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STABILITY OF A SPINNING TRIANGLE TETHERED  

SPACECRAFT SYSTEM IN A CIRCULAR ORBIT 

 

by 

 

Matthew James Heitstuman 

B.S., Mechanical Engineering, University of Portland, 2011 

 

ABSTRACT 

Equations of motion are derived for a spinning triangle tethered spacecraft system and are 

used to analyze the stability of such systems. Floquet theory is applied to the linearized, 

periodic coefficient, equations of motion to analyze spin stability as a function of triangle 

geometry and the average spin rate of the satellite relative to the angular velocity of the 

spacecraft orbiting around a central body. The results of the Floquet analysis show that 

spin stability is achievable for many combinations of spacecraft geometry and spin rate. 

Spacecraft engineers or operators for a triangle-shaped tethered spacecraft can use this 

information for mission planning or design purposes. 
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Chapter 1 

Introduction 

 

Tethered Satellite Systems (TSS) consist of a spacecraft connected by a long cable (i.e., 

space tether) to one or more rigid bodies – possibly other operational spacecraft – to form 

a single, interconnected, mechanical system. Numerous applications for TSS have been 

proposed over the years, many of which have flown in space. It is this body of knowledge, 

both experimental results and theoretical studies of TSS, upon which the work presented 

in this thesis builds to develop a model to analyze the spin stability of a triangular tethered 

spacecraft. 

 

Tethered Spacecraft Basics 

Tethered satellite systems can be distinguished from their conventional spacecraft 

counterparts by three discriminating features: 1) size, 2) flexibility, and 3) ability to 

actively interact with the space environment, assuming an electrodynamic tether is used 

[1]. Historically, as described in NASA’s Tethers in Space Handbook, the most common 

configuration of TSS has been the dumbbell [2]. The dumbbell configuration of a TSS is 

one in which two rigid bodies are connected to one another by a single tether. One example 

of a successful on-orbit TSS experiment is the Naval Research Laboratory’s (NRL) Tether 

Physics and Survivability Experiment (TiPS). Figure 1 [3] shows TiPS in its deployed 

configuration. The tether length used in the mission was 4 km, which is not shown to scale 

in the figure. The objectives of this experiment were to: 1) enhance understanding of 
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librations, the pendulum-like motion of end masses about system center of mass, and 2) 

collect data on tether's susceptibility to damage by space debris [3]. 

 

 

Figure 1. Artist Portrayal of NRL’s TiPS in Deployed Configuration 

 

Over the years, researchers have found numerous applications for TSS. The first 

application for TSS was devised in the late 19th century [4]. Tsiolkovsky first proposed a 

space tether mission in his 1895 paper “Day-Dreams of Earth and Heaven”. In that paper 

he described a spacecraft bound to a counterweight that is spun around its mass center to 

create artificial gravity. In the same paper, Tsiolkovsky also proposed the first momentum 

transfer maneuver between a TSS and another object in space. Additional tether 

applications include gravity stabilization for spacecraft in geosynchronous Earth orbit, 

orbit altitude maintenance using electrodynamic tethers in Earth orbit, tethered 
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constellation formation flying, or as part of a space elevator [5]. Applications associated 

with tethered spacecraft formation flying in a triangular configuration are the focus of this 

thesis. 

 

Objectives 

The objective of this thesis is to build upon the previous work performed by Kim and Hall 

[6] to model rotating triangle tethered satellite systems for the proposed, but ultimately 

unfunded, NASA Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) 

mission, and the work performed by Ellis and Hall [7] to model out-of-plane librations of 

spinning tethered satellite systems, which was an area of focus for Ellis’ PhD dissertation 

[8]. Hughes’s Spacecraft Attitude Dynamics book is also an important resource regarding 

the derivation of the equations for a spinning tri-inertial rigid body [9]. Motivation for this 

topic is to increase our understanding of the dynamics associated with the aforementioned 

triangular tethered satellite systems so that in the future, missions such as SPECS and The 

Sentinel [10] can become a reality.  
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Chapter 2 

Review of Related Literature 

 

This review of related literature presents a comprehensive overview of the work 

performed in the field of TSS, with particular focus on research related to stability of 

spinning TSS, and the associated analysis techniques. 

 

History of Tethered Spacecraft Research 

As discussed in Chapter 1 under the Tethered Spacecraft Basics section, Tsiolkovsky was 

the first to propose use of tethers for space-based applications. In 1966, 70 years after 

Tsiolkovsky’s original proposal, the first on-orbit tether experiment was conducted 

during the Gemini-XI mission. The experiment involved the deployment of a 30 meter 

tether by hand to demonstrate the creation of artificial gravity [11]. After the conclusion 

of the Gemini program, the next tether experiments were not conducted until the early 

1990s. The Tethered Satellite System (TSS) set of Shuttle-based missions were a joint 

effort between NASA and the Italian Space Agency (ASI) that began in 1992 [2]. The 

TSS-1 mission launched in 1992 and successfully demonstrated over 20 hours of 

deployed gravity-gradient stabilized tether system before being reeled in [12], despite the 

ASI-provided satellite only deploying 268m above the Orbiter before jamming.  
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Figure 2. Functional Schematic of TSS-1 

 

The TSS-1R mission launched in 1996 and built upon the results of TSS-1. The TSS-1R 

mission focused on exploring the electrodynamic properties of the tether that went 

untested during TSS-1. The TSS-1R mission ran into issues during deployment like TSS-

1, but managed to deploy 19.7 km of tether. Fortunately, the length was sufficient to 

successfully demonstrate the electrodynamic properties of a conducting tether [2]. A 

functional schematic of TSS-1 is shown in Figure 2 [2]. 

 

The Small Expendable Deployer System (SEDS) project was the next attempt by NASA 

to study the deployment of tethers in space. The project consisted of two flights, SEDS-1 
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and SEDS-2, both of which launched as secondary payloads on Delta II launches of GPS 

satellites. The SEDS-1 and SEDS-2 experiments launched on 29 March 1993 and 9 

March 1994, respectively. The primary mission objective of these experiments was to 

demonstrate the deployment of a payload using a 20 km-long tether. The same payload 

hardware was used for both flights of SEDS. The difference between the two missions 

was the implementation of open versus closed loop control on SEDS-1 and SEDS-2, 

respectively. Both missions successfully demonstrated the feasibility of the SEDS tether 

deployment mechanism. During SEDS-1, the velocity of the end-mass payload at the 

conclusion of deployment was calculated to be about 7 m/s using closed loop feedback to 

control the deployment mechanism. The use of closed loop feedback resulted in large 

jumps in tether tension as the end-mass payload rebounded in response to the abrupt stop, 

which could have ultimately caused the tether to fail. Fortunately, that did not occur. 

