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Abstract

We investigate the difference between Amagat and Dalton mixing laws for gaseous

equations of state (EOS) using planar traveling shocks. Numerical modeling was

performed in the Sandia National Laboratories hydrocode CTH utilizing tabular

EOS in the SESAME format. Numerical results were compared to experimental

work from the University of New Mexico Shock Tube Laboratory. Latin hypercube

samples were used to assess model sensitivities to Amagat and Dalton EOS. We

find that the Amagat mixing law agrees best with the experimental results and that

significant difference exist between the predictions of the Amagat and Dalton mixing

methods.
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Chapter 1

Introduction and Theory

1.1 Problem Statement

The problem of how to model mixtures of real gases presents the question of which

of the three measurable properties, pressure (P ), temperature (T ), and volume (V ),

apply to the whole mixture. Often the assumption is made that the measured tem-

perature applies to the mixture leaving P and V as the variables that are a function

of the components [3]. We know that for a pure, real gas the following relationship

holds [4]

PV = mRgTz, (1.1)

where z = z(P, T ) is the compressibility factor of the gas, m is the mass, and Rg is

the specific gas constant. From Amagat, we know that

V =
N∑
i=1

Vi, (1.2)

where Vi is the volume occupied by component i at the given temperature and

pressure of the mixture, otherwise known as the partial volume relation [3]. On the
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Chapter 1. Introduction and Theory

other hand, from Dalton we find that

P =
N∑
i=1

Pi, (1.3)

where Pi is the pressure exerted by the ith component at the given temperature and

volume of the mixture, or the partial pressure relation [3].

The following question arises when comparing binary mixtures of gases: what model

is most accurate at predicting the thermodynamic properties of the mixture at a

given temperature and pressure? Numerous papers have been published about multi-

phase and multi-component flows [5], reacting flows, flows with arbitrary equations

of state [6], and mixtures at relatively low pressures [7]. Furthermore, papers have

been published on the behavior of the shock region using Monte Carlo methods

in binary gas mixtures and binary gas mixtures of perfect gases [8, 9]. There are

also some papers on mixtures of real gases [10, 11]. However, there is very little

available on which model (Amagat or Dalton) best applies to the case of a mixture

of non-reacting, real gases, undergoing shock conditions. One may assume from the

context of the available material that Amagat’s Law would be the natural choice but

it is not entirely clear that this is true [3, 4, 5, 1]. Furthermore, both models are

approximations and themselves have pressure and temperature ranges over which

they may be considered accurate [3].

The aforementioned data and references indicate that there has not been much re-

search into the specific question of mixtures of real gases under shock conditions.

This raises the following questions:

a. What thermodynamic model best describes a mixture of binary real gases un-

dergoing shocks?

b. How sensitive are the mathematical models and their numerical analogues to

perturbation?

2



Chapter 1. Introduction and Theory

Shock waves are present in many engineering applications ranging from pneumatic

systems to detonation of high explosives [1, 12]. On this spectrum applications

range from fluid-particle transport to supersonic flight of spacecraft that experience

atmospheric reentry. Often, the experiments needed to study a full system are cost

prohibitive, time consuming, or both. One way to select a design path is to nu-

merically model the system with appropriate boundary conditions. However, the

problem of closure to the governing equations (mass, momentum, and energy) re-

quires good representations of material properties. This is where a shock tube can

provide value. The thermodynamic properties of a gas or gases can be studied under

carefully controlled shock states allowing for first principles or semi-empirical models

to be refined. Methods of converting a problem to a numerical representation are

the ‘other side of the coin’ so to speak. This is where the question of how mixing is

handled when using anything other than a pure gas comes in. Does the formula used

to predict mixture behavior matter numerically? How can one build an accurate

validation space for the numerical method employed? If one were to model a set of

shocks that were impossible to reproduce in an available shock tube, how would one

have confidence in the numerical answers calculated? These and other questions led

to the genesis of this thesis. Not every question will be fully answered, but at the

core the question of mixing will be addressed.

The following problem statement is proposed to begin to attempt to answer the

questions posed above:

Model mixtures of He and SF6 in a shock tube configuration using the Sandia

National Laboratories (SNL) hydrocode CTH, utilizing SESAME table equations of

state to model Amagat, Dalton, and real behaviors. Investigate model sensitivities

to numerical methods, data uncertainty, modeling assumptions, and mixing ratios.

Where possible, match the CTH predictions to existing experimental data.

This statement of the problem will explore the relationship of the outputs of the code

3



Chapter 1. Introduction and Theory

to the inputs in a rigorous and systematic way. Verification of the outputs against

experimental data will provide a means to assess whether the choice of mixing model

matters.

1.2 Equation of State

Equations of state (EOS) are used for closure of the system of thermodynamic equa-

tions describing a process. Conservation of mass, balance of momentum, and conser-

vation of energy require a relationship that describes the thermodynamics of what

are called state variables. Often the state variables used are ones that are easily

measured experimentally such as P , T , and V . However, this need not always be

the case, because one could also construct an equation of state in terms of variables

like entropy, S, and internal energy, U , which are impossible to directly measure

experimentally [13]. Equations of state are difficult to construct entirely from first

principles with the constraint that they also be perfectly accurate for all physical

phases of a material. The ideal gas equation is an example of one such equation that

works well at describing the nature of many different gases, provided the density is

not too high. For example, if the modeled gas begins to condense the latent heat of

vaporization and the change in density from compressible to incompressible fluid are

not captured in the ideal gas model. In engineering modeling, equations of state are

often curve fits to experimental data that are semi-empirical in nature. Parts of the

equation of state are known from fundamental physics and other parts are “fit” to

improve the results of the equation(s) over a particular range of states [4, 13]. For

this problem EOS selection considered gaseous states of Helium (He) and SF6 in a

shock region since phase change was not part of the problem.

4



Chapter 1. Introduction and Theory

1.3 Numerical Analysis

Shock modeling is inherently difficult in a numerical sense [14]. Great care is required

to make codes stable and accurate across the shock since a shock is often represented

as a discontinuous jump state, introducing a cusp into the numerical results often

leading to numerical instability [14]. This research is interested in differences that

may be present in mixing formulations but not what is happening inside of the shock.

The primary interest is in the effect of the shock front as it passes through the gas

mixture. Any numerical algorithm utilized need only accurately represent the shock

effects, e.g., shock speed, shock pressure, and shock temperature, but does not need

to provide an accurate representation of the shock width or interior structure.

1.4 Verification and Validation

Verification and validation are distinct and important aspects of any numerical anal-

ysis. Verification can be thought of as checking that the correct physical models or

theories were applied. Have the governing equations been satisfied, was the mathe-

matical analysis performed correctly? Verification is an objective measure since there

are clear correct and incorrect applications of a physical law or principle. However,

validation is harder to achieve. Assumptions, numerical error, algorithm choice, etc.

all play into the validity of observed numerical results. Validation requires carefully

analyzing the process and also performing studies on model sensitivity. Generating

a validation space requires objective as well as subjective judgment about mesh re-

finement, statistics, and numerical methods. For this research, verification takes the

form of using codes that are known to provide good shock state results and accurately

model EOS. Rankine-Hugoniot analysis provided certainty that EOS surfaces passed

through the correct thermodynamic states. Validation came through comparison to

5



Chapter 1. Introduction and Theory

experimental values and exercising models via Latin hypercube sampling.
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Chapter 2

Methodology

2.1 Equation of State

Numerical analogues to an analytic EOS were implemented in the form of SESAME

tables. This section discusses EOS engineering models considered, selection criteria,

and mixture table creation.

2.1.1 EOS Model

Four different equation of state models were considered for this research, and are in

ascending order of complexity, Ideal Gas [15], Becker-Kistiakowsky-Wilson (BKW)

[16], Jones-Wilkins-Lee (JWL) [17, 18], and Jacobs-Cowperthwaite-Zwisler (JCZ)

[19, 20]. The Ideal Gas model has promise for relatively weak shocks since the

density does not get very large. However, the stronger the shock, the worse the Ideal

Gas model will perform. The ideal gas, JWL, and BKW models were discarded after

some consideration due to questions regarding accuracy and the fact that they have

been superseded by the JCZ equations of state [20].

7



Chapter 2. Methodology

The ideal gas law was first proposed in 1834 by Emile Clapeyron in an article pub-

lished by the Ècole Polytechnique in Paris, France [15]. A common formulation is

PV = mRgT, (2.1)

where variable definitions have not changed from Equation 1.1. The drawback of the

Ideal Gas law is that if the density of the gas gets too large (either liquification or

under high compression) the model breaks down. Furthermore, Amagat and Dalton

formulations reduce to the same representation in an ideal gas [3].

The BKW equations are based on a co-volume model

PVg
RT

= 1 +XeβX , X =
κ
∑
xiki

Vg(T + θ)α
, (2.2)

where P is the pressure, Vg the molar volume, and T the temperature of the gas.

Furthermore, R is the universal gas constant, e is Euler’s number, β, κ, ki, θ, and

α are empirically determined constants, and xi is the mole fraction of the ith com-

ponent [16]. The principal drawback of the BKW equations is that one needs to

calibrate the fit for every new material modeled leading to considerable variance in

fitted parameter values [21]. One advantage of the BKW EOS is that it is completely

analytic. Having a closed form analytic model allows for fast calculation of thermo-

dynamic states. However, the question remains whether the fit is any good, given

the large number of parameters to adjust.

The JWL EOS is

P = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωρee

V
, (2.3)

where P is the pressure, V is the volume ratio of the explosive to detonation products,

and e is the internal energy [17]. The JWL parameters are A, B, R1, R2, and ω,

which are tuned to a specific material [18]. Since our research does not involve

explosives, this particular EOS is a poor choice. SNL codes do have implementations

8



Chapter 2. Methodology

of JWL, but this EOS is particularly tuned to solid explosives that burn to produce

gaseous and condensed products [22]. The properties predicted are predicated on

line integrals along adiabatic expansion paths from an initial high temperature and

pressure state, and so would not necessarily be suited to a room temperature starting

condition [22].

