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Abstract

The commercial building sector consumed about 20% of the total primary energy in

the U.S. in 2008 [2]. A significant yet avoidable portion of the energy consumption

is due to ine�cient system operations. The ine�ciencies can be attributed to de-

grading HVAC sub-systems, and undetected abnormal conditions. Recognition and

remediation of these conditions through advanced data analytics can reduce energy

consumption by 5% to 20% [101]. This could save about $9 billion in utility costs in

the U.S. alone.

Modern buildings are constantly sending messages in the form of sensor data.

However, this data is only as good as the system that collects it. Therefore, the

present work explores fault detection and diagnostics (FDD) of an HVAC sub-system,

in particular an air handling unit (AHU), through the evaluation of various methods.

The detection methods include a controls alarm threshold, rule-based expressions,
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regression, one-class support vector machine (SVM), back-propagation, adaptive res-

onance theory (ART), and lateral priming adaptive resonance theory (LAPART).

The diagnosis of AHU faults were performed using a multi-class SVM and LAPART

algorithms. The results from the fault detection experiments were reviewed based

on the two-class classification where the number of false positives and false negatives

where compared. The diagnostic results were evaluated based on the comparison of

precision and probability of detection values.
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Chapter 1

Introduction

In recent years, the commercial building sector consumed about 20% of the total

primary energy in the U.S. [2]. As a result, the CO2 emissions associated with build-

ing operations accounted for about 20% of the total [4]. The high contribution to

consumption and emissions can be attributed to the fact that 90% of the typical

American’s daily life occurs inside of a building [1], and buildings require significant

amounts of energy to provide the desired comfort and amenities. However, a signif-

icant yet avoidable portion of the energy consumption is due to ine�cient heating

and cooling system operations. The ine�ciencies can be attributed to degrading

infrastructure, and undetected abnormal conditions. Recognition and remediation

of these conditions can reduce energy consumption by 5% to 20%, and even 30% in

some buildings [101] which could save about $9 billion in utility costs in the U.S.

alone. The aim of this work is to find an e↵ective means to identify opportunities

for reducing energy consumption in buildings.
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1.1 Problem: HVAC subsystem faults

Heating, ventilating, and air conditioning (HVAC) systems are comprised of sub-

systems that work together to provide heating and cooling throughout a building’s

thermal zones. These sub-systems have multiple components that can fail or degrade

over time. Faults such as duct leakage, dampers not working properly, misbalanced

airflow, control software programming errors, and valves not closing properly can

arise and remain undetected for long periods [101]. Several examples of these type

of faults were discovered during a recent upgrade to the University of New Mexico

(UNM) Mechanical Engineering Building (MEBldg), which involved the replacement

of pneumatic controls with Direct Digital Controls (DDC) at zone terminal boxes. A

common issue were actuators, used to modulate air flow dampers, that were stuck or

jammed at many of the zone boxes (Figure 1.1). The fault shown in Figure 1.1 went

undetected for an undetermined amount of time, probably several years. During

Stuck Actuator

Figure 1.1: Zone box damper actuator that was stuck on a

hanger wire that supported the ceiling.

that time, there were

few or no complaints of

uncomfortable temper-

atures by the building

occupants, which indi-

cated that zone temper-

atures were una↵ected

by the actuator fault.

However, because the

actuator was in an un-

controlled state, it most

likely demanded more

fan power or chilled or

hot water flows at the

2



Chapter 1. Introduction

air handling unit (AHU) in order to maintain the zone temperatures.

A fault such as the stuck actuator, shown in Figure 1.1, can have a negative

impact on system performance. The impact can be more severe if the fault occurred

at a larger system, such as an AHU. AHU systems are prone to ine�ciencies and have

the potential to remain unnoticed for long periods of time without proper oversight.

An engineer or technician who casually observers the system may not recognize these

types of faults because parameter thresholds are not exceeded, or occupants are not

complaining about uncomfortable indoor temperatures. Furthermore, maintenance

sta↵ or building managers may not have the time to visually inspect each component

of the entire HVAC system. Instead, they rely on a complete system failure or

an occupant complaint before they address an issue, which can lead to waste and

ine�ciency. A more proactive approach can be implemented that will identify and

help remediate issues through automated fault detection and diagnostics (FDD).

An automated approach can provide valuable information quickly and reliably so that

maintenance sta↵ can manage preventative maintenance and repair more e↵ectively.

1.2 Solution: Automated fault detection

A significant portion of the energy waste is due to poorly maintained, degraded, and

improperly controlled equipment [58]. These issues can be fixed and/or mitigated

by increasing the amount of oversight. Oversight, via a sophisticated FDD platform,

can provide valuable information that will improve maintenance activity and control

operations. This work proposes a platform that is automated, inexpensive, and self-

learning.

The detection of system degradation and even immediate failures can be a te-

dious and cumbersome process for humans. More specifically, engineers and building

managers do not have the time and/or resources to constantly monitor data that
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Chapter 1. Introduction

define system performance. Therefore, the only viable option is where the process

is performed by a computer where monitoring and evaluations can be automated,

intelligent, and not require intensive human interaction.

The ideal platform for automated FDD requires minimal e↵ort to implement and

maintain, and at the same time it must provide precise results. To do this, it needs

to learn and adapt on its own. The present work hypothesizes that machine learning

(ML) algorithms, and in particular Adaptive Resonance Theory (ART) artificial

U.S Commercial
Bldg Spending

> 4,650m2

< 4,650m2

$9B Savings

$56B

$51B

Figure 1.2: The total expenditures for U.S commer-

cial buildings is about $107B. Buildings over 4,600m2

cost about $56B and under 4,600m2 are about $51B.

The estimated savings is about $9B which is 8.4% of

the total.

neural network (ANN), can learn

and evaluate equipment condi-

tions accurately. ML algorithms

have the ability to learn through

statistics or with ANN archi-

tectures. Statistical learning

has been used to interpret, pre-

dict, and assess human health is-

sues, stock market prices, hand

writing recognition, and perform

novelty detection [42]. ANN

learning algorithms emulate how

animal brains operate [80], and have been used for advanced pattern recognition,

classification, and many other applications. The present work investigates the ap-

plication of ML architectures for FDD of building systems; the algorithms can learn

patterns, adapt to normal changes, and detect novelties that would otherwise go

unnoticed.

The implementation of the proposed platform can potentially be achieved at a

very large scale. There are about 5.6 million commercial buildings in the U.S., over

half of which have an area that is over 4,650m2 [89]. Moreover, 70% of the buildings

4
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above this threshold are equipped with Building Automation Systems (BAS) [61].

This means that there are existing sensor networks in about 2 million buildings

that can be accessed and used for FDD. The proposed platform can access the

sensor networks and extract the necessary sensor values with little to no upfront

cost. Furthermore, the HVAC systems in the target market, which are buildings

that have an area of 4,650m2 and above, consume about 4.52 quads per year [4].

The savings technical potential ranges from 0.67 to 1.36 quads. This equates to an

annual cost savings of about $9 billion.

This potential annual savings is significant. The energy expenditure for commer-

cial buildings is $107 billion. The buildings larger than 4,650m2 cost $56 billion and

the ones that are smaller than 4,650m2 cost $51 billion for energy as shown graph-

ically in Figure 1.2. The estimated savings of $9 billion is about 8.4% of the total

energy expenditures for commercial buildings in the U.S.

1.3 Research Question

The previous section (Section 1.2) introduces the concept of a real-time FDD plat-

form that uses ML algorithms. This concept has been discussed in existing literature

which is described in Chapter 2. However, the neural network algorithms known as

ART and Lateral Priming ART (LAPART) have not been considered in comparison

to other ML tools for HVAC equipment sensor data sets. The ART and LAPART

algorithms are expected to perform even better on the time-series data acquired form

the HVAC equipment.

In this work, ART and LAPART were applied to HVAC data, in particular data

from an AHU. The results from the two algorithms were also compared with the

outputs from other techniques. The other techniques included rule-based models,

back-propagation (BP) ANN, and support vector machines (SVM). The question is,
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can the ART and LAPART ANN algorithms detect and diagnose AHU faults with

minimal false alarms and false normals? False alarms refer to the case where the

tool detected a fault that did not occur. The false detection scenario was when a

fault was incorrectly defined.

1.4 Significance of this study

People are prone to catching a cold or the flu; similarly, buildings are susceptible

to faults and often operate for many years in an nonoptimal condition. However,

people have the ability to monitor themselves in real-time and make adjustments to

improve their behavior, health, etc. But, what can buildings do? Buildings do not

have a brain that can provide real-time feedback to help them improve their comfort

level, and energy use. This study considers this issue, and evaluates ways that could

allow for buildings to have a self-checking mechanism that will find and diagnose

faults in real-time.

Currently, there is not an e↵ective real-time FDD system that is self-learning and

can provide accurate, reliable, and specific information to help manage a building’s

HVAC systems. It is claimed here that ART and LAPART algorithms can provide

a significant impact on building performance. This could be achieved by learning

equipment behaviors and then defining its status in real-time. This can provide

building managers with a powerful tool that can reduce energy consumption and

improve maintenance productivity. This dissertation provides details regarding the

data acquisition and storage platform as well as results from experiments that were

used to evaluate the performance of ML algorithms.

Existing literature describe ART, LAPART, and other FDD methods individu-

ally. Never before have these algorithms been applied and compared with other like

methods within an information technologies platform that can evaluate the perfor-
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mance of HVAC sub-systems. The platform, developed in the present work, considers

the existing building controls network and provides a custom interface for perfor-

mance review. Additionally, a new product, used to measure the air flow rate was

created, tested, and integrated into the existing network that can provide feedback

of fan performance. Ultimately, this work presents the structure and implementa-

tion procedures for an overall platform that can provide continuous and automated

learning for e↵ective FDD of HVAC sub-systems. It also provides a thorough review

of ART and LAPART with commonly used methods. The review considered the

di↵erent algorithm’s abilities to detect and diagnose faults found in a very common

HVAC sub-system.

1.5 Structure of Dissertation

This paper begins with the introduction (Chapter 1) and literature review (Chap-

ter 2). Next, the methodology describes the experimental set-up (Chapter 3), type

of analysis tools (Chapter 4), and experiments (Chapter 5). The first set of results,

documented in Chapter 6, describe the outputs from physical and rule-based model

calibration experiments. Chapters 7, 8, and 9 describe the outputs from two fault

detection and one fault diagnostics experiments respectively. For instance, the ART,

LAPART, and other tool’s outputs for fault detection are described in Chapter 7.

Chapter 8 discuss the outputs from a adaptive fault detection experiment. Chapter 9

described the fault diagnostics test results.

1.5.1 Methodology Overview

The experimental methodology defines the overall set-up of the experiments. It

defines the analysis tools used to detect and diagnose faults. In addition, it defines

7
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the experiments for evaluating the e↵ectiveness of each tool on the test apparatus

data set.

Set-up (Chapter 3)

The overall experimental set-up is described in Chapter 3 including the test ap-

paratus system, components, and sensors. It also describes the physical model of

apparatus used to run the experiments. Finally, the Information Technology (IT)

framework was defined to transfer and store data.

Apparatus Components & Sensors (Section 3.1)

The test apparatus for the experiments was a single AHU located in the basement of

the UNM MEBldg. It includes mixed air dampers, a chilled water cooling coil, and a

centrifugal fan. The unit supplies cold air to cool the second, third, and fourth floors

Figure 1.3: AHU 2 was used in this experiment

to test the di↵erent FDD techniques. Faults will

be detected by analyzing the measured air flow,

supply air temperature, and mixed air tempera-

ture.

of the building. The AHU, shown

in Figure 1.3, has many sensors, in-

cluding duct pressure, filter pressure

drop, and fan speed. Three sen-

sors used in the analysis: (1) sup-

ply air flow, (2) supply air tempera-

ture, and (3) mixed air temperature.

These sensors where picked because

they are typical in all commercial

AHUs and therefore the framework

can be applied to the majority of

buildings.

8



Chapter 1. Introduction

Physical Model (Section 3.3)

The physical model, developed in the TRNSYS simulation studio, was used to sim-

ulate the AHU system. Model compliance with the actual system was based on

ASHRAE calibration standards [6]. Once the model was calibrated simulations were

executed to produce data with and without faults. The outputs from these simula-

tions were used to train and then test the FDD tools.

IT Framework (Section 3.2)

The platform presented in the current work required the collection of sensor values

from the test apparatus as well as from the building. Therefore, an IT framework

was created to collect, route, and store data. Data collection was performed by

accessing the existing building controls network. Python and Hypertext Preprocessor

(PHP) codes were executed automatically to route the data to a MySQL database.

Additionally, the data were available for access and analysis by the FDD tools.

Analysis Tools (Chapter 4)

The FDD tools are defined in Sections 4.1 and 4.2. Section 4.1 defines the algorithms

based on ART. Section 4.2 describes other tools also tested in the four experiments.

ART & LAPART (Section 4.1)

In the present work, the fault detection capabilities of ART and LAPART were

evaluated. The evaluation process considered the individual performance of each

algorithm that are defined in Section 4.1. The work also compared the results from

ART and LAPART with other FDD tools.

Non-ART (Section 4.2)

Wolpert and Macready described the no free lunch theorem. This theorem states

that no one learning algorithm can outperform all others for every problem set [127].
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Therefore, the present work introduced other algorithms besides ART and LAPART

to compare and contrast results. The other methods include threshold, rule-based

model, SVM, and BP neural network.

Experiments (Chapter 5)

Four experiments were performed in the present work. Each of the experiments fol-

lowed a similar procedure to validate, train, and then test the tool. The tools were

presented with data that contained either normal or four types of fault conditions.

The experiments ranged from physical and rule-based model validation to fault de-

tection and finally fault diagnostics. The review of results considered the number of

false alarms and the precision for each of the tools.

Experiment Procedures (Section 5.1)

The experimental procedures are defined in Section 5.1. The procedures included

validation that the model represented the actual well, training, fault detection, and

fault diagnostics. Each of the tools were validated through an optimization process

that defined it’s free parameters. For example, the machine learning algorithms

were subjected to a k-fold cross validation process. The tools were then trained by

presenting a training data set so that knowledge could be acquired. The tool was

then ready to perform fault detection and diagnostics by analyzing previously unseen

data samples.

Fault Types (Section 5.2)

Four types of AHU faults were reviewed by the FDD tools. The first fault occurred

due to a malfunction in the chilled water system and caused the supply air temper-

ature and flow rate to increase. The second fault was due to a malfunction in the

mixed air section. The third was caused by a failure in the fan system and the fan

operated at a constant rate. The final fault was due to a control error that caused

10
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the system to operate during o↵-schedule times.

Experiment Types (Section 5.3-5.6)

The first experiment was the calibration of the physical and rule-based models and

is described in Section 5.3. The rule-based model was developed and calibrated to

be used as a fault detection tool. The physical model was used in Experiments

2, 3, and 4 as an input to represent normal as well as abnormal behavior. The

physical model allowed controlled fault detection experiments to be conducted. The

second experiment, defined in Section 5.4, reviewed the situation where two months

of training data were collected from a retro-commissioned (Retro-Cx) AHU. The

third experiment (Section 5.5) tested the adaptability of ART, LAPART, and SVM.

The three tools were retrained with normal data that was statistically di↵erent than

the original training set. The tools were then introduced to a new testing set that

included faults and normal data. In the fourth experiment training data that included

normal and fault conditions were presented to the SVM and LAPART algorithms.

The training data were labeled as either certain fault or as normal behavior. After

knowledge had been acquired from the training process, the two algorithms were

then presented with new data, and each performed fault diagnostics (Section 5.6).

Analysis of Results (Section 5.7)

Fault detection can be considered a binary decision problem with a two-class classifi-

cation. These types of problems have two types of error, which are false positive (false

alarm) and false negative (missed detection). To review these errors, a confusion or

general loss matrix was created for each FDD method. Also, false positive and true

positive rates were plotted in Receiver Operator Characteristic (ROC) space. The

fourth experiment, in which a multi-class classification was performed, the F1 score

statistic was used to evaluate performance.
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Literature Review

FDD methods have been applied to many di↵erent fields. Katipamula et al. per-

formed an exhaustive assessment of current techniques [58]. Their research article

described fundamental FDD methods and defined them as either quantitative, quali-

tative, or process history based. The three approaches are similar in that they involve

the use of models and data for the development of their general structures. However,

knowledge is acquired di↵erently by each of the methods. For example, quantitative

and qualitative FDD models used priori to gain knowledge. This means that knowl-

edge could be gained through a deduction, and not through empirical evidence. The

process history method can be used to acquire knowledge through the presentation

of past data. The three methods, quantitative, qualitative, and process history, can

be applied to FDD for commercial building HVAC systems.

Katipamula et al. followed the initial review of FDD with a second part that

concentrated on HVAC systems, such as refrigerators, air conditioners, heat pumps,

chillers, and AHUs [59]. In the paper, various methods for FDD of AHU performance

including parametric models [87], autoregressive algorithms [96, 132, 133], back-

propagation ANN [69, 83], classification algorithms [51], and a simplified physical
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model [102] were described. However, ART and LAPART were not discussed in the

review article for FDD.

