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Abstract
Converting energy from the currents found within tidal channels, open ocean, rivers,

and canals is a promising yet untapped source of renewable energy. In order to permit

current energy converters for installation in the environment, the CECs must be

shown to non-negatively impact the environment. While developing these model

increased utility may be gained if researchers may optimize mechanical power while

constraining environmental effects. Surrogate models have garnered interest as opti-

mization tools because they maximize the utility of expensive information by building

predictive models in place of computational or experimentally expensive model runs.

Marine hydrokinetic current energy converters require large-domain simulations to

estimate array efficiencies and environmental impacts. Meso-scale models typically

represent turbines as actuator discs that act as momentum sinks and sources of

turbulence. An OpenFOAM model was developed where actuator-disc k-ε turbulence

was characterized using an approach developed for flows through vegetative canopies.
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Turbine-wake data from laboratory flume experiments collected at two influent turbu-

lence intensities were used to calibrate parameters in the turbulence-source terms in

the k-ε equations. Parameter influences on longitudinal wake profiles were estimated

using Gaussian-process regression with subsequent optimization achieving results

within 3% of those obtained using the full model representation, but for as low as

27% of the computational cost (far fewer model runs). This framework facilitates

more efficient parameterization of the turbulence-source equations using turbine-wake

data.
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Chapter 1

Introduction

1.1 Overview

Electricity generated by marine hydrokinetic (MHK) devices holds promise as

a renewable, domestic energy source that can help meet the US National demand;

offsetting the need for traditional power sources such as coal and gas that can have

detrimental long-term impacts on global climate and support foreign dependencies that

put the US at risk. However, research is needed to make MHK energy cost competitive

as well as to understand its potential environmental effects. As such, potential

industry investors need to reduce costs and time associated with meeting regulatory

requirements through an improved understanding of the potential environmental

impacts associated with deploying arrays of MHK devices. The work described here is

part of a larger project which focuses on developing and applying numerical modeling

tools to assess potential changes to the environment caused by the operation of MHK

arrays. Application of the tool will support optimal placement of MHK devices by

determining optimal array spacing that maximizes array power performance and

minimizes potential environmental effects.

Specifically, for the MHK industry to succeed, it is imperative to balance MHK

power generation with ecosystem and anthropogenic considerations. This research
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Chapter 1. Introduction

at large aims to develop computation tools allowing investigators to understand the

interrelationship between the number, size, efficiency, and configuration of MHK

devices and any subsequent effects this may have on the deployment environment.

Research at Sandia National Laboratories (SNL) and elsewhere [65] has shown that

it is unlikely that a small number of devices will create environmental concern due to

converting only a small fraction of the available power from a large resource. However,

commercial-scale deployments must be analyzed to ensure environmental tipping

points are not exceeded. To characterize these potential effects, tools that allow the

virtual design of array layouts for optimization are needed. The tools must simulate

flows through and around MHK arrays, as well as MHK-specific noise generation

and propagation, and then determine the environmental response. Understanding

MHK-driven changes to the physical environment facilitate evaluation of how these

changes may affect the local ecosystem and aquatic life.

Current Energy Converters (CECs) are a subset of MHK devices capable of

converting energy found within tidal channels, open ocean, rivers, and canals. De-

velopment of numerical tools for CECs can be hastened by augmenting currently

developed open-source oceanic and estuary models, such as Delft-3D (D3D). D3D

is a software suite that allows users to calculate three-dimensional hydrodynamics,

sediment transport, morphology, and water quality for fluvial, estuary and coastal

environments [11]. These capabilities made D3D a natural starting point for the im-

plementation of a CEC module. D3D is capable of solving non-steady hydrodynamic

flow and transport equations. SNL Water Power Technologies group then needed to

only implement the CEC module into open source FORTRAN source code.

Research at Sandia led to the publication of SNL-Delft3D-CEC which adds a

custom CEC module into Delft3D. In addition to the standard tunable parameters

such as coefficient of thrust and power, tunable parameters were added to the k-ε

turbulence model. While ideal for mesoscale modeling Delft3D is not the best tool for

modeling of flume size experimental setups. In order to most accurately represent the

2



Chapter 1. Introduction

flume and make use of available high-performance computing clusters, an OpenFOAM

model was created in place of Delft3D for the work herein. As Delft3D solves the

nearly identical equations for its environmental modeling the parameters will, in

theory, coincide with those found by a parameter tuning in OpenFOAM.
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Chapter 2

Problem Background

The magnitude of natural flow disruption due to CEC devices is dependent on local

site conditions and device/array characteristics and is an issue that must be addressed

and resolved prior to obtaining the necessary permits to deploy and operate in US

waters. Unfortunately, little is known about the significance of physical effects of

individual or multiple CEC devices or of the cumulative impacts of these devices on

aquatic ecosystems over days, years, or decades of operation. Furthermore, tools and

assessment techniques to evaluate CEC-derived effects on the physical environment

are in the nascent stage of development and application. This lack of knowledge

affects the ability of developers and other stakeholders to accurately assess CEC-

driven environmental effects and hence affects regulatory-agency actions, opinions

of stakeholder groups, and commitments of energy-project developers and investors.

Therefore, the ultimate goal of this project seeks is to develop, validate, and enable

industry use of ’CEC friendly’ hydrodynamic modeling tools to ensure a balance

between CEC array power performance and environmental effects.

CECs produce power by extracting kinetic energy from fluid flow and subsequently

converting the extracted energy into electricity. CECs have advantages when compared

to similar renewables for their ability to generate greater power with smaller turbines,

and being visually/ audibly less intrusive to humans [15]. Unique challenges to CEC

4



Chapter 2. Problem Background

However, a marine energy converter or turbine can only - Variable foil systems such as the device that has been
harness a fraction of this power due to losses and (1) is tested in Yell Sound in Shetland, which lies to the
modified as follows North of Scotland and Orkney [27].

1 In the following is presented an overview of some of the
P = 2pCPAv (2) major tidal turbine technologies and concepts.

C, is known as the power coefficient and is essentially the A. HorizontalAxis Turbines
percentage of power that can be extracted from the fluid stream 1) The Marine Current Turbine (MCT) Projects (UK) [24].
and takes into account losses due to Betz law and those Figure 7 shows hybrid illustrations of the Seaflow turbine. It has
assigned to the internal mechanisms within the converter or a single 11L m diameter rotor, with full span pitch control, and is
turbine. For wind generators, Cp, has typical values in the range installed in a mean depth of seawater of25 m approxi-mately 1L 1
0.25-0.3. The upper limit is for highly efficient machines with km off the nearest landfall at the Foreland Point lighthouse
low mechanical losses. For marine turbines, Cisetmedo --,, is estimated to below ExB oor in North Devon, UK. It has exceeded its 300 kW
be in the range 0.35-0.5 [21]. rated power under favorable flow conditions with a 15 rpm rotor

Compared to the largest wind turbines operating today, the speed is not gricoected butiasantexpeimenta te r

power otputa well s the ize of classcal tial turine.ar speed. It is not grid-connected but as an experimnental test-rigpower output as well as the size of a classical tidal turbine are dumrps its power into resistance heaters capable of absorbing the
extremely promising. For illustration, Fig. 5 shows a tidal maximsit power. A key feature is that it is nounted on a steel
turbine against an offshore wind turbine of the same power tubular pile,2.1m in diketer, set i na hole drilled in the seabed
rating. Furthermore, with constant or highly predictable marine and tall enough to always project above the surface of the sea.
currents a tidal turbine could not only rival the largest wind The entire rotor and power system can be physically raised up
tur tines i beig more managealp e in sze but also m the pile above the surface to facilitate maintenance or repairs
generating highly predictable power [20], [22]. from a boat, a vital requirement as the use of divers or any other

III. TURBINE TECHNOLOGIES AND CONCEPTS foirm of underwater intervention is virtually impossible in
locations with such strong cu rents.

The harnessing of the energy in a tidal flow requires the MCT second project was Seagen. The Seagen turbine has
conversion of kinetic energy in a moving fluid, in this case its rotors mounted at the outer ends of a pair of streamlined
water, into the motion of a mechanical system, which can then wing-like arms projecting either side of the supporting pile
drive a generator. It is not too surprising, therefore, that many (Fig. 8a). Each rotor drives a power-train consisting of a
developers propose using technology that mirrors that which gearbox and generator each rated at around 500 kW. The total
has been successfully utilized to harness the wind, which is also rated power is approxi-mately 1 MW. Essentially the Seagen
a moving fluid. Therefore, most devices can be characterized as turbine produces three times the power of Seaflow. The Seagen
belonging to three fundamental types [23]. These are (Fig. 6): project will be followed by an array of similar systems (farm)

- Horizontal axis systems that has been installed in the to be installed in an open sea location. Three turbines will be
Bristol Channel between England and Wales [24], or added to provide a total capacity up to 5 MW (Fig. 8b).
in Hammerfest Str0m, in Norway [25].