The Jacobs-Cowperthwaite-Zwisler (JCZ) EOS was originally developed to give a

more general representation over a wide range of material densities [19]. SNL up-

dated the original TIGER [19] code and JCZ EOS with improved fits over ionization

ranges and additional molecular species in what is now called the JCZS EOS [12, 20].

Originally, JCZ variants were denoted by a number (e.g., JCZ2, JCZ3) allowing for

user selection when running the codes [19]. With the advent of more powerful com-

puters, selection between versions is not a necessity and the EOS is referred to as

JCZ and JCZS to differentiate between the legacy code and the SNL version [20].

The JCZ3 EOS [19] is given by

P =
G(V, T )nRT

V
+ P0(V ), (2.4)

where P , n, R, T , and V represent the pressure, number of moles, universal gas

constant, temperature, and volume, respectively. The Grüneisen function, G, and

internal pressure function, P0, are [20]

G = 1− V

f

(
∂f

∂V

)
T

; P0 = −dE0

dV
, (2.5)

where f is a function based on Helmholtz free energy that ensures continuous behav-

ior across a wide range of densities and E0 is the volume potential of a face-centered

cubic lattice [19]. One can see that Equation 2.4 has a form similar to an Ideal

Gas with some correction factors. Hobbs et al. [12] updated the original Grüneisen

function to depend on a molecular potential function, EXP6, which is similar in form

to the Lennard-Jones (LJ) potential [12]. Thus, the Grüneisen function in the JCZS

9



Chapter 2. Methodology

EOS

P =
G(V, T, φ)nRT

V
+ P0(V, φ) (2.6)

is based on the EXP6 function

φ(r) = ε

[(
6

η − 6

)
eη(1−r/r

∗) −
(

η

η − 6

)(
r∗

r

)6
]
. (2.7)

Variable η is a fit parameter which has been shown to affect the EXP6 potential

relatively little [12, 20]. Due to the insensitivity of the EXP6 potential to η, most

implementations use η ≈ 13 [12]. The parameters r∗ and ε are the molecular dis-

tance of separation at the minimum potential energy and well depth for the pair

potential, respectively. The variable r is the distance by which the molecules are

separated. The advantage of ε and r∗ is that they can be calculated accurately

from generally well characterized quantities, such as the heat of formation, molecu-

lar number, and composition. Having only two parameters to calculate makes the

JCZS EOS ideal for use on a wide variety of gases [12]. The drawback of the JCZS

EOS is that, while closed form, the equations require numerical differentiation and

integration to compute thermodynamic states. Thus a dedicated code is required

to compute the thermodynamic states desired. The JCZS EOS has been shown to

provide very accurate fits to more than 750 gaseous species available through the

JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee)

tables demonstrating model efficacy across large variations in density and tempera-

ture [12]. Furthermore, a model parameter optimization study (sensitivity to η, r∗,

and ε) across all gaseous species for densities ranging from liquids to rarified gases

was performed [12, 20]. This verification work makes the JCZS equations ideal for

use in constructing a set of high quality tabular thermodynamic states [12, 20].

10



Chapter 2. Methodology

2.1.2 SESAME Tables

The SESAME format of tabular EOS, developed by Los Alamos National Labora-

tory (LANL) is a flexible EOS format allowing custom table generation [23]. The

TIGER code set was utilized to generate the SESAME tables for the simulations by

computing equilibrium thermodynamic states over a range of temperatures and vol-

umes representing tabular mixing for Amagat or Dalton mixtures. Construction of

a mixed EOS was performed by using MATLAB scripts taking outputs of a TIGER

data run from each pure gas and summing over either the volumes (Amagat) or the

pressures (Dalton) from each pure gas to create a single table. Two nuances to this

process are worth mentioning. Firstly, Equation 1.2 for the Amagat model is pre-

sented with volume as an extensive parameter. When summing specific volumes (an

intensive parameter) sums must be weighted by mass fraction

v(T, P ) =
∑
i

wivi(T, P ), (2.8)

where wi = mi

mtot
is the ith mass fraction, mi is the ith mass, and mtot is the mix-

ture total mass. Similarly, specific energy in TIGER is represented as an intensive

parameter with respect to mass and is most easily summed in a mass weighted-

fashion. Secondly, since specific volume is an intensive parameter, a scaling must

be performed for the Dalton table. Given that the temperature and volume are the

independent parameters in a Dalton mixing scheme, equivalence of state is required

to get an accurate representation of the mixed pressure state. For equivalence to

occur, the volumes must be equalized. Recall that

V = mv = Mnv, (2.9)

where M is molecular mass. In the case of Dalton, we are considering partial pressure

of each constituent at the given temperature and volume. In other words, Pi =

P (T, V ). However, we have Pi = P (T, vi), which is equivalent, but not identical in

11
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the sense that V 6= v. In order to sum over the He and SF6 pressures for a Dalton

formulation, we must demand that both pure He and SF6 tables represent the same

(T, v) states. The way to achieve this is to scale the specific volume of either the He

or SF6. Taking Equation 2.9 we can formulate a scaling factor for He volumes like

so

mHevHe = V = mSF6vSF6 ⇒ vHe = vSF6

mSF6

mHe

. (2.10)

The process used was to generate SF6 states in TIGER and use T and scaled v values

to generate the He states. The column of volume values for the He input was simply

scaled as shown in Equation 2.10. A simple summation of the computed He pressures

with the SF6 pressure values at each (T, v) state was then performed.

Binary SESAME files were generated by pre-processing an input deck of the de-

sired (T, V ), or (T, P ), states in MATLAB from which TIGER would calculate the

temperature (T ), pressure (P ), specific volume (v), specific energy (e), and specific

entropy (s) in that order. The resulting ASCII file was fed into the BCAT post

processor within CTH, which would generate the binary file required by CTH to run

the simulation with the tabular EOS. Thermodynamic states were selected based on

a desire for the tables to be as general as possible without growing too large to be

handled within the CTH memory constraints.

2.2 Numerical Analysis

Numerical models were developed and run in the SNL hydrocode CTH. This section

discusses CTH numerical algorithms, refinement of the SESAME tables, analysis of

the spatial grid, and models of the shock tube.

12
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2.2.1 CTH

CTH was selected because it is a code that is written to study shock physics with the

ability to input tabular EOS, allowing for the study of variations in customized EOS

formulations [14]. The CTH solution scheme is a two step Eulerian method where

the mesh first deforms with the material in a Lagrangian sense and then is mapped

back to the original Eulerian positions [14]. There are six mesh options in CTH, 1D

rectangular, cylindrical, and spherical coordinates, 2D rectangular and cylindrical,

and 3D rectangular coordinates [14]. CTH implements the SESAME tabular EOS

format in the form of binary files [14, 23].

CTH contains a set of subroutines in the BCAT module that allows for Rankine-

Hugoniot analysis with a given EOS model. This permitted a study of the TIGER,

Amagat, Dalton, and Ideal Gas cases. Experimental shock pressures were plotted

as a function of shock speed with their corresponding error bars for direct EOS

comparison [1]. The various EOS models were then interrogated to see if the shock

speeds resulted in shock pressures comparable to the experimental results. This

served as a check to the validity of the EOS surfaces. If a generated table could not

replicate the experimental results that was indication of either an error in the table

generation or inability of the EOS model to accurately resolve the shock states in

the experiment. After eliminating sources of generation error, the analysis informed

the user if the EOS model was useful for this problem. Furthermore, this analysis

would quickly inform the user of differences and trends in the mixing models.

2.2.2 SESAME Refinement

When using a discrete representation of a continuous curve or surface the careful

analyst will perform a refinement study to determine sufficient numerical resolution.

Refinements to the SESAME table were handled on a basis of levels. A level describes
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how small ∆T , ∆v, or ∆P are. Refinement means to reduce the size of the step

between temperatures, volumes, or pressures. The first level is the coarsest level

with each level above it representing a halving of ∆X; X being the thermodynamic

state variable of interest. For the first level, the number of thermodynamic states

is computed by setting the minimum, maximum, and step size values of the state

variable X using

Ni =
Xmax −Xmin

∆X i

+ 1, (2.11)

where Ni is the number of values at the ith level. The number of points for each

variable was doubled every refinement step. Thus Equation 2.11 was rearranged to

compute the step size, ∆Xi+1 required to double the number of values

∆X i+1 =
Xmax −Xmin

2Ni − 1
. (2.12)

Since X represents temperature and then volume, respectively, the density of points

on the (T, v) surface would increase by a factor of four, for a 2D problem, with

every subsequent refinement level. From ideal gas calculations the maximum shock

temperature was found to be around 850 K. A SESAME table was generated with

TIGER performing the mixing to estimate mixture defect from ideal behavior and

help set bounds on T , v, and P . The pure He and SF6 tables were generated for both

the Amagat and Dalton mixtures. In order to provide some bound that could account

for higher pressures or temperatures, Tmax = 1500 K was selected. Correspondingly

Tmin = 180 K was chosen for the lower temperature bound. Similarly vmax = 6005

cc/g and vmin = 5 cc/g were chosen for the mixture. The initial values of ∆T and

∆v were picked to provide relatively coarse spacing without being so large that many

refinement levels were required for convergence. The maximum and minimum values

of each property were held fixed to provide the proper refinement sequence. Table 2.1

shows the details of the first three refinements for the SESAME files. A convergence

study was performed on the SESAME tables by holding the initial conditions and

spatial mesh constant in 12 different shock tube configurations studied by Trueba
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Table 2.1: SESAME Refinement Levels

Level NT ∆T [K] Nv ∆v
[
cc
g

]
1 56 24 121 50
2 112 11.892 242 24.896
3 224 5.919 484 12.422

Monje and Yoo [1]. One of the driver pressures and one of the test section pressures

pairwise in Table 2.2 defines each of the 12 cases. Shock speeds were compared

via absolute relative error of the shock speeds between the different levels to assess

change due to the SESAME refinement. A relative error less than 1 × 10−3 was

determined to be sufficiently refined. Results showed that three refinement levels

were sufficient to accurately model shock behavior. Further details are presented in

Appendix B.