During SEDS-2, the tether deployment mechanism was able to carefully control the 

speed of deployment and was able to keep the final deployment velocity to about 2 

cm/sec using closed loop feedback [2]. A SEDS-3 experiment was proposed for STS-85 

to test a new deployment brake profile. However, the payload was de-manifested from 

STS-85 due to increasing schedule pressure to re-design the SEDS deployment safety 

components for the STS-85 mission [13]. The SEDS-3 experiment never launched. 

 

The next tether experiment to launch was the NRL-developed TiPS on 20 June, 1996. As 

previously mentioned in Chapter 1, TiPS was a highly successful experiment exploring 

long-term tether survivability and on-orbit motion. The sponsor of the mission was the 

National Reconnaissance Office (NRO) and TiPS was the first unclassified, on-orbit 
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NRO-sponsored spacecraft [14]. The TiPS spacecraft was designed and built in about a 

year and leveraged mature, known designs – including the SEDS tether deployment 

mechanism [15]. Due to the secretive nature of the sponsor organization, very little 

information was published regarding the results of on-orbit experimentation. It was 

reported by NRL in 1999, however, that the mission was still operational [3] making it 

the longest operating known tether experiment. 

 

Young Engineer Satellite-2 (YES2) was the latest successful on-orbit tethered spacecraft 

experiment conducted to date. YES2 is a 36 kg, student built experiment that 

piggybacked on the Russian-built Foton-M3 microgravity platform [16] deployed to Low 

Earth Orbit (LEO), as shown in Figure 3. 

 

Figure 3. YES2 Attached to Foton-M3 
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The primary objective of the YES2 experiment was education for European college 

students and early-career engineers. Approximately 380 students were involved with the 

project over the life of the design and build of the experiment. The primary science 

objectives were “deployment of the 31.7 km tether in two stages to accurately release a 6 

km spherical capsule [Fotino] into a reentry trajectory, and…landing of the capsule 

Fotino in Kazakhstan” [16]. The mission launched on 14 September 2007 and the YES2 

experiment was switched on at 2:03:00 UTC on 25 September 2007. The tether deployed 

as expected, but there was a minor malfunction with the electronics on board causing a 

delay to the release of Fotino. Due to the release delay, Fotino is thought to have missed 

its anticipated landing zone by approximately 1250 km. It was never confirmed that 

Fotino landed successfully as it was never found. Nonetheless, the team declared success 

and claimed a world record for the longest deployed on-orbit tether [17]. 

 

In the years since the success of YES2 and TiPS, there have been no known successful 

on-orbit experiments involving TSS. Several tether missions have been proposed, such as 

the Propulsive SEDS (ProSEDS) mission and Momentum eXchange Electrodynamic 

Reboost (MXER). According to the final report published by NASA, the goal for 

ProSEDS, a proposed secondary payload on a Delta II launch of a GPS satellite like the 

original SEDS missions, was to “demonstrate high current collection by a bare tether to 

accelerate significantly the orbital decay of the Delta stage through the electrodynamic 

drag” [18]. The MXER mission, on the other hand, had the opposite goal of the ProSEDS 

mission. The goal of MXER was “Facility reboost…accomplished without propellant by 

driving current against a voltage created by a conducting tether's interaction with the 
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Earth's magnetic field (electrodynamic reboost). Uses for this system include transferring 

a variety of payloads (scientific, cargo, and human space vehicles) to multiple 

destinations including geosynchronous transfer orbit, the Moon or Mars” [19]. Both are 

fascinating applications of tether technology. Unfortunately, none of these missions made 

it past the concept phase of system development.  

 

One aspect that all TSS missions flown to date share is the use of a single tether. It is 

possible to connect multiple bodies with tethers to create a formation of satellites and fly 

it as a single entity. In 2000, Quinn and Folta proposed using multiple tethers for the Sub-

millimeter Probe of the Evolution of Cosmic Structure (SPECS) mission [20]. To 

accomplish the driving requirements for the SPECS mission, they proposed using a 

tethered formation of three 3-4 meter diameter mirrors connected to a central beam 

correlator in a triangle configuration, as shown in Figure 4 [20], to collect sub-millimeter 

photons.  
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Figure 4. SPECS Design Concept for a 1 km Synthetic Aperture 

 

They demonstrated the feasibility for their concept to perform the SPECS mission using a 

first order mathematical model of the proposed tethered formation. The authors 

recognized the need to further refine their mathematical model and for needed 

advancements in many technology areas, to include tether dynamics modeling, 

decentralized control methods, tether deployment mechanisms, tether material durability, 

and deployable booms. Several years after this concept was published, Kim and Hall 

proposed two alternate configurations for SPECS for which they developed system 

models and the motion equations [21]. The results of their work is considered in the 

creation of the triangle tether formation system model used in this thesis.  

 

Another example of a proposed tether formation mission is the Sentinel CubeSat concept 

proposed by Timothy Berman while a graduate student at Virginia Polytechnic Institute 
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& State University. The Sentinel was proposed as an operationally responsive space 

mission with potential use cases for both the National Reconnaissance Office’s 

intelligence collection mission and for civilian purposes [10]. The civilian concept of 

operations is to deploy the system in case of a natural disaster or terrorist attack to rapidly 

augment damaged ground telecommunications infrastructure. The same system also has 

the potential to intercept space-to-space communications on behalf of the Intelligence 

Community at large. Various orientations were proposed to accomplish the proposed 

Sentinel missions, shown below in the Figure 5. 

 

Figure 5. Proposed Formations and Orientations for The Sentinel 
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Berman attempted to determine the dynamics for the spinning triangular tether formation 

in his report. Unfortunately, his analysis of the problem led to an over-constrained system 

model and he was unable to define the equations of motion for a triangle TSS. When 

Berman simplified his equations, they became consistent with Ellis’ mathematical model 

for the pendular motion of a tether spacecraft in a dumbbell configuration constrained to 

circular orbit [8]. Extending the dumbbell model to a triangular configuration is the focus 

of this thesis. 