Venkatasubramanian et al. published a three-part review of FDD for process

control applications that was similar to the work performed by Katipamula et al.. In

the first part, research was discussed that applied quantitative FDD methods that

included analytical redundancy and residual generation in dynamic systems [119].

Qualitative model-based methods that were typically developed through a fundamen-

tal understanding of the physics [117] were discussed in the second part. Part three

focused on process history methods that were based on process knowledge [118]. The

review categorized the process history methods based on quantitative or qualitative

feature extraction. The quantitative feature extraction section included a discussion

of expert systems and trend modeling approaches. It also discussed the qualitative

process history method that applied statistical feature extraction from the process

data and used neural network pattern recognition.

In the third review paper, Venkatasubramanian et al. discussed the application of

various ANN for FDD [118]. It was evident that, to date, the most popular supervised

learning algorithm for FDD has been the back-propagation neural network. Other

methods such as radial basis function ANN [20], self-organizing maps [64], K-means

clustering [57], and ART networks [11] have also been implemented. Venkatasubra-

manian et al. did not cite any papers in which the ART algorithm was implemented

on HVAC systems, but did provide an example where the ART2 algorithm was used

to interpret sensor data for chemical processing [124].

The application of the ART algorithm can also be found in another review pa-

per by Markou and Singh that focuses on novelty detection using neural network

based approaches [77]. In the review paper, multiple ANN including the multi-layer

perceptron, SVM, ART, radial basis function, auto-associator, hopefield, oscillatory,

self-organizing maps, habituation based, and a neural tree were considered. It was
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found that the ART algorithm can outperform other classifiers and cites a paper

where ART2-A was used to classify military target locations [84]. In addition to the

ART2, Markou and Singh reference papers in which the ARTMAP neural network

was used to perform familiarity discrimination and tested the application on a sim-

ulated radar target recognition task [17, 18]. However, none of the papers cited by

Markou and Singh considered the ART or LAPART algorithm for FDD of HVAC

sub-systems.

2.1 Qualitative Method

The qualitative method for FDD has been used for simple evaluations that consider

basic descriptions of system performance. The evaluations involve the review of

system status, such as equipment on or o↵, and has not been used to provide a

numerical analysis of the system’s sensor data. A common type of qualitative analysis

is the threshold method. This method is based on a concept where a magnitude must

be exceeded for a fault to be recognized. This approach has been used to monitor

an AHU’s fan. In this case, the fault detection analysis would consider the actual

fan status in comparison to the pre-set desired status. If the actual status deviated

from the desired then a fault was detected.

The threshold method used in the present work was based on the alarm system

embedded in the existing BAS. No literature was found in support of this type of

FDD approach despite the fact that it is the most common FDD approach used

by practitioners. However, other qualitative approaches for assessing AHU faults

have been implemented. For example, a trend analysis-based framework for incipient

faults was discussed by Maurya et al. [79]. Also, the implementation of a sign function

that returns a ‘+’ or ‘-’ from the subtraction of the actual value minus a nominal value

to define normal or abnormal behavior was integrated into an AHU system [110].
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Similarly, Glass et al. used a qualitative model to detect faults in an AHU [37]. In this

approach qualitative states that were compared with actual values were considered.

In another AHU application the first principle analysis to detect faults was used by

Norford et al. [88].

2.2 Quantitative Method

The quantitative approach, which includes physical and rule-based models, has been

documented in past literature. For instance, Schein et al. implemented a rule-based

model to monitor and detect faults in an AHU [103]. Physical models have also

been implemented to monitor and assess whole building performance [123, 93, 94].

Further studies by O’Neil et al. illustrate a real-time physical model approach [90]

for whole building analysis. The faults were then determined based on a statistical

review of the deviation between the model and actual sensor values.

2.3 Process History Method

In addition to the threshold, rule-based, and physical model approaches, multiple

process history methods were implemented in the present work. Statistical regression

models, SVMs, and back-propagation algorithms have been used in the literature to

monitor and detect faults in HVAC systems. The ART algorithm has been used in

past work as a novelty detection algorithm, however it has not been applied to data

sets that originate from sensors in HVAC systems. Similarly, the LAPART algorithm

has been used to provide predictions, but has not yet been used to detect faults in

the sub-systems similar to the one presented in this paper.
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2.3.1 Statistical Regression

Regression techniques can be used to detect novelties within data sets. This was

accomplished in the present work by detecting outliers and labeling them as faults.

Outliers are observations that are inconsistent with the remainder of the data [78].

The method depends on the absence of outliers in the initial training set so that the

model can best fit normal behavior [49]. Worden et al. considered this and imple-

mented a regression novelty detection approach to test univariate and multivariate

data. The test was based on deviation statistics where the potential outlier would

exist at a distance that exceeded the threshold defined by the mean and standard

deviation [128].

The statistical regression framework has been applied to fault detection meth-

ods in HVAC systems. For example, a model based FDD approach used principal

component analysis for fault detection and a regression model as a benchmark or

reference model for validation of HVAC system operations during the fault detection

process [23, 120]. It has also been directly applied to the identification of faults.

Radhakrishnan et al. implemented a two step approach for fault detection of HVAC

equipment that began with the creation of polynomial and locally weighted regres-

sion models to represent actual operations. The second step considered regularities in

computed deviations (residuals) from normal behavior in order to detect faults [98].

2.3.2 Support Vector Machines

The SVM is a statistical machine learning method that learns by mapping training

data into a high dimensional feature space [22, 113, 114]. The general form of the

SVM is a two class classification algorithm that performs supervised learning. This

approach has been applied in many instances to detect faults in various HVAC sys-

tems [30, 71]. For instance, Dehestani et al. applied this type of SVM to an HVAC
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system where faults were detected and new SVM classes could be created as more

types of faults were found [24]. Other types of SVM algorithms can also be applied

to detect faults in HVAC systems, such as SVM for regression and one-class SVM.

The SVM for regression can provide a prediction to model actual system op-

erations instead of classifying new unseen variables. This algorithm was used to

model and optimize HVAC operations by Kusiak et al. [66]. Similarly, this algo-

rithm has been used to forecast hourly building cooling loads [70]. This approach

was also successfully applied to novelty detection on temporal sequences by Ma and

Perkins [72, 73] to discover novelties in time-series data. The present work imple-

mented a one-class SVM for fault detection, and a multi-class for fault diagnostics.

The one-class SVM described by Schölkopf et al. can perform unsupervised learn-

ing on a single class of data. It can then be applied to previously unseen data and

flag abnormal behavior [104, 105]. This type of approach is not documented well in

existing literature for HVAC systems. However, it provides significant advantages

for quick and potentially accurate implementation of a fault detection tool on HVAC

equipment. This is especially helpful when only normal behavior is known, and

therefore multiple classes cannot be learned before actual faults occur.

The multi-class SVM is a supervised learning algorithm that can assign each ob-

servation into one of k classes [129]. In this case, the SVM algorithm was implemented

using Python Sklearn [5]. The Sklearn package implement the “one-against-one” ap-

proach for multi-class classification [63]. A two-class SVM was used to perform fault

diagnosis for HVAC chillers [21]. In another application, a multi-class SVM was

used to diagnose faults in induction motors and other machine tools [125]. The

“one-against-one” multi-class SVM was also applied to HVAC chiller data sets to

perform fault detection and diagnostics [41].
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2.3.3 Back-propagation

The BP algorithm is a common form of the multi-layer perceptron. Early develop-

ment of the algorithm was performed byWerbos and documented in his doctoral work

at Harvard University [122]. According to Venkatasubramanian et al. it is known

as one of the most popular supervised learning ANN [118]. For example, there were

many papers published in the early 1990s that used the algorithm for FDD in chem-

ical engineering processing [50, 112]. The algorithm has also been applied to HVAC

systems, and often used to forecast building loads [60, 68]. The algorithm has also

been used to perform FDD.

The BP algorithm has been used for novelty detection using parametric statistics

and residual analysis. For example, Markou et al. described studies where parametric

statistics were applied to the neural network to perform novelty detection. The

basic premise was that the network could discriminate between classes that had

di↵erent distributions because the error calculation that drives the neural network

were significantly di↵erent [77]. In the present work, the FDD results were based on

a residual analysis.

Residual analysis is the di↵erence between the prediction produced by the algo-

rithm and the actual values. This type of approach was used by Lee et al. to identify

faults in an AHU. Lee et al. implemented an approach that depended on the ability

to identify patterns in the residuals between the actual and set-point values [69]. A

similar study considered the back-propagation algorithm for an HVAC variable air

volume system to detect sensor and coil fouling faults [83].
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2.3.4 Fuzzy Adaptive Resonance Theory

The Fuzzy ART algorithm used in the present work is one of the most recent versions

of the ART algorithm. Earlier versions include ART1, ART2, ART2A, and ART3.

Fuzzy logic was then integrated into the ART algorithm to create the Fuzzy ART

algorithm. The new algorithm increased the algorithms ability to perform pattern

recognition and also improved the generalization of the algorithm. The algorithm is

able to use a match-based learning technique to process input data that creates and

stores memories [78]. The learning process is performed in an unsupervised manner,

and at each input presentation the network searches for a category that it can join,

which is referred to as resonance. If the strength of the response from each category

is low, then a new category is created. In this case, the input that does not resonate

with an existing category could be considered novel and thus a fault.

The approach has been discussed in past literature for novelty detection. The

inventors of the algorithm, Carpenter and Grossberg, discussed the potential for

novelty detection in a 1988 paper [11]. Caudell and Newman [19] implemented

the ART1 algorithm to define normal and abnormal behavior in time-series data.

Similarly, the Fuzzy ART algorithm was used successfully in anomaly detection for

simulated time-series data [7]. The same algorithm was also applied to anomaly

detection in wireless sensor networks [130].

The Fuzzy ART algorithm has also been applied to machines and power systems.

For instance, fault diagnostics on a rotating machine was documented by Yang and

An [131]. It was also applied to power systems for fault detection analysis in a 2005

paper [115]. The closest application of the Fuzzy ART algorithm to HVAC equipment

was a solar hot water system. The algorithm was used to perform real-time fault

detection in solar hot water systems [44, 45]. The existing literature does not contain

research that applied the ART algorithm for fault detection in commercial building
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HVAC systems.

2.3.5 Lateral Priming ART

The LAPART algorithm was introduced by Healy and Caudell for logical inference

and supervised learning [48]. The algorithm can be used as a prediction tool and

has been shown to provide accurate weather forecasts [47, 107]. It has also been

applied successfully to solar micro-forecasting to predict solar irradiance at small

time steps [74]. Additionally, it has the capability to learn and monitor operations in

an on-line application without impacting the machine operations [106]. Similar to the

case of the single ART algorithm, existing literature does not include investigations

of the LAPART algorithm for FDD in commercial building HVAC systems.
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Methodology: Set-Up

The reduction in building energy use through the identification of system failures re-

quires precise and timely decisions. The decisions relate to proper control sequencing

Education Learning Gained

Lost

Knowledge

Figure 3.1: Transfer of data into a learning mechanism that

acquires knowledge. Not all knowledge can be gained and

some is lost due to the inability of specific algorithms.

and maintenance deploy-

ment. However, optimal

decision making depends

on extensive knowledge

of system behavior and

performance. Learning

to obtain this knowledge

at a granular level can be

di�cult. Albert Einstein once said, “The only thing that interferes with my learning

is my education”. This infers that the amount of knowledge gained depends on the

e�ciency of the learning mechanism to process the education. This is shown in Fig-

ure 3.1 where education, which is defined as the transfer of information or data, is

an input into a learning mechanism or algorithm. The learning mechanism processes

the data and acquires knowledge. Unfortunately, there are losses in the acquisition

of knowledge that vary depending on the type of learner. Therefore, the intent of
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this study was to evaluate the learning abilities of ART and LAPART in comparison

with other methods.

The consideration of other methods is important, because model based FDD

is not a new concept and has been discussed widely in literature for the past 30

years. For instance, Rabel et al. were concerned about energy use in buildings and

described mathematical models to evaluate performance in a 1988 paper [97]. In

1984, Isermann [54] performed fault detection on a centrifugal pump system using

parameter estimation methods. ANN were also used for FDD in non-HVAC systems

in the 1980s.

ANN were used to diagnose incipient faults within chemical processes and results

were documented in a paper by Watanabe et al. [121] in 1989. A neural network

for FDD was applied to process engineering in the 1980s and was documented by

Venkatasubramanian et al. [116]. Fan et al. [31] used a back-propagation algorithm

for fault detection in a 1993 paper that again was focused on chemical processes. It

is evident that most of the early work with artificial neural networks analyzed data

sets from chemical and oil refining processes, and left HVAC systems untouched. In

recent years, ANNs were used in several research projects to analyze HVAC systems.

Yet, the capabilities of ART and LAPART to learn system behaviors and detect

abnormalities in HVAC systems has not been documented extensively.

The overall approach to test and evaluate the FDD methods in the present work

required the development of a platform that is described in Figure 3.2. The plat-

form was designed to transfer data from a building to analysis tools and then to

maintenance technicians. A physical test apparatus was defined and instrumented

with sensors. This apparatus is an AHU that is described in Section 3.1. The sensor

data values of the test apparatus could be sent through an existing building con-

trol network system that complied with the Building Automation Control Network

(BACnet) protocol. This IT infrastructure also included an XML web-service and
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a MySQL database that is described in Section 3.2. Qualitative, quantitative, and

process history FDD tools, described in Chapter 4, were used to analyze the AHU

data in each of the experiments.

Apparatus
(Section 3.1)

IT Communications
(Section 3.2)

FDD Methods
(Sections 3.3, 4.1 & 4.2)

FDD Experiments & Results
(Sections 5.1 - 5.7)

Components

Sensors

Data Web
Services

BACnet

Existing
Controls
Server

Actual
Data Set

Visualization

TRNSYS

FDD
Web

Services

FDD Tools

Simulation
Data Set

Results
Data

Exp. 2-4

Exp. 1

Results

TMY2

Figure 3.2: The flow diagram of platform for FDD experiments includes the apparatus,
IT communications, FDD methods, experiments and results.

The first experiment was the calibration of the rule-based and physical model.

The physical model was used to produce training and testing data for experiments

2 through 4. The rule-based model was used for fault detection (FD). In the second

experiment, FD methods were evaluated on their abilities to learn with a minimal

amount of training data from the TRNSYS physical model that contained no faults.

This experiment emulated the situation where the data was acquired from a Retro-

Cx e↵ort. The adaptability of the top performing tools from experiment two were

evaluated in the third experiment. In this experiment normal changes to non-fault

data were presented to the algorithms to identify how well the tools could adapt

and still detect faults. Fault diagnostics using LAPART and multi-class SVM were

tested in the fourth experiment. The results from the fault detection experiments

were evaluated and compared based on the number false alarms, false detections,

true detections, and true faults. The fault diagnostic results were based on the F1

statistic score described in Section 5.7.
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3.1 Apparatus

The ability to conduct this research required a physical testbed with two main charac-

teristics. First, it needed to be flexible so that it could simulate a variety of di↵erent

operations scenarios. Second, it needed to be appropriately instrumented to allow

the user to retrieve performance results through standard sensor configurations. The

facility that was used to test the fault detection and diagnostics tools discussed here

was the University of New Mexico’s Building Energy Retrofit Testbed (B.E.R.T.), a

facility integrated with the MEBldg.

The building has a total of four floors and which add up to about 6,503m2 of o�ce,

classroom, laboratory, and common area space. In this research a single air handling

Mechanical
room

AHU2

4th

3rd

2nd

Figure 3.3: The Building Energy Retrofit Testbed (B.E.R.T.) is a four story 6,503m2

building for lab, classroom, and o�ce space. AHU2 forces cold air from the basement to
the 2nd, 3rd, and 4th floors.

unit, AHU 2, provides cold air to approximately 46 zones, or about 3,360m2. These

zones are located on the second, third, and fourth floors as shown by the arrows in

Figure 3.3.
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The building was originally constructed in 1980 as a living laboratory for build-

ing energy system research. In the period following commissioning the building

performed extremely well, with an energy consumption less than one third of com-

parable buildings [126]. In the years following its construction, energy prices started

to fall, and interest (and funding) in improving energy e�ciency in buildings de-

creased. As a consequence, the building’s advanced energy systems could not be

maintained properly and quickly fell into disrepair. This highlighted the fragility of

complex systems that have demanding control requirements.

Following renewed interest in the field of building energy management, a program

to refurbish and modernize the building’s energy systems began in 2006 [75, 91].

First, the solar thermal and energy storage systems were upgraded and modernized.

Second, the original pneumatic control system at the AHU level was replaced with

Figure 3.4: Representation of the six AHUs in the base-

ment, including AHU 2, and the two return air fans.

DDC. All significant pumps

and fan motors were up-

graded with variable fre-

quency drives. To finalize

the upgrade of the controls,

zone terminal boxes that

AHU 2 and others support

were upgraded from pneu-

matic to DDC controls.

