
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

Summer 5-2017

Analytic Solutions for the Crack-Tip Plastic Zone
under Mixed Mode Loading Conditions
Jason Ivey
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Ivey, Jason. "Analytic Solutions for the Crack-Tip Plastic Zone under Mixed Mode Loading Conditions." (2017).
https://digitalrepository.unm.edu/me_etds/136

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/136?utm_source=digitalrepository.unm.edu%2Fme_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i 

 

    

  

       Jason Ivey    
       Candidate  

      

       Mechanical Engineering    

     Department 

      

 

     This thesis is approved, and it is acceptable in quality and form for publication: 

 

     Approved by the Thesis Committee: 

 

               

       Tariq Khraishi                                                                                        , Chairperson 

  

 

     Mehran Tehrani 

 

 

     Yu-Lin Shen 

 

 

           

 

 

           

 

 

           

 

 

            

 

 

            

 

 

            

 

 

  
 

 

 

 

 



ii 

 

     

  

  

  

  

  

 

ANALYTIC SOLUTIONS FOR THE CRACK-TIP PLASTIC  

ZONE RADIUS UNDER MIXED MODE LOADING 

CONDITIONS 

      

 

 

by 

 

 

JASON IVEY 

 

BACHELORS OF SCIENCE 

MECHANICAL ENGINEERING 

UNIVERSITY OF NEW MEXICO 

2014 

 

 

 

 

 

 

 

 

 

THESIS 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

 

Master of Science 

Mechanical Engineering 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

 

July 2017 
 

 

 



iii 

 

Analytic Solutions for the Crack-Tip Plastic Zone Radius 

Under Mixed Mode Loading Conditions 

 

 

By 

 

 

Jason Ivey 

 

 

B.S., Mechanical Engineering, University of New Mexico, 2014 

M.S., Mechanical Engineering, University of New Mexico, 2017 

 

Abstract 
 

Analytic solutions for the plastic region surrounding a crack tip are derived under 

mixed mode I/II and mixed mode I/II/III loading conditions for an elastic-plastic solid 

with a semi-infinite crack. Both the Von Mises and Tresca yield criteria are applied. 

Additionally, plane stress and plane strain assumptions are included when applicable. The 

results show a strong dependence on the ratio of the stress intensity factors for each 

loading mode. It is shown that the plastic zone area given by the Tresca yield criterion is 

larger than that given by the Von Mises yield criterion. Lastly, it is investigated whether 

or not there is a correlation between the crack initiation angle predicted by the R-criterion 

(Khan and Khraisheh (2004)) and the principal stress directions. 
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Introduction: 

An important area of focus in fracture mechanics is the region surrounding a 

crack-tip. Knowing how this region behaves under loading can help predict not only if a 

crack will propagate, but can also help predict in which direction it will grow. To do this, 

both the size and shape of the plastic deformation radius around the crack-tip is found. 

Work on the plastic zone can be traced back to Irwin (1957) and Dugdale (1960). Banks 

and Garlick (1984) and Guerra-Rosa et al. (1984) presented analytic solutions for the 

plastic zone boundary using the Von Mises yield criterion for individual modes of 

loading. Additional work for individual loading modes has been done by Jing (2003, 

2004) and Unger (1990), with the former investigating all three modes, and the later 

investigating mode III only. 

The first to study crack initiation angles under mixed mode loading in the 

presence of an angled crack were Erdogan and Sih (1963). They presented the maximum 

tangential stress criterion, a widely-used theory for crack growth. Khan and Khraisheh 

(2004) continued the work with angled cracks by presenting a new growth criterion, 

called the R-criterion. They theorized the crack will grow toward the minimum plastic 

zone radius based on the minimum plastic work needed to create cracked surfaces. 

Theocaris and Andrianopolous (1982) presented the T-criterion, which uses a critical 

dilatational strain value to find the critical load at which a crack will propagate. Yehia 

(1991) modified this work by theorizing that the critical fracture load occurs at a critical 

value of the plastic region, naming it the Y-criterion. Additional mixed mode loading 

work has been presented by Iida and Kobayashi (1969) and Golos and Wasiluk (2000). 
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Another method that has been used to determine the plastic zone is the finite 

element method (FEM). Dodds et al.(1991) and Mishra and Parida (1985) both presented 

work on the plastic zone using FEM. Dodds showed the effects that strain hardening can 

have on the plastic zone size, whereas Mishra and Parida determined that the plastic zone 

size given by the Tresca yield criterion is larger than that given by the Von Mises yield 

criterion. Both assume an elastic-plastic material. Baxevanis et al. (2012) used a 

pseudoelastic shape memory alloy (SMA) under the plane strain assumption, and 

compared results obtained using FEM with those utilizing the more traditional elastic-

plastic material. It was found that the plastic zone size of a SMA is an order of magnitude 

smaller than that of an elastic-plastic material. 

Additionally, some effort has been made to create experimental results that can be 

used to test the accuracy of analytic models. Theocaris et al. (1982), and Kong et al. 

(1995) both presented data gained from uniaxial tension tests. In the case of Theocaris et 

al., a ductile material was used to evaluate the T-criterion, which states that small crack 

inclination angles must have propagation angles larger than 90°. Kong et al. used the 

maximum triaxial stress to determine the crack initiation angle, and found that the 

experimental results accurately described the predicted results. Although compression is 

not used for crack growth often, Vallejo (1987) obtained experimental data using uniaxial 

compression tests. 

For mixed mode loading, the only criterion seen used in analytic work to find the 

plastic zone radius, to the knowledge of this author, is the Von Mises yield criterion. 

Additionally, no analytic solutions could be found for mixed mode loading other than 

mixed mode I/II. This paper presents analytic solutions for mixed modes I/II, I/III, II/III, 
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and I/II/III, although focusing on mixed modes I/II and I/II/III. Additionally, solutions are 

presented for both the Von Mises and Tresca yield criteria, with the later including the 

Invariant form and the principal stress form. 

 

Individual Mode Stress State Definitions: 

The stress components under each mode of loading are given in equations (1) 

through (13). As Irwin (1957) suggested, like stress components from separate applied 

loads on a single object can simply be added together, even when multiple types of 

tearing modes are present. Therefore, from the superposition process, a single term can be 

obtained for each stress component used in a given yield criterion. 

 

Figure 0 Crack-Tip location relative to polar and Cartesian coordinate systems 

Mode I stress states 

𝜎𝑥𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin(2𝜃) sin (

3𝜃

2
))      (1) 
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𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 + sin(2𝜃) sin (

3𝜃

2
))     (2) 

𝜎𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
) sin (

3𝜃

2
)                  (3) 

𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0                                                            (4) 

𝜎𝑧𝑧 = {
0                                 (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠)

𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)           (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑎𝑖𝑛)
      (5) 

 

Mode II stress states 

𝜎𝑥𝑥 = −
𝐾𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
) (2 + cos (

𝜃

2
) cos (

3𝜃

2
))   (6) 

𝜎𝑦𝑦 =
𝐾𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
) cos (

𝜃

2
) cos (

3𝜃

2
)                  (7) 

𝜎𝑥𝑦 =
𝐾𝐼𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin (

𝜃

2
) sin (

3𝜃

2
))      (8) 

𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0                                                              (9) 

𝜎𝑧𝑧 = {
0                                   (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠)

𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)            (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑎𝑖𝑛)
     (10) 

 

Mode III stress states 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 𝜎𝑥𝑦 = 0     (11) 

𝜎𝑥𝑧 = −
𝐾𝐼𝐼𝐼

√2𝜋𝑟
sin (

𝜃

2
)                (12) 

𝜎𝑦𝑧 =
𝐾𝐼𝐼𝐼

√2𝜋𝑟
cos (

𝜃

2
)                  (13) 
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Yield Criteria Definitions: 

The plastic zone size can be determined by using one of several yielding criteria, 

including the Von Mises criterion, the Tresca invariant criterion, and the Tresca principal 

stress criterion. The Von Mises criterion is defined as: 

𝜎𝑒 =
1

√2
((𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2

+ 6(𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2 + 𝜎𝑦𝑧
2 ))

1/2

   (14) 

Yielding occurs when σe=σys, where σe is the effective stress and σys is the yield stress 

under uniaxial tension. 