Table 2.2: Driver and test section pressures [1]

Driver Pressure (psia) Test Pressure (psia)

146 1.14
166 5.70
186 11.4

- 17.1

2.2.3 Spatial Grid

Convergence with refinement of the spatial grid was also studied. The shock tube is

7.62 cm ID × 122 cm (driver) section coupled to a 7.62 cm square × 320 cm (test)

section for an overall length of 442 cm. For level 1 the computational grid was 8 by

406 nodes, which gives a spacing of ∆x ≈ ∆y ≈ 1.09 cm. The step size refinements

progressed following Equation 2.12. Table 2.3 shows the spatial refinement for the

first five levels and corresponding step sizes. The results of the convergence study
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are detailed in Appendix B. Methods detailed in Roache were used to estimate the

convergence of the solution with mesh refinement [24]. Modeling the tube with a level

3 refinement took considerably longer to run but did not change the error much. A

level 4 refinement was not run but a level 5 refinement was performed for all cases.

This thesis bases its error estimates off of level 3 grids for reasons discussed below.

Simulation error to experiment was generally within single digit percentage points

however a few cases were approximately 15%. A few cases were run in 3D and

took quite some time to run. These cases showed significant reductions in error are

realized when modeling the tube in 3D. The 3D cases were only run with a level 1

grid and showed improvement of the error from approximately 15% to less than 5%.

Using a level 1 3D grid takes longer than using a refined 2D grid and was impractical

for the verification and validation section of this project. The choice was made to

use a 2D mesh and accept the larger error.

Table 2.3: Spatial Refinement Levels

Level Nh ∆y [cm] NL ∆x [cm]

1 8 1.089 406 1.091
2 16 0.508 812 0.545
3 32 0.2458 1624 0.2723
4 64 0.1210 3248 0.1361
5 128 0.0600 6496 0.0681

2.2.4 Shock Tube Modeling

CTH models were designed to study experiments performed in the shock tube at the

University of New Mexico (UNM) with a mixture of He and SF6 [1]. The availability

of this experimental data allows the numerical simulations to be validated. An

input deck was written to capture the geometry of the UNM shock tube in both

1D and 2D configurations. Limited preliminary simulations were run in 3D and
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the results more closely matched the experimental results. However, 3D simulations

did not change the trends observed between Amagat or Dalton and would not have

changed any conclusions drawn from the 2D simulations. Simulations in 3D take

significantly longer to run and were unfeasible for Latin hypercube sample (LHS)

analysis. Furthermore, since the trends did not change between 2D and 3D, a suite

of 3D simulations was deemed unnecessary for an LHS study. A schematic image of

the shock tube is provided with dimensions in Figure 2.1. Driver and test section

pressures are listed in Table 2.2 and define 12 combinations pairwise. The UNM

shock tube is a 7.62 cm ID round steel tube coupled to a 7.62 cm square steel tube.

The round tube is the high pressure or driver section, the square tube comprises the

low pressure or test section. The driver section is separated from the test section

via a membrane, which is punctured by a pneumatically-driven broadhead arrow

head on the axis of the driver section [1]. When the membrane is punctured the

gas flow due to pressure imbalance produces a traveling planar shock wave. The

test section can be easily modified to allow for pressure transducers, thermocouples,

viewing windows, etc. due to its square shape (the sides are flat).

The shock wave produces a pressure and temperature spike as it passes through the

test section [25]. Precise spacing of the pressure transducers allows for measurement

of both the shock over-pressure and shock speed. The numerical model captures the

center-line of the tube in the transverse direction in the 2D and 1D cases; thus the

transition from round to square tubing is not modeled. The pressure transducers

are replicated by tracers in CTH at the locations of the pressure transducers in the

experiment allowing for a replication of the measurements made in the experiments.

The membrane was not modeled, but assumed to vanish when it ruptured. Thus

gases in the driver and test sections on either side at their respective pressures and

densities were placed in contact at rupture. Just as in the experiment, in the sim-

ulation a shock was formed by the high-pressure gas moving into the low-pressure

He-SF6 mixture. The walls of the tube were implemented via a reflecting boundary
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condition on 2, 4, or 6 sides depending on whether the simulation was 1D, 2D, or 3D

respectively.

pressure after shock wave. The velocity of the shock wave calculated as the slope of the straight line (Eqn. 2)
resulting from fitting the locations of the pressure transducers against the time between the pressure pulses.
The distances between the pressure transducers are 0.7112 m, 0.9779 m, and 0.7112 m, respectively.

φ =
p2
p1

(1)

u =
d l

d t
(2)

Figure 1. Representation of the horizontal Shock Tube Facility at UNM. Flow direction is from left to right.

A. Experimental Procedure

The governing variables of this experiment are the initial pressures in the driver (pburst) and driven (p1)
sections as well as the initial temperature (T1). In each experiment, voltage (V ) (corresponding to pressure)
and time measurements were recorded by each pressure transducer, an example is shown in Fig. 2 a. These
measurements were then exported to MATLAB and smoothed by using the LOWESS (locally weighted
scatterplot smoothing) method in order to get rid of random noise, such as vibrations in the piezoelectric
crystals used in the pressure transducers stemming from the impulsive acceleration created by the shock
wave. The filtered data was then fitted using a spline in order to get a set of continuous rather than discrete
values, an example is shown in Fig. 2 b. In this figure, the red cross represents the shock impact. This point
is used as the reference for the time measurement of each channel and is obtained as the first recording
whose value for voltage is greater than a specified threshold (0.3 V). This threshold value is used to get the
time measurement since the shock wave, as it passes, creates a sudden increase in pressure which produces a
proportional signal in the voltage output from the oscilloscope. Once the threshold was set, two boundaries
were chosen based on observation by sight, represented by green and blue crosses. The voltage corresponding
to the pressure after the shock (V2) was calculated as the mean of all the values within the range specified by
these two bounds. Following the same procedure, the value for voltage before the shock (V1) was calculated
as well. Once V2 and V1 were found, it was necessary to convert the voltage measurements into the variable
of interest, pressure. Calibration data were provided by the manufacturer (PCB Piezotronics) in the form of
calibration curves, these functions were used to relate specific increases in voltage to increases in pressure.
Temperature measurements were not collected, due to a lack of commercial instrumentation with a response
time on the order of tens of microseconds. Having these measurements would have produced a considerable
increase in results reliability since two variables would have been available for comparison.

B. Uncertainty Analysis

In order to validate the experimental data and to compare with theoretical results using Dalton’s and
Amagat’s Law, it is necessary to perform an uncertainty analysis. Uncertainty analysis is a useful and
essential part of an experimental program.5 In this case, pressure ratio (φ) measurements will be used to
compare to theoretical values. The pressure measurements will be considered to contain several uncertainty
components. The uncertainty generated from each of these components will be studied individually in order
to obtain an overall evaluation of the measurement uncertainty.

In an experiment, a measurement can be expressed as a function of different independent variables given
by:

r = r(X1, X2, ......, XN ) (3)

3 of 11

American Institute of Aeronautics and Astronautics

Figure 2.1: Notional depiction of UNM Shock Tube [1]

The tube was modeled with the EOS of the gas mixture as an ideal gas as well as

using SESAME tables. CTH has a built-in implementation of the ideal gas relation

where the user provides values for cv and γ− 1, the specific heat at constant volume

and ratio of specific heats minus one, respectively [26]. The ideal gas model was used

to work out any bugs in the input decks and provide some sense of the simulation

outputs. However, the question of mixing is not addressed since Dalton and Amagat

are identical for ideal gases [3]. Three sets of SESAME tables were generated: one

where TIGER handled the mixing of SF6 and He, one where two pure gas tables

were post processed to represent an Amagat mixture, and finally one where two pure

tables were post processed to represent a Dalton mixture.

2.3 Verification and Validation

Verification of the mixture SESAME tables and spatial mesh was achieved via con-

vergence studies. Further verification work was performed by interrogating SESAME

tables and plotting surfaces to check for the correct thermodynamic surface shape.

Validation, as the name suggests, examines the accuracy of the numerical results.
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For this thesis, the validation comes through comparison to the experimental results.

From the experimental results, the mean values of shock speed, shock overpressure,

driver pressure, and test section pressure along with their respective standard devi-

ations are known. Thus, results based on a particular mixing law can be directly

compared to the experimental results and evaluated based on the deviation from the

experimental values.

From basic counting statistics of a continuous random variable we know that the

standard deviation is the measure of the dispersion in a probability density function.

Thus, a small standard deviation value relative to the mean indicates low dispersion

in the distribution. Conversely, a large standard deviation relative to the mean

indicates high dispersion in the distribution. Furthermore, the farther a simulated

value is away from the experimental mean, the smaller the probability of that value

occurring if the experiment were to be rerun [27, 28]. CTH predictions of the Amagat

and Dalton mixtures were compared to experimental values. Experimental error bars

were set at 1 standard deviation above and below the experimental measurement.

This study did not perform an exhaustive analysis of the experimental methods to

determine the probability of accuracy errors or systematic errors. This study seeks

to investigate the difference, if any, that may occur between predictions based on

two distinct mixing laws.