The HVAC equipment is

located in the mechanical

room of the MEBldg and is shown graphically in Figure 3.4. The chilled and hot

water piping, duct work, pumps, heat exchangers, etc. are not shown for clarity.

After the most recent upgrades all of the equipment is now controlled with a mod-

ern Delta Controls DDC system that uses multiple Delta DSC-1616 control boards.
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This system is native BACnet and communicates on twisted pair ethernet 10-Based

T through both BACnet over Ethernet and IP. The system can be viewed on a Win-

dows 2008 Server through the Delta ORCAView 3.40 system, and programmers can

program equipment controls through the General Control Language Plus (GCL+)

language.

The Delta Control system has proven to be scalable and user friendly. Currently

there are approximately 400 data points that are being monitored and used in control

sequences. These points include fan speeds, zone temperatures, AHU temperatures,

Damper

Heat Exchanger

Supply Fan

Figure 3.5: AHU2 is comprised of a damper system, chilled water coils, and a supply air
fan that are monitored with mixed air temperature sensor, supply air temperature sensor,
and a supply air flow sensor respectively.

and air flows. The control system also collects weather data such as solar irradiance,

outside air temperature, and relative humidity.

AHU 2 is highly instrumented with sensors and controls. Its general layout is

described in Figure 3.5. The system is set up in a draw thru configuration. At the

the unit entrance is a damper section where parallel bladed mixing dampers control
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the proportion of return and outside air that enters the system. The dampers were

designed to have one percent leakage at 746Pa (3.0 In. W.G.). The unit is for cooling

only and has two stacked chilled water (CHW) coils. At the exit of the unit is a

Section Area (m2)

Outside Air 4.4

Return Air 4.4

Damper

- Values

Supply Temp 11.7�C

X-Section 6.73m2

Cool Cap. 276 kW
th

Heat Exchanger (HX)

- Values

Supply Flow 1,030 m3

min

Static Press. 836Pa

Fan Speed 1,131rpm

Motor 21.9 kW

Supply Fan

Figure 3.6: AHU 2 specifications for

each sub-system from the original con-

struction documents published in 1980.

centrifugal fan with a 91.4 cm fan wheel.

The fan draws air from the mixed air sec-

tion through a filter bank and the CHW

coils and then on to the zone boxes in the

building. The sheetmetal enclosure that sur-

rounds the coil and fan section includes a

2.54 cm, 0.34 kg density neoprene coated in-

sulation. For the purpose of this work the

unit was divided into three sections or sub-

systems: (1) damper, (2) heat exchanger

(HX), and (3) supply fan.

The sub-systems, delineated by dashed

lines shown in Figure 3.5, are defined to sim-

plify the analysis performed in each experi-

ment. These sub-systems each have a single

sensor point whose reading was monitored

and evaluated by the FD tools. The damper

and HX sub-system are each monitored by

their own temperature sensor. The supply

fan is monitored by a supply air flow sensor.

These sensors are typical for most AHU and

therefore can be replicated in many HVAC systems across the country and probably

the world.

The damper sub-system is comprised of two sets of parallel bladed dampers that
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regulate the flow from return and outside air. These dampers, each with an area of

4.4m2, are controlled with actuators that modulate based on outside and mixed air

temperatures. The heat exchanger system has two critical components, namely CHW

Actuator

Filter

Blades

Figure 3.7: Outside air damper system that has

a mechanical actuator controlled by the DDC.

coils and a modulating valve. The

coils act as the heat exchange mech-

anism to cool the air to a temper-

ature of about 15.5�C. The air is

then forced to the various building

zones. The valve modulates based

on a signal from the controller that

considers the supply air tempera-

ture and compares it with the pre-

defined set-point. According to the

original specification, described in

Figure 3.6, the system is capable of

providing 276kW
th

of thermal power. Lastly, the supply air fan is composed of a cen-

trifugal fan and motor. The motor, which powers the fan, is controlled by a Variable

Frequency Drive (VFD) that modulates the fan speed based on the static pressure

in the duct work. The construction documents state that the fan is powered by a

29.4kW motor and can supply a volumetric flow rate of 1,030m3/min (17.16m3/sec).

3.1.1 Components

The three sub-systems within AHU 2 that were defined for this work are described

in Figure 3.5. Each of these sub-systems components has the potential to fail and

disrupt the entire AHU system which can cause it to shut down or work harder than

necessary. For instance, the damper sub-system may have an actuator malfunction;

the HX modulating valve may be controlled improperly; the fan VFD may fail and
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supply a constant or an inadequate volume of air.

Dampers

The damper sub-system, shown in Figure 3.7, consists of a set of dampers for outside

and return air. The figure shows the outside air dampers in the foreground, and the

Figure 3.8: Example actu-

ator used to modulate the

damper blades.

filters in the background. The return air dampers are ar-

ranged in a similar manner but in a horizontal plane on

the top of the unit. The space in between the dampers

and the air filter bank is considered the mixed air section.

In this section, the outside and return air flows are con-

trolled so that the mixed air temperature are as close as

possible to the defined set-point.

The return and outside air dampers both operate in a

similar fashion. A mechanical actuator, similar to the one

shown in Figure 3.8, receives a signal from the controls and modulates the dampers

by actuating a single bar that is connected to the damper sections through a series

of cords and hinges. The controls are currently set up to modulate the two damper

systems in an opposing manner. This means that when the damper position for the

outside air is x% then the return damper is (100-x)%. Typically, about 10-15% of

the total mixed air should be fresh, outside air. Yet, in this system the minimum

position of the outside air damper is 0%. This means that the damper completely

closes when the outside air temperature is greater than the return air temperature.

Chilled Water Coils & Valve

The heat exchanger sub-system is comprised of two stacked CHW coils, represented

in the Figure 3.9 graphic, and a modulating valve that is shown Figure 3.11. The
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piping to and from the stacked coils are in direct return arrangement. In this ar-

rangement the supply and return flows for the top coil must each pass through a

T fitting. In contrast, the bottom coil supply and return flows must each pass

through a L fitting. Typically, this arrangement results in reduced flow at the top

coil because the system is unbalanced, and therefore does not provide for an opti-

mal heat exchange [52]. This ine�ciency was observed in this system. Temperature

measurements were taken at the air flow inlet and outlet of the top and bottom

Actuator

Return

Supply

Top Coil

Bottom Coil

Figure 3.9: AHU2 stacked CHW coils with direct

return piping and a modulating valve that can vary

the flow rate.

coils. The di↵erence in air tem-

perature across the top coil was

lower than the bottom coil by

1.5-2.8�C during normal operat-

ing hours.

According the original design

documents the CHW coils, shown

in Figure 3.10, have an area of

6.73m2 and were specified to pro-

vide 273kW
th

(78 Tons) thermal

power at a specified flow rate

of 0.355m3/min (94 gallons/min).

The thermal power defined by the

construction documents is very

large in comparison to actual observed values of between 100 and 130 kW
th

measured

in the air distribution system during the summer months. This could be because the

system was originally oversized.

The second major component in the heat exchanger sub-system is the CHW

valve. This valve, pictured in Figure 3.11, receives a signal from the control system

to regulate the amount of CHW flow. The signal is based on the output of a Pro-
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portional Integral Control (PID) control algorithm. This algorithm uses the supply

air temperature as the control variable and calculates a signal based on the error be-

tween the measured value and the set-point of 15.5�C. The set-point was established

by the controls programming and does not match with the specified temperature of

11.7�C stated in the original design documents.

Figure 3.10: CHW cooling coils that
transfer heat from the air to the water.

Actuator

Valve

Figure 3.11: CHW valve and actuator
that modulates the flow through the coils

Supply Fan

The third sub-system in the AHU is the supply air fan. Its components are described

graphically in Figure 3.12. It includes a centrifugal fan, fan motor, fan belt, and VFD.

The unit supplies air to about 46 thermal zones in the building and has a maximum

flow rate of about 1,030m3/min (36,520 ft3/min, 17.17m3/sec). The entire system is

dynamic and is comprised of variable air volume (VAV) boxes at each of the thermal

zones. This means that there are multiple dampers throughout the building that

make adjustments to the amount of air that is supplied to the space depending on

the local thermal loads.

The fan system works to supply the correct amount of air at the temperature
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Air

Flow

VFDFan Belt

Fan Motor

Fan

Figure 3.12: Diagram of fan system that includes a cen-

trifugal fan, belt, and a motor.

achieved by the CHW coils

so that the thermal zone

loads are met, and de-

sired zone temperatures are

maintained. The load (Q̇)

supplied by the AHU can

be calculated using Equa-

tion 3.1:

Q̇ = ṁC

p

�T, (3.1)

where ṁ (kg/s) is the mass flow rate, C
p

(kJ/kg�C) is the specific heat of air, and

�T (�C) is the di↵erence in temperature between the supply and zone air. In order

to supply the correct amount of air, the fan requires electrical power that varies

proportionally to the cube of the fan speed as shown in Equation 3.2:

P1

P2
=

✓
⌦1

⌦2

◆3

(3.2)

The changes in the VAV terminal unit damper not only alter the amount of air

delivered to the zone but also impact the air distribution system resistance curves.

The system curve, shown in Figure 3.13, is a second order equation where the static

pressure is equal to a constant times the square of the air flow. The constant value,

which is a function of the variable air volume positions at each of the zones, represents

the overall resistance of the system and determines the steepness of the curve. The

two curves shown in the figure intersect at point 1, and is considered the initial

operating point.

At operating point 1 the fan demands about 11.2kW of electricity to supply about

13.7m3/s of air. In this situation the AHU is providing about 125kJ/s (125kW
th

) of

thermal power according to Equation 3.3:

Q1 = ṁC

p

�T = (16.48
kg

s

)(1.01
kJ

kg

�
C

)(23� 15.5)�C = 124.83
kJ

s

(3.3)

32



Chapter 3. Methodology: Set-Up

Next consider a change in the building’s thermal load to about 82kW
th

. The zone

dampers would react and restrict the flow. Then, the required flow rate provided by
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Figure 3.13: Example fan curve shows that the oper-

ating points at a constant pressure

the fan would decrease, and the

system resistance and fan curve

would adjust to a lower static

pressure at point 2 where the

flow rate was about 9m3/sec. In

this situation the fan power was

estimated using Equation 3.2

and decreased to about 3.2kW.

However, the current control

system does not allow the fan

to operate at a static pressure

below 398Pa (1.6inH2O). This is

because the VFD signal is based

on a PID loop that maintains a

measured static pressure so that it is equal to the pre-set set-point. Therefore,

the VFD would increase the fan speed to force the fan to operating point 3, thus

increasing the fan power to 8.1kW. This example highlights the correlation between

fan power and zone thermal loads. It also shows that slight variations in the controls

and system dynamics have the potential to negatively a↵ect energy consumption.

3.1.2 Sensors

Commercial building HVAC systems require many sensors to monitor and control

equipment. Standard sensors include temperature, pressure, air flow, motor status,

and fan speed. Unfortunately, there is not a set standard for the installation of

33



Chapter 3. Methodology: Set-Up

sensors in HVAC equipment such as AHUs. However, AHU are typically equipped

with temperature sensors in the mixed and supply air sections. It is also common to

have a supply air flow rate sensor to monitor the total volumetric flow provided by

the fan.

The present work collected actual data from the mixed air temperature sensor,

supply air temperature sensor, and supply flow rate sensor. The collection process

was conducted through the extraction of sensor values available in the existing BAS

network. This extraction occurred every five minutes. PHP code was used to parse

the sensor values and then insert each value according to time in an o↵-site database.

This process is defined in more detail in Section 3.2.

Air Temperature Sensors

The Dwyer Series averaging Platinum resistance temperature detector (RTD) was

used in this work to measure the supply and mixed air temperatures. This sensor is

able to measure temperature by correlating the resistance of the RTD element with

temperature. It is capable of measuring temperatures from -32 to 240�F (-35.5 to

115.5�C). The sensor has an accuracy of ±0.6�F at 32�F (0�C). The sensor is 12 feet

long and was placed in a zig-zag fashion at two locations. One at the entrance of

the CHW coil to monitor the mixed air temp. The other at the exit of the coil to

measure the supply air temperature.

Each of the temperature sensors was subjected to a calibration process. The pro-

cess involved the comparison the sensor output with a control thermometer that had

been calibrated by the manufacturer. In addition, the comparisons were conducted

over a temperature range of 5�C. The two sensors provided outputs that matched

well with the control and therefore did not require any modifications.
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Air Flow Sensor

There are a several di↵erent techniques for measuring air flow, including a hot wire

anemometer, digital anemometer, and pitot tubes. Pitot tubes are an e↵ective way

to measure flow [62], but unfortunately a pitot tube and an associated pressure

Figure 3.14: Pitot tube air flow sensor that is made of
PVC, brass fittings, and poly-tubing

Figure 3.15: Dwyer pres-
sure transducer

transducer can cost between $250 to $1,000. This cost can be prohibitive, so in the

present work, a pitot tube system that cost about $100 for both the pitot tube and

the pressure transducer was devised.

This pitot tube, made out of PVC fittings and pipes, brass fittings, and poly-

tubing is shown in Figure 3.14. The two small tubes at the end are the total and

static pressure connections. These tubes connect to the pressure transducer shown

in Figure 3.15. The pressure transducer accepts the total and static pressure con-

nections and measures the velocity pressure. It then used the velocity pressure to

calculate the velocity of the air. From there, the air speed was mapped to a 0-10

volt signal and sent to the BAS for data collection.

The pitot tube elements are shown in Figure 3.16. The device has a single static

pressure port that is labeled in the Side View. This static port is connected to an

external static pressure connection that is also labeled in Side View. This connection

is made with an internal tube as shown graphically in the Side Cut View. The total
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Side View

Bottom View

Side Cut View

Static
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Total
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Figure 3.16: Pitot tube design described with side, bottom, and cut views

pressure ports are distributed on the bottom of the device as shown in the Bottom

View. The ports were distributed across the PVC pipe and were drilled using a

3 mm bit. The connection to the transducer for the total pressure is made at the

total pressure connection shown in Side View. The diagram on the right side of

Figure 3.16 shows the general orientation of the device in relation to the air flow.

The ports drilled into the PVC pipe are oriented into the flow stream to measure the

total pressure, and the static pressure port is pointing directly away from the flow

stream.

The basic principle that defines the pitot tube is based on Bernoulli’s equation:

p+
1

2
⇢⌫

2 + ⇢gz = C (3.4)

In this equation p is pressure, ⌫ is velocity, ⇢ is specific density, z is the elevation

above a reference, and C is a constant. The flow before and after striking the tube

can be represented using Equation 3.5:

p1 +
1

2
⇢⌫

2
1 + ⇢gz1 = p2 +

1

2
⇢⌫

2 + ⇢gz2 (3.5)
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The total pressure ports of the pitot-tube are set perpendicular to the air flow stream.

When the air hits the horizontal surface it’s speed reduces to zero and ⌫2 is set to 0.

Additionally, the relative elevation for both sides of the Equation 3.5 are the same

and cancel each other out, resulting in Equation 3.6:

p1 +
1

2
⇢⌫

2
1 = p2 (3.6)

In practice, p1 is called the static pressure and p2 is considered the total pressure.

The total pressure is defined by the sum of the velocity and static pressure. The

static pressure is the pressure that exists inside the duct and is independent of the

flow. Furthermore, pressures p1 and p2 are measured by the pressure transducer.

Once measured these pressures can be used to solve for the velocity of the flow using

Equation 3.7:

⌫1 =

s

2

✓
p2 � p1

⇢

◆
(3.7)

The pitot tube was tested against a commercially available flow measurement de-

vice. The tests were conducted in a controlled environment and flow was modulated

to observe how the pitot tubes performed in relation to the control flow measurement

device at di↵erent flow rates. The expectation was that the low-cost flow device would

Figure 3.17: PVC Pitot Tube measurements compared to

the calibrated control device range

remain within the error of

the control.

The results from the val-

idation test are shown in

Figure 3.17. The graph

shows the velocity reading

of the low-cost pitot tube

versus the results of the

control devise. It is evident
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that the pitot tube results remain within the range for the majority (95%) of the

time shown. At this confidence level and based on the sensors ability to follow fluc-

tuations in flow the sensor was considered adequate for this research e↵ort and for

use in building control in general.

3.2 IT Infrastructure

The research methodology included the development and operations of an IT infras-

tructure that integrated actual and modeled sensor data with FDD analysis tools.

Data Web

Services

BACnetSensors

Existing

Controls

Server

Actual

Data Set

Visualization

FDD

Web

Services

Figure 3.18: Flow diagram of IT infrastructure where

the buildings sensors are connected to the BACnet net-

work. The BACnet network can be accessed by the

data web services developed in the present work and

insert the sensor values into a relational database. The

database can be accessed by a web-based visualization

and the FDD tools.

This infrastructure, described

in Figure 3.18, included the ex-

traction and insertion of sen-

sor data from the BACnet into

a database. The database

supported a visualization for

a simple user interface and

FDD analysis experiments. The

transfer of data from BACnet

and to and from FDD experi-

ments was accomplished using

web services procedures such

as Extensible Markup Language

(XML) and Structured Query

Language (SQL) script embed-

ded in Python and PHP scripts.