 

Related Tether Dynamics Research 

The work performed in this thesis builds upon the analysis performed by Dr. Ellis in his 

PhD dissertation [8] and the derivation of a spinning tri-inertial rigid body performed by 

Hughes [9]. Ellis explored modeling, dynamics, and control of spinning flexible TSS and 

his work built upon myriad research papers on spinning TSS. Chapter 3 of Ellis’ work 

focused specifically on building a complete mathematical model of spinning flexible TSS 

and validating the results of the simplified models published in earlier research. Both the 

mathematical modeling and model validation are areas in which additional TSS research 

was needed [8]. Ellis performed a Floquet analysis to determine the stability of the 

spinning TSS used his mathematical model of a dumbbell TSS. The details of Floquet 

theory are presented in Chapter 3. Ellis used this analysis technique to determine the 

stability properties for a dumbbell TSS for various sets of initial conditions. Ellis’ system 

model consisted of the following attributes, shown below in Figure 6: two end bodies 

connected by a single tether in orbit around a central body.  
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Figure 6. Low-Level System Model for Dumbbell TSS from Ellis' Dissertation 

 

The analysis performed by Ellis made several assumptions that we leverage in this thesis. 

The assumptions are discussed in detail in a later chapter. Additionally, other researchers 

have derived the equations of motion for a triangle TSS, as well as performed a 

rudimentary stability analysis on their equations. Topal and Daybelge explored the tether 

dynamics of a triangle tethered satellite system in low earth orbit in 2005 [22]. Topal and 

Daybelge derived the equations of motion for the tether in a triangular tethered spacecraft 

system constrained to a circular orbit, which is of some use in this thesis. Hughes, in his 

book Spacecraft Attitude Dynamics, devoted an entire chapter to spinning rigid bodies in 

which he derives the equations of motion for a spinning tri-inertial rigid body [9]. He also 

proposed using Floquet theory to analyze the stability of the spinning rigid body. It is the 

goal of this thesis to build upon the work of Ellis and Hughes to determine the stability of 

a spinning triangle TSS.  
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Chapter 3 

Methodology 

 

This chapter covers assumptions, the development of the triangle TSS mathematical 

model, and the analysis performed to determine the conditions that cause the triangle TSS 

to become unstable. 

 

Assumptions 

The following assumptions are made regarding the physical system and the environment 

in which the system resides. The physical system consists of three bodies connected by 

three tethers in orbit around a central body. The tethers are assumed to be non-

conducting, thus the gravitational force is the only external force we will consider. The 

central body is assumed to be a spherical mass in which the density of the body is 

constant, thus the magnitude of the gravitational field is inversely proportional to the 

square of distance from the central body. Each of the three bodies are assumed to be point 

masses with equal mass. The tethers are treated as massless rigid rods, thus the entire 

system acts as a single rigid body. Finally, the triangular TSS is assumed constrained to 

an unperturbed circular orbit in the equatorial plane of the central body. 

 

System Model 

First, we determine the coordinate frame and associated kinematics of the system to 

create a mathematical representation of the system. Figure 7 shows the configuration of 

the triangle TSS spinning around its center of mass. 
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Figure 7. High-level Diagram of Spinning Triangle TSS Model 

 

The inertial frame is centered at O, the center of the central body, and is denoted as ℱ  

with coordinate axes 𝚤̂ . The orbital frame is centered at C, the centroid of the triangle 

TSS, and is denoted as ℱ  with coordinate axes 𝑜 . The triangle TSS is constrained to an 

unperturbed circular orbit, for which the equations of motion are known. Thus, the 

angular velocity of the TSS expressed in ℱ  relative to ℱ  is 

→ = Ω 𝑜 = [0 0 Ω ]  (1) 

with the magnitude of the angular velocity for a circular orbit is determined by: 
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Ω = 𝜇 𝑟⁄  (2) 

where 𝜇 is the standard gravitation parameter of the central mass and 𝑟  is the distance 

from the center of the central mass to the centroid of the triangle TSS. Therefore, angular 

acceleration is zero because angular velocity is constant. 

→̇ = 0 (3) 

Next, let ℱ  be defined as a body fixed coordinate frame with coordinate axes 𝑏 . The 

orbital frame ℱ  is transformed to ℱ  by performing a 3-2-1 Euler rotation sequence as 

shown in Figure 8. The 3-2-1 Euler rotation results in the rotation matrix shown in 

Equation 4, which is needed to define the angular velocity for the body frame relative to 

the orbital frame 

𝑅 = 𝑅 (𝛾)𝑅 (𝛽)𝑅 (α) =

c 𝛼 c 𝛽 s 𝑎 c 𝛽 − s 𝛽
− c 𝛾 s 𝛼 + c 𝛼 s 𝛽 s 𝛾 c 𝛼 c 𝛾 + s 𝛼 s 𝛽 s 𝛾 c 𝛽 s 𝛾

c 𝛼 s 𝛽 c 𝛾 + s 𝛼 s 𝛾 s 𝛼 s 𝛽 c 𝛾 − c 𝛼 s 𝛾 c 𝛽 c 𝛾
 

(4) 

where α is the in-plane angle and 𝛽 and 𝛾 are the two out-of-plane angles. To find the 

angular velocity of ℱ  relative to ℱ  we follow the same process used to develop the 

rotation matrix in Equation 4. Following the 3-2-1 Euler rotation sequence once more, the 

angular velocity of ℱ  relative to ℱ  is: 

𝜔 =
�̇�
0
0

+
1 0 0
0 c  𝛾 s 𝛾
0 − s 𝛾 c  𝛾

0
�̇�
0

+
1 0 0
0 c  𝛾 s 𝛾
0 − s 𝛾 c  𝛾

c 𝛽 0 − s 𝛽
0 1 0

s 𝛽 0 c 𝛽

0
0
�̇�

 

=

�̇� − s 𝛽 �̇�

c 𝛽 s 𝛾 �̇� + c 𝛾 �̇�

c 𝛽 c 𝛾 �̇� − s 𝛾 �̇�

 

(5) 
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Equation 5 defines the angular velocity of the triangular TSS as 𝛼, 𝛽, and 𝛾 evolve over 

time with respect to ℱ . 