2.3.1 Incremental Latin Hypercubes

An incremental Latin hypercube sample (LHS) study of the inputs was performed

to study variation in simulation outputs. Incremental samples mean that no input

value is ever reused. This allows a convergence statement to be made about the re-

sults since values are going to begin to fill in the entire study space. The term Latin

Hypercube derives from a k-dimensional extension of Latin Square sampling [29]. A

Latin Square is a sparse matrix where any given row and column contains only one
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L 

-00 A B C D  00 

Figure 2-3: A Two-Dimensional Representation of One Possible Latin Hypercube Sample of 
Size 5 Utilizing XI and XZ 

8 

Figure 2.2: Example of a Latin Square [2]

value. An example of a Latin Square from the DAKOTA User Guide is shown in

Figure 2.2, where letters A through L refer to arbitrarily selected bins of equal prob-

ability width from a probability density function [2]. Probability bins (most often

in a cumulative distribution function) are successively subdivided in an incremental

sampling ensuring that the tails of a distribution are accurately represented. This

feature of an incremental LHS study is the second part of convergence. As more

samples are run in a simulation from the LHS input ‘stack’, systematic variation in

the inputs forces systematic variation in the output across the entire PDF. The SNL

software package DAKOTA was used to generate 128,000 pseudo-random samples

from distributions describing input variables used for the LHS analysis. Starting

with 125 samples, simulations were run, doubling sample size every ‘step’. When the

correlation magnitude of input variable to shock speed, pressure, and temperature

stopped changing in order and value, the simulation was determined to have con-

verged. The driver and test sections’ pressures and densities were varied along with

the mass fraction of helium in the test section mixture. Parameter definitions are

shown in Table 2.4 and the resulting shock pressures, temperatures, and speeds were

compared for different values of variables χ1 through χ5 to determine sensitivity and

differences the Amagat and Dalton SESAME tables. The same case was run with
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both Amagat and Dalton tables so that they could be directly compared. Parameter

distributions were selected based on an analysis of the experimental inputs and fitting

distributions in MATLAB. If the best fit distribution was obscure or non-physical

for the parameter modeled, a more physically realistic distribution was selected.

Table 2.4: Parameters to be Perturbed

Parameter Symbol Mean Value

Driver Pressure χ1 See Table 2.5

Test Pressure χ2 See Table 2.6

Driver Density χ3 See Table 2.7

Test Density χ4 See Table 2.8

Helium Mass Fraction χ5 See Table 2.9

2.3.2 Sample Selection

Distributions for each variable shown in Table 2.4 are described in this section. The

decision was made to model just one of the 12 driver and test pressure combinations

for the LHS study. Driver pressure 166 psia and test section pressure 11.4 psia were

selected. Since the goal is to examine the sensitivity of shock tube simulations to

variations in the independent variables rather than forming a comprehensive response

surface, it was deemed acceptable to model only one case in the middle of driver and

test section pressures.

Driver Pressure

Driver pressures from the experimental data set were analyzed with the MATLAB

function fitdist(). The normal distribution was selected based on goodness of fit to

the data (MATLAB uses the negative log-likelihood function for distribution fitting).
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Mean driver pressures and standard deviations were used as inputs into DAKOTA to

define the parameter distributions. Table 2.5 details three different nominal driver

pressures and the corresponding normal distribution parameters. The decision was

made to bound the normal distributions at ±3.08σ for each case, including ±3.08σ

corresponds to 99.8% of expected values [27]. The formula for the normal distribution

is

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
, (2.13)

where µ is the mean and σ is the standard deviation.

Table 2.5: χ1 (Driver Pressure) Normal Distribution Fits

Case µ
[
dyne
cm2

]
σ
[
dyne
cm2

]
- Bound

[
dyne
cm2

]
+ Bound

[
dyne
cm2

]
146 psia 10.06977×106 5.537×103 10.05272×106 10.08682×106

166 psia 11.44710×106 13.283×103 11.40619×106 11.48801×106

186 psia 12.82305×106 6.013×103 12.80453×106 12.84158×106

Test Section Pressure

Because experimental test section pressures varied little, σ ≈ O(10−16), a triangular

distribution

f(x) =



0 b < x or x < a

2(x−a)
(b−a)(c−a) a ≤ x < c

2
b−a x = c

2(b−x)
(b−a)(b−c) c < x ≤ b

(2.14)

was used. The triangular distribution is defined with minimum and maximum values,

a and b, respectively, and mode, c (a ≤ c ≤ b). Test pressure distribution param-

eters are shown in Table 2.6. The upper and lower bounds, b and a, respectively,
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correspond to a variation of ±0.2 psia1, about the same as the worst case variation

seen in the driver section.

Table 2.6: χ2 (Test Pressure) Triangular Distribution Fits

Case a
[
dyne
cm2

]
b
[
dyne
cm2

]
c
[
dyne
cm2

]
1.14 psia 6.4811×104 9.2390×104 7.8600×104

5.70 psia 37.9212×104 40.6791×104 39.3001×104

11.4 psia 77.2213×104 79.9792×104 78.6002×104

17.1 psia 116.5214×104 119.2793×104 117.9003×104

Driver and Test Section Densities

CTH requires the independent thermodynamic values of an input deck for our prob-

lem to be pressure and density. In the experiment, pressure and temperature were

measured directly. Thus the SESAME tables were interrogated to determine the

range of the densities based on the range in the temperature (T ∈ [293.305, 297.155]

K) at the pressures listed in Table 2.2 for the test section. The driver densities

shown in Table 2.7 are fitted with a triangular distribution as described in Equation

2.14. Pure helium gas was used for the experiments as the driver section gas. Since

pure helium behaves as an ideal gas over the range of pressures and temperatures

simulated the densities could be computed directly from Equation 2.1. Test section

densities were also modeled with the triangular distribution and the distribution

parameters are shown in Table 2.8.

Helium Mass Fraction

Helium mass fraction was varied to simulate uncertainty in the experimental mixing.

Bounded normal distribution parameters used to simulate this variance are shown

1A pressure of 1 psia ≈ 68, 947.55 dyne
cm2
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Table 2.7: χ3 (Drive Densities) Triangular Distribution Fits

Case a
[

g
cm3

]
b
[

g
cm3

]
c
[

g
cm3

]
146 psia 1.6304×10−3 1.6518×10−3 1.6410×10−3

166 psia 1.8537×10−3 1.8780×10−3 1.8658×10−3

186 psia 2.0770×10−3 2.1043×10−3 2.0906×10−3

Table 2.8: χ4 (Test Density) Triangular Distribution Fits

Case a
[

g
cm3

]
b
[

g
cm3

]
c
[

g
cm3

]
1.14 psia 3.2887×10−4 3.3468×10−4 3.3176×10−4

5.70 psia 11.6073×10−4 14.8748×10−4 13.2230×10−4

11.4 psia 23.1943×10−4 27.9275×10−4 25.5376×10−4

17.1 psia 34.7671×10−4 39.9328×10−4 37.3208×10−4

in Table 2.9.

Table 2.9: χ5 (Helium Mass Fraction) Normal Distribution Fits

µ σ - Bound + Bound

0.0267 0.0033 0.0165 0.0369

The upper and lower bounds were selected based on estimates of variation in the He

mole fraction

xHe =
nHe

nHe + nSF6

, (2.15)

where ni is the number of moles of component i. Utilizing the relation m = nM

allows Equation 2.15 to be transformed into a form dependent on mass fraction wHe.

xHe =
1

1 + MHe

MSF6

(
w−1He + 1

) . (2.16)

For wHe = 0.0267 ± 0.01 the mole fraction takes on the values xHe ≈ [0.38, 0.58],

which could have a significant affect on the shock characteristics.
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Results

All 12 experimental nominal pressure combinations were simulated in CTH. During

the course of the analysis it became convenient to express the shock speed and shock

temperature as functions of the dimensionless pressure ratio

φ =
PDriver

PTest

. (3.1)

Nominal pressures are used to determine the value of φ, which had the convenient

effect of allowing shock speed and shock temperature results to each be displayed

on single curves. Plotting the shock speeds and shock temperatures a function of φ

allowed graphical analysis of the differences between the Amagat and Dalton formu-

lations. Pressure ratios used are listed in Table 3.1.

Shock speed, temperature, and pressure are not simple functions of pressure ratio.

Rather, the thermodynamic characteristics of what is driving the shock as well as

the gas mixture into which the shock is traveling determine measured shock speeds,

pressures, and temperatures. This became clearly evident after it was discovered

that the experimental work had used pure helium as driver gas while preliminary

numerical simulations assumed a driver gas of 50:50 molar mixture of helium and

SF6, resulting in wildly different shock characteristics. Furthermore, shock pressure
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Table 3.1: Pressure Ratios

φ PDriver [psia] PTest [psia]

128.1 146 1.14
25.6 146 5.70
12.8 146 11.4
8.5 146 17.1

145.6 166 1.14
29.1 166 5.70
14.6 166 11.4
9.7 166 17.1

163.2 186 1.14
32.6 186 5.70
16.3 186 11.4
10.9 186 17.1

is not well described as a function of a pressure ratio, but rather as a surface that is

described by both driver and test section pressures.

3.1 EOS Verification

EOS surfaces were analyzed prior to running simulations in CTH to ensure that they

passed through the thermodynamic states of interest. The BCAT subroutine allows

for Rankine-Hugoniot analysis of an EOS, which permitted a direct comparison of

shock speed and shock pressure from the experiment. Rankine-Hugoniot results are

shown in Figure 3.1.

In general, Amagat formulation data (diamond points) most closely matches experi-

mental values, which are shown with error bars. SESAME tables computed directly

from TIGER mixing and Dalton mixing most closely match one another (circle and

square points, respectively). All data points are relatively close to the experimental

values demonstrating the ability of every SESAME EOS used to approximately pass

through the shock states measured in the experiment. TIGER EOS files were only

26



Chapter 3. Results

used for mesh refinement and getting a sense of non-ideal behaviors in the mixture.

This work was completed while mixing scripts were in development for the Amagat

and Dalton SESAME tables.

