

1 #!/usr/bin/expect

2 spawn scp ./tcl status.csv username@server:target directory

3 set pass "your password"
4 expect {
5 password: {send "$pass\r"; exp continue}
6 }

Listing 4.5: Files can be secure copied inside a Fortran script by executing expect
script.

1 import paramiko
2 import scp
3

4 class SCP:
5 def init (self):
6 self.my ssh=paramiko.SSHClient()
7 self.my ssh.load system host keys()
8 self.my ssh.set missing host key policy(paramiko.AutoAddPolicy

())

9 self.my ssh.connect(’your server’,port=22,username=’your
username’,password=’your password’)

10 self.my scp=scp.SCPClient(self.my ssh.get transport())
11 def SCPFile(self):
12 status=[[23,abs(self.IO),self.switchable]]
13 np.savetxt("meter23 status.csv",status,delimiter=",",fmt=[’%01d

’,’%01d’,’%01d’])

14 self.my scp.put(’meter23 status.csv’,recursive=True,remote path
=’~/aggregator’)

15

16 >>> copy = SCP()

17 >>> copy.SCPFile()

Listing 4.6: Secure copying files in a Python script using the library ‘paramiko’ and
‘scp’.
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1 import requests
2 import json
3

4 class Weather:
5 def init (self):
6 self.url = "https://home.nest.com/api/0.1/weather/forecast/your

ZIP Code"

7 def current temperature(self):
8 initial response = requests.get(self.url)
9 data = initial response.text

10 data = json.loads(data)

11 self.To = data[’now’][’current temperature’]
12 with open(’./Tout.csv’,’w’) as handle :
13 json.dump(self.To,handle)
14

15 >>> w=Weather()
16 >>> w.current temperature()
17 >>> print(w.To)
18 16.1

Listing 4.7: The outdoor temperature based on the ZIP code is obatainable through
the API provided by the Nest.

1 import datetime as dt
2

3 nxttime=0

4 while True:
5 currenttime=dt.datetime.now().strftime(’%H:%M:%S’)

6 if currenttime == nxttime:
7 pass
8 else:
9 open(’timehascome.csv’,’w’)
10 sys.stdout.flush()

11 nxttime=currenttime

Listing 4.8: The time trigger triggers the aggregator, the load generator and Meter
23, every second.
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Results and discussion

The Nest thermostat learns about the HVAC system it is controlling, such as how

fast the space warms and cools, and how efficient the system is [29]. It also learns the

HVAC schedules from intractions with its human users. In the present study, the Nest

thermostat is trained in real-time, by inputing the statistical occupancy schedule and

the setpoint to the thermostat, and also by implementing the house model response

in the chamber over several days. Therefore the Nest thermostat is expected to have

learned the HVAC characteristic of the house model. These characteristics, are also

expected to be reflected in the thermostat responses, that are observed through the

experiments. In this chapter, the Nest thermostat response in various modes, its

response to the aggregated load control DR signal, and analysis and modeling of the

responses observed, are presented.
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5.1 Nest response in various modes

5.1.1 Cool Mode

Fig. 5.1 shows the response of the Nest thermostat in Cool mode, with a setpoint of

24◦C. In Cool mode, it is observed that the Nest thermostat activates cooling, when

the space temperature is at the setpoint or above. Also, the thermostat deactivates

cooling a short time after the temperature goes under the setpoint. Note, for exam-

ple, that at around 4000 seconds, the cooling is found to be still activated while the

Figure 5.1: Nest thermostat response in Cool mode. Cooling is activated when the
space temperature reaches the setpoint. An internally-set lower deadband of the Nest
thermostat, is observed to be 0.5◦C.
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space temperature is measured at 23.5 ◦C, slightly below the setpoint, but is deac-

tivated shortly afterward. While the Nest thermostat could use logic based on an

internal deadband, this does not necessarily correspond to the actual space tempera-

ture deadband implemented in the load control framework. However, a deadband-like

behavior is also observed in the space temperature response. The connection between

the internal Nest deadband and the space temperature deadband is discussed later.