- Vertical axis systems such as the device that was
tested in the Strait of Messina between Sicily and the l.m
Italian mainland [26].

Fig. 7. Hybrid illustration of the Seaflow turbine [© MCT].

Fig. 5. Tidal turbine against an offshore wind turbine [© MCT].

Horizontal axis Vertical axis Linear lift based device
turbine turbine (a) Seagen turbine. (b) Seagen farm.

Fig. 6. Tidal turbine fundamental types. Fig. 8. The Seagen system illustration [©) MCT].

1409

Figure 2.1: Basic turbine types [15]

power production include higher installation cost and maintenance cost associated

with the submerged marine turbines, corrosion due to salinity, higher axial stresses,

and possibly altering the marine habitat [3, 44].

A number of competing CEC device types exist with basic turbine design types

mirroring that of the wind energy industry. The two most common device types are

horizontal axis water turbines (HAWTs), and vertical axis water turbines (VAWTs)

displayed in Figure 2.1. VAWTs are advantageous for design simplicity, generator

coupling, lower noise emissions and performance in a skewed flow. HAWTs are

advantageous for the knowledge-base, performance, and control schemes [29]. The

research herein focused on HAWT-type devices.

HAWT performance is a function of the deployment site, device properties, and

environmental considerations. As displayed in Figure 2.2, a HAWT is installed

in a marine environment with current flow normal to the blades. The flow profile

approaching the turbine is a function of the wave amplitude and phase, wind direction,

velocity profile, and turbulence. These environmental properties determine the

numerical quantities of interest (QoI), velocity and turbulence intensity, impinging

the CEC rotor.

The act of removing kinetic energy from the flow with a CEC results in the fluid

separating from the blades, spinning off and creating a region of rotational flow wider

than projected area created by the CEC blades [30]. This separated flow region

5



Chapter 2. Problem Background

Figure 2.2: Environmental influences and turbine wake [4]

is known as the wake, and accurate computational modeling of the turbine wake

is the crux to predicting both turbine-environment interaction and turbine-array

interaction. It has been shown that the influent velocity is of secondary importance

to turbulent intensity in terms of wake modeling, [38]. Accurate wake prediction

pertains to accurate tidal farm power production and array impact on the aquatic

environment.

Developing simulation tools for wave and tidal devices has been identified as

a top priority for bringing marine renewable energy to market [5, 61]. Data and

computational needs have motivated laboratory-scale experiments, which help reduce

capital expenditures associated with sea deployments [33, 38, 39, 40, 42, 59]. Data

from laboratory flume experiments have been used to calibrate numerical models

including blade and blade-design models [36, 32], electrical-performance models [16],

blade element method (BEM) models [34], actuator-disc models [21], and turbulence

models [23]. However Gaurier et al. [19] questions experimental standards and design

while Neary et al. [41] raise concerns about the use of common measurement tools in

laboratory and field experiments both of which complicate comparisons between data

sets and model calibration efforts. Here, one experimental data set collected at two

influent turbulent intensities (I∞) is used for model calibration [38].

6



Chapter 2. Problem Background

2.1 Problem

The MHK industry is in need of a modeling tool capable of solving both near

and far field effects in relatively short simulation times. Furthermore, this model

needs to be able to simulate environmental factors, such as waves, wind, solute, and

sediment transport. As MHK arrays may occupy tens to hundreds of square kilometers,

supercomputers are required for high-spatial-resolution, spinning-turbine simulations

[9, 10, 26]. However, reduced-order models (e. g., representing turbines by actuator

discs and solving for flow fields using the shallow-water equations) are typically

implemented to facilitate timely decision making. Turbines can be analytically and

numerically approximated with actuator discs, which although they do not rotate,

they remove momentum from the system by converting it into turbulent kinetic

energy [6].

Sandia National Laboratories (SNL) implemented a turbine module with two

components into an existing open source hydrodynamic software Delft3D, enabling

CEC modeling. The first component implements HAWTs or VAWTs using an actuator

disc model. Borrowing upon research from the wind-energy community [52, 51], k-ε

turbulence-source terms originally developed for wind transport through vegetative

canopies [27, 46] have been incorporated into the environmental flow codes SNL-

Delft3D-CEC [58] and SNL-EFDC [23]. This second component increases turbine

wake control by providing the user a parameterized turbulence model; adjusting

turbulence production or dissipation at the turbine location. The implementation of

this module is known as SNL-Delft3D-CEC [58]. However, these turbulence source

parameters require tuning to experimental data.

2.2 Research Question

This research seeks to compare two methods of turbulence parameter tuning. The

first method is adapted from the turbulence source tuning performed by James et.

7



Chapter 2. Problem Background

al. [23]. This method wraps a model-independent optimization software around the

developed computational fluid dynamics (CFD) model. While effective this procedure

can be quite expensive in terms of computation and time. There the second method

under consideration was a machine learning technique where the CFD model was

pre-sampled and a meta-model was created. For a given set of turbulence source

parameters, the meta-model was capable of predicting wake behavior behind the

turbine at the experimentally measured values, and only at those values, saving

computation time from solving the entire flume domain as performed by CFD. The

less computationally expensive meta-model was capable of being optimized in an

identical manner by the model independent optimization software providing turbulence

parameter values that minimized predicted and experimental wake error.

8



Chapter 3

Governing Theory & Equations

Computational Fluid Dynamics (CFD) can be thought of as a branch between fluid

experiments and fluid theory [2]. CFD provides numerical approximations to partial

differential equations using discretized algebraic equations [20]. The qualitative fluid

flow solution to the conservation equations is determined by the domain geometry,

fluid properties, initial conditions (IC) and boundary conditions (BC) [30]. CFD

results must be scrutinized to ensure that the results provided can be trusted. Sources

of error in CFD may be due to discretization, data input, IC, BC, or modeling

assumptions. This section will cover the Reynolds Averaged Navier-Stokes (RANS),

k-ε, and momentum theory equations used in this research to model a hydro-kinetic

turbine flume experiment using CFD.

3.1 Reynolds Average Navier-Stokes

The modeling of a fluid was started here by considering the continuity equation

which expresses conservation of mass in differential form using index notation:

∂tρ+ ∂iρui = 0 (3.1)

Here ∂t is the operator ∂/∂t, ρ is the fluid density, ∂i is the partial derivative operator

9



Chapter 3. Governing Theory & Equations

in each spatial dimension, and ui is the fluid velocity. Equation 3.1 uses Einstein or

index notation [30] where like index sum such that ∂iui is the analog to the divergence

operator ∇ · u in vector notation. Assuming that a fluid particle has a zero rate of

density change the fluid can be considered incompressible and Equation 3.1 becomes:

∂iui = 0 (3.2)

With the continuity equation in hand, one may then turn to Newton’s second

law for the conservation of momentum which states that a bodies’ net force must be

equal to its mass multiplied by its acceleration. Here considering an infinitesimal

element on a per unit volume basis the sum of body forces plus surface forces are

equal to mass multiplied by acceleration

ρgi + ∂jτij = ρ
Dui
Dt

(3.3)

where gi is gravity, τij is the strain rate tensor, and D/Dt in the material deriva-

tive. Modeling fluid friction requires a constitutive equation of stress-deformation.

Considering an incompressible isotropic fluid the stress tensor can be described as:

τij = −pδij + 2µSij (3.4)

Where τ is the strain rate tensor, p is pressure, δij is the Kronecker delta, µ is

the viscosity, and Sij is the strain rate tensor defined as:

Sij =
1

2
(∂jui + ∂iuj) (3.5)

Now substituting the constitutive equation into Cauchy’s equation of motion

(Equation 3.6) and applying the fact that velocity is a solenodial field ( ∂ui/∂xi = 0

10



Chapter 3. Governing Theory & Equations

), we then obtain the Navier-Stokes Equation (Equation 3.7)

ρ
Duj
Dt

= ρgj +
∂

∂xi
(τij) (3.6)

ρ
Duj
Dt

= ρgj −
∂p

∂xi
+ µ

∂2uj
∂xi∂xi

(3.7)

The Navier-Stokes Equation, when combined with the conservation of mass

equation, provides a complete mathematical description for the flow of incompressible

Newtonian Fluids. Unfortunately, the solution of the Navier-Stokes equation becomes

intractable when considering turbulence due to the complexity of the Navier-Stokes

second order, nonlinear, partial differential equations mixed with the length scales

and time scales of turbulent eddies. Fortunately, this level of turbulent detail is rarely

needed and the Navier-Stokes equation may be solved through a process of Reynold’s

decomposition.