 

Figure 8. Orientation of ℱ  Relative to ℱ  

 

The final step for determining the kinematics equations is to apply the angular 

momentum equations to the triangle TSS 

ℎ⃗
̇
= �⃗� (6) 

where ℎ⃗̇  is the time rate of change of angular momentum about the mass center and �⃗� is 

the torque about the mass center. For this analysis, we assume that gravity is the only 

force acting on the TSS. We can rewrite Equation 6 in body-frame components in matrix 

form as: 
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ℎ̇ + 𝜔×ℎ = 𝑔 (7) 

Since ℎ = 𝐼𝜔, we can rewrite Equation 7 as 

�̇� = −𝐼 𝜔×𝐼𝜔 + 𝐼 𝑔 (8) 

where 𝐼 is the moment of inertia matrix and 𝜔 is the angular velocity of the body frame 

ℱ  with respect to the inertial frame ℱ . The relationship between 𝜔  and 𝜔  is 

governed by the rotation matrix previously calculated in Equation 4. We use 𝜔  and 𝜔  

to determine the angular velocity of the spacecraft with respect to the inertial frame: 

𝜔 = 𝜔 + 𝑅 𝜔 =

�̇� − s 𝛽 �̇�

c 𝛽 s 𝛾 �̇� + c 𝛾 �̇�

c 𝛽 c 𝛾 �̇� − s 𝛾 �̇�

+

− s 𝛽 Ω
c 𝛽 s 𝛾 Ω
c 𝛽 c 𝛾 Ω

 (9) 

𝜔 =

�̇� − s 𝛽 (�̇� + Ω )

c 𝛾 �̇� + c 𝛽 s 𝛾 (�̇� + Ω )

− s 𝛾 �̇� + c 𝛽 c 𝛾 (�̇� + Ω )

 (10) 

We have now determined the angular velocity equations for the triangle TSS. These 

equations are foundational to deriving the equations of motion for our triangle TSS. We 

can now determine the angular acceleration by differentiating 𝜔 : 

�̇� =

�̈� − s 𝛽 �̈� − c 𝛽 �̇�(�̇� + Ω )

c 𝛽 s 𝛾 �̈� − s 𝛾 �̇�(s 𝛽 �̇� + s 𝛽 Ω + �̇�) + c 𝛽 c 𝛾 �̇�(�̇� + Ω ) + c 𝛾 �̈�

c 𝛽 c 𝛾 �̈� − c 𝛾 �̇�(s 𝛽 �̇� + s 𝛽 Ω + �̇�) − c 𝛽 s 𝛾 �̇�(�̇� + Ω ) − s 𝛾 �̈�

 (11) 

The next step is to obtain an expression for the gravity gradient torque. This expression is 

needed in order to complete the series of pendular motion equations for the triangle TSS. 

The expression for the approximate gravity gradient torque around the mass center [23] 

using vector notation is: 

𝑔 = 3Ω 𝑜 × 𝐼 ∙ 𝑜  (12) 
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Expressed in a body-fixed reference frame, the equation for gravity gradient torque is 

simplified to 

𝑔 = 3Ω 𝑜×𝐼𝑜  (13) 

where 𝑜 , as defined in Figure 7, is the nadir direction and the first column of the Rbo 

rotation matrix; 𝑜× is the skew-symmetric matrix of 𝑜 ; and I is the moment of inertia 

about ‘c’ in ℱ  for the triangle TSS. The final equation needed to determine the pendular 

motion of the triangle TSS is the moment of inertia expressed in the body-fixed reference 

frame.  Figure 9 shows the configuration of the triangle TSS used to compute the moment 

of inertia. The three bodies that constitute the triangle TSS are identified as T1, T2, and 

T3. T1 is aligned with 𝑏 , and T2 and T3 are both connected to T1 using tethers of equal 

length, defined as ‘a’ in Figure 9. The angle between the two tethers that are connected to 

T2 and T3 from T1 is defined as 𝜑. The angle 𝜑 is a key variable for determining the 

moment of inertia for the triangle TSS. Since we assume that two sides of the triangle 

that connect both T2 and T3 to T1 are of equal length, the configuration of the TSS is an 

isosceles triangle in all cases. In the case of 𝜑 = 60°, we have the special case of an 

equilateral triangle.  This particular configuration of 𝜑 = 60° simplifies our system to an 

axisymmetric rigid body. This special case is discussed further in Chapter 4. 
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Figure 9. Configuration of Triangle Tethered Spacecraft System 

 

The moment of inertia for the triangle TSS with each end body of equivalent mass (𝑚) is 

𝐼 = 𝐼 = 𝑚

𝑏 /2 0 0

0 2𝑐 + 𝑟 0

0 0 2𝑟 + 𝑟

 (14) 

where 𝑏 = 2𝑎 cos 𝜃, 𝑐 = 𝑏 2⁄ tan(𝜃 2⁄ ), 𝑟 = 𝑎 sin 𝜃 − 𝑐, and 𝑟 = (𝑏 2⁄ ) cos(𝜃 2⁄ )⁄ . If, 

for example, we assume 𝑎 = 10 km, 𝜑 = 75° and 𝑚 = 1 kg, we can reduce the moment 

of inertia for the triangle to the values in Equation 15. However, any values for 𝑎, 𝜑, or 

𝑚 are acceptable for analysis purposes. 
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𝐼 =
13.4 0 0

0 66.8 0
0 0 80.2

=

𝐼 0 0
0 𝐼 0
0 0 𝐼

 (15) 

These resulting scalar values that constitute the moment of inertia of the triangle TSS 

satisfies Levin’s formula for the moment of inertia for a two-dimensional triangle 

formation [24] (𝐼 + 𝐼 = 𝐼 ) and confirms we can classify the system as an 

asymmetric, also known as tri-inertial, rigid body. In the remainder of the derivation, we 

refer to the moment of inertia using 𝐼  from Equation 15. Now, we know from Equation 

4 the values for 𝑜  and 𝑜× as: 

𝑜 =

c 𝛼 c 𝛽
− c 𝛾 s 𝛼 + c 𝛼 s 𝛽 s 𝛾

c 𝛼 s 𝛽 c 𝛾 + s 𝛼 s 𝛾
 (16) 

𝑜× =
0 −(c 𝛼 s 𝛽 c 𝛾 + s 𝛼 s 𝛾) c 𝛾 s 𝛼 − c 𝛼 s 𝛽 s 𝛾

c 𝛼 s 𝛽 c 𝛾 + s 𝛼 s 𝛾 0 − c 𝛼 c 𝛽
−c 𝛾 s 𝛼 + c 𝛼 s 𝛽 s 𝛾 c 𝛼 c 𝛽 0

 (17) 

We can also rewrite Equation 13 in matrix form, using the principle moment of inertia 

calculated in Equation 15 as: 

𝑔 = 3Ω

(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜

 (18) 