Case Speed [m/s] Speed dev. Exp. P. [psi] St. Dev. [psi] Speed [m/s] SES P. [Gpa] SES P. [psi] SES Error Amagat [m/s] Amagat P. [Gpa]

146_1 810.72 7.791 26.2 1.41 810 1.45E-04 21.03 10.95% 810.98 2.03E-04

146_5 513.46 2.353 47.5 2.49 514.71 2.94E-04 42.59 5.45% 513.23 3.55E-04

146_11 401.62 5.292 55.5 2.08 402.9 3.56E-04 51.61 3.63% 401.82 4.07E-04

146_17 343.21 5.876 60.3 2.65 345.3 3.88E-04 56.32 3.41% 345.4 4.33E-04

166_1 893.15 4.366 30.1 1.69 893.84 1.80E-04 26.09 7.13% 893.1 2.47E-04

166_5 558.12 2.974 55.8 2.53 558.97 3.47E-04 50.36 5.13% 557.9 4.22E-04

166_11 445.68 2.371 67.7 2.47 445.6 4.37E-04 63.38 3.30% 446.2 5.06E-04

166_17 385.34 4.483 73.6 2.54 383.8 4.82E-04 69.97 2.53% 383.91 5.40E-04

186_1 923.1 13.692 33.4 1.64 923.1 1.93E-04 28.02 8.75% 923.1 2.64E-04

186_5 585.23 6.145 61.1 2.99 585.1 3.81E-04 55.25 5.03% 585.2 4.65E-04

186_11 471.81 5.826 78.4 3.83 471.7 4.91E-04 71.19 4.82% 471.8 5.52E-04

186_17 416.43 4.178 85.7 2.64 417.99 5.73E-04 83.13 1.52% 417.3 6.43E-04
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Figure 3.1: Comparison of EOS Shock States via Rankine-Hugoniot Analysis

3.2 Spatial Grid

Simulation grids were refined to study the amount of error associated with the spatial

mesh. During the course of the study it was determined that Richardson extrapola-

tion would not work since CTH changes the first and second coefficients of viscosity

to enforce numerical stability across the shock front. This prompted a level 5 mesh to

be run for all 12 experimental cases to look for changes in the shock speed, pressure,

and temperature as a function of a highly refined grid. The results of the level 5

simulations showed that Level 5 simulation results were very close in value to the

level 1, 2, and 3 results.
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Simulated shock speeds were not monotonic with mesh size, indicating that it is

most affected by changes to viscosity coefficients and so, extrapolations were not

very helpful. Instead the value of the shock speed was compared between the mesh

levels 2 and 3 described in Table 2.3. Numerical error is presented in Table 3.2 and

is the absolute percent error relative to f3.

Table 3.2: Shock Speed Refinement Error

φ f2 [m/s] f3 [m/s] |ε23|
128.1 932.8933 932.2836 0.065%
25.6 602.2975 601.7222 0.096%
12.8 483.6105 483.3302 0.058%
8.5 422.0700 421.8304 0.057%

145.6 961.9362 961.6693 0.028%
29.1 626.1377 625.7848 0.056%
14.6 504.2622 504.0943 0.033%
9.7 441.0974 440.8154 0.064%

163.2 988.2076 987.5557 0.066%
32.6 647.7944 647.2558 0.083%
16.3 523.2217 523.0088 0.041%
10.9 458.4630 458.1232 0.074%

Shock pressure and temperature behaved more like one would expect with spatial

grid refinement. The simulated values were generally monotonic with mesh refine-

ment and showed something like O(h) convergence with some notable exceptions.

However, due to the nature of the changing coefficients of viscosity extrapolation

values do not tell the whole story. Tables 3.3 and 3.4 show the absolute percent error

relative to levels 2 and 3. There is very little difference between the levels indicating

that additional spatial refinement is not needed. A level 5 mesh produced shock

pressures and temperatures very similar to the level 1, 2, and 3 mesh results.
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Table 3.3: Shock Pressure Refinement Error

φ f2 [psia] f3 [psia] |ε23|
128.1 28.6965 28.6911 0.019%
25.6 58.6622 58.6610 0.002%
12.8 74.6633 74.7866 0.165%
8.5 83.7313 83.8758 0.172%

145.6 30.5326 30.5253 0.024%
29.1 63.4755 63.4749 0.001%
14.6 81.6538 81.6727 0.023%
9.7 91.8446 91.9482 0.113%

163.2 32.2185 32.2115 0.022%
32.6 67.9922 67.9923 0.000%
16.3 88.0465 88.0270 0.022%
10.9 99.6717 99.8062 0.135%

Table 3.4: Shock Temperature Refinement Error

φ f2 [K] f3 [K] |ε23|
128.1 717.703 716.580 0.157%
25.6 486.813 484.837 0.408%
12.8 420.023 419.908 0.027%
8.5 388.784 388.821 0.010%

145.6 741.819 740.513 0.176%
29.1 500.991 498.917 0.416%
14.6 431.265 430.613 0.151%
9.7 397.877 397.828 0.012%

163.2 763.953 762.390 0.205%
32.6 514.209 512.411 0.351%
16.3 441.636 440.482 0.262%
10.9 406.540 406.503 0.009%

3.3 Shock Tube Simulations

Shock tube simulation outputs were analyzed via MATLAB scripts to determine

shock quantities of interest (QoI), namely shock speed, pressure, and temperature.
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Analysis was performed via MATLAB scripts which looked for change in velocity

at the tracer for shock speed and maximum temporal derivatives for post-shock

temperature and pressure. More information on MATLAB scripts is presented in

Appendix C.

3.3.1 Shock Speed, Us

We found by inspection of the plots and by curves of best fit, that Amagat and

Dalton results converge as the pressure ratio approaches unity. This makes some

intuitive sense as there is not as much disparity in pressure energy between the drive

and test gases. Thus, there is less ability of the drive section to push on the test

section, resulting in weaker shocks that propagate more slowly. In addition, both

the drive and test sections were initialized in the simulation at room temperature

(295 K). Thus any increase in energy must come solely from the pressure imbalance.

This is most evident in the trends shown by shock speed as a function of pressure

ratio shown in Figure 3.2. As is shown, the higher the pressure ratio, the faster

the shock speed. Both Amagat and Dalton simulation data was fit using a curve of

best fit of the form Us(φ) = a ln(φ) + b. Best fit coefficients were determined using

linear least squares and the value of the coefficient of determination was computed,

resulting in a value of approximately 0.95. Grouping in clusters of three is due to

distinct groupings of the pressure ratios as is shown in Table 3.1. One will notice

that the data points do not fall exactly onto the logarithmic curves. This is due to

the fact that some information about the shock speed is contained in the test section

pressure and density. To fully describe the shock speed, one needs more than one

dimension.

The curves nicely capture the Amagat and Dalton trends and show that Dalton

tends to overestimate the experiment when using the same pressures and initial

temperatures. For the purposes of investigating the differences between the mixing
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Figure 3.2: Shock Speed Versus Pressure Ratio

models, we find that using pressure ratio is a good way to compare the results.

However, we do not claim that a fit based on pressure ratio alone is necessarily a good

predictor of shock tube results. As one achieves higher pressure ratios in the shock

tube, the disparity between Amagat and Dalton models becomes more pronounced

indicating that Amagat and Dalton predictions may diverge further with even higher

pressure ratios. Error between simulation and experimental results is shown in Table

3.5. Error was calculated using a normalized difference

ε =
xexperimental − xsimulated

xexperimental
· 100%, (3.2)

where xexperimental is the measured value and xsimulated is the simulated value. As is

shown in Figure 3.2 and Table 3.5, the 2D simulation tends to have lower error at

higher pressure ratios. At some of the lower pressure ratios the error is unacceptably

high, however, this may be overcome by running the simulations in 3D instead of 2D.

Overall, Amagat simulation values match experiment better than Dalton simulation

values. Error is primarily reduced by modeling the transition from round to square
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tubes for the driver and test sections, which requires a 3D simulation. 3D simulations

were run to verify error reduction and look at trends in the shock states. The error

for pressure ratios 8.5, 9.7, and 12.8 is the highest. These pressure ratios along

with φ = 128.1 were run in 3D to assess results. Due to eddies produced by the

transition from round to square tubing, the shock QoI had to be extracted by hand

from the data due to ringing in the pressure and temperature values. Furthermore,

running 3D causes mesh size to grow by a factor of 8 with every refinement level

making refinement take significantly longer. The four cases run reduced the error

to less than 5% using a level 1 mesh and matched the observed trends from the 2D

simulations.

Table 3.5: Simulation Shock Speed Error
φ Amagat Dalton

128.1 -5.89% -13.83%
25.6 -9.91% -15.41%
12.8 -14.34% -17.65%
8.5 -17.78% -19.50%

145.6 0.71% -7.89%
29.1 -5.22% -11.55%
14.6 -7.54% -12.37%
9.7 -9.62% -13.43%

163.2 1.19% -7.27%
32.6 -3.88% -10.37%
16.3 -5.41% -10.58%
10.9 -5.41% -9.96%

3.3.2 Shock Pressure, Ps

Shock pressures shown in Figure 3.3 are separated by test section pressure. Plotting

shock pressures versus pressure ratio φ does not result in a curve similar to those

for shock speed shown in Figure 3.2. One can see that, unlike the shock speeds,

shock pressures are underestimated by the Dalton method. However, trends hold in
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that the Dalton and Amagat results do not cross and the disparity in the predictions

grows with increasing pressure ratio. Indicating the Amagat and Dalton EOS sur-

faces predict different thermodynamic states across the range of pressure ratios with

increasing disparity at more extreme pressure ratios.
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Figure 3.3: Shock Pressure Into Various Test Section Pressures

Experimental values cross over the two models at low values of φ. This may be be-

cause of error inherent in the 2D simulation or model form error inherent to Amagat

and Dalton mixtures. In general, Amagat tends to be the better predictor of shock

pressure. However, one may note that the difference between Amagat and Dalton

predictions is nearly constant with pressure ratio for each test section pressure. Sim-

ulation error with respect to experiment is tabulated in Table 3.6 shows that the

Amagat method is the better predictor of shock pressure with the notable excep-

tions of φ = 8.5 and φ = 12.8. Unlike the shock speed, error improves with lower
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pressure ratios. Most of the errors are < 10% indicating that Amagat is relatively

accurate. However, at certain values of φ the error is as high as 15%. Running more

computationally expensive 3D models would reduce this error as discussed previously

if very accurate models of the shock tube were desired.