The Tresca invariant-form yield criterion is defined as: 

4𝐽2
3 − 27𝐽3

2 − 36𝑘2𝐽2
2 + 96𝑘4𝐽2 − 64𝑘6 = 0    (15) 

J2 and J3 are invariants from the deviatoric stress tensor, and k= σys/2, which is the yield 

stress under shearing conditions. J2 is given as  

𝐽2 =
1

6
((𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2 + 6(𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2 + 𝜎𝑦𝑧
2 ))   (16) 

and J3 is given as 

𝐽3 = det

[
 
 
 
 
 
2𝜎𝑥𝑥 − 𝜎𝑦𝑦 − 𝜎𝑧𝑧

3
𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥

2𝜎𝑦𝑦 − 𝜎𝑥𝑥 − 𝜎𝑧𝑧

3
𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦

2𝜎𝑧𝑧 − 𝜎𝑥𝑥 − 𝜎𝑦𝑦

3 ]
 
 
 
 
 

     (17) 

The final yield criteria considered is the Tresca Principal Stress criteria, defined as : 

𝜎3 − 𝐼1𝜎
2 − 𝐼2𝜎 − 𝐼3 = 0     (18) 

I1, I2, and I3 are given as: 

𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧                       (19) 
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𝐼2 = 𝜎𝑥𝑦
2 + 𝜎𝑥𝑧

2 + 𝜎𝑦𝑧
2 − 𝜎𝑥𝑥𝜎𝑦𝑦 − 𝜎𝑥𝑥𝜎𝑧𝑧 − 𝜎𝑦𝑦𝜎𝑧𝑧      (20) 

𝐼3 = 𝜎𝑥𝑥𝜎𝑦𝑦𝜎𝑧𝑧 + 2𝜎𝑥𝑦𝜎𝑥𝑧𝜎𝑦𝑧 − 𝜎𝑥𝑥𝜎𝑦𝑧
2 − 𝜎𝑦𝑦𝜎𝑥𝑧

2 − 𝜎𝑧𝑧𝜎𝑥𝑦
2        (21) 

After solving for the principal stresses, either 

𝜎1 − 𝜎2

2
= 𝑘      (22)    𝑜𝑟    

𝜎1 − 𝜎3

2
= 𝑘     (23)      𝑜𝑟     

𝜎2 − 𝜎3

2
= 𝑘     (24) 

is used to determine when yielding occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

Primary Work 

Mixed Mode I/II 

Before similar components of the stress equations (1) through (5) and (6) through 

(10) can be combined, it must be noted that two separate stress intensity factors are 

present. The plastic zone radii are typically normalized with respect to the stress intensity 

factor, along with several other variables, thereby creating a non-dimensional value for 

each radius. To maintain a non-dimensional value, a ratio of the two stress intensity 

factors is created so a single factor may be used for normalization. The ratio is defined as: 

𝐾𝑟1 =
𝐾𝐼𝐼

𝐾𝐼
          (25) 

Adding equations (1) through (5) with (6) through (10), and combing the resulting 

equations with (25) gives a final set of stress values. 

𝜎𝑥𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin(2𝜃) sin (

3𝜃

2
))

−
𝐾𝐼𝐾𝑟1

√2𝜋𝑟
sin (

𝜃

2
) (2 + cos (

𝜃

2
) cos (

3𝜃

2
))   (26) 

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 + sin(2𝜃) sin (

3𝜃

2
)) +

𝐾𝐼𝐾𝑟1

√2𝜋𝑟
sin (

𝜃

2
) cos (

𝜃

2
) cos (

3𝜃

2
)      (27) 

𝜎𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
) sin (

3𝜃

2
)

+
𝐾𝐼𝐾𝑟1

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin (

𝜃

2
) sin (

3𝜃

2
))                  (28) 

𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0                                                            (29) 

𝜎𝑧𝑧 = {
0                                           (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠)

𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)                    (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑎𝑖𝑛)
     (30) 
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Von Mises 

Equations (26) through (30) are substituted into equation (14), following which 

the radius of the plastic zone can be directly solved for. Finally, the radius is normalized 

with respect to the yield stress and the stress intensity factor under mode I loading as 

shown in equation (31). 

𝑟(𝜃) =
𝑅(𝜃) (𝜋𝜎𝑦𝑠

2 )

𝐾𝐼
2      (31) 

The non-dimensional results for the plastic zone are 

𝑟(𝜃) =
1

16
(7 + 19𝐾𝑟1

2 + (−3 + 9𝐾𝑟1
2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃))          (32) 

for plane stress, and 

𝑟(𝜃) =
1

16
(7 + 16(−1 + 𝜈)𝜈 + 𝐾𝑟1

2(19 + 16(−1 + 𝜈)𝜈)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝜈)2 cos 𝜃 + (−3 + 9𝐾𝑟1

2) cos 2𝜃

+ 8𝐾𝑟1(−(1 − 2𝜈)2 + 3 cos 𝜃) sin 𝜃             (33) 

for plane strain. All mathematical results herein were obtained using the symbolic engine 

of Mathematica software. 
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Figure 1 Mixed Mode I/II Von Mises: Plane Stress Plastic Zone Radius 

 

Figure 2 Mixed Mode I/II Von Mises: Plane Strain Plastic Zone Radius Kr1=1 
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Figure 3 Kidney-Shape representing pure mode I 

 

Figure 4 Peanut-Shape representing pure mode II 

     

Figure (1) shows the plastic zone shape under the plane stress condition for six 

stress intensity factor ratios. In this and all following figures with polar coordinates, the 

crack extends from the left of the horizontal line to the center of the figure. There are 
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three visible trends that can easily be seen. First the plastic zone area increases as the K 

ratio increases. Second, the shape rotates clockwise with an increase in K ratio. Lastly, 

the shape changes. The larger K ratios are shaped like a peanut. As the ratio decreases, 

one side begins to flatten and the other side constricts, becoming more kidney shape. 

Examples of the peanut and kidney shapes can be seen in figures (3) and (4). This 

behavior is expected as it follows the transition from closer to pure mode II loading to 

closer to pure mode I loading as the K ratio decreases.  

Figure (2) shows the plastic zone shape under the plane strain condition for a 

single stress intensity factor, Kr1=1, and six Poisson’s ratios. Two of three trends seen in 

figure (1) can be seen in figure (2). As the Poisson’s ratio increases, the plastic zone 

shape changes from the more kidney shape, becoming more peanut-like in shape. 

Additionally, the plastic zone size decreases as the Poisson’s ratio increases. Although 

not shown, it should also be noted that there is a rotation trend as well for a constant 

Poisson’s ratio and changing stress intensity factor ratios. 