Expanding Equation 6, expressed relative to ℱ , in matrix form and substituting the 

values from Equations 10, 11, 15, 16, and 17 will give us the governing equations for the 

pendular motion of the triangle TSS. We perform this substitution over the course of 

several steps. The first step to create the governing system of equations is to substitute the 

matrix equation for 𝑔  from Equation 18 into a rearranged version of Equation 6: 
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0 = 𝐼�̇� + 𝜔×𝐼𝜔 − 3Ω

(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜

 (19) 

The second step is to calculate the matrix form 𝐼�̇� using Equation 15: 

𝐼�̇� =

𝐼 0 0
0 𝐼 0
0 0 𝐼

∙

�̇�
�̇�
�̇�

=

𝐼 �̇�
𝐼 �̇�
𝐼 �̇�

 (20) 

The third step is to find 𝜔×𝐼𝜔 in matrix form using Equations 15: 

𝜔×𝐼𝜔 =

0 −𝜔 𝜔
𝜔 0 −𝜔

−𝜔 𝜔 0
∙

𝐼 0 0
0 𝐼 0
0 0 𝐼

∙

𝜔
𝜔
𝜔

=

(𝐼 − 𝐼 )𝜔 𝜔
(𝐼 − 𝐼 )𝜔 𝜔
(𝐼 − 𝐼 )𝜔 𝜔

 (21) 

Finally, we substitute the results from Equation 20 and Equation 21 into Equation 19: 

0 =  

𝐼 �̇�
𝐼 �̇�
𝐼 �̇�

+

(𝐼 − 𝐼 )𝜔 𝜔
(𝐼 − 𝐼 )𝜔 𝜔
(𝐼 − 𝐼 )𝜔 𝜔

− 3Ω

(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜
(𝐼 − 𝐼 )𝑜 𝑜

 (22) 

Equation 22 is the general form of the equations of motion for an asymmetric rigid body, 

which applies to our triangle TSS. One of the observations that we can make looking at 

Equation 22 is that the individual magnitudes of the moment of inertia does not govern 

the motion of the triangle TSS. Only the ratios of the moment of inertia matter. 

Therefore, we can simplify the equations by establishing three ratios for the moment of 

inertia: 

𝑘 =  
(𝐼 − 𝐼 )

𝐼
 (23) 

𝑘 =  
(𝐼 − 𝐼 )

𝐼
 (24) 

𝑘 =  
(𝐼 − 𝐼 )

𝐼
 (25) 
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These ratios allow us to further simplify the governing equations of motion in Equation 

22 to the following:  

�̇� = −𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] (26) 

�̇� =    𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] (27) 

�̇� = −𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] (28) 

We can now substitute Equation 11 into Equations 26-28 to get the full set of governing 

motion equation for the triangle TSS in a circular orbit subject to gravity gradient torque. 

The equations for 𝑜 and are 𝜔 not included, but are located above in Equations 10 and 16, 

respectively: 

�̈� = s 𝛽 �̈� + c 𝛽 �̇�(�̇� + Ω ) − 𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] (29) 

�̈� = s 𝛾 − c 𝛾 �̇�(s 𝛽 �̇� + s 𝛽 Ω + �̇�) − c 𝛽 s 𝛾 �̇�(�̇� + Ω ) +

𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] −

c 𝛾 − s 𝛾 �̇�(s 𝛽 �̇� + s 𝛽 Ω + �̇�) + c 𝛽 c 𝛾 �̇�(�̇� + Ω ) −

𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ]  

(30) 

�̈� = (c 𝛽 c 𝛾) −𝑘 [𝜔 𝜔 − 3𝛺 𝑜 𝑜 ] + s 𝛾 �̈� −

− c 𝛾 �̇�(s 𝛽 �̇� + s 𝛽 Ω + �̇�) − c 𝛽 s 𝛾 �̇�(�̇� + Ω )  

(31) 

The resulting equations of motion are a series of three nonlinear second-order differential 

equations. We are interested in determining the stability of the spin about the axis 

perpendicular to the plane of the system (i.e., 𝛼). To determine stability about 𝛼, we first 

solve the nonlinear equations using two sets of representative initial conditions that show 

stable and unstable motion, respectively. This allows us to determine the point at which 
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we linearize the equations of motion so we can perform a stability analysis of the in-plane 

motion. The initial conditions for the stable case are shown in Table 1. 

 

Table 1. Initial Conditions for Nonlinear Equations of Motion: Stable Case 

Variable Value(s) 

𝜑 70° 

𝑚 1 𝑘𝑔 

a 10 𝑘𝑚 

𝑟  7000 𝑘𝑚 

𝜇 3.986 × 10  𝑘𝑚 𝑠⁄  

𝛼  0 rad  

𝛽  0 rad 

𝛾  0 rad 

�̇�  0 (rad/s) 

�̇�  1 × 10  (rad/s) 

�̇�  1 × 10  (rad/s) 
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The results for the motion of the triangle TSS using the nonlinear equations are shown 

below in  

Figure 10. 

 

Figure 10. Numerical Solution of Nonlinear TSS Motion Equations: Stable Case 
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Figure 10 shows that the TSS motion remains stable over the course of the orbital period, 

which makes the initial conditions for 𝛽 and 𝛾 candidates for linearization. Next, we 

solve the nonlinear equations of motion using initial conditions in Table 2 that cause 

unstable motion in our triangle TSS.  
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Table 2. Initial Conditions for Nonlinear Equations of Motion: Unstable 

Variable Value(s) 

𝜑 70° 

𝑚 1 𝑘𝑔 

a 10 𝑘𝑚 

𝑟  7000 𝑘𝑚 

𝜇 3.986 × 10  𝑘𝑚 𝑠⁄  

𝛼  0 rad  

𝛽  0 rad 

𝛾  0 rad 

�̇�  −Ω  (rad/s) 

�̇�  Ω /10 (rad/s) 

�̇�  Ω /10 (rad/s) 

 

 

Figure 11. Numerical Solution of Nonlinear TSS Motion Equations: Unstable Case 
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We now need to linearize the equations of motion about known steady motion to perform 

the stability analysis for 𝛼. We assume small 𝛽 and 𝛾 (i.e., ≈ 0°), which simplifies the 

nonlinear equations of motion for the triangle TSS to the following form: 

�̈� = 𝛽�̈� + �̇�(�̇� + Ω ) −

𝑘 �̇� + 𝛾(�̇� + Ω ) (�̇� + Ω ) + 3Ω (s 𝛼)(c 𝛼 𝛽 + s 𝛼 𝛾)  
(32) 