5.1.2 Heat-Cool Mode

Figure 5.2: The Nest thermostat response in Heat-Cool mode. Both cooling and
heating are available in this mode. Cooling is on when the temperature is above the
cooling setpoint, heating is on when the temperature is below the heating setpoint.
The lower deadband is also observed in this mode.
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Figs. 5.2-5.3 show the Nest thermostat response in the Heat-Cool mode. Both cooling

and heating are supported on the Heat-Cool mode, with setpoints of 24◦C and 21◦C

taken at each mode. The Nest thermostat controls the HVAC the same as in the

Cool mode with the involvement of the lower internally set deadband observed. From

Fig. 5.3 at around 9000 seconds, it is found that the cooling is not activated when the

space temperature is 24◦C. Therefore it appears that a higher internally set upper

deadband is used in the Heat-Cool mode. The activation of the heating is observed

in Fig. 5.2, when the temperature is below the heating setpoint.

Figure 5.3: The HVAC load can be forcedly increased or decreased by moving the
setpoint. Cooling is deactivated when the cooling setpoint is moved to a higher
value, at around 1000 seconds, activated when the setpoint moved to a lower value,
at around 6000 seconds.
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5.1.3 Eco Mode

Figure 5.4: Nest thermostat response in Eco mode. Cooling is not always activated
immediately when the space temperature is above the cooling setpoint. No lower
deadband set for the cooling setpoint in the Eco mode. As soon as the space temper-
ature comes under the cooling setpoint, the Nest thermostat turns off the cooling.

The response of the Nest thermostat in Eco mode is shown in Fig. 5.4. In similar

manner to the Heat-Cool mode, the thermostat uses two setpoints for cooling and

heating. The utilization of the setpoint in the control algorithm appears to be almost

the same as in the Heat-Cool mode. However, it is observed that the HVAC is acti-

vated with less strict rules in the Eco mode. In the cooling case, the upper deadband

for the cooling setpoint is detected, however it is found that the lower deadband for

the cooling setpoint is not utilized. As soon as the space temperature reaches the
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cooling setpoint, the Nest thermostat turns off the cooling. The same response is pre-

sumed in the heating mode. The cooling activation at each mode, found throughout

the experiments, is tabulated in Table. 5.1.

Mode Cool Heat-Cool Eco

Temperature

> Tset + 0.5◦C © © ©

Tset + 0.5◦C © 4 4

Tset © 4 ×

Tset − 0.5◦C 4 4 ×

< Tset − 0.5◦C × × ×

Table 5.1: Cooling activation of the Nest thermostat. © : cooling activated, 4 :
cooling sometimes activated and sometimes not, × : cooling deactivated.

5.2 Nest response to the aggregated DR signal

The Nest thermostat state switching driven by adjusting the setpoint, is proved to

be obatainable. In Fig. 5.3, at around 1000 seconds, it is observed that the state is

switched to off from cooling on, as soon as the cooling setpoint is moved from 24◦C

to 27◦C. The HVAC switching to cooling on from off, is also shown at 6000 seconds,

as the cooling setpoint is set to lower value. The former and latter, each leading to

reduction and increase of the HVAC load, respectively.

The Nest thermostat responding to the aggregated DR control signal, following

Eqn’s. 4.4-4.5, is shown in Fig. 5.5. The heating setpoint is moved to a higher value
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at around 11 hours, resulting in the HVAC switching from off to on, as well as the

increase in the aggregated load. However, a slight delay in the switching from the

setpoint change, is observed. This is possibly due to the system deadtime, which is

arbitrarily set to five minutes, indicating that the HVAC system has the deadtime

longer than five minutes.

Meanwhile, Fig. 5.6 shows the performance of the aggregated load control, that

is happening simultaneously. It is shown that the control error is positive when the

switching in the Nest thermostat occurs (11 hours), meaning that the increase in the

aggregated load is desired. Therefore, the Nest response to the DR signal, is verified

to be appropriate. Fig. 5.7 illustrates the HVAC switching of a random Meter 77 of

the community, also happened at the same time. The switching also has occured in

a way to increase the total load, responding to the positive control error. However, it

is shown that the control error has been obviously positive, from 9 hours. Also, the

HVAC of Meter 77 has been responding to it from 9 hours. Therefore, it is reasonable

to question about why the HVAC switching had not happened earlier in Meter 23.