This averaging has created a new term uiuj which will require a new equation or

set of equations to describe. The equations which describe this term are known as

turbulence closure models.

3.2 k-ε Turbulence model

At high Reynolds number Navier-Stokes prediction of turbulent flows are compu-

tationally expensive. Since the average quantities of the mean flow equations are what

is typically of interest one may average the Navier-Stokes equation. This is achieved

by Reynold’s decomposition (Equation 3.9) which considers a mean and fluctuating

component of each dependent field variable. After performing this decomposition

and plugging it into the continuity and NS equations, the resulting equations may be

averaged to consider only the mean quantities.

11



Chapter 3. Governing Theory & Equations

ũi = Ui + ui, (3.8)

p̃ = P + p, (3.9)

∂ui
∂xi

= 0 (3.10)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −gδi3 −
1

ρ0

∂P

∂xj
+

∂

∂xj

(
ν
∂Ui
∂Uj
− uiuj

)
(3.11)

which yields Equation 3.9, where capital letters are the averaged quantities and the

primed variables are the fluctuating component.

Reynolds decomposition has now doubled the number of dependent-field variables

and introduces a closure problem. To close the RANS equations for the turbulent

fluxes of momentum a common approach is to use the Boussinesq approximation.

This approximation is often applied to oceanic flows. The assumptions underlying

this approximation are [30]:

1. Constant density, except where ρ is multiplied by g

2. Constant dynamic viscosity (µ), thermal conductivity(κ), and specific heat (c)

3. Mach number is low

These approximations make a number of assumptions and introduce a concept know as

the turbulent viscosity hypothesis, which is equivalent to Fick’s law and assumes the

gradient based transfer of turbulent diffusion with eddy viscosity (νt) used analogously

to molecular viscosity.

u′iu
′
j = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δijk (3.12)

In equation 3.12, k is known as the turbulent kinetic energy (tke) and the

introduction of this variable requires a transport model. The most common transport

12



Chapter 3. Governing Theory & Equations

model is a system order two turbulence model known as k − ε. This model solves

for the transport of the turbulent kinetic energy and the dissipation rate of energy

(ε). The length scale is determined by lT = k(3/2)/ε, velocity scale by uT = ε1/2, and

turbulent viscosity by νT = Cµk
2/ε. The transport equations of the k − ε model are

given by:

Dk

Dt
=

∂

∂xj

(
νT
σk

∂k

∂xj

)
− ε− uiuj

∂Ui
∂xj

, (3.13)

Dε

Dt
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
− Cε1

(
uiuj

∂Ui
∂xj

)
ε

k
− Cε2

ε2

k
(3.14)

Default model constants were developed to conform to experimentally measured

velocity profiles, fluctuation profiles, and energy budgets for a variety of simple

turbulent flows. These constants are given by:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1, σε = 1.3

3.3 Momentum Theory

Momentum theory was first developed for general explanations of propeller action

independently by both Rankine [49] and Froude [18]. The production of thrust

is explained only by the momentum changes in the fluid and says nothing about

the object which caused it. This theory was idealized as an actuator disc which

caused an instantaneous pressure change for the fluid passing through it. Momentum

theory assumes that the disk imparts a uniform acceleration to the fluid, the flow

is frictionless, and that there is an unlimited inflow of water. As the scale of the

modeled system is large the time-step associated with the simulation will be large

in comparison to the angular speed of the turbine blades [28]. Therefore a useful

assumption can be made by treating the turbine’s kinetic energy removal as a force

13



Chapter 3. Governing Theory & Equations

created by a porous disc. The study of the gross flow characteristics has been common

practice for representing wind turbines [48]. Momentum theory assumes the fluid is

ideal, steady, and incompressible. The flow is uniform through the disc and in the

wake, and the disc does not impart any rotational flow. This momentum extraction

is given by Equation 3.15:

Smom = −1

2
CxU

2
d , (3.15)

where Smom represents a source in the momentum equation, Cx is a function coefficient

defined below, and Ud is velocity at the disc. Equation (3.15) has been modified to

depend Ud. Typical momentum theory depends on U∞ but the presence of the device

alters the local flow field. For turbine arrays (as the number of devices increases)

U∞ is not known for turbines in the center of the array so the device-specific thrust

coefficient, Ct (–) must be amended such that velocity at the disc may be used [56]:

Cd = 2
1−√1− Ct

1 +
√

1− Ct

, (3.16)

Cx = ρAdCd, (3.17)

where Ad [m2] is the flow-facing area of the actuator disc and ρ [kg/(m3] is the water

density.
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Framework Development

4.1 Flume Experiment

Experimental data collected by Mycek et al. [38] at the IFREMER flume in France

was utilized to tune the actuator disc model. The INFREMER flume was 18m long,

4m wide, by 2m deep as shown in Figure 4.1. The three-bladed horizontal-axis turbine

used in this experiment had a diameter of 0.7m (dt) which created a blockage ratio

of 4.81%. The quantities of interest were focused on wake recovery which included

measurements of velocity (U) and turbulence intensity (I) collected at 10 locations

behind the turbine. These centerline points as measured by normalized distance

behind the turbine (x∗ = x/dt) were at x∗ = 1.2, 2, 3, 4, 5, 6, 7, 8, 9, 10. Measurements

were taken for turbulent influent conditions of I3% and I15% both at U∞ = 0.8 m/s.

A schematic of the experimental setup is shown in Figure 4.2. Mycek measured the

QoIs at 26 locations on either side of each centerline point, however that data was

not used here as it is known that 1) tuning to centerline data provides a good fit for

lateral data and 2) the focus of this research was to determine if a surrogate model

could sufficiently represent the OpenFOAM simulation. Moreover, the purpose of

this was not to determine the global minima.
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Figure 1: IFREMER’s Boulogne-sur-Mer flume tank description.
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Figure 2: Schematic side view of the experimental setup. The origin O(0, 0, 0) is chosen at the rotor centre.

where ū is the time average of u, defined by:

ū(x) =
1

T

∫ T

0

u(x, t) dt, (4)

where [0;T ] is the averaging period. Thus, ū represents the steady part of the velocity, while u′

represents its fluctuating part. The components Rij of the Reynolds stress tensor R are defined as
follows:

Rij = u′iu
′
j = (ui − ūi)(uj − ūj) i, j = 1, . . . , 3. (5)

5

Figure 4.1: INFERMER Experimental Flume Tank [38]

4.2 OpenFOAM Model Development

The IFREMER flume tank used in the Mycek experiment was modeled in the

research using open-source OpenFOAM v5.0. The CFD model here used the In-

terFOAM solver which can model two-phase flow using the volume of fluid (VOF)

method. Two-phase flow was chosen here such that a free surface could be represented

and future research could best match environmental codes which model free surfaces

using the shallow water equations [62]. The InteFOAM solver was used with RANS

and the k-ε turbulence model [31]. Only half of the IFREMER flume tank working

section was modeled utilizing the longitudinal symmetry plane for computational

efficiency gains as shown in Figure 4.4. This computational domain was, therefore, a

cuboid of dimensions 18m long × 2m wide × 2.5m deep. The extra half a meter in

the depth direction was used to model air on top of the flume as shown in Figure 4.4.

As the symmetry plane ran down the longitudinal axis of the flume it bisected the
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where ū is the time average of u, defined by:

ū(x) =
1

T

∫ T

0

u(x, t) dt, (4)

where [0;T ] is the averaging period. Thus, ū represents the steady part of the velocity, while u′

represents its fluctuating part. The components Rij of the Reynolds stress tensor R are defined as
follows:

Rij = u′iu
′
j = (ui − ūi)(uj − ūj) i, j = 1, . . . , 3. (5)

5

Figure 4.2: Experimental Representation [38]

0.1m thick actuator disc located x = 6 m from the inlet.

The cuboid domain was set up with six specific boundaries. In OpenFOAM

boundaries are typically split up into a set of patches which may include one or more

enclosed areas of the boundary surface. The inlet was broken up into two patches

called In and aboveIn. This allowed the model to send in water into one patch and

air into the other. Similarly the outlet was divided into Out and aboveOut. The

top of the domain was set as a patch named atmosphere. The floor of the flume,

upper and lower symmetry plane and backside of the flume were set as walls. Setting

the symmetry plane type patch on the chosen symmetry-plane showed a nominal

difference from the wall modeling which will be described.