 

Tresca Invariant 

Equations (26) through (30) are combined with (15) through (17), giving a cubic equation 

for the radius in the form: 

𝑟3 + 𝑎(𝜃)𝑟2 + 𝑏(𝜃)𝑟 + 𝑐(𝜃) = 0     (34) 

The roots can be found analytically using the equations below. 

𝑝 =
3𝑏 − 𝑎2

3
   (35) 

𝑞 = 𝑐 +
2𝑎3

27
−

𝑎𝑏

3
   (36) 
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cos𝜑 = −
𝑞

2√(
|𝑝|
3 )

3

   (37) 

There are three real roots if: 

𝐷 = (
𝑝

3
)
3

 + (
𝑞

2
)
2

< 0    (38) 

The three solutions are then in the form of: 

𝑟1 = −
𝑎

3
+ 2√

|𝑝|

3
cos

𝜑

3
    (39) 

𝑟2 = −
𝑎

3
− 2√

|𝑝|

3
cos

𝜑 − 𝜋

3
    (40) 

𝑟3 = −
𝑎

3
− 2√

|𝑝|

3
cos

𝜑 + 𝜋

3
    (41) 

For plane stress the roots are: 

𝑟1 =
𝑓1
24

(1 + cos (
1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓1
3 + 𝑓2

𝑓1
3 )))     (42) 

𝑟2 =
𝑓1
24

(1 − cos(
1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓1
3 + 𝑓2

𝑓1
3 ))))    (43) 

𝑟3 =
𝑓1
24

(1 − cos(
1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓1
3 + 𝑓2

𝑓1
3 ))))    (44) 

where 

𝑓1 = 7 + 19𝐾𝑟1
2 + (−3 + 9𝐾𝑟1

2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃)       (45) 
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𝑓2 = 864 cos (
𝜃

2
)
4

(1 + 𝐾𝑟1
2 + cos 𝜃 − 3𝐾𝑟1

2 cos 𝜃 − 4𝐾𝑟1 sin 𝜃)(1 + 5𝐾𝑟1
2

+ (−1 + 3𝐾𝑟1
2) cos 2𝜃 + 4𝐾𝑟1 sin 2𝜃)         (46) 

For plane strain the roots are: 

𝑟1 =
𝑓3
24

(1 + cos (
1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓3
3 + 𝑓4

𝑓3
3 )))       (47) 

𝑟2 =
𝑓3
24

(1 − cos(
1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓3
3 + 𝑓4

𝑓3
3 ))))        (48) 

𝑟3 =
𝑓3
24

(1 − cos(
1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓3
3 + 𝑓4

𝑓3
3 ))))        (49) 

where 

𝑓3 = 7 + 16(−1 + 𝜈)𝜈 + 𝐾𝑟1
2(19 + 16(−1 + 𝜈)𝜈) − 4(−1 + 𝐾𝑟1

2)(1 − 2𝜈)2 cos 𝜃

+ (−1 + 3𝐾𝑟1
2) cos 2𝜃 + 8𝐾𝑟1((1 − 2𝜈)2 + 3 cos 𝜃) sin 𝜃      (50) 

𝑓4 = 54(−3 + 𝐾𝑟1
2 + 16(1 + 𝐾𝑟1

2)𝜈 − 16(1 + 𝐾𝑟1
2)𝜈2 + 4(−1 + 𝐾𝑟1

2)(1 − 2𝜈)2 cos 𝜃

+ (−1 + 3𝐾𝑟1
2) cos 2𝜃 + 8𝐾𝑟1((1 − 2𝜈)2 + cos 𝜃) sin 𝜃)2 (1 + 5𝐾𝑟1

2

+ (−1 + 3𝐾𝑟1
2) cos 2𝜃 + 4𝐾𝑟1 sin 2𝜃)        (51) 
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Figure 5 Mixed Mode I/II Tresca Invariant Form: Plane Stress Kr1=0.2 

 

Figure 6 Mixed Mode I/II Tresca Invariant Form: Plane Stress Kr1=1 
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Figure 7 Mixed Mode I/II Tresca Invariant Form: Plane Stress Kr1=2 

 

Figure 8 Mixed Mode I/II Tresca Invariant Form: Plane Strain v=0 Kr1=1 
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Figure 9 Mixed Mode I/II Tresca Invariant Form: Plane Strain v=0.2 Kr1=1 

 

Figure 10 Mixed Mode I/II Tresca Invariant Form: Plane Strain v=0.4 Kr1=1 

 

For any θ, the radius with the maximum value is used at that point. For all six 

figures shown above, r1 is always largest, and thus is the only radius needed for analysis. 

Figures (5) through (7) show the results for the Tresca invariant form yield criterion using 

the plane stress assumption. As was seen in the results from the Von Mises yield 

criterion, the shape rotates from a more vertical position closer to a horizontal position as 
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the K ratio increases. Again, this coincides with the transition from mostly mode I 

loading to mostly mode II loading. A shape change similar to that seen in the Von Mises 

results is also present, but with an additional feature. As the mode II loading becomes 

more prevalent, an unexpected slope discontinuity appears. In figure (6) it occurs at θ=0°, 

and in figure (7) it occurs at θ=330°. When the shear loading starts to become dominant, 

the slope discontinuity becomes less severe. However, once the Poisson’s ratio is 

introduced and increased, as seen in figures (8) through (10) for the plane strain 

assumption, this additional slope discontinuity starts to disappear. 

Tresca Principal Stress 

Using the Tresca Principal Stress criteria, equations (26) through (30) are 

combined with (18) through (21), yielding another cubic root. Using the same root 

formula seen in the Tresca Invariant Form criteria, the principal stresses are: 

𝜎1 =
1

6

(

 
 

𝑓5 + √𝑓6 cos

(

 
 1

3
𝐴𝑟𝑐𝐶𝑜𝑠

(

 
𝑓5𝑓7

√𝑓6
3

)

 

)

 
 

)

 
 

     (52) 

𝜎2 =
1

6

(

 
 

𝑓5 − √𝑓6 cos

(

  
 1

3

(

 
 

−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠

(

 
𝑓5𝑓7

√𝑓6
3

)

 

)

 
 

)

  
 

)

 
 

      (53) 

𝜎3 =
1

6

(

 
 

𝑓5 − √𝑓6 cos

(

  
 1

3

(

 
 

𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠

(

 
𝑓5𝑓7

√𝑓6
3

)

 

)

 
 

)

  
 

)

 
 

       (54) 

where 

𝑓5 = 2√2(cos
𝜃

2
− 𝐾𝑟1 sin

𝜃

2
)      (55) 
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𝑓6 = 7 + 19𝐾𝑟1
2 + (−3 + 9𝐾𝑟1

2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃)       (56) 

𝑓7 = 5 + 41𝐾𝑟1
2 + 9(−1 + 3𝐾𝑟1

2) cos 2𝜃 + 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (−1 + 𝐾𝑟1
2 + 18𝐾𝑟1 sin 𝜃)  (57) 

 

for plane stress, and 

𝜎1 =
1

6
(𝑓8(1 + 𝜈) + √𝑓9 cos(

1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓8𝑓10(−1 + 2𝜈)

√𝑓9
3

)))       (58) 

𝜎2 =
1

6
(𝑓8(1 + 𝜈) − √𝑓9 cos(

1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓8𝑓10(−1 + 2𝜈)

√𝑓9
3

))))     (59) 

𝜎3 =
1

6
(𝑓8(1 + 𝜈) − √𝑓9 cos(

1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓8𝑓10(−1 + 2𝜈)