The following sections describe BACnet, web services procedures, the database, and

finally the web-based visualization.
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3.2.1 BACnet Sensor Network

Sensors in buildings are constantly exchanging messages within the BAS that de-

scribe system performance and status. These messages are typically in the form of

numerical data. Most often, the data are sent to a single server where control pro-

grams define activity. This platform accesses the data and routes it to a database that

is separated from the proprietary controls. The database can then be accessed by a

BACnet LAN

Proprietary LAN

Data

Client

Actual

Data

Controls

Server
Gateway

Field

Panel

1A

Field

Panel

2A

Field

Panel

1B

Field

Panel

2B

Sensors Sensors

Sensors Sensors

Figure 3.19: The sensor network can be comprised of a

proprietary LAN that connects to the BACnet through a

gateway. The sensors connect to a field panel that commu-

nicates through the LAN to the controls server. Finally,

the data client used in the present work extracts the sensor

data and inserts it into a database.

user friendly visualization

interface and most im-

portantly the FDD tools

can access and analyze the

data. To achieve this con-

figuration, the system con-

nects with the network used

by the existing building

controls system. In the

present case this isBuilding

Automation and Control

network (BACnet).

The BACnet protocol is

a an ASHRAE, ANSI, and

ISO [3] standard communi-

cation protocol. The proto-

col provides a reliable net-

work communication and

controls for building au-

tomation and control of HVAC, lighting, access control, and fire detection systems

[86]. The protocol was established in 1987 during an inaugural meeting of ASHRAE
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Standard Project Committee (SPC). During the meeting, a consensus was reached

that defined BACnet as the central standard for building automation communica-

tion. Then in 1995 it became an ASHRAE/ANSI Standard 135, and in 2003 became

ISO 16484-5 standard. BACnet is now implemented internationally with over 721

control vendors identified on the BACnet website.

The BACnet protocol defines the communication between building devices and in-

clude services such as “Who-Is”, “I-Am”, “Who-Has”, and “I-Have”. These services

are used for device and object discovery so that data sharing using “Read-Property”

and “Write-Property” can be conducted reliably. In addition, the protocol defines

objects such as Analog Input (AI), Analog Output (AO), Analog Value (AV), Binary

Input (BI), Binary Output (BO), Binary Value (BV), etc. The transfer of data can

be conducted through many di↵erent types of data links or physical layers. This

includes ARCNET, Ethernet, BACnet/IP, Point-to-Point over RS-232, and Master-

Slave/Token-Passing over RS-485.

Switch
Web-service

Data client

Figure 3.20: The Chipkin BACnet Data Client is con-

nected to the building controls BACnet network and

displays data on XML.

A general benefit of BACnet

is that in order to comply with

the standard all control ven-

dors must speak the language

so that communication can be

integrated, available, and cen-

tralized. Figure 3.19 describes

a simple example set up of the

network that includes a BAC-

net and proprietary Local Area

Network (LAN). The propri-

etary sensors, actuators, and

field panels communicate on their own LAN. The proprietary LAN can be con-
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nected to the BACnet through a gateway. This set up has allowed a central BACnet

workstation to communicate with both BACnet field panels and proprietary devices.

For instance, the data acquisition for this project used a data client that extracted

sensor data directly from the BACnet. Then, through web-service methods, the data

were sent to a database as described in Figure 3.19.

3.2.2 Web Services

In the context of this research, web services are methods used for communication

between two devices over a network. This communication can be performed using

XML, SOAP, REST, SQL, and others. The present IT framework incorporated web

services for two applications. First, web services were used for sensor data extraction

from the BACnet and then to transfer the data to a database. Second, stored data

was queried by FDD analysis tools and results were stored in the same database.

Data Web Services

The BACnet protocol, as described in the previous section, provides a platform

to access the existing sensors independently of the building controls vendor. To

read sensor data available on this network a device called a BACnet Data Client,

manufactured by Chipkin Automation Systems, was used. The device can connect to

the ethernet network through a standard network interface such as a hub, switch, or

router. For this research application, because there was a minimal number of hubs,

a switch was used to connect to the network (Figure 3.20).

The setup shown in Figure 3.20 allowed sensor data in the BACnet/IP network

to be read through the network switch. The values were extracted using the data

client and displayed on an XML web page. The web-service, which in this case

was a Raspberry Pi Linux based computer, ran PHP scripts that accessed the XML,
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parsed it, and finally inserted the data into a MySQL relational database. The scripts

were executed every 5 minutes using the crontab application on the linux operating

system.

The set-up of the data web services included the separation of networks and the

transfer of data through XML. The building controls system, the Data Client, and the

Raspberry Pi web-server were located on a private network. The private network,

designated by 10.xx Internet Protocol (IP) address prevented access from outside

the UNM network. The database, however, was on a public network that could be

accessed from outside of the UNM network. The data transfer process began at the

Data Client. The Data Client, located in the private network, provided the sensor

data in an XML format. The Raspberry Pi parsed the XML to extract the necessary

data and then inserted it into the database located in the public network. A firewall

was set up in the database server configurations that only allowed a designated IP

address to access the database.

FDD Web Services

The operations of FDD analysis for the experiments required web services to transfer

data to and from the database. Data were queried by the FDD tool, an analysis tool

performed a prediction or classification to review performance status, and the results

were inserted into the database. The script was di↵erent for each of the analysis tools,

but followed the same general approach. Many of the FDD methods, such as ART

or LAPART, were performed without the creation and use of text files. Instead of

creating, reading, outputting, and then parsing a text files, these FDD tools transfer

data to the tool in a much simpler manner. The data was accessed through a single

SQL query, and then the results were put into the database with an SQL insert. For

example, Algorithm 1 describes Python code to perform these SQL tasks.
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Algorithm 1 Python MySQL Query & Insert Example Code

# Database connection

$db = MySQLdb.connect(host, user, password, dbname);

cursor = db.cursor

# Database Query

sql = ”SELECT * FROM tbname” # select statement

cursor.execute(sql) # execute select

results = cursor.fetchall()

variable = [ ]

for row to len(results) do

variable.append(row[0])

end for

# Database Insert

sql = ”””INSERT INTO %s (col) VALUES(%s)””” %(tb,var) # insert statement

cur.execute(sql) # execute insert

3.2.3 Database

Databases have become essential for many business applications. Most major web-

sites across the internet use databases to help service requests and provide informa-

tion. Database Management System (DBMS) is a tool for managing large amounts

of data e�ciently over a long period of time [82]. DBMS can be structured with

tables that have relationships with one another so that data could be queried across

many tables with a single command. The most widely used relational database is

Standard Query Language (SQL). The execution of the SQL is supported within

many di↵erent programming languages such as PHP, Perl, and Python. DBMS pro-

vides an e↵ective mechanism for accessing data across internet servers to create an

e↵ective means to access building data and store fault detection results.

43



Chapter 3. Methodology: Set-Up

There are many di↵erent database engines such as PostgreSQL, SQLite, Microsoft

SQL Server, Oracle, SAP HANA, among others. In this case a MySQL DBMS

was used because it is both open source and simple to implement. MySQL uses a

Building

access

Users

have

Weather Stations

sense

Weather Sensors

has

AHUs

sense

AHU Sensors

have

report

Fault Types

model

AHU Modelrepresent

FDD Train

detect

FDD Tests

useaccess

Figure 3.21: Database entity relationship (ER) diagram that describes tables and how
they interact with each other in the database created for this application. The boxes and
diamonds that have double lines are weak entities. A weak entity is an entity that cannot
be uniquely identified by its attributes alone.

relational model for storing data which allowed the user to perform a single query

to access data in multiple tables [82]. The MySQL tables, each of which could be

considered an entity, contained columns that are referred to as attributes. These

attributes describe the meaning of the data entries. Furthermore, the arrangement

of the attributes for a table represent the overall schema and are linked through

entity relationships. Also, a row of a table is referred to as a tuple which has one

component for each attribute of the relation. Lastly, keys, which are composed of

one or more attributes, help relate tables with each other. This structure allowed
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for data collection, visualization, and FDD analysis to occur in a simple manner, a

feature that was crucial for a successful FDD implementation.

The development of a database schema requires the consideration of certain design

principles. Molinar et al. described these principles as the following: (1) the schema

should reflect reality, (2) be simple, and (3) avoid redundancies. These principles

were applied to the entity-relational (ER) diagram shown in Figure 3.21. The ER

diagram is a model that describes the aspects of the database requirements and the

relationships between the tables. In the figure the entities (rectangles) represent the

tables and the attributes (ovals) are the columns within the table. The diamonds

describe the relationship between the entities.

The database schema for the present work is described in Figure 3.21. The

attributes for each entity are not included for in the figure for clarity. The first entity,

Building, is connected to three other entities which are Weather, AHUs, and Users.

TheWeather entity stores sensor data from environmental conditions associated with

a certain geographic location. This entity was considered weak (designated with

a extra border) because its key is partially determined by attributes that belong

to another entity and therefore, it must use a foreign key in conjunction with its

attributes to create a primary key. For example, outside air temperature could have

the same designation for di↵erent buildings within the same geographic location.

Therefore, the location and building identification (id) are required to define the

tuple that contains the correct outside air temperature data. The other two entities

that are connected to the building entity are Users and AHUs. The users entity stores

password and username information on people such as energy managers, owners, etc.

so that the web-site can verify their credentials and allow access to the building data

and analysis results. The AHUs entity stores general information on individual

AHUs. It is connected to other entities such as Building, Fault Types, and others so

that associations can be made in a single query to link data to the AHU. For example,
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a single query can consider an AHU, recent sensor data, and fault conditions.

The other entities AHU Sensors, AHU Model, Fault Types, FDD Tests, and FDD

Train are associated to the AHU entity. The AHU Sensors describes the table that

Figure 3.22: Sample screenshot of the web-

based visualization for the FDD tools.

stores all of the data for each AHU. This

includes an identification that links each

data point to a particular AHU in the

AHU entity. The sensor data from the

AHU Sensors entity can be used to cal-

ibrate models and the results could be

stored in the AHU Model entity. Addi-

tionally, the algorithm dependent results

from the FDD training algorithms are

stored in the FDD Train entity. Pro-

cess history FDD tests use the data in

the FDD Training entity and also ac-

tual sensor data to detect faults and then

store the results in the FDD Tests entity.

The Fault Types entity accessed the testing results and expert user input to define

fault types. The fault types stored in this entity are associated with particular re-

sults in the FDD Tests entity and also linked to the particular AHU where the fault

occurred.

3.2.4 Visualization

A very important aspect of the FDD tool is the visualization so that users can moni-

tor, review, and understand reported failures. In this case, a web-based visualization

was implemented because of its ease of access by both users and the database that is

46



Chapter 3. Methodology: Set-Up

described in Section 3.2.3. An example screen shot of the web interface is shown in

Figure 3.22. To access the interface the user must be registered and use the assigned

username and login. This image shows user Birk Jones logged in and prompts to

query the power usage at di↵erent intervals. The user can also exit the interface by

clicking “logout” at the bottom right corner. In addition to the graphical represen-

tation of the power data there is print out of basic statistics of the graphed data that

include max, min, and average.

The web interface includes many di↵erent pages that can be used to review build-

ing performance. The main page described the intent of building FDD and the gen-

eral system layout that is being evaluated. The interface also provided a simple list

Figure 3.23: Screen shot image of graph found on sec-

ondary web page to review actual performance versus

modeled results.

of addressed and existing faults.

In addition, it provides an esti-

mation of energy saved after the

fault was addressed, or money

that was lost due to not address-

ing a particular fault. Finally,

the main page provides links to

other pages where users can re-

view identified faults or good

behavior in more detail.

The secondary pages, for reviewing system operations in more detail, contain

temporal graphs of system performance. For example, a screen shot of the actual air

flow sensor data from AHU2 and expected modeled results from a real-time TRNSYS

model is shown in Figure 3.23. The actual data were provided in blue and the high

and low ranges for the model results are in red and orange respectively. The FDD

tools presented in this research paper provide all of the analysis to determine if a

fault had occurred or not. However, further questions or concerns can be addressed
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by accessing these secondary pages, that provide valuable information for determin-

ing corrective action or mitigation procedures to create a more optimal process for

training of the FDD tools.

3.3 Physical Model

A physical model was developed to provide a representation that was based on actual

physical properties of the building and AHU 2. The critical part of the development

Figure 3.24: TRNBuild 3D thermal model of the Mechani-

cal Engineering Building created in Sketch Up w/ TRNSYS

add on

was the model calibra-

tion. This involved the

modification of parame-

ters so that the model

outputs best matched re-

ality. The calibration

process was conducted as

part of Experiment 1.

Additionally, the results

from the simulations were

used as inputs for training

and testing of the FDD

tools in Experiments 2 through 4.

The model was created using a commercially available building energy simulation

software called TRNSYS (Transient System Simulation Tool). TRNSYS is a flexible

graphically based software environment used to simulate the behavior of transient

systems through algebraic and di↵erential equations. In this case, the tool was used

to estimate actual air handling unit air flows and temperatures by running detailed

simulations that considered building geometries, external and internal loads, weather,
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control parameters, and ventilation rates.

Unlike ANN, the physical model approach requires significant knowledge of the

building and the AHU system. The TRNSYS model included a two part approach for

model development, that included three dimensional sketch of building geometries

and then the set up system components such as fans, dampers, etc. Once the model

was complete the simulation of building operations was conducted within a kernel

Figure 3.25: TRNSYS Simulation Studio component interface for AHU 2. This graphic
does not show the entire model because it was broken out into separate pages to improve
the organization of the layout. For example, the building model is on a separate page and
is referenced by the component LOAD 234-2.

engine. The engine compiled and processed input files and then iteratively solved

the system equation, determined convergence, and finally plotted system variable

results. The simulation engine has an extensive library of building components, each

of which models the performance of pumps, valves, vans, etc.

The three dimensional building geometries were created in Trimble Sketch Up.

The building geometries and fenestration locations were replicated to scale and were

oriented in the correct cardinal direction as shown in Figure 3.24. This file was
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then imported into TRNBld software where internal loads for all thermal zones, and

material types and thickness for walls, roofs, ceilings, windows, and other elements

were assigned. The second part of the model development was to create AHU 2 in

the TRNSYS simulation studio software. The AHU setup is shown in Figure 3.25.

The components included a fan, hot and chilled water pumps, hot and chilled water

coils, valves, dampers, and controllers. The components were setup in accordance

with the physical parameters in actual unit.

After the model was created, inputs were presented to the TRNSYS model at

5 minute intervales. The inputs included actual weather data such as outside air

temperature, relative humidity, and solar irradiance. The model then performed its

simulation and produced outputs for the AHU that included mass flow rate, supply

air temperature, and mixed air temperature.
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Methodology: FDD Tools

Artificial neural networks (ANN) are a form of machine learning that emulate a

simplified version of an animal’s nervous system for the purposes of acquiring and

storing knowledge. The algorithms have the ability to build rules. These rules are

built as features from the sensor data are processed through highly interconnected

elements, called neurons. The neurons work together to learn and store memory of

experiences. ANN provide a high level learning system that can perform complex

computations, and calculate many nonlinear problems.

The basic elements of synaptic learning in an animal’s nervous system are com-

prised of dendrites, axon, and synapses. The process begins in the dendrites where

sensor data was collected from other neurons. A signal is then transferred through

the soma and into the axon. The axon is a cable like structure that passes infor-

mation to the axon terminal. At the axon terminal there are branches that connect

with other dendrites. At this point chemicals, called neurotransmitters, are trans-

mitted to receptors. This transmission is where the learning occurs. These receptors

receive the neurotransmitters in a manner that is based on prior learning. This

structure of transferring information provides a mechanism for interpretation and

51



Chapter 4. Methodology: FDD Tools

decision making that is highly complex and e�cient.

ANN are not nearly as sophisticated as actual neural systems but are never the

less capable of performing surprisingly complex learning computations. The basic

Feature 1

Feature 2

Feature 3

Output

Hidden

layer

Input

layer
Output

layerw1

w2

w3

Figure 4.1: A graphical representation of a single-

layer perceptron ANN that has an input layer, one

hidden layer, & an output layer.

layout and interconnections of

input, hidden, and output lay-

ers for a simple single-layer per-

ceptron is shown in Figure 4.1.

The interconnections of the neu-

rons and the learning algorithm

allow for the tuning of nu-

merical parameters known as

weights (w). The interneuron

connection strengths, which are

the weights, are used to store the acquired knowledge for classification and/or pre-

diction [43].

The most common type of learning is called supervised learning where the modifi-

cation of weights occurs through the presentation of training samples. This includes

the input of a unique value and a corresponding desired output. Haykin [43] refers

to this as input-output and explains that the weights of the network are modified to

minimize the di↵erence between the desired and actual response.