Table 3.6: Simulation Shock Pressure Error

φ Amagat Dalton

128.1 4.57% 23.34%
25.6 0.58% 8.72%
12.8 -6.02% -0.83%
8.5 -9.45% -5.21%

145.6 11.26% 33.20%
29.1 8.30% 18.24%
14.6 5.15% 11.11%
9.7 1.84% 5.91%

163.2 15.39% 40.19%
32.6 10.08% 20.89%
16.3 11.63% 19.52%
10.9 8.67% 14.03%

3.3.3 Shock Temperature, Ts

Shock temperatures were not measured in the initial experimental work. Simulated

temperatures are shown in Figure 3.4 plotted versus pressure ratio. The dependence

on the test section pressures becomes apparent in Figure 3.4 as the groups of data

points have a more pronounced defect from the curves of fit. As with shock speed,

shock temperatures were fit with curves of the form Ts(φ) = a ln(φ)+b. Calculation of

the coefficient of determination resulted in a value of approximately 0.91. The trend

continues to hold that Dalton and Amagat are clearly different without crossing each

other over the range of pressure ratios studied.
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Figure 3.4: Shock Temperature Versus Pressure Ratio

3.4 LHS Analysis

LHS results for φ = 14.6 were analyzed using the MATLAB function corrcoef() in

an incremental fashion. The base sample set consisted of 125 pseudorandom samples

and the number of samples doubled with every ‘step’. Starting with the base sample

set of 125 values the magnitude of the correlation coefficient, r, was computed using

corrcoef(), against Us, Ps, and Ts and χ1 through χ5 in a pairwise manner for every

doubling.

Once the order and the magnitude of the correlation for the statistically significant

variables stopped changing, the study was deemed to have converged. Histograms of

the correlation of the shock speeds, Us, pressures, Ps, and temperatures, Ts, to inde-

pendent variables χ1 through χ5 were plotted to determine convergence. Simulation

results converged after 1000 samples (three doublets) of each variable were run as

defined in Table 3.7.
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Table 3.7: Parameters Perturbed in LHS Study

Parameter Symbol Mean Value

Driver Pressure χ1 11.44710×106 dyne/cm2

Test Pressure χ2 78.6002×104 dyne/cm2

Driver Density χ3 1.8658×10−3 g/cm3

Test Density χ4 25.5376×10−4 g/cm3

Helium Mass Fraction χ5 0.0267
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Figure 3.5: LHS QoI Results Run Against 1000 Samples
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Figure 3.5 shows the final results of the LHS study summarized with Amagat and

Dalton QoI (Quantities of Interest) in the left and right columns, respectively. As

is shown both the Amagat and Dalton models are most sensitive to χ4, test section

density, and χ5, helium mass fraction. However, which variable has the strongest

relationship depends on the QoI. The sensitivity of the two models is quite similar

in magnitude and ordering of variables, χi, based on the correlation strength. Only

shock pressure shows a significant difference in sensitivity between the Amagat and

Dalton models in the second-most influential paramters χ5, helium mass fraction.
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Figure 3.6: Comparison of Amagat and Dalton LHS Results

Statistics of the LHS results of Amagat and Dalton mixtures are shown in Figure 3.6.

The minimum, mean, and maximum values are superimposed on a plot of standard

37



Chapter 3. Results

deviation (±1σ) of each mixing model for each QoI. Unlike the results in Section 3.3

compared to experimental values, the Amagat model predicts faster shock speeds,

higher shock pressures, and higher shock temperatures overall than the Dalton model

does for the same initial pressures and densities. Simulations for the LHS study were

run for the same initial pressures and densities which resulted in different initial

temperatures of the test section mixture for the Amagat and Dalton models. Recall

that CTH requires the initial pressure and density or temperature and density to be

specified. In simulations compared to experimental results in Section 3.3, density

was set from experimental initial pressure and temperature. This led to different

initial density values depending on whether an Amagat or Dalton EOS was used.

Differences between shock speed and pressure distributions are not large, with shifts

of 5 m/s and 1 psia, respectively. However, a difference of roughly 50 K is seen in

the shock temperature predictions, which is significant for the given shock regime.

Results from CTH simulations show that for the same input values, Amagat and

Dalton EOS mixtures will predict different shock characteristics. Another way to

think about the problem is to ask, ‘if simulation initial conditions were perturbed

in the Amagat and Dalton simulations, how much would the models agree?’ This is

shown to some degree in Figure 3.6, but does not yield a quantitative result. Using

the MATLAB function fitdist(), we fit the LHS study QoI with probability density

functions (generalized extreme value) over their respective range of values. We then

calculated the coefficient of overlap, Covl, between the two distributions and plotted

the results [30, 31].

3.4.1 Shock Speed, Us

Figure 3.7 shows that there exists strong agreement between the Amagat and Dal-

ton EOS when it comes to predicting the shock speed. The overlap between the two

distributions comprises 80.58% of the simulated values based on the value of Covl.
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One way of thinking about this result is that that the distance between the Amagat

and Dalton shock speed distributions is not large.
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Figure 3.7: Overlap in Shock Speed Distributions, Covl = 0.8058

3.4.2 Shock Pressure, Ps

Similarly, shock pressures were analyzed are shown in Figure 3.8. The results show

that the pressures also have strong agreement, as the overlap constitutes 75.27% of

the simulated values. While slightly less than shock speed overlap, the agreement

between the two distributions is still significant.
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Figure 3.8: Overlap in Shock Pressure Distributions, Covl = 0.7527

3.4.3 Shock Temperature, Ts

The shock temperatures showed the most disparity between the two models as the

overlap only accounted for 29.02% of the simulated values. Figure 3.9 shows the two

temperature distributions and the region of overlap. This is the strongest difference

between the two models.

In summary, we have shown that the Amagat mixing model provides the best agree-

ment with the experimental results and that those results are distinctly different
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from the Dalton model. Furthermore, we have shown that for the same initial condi-

tions the Dalton model will tend to overpredict the experimental values as opposed

to LHS values where it underestimates shock QoI. We believe that the reason for

Dalton overestimation had to do with the way CTH requires initial conditions be set

as pressure and density versus pressure and temperature. Thus, when the shocktube

was simulated, different densities would be provided depending on the EOS so that

the simulations started off at the same temperature. Finally, when comparing per-

turbations of the initial conditions we show that the strongest disparity between the

simulated results occurs in the prediction of shock temperature.
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Figure 3.9: Overlap in Shock Temperature Distributions, Covl = 0.2902
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Conclusions & Future Work

4.1 Conclusions

Based on the modeling of the shock tube as shown in Figures 3.2, 3.3, and 3.4 we

conclude that there is a difference between the Amagat and Dalton EOS models. The

greatest differences occur when looking at the shock speed and shock temperature.

This can be explained, as was noted in Chapter 3, by the fact that the densities were

used to set the temperature of the simulation. By setting the same pressures and

different densities to achieve the same temperatures, we were acknowledging that the

EOS surfaces were predicting different thermodynamic states for the mixture. This

affected the outcomes as has been shown. LHS results show the strongest agreement

between Amagat and Dalton models in the shock speed and the worst agreement in

the shock temperatures. In addition, the LHS results showed that the shock pressure

has the most complicated relationship to the input parameters perturbed. Shock

speed and shock temperature were dominated by variables χ4 and χ5. Shock pressure,

while still predominately dependent on χ4 and χ5, has a stronger relationship with

χ1, χ2, and χ3 than either shock speed or shock temperature. This can be seen in
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the magnitudes of the correlation coefficients in Figure 3.5. Furthermore the LHS

analysis showed that while the Amagat and Dalton EOS models were sensitive to

essentially the same parameters, it also showed that both predict different shock

speeds, pressures, and temperatures. The only way to get agreement between the

shock characteristics is to allow the initial conditions to vary. Experience running

the simulations has shown that the forcing agreement may require nonsensical initial

conditions in the simulation, which defeats the purpose of modeling. As was shown in

Figures 3.7, 3.8, and 3.9 the models only agree well on 2 out of the 3 characteristics.

This implies that the models cannot simultaneously agree on both pressure and

temperature of the mixture. If agreement is forced in the temperatures, the pressure

will fail to agree and vice versa. When modeling inert gases undergoing shocks, we

see that Amagat and Dalton mixing do not give the same results. In general the

Amagat model results are in significantly better agreement with the experimental

data for shock speed and shock pressure. Forthcoming experimental results for shock

temperature will be important in assessing whether one model is clearly superior in

predicting results for mixed gases undergoing shock.

4.2 Future Work

In the course of performing research one finds out how very little they are able to push

the boundary of knowledge, even when expending considerable amounts of effort and

resources. There is usually more work to do and, in the very least, refinements to be

made. This work could be improved and expanded in a number of ways:

• Run more LHS studies to develop mixing response surfaces

• Study other gaseous mixtures

• Study reacting gases or ionizing gases (TIGER can model ionized gases)
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• Look at mixtures with more than two constituents

• Consider some form of phase change

One advantage of LHS studies, is that they provide insight into which parameters

drive variation in the model. One way in which this work could be used would be to

explore how restricting the variation of the LHS input distributions affect results.