√𝑓9
3

))))     (60) 

where 

𝑓8 = 2√2(cos
𝜃

2
− 𝐾𝑟1 sin

𝜃

2
)       (61) 

𝑓9 = 7 + 16(−1 + 𝜈) + 𝐾𝑟1
2(19 − 16𝜈 + 16𝜈2) − 4(−1 + 𝐾𝑟1

2)(1 − 2𝜈)2 cos 𝜃

+ 3(−1 + 3𝐾𝑟1
2) cos 2𝜃 − 8𝐾𝑟1((1 − 2𝜈)2 − 3 cos 𝜃) sin 𝜃     (62) 

𝑓10 = 5 − 16(−1 + 𝜈)𝜈 + 𝐾𝑟1
2(41 − 16(−1 + 𝜈)𝜈) + 4(−1 + 𝐾𝑟1

2)(1 − 2𝜈)2 cos 𝜃

+ 9(−1 + 3𝐾𝑟1
2) cos 2𝜃 + 8𝐾𝑟1((1 − 2𝜈)2 + 9 cos 𝜃) sin 𝜃     (63) 

for plane strain. It should be noted that, in some cases, functions (ex. f1, f2…) will be 

equal to each other. For example, f1 and f6 are equal, but are each written and labeled 

separately. This is done for the convenience of the reader since the instance where a 

function is repeated may be sufficiently far from its original occurrence. 
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After substituting these principal stress terms into equations (22) through (24), 

and then taking the maximum of the three equations, the plastic zone radius can be found. 

It should be noted that the radii shown in figures (11) and (12) are obtained numerically. 

In order to have a purely analytic radius, it must be known which principal stress criterion 

is dominant over a given range of θ. It can be shown that the value for σ2 derived from 

the cubic root solutions in equations (39) through (41) will always be the smallest term. 

However, one must solve for the θ inside the φ shown in those equations to determine 

when which of the remaining principal stresses is the maximum. For mixed mode I/II, 

under plane stress, there are 9 distinct solutions for θ representing when one principal 

stress surpasses the other. Due to this large number of solutions, and the larger number 

that would exist when the Poisson’s ratio and a second stress intensity factor are 

introduced, it was determined that an analytic solution for the principal stresses 

themselves is sufficient, and that the radii can be found numerically. 

 

Figure 11 Mixed Mode I/II Tresca Principal Stress: Plane Stress 
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Figure 12 Mixed Mode I/II Tresca Principal Stress: Plane Strain Kr1=1 

Figures (11) and (12) show the plastic zone shape under the plane stress and plane 

strain conditions, respectively, for the Tresca principal stress criterion. These match the 

outer radii in figures (5) through (10). This is expected as they use the same yield 

criterion, just using different methods. Figures (11) and (12) also more clearly show the 

behavior of the slope discontinuity discussed earlier. 

 

Mode I/II/III 

Similar to mixed mode I/II, mixed mode I/II/III contains more than one type of 

stress intensity factor. The same process is used to describe the stress states with respect 

to a single stress intensity factor, only in this case a second ratio must be introduced. 

𝐾𝑟2 =
𝐾𝐼𝐼𝐼

𝐾𝐼
          (64) 
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Another complication occurs due to the presence of the mode III loading, an out of plane 

type of loading. The plane stress condition becomes invalid, and the plane strain 

condition can no longer accurately describe a physical system. Any real system will lie 

somewhere in the middle, between a very thin plate (i.e. plane stress), and very thick 

plate (i.e. plane strain). The simplest way to account for this is to include a constant, C, in 

front of the Poisson’s ratio (i.e. C ν instead of ν), and confine C to values between zero 

and one. In place of the constant and Poisson’s ratio term, it makes sense that a single 

term, α, be used in its place. 

𝛼 = 𝐶𝜈   (65) 

Adding like stress components in equations (1) through (5) with (6) through (10) and (11) 

through (13), and then combining with equations (25), (64), and (65) gives: 

𝜎𝑥𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin(2𝜃) sin (

3𝜃

2
))

−
𝐾𝐼𝐾𝑟1

√2𝜋𝑟
sin (

𝜃

2
) (2 + cos (

𝜃

2
) cos (

3𝜃

2
))   (66) 

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) (1 + sin(2𝜃) sin (

3𝜃

2
)) +

𝐾𝐼𝐾𝑟1

√2𝜋𝑟
sin (

𝜃

2
) cos (

𝜃

2
) cos (

3𝜃

2
)      (67) 

𝜎𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
) sin (

3𝜃

2
)

+
𝐾𝐼𝐾𝑟1

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin (

𝜃

2
) sin (

3𝜃

2
))                  (68) 

𝜎𝑥𝑧 = −
𝐾𝐼 𝐾𝑟2

√2𝜋𝑟
sin (

𝜃

2
)           (69) 

𝜎𝑦𝑧 =
𝐾𝐼 𝐾𝑟2

√2𝜋𝑟
cos (

𝜃

2
)              (70) 

𝜎𝑧𝑧 = 𝛼(𝜎𝑥𝑥 + 𝜎𝑦𝑦)      (71) 
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The processes for finding the plastic zone with each yield criteria under mixed mode I/II 

loading are repeated for the mixed mode I/II/III loading case, now using equations (66) 

through (71) as the stress components. 

Von Mises 

The plastic zone radius using the Von Mises criterion is found to be: 

𝑟 =
1

16
(7 + 24𝐾𝑟2

2 + 16(−1 + 𝛼)𝛼 + 𝐾𝑟1
2(19 + 16(−1 + 𝛼)𝛼)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝛼)2 cos 𝜃 + (−3 + 9𝐾𝑟1

2) cos 2𝜃

+ 8𝐾𝑟1(−(1 − 2𝛼)2 + 3 cos 𝜃) sin 𝜃)    (72) 

 

Figure 13 Mixed Mode I/II/III Von Mises Kr1=1, α=0.3 

 

Figure (13) shows the results for mixed mode I/II/III loading using the Von Mises 

yield criterion. Single values for Kr1 and α were used, 1 and 0.3, respectively, so the 

effects of the second stress intensity factor ratio, Kr2, can be observed. Figure (13) 
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contains several of the same general forms of behavior seen in figure (1). As Kr2 

increases, the radius becomes more circular as mode III loading becomes the more 

dominant form of loading. Additionally, the radius grows larger as Kr2 increase. There is 

no rotation with a change in Kr2 due to the fact that mode III loading is out-of-plane 

loading. 