ANNs have the ability to learn during the training mode and then produce pre-

dictions while in testing. The predictions can be generalized, which means that the

ANN can provide reasonable outputs for inputs not encountered during training.

Additionally, the ANN can solve complex problems such as linear and nonlinear

systems. These qualities are very important because many HVAC systems have non-

linear properties. HVAC system performance can change from day to day and from

month to month. Therefore, an adaptive analysis system can be used to provide
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reliable outputs.

4.1 Adaptive Resonance Theory Tools

Some ANN algorithms can adapt their synaptic weights to changes in the surround-

ing environment [43]. For example, an ANN that was originally trained in a specific

environment can be retrained to account for di↵erent conditions. One such algorithm

is ART. The original ART algorithm was invented by Carpenter and Grossberg [38]

and provided a theory for overcoming instability that occurs in competitive learn-

ing [39]. Further work in the area incorporated fuzzy set theory into the original ART

to create a Fuzzy ART algorithm [13] which can learn from analog input patterns in

an unsupervised manner. A separate algorithm, called the LAPART was introduced

by Healy and Caudell [48]. This algorithm consists of interconnected Fuzzy ART

modules to infer one pattern class from another to create a prediction [40]. The

ART and LAPART use self-organizing learning at their cores, and do not use any

form of gradient descent. This type of approach allows for rapid learning.

4.1.1 Fuzzy Adaptive Resonance Theory

Typical ANN architectures have the ability to learn. However, they may forget old

information or have to relearn the old information in order to gain more knowledge.

For example, suppose a typical ANN algorithm is used to recognize the outline of

every bicycle. Once the ANN has learned and classified the outlines, which can be

a time consuming activity, the training period is over and no further modifications

can be made on the final weights. If a new class of bicycle with a di↵erent outline is

developed the ANN would have to retrain the network with the new pattern plus all

of the previous patterns.
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Fuzzy ART is a ANN architecture that can learn without forgetting. It is similar

to human memory where people can recognize their parents even if they have not seen

them in a while and have learned many new faces since. The theory was developed

by Grossberg and Carpenter and includes various types such as ART 1, ART 2,

Inputs

Normalize
Data

Complement
Code

F0

Category
Choice

Pass
Vig.

yes

no

Avail.
T

j

Update
Template

Create
Template

no

yes

F1 F2

Figure 4.2: Flow diagram of ART training algorithm where inputs are normalized in the
F0 layer. Then category choice and vigilance are processed in the F1 layer. The final F2
layer is where the templates are created and stored.

ART 3, and Fuzzy ART. ART 1 is an architecture that can be used for clustering of

binary inputs only [15]. ART 2 improved upon the ART 1 architecture to support

continuous inputs [14]. Fuzzy ART, used in the present work, incorporates fuzzy set

theory into the pattern recognition process.

Unlike the ART 1, the Fuzzy ART approach can provide stable categorization of

analog input patterns [13]. The fuzzy logic improves the generalization of the algo-

rithm which increases its ability to perform classification [16]. The ART algorithm

incorporates a vigilance parameter (⇢), which can be characterized as a similarity

parameter. This parameter is used to judge the similarity between all of the input

patterns.
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Architecture

The basic structure of the Fuzzy ART architecture is shown in Figure 4.2. This flow

chart describes the interconnection of the di↵erent layers that are designated as F0,

F1, and F2. The F0 layer is for the normalization of the input values, and is consid-

Input System

⇢

I0 I1 I2 I3 I
i

F2

F1

F0

Figure 4.3: The ART algorithm has
the F0, F1, and F2 layers that perform
data preprocessing, recognition of fea-
tures, and categorization of inputs

Input System

⇢

T0

2nd

create
1st compare
w/ templates

I0 I1 I2 I3 I
i

F2

F1

F0

Figure 4.4: The training process began
with computations of I1 in the F1 layer
that compared and found no templates
in F2 so T0 is created

Input System

⇢

T0 T1 create

I0 I1 I2 I3 I
i

F2

F1

F0

Figure 4.5: I2 doesn’t resonate with
template T0 so T1 is created

Input System

⇢

T0 T1 update

I0 I1 I2 I3 I
i

F2

F1

F0

Figure 4.6: I2 resonated and updated T1

ered a preprocessing operation. The F1 layer, which includes the choice and vigilance

calculations, performs the recognition of features in the data. This process includes
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a reset that is based on a vigilance a parameter (⇢), and is considered the orienting

subsystem [36]. The final layer, F2, is where the categorization occurs. Similar to

other ANN architectures the Fuzzy ART has a weight (or template) matrix. The

ART 1 algorithm has a bottom-up and top-down process for determining templates.

However, the Fuzzy ART merges the bottom-up and top-down into one process [16].

The training of this template matrix is described in Figures 4.3 to 4.6.

Figure 4.3 illustrates the initial status of the system prior to the presentation

of the inputs. Then, in Figure 4.4, the first input, I0, is presented to the system

after first being normalized and complement coded in the F0 layer. The process

then moves to the F1 layer where it is compared with any existing template nodes

from the F2 layer, as indicated by the orange triangle. In this case, there are no

existing templates so I0 becomes the first template T0. This process is described

with a dashed arrow pointing from the F1 to the F2 layer within Figure 4.4.

The next step is to evaluate the second input, I1, by passing it from the F0 to the

F1 layer and then either create or update the templates in the F2 layer. Figure 4.5

shows that the I1 was presented to the existing template T0, and resonance did not

occur. Therefore, a new template T1 is created. The last input presentation for

this example is shown in Figure 4.6 where I2 is compared with both T0 and T1, and

resonated with T1. Because of the resonance the T1 template is updated.

The Python programming language was used to implement this algorithm in

the present work. The variables and parameters used in the di↵erent layers of the

algorithm are described below. In addition, the equations used for preprocessing,

feature extraction, and categorization are briefly described in Equations 4.1 to 4.9.

Algorithm Notation

Preprocessing

I - Input matrix

I
min

- min of Input matrix

I
max

- max of Input matrix

56



Chapter 4. Methodology: FDD Tools

a

i,j

- normalized scalar

a

c

i,j

- complement coded normalized scalar

A - vector of a

X - preprocessed input matrix

Category Template

T
j

- Template (weight) vector

c - Choice function vector

⇢ - Vigilance parameter

↵ - Choice parameter

� - Learning rate

^ - fuzzy set theory conjuction or mini-

mum operator

Preprocessing (normalization & complement coding)

The preprocessing of the input patterns occurs prior to their presentation to the

Fuzzy ART. This is considered the F0 layer. The first step is to normalize the data.

This entails the transformation of the i by j dimensional training data, denoted as

D, to values that are between 0 and 1.

a

i,j

=
(I

i,j

� I

j,min

)

(I
j,max

� I

j,min

)
(4.1)

Equation 4.1 is used to normalize the data to calculate a
i,j

. The second preprocessing

stage is to perform complement coding of a
i,j

. This is done using Equation 4.2 to

create ac

i,j

. Finally, to complete the preprocessing stage a
i,j

is joined with ac

i,j

in

Equation 4.27 to get the input matrix (I) that can be presented to the input (F1)

layer of the Fuzzy ART algorithm.

a

c

i,j

= 1� a

i,j

(4.2)

X = (A,Ac) (4.3)

Template Matrix Computations

After the preprocessing stage in the F0 layer, the template matrix computations

occur between the F1 to the F2 layers. First, network parameters ↵, ⇢, and � are

set at the beginning of each training phase. The learning rate value, ↵, can assume

values between 0 and infinity, but is typically very small. The vigilance parameter,

⇢, must be between 0 and 1, and determines the fineness of the clusters.
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The next step is to present the input pattern (X) to the template matrix and

find the node(s) that pass vigilance according to Equation 4.4.

|X ^T
j

|
|T

j

| � ⇢ (4.4)

If none of the nodes pass this vigilance test, then a reset occurs. If there are nodes

that pass, then the node with the highest value from Equation 4.5 defined by

c =
|X ^T

j

|
↵ + |T

j

| (4.5)

and the fuzzy AND operator ^ is

(x ^ y) = min(x, y) (4.6)

Additionally, the norm |r| is defined by Equation 4.7:

|r| =
MX

i=1

|r
i

|. (4.7)

At this point, the particular input pattern either has or has not found a match

with a template node. When a does occurs, which is referred to as resonance, then

the template node is updated according to Equation 4.8. Otherwise, a new node is

created and its template values are calculated using Equation 4.9. At the completion

of the algorithm every input

Tupdate

j

= �(I ^Told

j

) + (1� �)Told

j

(4.8)

Tnew

j

= I (4.9)

pattern will belong to a template node. The convergence of the algorithm requires

that the template matrix values do not change from one full presentation to the next.

Concept

The Fuzzy ART architecture is very useful for pattern recognition and categorization,

because it can adapt easily to significant variations through a normalization of the
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network activity. It can also recognize subtle di↵erences in input patterns which

is critical for accurate decision making. Additionally, the algorithm can perform

detailed recognition of features. The architecture can also remember, and use its

memory to make decisions and predictions.

Figure 4.7: Scatter plot of
3 dimensional training data
set.

Figure 4.8: Training data
that is classified w/ low vig.
hyperboxes.

Figure 4.9: Training that
is classified w/ high vig.
hyperboxes.

The basic implementation of the algorithm on a set of data is considered in

Figures 4.7, 4.8 and 4.9. In this example thirteen three-dimensional input values are

considered and shown in a scatter plot in Figure 4.7. The Fuzzy ART algorithm can

learn these input values by creating a template matrix with nodes that categorize

the data. Each template node represents a particular category and is considered a

hyperbox in this 3 dimensional space. Figure 4.8 shows three hyperboxes created by

Fuzzy ART algorithm with a low vigilance parameter. Each input data point lies

inside one of the hyperboxes. If the vigilance parameter value is increased then the

amount of hyperboxes will likely increase as well. In this case the generalization,

of the system would decrease. This concept is highlighted in Figure 4.9 where the

number of hyperboxes increased from 3 to 5 while maintaining full coverage of the

input data. The size of the hyperbox depends on the ⇢ and dimensionality of the input

features. In a D-dimensional case the size of the hyperbox is given by Equation 4.10:

Size = D(1� ⇢) (4.10)
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4.1.2 Lateral Priming Adaptive Resonance Theory

LAPART neural networks couple two Fuzzy ART algorithms to create a mechanism

for making predictions based on learned associations. The coupling of the two Fuzzy

ARTs has a unique stability that allows the system to converge rapidly towards a clear

solution [46]. Additionally, it can perform logical inference and supervised learning

similar to fuzzy ARTMAP [12], but has been considered easier to implement [40].

This method has been used in applications for controls, classification, and pre-

diction. Edlund et al. [29] implemented LAPART into a virtual test for applications

in controls of autonomous vehicles. It has also been implemented within a computer

assisted chest radiograph reader system where it acted as a classifier to detect patho-

Fuzzy
ART A
Training

Training Data, x
i

Fuzzy
ART B
Training

Training Data, y
i

L Matrix
Associator

Figure 4.10: LAPART training uses
two Fuzzy ART (A&B) algorithms con-
nected by an associator matrix (L). Dur-
ing training inputs x

i

are applied to the
A-side while y

i

inputs are presented to
the B side. The algorithm then produces
templates and an L matrix.

Fuzzy
ART A
Testing

Testing Data, x
i

Fuzzy
ART B
Predic-
tions

Prediction Results, y
i

L Matrix
Associator

Figure 4.11: LAPART testing used
the same structure that was uses during
training. Yet, in this case, a new, pre-
viously unseen testing data set was an
input (x

i

) for the A side. The algorithm
then produced, on the B side, outputs
that are prediction results (y

i

).

logical features in lungs [108]. Recently, the approach has been applied in image pro-
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cessing and predictions for solar irradiance to improve photovoltaic smoothing [74].

Architecture

The general layout of the LAPART algorithm includes two fuzzy ARTs, labeled as A

and B, that are connected by an associator matrix referred to as L. These two Fuzzy

ARTs are very similar to the algorithms described in Section 4.1.1. Each of them have

an input layer, a recognition layer, and a categorization layer. Also, they both have

a vigilance parameter ⇢

A

, ⇢

B

respectively. The A and B algorithms are connected

together by an inference mechanism so that the template connections are established

during training and then used to provide predictions during testing. The flow of

the algorithm is shown in Figure 4.10. During training, the system is able to learn

through the presentation of input pattern pairs (I
A

{x1..xn

} and I
B

{y1..yn}) applied

to each Fuzzy ART network [48]. At the same time, interconnections between classes

are formed in the L matrix. The interconnections between the A and B Fuzzy ART

connect the learned categories and allow for predictions to be made in the testing

phase when new data becomes available. During testing, as shown in Figure 4.11,

previously unseen data are presented to the A side only. Categorization of the input

patterns occurs in the A side which connects, through the L matrix, to a particular

category on the B side. The particular B side category for the input pattern is then

the prediction for the given A input.

Fuzzy ART A

The training process is initiated with the presentation of an input pattern into the

Fuzzy ART A algorithm. Since no templates exist at the onset of the training the

initial input becomes the first template on the A-side. Therefore, a new template or

class would be created and based on Figure 4.12 decision block, “New A Class”, the

algorithm implemented Case 1 script. In this situation, the Fuzzy ART B operates as

a normal ART algorithm. Since there are no B-Side templates, a new template was
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Figure 4.12: LAPART training algorithm flow diagram includes Fuzzy ART A & B and
two (2) cases for learning A and B side templates as well as the inference matrix.

automatically created and a link between the A and B Fuzzy ARTs are established

in the L matrix.

The algorithm then starts over with a new input, and repeats until all of the inputs

are considered. When the new input is presented to all of the existing templates,

in the “A-Side Search” block, it searched for the top matches as determined by the

choice function (Equation 4.5). Then the vigilance test, defined by Equation 4.4, is

computed in the “A-Side Resonance” block to determine if resonance with an existing

template occurs or not. If resonance does not occur then the next best template was
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considered until no choices were left. If a match is not found, then the script for

Case 1 is implemented. If a match does occur, the script for Case 2 is used.

Case 1

The Case 1 code scenario occurs when a new A-side class was created and the Fuzzy

ART B is allowed to operate as a normal ART algorithm. First, a new A-Side

template is created. Then the B-Side input pattern is presented to the “B-Side

Search” block where the choice function is used to discover the best template match.

After the best match is found, the system tested the match to see if it met the

vigilance parameter criteria in the “B-Side Resonance” block. If it did not, then a

new template is created. If it did, then it updates an existing template. After the

creation or update of a B-Side template, the inference matrix L was updated to link

the newly created A-Side template to the B-Side template.

Case 2

In the event that resonance occurred in the Fuzzy ART A section of the code then

Case 2 is implemented. First, the A-side template that resonated with the input

Fuzzy ART A Fuzzy ART B

Figure 4.13: This figure presents the end result of a Fuzzy ART A that has learned
class representations for an input pattern and at the same time associated with class
representations learned in Fuzzy ART B

63



Chapter 4. Methodology: FDD Tools

pattern is not updated, but instead put on hold until further notice. Also, the match

function is used to find the template that best matched the given input pattern.

Then, if the chosen template passed the vigilance criteria, where the match function

was greater than or equal to the B-side vigilance (⇢
B

), then the given A and B

side templates are updated respectively. But, if it does not pass, then the system

experiences a lateral reset and the initial A-side template is hidden and the process

is repeated.

Concept

The LAPART system can learn to associate classes of patterns through an adaptive

neural inference mechanism [48]. This is significant because LAPART neural net-

works can be trained to learn input patterns as well as the association between them.

Figure 4.13 shows the results from a LAPART training process where an A and B

Fuzzy ART has defined categories that are interconnected. The learned categories,

for the A and B sides, are represented by the three dimensional boxes that surround

the training data. The connections, provided by the inference mechanism, are also

shown with the colored arrows. Then during testing, new data is presented to the A

side. If resonance occurs with any of the categories a B side category is the output

or prediction.

4.2 Non-Adaptive Resonance Theory Tools

Among the many techniques for FDD that were described in the literature review

(Chapter 2), this research e↵ort considers a limited but organized sample of meth-

ods to compare with the ART algorithms. The selected techniques each belong to a

certain diagnostic class, namely qualitative, quantitative, and process history, as de-

64



Chapter 4. Methodology: FDD Tools
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Figure 4.14: The FDD methods include quantitative, qualitative, and process history.
Each of the methods were used to detect and/or diagnose faults in the AHU 2 data sets.

scribed in Figure 4.14. The selected techniques include a qualitative method referred

to as threshold controls alarm. Rule-based and physical models are categorized as

quantitative. Statistical regression, artificial neural networks, and support vector

machines are process history methods.

The intent of implementing the di↵erent techniques to compare outcomes of each

with the ART & LAPART algorithms for the AHU 2 sensor data. The hypothesis

is that the two ART algorithms will provide meaningful results that will out per-

form other techniques. Each of the techniques used for comparison are described in

Sections 4.2.1 to 4.2.4.