The boundary values for the native variables are organized in Table 4.1. The

variable νt is calculated for all boundaries by νt = C · k2/ε. The boundary values of

the sides are set as a slip for all values except α which is set as zero gradient. The

17



Chapter 4. Framework Development

fluid is driven down the flume by a 0.8 m/s velocity at the inlet and zero pressure at

the outlet. The outlet velocity condition applies an inletOutlet condition which is a

variable boundary condition. If the fluid is going out of the domain the boundary is

a zero gradient. However, if flow reverses into the domain it will enter with a velocity

of 0 m/s. At the inlet, a zero gradient is continuously applied for the pressure value.
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Figure 4.3: Isometric view of model domain

The boundary value for α is specified as a fixed value of 1 (water) at the In and

0 (air) for the aboveIn. At the exit of the flume, an inletOutlet condition is applied

such that if flow reverses back into the domain then only water comes in from zero to

two meters and air comes in from 2 meters to 2.5 meters. The boundary condition

allows the water level to vary at the exit.

Inlet flow was specified uniformly as U∞ = 0.8 m/s. The influent turbulence

values were specified as for k and ε as k = 3/2 (I∞U∞)2 and ε = cµ ∗ k3/2/dt. At
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Table 4.1: Boundary condition applied for each variable and patch

Variable In/ AboveIn Out/ AboveOut Atmosphere

α fixedValue 1/ 0 inletOutlet In 1/ 0 inletOutlet In 0
ε fixedValue zeroGradient zeroGradient
k fixedValue zeroGradient zeroGradient

P -ρgh zeroGradient fixedValue 0 zeroGradient
U fixedValue 0.8 inletOutlet In 0 zeroGradient

the outlet, the pressure was maintained 2 m above the flume floor with 0.5 m of air

above the water. As vertical velocity profiles were not measured and boundary-layer

theory for flow over a flat plate suggests that the boundary layer was only ∼ 0.1 m

tall, free-slip conditions were applied along the flume floor and walls. The elevation of

the free surface was internally calculated by the VOF technique but was constrained

by the specified-pressure outlet boundary condition. The OpenFOAM model was run

using mixed-order solution techniques including 1st order for k and ε (upwind) and

2nd order for U divergence (linear upwind). The observed orders of convergence for U

and k were to be 2.08 and 1.94 respectively for the I∞ = 3% case at x∗ = 5.
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4.3 OpenFOAM Grid Study

The focus of this work was to determine if the surrogate model may be utilized

for optimization in place of the full simulation. Thereby a consistent trend shown

by the quantities of interest will suffice for a fair comparison between the simulation
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and surrogate model. However, a grid convergence study was performed to quantify

the solution order of convergence to provide a magnitude of discretization errors and

provide confidence in the simulated results. One popular technique is Richardson

Extrapolation [53, 54]. Here a sixth ordered extrapolation is taken using three uniform

grid refinements. A discrete solution f is assumed to have a series representation in

the grid spacing h and multiplied by a continuous function g which is independent of

discretization. The extrapolated solution here is given by Equations 4.1, and 4.2:

fextrap = f2 + (f2 − f3) ·
[

1

r

]p−1
(4.1)

p =
ln
[
f3−f2
f2−f1

]

ln(r)
(4.2)

Equation 4.1 states that the extrapolated solution is given by the most refined

grid QoI (f3), the second most refined grid QoI (f2), the refinement rate (r = 1/2)

and the convergence rate (p). The rate of convergence is given by Equation 4.2 and

can be found by taking the natural log of the ratio of the differences of the most

refined to second most refined and the second most refined and least refined grid and

dividing this quantity by the natural log of the refinement rate.

Equations 4.1 and 4.2 can be applied for each QoI and any point in the grid domain.

Here the QoIs were determined by the experimental measurements to be velocity (U)

and turbulence intensity (I). As the turbulence closure model is k-ε the quantity

I is a function of turbulent kinetic energy (k) and velocity where I =
√

2/3 · k /U .
To remove interdependence of the U on the I the Richardson extrapolation used k

for analysis. Equations 4.1 and 4.2 were applied at each of the 10 points behind the

turbine where the QoIs were measured.

The OpenFOAM flume model representing IFREMER was discretized using

OpenFOAM’s structured meshing tool blockMesh [60]. Uniform mesh refinement

(r=1/2) was performed on an initial h0 = 0.1 m grid discretization twice resulting
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in uniform 0.05 m and 0.025 m discretization for the resulting grids. The grid

convergence results are shown in Figure 4.5.
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Figure 4.5: Uniform mesh refinement grid study results starting at h0 = 0.1m plotted
at the spatial points of interest for each quantity of interest namely (a.) U∗ at
TI∞ = 3%, (b.) U∗ at TI∞ = 15%, (c.) k at TI∞ = 3%, and (d.) k at TI∞ = 15%

Overall the grid refinement shows nominal differences to the solution which ensures

that any conclusion drawn about the possibility of using a surrogate model in place

of the OpenFOAM model will be sufficient. The results for the I∞ = 3% (Figures

4.5.a and 4.5.c) case show some convergence as the grid is refined. For UI∞=3% the

most refined grid (h0/4) shows nominal difference from the fextrap solution obtained
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using Equations 4.1 and 4.2. For UI∞=3% and kI∞=3% the three diameters nearest

the turbine (x∗ = 1.2, 2, 3) there is a non-negligible difference between the h0 and

fextrap solutions. Solution wall clock times are intractable at h0/2 and exceedingly so

at h0/4. As the solution follows the correct trend for all points excluding kI∞=3% at

x∗ = 1 this grid was considered sufficient to represent the OpenFOAM model.

The results for the I∞ = 15% (Figures 4.5.b and 4.5.d) case show negligible

difference and the correct trend for all points. Close examination of k for the

I∞ = 15% case at x∗ = 1.2 shows that the solution did not monotonically decrease.

A Richardson extrapolation cannot be performed for a non-monotonically decreasing

solution as Equation 4.1 must take the logarithm of a negative number. As the change

in solution is small it is difficult to discern from Figure 4.5.d but the non-monotonic

decrease occurs for all x∗ ≤ 8 and therefore an fextrap solution can not be calculated.

Here, k at x∗ = 9, 10 had a monotonically decreasing solution and the fextrap appears

on top of all grid solution values.

4.4 Turbulence-source Equations

Originally developed to more accurately model flow through vegetative canopies

[27, 46] the k-ε turbulence-equation source terms have since been applied to wind

turbines [52, 51] and MHK models [23]. These source terms were added to OpenFOAM

and applied at the acuator disc location. Sources of turbulent kinetic energy, k (m2/s2),

and its dissipation rate, ε (m2/m3), are:

Sk =
1

2
Cx
(
βpU

3 − βdUk
)
, (4.3)

Sε =
1

2
Cx

(
βpCε4

ε

k
U3 − βdCε5Uε

)
, (4.4)

where Cx (–) is the modified thrust coefficient as defined in section 3.3. U (m/s) is

the velocity at the local velocity or velocity at the turbine/actuator disc. Adjustable
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parameter βp (–) is the fraction of k converted to wake-generated kinetic energy by

drag. Adjustable parameter βd (–) accounts for k dissipation through conversion

to kinetic energy by the turbine blades (or actuator disc), or the short-circuiting of

the turbulence cascade where energy transfers from large-scale turbulence to smaller

scales. Adjustable parameters Cε4 and Cε5 are closure constants [63]. For vegetative

canopies, Katul et al. [27] suggested βp = 1, βd = 5.1, Cε4 = 0.9, and Cε5 = 0.9,

for wind turbines Réthoré et al. [51] suggested βp = 0.05, βd = 1.6, Cε4 = 1.5, and

Cε5 = 0.2, and for actuator discs representing current energy converters (CECs)

James et al. [23] suggested βp = 0.96, βd = 1.38, and βpCε4 = βdCε5 = 3.87.

4.5 Metrics

Table 4.2 defines three metrics applied here to compare the QoIs (Q) between the

experimental measurements (exp), OpenFOAM simulations, (sim), and surrogate-

model estimates (srgt). As described in section 4 the two QoIs (U , I), were sampled

at 10 points in the wake, at two I∞ (3%, 15%). Therefore there were a total of N = 40

experimental values for model comparison, and N = 10 for any QoI at a given I∞.

Table 4.2: Performance metrics.