�̈� = −𝛾�̈� − �̇�(�̇� + Ω ) +

𝑘 �̇� − 𝛽(�̇� + Ω ) (�̇� + Ω ) − 3Ω (c 𝛼)(c 𝛼 𝛽 + s 𝛼 𝛾)  
(33) 

�̈� = −𝑘 �̇� − 𝛽(�̇� + Ω ) �̇� + 𝛾(�̇� + Ω ) + 3Ω c 𝛼 s 𝛼  (34) 

One additional step we can take to further simplify the equations is to define an “absolute 

pitch rate” as �̇� = �̇� + Ω  and substitute it into Equations 32-34: 

�̈� = 𝛽�̈� + �̇��̇� − 𝑘 �̇��̇� + 𝛾�̇� + 3Ω (s 𝛼)(c 𝛼 𝛽 + s 𝛼 𝛾)  (35) 

�̈� = −𝛾�̈� − �̇��̇� + 𝑘 �̇��̇� − 𝛽�̇� − 3Ω (c 𝛼)(c 𝛼 𝛽 + s 𝛼 𝛾)  (36) 

�̈� = −𝑘 3Ω c 𝛼 s 𝛼 (37) 

We now need to linearize Equations 35 and 36 around our steady motion case of �̇� =

𝛽 = 0 and �̇� = 𝛾 = 0 in order to conduct the stability analysis. After linearization, we 

end up with the following equations of motion for �̈� and �̈�: 

�̈� = (1 − 𝑘 )�̇��̇� + (�̈� − 𝑘 3Ω c 𝛼 s 𝛼)𝛽 − 𝑘 �̇� + 3Ω s 𝛼 𝛾 (38) 

�̈� = −(1 − 𝑘 )�̇��̇� − 𝑘 �̇� + 3Ω c 𝛼 𝛽 − (�̈� + 𝑘 3Ω c 𝛼 s 𝛼)𝛾 (39) 

Substituting Equation 37 into Equation 38 and 39 eliminates the �̈� term, leading to the 

final form of the linear motion equations: 
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�̈� = (1 − 𝑘 )�̇��̇� − (𝑘 + 𝑘 )3Ω c 𝛼 s 𝛼 𝛽 − 𝑘 �̇� + 3Ω s 𝛼 𝛾 (40) 

�̈� = −(1 − 𝑘 )�̇��̇� − 𝑘 �̇� + 3Ω c 𝛼 𝛽 + (𝑘 − 𝑘 )3Ω c 𝛼 s 𝛼 𝛾 (41) 

We have now derived a set of linear equations that describe the motion for the spinning 

triangle TSS. These equations are equivalent to the equations derived by Hughes for a tri-

inertial rigid satellite in a circular orbit [9]. In the following section, we will analyze the 

energy of the system to determine an equation for 𝛼; solve our linear equations of motion 

for 𝛼, 𝛽 and 𝛾; and apply relevant elements of stability theory to Equations 40 and 41 to 

determine the stability properties of the triangle TSS. 

 

Analysis 

This section covers several example solutions to the linear equations of motion and 

performs a Floquet analysis on the linear periodic-coefficient equations of motion to 

determine the stability properties of triangle TSS. Previous research performed on 

spinning dumbbell TSS determined that for small out-of-plane motion, the in-plane 

motion was not affected [8]. This relationship was leveraged by Ellis, who calculated the 

exact solution for the in-plane motion (i.e., 𝑏 – 𝑏 ) and used that solution to develop the 

set of equations that govern the out-of-plane (i.e., 𝑏 – 𝑏  and 𝑏 – 𝑏 ) motion for a 

dumbbell TSS. We also need to find a solution to the in-plane motion equation (�̈�), 

which is needed for the numerical integration of Equations 40 and 41. As we show, the 

resulting solution for 𝛼 is expressed in terms of periodic elliptic functions. Thus, we can 

apply Floquet theory to the system of homogenous linear equations with periodic 

coefficients to determine the stability properties of the out-of-plane motion of the TSS for 

various system configurations. 
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We start the analysis by solving the linear equations of motion for several triangle TSS 

configurations and visualizing the results over one orbital period. The initial conditions 

for the first test case are shown in Table 3: 

 

Table 3. Initial Conditions for Linear Equations of Motion: Test Case 1 

Variable Value(s) 

𝜑 70° 

𝑚 1 𝑘𝑔 

a 10 𝑘𝑚 

𝑟  7000 𝑘𝑚 

𝜇 3.986 × 10  𝑘𝑚 𝑠⁄  

𝛼  0 rad  

𝛽  0 rad 

𝛾  0 rad 

�̇�  0, 2Ω , −Ω  (rad/s) 

�̇�  1 × 10  (rad/s) 

�̇�  1 × 10  (rad/s) 

 

The equations are solved for several different values of �̇� , which show how the TSS 

motion evolves over the orbital period. This variable 𝜃 is used in the following figures to 

indicate the angle between the triangle TSS in the body frame and the orbital frame.  

Runs one and three are repeats of the nonlinear cases we ran above. The results of the 

three runs at �̇� = 0, �̇� = 2Ω  , and �̇� = −Ω  are shown below in Figure 12, Figure 

13, and Figure 14, respectively: 
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Figure 12. Numerical Solution to Motion Equations: 𝜑 = 70°, �̇� = 0 

 

 
Figure 13. Numerical Solution to Motion Equations: 𝜑 = 70°, �̇� = 2Ω  
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Figure 14. Numerical Solution to Motion Equations: 𝜑 = 70°, �̇� = −Ω  

 

It appears at first glance that the results of the numerical integration for the first two runs 

show stable TSS motion. It is worth noting that the results for run one are identical to the 

solution using the nonlinear equations, which is expected. The results for the third run 

appears to show unstable motion of the TSS. Run three is the same case that we solved 

above using the nonlinear version of the motion equations, which was also unstable. We 

conclude that the stability properties of the linearized equations are consistent thus far 

with the nonlinear equations. We now choose a different 𝜑 for the second test case and 

solve the motion equations. The initial conditions for the second test case are shown in 

Table 4. We run the numerical integration for three values of �̇� , as in the first test case, 

and investigate the stability of the TSS motion.  
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Table 4. Initial Conditions for Linear Equations of Motion: Test Case 2 

Variable Value(s) 

𝜑 85° 

𝑚 1 𝑘𝑔 

a 10 𝑘𝑚 

𝑟  7000 𝑘𝑚 

𝜇 3.986 × 10  𝑘𝑚 𝑠⁄  

𝛼  0 rad  

𝛽  0 rad 

𝛾  0 rad 

�̇�  0, 2Ω , −Ω  (rad/s) 