4.2.1 Controls Threshold Alarm Method

BAS that control HVAC equipment often include an alarm system that provide alerts

to users. The triggering of one of these alerts is often based on a simple approach

such as: (1) change of state, (2) change of value, (3) command failure, (4) floating

limit, or (5) out of range. For example, an analog output (AO) value is a sensor that
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monitors equipment performance. A threshold fault detection system can monitor

the value, and thus the equipment using the “out of range” approach. In this case,

the user sets high and low threshold values and when the AO value exceeds or falls

below the pre-set thresholds an alarm is initiated. AHU 2 is currently controlled

with a Delta Controls BAS and an out-of-range threshold alarm system has been

established to detect faults.

The AHU 2 system has four alarms which are: (1) freeze alarm, (2) filter alarm,

(3) supply fan alarm, and (4) smoke alarm. The freeze, filter, and smoke alarms

are based on the “change of state” threshold approach. These alarms monitor the

equipment for freeze protection, maintenance, and life safety. The supply fan alarm,

on the other hand, is based on the “command failure alarm” approach, and monitors

the fan’s performance. This approach considers the supply fan status and BAS

Algorithm 2 This algorithm describes an AHU supply fan threshold alarm. The fan gets

a binary input from the BAS that defines how it should operate. The binary output value

describes it’s actual status. If the fan status does not match the BAS command then an

alarm is triggered.

Require: Binary Input - Supply Fan Command & Binary Output - Supply Fan Status

Ensure: alert users of supply fan fault

if Supply Fan Status = Supply Fan Command then

No Alarm

else

Alarm

end if

control command input to detect a fault as shown in Algorithm 2. The supply

fan status is defined by a binary output (BO) value. This BO value should match

with the command signal from the controls which is a binary input, and if it does

not an alarm is initiated. This simple approach was used to detect fan faults in

Experiment 2.
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4.2.2 Rule-Based Method

Model-based methods include rule-based expressions and a physical model. In the

present work, the rule-based expressions were developed using expert knowledge and

statistical review of actual sensor data. The physical model was constructed in a

commercially available simulation software. The results from each of the predictions

were then compared with the actual sensor values to compute a residual.

Rule-Based Model

Rule-based expressions can simulate actual operations. For example, a tool for assess-

ing performance was developed by Schein et al. [103], called the AHU Performance

Assessment Rule (APAR). The APAR tool was used to detect faults in an AHU

system during di↵erent heating and cooling modes. The APAR expressions were

developed to define operations during di↵erent conditions within the modes. Based

on results from fault scenarios that included stuck damper, temperature sensor drift

and failure and others, Schein et al. concluded that the APAR is an e↵ective tool

for detecting HVAC faults.

Similar to Schein et al. approach, a set of rule-based equations were created to

define operations of the AHU 2 system for the present work. The expressions were

established based on expert knowledge of the system operations, specifications, and

parameters. The expression parameters were then put through a calibration process

to fine tune the equations to match actual, normal behavior.

These expressions are described in Algorithm 3 and include oversight of the supply

air flow, the supply air temperature, and the mixed air temperature. The first step for

developing the expressions was to consider the specifications of the equipment. The

fan specifications listed in the original construction documents stated a maximum

flow rate of 36,520 cubic feet per minute and a design supply air temperature of

67



Chapter 4. Methodology: FDD Tools

Algorithm 3 Rule-based expressions pre-calibration

Require: hour of the day (hr), outside and return air temperature

Ensure: predict low and high supply air flow, supply air temp, and mixed air temp

if hr >= 7 AND hr <= 19.5 then

m
supply

= 13m3/sec, T
supply

= 13.3�C

if T
return

> T
outside

then

T
mixed

= T
outside

± �
T

mixed

else

T
mixed

= T
return

± �
T

mixed

end if

else

m
supply

= 0

if T
return

> T
outside

then

T
mixed

= T
return

± �
T

mixed

T
supply

= T
mixed

± �
T

supply

else

T
supply

= T
return

± �
T

supply

T
mixed

= T
return

± �
T

mixed

end if

end if

53�F dry bulb. During the cooling season the mixed air temperature should be

approximately equal to the outside air temperature until it rises above the building

temperature. This is because the mixed air temperature should be as low as possible

so that the CHW heat exchanger does not have to work as hard.

Based on information provided by the building specifications, and also through

the consideration of system losses due to aging, the rule-based expressions were

defined. First, the supply air fan has a variable frequency drive and was considered

to operate at about 75% most of the time. Therefore, during the operating hours of
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7:00 to 19:30 the rule-based expressions simulated an air flow rate that was 75% of the

maximum flow rate of 36,520ft3/min (17.17m3/sec), or 27,390ft3/min (12.9m3/sec).

The HX had not been a problem for the maintenance sta↵, and was considered in

good working condition. Therefore, the supply air temperature was set to 56�F

(13.33�C). The design specifications provide a temperature of 53�F (11.67�C), but

an o↵set of 3�F (1.67�C) was added to the design specifications in an attempt to

account for potential losses over the years. Finally the mixed air temperature was

set to be dependent on the return and outside air temperatures by implementing

if-then statements.

4.2.3 Machine Learning

Albert Einstein said, “Education is not the learning of facts, but the training of the

mind to think”. Many believe that the era of big data that we are entering, requires

computers to think and perform the task of transfering data into information. Ma-

chine learning is a viable candidate for this task, and can perform automated data

analysis that can detect patterns, predict future events, perform decision making

tasks under uncertainty. In this section, various machine learning methods are de-

scribed to highlight their potential impact on FDD of building HVAC systems. The

techniques include regression, and support vector machines.

Regression Method

Regression is a technique for modeling and analyzing several variables. The statis-

tical process estimates the relationships between one dependent and one or more

independent variables. The general computational approach includes the fit of a lin-

ear or nonlinear function to a number of points. This is done through a least-squares
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Figure 4.15: Regression linear fit to data conceptual ex-

ample

approximation where the

overall solution minimizes

the sum of the squares of

the errors made by the

function. It is usually ac-

complished through a gra-

dient descent process that

discovers the best function

constants, �0, �1.

Algorithm

Consider a data set that

contains N samples, where

x
i

and y
i

represent the in-

put and output variables, respectively. For example, Figure 4.15 describes a set of

data with a scatter plot where N = 6. The goal is to fit a function, f(x
i

,�0, �1),

shown in Equation 4.11, to the data by finding the optimal � constants. In this case,

a linear fit was accomplished by finding the optimal �0 and �1 which represent the

slope and intercept, respectively.

f(x
i

, �0, �1) = �0xi

+ �1 (4.11)

The � constants are found through the minimization of the least-squares of the

residuals. A python programming package was used that implemented a Gauss-

Newton algorithm to iteratively find the minimum sum of squares that is described

by Equation 4.12. The optimal constants,

S(�)
i

=
NX

i=1

(y
i

� f(x
i

, �

k

))2 (4.12)

�, were updated throughout iterations using Equation 4.13. The variable k, that is

present in the given equations, represents the number of iterations. The Jacobian
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matrix, J, in Equation 4.13 was calculated using Equation 4.14 which is the partial

derivative of the sum of squares with respect to the constants, �.

�(k + 1) = �(k)� J�1
e(�(k)) (4.13)

J(�)
ij

=
@S(�(k))

i

@�

j

(4.14)

Application

The least-squares regression was implemented using Python code. The code used the

Python SciPy package that is very useful for e�cient numerical routines, including

numerical integration and optimization [5]. In this case the curve fit algorithm,

called scipy.optimize.curve fit, from the optimization package was implemented and

performed a non-linear, multivariate regression analysis.

Support Vector Machine Method

This algorithm, developed by Cortes and Vapnik [22], can learn using supervised

and unsupervised methods. The algorithm learns by separating di↵erent classes

in a training data set with an optimal hyperplane. The hyperplane is created by

maximizing the minimum distance to the training points closest to the plane [78].

This is accomplished by mapping the input vectors into a high dimension feature

space. In this space, a linear surface is constructed that separates the data.

For example, the algorithm can perform classification of two classes of data that

are labeled as y
i

= -1 or 1. The data labeled as -1 and +1 are plotted in Figure 4.16 as

and respectively. Then the algorithm is trained using these data points with their

respective labels. The algorithm creates a hyperplane, defined by Equation 4.15:

w · x+ b = 0 (4.15)

The hyperplane divides the two classes in an orientation where it is as far as possible

from the closest members of both classes. This hyperplane is the green line plotted
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Figure 4.16: Linearly separable data with hy-

perplane (green line) and margin (gray dashed

lines) that separate the data

in Figure 4.16. The gray dashed lines

on either side describe the “mar-

gin” which represents the distance

between the closest members of each

class. The margin is defined by

Equations 4.16 and 4.17 [10]:

x
i

·w+b � +1 for y
i

= +1 (4.16)

x
i

·w+ b  �1 for y
i

= -1 (4.17)

The variable w represents the vector

that is normal to the hyperplane, and

b is the hyperplane intercept.

The present work uses two approaches: The first approach is known as a one-class

(OC) SVM that learns in an unsupervised manner. The second approach is the multi-

class SVM that learns through supervision. Each appraoch can classify non-linearly

separable data. The non-linear case requires a kernel and relevant parameters to map

the data into a feature space that is linearly separable. There are many di↵erent types

of kernels, such as radial basis, polynomial, etc.

The implementation of the algorithm can be performed on a data set that consists

of the following:

D = {(x
i

, y

i

)|x
i

2 R

p

, y

i

2 {�1, 1}}n
i=1 (4.18)

The first step is to choose a kernal and hence a mapping into a high dimensional

features space represented by x! �(x). This mapping is accomplished by computing

a dot product as shown in Equation 4.19

Kij = y

i

y

j

�(x
i

) · �(x
j

) (4.19)
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such as the Gaussian kernel

k(xi,xj) = exp(��kxi � xjk2). (4.20)

Then the Lagrangian function (L = (function to be minimized) - �(constraint)),

was implemented to find the Lagrangian multipliers. Equation 4.21 describes the

primal form of the Lagrangian function for the soft margin case that was minimized

with respect to w, b, and ⇠, and maximized with respect to each ↵
n

� 0 and �

n

� 0.

L(w, b, ⇠,↵, �) = 1

2
wTw+C

NX

i=1

⇠

i

�
NX

i=1

↵

i

(y
n

(wT

x

i

+b)�1+⇠

i

)�
NX

i=1

�

i

⇠

i

(4.21)

The soft margin approach allows for the data to not be completely seperable. The

solution derived from Equation 4.21 is shown the dual form of the Lagrangian that

is shown in Equation 4.22

NX

i=1

↵

i

� 1

2
↵TK↵ (4.22)

which was maximized subject to the constraints described in Equation 4.23

0 � ↵

i

 Cand
NX

i=1

↵

i

y

i

= 0 (4.23)

to calculate ↵. This calculation required the implementation of a quadratic pro-

gramming solver. For example, a convex optimization packaged such CVXOPT or

the Python Sklearn package could be used to find the optimal solution and the asso-

ciated Lagrangian multipliers. This calculation was significant because the non-zero

↵ values represented the support vectors for the particular data set.

After the support vectors, ↵, and their indices were found they were then used

to calculate w using Equation 4.24.

w =
NX

i=1

↵

i

y

i

x
i

(4.24)
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Finally, the training process ends with the calculation of b as given by Equation 4.25.

b =
1

N

s

X

s2S

(y
s

�
X

s2S

↵

m

y

m

K) (4.25)

Then, during testing when each new point x0 is presented it is classified by evalu-

ating Equation 4.26. The result produces a -1 or +1 to indicate the particular class

designation for the input.

y

0 = sign(w · �(x0) + b) (4.26)

4.2.4 Artificial Neural Network

ART and LAPART neural networks are the focus of this paper and are described

Feature 1

Feature 2

Feature 3

Feature 4

Output 1

Output 2

Output 3

Hidden

layer

Input

layer

Output

layer

Figure 4.17: Multi-layer perceptron with an input layer, a

single hidden layer, and three outputs.

extensively in Section 4.1.

However, there are many

other types of ANN, includ-

ing perceptrons, multi-layer

perceptrons, radial basis

function networks, Hop-

field networks, and oth-

ers. One common su-

pervised learning, multi-

layer perceptron ANN is

the back-propagation algorithm. This algorithm improves upon the single-layer per-

ceptron and has the ability to perform pattern recognition on non-linear data sets.

Back-propagation

The back-propagation algorithm is a popular form of the multi-layer perceptron.

The algorithm has an input, output, and one or more hidden layers. Figure 4.17 pro-
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vides a graphical representation of the layers and associated neurons or nodes. With

this set-up the algorithm has the ability to solve complex problems through super-

vised training that is based on the error-correction rule. The learning involves two

passes through the network that are referred to as the forward and backwards passes.

Figure 4.18: Hyperbolic tan-

gent activation function

During the forward pass an activity input vector is

applied to the nodes of the network. In addition, each

of the connections contain weights, and during this

pass the weights remain constant. The backward pass

begins at the output layer and works its way back

through the network. Along the way the weights are

adjusted in accordance with the delta rule correction

(�!

ji

(n)) that is applied to the weights (!
ji

(n)). The

weights are gradually adjusted so that the the error converges to a global minimum.

Forward Pass

In Figure 4.17 the arrows are pointing from left to right signifying the feedforward

signal of a non-linear activation function. The activation function used in this ex-

periment is the hyperbolic tangent, which is shown in Figure 4.18. As the signal

proceeds forward from the input layer to each node in the hidden and output layers

the nodes form an induced field, ⌫
j

(n), that is defined by Equation 4.27. In this

equation, ! represents the weights, x is the input vector, and n is the total number

of inputs. Each neuron processed the signal by applying the activation function to

the induced field to calculate the neuron signal, s
j

(n) described in Equation 4.28.

⌫

j

(n) =
nX

i=1

!

ij

(n)x
i

(n) (4.27)

s

j

(n) = '(⌫
j

(n)) (4.28)

Backward Pass

After the signal has been sent through the network it then propagates backwards,
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and an error signal is calculated using Equation 4.29. In this equation d

j

(n) is the

desired outcome and s

j

(n)is the signal from Equation 4.28. In addition to the error

calculation, a total error energy (") for all of the neurons can be calculated using

Equation 4.30.

e

j

= d

j

(n)� s

j

(n) (4.29)

"(n) =
1

2

X
e

2
j

(4.30)

Then a similar method to the least mean square (LMS) algorithm is used to

apply a correction to the weights. In this case the weight correction is proportional

to the partial derivative @✏(n)/@!(n), which when applied to the chain rule can be

expressed as Equation 4.31. The equation was simplified by applying the di↵erential

of Equations 4.30, 4.29, 4.28, and 4.27 and the outcome is expressed on the far right

side of the equation.

@"(n)

@!(n)
=

@"(n)

@e(n)

@e(n)

@s(n)

@s(n)

@⌫(n)

@⌫(n)

@!(n)
= �e

j

(n)'0
j

(⌫
j

(n))x
i

(n) (4.31)

The final steps of the back-propagation algorithm involve local gradient calcula-

tions that help define the required change in the weights. The local gradient can be

calculated using Equation 4.32, which is the partial derivative of the error energy

with respect to the induced local field for each node.

�

j

(n) = � @"(n)

@⌫

j

(n)
=

@"(n)

@e

j

(n)

@e

j

(n)

@s

j

(n)

@s

j

(n)

@⌫

j

(n)
= e

j

'

0
j

(⌫
j

(n)) (4.32)

Additionally, the weight correction �!

ij

(n) is defined by the delta rule and is shown

in Equation 4.33. This equation was simplified with substitutions that applied Equa-

tions 4.31 and 4.32 to create the result at the far right hand side of the equation.

�!(n) = �⌘

@"(n)

@!

ij

(n)
= �⌘e

j

(n)'0
j

(⌫
j

(n))x
i

(n) = ⌘�

j

(n)x
i

(n) (4.33)

The optimal weights can be discovered by matching the minimum error energy

with a particular set of weights. To accomplish this task the algorithm implements
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the gradient descent method. This approach defined by Equations 4.31 to 4.33 is

represented by Figure 4.19. In this figure the error energy function is graphed with

respect to the network weights. A blue arrow that originates at the blue dot shows the

direction of negative gradient, and theoretically follows that direction until it reaches

the global minimum where the optimal weight is located. However, this algorithm

is susceptible to getting trapped in a local minimum and as a result convergence to

the optimal solution may not occur.

Numerous additions to this algorithm have been implemented to improve con-

vergence and include the learning rate and momentum term. If tuned correctly,

@"

@!

local min.

global min. desired
weight Weight

Error

Figure 4.19: The gradient descent of error energy and

weights example

the learning rate, which

has been implemented into

Equation 4.33 determines

the speed at which it moves

towards the optimal weight.

If the learning rate is too

large it may skip over the

optimal solution; if it is

too small it may result in

an excessive number of it-

erations. The momentum

term, which was added to the algorithm used in the research, can help the net-

work out of the local minimum. This term adds a fraction of the previous weight

update to the current one, and keeps the gradient pointing in the same direction.