Comparisons Mean absolute percentage error Mean squared error Maximum error
(MAPE) (MSE) (|L∞|)

sim/exp 100
N

N∑
i=1

∣∣∣Qsim−Qexp

Qexp

∣∣∣
i

1
N

N∑
i=1

(
Qsim−Qexp

Qexp

)2
i

100 ·max
∣∣∣Qsim−Qexp

Qexp

∣∣∣
i

srgt/sim 100
N

N∑
i=1

∣∣∣Qsrgt−Qsim

Qsim

∣∣∣
i

1
N

N∑
i=1

(
Qsrgt−Qsim

Qsim

)2
i

100 ·max
∣∣∣Qsrgt−Qsim

Qsim

∣∣∣
i

srgt/exp – 1
N

N∑
i=1

(
Qsrgt−Qexp

Qexp

)2
i

–

Metrics listed in Table 4.2 are provided at each appropriate step. However, three

metric definitions are used for surrogate model decision making and are provided

formal definitions as follows:
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Fitting Error Indicates the difference between surrogate model predictions and

simulation prediction by MAPEsrgt/sim

Predicted Error The difference between surrogate model prediction and physical

experiment by MSEsrgt/exp

Final Error At optimal turbulence source parameter values, the difference between

simulation predictions and physical experiment

Fitting error determines if the developed surrogate model is of sufficient accuracy to

proceed to optimization and if the surrogate model represents the CFD simulator well

at the final value obtained by optimization. The fitting error compares the predictions

of the surrogate model and the simulation. The predicted error is minimized during

optimization and is equivalently the objective function for the surrogate model

optimization. As an optimization of the full CFD and the surrogate is provided

in this work, the predicted error term allows for simple reference to refer to the

surrogate model optimization. Lastly, final error refers to the optimization values

which minimize predicted error, run in the full CFD simulator (OpenFOAM) compared

to the physical experiment. The term final error is used as it represents the ultimate

goal of the surrogate model optimization. The use of these terms in relation to the

overall surrogate model development is formally defined in Section 4: Surrogate Model

Optimization Framework.

4.6 Standard k-ε Model Results

The standard k-ε model will serve as a reference for performance improvements

and justify the improved simulated results agreement with experimental data. The

standard k-ε model is equivalent to the turbulent source terms set to zero (0 =

βp = βd = Cε4 = Cε5). The error of the standard k-ε model as compared to the

experiment are presented in Table 4.2. Model error was highest for low turbulence

(I3%). The average model error by MAPE was 28.2% and near 20% for individual
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QoIs excluding U3% where the wake recovery was predicted to be significantly faster

than the experiment.

Table 4.3: Actuator disc with standard k-ε model errors.

Q MAPEsim/exp MSEsim/exp |L∞|sim/exp

U3% 50.3% 0.287 77.3%
U15% 21.3% 0.113 82.4%
I3% 23.3% 0.070 39.6%
I15% 18.0% 0.058 45.7%

Mean 28.2% 0.132 61.3%

4.7 PEST Calibration/Parameter Estimation

Model error to experiment was improved through the calibration of the turbulent

source terms. Calibration was performed using the model-independent, Parameter

ESTimation (PEST) software suite [12], which uses the gradient-based

Gauss-Marquardt-Levenberg approach to minimize the objective function in a least-

square sense. The basis of this optimization technique is formed around the partial

derivatives calculation of the observation points with respect to the model input

parameter. The derivatives are stored in the normalized Jacobian, then the Marquardt

lamba ensures a stable approach toward the minima by slightly offsetting the gradient

descent by addition to the Jacobian diagonal. A new parameter set which minimizes

the objective function is calculated from iterative matrix inversion. Robust gradient-

based optimization is simple to implement but may suffer from becoming trapped

in local minima. A highly nonlinear objective-function response surface can be

problematic. The PEST optimization method was primarily chosen for comparison to

previous work of James et. al. [23]. Once demonstrated, future research will include

non-gradient decent based optimization methods such as particle swarm [47] which

has shown promising and repeatable results based on the author’s preliminary work.
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PEST was supplied with four adjustable parameters (βp, βd, Cε4, Cε5) and 40

experimental observations (10 measurements downstream of the turbine for each QoI)

to formulate the objective function as:

MSE =
1

N

N∑

i=1

wi

(
Qpredicted −Qexp

Qexp

)2

i

, (4.5)

where i is a measured observation, N is the total number of observations, wi is the

weight assigned to each observation, and Qpredicted and Qexp are the OpenFOAM

or surrogate model equivalents to the experimental QoIs (turbulence intensity and

velocity along the centerline of the wake), respectively. Unit weights were applied to

all observations. Moreover, U and TI were normalized to each range from 0 to 1.

Derivatives were incremented using a relative scheme, multiplying the current

absolute value of the parameter by the calculated increment value. The initial

increment was set to 5E-2 with a lower bound of 1E-5. The derivatives were set to

switch between forward and central, using forward initially and switching to second

order central differences when the relative objective function reduction is below 0.1.

Since the parameter groups are set to a relative max then the change in a parameter

group “b” would be |b− b0|/|b0| ≥ 10−5. No transformation of the parameters bounds

was performed and the change limit of any one iteration was controlled by a factor

(f > 1) defined for a parameter b as b0/f ≤ b ≤ fb0 for positive b0 and fb0 ≤ b ≤ b0/f

for negative b0. The initial lambda value was set to ten with an adjustment factor

of three. The limiting relative phi reduction between lambdas was set to 0.3 with a

maximum of ten lambda trials per iteration. An objective function result less than

10−3 was considered convergent with four values obtained in this range. Furthermore,

failure to lower the objective function for greater than ten consecutive iterations

would end optimization and the total maximum number of optimization iterations

was sixty. [64].

PEST was applied to both the OpenFOAM and GPR surrogate models. Parame-
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ters βp and βd were initially specified according to the results from James et al. [23].

Due to the use of a different turbulence model, initial guesses of 0.9 were used for

Cε4 and Cε5 as suggested by Katul et al. [27]. All lower bounds were set to 0.1. For

surrogate model construction, the sampled space must be representative, but the

broader the parameter range, the more sample points required to develop the GPR.

The upper bound of βp is physically limited to 1 because this is the fraction of kinetic

energy converted to k. The upper bound of βd was set to 4. The upper bounds of

Cε4 and Cε5 were commensurately set equal to 1 and 4, respectively. These ranges

were sufficient to afford comparisons between OpenFOAM model optimizations and

GPR model optimization.

Table 4.4: PEST initial guess and tunable parameter bounds

Parameter
Name

Initial
Value

Lower
bound

Upper
bound

x1 0.90 0.1 1.0
x2 1.38 0.1 4.0
x3 0.90 0.1 1.0
x4 0.90 0.1 4.0
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Figure 4.6: Comparison of experimental data (red dots) to the standard k-ε actuator
disc results (blue dash-dot curve) for QoIs U∗ at (a) I3% and (b) I15% and I at (c) I3%
and (d) I15%. .
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Surrogate Model Development

For models with long run times exceeding 24 hours, calibration becomes intractable

because in addition to the many required model calls, the calibration process itself is

iterative; rarely is an acceptable calibration achieved on the first try [13]. Alternately,

pre-sampling parameter space and building a surrogate model can speed up the process

if the surrogate model sufficiently approximates the computationally expensive model.

Nevertheless, care must be taken when constructing the surrogate model to ensure

that it is a valid substitute for the full, physics-based model. A Gaussian process

regression model was built using sample data from the OpenFOAM model for varying

turbulence parameter values.

5.1 Gaussian Process Regression

A Gaussian process (GP) is a distribution over functions [55]. Functions may be

represented by an infinitely long vector or more tractably a large number of sample

points [17]. Therefore a GP is a collection of real random variables (R). The function

we wish to approximate f(x) is a subset of the R, any finite number of which have a
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joint Gaussian distribution i.e.:

f(x) ∼ N (m(x), K(x,x)) (5.1)

where x is a vector of any R, m(x) is the mean value of x, K(x,x) is the covariance

or measure of similarity between any two points in x and f(x) is an unknown function

represented by a normal distribution (N ) with mean m(x) and covariance K(x,x).

A Gaussian process regression is performed by conditioning the unknown function

values at x∗ on the known data (x, f(x)) to estimate f(x∗) [17, 50].

Gaussian Basics

First consider two sets of random variables shown in Figure 5.1. The results of

this sampling can be seen to be non-deterministic as a given x value has multiple

f(x) values associated with it.
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f(x
)

(b) Positive Covariance

Figure 5.1: Two samples data sets

In Figures 5.1a and 5.1b the random variables x and f(x) each of length N

have a zero mean. In Figure 5.1a information about x does not provide additional

30



Chapter 5. Surrogate Model Development

information about the value f(x). For instance if an f(x) value was known for x = 2,

a better guess could not then be obtained for f(x = 1) as the value is equally likely

to be above and below the abscissa. However, in Figure 5.1b the positive covariance

helps provide additional information about the value f(x) given x. For instance if

given a positive x, f(x) can be assumed to be positive with high probability [17].