Tresca Invariant Form 

Using the Tresca Invariant form yielding criterion, the radii are: 

𝑟1 =
𝑓11

24
(1 + cos[

1

3
𝐴𝑟𝑐𝐶𝑜𝑠[

−𝑓11
3 + 2(𝑓11

3 + 𝑓12𝑓13
2)

𝑓11
3 ]])       (73) 

𝑟2 =
𝑓11

24
(1 − cos[

1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 [

−𝑓11
3 + 2(𝑓11

3 + 𝑓12𝑓13
2)

𝑓11
3 ])])      (74) 

𝑟3 =
𝑓11

24
(1 − cos[

1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 [

−𝑓11
3 + 2(𝑓11

3 + 𝑓12𝑓13
2)

𝑓11
3 ])])      (75) 

where 

𝑓11 = 7 + 24𝐾𝑟2
2 + 16(−1 + 𝛼)𝛼 + 𝐾𝑟1

2(19 + 16(−1 + 𝛼)𝛼)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝛼)2 cos 𝜃 + (−3 + 9𝐾𝑟1

2) cos 2𝜃

+ 8𝐾𝑟1(−(1 − 2𝛼)2 + 3 cos 𝜃) sin 𝜃           (76) 

𝑓12 = −8(cos
𝜃

2
− 𝐾𝑟1 sin

𝜃

2
)2       (77) 

𝑓13 = (−1 − 4𝛼)(5 + 18𝐾𝑟2
2 + 2𝛼(−7 + 4𝛼)) + 𝐾𝑟1

2 (−41 + 2𝛼(33 + 8𝛼(3 − 2𝛼)))

+ 2(27𝐾𝑟2
2 − 2(1 + 2𝛼)3 + 2𝐾𝑟1

2(−1 + 2𝛼)3) cos 𝜃

+ (−1 + 2𝛼)(9(−1 + 3𝐾𝑟1
2) cos 2𝜃

+ 8𝐾𝑟1((1 − 2𝛼)2 + 9 cos 𝜃) sin 𝜃)        (78) 
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Figure 14 Mixed Mode I/II/III Tresca Invariant Form: Kr1=1, α=0.3, Kr2=0.2 

 

Figure 15 Mixed Mode I/II/III Tresca Invariant Form: Kr1=1, α=1, Kr2=1 
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Figure 16 Mixed Mode I/II/III Tresca Invariant Form: Kr1=1, α=0.3, Kr2=2 

 

Figures (14) through (16) show the results for the Tresca invariant form. As was 

the case in figures (5) through (10), r1 is always the maximum value, and thus is the only 

radius needed for analysis. The shape and size change patterns seen in figures (11) and 

(12) are present here as well for r1. However, figure (12) shows two slope discontinuities, 

whereas only one is present in figure (14), occurring roughly at θ=355°. This is similar to 

the mixed mode I/II case in the fact that no slope discontinuities were present using the 

Von Mises yield criterion, and then appeared in the Tresca yield criterion figures. 

Additionally, as mode III loading is introduced, the slope discontinuity disappears. 

Tresca Principal Stress 

The principal stresses are found to be: 

𝜎1 =
1

6
(𝑓14(1 + 𝛼) + √𝑓15 cos (

1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓14𝑓16

𝑓15
))     (79) 
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𝜎2 =
1

6
(𝑓14(1 + 𝛼) − √𝑓15 cos (

1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓14𝑓16

𝑓15
)))      (80) 

𝜎3 =
1

6
(𝑓14(1 + 𝛼) − √𝑓15 cos (

1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (−

𝑓14𝑓16

𝑓15
)))      (81) 

where 

𝑓14 = 2√2 (cos
𝜃

2
− 𝐾𝑟1 sin

𝜃

2
)       (82) 

𝑓15 = 7 + 24𝐾𝑟2
2 + 16(−1 + 𝛼)𝛼 + 𝐾𝑟1

2(19 − 16𝛼 + 16𝛼2)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝛼)2 cos 𝜃 + 3(−1 + 3𝐾𝑟1

2) cos 2𝜃

− 8𝐾𝑟1((1 − 2𝛼)2 − 3 cos 𝜃) sin 𝜃          (83) 

𝑓16 = (−1 − 4𝛼)(5 + 18𝐾𝑟2
2 + 2𝛼(−7 + 4𝛼)) + 𝐾𝑟1

2(−41 + 2𝛼(33 + 8(3 − 2𝛼)𝛼))

+ 2(27𝐾𝑟2
2 − 2(−1 + 2𝛼)3 + 2𝐾𝑟1

2(−1 + 2𝛼)3) cos 𝜃

+ (−1 + 2𝛼)(9(−1 + 3𝐾𝑟1
2) cos 2𝜃

+ 8𝐾𝑟1((1 − 2𝛼)2 + 9 cos 𝜃) sin 𝜃)       (84) 

 

Again, using equations (22) through (24) and taking the maximum of the three, the plastic 

zone radius can be found. As discussed earlier, the radius is found numerically. 
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Figure 17 Mixed Mode I/II/III Tresca Principal Stress Kr1=1, α=0.3 

Figure (17) matches the results seen in figures (14) through (16) as expected when using 

two forms of the same yield criterion. The effect of KIII in the form of Kr2 can more be 

easily seen in figure (17) than in figures (14) through (16). 
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Verification 

Self Verification 

Several types of verification were performed on the above results to ensure their 

accuracy. These included self verification, comparisons to work presented in other papers 

at lesser complexity, and comparisons to work presented in other papers at the same level 

of complexity. For the self verification, it is confirmed that the results given under mode 

I/II/III loading conditions reduce to match those under plane strain mode I/II loading in 

the absence of mode III loading, and by setting α equal to ν. The former is done by 

setting Kr2 equal to zero. It should be noted that, as stated earlier, only the principal 

stresses were derived analytically for the principal stress criterion. As such, all 

verification of that criterion is done with respect to the principal stresses themselves, and 

not the radii which were generated numerically. 

For the Von Mises criterion, these conditions are plugged into equation (72). This 

reduces to  

𝑟(𝜃) =
1

16
(7 + 16(−1 + 𝜈)𝜈 + 𝐾𝑟1

2(19 + 16(−1 + 𝜈)𝜈)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝜈)2 cos 𝜃 + (−3 + 9𝐾𝑟1

2) cos 2𝜃

+ 8𝐾𝑟1(−(1 − 2𝜈)2 + 3 cos 𝜃) sin 𝜃             (85) 

which matches equation (33). For the invariant criterion, the listed conditions are 

combined with equations (73) through (75), and reduce to match equations (47) through 

(49). When reducing the results from the principal stress criterion, however, a graphical 

approach was required to verify the consistency of equations (79) through (81) with 

equations (58) through (60) under the above conditions. Figure (18) shows an exact 
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match. It should be noted that a value for the Poisson’s ratio, when present, is required to 

generate graphical results. In all such cases, it is assigned a value of 0.3. 

 

Figure 18 Comparison of Mixed Mode I/II/III to Mixed Mode I/II Principal Stress: Plane Strain 

Additionally, it is confirmed that the results given using the plane strain 

assumption match those given using the plane stress assumption when ν is set equal to 

zero. For the Von Mises criterion, equation (33) reduces to 

𝑟(𝜃) =
1

16
(7 + 19𝐾𝑟1

2 + (−3 + 9𝐾𝑟1
2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃))      (86) 

which matches equation (32). For the invariant criterion, equations (47) through (49) 

reduce to match equations (42) through (44). Similarly, for the principal stress criterion, 

equations (58) through (60) reduce to match (52) through (54). 

Single Mode Loading Verification 

 Much work has been presented for the plastic zone size under an individual 

loading mode, so it is important to confirm the work presented in this paper can reduce to 

these simpler cases. Results present by Jing et al. (2003, 2004) are used for comparisons, 

as those papers use all three yield criteria used in this paper, whereas all other papers 
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found by this author only present work using the Von Mises yield criterion. For mode III 

loading, the comparison is made with the reduced results of the mode I/II/III loading 

work. For mode I loading and mode II loading, the comparisons are made with the 

reduced results from the mode I/II loading work. 

 To verify the pure mode I loading case, Kr1 is set to zero. Using the Von Mises 

criterion, equations (32) and (33) reduce to  

𝑟 =
1

16
[7 + 4 cos(𝜃) − 3 cos(2𝜃)]            (87) 

for plane stress, and 

𝑟 =
1

4
(cos2(𝜃))[5 − 8𝜈 + 8𝜈2 − 3 cos(𝜃)]        (88) 

for plane strain, which match equations (30) and (38), respectively, from Jing et al. 