The preceding list only begins to scratch the surface possible improvements or ad-

ditions. This research showed that a difference exists between Amagat and Dalton

mixtures but further development is needed to understand how the differences af-

fect predictions. In addition, the LHS analysis showed that test section density and

mixture mass fraction had strong influence over the shock speed, pressure, and tem-

perature. This could inform new experiments by better controlling either variable

and then adding in known variations. One example would be heating or cooling

the test section to achieve different shock speeds. Addressing model form error by

parametrizing χ4 and χ5 would mitigate, or at least provide control over, model

sensitivity in the Amagat and Dalton representations. This could take many forms

and may be an avenue for research that would provide insight into mixture physics.

Finally, extending this work to other gases may help formalize good modeling and

simulation practices in the realm of gas dynamics.
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Sample CTH Input

Below is a sample of a CTH input deck used in the simulations performed in this

research.

**********************************************************************

*eor* cthin

*

**********************************************************************

Shocktube with He and SF6 Dalton SESAME EOS Refinement Level 3

* Mesh Level 1

* Driver pressure: 1.1458e+07

* Driver density: 1.8596e-03

* Test pressure: 7.9047e+05

* Test density: 2.4731e-03

control

mmp

tstop = 8.5e-3

endc
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spy

PlotTime(0.0, 50e-5);

SaveTime(0.0, 10e-5); Save(”M,VOLM,VX,VY,P,T”);

ImageFormat(1024,768);

define main()

{

pprintf(” PLOT: Cycle=%d, Time=%e\n”,CYCLE,TIME);

XLimits(0,442);

YLimits(0,7.62);

Image(”Pressure”);

Window(0,0,0.75,1);

ColorMapRange(1e4,2e7,LOG MAP);

Label(sprintf(”Pressure at %0.2e s.”,TIME));

Plot2D(”P”);

Draw2DMatContour;

Draw2DTracers(3);

DrawColorMap(”(dyn/cm2̂)̂”,0.75,0.4,0.9,0.9);

EndImage;

Image(”Vmag”);

Window(0,0,0.75,1);

ColorMapRange(1e1,1e10,LOG MAP);

Label(sprintf(”Velocity Magnitude at %0.2e s.”,TIME));

Plot2D(”VMAG”);

Draw2DMatContour;

Draw2DTracers(3);

DrawColorMap(”(cm/s)”,0.75,0.4,0.9,0.9);
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EndImage;

Image(”Temperature”);

Window(0,0,0.75,1);

ColorMapRange(0,.07);

Label(sprintf(”Temperature at %0.2e s.”,TIME));

Plot2D(”T”);

Draw2DMatContour;

Draw2DTracers(3);

DrawColorMap(”(eV)”,0.75,0.4,0.9,0.9);

EndImage;

}

HisTime(0,1e-6);

SaveTracer(ALL);

SaveHis(”GLOBAL,POSITION,P,T,DENS,VX,VY”);

define spyhis main()

{

HisLoad(1,”hscth”);

Label(”Pressure at Tracer 1”);

TPlot(”P.1”,1,AUTOSCALE);

Label(”Pressure at Tracers 2-6”);

TPlot(”P.2”,1,AUTOSCALE);

TDraw(”P.3”,1);

TDraw(”P.4”,1);

TDraw(”P.5”,1);

TDraw(”P.6”,1);

}

endspy
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mesh

*

block 1 geom=2dr type=e

*

x0 0.

x1 n=408 ratio=1 w=442

endx

*

y0 0.

y2 n=8 ratio=1 w=7.62

endy

endb

*

endm

convct

interface=smyra

endc

**********************************************************************

*

* equation of state inputs

*

eos SES=500000

mat1 SES USER EOS=9997 FEOS=’b9997’

mat2 IDGAS USER cv=3.61501e11 GM1=0.667

endeos

tracer

add 100,3.81 fixed=xy

add 161.985,3.81 fixed=xy
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add 233.105,3.81 fixed=xy

add 330.895,3.81 fixed=xy

add 402.015,3.81 fixed=xy

endtracer

* material insertion inputs

diatom

package ’hipressure’

mat 2

pressure 1.14577e+07

density 1.85956e-03

insert box

p1 = 0,0

p2 = 122,7.62

endinsert

endpackage

package ’lopressure’

mat 1

pressure 7.90466e+05

density 2.47313e-03

insert box

p1 = 122,0

p2 = 442,7.62

endi

endp

enddiatom

edit

shortt

tim = 0., dt = 1e-5
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ends

*

longt

tim = 0., dt = 1.0

endl

restt

tim = 0.

dtf = 5e-5

endr

*

ende

boundary

bhydro

bxbot = 0 , bxtop = 0

bybot = 0 , bytop = 0

endhydro

endb

mindt

time = 0. dt = 1.e-9

endn
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Mesh Convergence

B.1 SESAME Grid Convergence

SESAME table refinement studied EOS sensitivity to grid spacing in the T, v, P and

T, v, e surfaces. In this instance when we say ‘grid’ we are referring to the spacing

of the thermodynamic points and not the spatial mesh. As described in Table 2.1,

we used refinement levels to study the relative errors of the shock speeds when using

different resolutions of SESAME tables. The configurations run are shown in Table

B.1. Absolute relative error was computed using

δ =
|x1 − x2|

0.5(x1 + x2)
, (B.1)

where x1 and x2 are any two variables with the same units. Convergence was as-

sumed if δ ≤ 1× 10−3. The shock speeds were compared between levels 1 to 2, 2 to

3, and 1 to 3. Figure B.1 shows the relative error between and demonstrates that in

all but one case the simulation could be considered converged at level 1 refinement.

Each ring of Figure B.1 corresponds to an error magnitude relative to the previous

SESAME refinement level. Radial lines in Figure B.1 correspond to a combination

of driver and test section pressures listed in Table B.1. Recall that a level 1 refine-
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ment corresponded to a ∆T = 24K and ∆v = 50 cm3

g
. Each subsequent refinement

halved the property step size. All simulations in this thesis were run with a level 3

refinement.

Table 146_1 146_5 146_11 146_17 166_1 166_5 166_11 166_17

1 to 3 1.04E-04 1.89E-03 4.27E-04 2.17E-04 1.28E-04 2.12E-05 2.19E-04 1.32E-04

1 to 2 3.77E-04 1.29E-03 3.01E-04 2.72E-05 7.98E-05 3.18E-04 2.43E-05 2.65E-05

2 to 3 2.73E-04 6.08E-04 1.26E-04 2.45E-04 4.79E-05 3.39E-04 2.43E-04 1.59E-04

0.00E+00

4.00E-04

8.00E-04

1.20E-03

1.60E-03

2.00E-03
146_1

146_5

146_11

146_17

166_1

166_5

166_11

166_17

186_1

186_5

186_11

186_17

Shock Speed Relative Error Btween SESAME Tables

1 to 3

1 to 2

2 to 3

Figure B.1: Shock speed relative error in SESAME convergence

Table B.1: SESAME Convergence Tests

Name Driver Pressure (psia) Test Pressure (psia)

146 1 146 1.14
146 5 146 5.70
146 11 146 11.4
146 17 146 17.1
166 1 166 1.14
166 5 166 5.70
166 11 166 11.4
166 17 166 17.1
186 1 186 1.14
186 5 186 5.70
186 11 186 11.4
186 17 186 17.1

53



Appendix B. Mesh Convergence

B.2 Spatial Mesh Convergence

Spatial refinement levels are described in Table 2.3. Levels 1, 2, 3, and 5 were

simulated for 12 different cases. Recall that ascending mesh level denotes a grid

refinement of one-half in all directions. The goal was to determine simulation sen-

sitivity to mesh size. CTH uses second-order-accurate methods for advection and

mesh remap, although results themselves are not necessarily second-order-accurate

since some numerical dissipation is present due to adjustments to the first and sec-

ond coefficients of viscosity required for numerical stability across the shock [14]. In

some sense, the same simulation is not run twice since the value of the viscosities

change based on simulation parameters. Relative error between refinement levels is

calculated by

εij =
fj − fi
fj

, (B.2)

where fi is the ith level value, fj is the jth level value, and j must be the finer grid

[24]. Values computed using Equation B.2 can be used to estimate the order of

accuracy of an algorithm. Order of accuracy is given by

ε12
rp12 − 1

= rp23

[
ε23

rp23 − 1

]
, (B.3)

where ε is defined in Equation B.2, r is the rate of mesh refinement (e.g. 2, for halving

of the mesh size), ε12 is a coarse grid error, and ε23 is a fine grid error [24]. Equation

B.3 is simple to solve if r12 = r23 = r and reduces to p = ln(ε12/ε23)/ ln(r). Otherwise

Equation B.3 is transcendental in p [24]. If f is not monotone with mesh refinement,

error may not be positively valued. To avoid imaginary values, the magnitude of

the error ratio should be used in such cases. Order of convergence can be used

to estimate the value of f ∗, assuming a perfect mesh, where f ∗ = limh→0 fi(h).

Care must be exercised since non-monotone behavior can indicate that something

is happening inside the code to prevent convergence with mesh refinement or the
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model is constructed incorrectly [24]. We define h to be the step size in the spatial

discretization. After running 3 different mesh sizes to calculate p, f ∗ can be directly

calculated by [24]

f ∗ = f3 +
f3 − f2
rp − 1

. (B.4)

Equation B.4 performs well for both monotone and non-monotone values of f . How-

ever if p → 0, the extrapolation to f ∗ is suspect since the method becomes discon-

tinuous. This is shown in Table B.4 where the φ = 25.6 case extrapolates to a value

far away from what is expected. Values in Tables B.2, B.3, and B.4 were used to

create Figures B.2, B.3, and B.4 that present error in shock speed, pressure, and

temperature relative to f ∗ plotted as ln(|ε|) versus ln(∆x).

A level 5 set of simulations was run since the values in Table B.2 are non-monotonic.