�̇�  1 × 10 (rad/s) 

�̇�  1 × 10 (rad/s) 

 

The results of the three runs for the second test case at �̇� = 0, �̇� = 2Ω  , and �̇� = −Ω  

are shown below in Figure 15, Figure 16, and Figure 17, respectively: 
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Figure 15. Numerical Solution to Motion Equations: 𝜑 = 85°, �̇� = 0 

 

 
Figure 16. Numerical Solution to Motion Equations: 𝜑 = 85°, �̇� = 2Ω  
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Figure 17. Numerical Solution to Motion Equations: 𝜑 = 85°, �̇� = −Ω  

 

Again, at first glance it appears that the results of the numerical integration for first two 

runs show stable motion of the TSS. For the third run, it appears that the motion of the 

TSS is unstable. It is common practice in spacecraft dynamics to use Floquet analysis to 

determine a the stability properties of a spacecraft. It requires, however, that the 

equations of motion are ordinary differential equations with periodic coefficients. We 

assume for now that the equations of motion have periodic coefficients. This assumption 

is validated below once we solve for 𝛼. Therefore, we can validate these results using 

Floquet analysis. 

 

Floquet analysis requires a system of ordinary differential equations with periodic 

coefficients. A system of two equations, using the variables from the equations of motion, 

is written in the form 
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𝑑

𝑑𝑡

𝛽
𝛾

�̇�
�̇�

= −

⎣
⎢
⎢
⎡

0
0

𝑝(𝑡)

𝑝(𝑡)

0
0

𝑝(𝑡)

𝑝(𝑡)

−1
0
0
0

0
−1
0
0 ⎦

⎥
⎥
⎤

𝛽
𝛾

�̇�
�̇�

 (42) 

where 𝑝(𝑡)  terms are all periodic (e.g., sin and cos). The i and j indices correspond to 

the equations of motion for �̈� and �̈�, and periodic coefficients for the 𝛽 and 𝛾 terms, 

respectively. We then numerically integrate the series of equations from 𝑡 = 0 to 𝑡 = 𝑇. 

Equations 40 and 41 that describe the motion of the triangle TSS, however, are not in a 

form that can be used in a Floquet analysis. We need to determine a solution to the in-

plane rotation motion (i.e., 𝛼), which is in the form of a periodic elliptic function, to 

perform the analysis. Finding the solution to 𝛼 requires us to solve for the energy integral 

associated with 𝛼, which we can determine by integrating Equation 37. After integration, 

the energy integral for the system is  

α̇ + 3Ω 𝑘 s 𝛼 = 𝑎 = constant (43) 

where 𝑎 is determined by the initial conditions. We know from Hughes that the solution 

to Equation 43 is in the form of a Jacobi elliptic function [9]. These functions are 

commonly used to describe the motion of a pendulum. Assuming 𝛼(0) = 0, the solution 

for the energy equation is as follows 

sin 𝛼 =
𝑎 sn

𝑎𝑡

𝑎
; 𝑎 (0 < 𝑎 < 1)

sn(𝑎𝑡; 𝑎 ) (𝑎 ≥ 1)
 (44) 

 where 𝑎 is defined as 

𝑎 = |�̇�(0)| (45) 

and 𝑎 is defined as: 
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𝑎 =
𝑎

3𝑘 Ω
 (46) 

The period over which we will solve the differential equation is 

𝑇 =

4𝐾(𝑎) (0 < 𝑎 < 1)

4𝐾(𝑎 )

𝑎
(𝑎 ≥ 1)

 (47) 

which aligns the period of the circular orbit to that of the Jacobi elliptic function. 

Additionally, we need four sets of linearly independent initial conditions for the 

equations. The initial conditions used are shown in Equation 48: 

𝛽
𝛾

�̇�
�̇�

=

1
0
0
0

,

0
1
0
0

,

0
0
1
0

,

0
0
0
1

 (48) 

Finally, the last equation that we define for the analysis is a non-dimensional term, 

initially chosen by Kane and Shippy and used by Hughes [9], for the “average relative 

spin rate” of the TSS:   

𝑠 ≜
�̇�

Ω
≡ (±)

2𝜋

Ω 𝑇
 (49) 

With the values for the initial conditions and 𝑠 identified, we can conduct the Floquet 

analysis to determine the stability of the triangle TSS. The results of the Floquet analysis 

are presented next in Chapter 4. 

 

In this chapter, we accomplished several of the steps needed to analyze the stability of a 

triangle TSS. First step was deriving the nonlinear equations of motion for a spinning 

triangle TSS, shown in Equations 29-31. Second step was solving the nonlinear equations 

using two sets of initial equations in order to determine a point around which the spinning 
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spacecraft motion is stable (�̇� = 𝛽 = 0 and �̇� = 𝛾 = 0). Third step was linearizing the 

motion equations around the point of known stable motion as shown in Equations 40-41. 

Finally, we found a solution to the equation for 𝛼, which was periodic in nature. Thus, we 

can apply Floquet analysis to determine the stability of our system since the resulting 

differential equations that describe the spacecraft motion have linear periodic 

coefficients. The setup for the Floquet analysis is outlined above. The results of the 

Floquet analysis are shown in Chapter 4 Results. 
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Chapter 4 

Results 

 

This chapter presents the results of the analysis performed in Chapter 3. The numerical 

integration of Equations 37, 40, and 41 uses the initial conditions from Equation 48 and is 

performed for 60° ≤ 𝜑 < 90° at increments of 1°, and −3 ≤ 𝑠 ≤ 3 at increments of 0.1. 

The individual spacecraft have mass of 1 kg (3 kg total). The tether length ‘a’, as defined 

in Figure 9, is set at 10 km. The central mass around which the triangle TSS is orbiting is 

the Earth (𝜇 = 3.986 × 10  km s⁄ , and 𝑟 = 6374 km), and the TSS orbits at an 

altitude of  626 km (𝑟 = 6374 km). The initial condition for the orientation of the 

triangle TSS is 𝛼 = 0°. The initial values listed above are the complete set of conditions 

used to set up the triangle TSS for analysis. 