(2004). For both the invariant and principal stress criteria, a graphical verification was 

required. Figures (19) through (22) below show exact matches for each criterion, under 

both plane stress and plane strain, with the results from Jing et al. (2004). 
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Figure 19 Pure Mode I Tresca Invariant Form: Plane Stress 

 

Figure 20 Pure Mode I Tresca Invariant Form: Plane Strain, ν=0.3 
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Figure 21 Pure Mode I Tresca Principal Stresses: Plane Stress 

  

 

Figure 22 Pure Mode I Tresca Principal Stresses: Plane Strain, ν=0.3 

 

Verification for the pure mode II and pure mode III cases are not as simple. All 

original work presented in this paper is normalized with respect to KI, but in the absence 

of mode I loading, it is necessary to normalize with respect to a different stress intensity 

factor. Specifically, the results need to be normalized with respect to the single mode 

present, KII for mode II loading and KIII for mode III loading. The remaining loading 
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modes must then be removed by setting their respective stress intensity factor to zero. 

However, the results must first be de-normalized with respect to KI due to its presence in 

the denominator of the normalized radii and principal stresses. This is done simply by 

multiplying the expressions for the plastic zone radius or principal stresses by KI of the 

appropriate order. For the Von Mises and Tresca invariant criteria, this entails 

multiplying by KI
2. For the Tresca principal stress criterion, the results are multiplied by 

KI. Next, the stress intensity factor ratio variables must be replaced with the actual K 

terms, i.e. Kr1 is replaced with KII/KI and Kr2 is replaced with KIII/KI. Some additional 

algebraic manipulation is done to simplify the expressions. 

 Results from the mixed mode I/II loading case are used as the starting point for 

the pure mode II loading verification. After the above steps are performed, KI is set to 

zero, and KII, of the appropriate order described above, is divide through to re-normalize 

the result. For the Von Mises yield criterion, this gives 

𝑟 =
1

16
(19 − 4 cos(𝜃) + 9 cos(2𝜃))           (89) 

for plane stress, and 

𝑟 =
1

16
(19 + 16(−1 + 𝜈)𝜈 − 4(1 − 2𝜈)2 cos(𝜃) + 9 cos(2𝜃))            (90) 

for plane strain. These match equations (12) and (19) from Jing et al. (2003), 

respectively. As was the case for pure mode I loading, both Tresca yield criteria for pure 

mode II loading required graphical verification. Figures (23) through (26) below show 

the required consistency between the work presented in this paper and the work presented 

by Jing et al. (2003). 
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Figure 23 Pure Mode IITresca Invariant Form: Plane Stress 

 

 

 

Figure 24 Pure Mode II Tresca Invariant Form: Plane Strain, ν=0.3 
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Figure 25 Pure Mode II Tresca Principal Stress: Plane Stress 

 

 

Figure 26 Pure Mode II Tresca Principal Stress: Plane Strain, ν0.3 

 

 The same process used for pure mode II verification is used for pure mode III, 

except the results start from the mixed mode I/II/III loading case, are re-normalized with 
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results for the Tresca principal stress criterion, so no verification could be made. After 

simplification, the radius found using the Von Mises criterion reduces to 

𝑟 = 1.5      (91) 

matching equation (51) from Jing et al. (20004). The Tresca invariant form criterion 

gives 

𝑟2 = 𝑟3 = 0.5         (92) 

and  

𝑟1 = 2      (93) 

The only discrepancy between equations (92) and (93) here and equations (52) and (53) 

in Jing et al. (2004) is that r1 and r3 are swapped, but this is not a meaningful difference. 

 

Mixed Mode Loading Verification 

The final set of verification tests compared results for mixed mode I/II from the 

presented work with results obtained from Khan and Khraisheh (2004) and Golos and 

Wasiluk (2000). It should be noted that both papers only consider the Von Mises yield 

criterion, and thus no verifications involving either Tresca yield criteria can be made. 

Golos and Wasiluk presented a solution for the plane stress case, written in equation (27) 

in that paper and shown below as equation (94). Normalization and some algebraic 

manipulation are required to compare to the results found in this paper. 

𝑅 =
1

2𝜋𝜎𝑦𝑠
2

[𝐾𝐼
2 cos2 (

𝜃

2
) (1 + 3 sin2 (

𝜃

2
) + 𝐾𝐼𝐾𝐼𝐼 sin(𝜃) (3 cos(𝜃) − 1)

+ 𝐾𝐼𝐼
2 {3 + sin2 (

𝜃

2
) (1 − 9 cos2 (

𝜃

2
))}]         (94) 
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To normalize equation (94), the radius is multiplied by 2𝜋𝜎𝑦𝑠
2 /𝐾𝐼

2. After substituting in 

Kr1 for KII/KI and a little simplification, equation (94) becomes 

𝑟(𝜃) =
1

16
(7 + 19𝐾𝑟1

2 + (−3 + 9𝐾𝑟1
2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃))          (95) 

which matches equation (32). 

Khan and Khraisheh present solutions for both the plane stress and plane strain 

conditions. It should be noted that these results are normalized with respect to terms 

common between KI and KII. However, performing another normalization with respect to 

the remaining part of KI can be done to match the presented work. Additionally, Khan 

and Khraisheh use an angled crack, measured clockwise from the Y-axis. This angle is 

set to 90° for comparison. Performing the above on equations (24a) and (24b) from Khan 

and Khraisheh (2004) gives 

𝑟(𝜃) =
1

16
(7 + 19𝐾𝑟1

2 + (−3 + 9𝐾𝑟1
2) cos 2𝜃 − 8𝐾𝑟1 sin 𝜃

+ 4 cos 𝜃 (1 − 𝐾𝑟1
2 + 6𝐾𝑟1 sin 𝜃))      (96) 

for plane stress and 

𝑟(𝜃) =
1

16
(7 + 16(−1 + 𝜈)𝜈 + 𝐾𝑟1

2(19 + 16(−1 + 𝜈)𝜈)

− 4(−1 + 𝐾𝑟1
2)(1 − 2𝜈)2 cos 𝜃 + (−3 + 9𝐾𝑟1

2) cos 2𝜃

+ 8𝐾𝑟1(−(1 − 2𝜈)2 + 3 cos 𝜃) sin 𝜃            (97) 

for plane strain, which match equations (32) and (33) respectively. It should be noted that 

a coordinate transformation matrix could be applied to the presented work to obtain the 

more general crack alignment seen in Khan and Khraisheh. 

 



38 

 

Other Mixed Modes 

Results for both mixed mode I/II and mixed mode I/II/III were directly solved for, 

but results for mixed mode I/III and mixed mode II/III can be derived from the mixed 

mode I/II/III case. The same general behavioral pattern seen above is also present in the 

results for mixed mode I/III (figures (27) through (31)), and mixed mode II/III (figures 

(32) through (36)). Higher values for Kr2 and Kr4 (see equation 111), those with KIII in 

the numerator, have fairly circular radii as KIII is more dominant. Additionally, these 

higher ratios lead to larger radii. As the respective K ratio decreases, the radii move 

closer to those of pure mode I or pure mode II loading. 