To assume that data is Gaussian distributed is to say that any point x and f(x)

is simulated by a normal distribution with a mean and covariance calculated from

the sample data as the sample mean and a sample variance:


 x

f(x)


 = N




 µx

µf(x)


 ,


Σ11 Σ12

Σ21 Σ22




 (5.2)

For the present example, it was assumed the mean is zero. As the mean acts

as a scaling factor to the distribution, this is not a limiting assumption. This joint

distribution may be visualized in three dimensions as a Gaussian curve over the

two-dimensional data in Figure 5.1. The Gaussian curve over these data points (think

about a 3D Gaussian bell over the green curve (3σ)) is known as the joint distribution

and represents the probability of x and f(x) [p(x, f(x)]. Figure 5.2 shows the data

with the green 3σ contour shown around the data on the (x, f(x)) plane. The blue

curve shows the projection of the joint Gaussian and represents the probability of

x ([p(x)]), and the red curve similarly represents the probability of f(x) [p(f(x))].

These projections are known as the conditional distribution and allow a probabilistic

computation at a given point [17].

31



Chapter 5. Surrogate Model Development

0
-5 5

f(X)X

00

0.2

M
ar

gi
na

ls
: p

(X
),

 p
(f

(X
))

5 -5

0.4

(a) Zero Covariance

0
-5 5

X f(X)

00

0.2

M
ar

gi
na

ls
: p

(X
),

 p
(f

(X
))

5 -5

0.4

(b) Positive Covariance

Figure 5.2: Shows two random variable examples

The conditional distribution may be used to obtain a probability distribution

for f(x) given x [ p(f(x)|x) ]. This conditional distribution allows one to predict a

mean f(x) value and a standard deviation using Theorem 5.1 known as the Schur

compliment or matrix inversion lemma [7].

Theorem 5.1. Suppose x = (x1, x2) is jointly Gaussian with parameters

µ =


µ1

µ2


 , Σ =


Σ11 Σ12

Σ21 Σ22




Then the marginals are given by

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)
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and the posterior conditional is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Now that a joint Gaussian has been defined by the sample, and conditional

distributions may be obtained using the Theorem 5.1 a sampling process may be used

to create a Gaussian prior [55]. The Gaussian prior will be a sample of functions

calculated as a random normal with mean zero and covariance one (N (0, 1)). In order

to form the Gaussian posterior, the prior distribution will be conditioned with the

sample data. Before conditioning, the prior knowledge (smoothness assumption) is

applied using a formula known as the kernel. The most basic kernel is the squared

exponential kernel given in Equation 5.3:

Kij = e−||xi−xj ||
2

=





0 ||xi − xj|| → ∞

1 xi = xj

(5.3)

The squared exponential kernel given in Equation 5.3 has the properties that as

xi and xj become further apart the kernel becomes zero and if xi = xj the kernel is

unity. These properties lead to a semi-positive definite matrix and allow the system of

equations to be solved using Cholesky decomposition [1, 25, 57]. This kernel enforces

a prior assumption of smoothness where small variations in the x variables produce

small variations in the resulting f(x). Now that there is a formal definition of how

similar any two points should be, and therefore predictions at new points may be

made by modifications to the kernel matrix [7].

Given a data set (D) with two vectors, x and f , of length N where f = f(x) and

f(�) is some unknown function; one may wish to predict the functional outputs f∗

given x∗ where f∗ = f(x∗) using Gaussian process regression. This is accomplished

33



Chapter 5. Surrogate Model Development

by appending the prediction points to the multivariate Gaussian distribution as shown

in Equation 5.4:


f
f∗


 = N




 µ
µ∗


 ,


 K K∗

KT
∗ K∗∗




 (5.4)

where using Equation 5.3 K is K(x,x), K∗ is K(x,x∗), and K∗∗ is K(x∗,x∗) with

dimensions N × N , N × N∗, and N∗ × N∗ respectively. Also, f and f∗ are a joint

vector which comes from this multivariate Gaussian. Using Theorem 5.1 we may find

the conditional as:

p(f∗|x∗,x,f) = N (f∗|m∗,Σ∗) (5.5)

µ∗ = µ(x∗) +KT
∗K

−1(f − µ(x)) (5.6)

Σ∗ = K∗∗ −KT
∗K

−1K∗ (5.7)

In summary, a Gaussian process is a subset of a stochastic process where an n

dimensional real input vector x and any finite number of determined random variables

are specified to have a joint Gaussian distribution. A Gaussian process defines a

prior distribution over functions which when supplied data may be used to define

a posterior distribution over functions [55]. Here the distribution over functions is

accomplished by using the one-to-one mapping between input x and output f(x)

to describe the functional output as normally distributed and this may be defined

as a Gaussian process i.e. f(x) ∼ N (µ, σ2I) ⇒ f(x) ∼ GP (m(x), k(x,x′)) (See

Rasmussen et al. [50]). The Gaussian process is fully specified by the mean function

m(x) and covariance function k(x,x′) where x, x′ is any point in the input domain

x. The covariance function or kernel may take many forms such that the kernel is

semi-positive definite and has the property that as x− x′ →∞, k (x, x′)→ 0; as the

distance between any two points increases, the covariance between those two points
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tends to zero. GPR is considered local because predictions are weighted averages of

measurements in the neighborhood of the point where the system is estimated [45].

Example in Two-Dimensions

An example Gaussian process is demonstrated in two dimensions for the data shown

in Figure 5.3. The given plot shows a "True" unknown function, f(x) = sin(0.9x, in

blue. Ten random sample points have been measured shown with black "+" markers

and makes up the given data set (D) with two vectors, x and f , of length N = 10. The

goal was to use Gaussian process regression to predict the function values over the x

range negative five to five (x∗ ∈ [−5, 5]). Here the prediction points (x∗) were chosen

using the linear space function in python (linspace(start, stop, number of points))

specified as x∗ = linspace(−5, 5, 50). These x∗ are the points shown by the blue

dots in Figure 5.3 for which the x∗ are chosen and the f(x∗) values are unknown.
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Figure 5.3: Example GPR will use data set (D) consisting of points ’+’ to predict the
unknown "True Function" locations shown shown as blue dots

To create a Gaussian prior the mean is assumed zero, and the x∗ data is applied

to the squared exponential kernel (Equation 5.3) providing a measure of similarity

between each of the x∗ points (K(x∗, x∗)). A Gaussian process is a distribution

over functions and here 10 sample functions were chosen. Each of the prior functions

were created by taking the dot product of the Cholesky decomposition of K(x∗,x∗)

and a random normal distribution sampled at x∗. Repeating this process 10 times

and plotting the result gives the Gaussian prior shown in Figure 5.4. Increasing the

number of Gaussian process curves in Figure 5.4 would cover the mean value (0) more

thickly with lines as each predicted point on the lines is N (0, 1) distributed.
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Figure 5.4: Example Gaussian Process prior evaluated at x∗ for 10 samples where each
line represents one GP sample

Conditioning the Gaussian prior with the 10 data points (D) shown in Figure

5.3 results in the Gaussian posterior shown in Figure 5.5. The posterior distribution

serves to demonstrate how Gaussian process regression predicts exactly the values

for the provided data set D and is less certain of the functional values further away

from D. Finding the mean and variance of the Gaussian process posterior samples

returned the GPR prediction µ∗ and the certainty of that prediction Σ∗ as plotted

in Figure 5.6.
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Figure 5.5: Example Gaussian posterior given data shown in Figure 5.3 for each of the 10
GP Samples

In summary Figure, 5.6 shows the mean (µ∗) labeled as "Prediction" as a dashed

red line and the certainty of the predictions at three standard deviations as a filled

grey area (3σ). The data set (D) is plotted as red "+". Lastly, the "True" unknown

function is shown as a solid blue line. While the sampling of the unknown function

provided a rather poor fit this sampling demonstrates a couple of interesting points

about GPR. The first is that in the areas where data points D are very near to each

other the certainty of the estimate is high and the mean prediction provides a nominal

difference from the true unknown function. Secondly, it can be seen that in areas

where the data is far apart the uncertainty is much higher. As in a real scenario the

"True Function" remains unknown following the mean prediction, this uncertainty
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measurement may guide future sampling measurements.
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Figure 5.6: Example GPR mean and standard deviation over the GP posterior functions
shown in Figure 5.5

Kernel Optimization

In the previous section, the squared exponential kernel was used to describe

the similarity between the data. However, there are many kernels which may be

specified to describe the similarity between data points. These kernel functions differ

in functional form but must meet the same properties specified in Equation 5.3. In

addition to changes in the functional form, kernels may have hyperparameters which

may be optimized for a given data set. For this work a radial basis function (Equation
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5.8) with hyperparameters α, `, and σ was selected as the kernel:

k (x, x′) = σ2

[
1 +

(x− x′)2
2α`2

]−α
, (5.8)

where σ2 is the kernel scale factor, α is the inverse variance parameters, and ` is the

length scale defined as the distance between x and x′ where the covariance can be

considered zero. Similar to variance, the scale factor describes the average squared

distance of the kernel function from its mean. Hyperparameter α characterizes

the "smoothness" of the function where increasing α leads to smoother responses.