This is possibly due to the probabilistic property of the control process, i.e., switching

does not occur, if I > F . Also, the API rate limit may have caused this phenomenon.

The rate of making request, is generally limited by the API providers, in order to

protect the system. For instance, too many switching may harm the compressor, even

if it is protected by the internal algorithm, since the user can possibly forcingly shut

down the whole system. Therefore, in the present study, the request is made every

minute, whereas the simulated thermostats respond to the DR siganl every second.
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Figure 5.5: The heating setpoint is moved to a higher value, responding to a prob-
abilistic control signal. A slight delay in switching is detected, possibly due to the
HVAC system deadtime.
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Figure 5.6: When the switching of the Nest thermostat has occured at around 11
hours, the control error is positive.

Figure 5.7: HVAC switching of a random Meter 77. The switching has occured in a
way to increase the load, as it is desired at the substation.
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Figure 5.8: A disagreement between the temperature measured by the Nest thermo-
stat, and thermocouples is observed, due to the heat capacity the Nest thermostat
possesses.

5.3 Nest thermostat response analysis

Before the Nest thermostat can be used for implementing DR schemes, it is necessary

to fully understand its dynamic response to temperature changes. The experimental

apparatus of this study allows such a measurement, since the response of the thermo-

couples used in the environmental chamber is essentially instantaneous, and accurate,

due to careful calibration of the thermocouples. Fig. 5.8 shows temperatures as in-

dicated by the thermocouples, and by the Nest thermostat inside the environmental

chamber. A discrepancy is observed. For example, when the chamber temperature
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reaches the upper deadband limit and starts decreasing, the Nest thermostat con-

tinues to increase. Also, the Nest thermostat measures the temperature with 0.5◦C

resolution, while thermocouples have better than 0.01◦C of resolution. Moreover,

since the rate of data transfer through the Nest API is limited, the Nest thermostat

temperature and its response are updated in one-minute frequency. While all these

factors contribute to the discrepancy observed, the principal mechanism responsible

for the behavior observed, is likely to be the effective heat capacity embedded in

the thermostat, and its temperture measurement apparatus, whose detailed imple-

mentation is not well-documented. It is hypothesized that there is a heat transfer

process between the air surrounding the thermostat and the Nest thermostat tem-

perature measurement system, which can be modeled as a convective heat transfer

to a thermal mass. This behavior can be modeled by

Mn
dTn(t)

dt
= Kn[Ts(t)− Tn(t)], (5.1)

where Mn is the effective heat capacity of the Nest thermostat, Tn(t) is the modeled

Nest Temperature, and Kn is a constant that models the convective heat exchange

between the conditioned space and the Nest thermostat temperature sensors. Then

the control logic mimicking the logic observed in the real Nest thermostat, can be

modeled. The control logic in Cool mode in particular, could be described by

Λ =


0, if Tn(t) < Tset − 0.5◦C

1, if Tn(t) ≥ Tset

keeps previous state, otherwise,

(5.2)

replacing Eqn.2.5. The response of the Nest thermostat modeled from Eqn.5.1, re-

flecting its temperature resolution and the API rate limit, is shown in Fig. 5.9. The
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Figure 5.9: An actual and a modeled version of the Nest thermostat control, in the
cooling mode. The Nest thermostat is modeled considering the heat transfer between
the chamber and the Nest thermostat, the temperature measurement resolution, and
the API rate limit.

suggested model of the Nest shows reasonably equivalent response to the actual Nest

thermostat response.
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5.4 Estimating space temperature from the Nest

thermostat temperature

As found in the previous section, due to the effective heat capacity that the Nest ther-

mostat possesses, the Nest thermostat conditions space based on somewhat wrong

temperature information. Assuming that there are not additional temperature sen-

sors other than the Nest thermostat, it is desired to estimate the actual space tem-

perature based on the thermostat measurement. The actual space temperature Ts(t),

can be calculated from Eqn. 5.1. However, since Tn(t) is non-differentiable, it needs

to be fitted into a differentiable continuous curve. Then Eqn. 5.1 can be modified to

Mn
dTn,fit(t)

dt
= Kn[Ts,est(t)− Tn,fit(t)], (5.3)

where Tn,fit(t) is the curve fitted Nest temperature, and Ts,est(t) is the estimated

space temperature. The Nest thermostat temperature is fitted into a sinusoidal curve,

through the least squres method, using Python library ‘scipy.optimize leastsquares’.