Mixed Mode I/III 

 To find solutions for mixed mode I/III, the only step needed is to set KII equal to 

zero, which makes Kr1 equal to zero as well. For the Von Mises yield criterion, this gives 

𝑟 =
1

16
(7 + 24𝐾𝑟2

2 + 16(−1 + 𝛼)𝛼 + 4(1 − 2𝛼)2 cos(𝜃) − 3 cos(2𝜃))         (98) 

 

Figure 27 Mixed Mode I/III Von Mises: α=0.3 
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For the Tresca Invariant form criterion, this gives 

𝑟1 =
1

24
𝑓17 (1 + cos (

1

3
ArcCos (

−𝑓17
3 + 2(𝑓17

3 − 𝑓18)

𝑓17
3 )))          (99) 

𝑟2 =
1

24
𝑓17 (1 − cos (

1

3
(−𝜋 + ArcCos (

−𝑓17
3 + 2(𝑓17

3 − 𝑓18)

𝑓17
3 ))))          (100) 

𝑟3 =
1

24
𝑓17 (1 − cos(

1

3
(𝜋 + ArcCos (

−𝑓17
3 + 2(𝑓17

3 − 𝑓18)

𝑓17
3 ))))          (101) 

where 

𝑓17 = 7 + 24𝐾𝑟2
2 + 16(−1 + 𝛼)𝛼 + 4(1 − 2𝛼)2 cos(𝜃) − 3 cos(2𝜃)      (102) 

and 

𝑓18 = 8 cos2 (
𝜃

2
) ((−1 − 4𝛼)(5 + 18𝐾𝑟2

2 + 2𝛼(−7 + 4𝛼))

+ 2(27𝐾𝑟2
2 − 2(−1 + 2𝛼)3) cos(𝜃)

− 9(−1 + 2𝛼) cos(2𝜃))
2

           (103) 

     

Figure 28 Mixed Mode I/III Tresca Invariant Form: α=0.3, Kr2=0.2 
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Figure 29 Mixed Mode I/III Tresca Invariant Form: α=0.3, Kr2=1 

 

Figure 30 Mixed Mode I/III Tresca Invariant Form: α=0.3, Kr2=2 

The Tresca principal stress criterion gives 

𝜎1 =
1

6
(𝑓21 + √𝑓19 cos (

1

3
ArcCos (

𝑓21𝑓20

√𝑓19
3

)))          (104) 

𝜎2 =
1

6
(𝑓21 − √𝑓19 cos(

1

3
(−𝜋 + ArcCos (

𝑓21𝑓20

√𝑓19
3

))))          (105) 
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𝜎3 =
1

6
(𝑓21 − √𝑓19 cos(

1

3
(𝜋 + ArcCos (

𝑓21𝑓20

√𝑓19
3

))))          (106) 

where 

𝑓19 = 7 + 24𝐾𝑟2
2 + 16(−1 + 𝛼)𝛼 + 4(1 − 2𝛼)2 cos(𝜃) − 3 cos(2𝜃)      (107) 

𝑓20 = (1 + 4𝛼)(5 + 18𝐾𝑟2
2 − 14𝛼 + 8𝛼2) + (−54𝐾𝑟2

2 + 4(−1 + 2𝛼)3) cos(𝜃)

+ 9(−1 + 2𝛼) cos(2𝜃)     (108) 

and 

𝑓21 = 2√2cos (
𝜃

2
) (1 + 𝛼)        (109) 

 

Figure 31 Mixed Mode I/III Tresca Principal Stress: α=0.3 
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Mixed Mode II/III 

Mixed mode II/III requires a more algebraic manipulation. Similar to what was 

shown when verifying the presented work will reduce to pure mode II or pure mode III 

loading, the results for mixed mode I/II/III loading must be de-normalized with respect to 

KI. Following this, the results can be normalized with respect to KII, and two new stress 

intensity factor ratios are created. 

𝐾𝑟3 =
𝐾𝐼

𝐾𝐼𝐼
        (110) 

𝐾𝑟4 =
𝐾𝐼𝐼𝐼

𝐾𝐼𝐼
        (111) 

Finally, KI is set to zero, making Kr3 equal to zero. For the Von Mises criterion, this 

gives 

𝑟 =
1

16
(19 + 24𝐾𝑟4

3 + 16(−1 + 𝛼)𝛼 − 4(1 − 2𝛼)2 cos(𝜃) + 9 cos(2𝜃))         (112) 

 

Figure 32 Mixed Mode II/III Von Mises: α=0.3 
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For the Tresca invariant form this gives 

𝑟1 =
1

24
𝑓22(1 + cos (

1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓22
3 + 2(𝑓22

3 − 𝑓23)

𝑓22
3 ))           (113) 

𝑟2 =
1

24
𝑓22(1 − cos (

1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓22
3 + 2(𝑓22

3 − 𝑓23)

𝑓22
3 )))           (114) 

𝑟3 =
1

24
𝑓22(1 − cos (

1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

−𝑓22
3 + 2(𝑓22

3 − 𝑓23)

𝑓22
3 )))           (115) 

where 

𝑓22 = 19 + 24𝐾𝑟4
3 + 16(−1 + 𝛼)𝛼 − 4(1 − 2𝛼)2 cos(𝜃) + 9 cos(2𝜃)       (116) 

and 

𝑓23 = 8 sin2 (
𝜃

2
) (−41 − 18𝐾𝑟4

3(1 + 4𝛼) + 2𝛼(33 + 8(3 − 2𝛼)𝛼)

+ 2(27𝐾𝑟4
2 + 2(−1 + 2𝛼)3) cos(𝜃)

+ 27(−1 + 2𝛼) cos(2𝜃))2            (117) 

 

Figure 33 Mixed Mode II/III Tresca Invariant Form: α=0.3, Kr4=0.2 
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Figure 34 Mixed Mode II/III Tresca Invariant Form: α=0.3, Kr4=1 

 

Figure 35 Mixed Mode II/III Tresca Invariant Form: α=0.3, Kr4=2 

Finally, the Tresca principal stress criterion gives 

𝜎1 =
1

6
(√𝑓24 cos (

1

3
𝐴𝑟𝑐𝐶𝑜𝑠 (

𝑓25𝑓26

√𝑓24
3

)) − 𝑓26(1 + 𝛼))         (118) 

𝜎2 =
1

6
(√𝑓24 cos(

1

3
(−𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

𝑓25𝑓26

√𝑓24
3

))) − 𝑓26(1 + 𝛼))         (119) 
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𝜎3 =
1

6
(√𝑓24 cos(

1

3
(𝜋 + 𝐴𝑟𝑐𝐶𝑜𝑠 (

𝑓25𝑓26

√𝑓24
3

))) − 𝑓26(1 + 𝛼))         (120) 

where 

𝑓24 = 19 + 24𝐾𝑟4
3 + 16(−1 + 𝛼)𝛼 − 4(1 − 2𝛼)2 cos(𝜃) + 9 cos(2𝜃)     (121) 

𝑓25 =    −41 − 18𝐾𝑟4
2(1 + 4𝛼) + 2𝛼(33 + 8(3 − 2𝛼)𝛼)

+ 2(27𝐾𝑟4
2 + 2(−1 + 2𝛼)3)cos (𝜃))        (122) 

and 

𝑓26 = 2√2 sin (
𝜃

2
)        (123) 

 

Figure 36 Mixed Mode II/III Tresca Principal Stress: α=0.3 
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Results 

Area Analysis 

 One technique for evaluating the difference in results given by the Von Mises and 

Tresca yield criteria is an area analysis. By simply overlaying the plastic zone figures, a 

comparison can be made. Figure (37) shows the radii for each under mixed mode I/II 

loading, using the plane stress assumption. Figure (38) shows the radii under mixed mode 

I/II/III loading. It can be seen in each figure that the plastic zone area using the Tresca 

criterion is larger than that of the Von Mises criterion. The Tresca yield criterion is 

generally considered a more conservative yield criterion, meaning it is expected that it 

would predict a larger plastically deformed area than would be predicted using the Von 

Mises yield criterion. 