Hyperparameters, α, `, and σ, were specified through an optimization process that

maximized the log-marginal likelihood defined as.

H = log p (yi|xi,Θ) = −1

2
log |k(x, x′)|−1

2
(yi − µ)> k (x, x′)

−1
(yi)−

n

2
log (2π) , (5.9)

where yi is a vector of observed target values (QoIs), the mean function µ is assumed

zero, n is the number of components in xi and Θ represents the hyperparameters

in the kernel function. For the optimization, hyperparameter bounds were specified

as σ2 ∈ [0.1, 10], α ∈ [10−4, 2], and ` ∈ [0.1, 2]. As suitable hyperparameters values

were not known prior to data fitting bounds for σ2 and α were adjusted such that

the bound were not reached during the hyperparameters optimization. However, `

was limited to 2 to prevent overfitting [37].

5.2 Surrogate Model Sample Space

For the present case a multivariate Gaussian was created using data over a

pseudo-random five-point linear sample across parameter bounds βp, Cε4 ∈ [0.1, 1] and

βd, Cε5 ∈ [0.1, 4]. The sampling lower limits were set to 0.1 to prevent one element

of the pair from obviating the other as shown in Equation 4.4. The five points were
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βp, Cε4 ∈ [0.1, 0.325, 0.55, 0.775, 1.0] and βd, Cε5 ∈ [0.1, 1.075, 2.05, 3.025, 4.0]. The

underlined values were used to construct the surrogate model resulting in 81 samples

(34) and the non-underlined values were used for verification totaling 16 samples

(24). For a single set of parameters (βp, βd, Cε4, Cε5) a “model call” required two

OpenFOAM model runs (one each for the I3% and I15% boundary conditions). These

97 sample points (81+16) were run in OpenFOAM to create the data set D to build a

Gaussian process regression model and validate the QoI response surface as a function

of the adjustable turbulence parameters. The x∗ testing points for this case was

varible and depended on the optimization routine.

5.3 Building the Surrogate Model

From each OpenFOAM model run, the simulated QoIs at the 10 points down-

stream of the turbine, yielded 810 data points to train each GPR model and 160

verification points. Using the training data from the OpenFOAM model the data

were separated into four groups by QoI. For a given set of turbulence source pa-

rameters (βp, βd, Cε4, Cε5) at a given boundary condition (I3%, I15%) the centerline

wake response (U and I) at 10 distances behind the turbine were separated out for

Gaussian process regression. By this separation four GPR models were constructed

(UI=3%, UI=15% II=3%, II=15%). Each model will intake the four turbulence source

parameters and then output the predicted wake response at 10 points downstream for

a given QoI (specified by the model name) at the subscript turbulent intensity BC.

As a shorthand, these four models will be referred to as U3%, U15% I3%, I15%. The

GPR surrogate models were constructed using Python version 2.7.12 with Numpy

version 1.13.1. Data storage and handling were completed using Scipy 0.19.1 and

Pandas version 0.20.3. The GPR itself was trained using Scikit-Learn 0.19.2. Plots

were made using Matplotlib version 1.5.3. [22, 24, 35, 43].

Prior to creating the Gaussian posterior the kernel was tuned to the data set D by
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maximizing the marginal probability of f given x by adjusting the hyperparameters

(σ, `, α ∈ Θ) (p(f |x,Θ), Equation 5.9). The kernel asserts prior knowledge of

smoothness into the model and therefore this tuning of the kernel using hyperparam-

eters determines the smoothness of the provided data set D. The GRP model was

trained to maximize the log-marginal likelihood by adjusting the kernel hyperparame-

ters using the SciPy optimization routine, fmin_l_bfgs_b, which is a quasi-Newton

algorithm for constrained optimization [8, 24]. Five restarts (the number of times an

optimization was initiated using random hyperparameters) were specified; increases

did not further improve the kernel optimizations shown in Table 5.1.

Table 5.1: Optimized GPR kernel hyperparameters.

Q σ ` α
Log-marginal
likelihood

U3% 0.35 2.0 0.024 1,211
U15% 0.16 2.0 0.044 1,831
I3% 0.17 2.0 0.082 1,813
I15% 0.11 2.0 0.055 2,143

Table 5.1 shows each GPR model (Q) as the QoI it represents and the I∞ of

the case specified as the subscript (Section 5.3). The hyperparameters σ, `, α are

the final values used in the kernel as specified by Equation 5.8. The log-marginal

likelihood was the objective function (Equation 5.9) to maximize. As the maximum

value is dependent on the data there is no target set for a log-marginal likelihood

but the relative values between each Q provide some insight into the kernels ability

to predict the smoothness of the data set D. Most notably in Table 5.1 all ` hit

the maximum at 2.0, which is due to the tendency of GPR to overfit the data [37].

Not limiting ` resulted in ` = 4.8, 10, 5.5, and 5.8 for U3%, U15%, I3%, and I15%,

respectively, while only raising the log-marginal likelihood on the order of 2%. The

small value of α suggests that the GPR are less smooth than a radial basis function

while σ is reasonably consistent across the models. The optimized kernel values in
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Table 5.1 may demonstrate the need for a separate model for each QoI and ambient

TI. Looking to the I model while the variance was similar to the ability to adjust α

allowed the optimization scheme to increase the log-marginal likelihood to 2143.7 (an

18% increase).

5.4 Surrogate-model Fitting Error

A test of model performance at the 16 turbulence source parameter sets excluded

from GPR training checked how well the surrogate model represented the OpenFOAM

model. As discussed in Section 5.2 these 16 points were in between and furthest from

the 81 data points used to train the GPR. The results are listed in Table 5.2 and show

that all MAPEsrgt/sim results were < 10% for each QoI (Q). The better performance

of the I15% is not guaranteed but potentially expected due to the higher log-marginal

likelihood noted in Table 5.1.

Table 5.2: GPR surrogate model performance as compared to "true" OpenFOAM
model.

Q MAPEsrgt/sim MSEsrgt/sim |L∞|srgt/sim

U3% 4.8% 0.7 14.9%
U15% 1.5% 0.2 9.7%
I3% 9.8% 17.8 49.7%
I15% 3.4% 3.5 21.1%

Mean 4.9% 5.5 23.9%

5.5 Surrogate Optimization Framework

The process to build, verify, and optimize the surrogate model is given in Figure 5.7.

Up to this point the variables have been identified (Section 4.4), the data collected

through the OpenFOAM parameter space (Section 5.2), four GPR surrogate models

were constructed (Section 5.3), and confirmed to each have less than 10% error by
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MAPE (Section 5.4). Now the optimization of the turbulence parameters is performed

by wrapping PEST around the four GPR model to minimize the average predicted

error compared to experiment. This optimization model is now labeled GPR-PEST.

Following the GPR-PEST calibration, the optimal parameters were supplied to the

OpenFOAM model to verify that the fitting error at the GPR-PEST optimized point

was <10% on average. If the fitting error was greater than 10% then this process

(build GPR and minimize predicted error) was repeated, iteratively, updating the

GPR model training data using the optimized point until the fitting error at the GPR-

PEST optimized point was <10% on average. Finally, the GPR-PEST parameters

were evaluated in OpenFOAM simulations according to the three performance metrics

listed in Table 4.2 and the final error was reported.
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Figure 5.7: Flow diagram for the surrogate-model framework.
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Results and Discussion

The optimized parameter values for the GPR-PEST are organized in Table 6.1.

Additionally, an optimization called OpenFOAM-PEST has been introduced which

represents a traditional optimization of the full model (in contrast to a surrogate

model). By comparing the GPR-PEST results to the OpenFOAM-PEST results

one may draw conclusions about the efficiency and accuracy of the GPR-PEST

optimization approach introduced here albeit the optimization method is not global.

The GPR column has two final results (Final1, Final2) as two surrogate model

iterations were required to achieve a complete optimization (Section 5.5). Two

iterations were required because while the first GPR-PEST optimization (Final1)

minimized predicted error (MSEsrgt/exp) to 0.084, the fitting error (MAPEsrgt/sim)

at the optimal solution was equal to 22.4% exceeding the 10% acceptance criterion

(Figure 5.7). Therefore, the OpenFOAM results from the Final1 case (βp, βd, Cε4, Cε5

= 1.0, 1.05, 1.0, 0.1) were added to the original 81 OpenFOAM sample points and

the GPR model was rebuilt now using 82 training points. A GPR-PEST optimization

identical to the first was repeated on the new GPR surrogate model resulting in the

optimal solution Final2. This optimization (Final2) decreased the predicted error

to 0.043 with an acceptable fitting error of 3.6%. This concluded the GPR-PEST

optimization with a total of 99 model calls (81 training, 16 verification, 2 final). The
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Table 6.1: GPR-PEST and OpenFOAM-PEST optimized parameters and correspond-
ing performances.