The seven fault detection and diagnostice methods including ART, LAPART,

threshold method, rule-based expressions, regression, SVM, and BP have been de-

fined in Sections 4.1 and 4.2. The methods were then used in three experiments that

tested their abilities to detect faults, adapt to changes in normal data, and diagnose
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faults. The experiments are described in detail within Chapter 5. The results from

these tests are described in Chapters 7, 8, and 9.
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Methodology: Experiments

There are two primary techniques for the identification of potential HVAC system

faults: (1) one-time spot evaluations and (2) real-time FDD. One-time spot evalua-

tions, often referred to as retro-commissioning (Retro-Cx), utilize design documents

to evaluate and correct HVAC issues observed at the time of the evaluation. With,

real-time FDD, continuous evaluations of the HVAC systems are performed; the real-

time FDD assessment can be based on qualitative, quantitative, or process history

techniques. The latter approach is more advantageous than a single Retro-Cx ef-

fort, because evaluations occur all of the time. Whereas Retro-Cx is implemented

every 5 to 10 years [55]. Continuous FDD evaluations will ultimately reduced energy

consumption for the entire life of the building, and simultaneously providing reliable

occupant comfort.

The achievement of desired energy savings in commercial buildings requires a

complete integration of a real-time FDD. The integration of a FDD tool has three

major barriers to overcome for success. First, the tool must be simple and inexpensive

to implement. Second, it must be accurate and reliable. Third, building owners must

trust projected savings results to confirm investment returns. This research e↵ort
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evaluates the first and second barriers that address implementation, accuracy, and

precision. Further studies may be necessary to evaluate estimated avoided costs due

to early detection or mitigation of faults. To address implementation simplicity,

and fault detection accuracy three experiments were devised that consider di↵erent

analysis techniques and implementation strategies.

The four experiments, shown in Table 5.1, involved the development and im-

plementation of tools for building simulation, and the detection and diagnostics of

HVAC sub-system faults. Section 5.3 describes the first experiment that involved

Table 5.1: Methodology: Experiment Types

Training Testing Description
Exp. Name Data Amount Data Amount Section
1 Model Calibration 2 weeks - 5.3
2 Fault Detection 2 months 1 month 5.4
3 Adaptability 3 months 21 days 5.5
4 Fault Diagnostics 3 months 1 months 5.6

the calibration of the physical model created in TRNSYS. The model was developed

and calibrated so that the analysis tools described in Chapter 4 could be tested.

The second experiment, described in Section 5.4, involved fault detection analysis

that was based on a training data set produced by the TRNSYS model. The data

contained only normal conditions, and was tested on data that had four di↵erent

types of faults. The third experiment, described in Section 5.5, represented a step

beyond the previous experiment by assessing the ability of di↵erent tools to adapt to

changing normal conditions. The final experiment, described in Section 5.6, applied

LAPART and a SVM for fault diagnostics of the AHU.

The process history FDD tools used in experiments two, three, and four all in-

volved the same three step process. The first step was to optimize the algorithms

performance by defining the best free parameter(s). In this case, cross-validation was

performed on the training set to generalization performance associated with partic-
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ular parameters and define the optimal arrangement. After the parameters were set,

the second step was to present the tools with the entire training data set, and each

could acquire and store knowledge. In the last step, the tools were used to detect

and/or diagnose faults by considering new, previously unseen data.

5.1 Experimental Procedures

The procedure for Experiments 2, 3, and 4 included cross-validation, training, and

fault detection and diagnostics. The cross-validation, defined in Section 5.1.1, used

the K-Folds approach to find the optimal free parameters. The next step was to

train each method through the presentation of data as described in Section 5.1.2.

The last step involved the detection and diagnostics of faults on previously unseen

data (Sections 5.1.3 and 5.1.4).

5.1.1 Cross-Validation

Total Number Samples

1 Test Train Train Train

2 Train Test Train Train

3 Train Train Test Train

4 Train Train Train Test

Figure 5.1: K-Fold Cross-validation (K = 4)

Each process history method

use free parameters to make the

algorithm fit a given set of data.

However, the free parameters

for each method were unknown

for the data set. Therefore,

a fitting process, commonly re-

ferred to as cross-validation, op-

timizes the parameters to make

the model fit the training data

as well as possible. In the
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present work, the K-Folds cross validation method was implemented.

The K-Folds method is similar to random subsampling, but provides the advan-

tage that all of the examples in the data set are eventually used for both training

and testing. The method was found to be a very successful means for tuning param-

eters in an SVM algorithm by Duan et. al [27]. The process begins by arranging

the entire training set into a random order; the data was then split into K equal

parts or folds. This division of the data for K = 4 is shown in Figure 5.1. For each

fold k 2 {1,2,..,K} the model was trained on the data that was located in all of

the folds except for the k

th. Then the algorithm used the data in the kth fold for

testing [85]. This process was conducted in a round-robin manner until each of the

folds was used for training and testing. The average error or number of novelties

for each iteration was computed and the free parameters with the lowest value were

used in the proceeding training and fault detection processes.

5.1.2 Training

The term “training” refers to a learning process in which long and short term memory

is developed. This process applies only to process history methods that consider past

data to influence their memory. In contrast, the physical and rule-based models do

not have any memory but instead rely on proven physical and thermodynamic prin-

ciples. Therefore, these type of models do not require training. However, the process

history methods acquire empirical knowledge about a physical phenomenon or envi-

ronment through training [43]. Knowledge, according to Fischler and Firschein, is the

stored information or models used to interpret, predict, and approximate responses

to environmental inputs [34].

The development of knowledge during training can be achieved through super-

vised or unsupervised learning. Supervised learning involves three components: en-
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vironment, teacher, and learning machine [43]. The environment consists of the

inputs which have a fixed but unknown probability distribution. The teacher pro-

vides oversight by defining the desired response for each input in the environment.

Input-output mapping functions are performed by a learning machine that develops

memory to define the empirical knowledge of the environment. In contrast, unsuper-

vised learning algorithms can gain knowledge of an environment without a teacher

to define the desired mapping for a particular input.

5.1.3 Fault Detection

The fault detection process tests the previously encoded knowledge in each of the al-

gorithms on unseen data to make predictions or classify the new input data set. FDD

methods that make predictions, such as the rule-based model, and back-propagation,

evaluate faults based on a residual error. Classification methods, such as ART and

SVM, determine faults based on where the new inputs are located in the classification

space. The results for these tests are evaluated based on the review of false alarm

and true detection rates.

5.1.4 Fault Diagnostics

Fault diagnostics was performed by the LAPART and multi-class SVM algorithms.

This test was conducted in experiment 4 and used training data that contained

normal and fault behavior. In addition, each of the points were labeled as one of

four faults or as normal. The testing process used the previously unseen data as

inputs and each of the algorithms output a prediction of the particular class for

each input. The outcomes from each algorithm were evaluated based on the F-scores

test [85]. Also, each of the algorithms precision values were compared to identify the

optimal method.

83



Chapter 5. Methodology: Experiments

5.2 Fault Types

The experiments used five di↵erent operations conditions. The first condition was

considered normal where no faults existed. The other four were considered abnormal

and were labeled as faults. The faults introduced into the di↵erent sub-systems of

the AHU caused sensor values to deviate from normal. The deviations are shown in

Figure 5.2 for a single day of operations. Fault type A experienced an increase in

Figure 5.2: The sensor values for the normal and four fault conditions are plotted for a
single day. Fault type A experienced an increase in supply air flow rate and temperature.
The mixed air temperature remained at about 25�C for fault type B. The supply air flow
rate was a constant value throughout the whole day for fault type C. During fault type D
an o↵-schedule air flow rate was measured.

supply air flow rate and temperature. The mixed air temperature remained at about

25�C for fault type B. The supply air flow rate was a constant value throughout the

whole day for fault type C. During fault type D an o↵-schedule air flow rate was

measured.
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5.2.1 Type A: CHW High Temperature

Figure 5.3: The probability distributions for type A fault

and normal operation conditions for each of the sensors in

the respective sub-systems.

The type A fault caused de-

viations from normal sup-

ply air flow and tempera-

ture sensor values as shown

in Figure 5.2. These devi-

ations were caused by high

temperatures in the CHW

system that supplied the

HX sub-system. The com-

puted statistical properties

of the sensor outputs for

the supply air flow rate

and temperature were no-

ticeable di↵erent than nor-

mal sensor values. For in-

stance, the average for the air flow rate was 9.8m3/sec in the normal case and

11.2m3/sec in the fault condition. Similarly, the supply temperature average in-

creased from 15.5�C to 16.8�C. The fault condition, caused by the high CHW tem-

perature, shifted the probability distributions for the supply air flow rate and tem-

perature as shown in Figure 5.3. The mixed air temperature was not a↵ected by the

fault and remained the same as the normal sensor value.

5.2.2 Type B: Mixed Air Damper

The mixed air damper fault, labeled as Type B, caused temperatures in the mixed

air sub-system to vary from normal operations. This di↵erence in temperature was
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caused by a malfunction in the the mixed air damper actuator and louver system.

The malfunction did not impact the supply air flow or temperature and is evident

Figure 5.4: The probability distributions for type B

fault and normal operation conditions for each of the

sensors in the respective sub-systems.

Figure 5.5: The probability distributions for type C

fault and normal operation conditions for each of the

sensors in the respective sub-systems.

in the probability distribution

functions for the respective sen-

sors in Figure 5.4. However, the

distributions for normal and the

fault condition are di↵erent in

the mixed air sub-system. The

average temperature in this sec-

tion was recorded to be 24.7�C

for the normal case and 25�C for

the fault condition. The stan-

dard deviation was 0.9 for nor-

mal behavior and 0.05 for the

fault condition.

5.2.3 Type C: VFD

Fan

The VFD that controls the fan

can malfunction or be set to

manual by maintenance and not

turned back on. In this case the

air flow rate remains at a con-

stant throughout the day and

then turns o↵ at night as shown

in Figure 5.2. While during nor-

mal conditions the air flow rate
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can fluctuate. The di↵erent fan behavior between the type C fault and normal opera-

tions created di↵erent mean and standard deviation values which produced di↵erent

probability distributions as shown in Figure 5.5. At the same time the other two sen-

sors in the HX and mixed air sub-systems are nearly identical to normal operations

because the type C fault did not a↵ect them.

5.2.4 Type D: O↵-Schedule Fan

The final fault, type D, occurred when the fan turned on during o↵-schedule hours.

This could be caused by a programming error in the BAS. The air flow rate increases

from 0 to about 5m3/sec as shown in Figure 5.2 at around 4:00 or 5:00 in the morning

Figure 5.6: The probability distributions for type D fault

and normal operation conditions for each of the sensors in

the respective sub-systems.

when the system should

be o↵. This fault caused

the supply air flow rate

and temperature to deviate

from the normal and the

distributions are shown in

Figure 5.6.

The fault conditions de-

fined as Type A, B, C, and

D are used for fault detec-

tion and prognosis tests in

experiments 2, 3, and 4.

The first experiment per-

forms a calibration of the

physical and rule-based models. The physical model, created in the TRNSYS simula-

tion studio, provides the training and testing data for the FDD tools in experiments
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2 to 4. Also, the rule-based model was calibrated in experiment 1 so that it could

perform fault detection tests in experiment 2.

5.3 Exp. 1: Physical & Rule-based Calibration

Both the rule-based and physical model methods required calibration to ensure that

each represented actual operations well. Unlike the process history techniques, where

actual data was presented to the algorithm so that the system could learn, these qual-

Inputs Model

NMBE<10%

CVRMSE<30%

Model
considered
calibrated

no

modify
model

yes

Figure 5.7: Flow diagram rule-based and physical model calibration process

itative methods required a calibration e↵ort to verify that the model could provide

accurate results. In addition, accuracy was a requirement for the physical model,

because it was a source for training and testing of other FDD methods within exper-

iments 2, 3, and 4.

The calibration process, shown as a flow diagram in Figure 5.7, began by provid-

ing the model with weather and occupancy inputs. The models were then executed

and outputs were compared with the actual values to calculate the Normalized Mean

Bias Error (NMBE) given by Equation 5.1

NMBE =

P
n

i=1(yi � ŷ

i

)P
n

i=1 yi
(100%) (5.1)

and the Coe�cient of Variation of the Root Mean Squared Error (CVRMSE) shown
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in Equation 5.2.

CVRMSE =

pP
n

i=1((yi � ŷ

i

)2/n
P

n

i=1 yi

n

(100%) (5.2)

The NMBE and CVRMSE are defined by ASHRAE Guidelines 2002 [6] that out-

lines building model calibration standards. If the NMBE is greater than 10% and the

CVRMSE is greater than 30% then modifications to the model are required. How-

ever, if the opposite is true, where both NMBE and CVRMSE criteria were meet

than the model was considered to represent actual well and the calibration process

was concluded.

Existing literature provided examples for model calibration, and each require

some degree of actual data for comparison [92, 99, 100]. In one study, performed by

Lam et al., an empirical method was used for the calibration of an Energy Plus model

that represented a medium sized o�ce building [67]. The process used to calibrate

the HVAC system included the calculation of NMBE and CVRMSE. Another paper,

by Febres et al., considered the calibration of a model that simulated the performance

of heating coils [33].

Similar to Lam et al., the Febres et al. paper included the NMBE and CVRMSE

calculations to determine calibration acceptance. The ASHRAE guidelines state that

the NMBE and CVRMSE should be less than 5% and 15% respectively for model

calibration based on monthly data. If hourly data is used for calibration then the

NMBE and CVRMSE must be less than 10% and 30% respectively. This experiment

evaluated the two models based on hourly data and therefore 10% and 30% for the

NMBE and CVRMSE criteria were used.
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Chapter 5. Methodology: Experiments

5.4 Exp. 2: Fault Detection

The intent of the first experiment was to evaluate the benefits for the implementation

of the FD tools on a system that had already been Retro-Cx. In this situation the

data used to train the FD tools contained no faults. Therefore, the training process

Model
Set-up

Collect data & train FD methods

with 2 months of data

Initiate FD

Day

1

Day

2

Day

3

Day

N

Retro-Cx Training Detection (Testing)

Figure 5.8: Experiment 2 timeline for model set-up, training, and fault detection.

can use unsupervised learning in order to acquire knowledge about good behavior.

Then, during testing any abnormal behavior would be recognized as a fault condition.

This experiment only considered fault detection and did not take the next step to

diagnose the problem.

The experiment followed a specific timeline that is shown graphically in

Inputs FDD Tool
(untrained)

Knowledge

hour

temp

occ.

AHU

Figure 5.9: The model learned based on presentation of

inputs that did not contain any faults.

Figure 5.8. It began with

the development and cal-

ibration of the TRNSYS

physical model that is de-

scribed in Section 5.3. This

model represented the ac-

tual case where an AHU

was Retro-Cx. The TRN-

SYS model was then run

and simulated normal oper-

ations for two months. The outputs from the simulation were collected and stored

in a MySQL database. Then, the fault detection tools used the data to learn system
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operations. This was followed by the testing phase where a month of data were

presented to and the various FD tools that attempted to distinguish the di↵erence

between normal and fault conditions.

In the present work the di↵erent tools considered these inputs: hour of the day,

outside air temperature, occupancy, and AHU sensor data (mixed air temperature,

supply air temperature, and supply air flow rate) for training and fault detection.

The learning process was performed di↵erently for each method, but the overall goal

was to acquire knowledge of the AHU system behavior. This training process is

described in Figure 5.9 where inputs were provided to the model and knowledge was

gained and stored.

Inputs

knowledge

FDD Tool
(trained)

Normal

Fault

Detection

hour

temp

occ.

AHU

Figure 5.10: Previously unseen data were presented to the model

that had acquired knowledge during training and it classified normal

and fault conditions in the three sub-systems of the AHU.

After the train-

ing process dur-

ing which knowl-

edge was acquired,

the models were

ready to process

previously unseen

data and classify

normal and fault

behavior. This

process, shown graphically in Figure 5.10, was conducted on a daily basis as in-

dicated in the timeline shown in Figure 5.8. It began with the presentation of new

data to the trained models. The trained models had knowledge of system behav-

ior that was stored in their memory and could perform a binary classification that

labeled the new inputs as normal or as a fault.
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5.5 Exp 3: Adaptability

Experiment 3 was the continuation of the previous experiment. In this case FD

tools were evaluated on their abilities to adapt to normal changes in the input

features, and provide accurate fault detection results. This experiment consid-

ered the case where the AHU sub-system outputs changed due to new occupancy

schedules caused by the start of the fall semester school schedule. This change

in schedule altered the performance of the system to a degree that the FD tools

Inputs

gained

knowledge

FDD Tool

online
training

Normal

Fault

Detection

expertFalse
Alarm

True
Fault

hour

temp

occ.

AHU

Figure 5.11: The adaptive detection and training process in-

volved the detection of normal, true faults, and false alarms.

The false alarm indices were sent to an online training sys-

tem that found the associated inputs and trained the model

with the new inputs.

would define the normal

changes as faults. There-

fore, the FD tools must

adapt to the new normal

behavior, defined by a hu-

man expert, quickly so

that the number of false

alarms are maintained at

a low value.