 

Figure 37 Area comparison under mixed mode I/II loading: Plane Stress, Kr1=1 
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Figure 38 Area comparison under mixed mode I/II/III loading: Kr1=1, α=0.3, Kr2=1 

 

Crack Propagation 

 In addition to determining the plastic zone radius, it is also important to determine 

the angle at which the crack will grow. There are several existing criteria, including the 

maximum tangential stress criterion (Erdogan and Sih, 1963), and the Y-criterion (Yehia, 

1991). The criterion investigated here is the R-criterion, presented by Khan and 

Khraisheh (2004). As mentioned earlier, they theorized that the crack will grow through 

the plastic zone, a region of highly strained material, following the “easiest” path. They 

assume this easiest path is the shortest distance between the crack-tip and the elastic 

region, the shortest distance referring to the minimum radius of the plastic zone. 

Additionally, it was stated that this minimum radius represents the minimum plastic work 

needed to create cracked surfaces. The R-criterion is defined mathematically as: 
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𝜕𝑅

𝜕𝜃
= 0       

𝜕2𝑅

𝜕𝜃2
> 0        (124) 

 This paper seeks to find if any correlation exists between the principal stresses 

and the minimum plastic zone radius as it applies to the crack initiation angle. The 

mixed-mode I/II loading case, under the plane stress assumption, is used for comparison. 

First, the minimum radius of the plastic zone from the work presented earlier is found. 

An exact angle is not required, so Matlab is used to find an approximate value for the θ at 

which the minimum radius occurs. Mathematically, the two extremes of this angle occur 

in the presence of either pure mode I loading, or pure mode II loading. Pure mode I 

loading will give an angle of zero. Pure mode II loading will give an angle of -82.5, 

where a positive angle is measured counterclockwise from the x-axis. This means the 

minimum radius will occur at an angle between these two extremes. This angle is found 

for a range of Kr1 values, and is compared the principal stress direction found using 

Mohr’s circle. However, since this direction does not correspond to a specific principal 

stress, both principal stress directions are found using the eigenvalue problem method in 

order to determine which may have a correlation. The formulas to find these directions, 

as well as the principal stresses from Mohr’s circle, are shown in the appendix. A 

principal shear direction is also shown, and can be found by subtracting 45° from a 

principal stress direction. 

𝜃 =
1

2
tan−1 (

2𝜎𝑥𝑦

𝜎𝑥𝑥 − 𝜎𝑦𝑦
)       (125) 

 Figure (39) shows the resulting plots. It can be seen that the principal stress 

direction obtained from Mohr’s circle, shown in equation (125), corresponds to the 2nd 

principal stress for all Kr1 values. More importantly, the figure shows that the angle at 
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which the minimum radius occurs will match the principal stress direction of the 2nd 

principal stress only under pure mode I loading, i.e. Kr1=0. As mode II loading is 

introduced and becomes more and more prevalent, the angle of the minimum radius 

deviates from the principal stress direction toward a principal shear direction, although 

never becoming equal. However, this does not mean the principal stresses have no effect 

on the minimum radius location. The fact that it moves clockwise as Kr1 increases is a 

direct result of the principal stresses present due to the type of loading. 

Additionally, figure (39) contains data experimentally collected by Erdogan and 

Sih (1963) and Theocaris et al. (1982). The results were crack initiation angles obtained 

by pulling a plate in tension. The experiments were performed with an angled crack, 

creating mixed-mode loading local to the crack-tip. This implies a direct relation between 

the crack inclination angle, β, and the stress intensity factor ratio, Kr1. Equation (126) 

shows this relation. The derivation can be seen in the appendix. 

𝐾𝑟1 = 𝑇𝑎𝑛 (
𝜋

2
− 𝛽)      (126) 

It can be seen that for small Kr1 values, the minimum radius matches well with 

the experimental data. However, as Kr1 grows beyond 1, the experimental data starts to 

deviate. This is likely due to an imperfect experimental setup. Instead of having pure 

mode II loading, as should happened as Kr1→∞, a vertical crack will have no applied 

tearing mode at all under the same tensile load. 



50 

 

 

Figure 39 Minimum Radius Vs. Principal Stress and Shear Directions 

 

Conclusions 

Analytic solutions for the plastic zone radius were found for mixed mode I/II, 

mixed mode I/II/III, mixed mode I/III, and mixed mode II/III loading using the Von 

Mises, Tresca invariant form, and Tresca principal stress criteria. Each was verified to 

reduce to the individual loading modes separately. It was shown that as an individual 

stress intensity factor ratio grows larger, a single loading mode becomes dominant, i.e. 

mode II when Kr1 becomes large, and the results shift closer and closer to those given 

under pure loading of that mode. It can be seen that as the Poisson’s ratio increases, the 

plastic zone size decreases. The Tresca yield criterion displayed larger plastic zone areas 

than the Von Mises yield criterion. It was shown that, except in the case of pure mode I 
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loading, the crack initiation angle predicted by the R-criterion does not occur at a 

principal stress or principal shear direction. However, the principal stresses do play an 

important role in the location of the minimum plastic zone radius used by the R-criterion. 
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Appendix 

Principal stresses from Mohr’s circle: 

𝜎1 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
+ √

1

4
(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + 𝜎𝑥𝑦

2  

𝜎2 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
− √

1

4
(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + 𝜎𝑥𝑦

2  

Principal stress direction: 

𝜃 =
1

2
tan−1 (

2𝜎𝑥𝑦

𝜎𝑥𝑥 − 𝜎𝑦𝑦
) =

1

2
tan−1 (

2𝜎𝑥𝑦

−𝜎𝑦𝑦
) =

1

2
tan−1 (

−2𝐾𝐼𝐼

𝐾𝐼
) =

1

2
tan−1(−2𝐾𝑟1) 

[

𝜎𝑥𝑥 − 𝜎 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦𝑦 − 𝜎 𝜎𝑦𝑧

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧 − 𝜎
] {

𝑙
𝑚
𝑛

} = {
0
0
0
} 

For mixed-mode I/II using far-field stresses: 

𝜎𝑥𝑥 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 𝜎𝑧𝑧 = 0     𝑎𝑛𝑑 𝑛 = 0   

−𝜎𝑙 + 𝜎𝑥𝑦 = 0     →      𝑙 =
𝜎𝑥𝑦

𝜎
𝑚 

𝑙2 + 𝑚2 = 1   →     𝑚2 = 1 − 𝑙2 = 1 − (
𝜎𝑥𝑦

𝜎
𝑚)

2

 

𝑚2 (1 + (
𝜎𝑥𝑦

𝜎
)
2

) = 1     →       𝑚 = ±
√

1

((
𝜎𝑥𝑦

𝜎 )
2

+ 1)

 

where σ=σ1 or σ=σ2 

 

Crack inclination angle to Kr1 

𝐾𝑟1 =
𝜏𝑙𝑜𝑐

𝜎𝑙𝑜𝑐
=

𝜎𝑥𝑦
′

𝜎𝑦𝑦
′

=
𝜎𝑦𝑦 cos(𝜃) sin (𝜃)

𝜎𝑦𝑦 cos2(𝜃)
= tan𝜃 = tan(

𝜋

2
− 𝛽) 

where the inclined crack lies along the x’ direction 
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