Here, dTn,fit(t)/dt is replaced with Dn,fit(t) that is

Dn,fit(t) = αṪn,fit(t− 1) + (1− α)Ṫn,fit(t) (5.4)

where 0 ≤ α ≤ 1 that gives a weight on the derivative of the fitted curve at the

previous time step, in order to alleviate the effect of the sharp change in dTn,fit(t)/dt.

An example of the estimation is shown in Fig. 5.10. In the example, the Nest tem-

perature curve is fitted with 3000 previous points and updated every 1500 seconds,

with α = 0.99. The estimated space temperature follows the phase of the space

temperature curve, however with the considerable amount of errors.
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Figure 5.10: Estimation of the actual space temperature is desried for the future use,
pursuing the user comfort. An estimation, using the current and previous Nest tem-
peratureacture history, can be done by fitting the Nest temperature measurements
to a differentiable curve.
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Conclusion

6.1 Conclusion

The purpose of the present work was to integrate an actual response of the Nest ther-

mostat, to the aggregated load control simulation framework previously developed

by Mammoli et al. [14]. The physical chamber, where its temperature is regulated

through the PID controller, is implemented, providing the Nest thermostat with the

thermal responses of the house model. With the help of the Nest API, the Nest

thermostat could easily report its status to the outside world, and receive external

signals such as DR signals from the aggregator. The reception of the external signal

in the Nest thermostat does not occur internally, since the access to the internal

logic of the thermostat is not granted to an individual. However, indirect response

to the DR signal is available. The setpoint is modified responding to the stochas-

tic switch request from the aggregator, then the Nest thermostat responded to the

modified setpoint. As a result, the Nest thermostat is successfully integrated to the

framework, and proved to be able to participate in the aggregated load control DR

program, that is previously developed. The ultimate goal of the present study is to
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fully understand the interaction between the physical response of the Nest thermo-

stat and its environment. The goal of the present work is achieved, resulting in more

ways to add realism to the simulation that will be discussed in the following section.

6.2 Future Work

While it is proved that the Nest thermostat can be integrated to the aggregated

load control simulation framework, and that it is able to respond to the DR control

siganl, possible future work, that is expected to bring improvements to the simula-

tion framework, is discovered. Firstly, the chamber temperature control system was

capable of implementing the space temperature ranging from 15 to 45◦C, due to the

physical limitation of heat exchangers, fluid running through heat exchangers, and

fans selected. Therefore, the setpoints beyond that range were intentionally avoided.

Establishing the more powerful chamber temperature implementing system, that will

provide a wider range of the temperature in the chamber, will give opportunities to

test the simulation in various conditions. Secondly, the existing thermostat logic in

the load control framework, can be replaced with the modeled Nest thermostat dis-

cussed in Section 5.3, in order to simulate the DR program performance, derived

by multiple commercially available smart thermostats, which is expected to better

reflect the reality. Thirdly, an improvement to the space temperature estimation sug-

gested in Chapter 5, is desired. Considering that the space temperature conditioning

is solely dependent on the temperature measured from the Nest thermostat, the dis-

crepency between the thermostat measurement and the actual temperature can lead

to user discomfort. An accurate estimation of the space temperature, is expected to

prevent the predicted user inconvenience. The result presented in the current study,

is not yet perfect, since it is not very flexible with different data, i.e., a lot of manual

adjustment of parameters is required when curve fitting. Application of more pow-
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erful curve fitting method, or predicting through machine learning, are anticipated

to be possible solutions for the problem. Lastly, getting a higher level of access to

the Nest thermostat system, is desired. For instance, knowing the system deadtime,

will not cause the delay in HVAC swithing as discussed in Section. 5.2. Also, having

more direct access to the Nest thermostat, not through the API, will enable a higher

communication frequency, therefore leading to a sophisticated DR performance.
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A Model Codes running in Real-time 4
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Appendix A

Model codes running in Real-time

Models of the load generator, the aggregator and Meter 23 are provided in the fol-

lowing github repository. Data files related are also included.

https://github.com/chatchi923/master_thesis
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