 

Review of Model Results 

A summary of the results obtained from the Floquet analysis are shown below in Figure 

18. A select set of 𝜑  and the respective values of 𝑘  used in the analysis are shown in 

Table 5. The values of 𝑘  and 𝑘  are not shown because they are always equal to one, 

with one exception. 
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Table 5. Value of 𝑘  as a Function of 𝜑 for Triangle TSS 

𝝋 (deg) 𝒌𝟐 
60 0.000 
65 0.213 
70 0.442 
75 0.666 
80 0.851 
85 0.965 
90 1.000 

That exception is one of two edge cases for 𝑘 worth noting. The first is the cases of 𝜑 =

60°, where 𝑘 = 0, and the second is at 𝜑 = 90°, where 𝑘 = ∞. No results were 

obtained for 𝜑 = 90° due to the singularity that occurs at that point. This is the case for a 

rod with two masses, one at each end of the rod. 

 
Figure 18. Floquet Analysis Results for Triangle TSS: 𝜑 vs s 
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For the case of 𝜑 = 60°, we have an equilateral triangle and an axisymmetric rigid body. 

The equilateral triangle case reduces the equations of motion to a form no longer in need 

of Floquet analysis to determine the stability. We are still, however, able to analyze 

stability of the axisymmetric case, as we can see above in Figure 18. Further analysis of 

this special case was performed by Hughes [9] and we do not repeat his work here. For 

the case of 𝜑 = 90°, we end up at the case of a dumbbell satellite. This specific case was 

studied by Ellis and again we do not repeat his work here [8]. Another case worth 

exploring is the case of 𝑠 = 0, where the satellite is not spinning with respect to the 

orbital frame. In this case, the triangle TSS is stable for all values of 𝜑. The 𝑠 = 0 case is 

the same as the case of an Earth-pointing satellite in a circular orbit, which Hughes and 

others previously analyzed [9]. We refer to Figure 18 for the remaining cases of 𝜑 and s 

to determine the stability of the triangle TSS. The main takeaway from Figure 18 is that 

there is a clear band of instability. Between −2.8 < 𝑠 < 2.6, stability can change quickly 

as the spin rate and geometry of the triangle TSS change. At many points, ±1° of 𝜑 or 

±0.1 of 𝑠 can make the difference between a stable system and an unstable system. For 

this reason, it is recommended that an operational system of this nature spin at a relative 

rate of approximately ±3 times the rate at which it is orbiting the Earth. If we run a more 

closely spaced mesh at the stability boundaries, however, we get a much clearer picture 

of the conditions that cause the triangle TSS to become unstable. The following two 

figures are created using an increment of 0.1° for 𝜑 and 0.01 for 𝑠. Figure 19 shows the 

region between −3 < 𝑠 < −2, and Figure 20 shows the region between 2 < 𝑠 < 3. 
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Figure 19. Close Up of Floquet Analysis Results for −3 < 𝑠 < −2 

 

These figures clearly delineate between regions of stability and instability for the triangle 

TSS. The additional detail afforded by the more closely space mesh shows detail that was 

lost in the coarse mesh of Figure 18. One example is the thin band of stability shown 

within a region of instability that was not shown before. While the closely spaced mesh 

does allow for additional fidelity, it is still recommended that a triangle TSS is not 

operated within that narrow stability band as it does not provide much margin for error or 

to change the spin rate post deployment.     
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Figure 20. Close Up of Floquet Analysis Results for 2 < 𝑠 < 3 

 

We can now validate the stability predictions made in Chapter 3 using the results of the 

Floquet analysis. For Test Case 1 (𝜑 = 70°), we predicted the stability properties as 

stable, stable, and unstable for �̇� = 0, �̇� = 2Ω  , and �̇� = −Ω , respectively. Looking 

at the results in Figure 18, we can see that the predicted stability in one case does not 

matches the results of the Floquet analysis. The system is unstable for the case of �̇� =

2Ω . For Test Case 2 (𝜑 = 85°), we also predicted that the stability properties as stable, 

stable, and unstable for �̇� = 0, �̇� = 2Ω  , and �̇� = −Ω , respectively. Looking at the 

results in Figure 18, we can see that the predicted stability for one case again does not 

match the Floquet analysis. The system is unstable at �̇� = 2Ω . It appears that it is 



 44

possible to make predictions about the stability from the results of numerical analysis 

alone. However, it is not recommended given the unstable nature of system behavior and 

the likelihood for error, as demonstrated above. Floquet analysis is the recommended 

approach to determine stability of a spinning TSS. 
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Chapter 5 

Summary and Recommendations for Future Work 

 

The stability analysis performed in this thesis and presented in the Results chapter is for a 

specific set of conditions. These conditions include representing the TSS as a rigid body; 

constraining the TSS to an unperturbed circular orbit with only gravity gradient torque 

acting on the system; and assuming that the out-of-plane angles 𝛽 and 𝛾 remain small. 

This results in a situation where the TSS remains stable for all geometric configurations 

when the relative spin rate is −2.8 < 𝑠 < 2.6. There are several ways in which we can 

change the assumptions made in this analysis to provide additional constraints to the 

analysis of a triangle TSS. 

 

Summary of Contributions 

The Floquet analysis conducted in Chapter 4 calculated the stability conditions for a 

spinning triangle TSS as a function of the average relative spin rate s, and 𝜑. The results 

of the analysis were presented in graphical form showing stability for a spinning triangle 

TSS. That graph is the central contribution of this thesis. This graph shows that for 

−2.8 < 𝑠 < 2.6, we can assume stable motion regardless of 𝜑 for the triangle TSS. The 

work to comprehensively analyze the stability of a triangular rigid body was the first 

performed to date. This work also confirmed the derivation of the motion equations, both 

nonlinear and linear, for a spinning tri-inertial rigid body using a different a different set 

of rotations than Hughes. The linearized, periodic coefficient, form of the equations of 

motion were required for the Floquet analysis to determine stability of a rigid-body.  
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Recommendations for Future Work 

There are several options available to expand upon the work performed in this thesis. The 

first would be to loosen the assumption that we treat the triangle TSS as a rigid body. 

This would require first analyzing cases in which the combinations of triangle geometry 

and relative spin rate cause the tether to go slack. This would further constrain stability 

results only the combinations of geometric shape and spin rate where the tether remain 

taut. There are existing equations for tension in a spinning tethered spacecraft that we can 

leverage for this purpose. Second, the work could expand upon the triangle assumption 

and look at additional tether spacecraft formations, which would greatly expand the TSS 

formations for which the governing equations of motion are known. Third, we could 

assume the tether is conducting and consider the effects of additional perturbations (e.g., 

electrodynamic forces, drag) on stability. Finally, a future analysis could look at stability 

properties for an elliptical orbit instead of a circular orbit. All of these recommendations 

are areas in which one could expand upon the work performed in this thesis. 
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