GPR OpenFOAM

Parameter Final1 Final2 Final

βp 1.00 1.00 1.00
βd 1.05 0.80 1.84
Cε4 1.00 1.00 0.77
Cε5 0.10 0.16 0.13

Predicted Error 0.084 0.043 –
Fitting Error 22.4% 3.6% –
Final Error – 0.0358 0.0347

GPR-PEST final error (MSEsim/exp) was 0.0358, lower than the GPR predicted error

(0.043).

The success of the GPR-PEST optimization was determined by comparison to an

equivalent optimization of the OpenFOAM simulation (OpenFOAM-PEST) shown in

the column "OpenFOAM" of Table 6.1. The OpenFOAM-PEST further minimized

the final error (0.0347) but the GPR-PEST achieve a result within 3.1% of the

OpenFOAM-PEST result. GPR-PEST and OpenFOAM-PEST turbulence parameter

values differed primarily for parameters βd and Cε4. OpenFOAM-PEST parameters

plugged into the GPR model returned high predicted error and therefore without

expanding the training data the GPR model would not achieve the same parameter

solution as OpenFOAM-PEST. While definitive discussion of the turbulence parameter

differences (βd and Cε4) cannot be made because k and ε are both coupled and

nonlinear, the direction of the parameter changes makes intuitive sense following from

Equations 4.3 and 4.4. It is possible that the GPR-PEST solution counterbalances

the decrease of βd (increasing k) with the increase of Cε4 (increasing ε / dissipation

of k) which results in a nominally similar solution to the OpenFOAM-PEST solution.

The fraction of tke converted to wake-generated kinetic energy by drag represent

by βp was determined to be 1.0 by both the GPR-PEST and the OpenFOAM-
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PEST. Converting 100% tke to wake-generated kinetic energy by drag is physically

unreasonable. Given this result and the drastic improvement from the standard k-ε

results it is not surprising that the these turbulence source terms are accounting

for model form error beyond the turbulence model. Further, the GPR-PEST final2

solution also hits the optimization upper-bound of Cε4. This ostensibly suggests that

if permitted the GPR-PEST optimization may have increased Cε4 beyond 1.0. In

order to extend the surrogate model training data at the boundary and retain identical

information as the other boundary points would require 27 (33) additional model runs.

However the user may implement many simplifications to keep additional model calls

to a minimum. It can be seen from the OpenFOAM-PEST result that within the

given range of turbulence parameters a lower objective function value (MSEsim/exp

= 0.0347) existed. This demonstrated both that extending the boundary using an

additional 27 model calls may have not been the best use of expensive computational

resources and the susceptibility of the GPR surrogate model to find local minima.

The parameters used in a gradient-based search optimization tool such as PEST

are often adjusted following an iterative procedure [64]. The OpenFOAM-PEST

results reported in Table 6.1 took on the order of thousands of OpenFOAM model

calls to self tune the optimization software PEST and included the input of outside

PEST experts. This makes the surrogate model optimization on the thousands of

percent more efficient. However, to provide a lower bound for comparison for the total

number of model calls between the surrogate procedure and the OpenFOAM-PEST

optimization a new PEST control file was created following the guidance of Getting

the Most out of PEST [14]. This singular PEST run took a total of 134 model calls

but returned a higher final error (0.0354) than the reported OpenFOAM-PEST results

in Table 6.1. In order to achieve a final error as low as the one reported in Table 6.1

this PEST control file would need to be iteratively adjusted. However, this PEST

optimization serves as a conservatively lower bound for the total number of model

calls. The GPR-PEST model used a total of 99 OpenFOAM model calls thereby
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enacting only 74% of the computational expense of this single OpenFOAM-PEST

optimization (134 model calls). As the GPR-PEST wall clock time is on the order of

minutes it was neglected from the time comparison. This decrease in model calls and

the ability to utilize all information from expensive computations makes surrogate

models of practical interest to researchers and practitioners alike.

6.1 Surrogate & OpenFOAM Parameter Values

Compared to Experiment

The final error reported in Table 6.1 can be seen for the GPR-PEST and

OpenFOAM-PEST out for each QoI (Q) in Table 6.2 in the "Mean" row under

the MSEsim/exp column. For each solution the primary contributor to MSEsim/exp is

I3%. This was due to the experimentally measured I increacing at four-diameters

downstream as detailed in Mycek et al. [38]. Here it was not expected that the actuator

disc model could capture the delayed shear layer mixing caused by the low ambient

turbulence (I∞ = 3%) as it did not preferentially add low k in the center of the

turbine and high k at the edges of the disc. A good model should be valid over a large

range of turbulence values and therefore the model was tuned to the 3% ambient

turbulence bit it should be noted that ambient turbulence of 3% is unlikely in turbine

deployment conditions. It is encouraging that the least contributor to MSEsim/exp is

I∞ = 15% for both U and I as I∞ near 15% is typical in turbine deployment sites

[38]. Comparing GPR-PEST and OpenFOAM-PEST the average model fitness was

14.5% and 13.6% by MAPEsim/exp respectively. The average maximum error (|L∞|)
was nominally equivalent between the GPR-PEST and OpenFOAM-PEST solutions.

The optimization results are graphically copmared to experiment and the standard

k-ε model in in Figure 6.1. The experiment data was shown as red dots, the GPR-

PEST result is a dashed curve and the OpenFOAM-PEST solution is a solid curve.

Further the standard k-ε actuator disc results (Table 4.3) were plotted as a blue
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Table 6.2: Errors in simulated QoIs using optimized parameters from the GPR-PEST
and OpenFOAM-PEST calibrations.

GPR OpenFOAM

Q MAPEsim/exp MSEsim/exp |L∞|sim/exp MAPEsim/exp MSEsim/exp |L∞|sim/exp

U3% 11.8% 0.0185 21.6% 11.9% 0.0193 22.1%
U15% 9.5% 0.0227 38.6% 8.8% 0.0256 41.2%
I3% 28.2% 0.0917 44.1% 27.1% 0.0880 43.7%
I15% 8.5% 0.0102 16.2% 6.4% 0.0058 11.5%

Mean 14.5% 0.0358 30.1% 13.6% 0.0347 30.2%

dash-dot curve for reference to how the solution changed with the canopy turbulence

parameters. Both the GPR-PEST and OpenFOAM-PEST optimized results were

comparable as noted in Table 6.2. Excluding I15% neither turbulence parameter

solution precisely matched the experimental data indicating structural model error.

The plots show graphically that for each of the quantitative metrics in Table 6.2 the

near field was the primary contributor to error for the QoI U . Correct representation

of the near field velocity using an actuator disc was a known issue [6]. Further, the

plots definitively show the actuator disc model’s failure to model the second bump in

I at I∞ = 3% for diameters four to seven.

6.2 Limitations and Future Research

The research presented here was limited by simplifications used in sampling,

bounding, building, and optimizing the surrogate model. Future research will demon-

strate effective ways to visualize the quality of the input data for a model of this type.

In addition, attempts to bound this four-dimensional space is an ongoing research

area, which has proven to be computationally expensive. The GPR kernel function

used here could have been improved through the use of kernel-optimization techniques.

Use of a non-gradient based optimization, like particle swarm, that performs well for

highly nonlinear spaces may prove valuable. Lastly, additional surrogate models are

under development including optimized GPR kernels and deep learning models.
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Figure 6.1: Comparison of experimental data (red dots) to optimized results using
OpenFOAM (solid curve) and GPR (black-dashed curve) for QoIs U∗ at (a) I3% and
(b) I15% and I at (c) I3% and (d) I15%. The standard k-ε actuator disc results are
presented for reference (blue dash-dot curve).
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Conclusions

Licensing of MHK sites will require demonstration of minimal environmental impacts.

Tuning the sites hydrodynamic power using these models is a natural use of these

model. In order to build confidence the calibration of actuator disc models to

experimental data is a necessary. This research presented a generalized approach to

the tuning of an actuator disc model using a metamodel approach. A GPR surrogate

of an OpenFOAM model was developed which represented the centerline wake velocity

and turbulence intensity for a 3% and 15% ambient turbulence intensity. This GPR

metamodel was shown to accurately represent the OpenFOAM model within 5%

error by MAPE. Upon optimization the GPR-PEST model optimized turbulence

parameters final error was within 3.1% of equivalently tuned OpenFOAM-PEST

turbulence parameters for a lower bound of only 74% of the computational costs. The

success of the metamodel in this application demonstrates the ability to utilize all

computationally expensive model calls for this domain specific calibration effort. This

research further reaches beyond the curent application as the procedure laid out here

may further be applied to any long running simulation or experimental measurements.

Lastly, the success of this relatively simple surrogate model suggests that advanced

surrogate models investigations are worthy of future research.
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