The sets of estimated p values were worse than the level 3 case but the shock speed

values were very similar to the level 1, 2, and 3 cases. Thus it was determined that

the first and second coefficients of viscosity dominate the results and mesh refinement

could not reduce error further.

Table B.2: Shock Speed Values

φ f1 [m/s] f2 [m/s] f3 [m/s] f ∗ [m/s] p ε12 ε23

128.1 931.730 932.893 932.284 931.611 0.931 1.247e-03 6.540e-04
25.6 601.383 602.298 601.722 600.744 0.667 1.518e-03 9.562e-04
12.8 482.760 483.610 483.330 483.192 1.601 1.759e-03 5.798e-04
8.5 421.521 422.070 421.830 421.644 1.195 1.300e-03 5.680e-04

145.6 959.690 961.936 961.669 961.633 3.073 2.335e-03 2.775e-04
29.1 624.794 626.138 625.785 625.659 1.928 2.146e-03 5.639e-04
14.6 503.293 504.262 504.094 504.059 2.529 1.922e-03 3.329e-04
9.7 440.342 441.097 440.815 440.647 1.421 1.713e-03 6.397e-04

163.2 985.906 988.208 987.556 987.298 1.819 2.329e-03 6.602e-04
32.6 646.261 647.794 647.256 646.964 1.508 2.367e-03 8.321e-04
16.3 522.143 523.222 523.009 522.956 2.341 2.062e-03 4.071e-04
10.9 457.488 458.463 458.123 457.941 1.520 2.127e-03 7.416e-04
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Table B.3: Shock Pressure Values

φ f1 [psia] f2 [psia] f3 [psia] f ∗ [psia] p ε12 ε23

128.1 28.7196 28.6965 28.6911 28.6895 2.115 8.053e-04 1.859e-04
25.6 58.6819 58.6622 58.6610 58.6609 4.018 3.354e-04 2.071e-05
12.8 74.3954 74.6633 74.7866 74.8914 1.122 3.588e-03 1.649e-03
8.5 83.4709 83.7313 83.8758 84.0554 0.852 3.110e-03 1.723e-03

145.6 30.5587 30.5326 30.5253 30.5226 1.854 8.564e-04 2.369e-04
29.1 63.4878 63.4755 63.4749 63.4748 4.347 1.942e-04 9.540e-06
14.6 81.4129 81.6538 81.6727 81.6743 3.671 2.950e-03 2.315e-04
9.7 91.5456 91.8446 91.9482 92.0030 1.531 3.255e-03 1.127e-03

163.2 32.2523 32.2185 32.2115 32.2097 2.277 1.050e-03 2.166e-04
32.6 67.9913 67.9922 67.9923 67.9923 3.652 1.408e-05 1.120e-06
16.3 88.0072 88.0465 88.0270 88.0076 1.007 4.457e-04 2.217e-04
10.9 99.3308 99.6717 99.8062 99.8935 1.344 3.420e-03 1.347e-03

Table B.4: Shock Temperature Values

φ f1 [K] f2 [K] f3 [K] f ∗ [K] p ε12 ε23

128.1 722.6238 717.7034 716.5803 716.2474 2.129 6.856e-03 1.567e-03
25.6 488.7871 486.8125 484.8367 906.3445 -0.007 4.056e-03 4.075e-03
12.8 421.5859 420.0232 419.9085 419.8994 3.768 3.720e-03 2.732e-04
8.5 390.0532 388.7837 388.8209 388.8220 5.094 3.265e-03 9.558e-05

145.6 746.9986 741.8187 740.5133 740.0725 1.986 6.983e-03 1.763e-03
29.1 503.3376 500.9906 498.9173 482.6320 0.173 4.685e-03 4.156e-03
14.6 432.5402 431.2649 430.6129 429.9285 0.966 2.957e-03 1.514e-03
9.7 399.4374 397.8766 397.8284 397.8269 5.018 3.923e-03 1.211e-04

163.2 769.3374 763.9528 762.3900 761.7491 1.782 7.048e-03 2.050e-03
32.6 516.8604 514.2089 512.4115 508.5876 0.556 5.156e-03 3.508e-03
16.3 442.7632 441.6357 440.4817 485.8571 -0.037 2.553e-03 2.620e-03
10.9 408.1788 406.5399 406.5029 406.5020 5.469 4.031e-03 9.099e-05

56



Appendix B. Mesh Convergence

-1.5 -1 -0.5 0 0.5
-9

-8

-7

-6

-5

-1.5 -1 -0.5 0 0.5
-11

-10

-9

-8

-7

-6

-1.5 -1 -0.5 0 0.5
-10

-9

-8

-7

-6

Figure B.2: Shock Speed Logarithmic Error of Mesh Levels 1, 2, and 3
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Figure B.4: Shock Temperature Logarithmic Error of Mesh Levels 1, 2, and 3
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Algorithms

In order to make the process of computing Us, Ps, and Ts tractable, MATLAB

scripts were used. This appendix briefly outlines how it was done and shows sample

calculations.

C.1 Calculating Us

Computation of Us depended on an analogue of an x-t diagram. CTH outputs

particle velocity at a tracer in the hscth file. The script simply looked to see when

velocity at the tracer was greater than zero (0) and recorded the time from the hscth

time history column. This reduces to an overdetermined system since we desire a fit

of the form x = Us · t + b and four tracers were used. Computing the shock speed

was a matter of solving
t1 1

t2 1

t3 1

t4 1


Us
b

 =


161.985

233.105

330.895

402.015

 , (C.1)
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where ti is the shock arrival time in seconds at the ith tracer and the right hand

side represents shock tube lengthwise tracer locations in centimeters. The value of

b is not used directly in computing Us, but not forcing the fit to pass through zero

improves the quality of the fit. Correlations were checked as a way to see how well

the speed was resolved from the data. Every correlation value was unity, indicating

expected shock speed behavior.

C.2 Calculating Ps and Ts

When the shock front passes it induces pressure and temperature spikes that can be

determined using numerical derivatives. A centered-difference scheme was used at

each tracer. The temporal derivative is given by

df

dt
≈ f i+1 − f i−1

2∆t
, (C.2)

where f is the quantity of interest and t is time. The derivative was maximum

when the shock passed. Thus, finding the time corresponding to the maximum

derivative value allowed the MATLAB script to find the maximum shock pressure

and temperature. An example of shock pressure is shown in Figure C.1 where the

shock is nice and crisp. Slight amounts of ringing are observed on the expansion at

tracers 1 and 2. However, checks were performed by hand to show that the script

was not fooled by the presence of slight oscillations. For shock temperature shown in

Figure C.2, the temperature spikes due to the shock but then rapidly drops due to

the expansion of the gases following the shock. Again, the shock front is sharp and

well defined allowing for easy calculation of numerical derivatives to find maximum

temperatures.
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Figure C.1: Tracer Pressure History for φ = 128.1
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62



References

[1] I. Trueba Monje and J. H. Yoo, “Investigation of Dalton’s Law and Amagat’s
Law for Mixtures Using Shock Wave Propagation,” AIAA Region IV Student
Conference Paper, April 2016.

[2] G. D. Wyss and K. H. Jorgensen, “A Users’s Guide to LHS: Sandia’s Latin
Hypercube Sampling Software,” Software Documentation SAND98-0210, Sandia
National Laboratories, 1998.

[3] K. W. Woo and S. I. Yeo, “Dalton’s Law vs. Amagat’s Law for the Mixture
of Real Gases,” The SNU Journal of Education Research, vol. 5, pp. 127–134,
1995.

[4] G. J. Van Wylen and R. E. Sonntag, Fundamentals of Classical Thermodynam-
ics. Hoboken, NJ: Wiley, 2nd ed., 1973. pp. 405-420,431-476.

[5] D. Li, V. Sankaran, J. W. Lindau, and C. L. Merkle, “A Unified Computational
Formulation for Multi-Component and Multi-Phase Flows,” AIAA Paper 2005-
1391, January 2005.

[6] C. L. Merkle, J. Y. Sullivan, P. E. O. Buelow, and V. Sankaran, “Computation of
Flows with Arbitrary Equations of State,” AIAA Journal, vol. 36, pp. 515–521,
April 1998.

[7] P. S. Tow, “Evidence of Validity of Amagat’s Law in Determining Compressibil-
ity Factors for Gaseous Mixtures under Low and Moderate Pressures,” Journal
of Physical Chemistry, vol. 68, pp. 2021–2023, July 1964.

[8] G. A. Bird, “The Structure of Normal Shock Waves in a Binary Gas Mixture,”
Journal of Fluid Mechanics, vol. 31, no. 4, pp. 657–668, 1968.

[9] F. S. Sherman, “Shock-wave Structure in Binary Mixtures of Chemically Inert
Perfect Gases,” Journal of Fluid Mechanics, vol. 8, no. 3, pp. 465–480, 1960.

63



References

[10] J. A. Beattie, “The Computation of the Thermodynamic Properties of Real
Gases and Mixtures of Real Gases,” in Symposium on Thermodyanmics and
Molecular Structure of Solutions, September 1948.

[11] J. A. Beattie, “A Rational Basis for the Thermodynamic Treatment of Real
Gases and Mixtures of Real Gases,” Physical Review, vol. 36, no. 240, pp. 132–
145, 1930.

[12] M. Hobbs, M. R. Baer, and B. C. McGee, “JCZS: An Intermolecular Potential
Database for Performing Accurate Detonation and Expansion Calculations,”
Propellants, Explosives, Pyrotechnics, vol. 24, pp. 269–279, 1999.

[13] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. New
York, NY: Wiley, 2nd ed., 1985. pp. 35-39.

[14] J. M. McGlaun, S. L. Thompson, and M. G. Elrick, “CTH: A Three-Dimensional
Shock Wave Physics Code,” International Journal of Impact Engineering,
vol. 10, pp. 351–360, 1990.
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