The training process

was the same as described

in experiment 2. The

detection of faults began

with the presentation of

the new inputs into the model as shown in Figure 5.11. The algorithm then iden-

tified normal and fault conditions. A human expert reviewed the fault conditions

and determined if the fault was true or if it was a false alarm. The data indices

associated with the false alarm were collected and routed to an online training sys-

tem. The online system found the associated inputs and provided it to the model

for updated training. The model than gained knowledge based on the new training
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and the process repeated.

5.6 Experiment 4: Fault Diagnostics

Inputs FDD Tool
(untrained)

Knowledge

hour

temp

occ.

AHU
faults

Figure 5.12: The models were trained based on hour

of the day, outside air temperature, occupancy, AHU

sensors, and type of fault.

The previous experiments (2

and 3) evaluated the potential

of fault detection based on a

training data set that contained

no faults. The fourth experi-

ment involved both fault detec-

tion and diagnostics of the AHU

faults. In this case, the diagnos-

tics required some knowledge of

the fault type. Therefore, either

an expert must label faults within and online training system or the diagnostic tools

can be initially trained with data from a TRNSYS simulation that contained faults

with labels. In this experiment the former case is implemented and the LAPART and

multi-class SVM are trained on TRNSYS simulated data with faults. The general

TRNSYS

Model

Collect & train w/

3 months of data

Initiate FDD

Day

1

Day

2

Day

3

Day

N

Training Fault Diagnostics (Testing)

Figure 5.13: Timeline for Experiment 4 that included the model development, train-
ing of diagnostic tools, and then testing on previously unseen data.

process for the experiment includes the TRNSYS model development, training of the

FDD algorithms, and then the implementation of detection and diagnostics in the

testing phase as described in the timeline in Figure 5.13.
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The training process included the presentation of inputs to the FDD tools. Unlike

the previous experiments, the inputs included faults. In addition the faults and

normal data were labeled accordingly to signify the input feature status. The tools

learned form the input data and gained knowledge as shown in Figure 5.12. The

knowledge was then stored in a database for future use during the testing phase.

Inputs

knowledge

FDD Tool
(trained)

Normal

Fault
Type

Diagnose

hour

temp

occ.

AHU

Figure 5.14: The diagnostic process used the trained models to

determine the status of the particular input.

During the testing

process new inputs,

that did not include

labels, were presented

to the models. Based

on the gained knowl-

edge the model was

able to determine if

the particular input

was normal or a spe-

cific fault type as shown in Figure 5.14. The diagnostic results for each fault type

were recorded and analyzed to discover each methods e↵ectiveness. The analysis

method used the F-scores test to compare the LAPART and SVM algorithms on the

given data set.

5.7 Analysis of Results

The analysis of FDD results for experiments 2, 3, and 4 considered the decision

quality of each method. The decision quality was based on accuracy, precision,

and true positive and false positive rates. These values are computed based on the

following recorded outcomes [85]:
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1. True positives (TP) is an observation that was identified by a given algorithm,

and is a real instance of a feature.

2. False positives (FP) is when the algorithm identified an observation as a real

instance of the feature but in fact, it is not.

3. True negatives (TN) is the case where the observation is not a real instance of

the feature and an algorithm identifies it as such.

4. False negatives (FN) is the case where the algorithm does not identify the

observation as a real instance of the feature but in fact, it is.

These outcomes can be used to calculate the accuracy which is the fraction of correct

cases. The basic calculation is performed by dividing the number of correct decisions

by the total number of cases, as shown in Equation 5.3:

Accuracy =
TP + TN

TP + FN + FP + TN

(5.3)

However, accuracy cannot provide reasonable interpretation of performance. For in-

stance, two algorithms can produce the same accuracies but provide di↵erent correct

and incorrect decision results. The results from one algorithm might miss actual

faults, and another algorithm may detect a fault that did not occur [81] which is

not defined by the accuracy value. Therefore, for the research experiments the per-

formances of the di↵erent algorithms were compared using more appropriate criteria

that defined the sensitivity and specificity of each algorithm. This comparison criteria

is defined by the receiver operating characteristic (ROC) principles for two-class anal-

ysis (Section 5.7.1) and the F1-score statistic for multi-class analysis (Section 5.7.2).

5.7.1 Receiver Operating Characteristics Principles

ROC curves are used to organize, and define the best classification method [32].
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Table 5.2: Confusion Matrix Table Example

Estimate

ŷ=1 ŷ=0 P

T
ru
th

y=1 TP FN N+=TP+FN

y=0 FP TN N�=FP+TN

P
N+=TP+FP N�=FN+TN

This approach was first

used during World War II

for the purposes of cor-

rect detection of Japanese

aircraft from radar sig-

nals [111]. They have also

been popular in signal the-

ory [25, 35], medicine [134,

28, 26], and machine learn-

ing [109, 9, 65, 8, 53]. In each of these applications, the ROC graphs helped char-

acterize the abilities of a classifier through the statistical review of four possible

outcomes TP, FP, TN, and FN.

The positive and negative results for each instance are given by a binary value

of 1 or 0 respectively. For the research experiments a positive result translates to a

fault, and a negative outcome is considered normal equipment behavior. Therefore,

the FDD methods used in experiments 2 and 3 were judged based on a two-class

binary problem. A metrics known as the confusion matrix, is shown in Table 5.2.

It provides a representation for the dispositions of the set of instances. The correct

estimates produced by the given classifier are represented by the values TP and TN

that are along the major diagonal, and TP and FP numbers represent the errors or

“confusion” between the classes [32].

For example, the FP, which is also referred to as a false alarm, arises when the

estimate is ŷ=1 but the truth is y=0. This can be translated to a rate, known as the

false positive rate (FPR), and is shown in Equation 5.4:

FPR =
FP

FP + TN
⇡ P (ŷ = 1|y = 0) (5.4)

This type of error is known as the type 1 error and can be considered the probability

of false alarm. If the outcome from an estimate is ŷ=1 and the actual value is also
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y=1 then it is a TP. The true positive rate (TPR) is given by Equation 5.5:

TPR =
TP

TP + FN
⇡ P(ŷ = 1|y = 1) (5.5)

The TPR is otherwise known as the probability of detection, the sensitivity, the hit

rate, or recall.

FPR and TPR calculated using Equations 5.4 and 5.5 respectively define ROC

space (Figure 5.15). Figure 5.15 describes an example where the FPR and TPR

results from four sample FD methods were plotted. The best possible FD method

would yield a point in the upper left corner as indicated by the “perfect classi-

fication” label. The “perfect classification” would occur at 100% sensitivity with

no FN, and 100% specificity which means that no FP where encountered. The
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0.4
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T
P
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Figure 5.15: ROC space with example plots for four

prediction methods

graph also shows a diagonal

line from coordinate (0,0) to

(1,1), which represents where

the results of a random guess

would be plotted. This diago-

nal divides the ROC space, and

if a method produces a result

that plots above the line it is

considered a good classification

method. If a point ends up be-

low the diagonal line then it is

considered a poor result, which

means that it is worse than ran-

dom [32].

A critical review for the FD

methods is the precision and TPR analysis. This analysis method is considered more

e↵ective than the accuracy calculation for the current work, because the amount
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of normal data is very large in comparison to the quantity of faults. Precision

is the fraction of detections that are actually positive, as shown in Equation 5.6:

Precision =
TP

TP + FP
(5.6)

0 0.2 0.4 0.6 0.8 1
0
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0.8
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Perfect Classification
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P
re
ci
si
on

Precision vs TPR

Figure 5.16: Precision and TPR plot example where

the ideal case is located at point (1,1).

TPR is a measure of the

positive classifications that were

detected correctly. For this type

of plot the ideal classifier would

be positioned at point (1,1) as

shown in Figure 5.16. Sample

point F, and H represent a well

performing classifier, and sam-

ple H is the best outcome for the

points shown. Sample point E is

not as good as F, but is better

than the worst case at sample

point G.

5.7.2 F1-Score Statistic

Fault diagnostics performed in Experiment 4 was a multi-class classification task.

Therefore, the evaluation of the algorithm’s performance was based on the F1-score

statistic. The F1-score is based on the harmonic mean of the precision (P) and recall

(R) as shown in Equation 5.7:

F1 =
2(PR)

P + R
(5.7)

The implementation of the harmonic mean provides for what is called the macro-

averaged F1-score. The macro-averaging process pools across the classes and then

98



Chapter 5. Methodology: Experiments

computes an e↵ectiveness measure. In contrast, the less desirable, micro-averaging

calculation computes an average over the classes. The macro-averaging test was

beneficial and used in the present work because it distributes equal weight to each of

the classes [76]. The macro-averaged F1-score can be calculated using Equation 5.8:

F1 score =

P
C

c=1 F1(c)

C

(5.8)

In this equation F1(c) is the F1 score obtained on the task of distinguishing class c

from all others [85]. The C variable represents the number of classes considered.

The F1-Score statistic is used to evaluate the performance of the fault diagnostic

test in Experiment 4. Results from Experiments 2 and 3 are evaluated using the

ROC principles defined in Section 5.7.1. Experiment 1 results were based on model

calibration guidelines defined by ASHRAE (Section 5.3). Finally, the results for the

four experiments are described in Chapters 6, 7, 8, and 9.
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Experiment 1: Model Calibration

Results

Unlike the process history methods that learn system behavior on their own through

the presentation of training data, the rule-based and physical model methods require

the user to fine tune parameters to create a well functioning representation. The

calibration process for the two models considered ASHRAE Guidelines as described

in Section 5.3. This required the calculation of NMBE and CVRMSE followed by the

modification of model parameters to meet the defined criteria, which where 10% and

30% respectively. The first section in this chapter, Section 6.1, defines the statistical

properties of the actual data inputs and outputs for the AHU system. Section 6.2

reviews the results for the physical model created in TRNSYS simulation studio.

Section 6.3 describes the process and results for the rule-based model calibration.
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Chapter 6. Experiment 1: Model Calibration Results

6.1 Actual AHU 2 & Weather Data Statistics

AHU 2 is a dynamic system that has thermodynamic and physical properties which

are monitored by temperature and flow sensors. The system has a schedule, con-

trolled by the DDC, that turns “on” at seven in the morning and then “o↵” at seven

Outliers

Median

Figure 6.1: Outside temp boxplot

Figure 6.2: Relative humid. boxplot

Figure 6.3: Solar Irradiance boxplot

thirty at night. Night operations dictate

that the dampers should not modulate, the

chilled water flow should remain zero, and

the fan motor should remain in the o↵ posi-

tion. The temperature and flow sensors mon-

itor transient and steady state conditions.

During the “on” and “o↵” conditions dif-

ferent statistical properties exist. The cal-

ibration process involved the review of ac-

tual versus modeled data for nearly 3,146

data points between July 10 and July 31,

2014. Over this 22 day span actual weather

conditions where measured by onsite sensors

and included outside air temperature, rel-

ative humidity, and solar irradiance. Fig-

ure 6.1 to 6.3 describe the distribution of

data for the three measured values during

“on”, “o↵”, and “overall” schedule condi-

tions. The boxplots describe the maximum,

minimum, upper and lower quartiles, and the

median for the di↵erent data sets (as shown

in Figure 6.1).

The boxplot for outside air temperature
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(Figure 6.1) shows a maximum value of 20.59�C, a minimum of 35.22�C, and a

median value of 25.9�C. The relative humidity results, shown in Figure 6.2, have

similar distributions for the di↵erent times of the day. The median values for relative

humidity are 46.4%, 51.1%, and 48.8% for “on”, “o↵”, and “overall” respectively.

Figure 6.4: Supply flow boxplot Figure 6.5: Supply temp boxplot

The “on” and “o↵” median value for solar irradiance is around 550w/m2 and 5w/m2

respectively as shown in Figure 6.3. The measured value should be zero at night,

but the sensor has an o↵set of about 5w/m2.

The weather data were inputs to the actual and model systems. The outputs

for the AHU 2 system were supply air flow, supply air temperature, and mixed air

Figure 6.6: Mixed temp boxplot

temperature. The statistical properties for

these actual outputs are shown in Fig-

ures 6.4, 6.5, and 6.6.

It is clear that the statistics various

greatly from the “overall” data set to the

“on” and “o↵” subsets for the supply air flow

data. For instance, Figure 6.4 describes the

“on” and “o↵” data sets to have a median

value of 8.12 and 0.0 m3/sec respectively.

Additionally, the maximum and minimum
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supply flow rate is 11.2 and 0.0 m3/sec for the “on” and “o↵” cases respectively.

The supply air temperature statistics, described in Figure 6.5, show that the

maximum and minimum temperatures are 27.9 and 11.8�C respectively. It is evident

that the statistics vary from the “on” to “o↵” schedule conditions. For example,

during the “on”condition the supply air temperature has an average value of about

15.1�C with a variance of 0.41, whereas, the average was about 24�C with a variance

of 8.93 when the schedule is in the “o↵” condition. The significant jump in variance

indicates that when the system is “on” it remains within a defined value very well

2�
actual

Model
Actual

x

y

ŷ

Figure 6.7: Physical model range

for calibration review

and when the system was “o↵” condition tend to

vary.

The last sensor data set, mixed air tempera-

ture, was characterized by a statistical distribu-

tion that is described by Figure 6.6. The variance

and standard deviations were di↵erent for the

“on” and “o↵” cases. The variance for the “on”

condition was significantly smaller than when the

system was “o↵”. This indicates that the system

was able to control the temperature when the equipment was running and allowed

for temperature to drift when it was “o↵”.

6.2 Physical Model Calibration

The TRNSYS physical model was described in Section 3.3. The intent of the

model was to create an accurate representation of AHU 2 system so that the outputs

could be used for training and testing of the FDD tools. The model was able to

predict supply flow, supply temperature, and mixed air temperature outputs based

on outside air temperature, relative humidity, solar irradiance, and occupancy inputs.
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The outputs were compared with actual sensor data to determine compliance with

ASHRAE guidelines for model calibration. NMBE and CVRMSE were calculated at

each calibration iteration as described in Figure 5.7. The final NMBE and CVRMSE

values were required to be below the defined thresholds of 10% and 30% respectively.

Additionally, the actual and modeled temporal data for each of the sensor values

were compared in plots. The model outputs were given a range of plus or minus the

standard deviation as shown in Figure 6.7. This range was used as a tool to trouble

shoot the calculated NMBE and CVRMSE error values.

Figure 6.8: Physical model supply air flow

results versus actual

The supply air flow rate had an ini-

tial NMBE and CVRMSE of -48.8%

and 908.3% (Table 6.1) respectively.

These values did not comply with the

ASHRAE guidelines, and a sample two

day plot that shows the discrepancies is

shown in the top plot in Figure 6.8. It

is evident that the model over predicted

the air flow rate. Therefore, modifica-

tions to the internal load were made.

This included a more detailed review of

o�ce computers that was initially too

high and thus reduced in the model. This change in the model reduced the sup-

ply air flow rate to an acceptable level that represented actual well as shown in the

bottom plot in Figure 6.8. In addition, the NMBE and CVRMSE were calculated

to be -0.69% and 14.4% respectively. These values now complied with the ASHRAE

guidelines.

The supply air temperature output produced by the initial simulation had an

NMBE and CVRMSE of -8.4% and 175.8% respectively (Table 6.1). The NMBE
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value complied with the guidelines, but the CVRMSE did not. The simulation output

matched with the actual when the AHU system was on, but did not match well when

the system was o↵ as shown in the top plot of Figure 6.9. A more thorough review

of the model set up revealed the supply air section was not properly linked to the

mixed air section. In the initial case, the temperature during the night was based on

Figure 6.9: Physical model supply temp re-

sults versus actual

the building temperature only. Instead,

the supply air temperature should match

the mixed air value. The fix was made

an the model was executed again. A

sample of the results is shown in the bot-

tom plot of Figure 6.9 where the actual

and model matched well during the day

and night. The improvement produced

a NMBE and CVRMSE of -0.97% and

20.1% (Table 6.1).

The mixed air temperature simula-

tion output had an initial NMBE and

CVRMSE of -0.58% and 11.9% as shown in Table 6.1. In this case, both the NMBE

Table 6.1: Physical Model: Calibration Results (NMBE & CVRMSE)

Damper Section HX Section Supply Fan Section
NMBE CVRMSE NMBE CVRMSE NMBE CVRMSE

Pre-Calibration -0.58% 11.9% -8.4% 175.8% -48.8% 908.3%
Post-Calibration -0.58% 11.9% -0.97% 20.1% -0.69% 14.4%

Threshold 10% 30% 10% 30% 10% 30%

and CVRMSE values complied with the ASHRAE guidelines after the first iteration.

Therefore, no further modifications were required to calibrate the mixed air section

model.

The sub-systems within AHU 2 were modeled and calibrated based on the process
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defined in Section 5.3 and ASHRAE 2002 guidelines [6]. The NMBE and CVRMSE

results for the initial and final simulations are shown in Table 6.1. The supply air flow

rate and temperature improved considerably from the initial to the final iterations.

The mixed air temperature complied with ASHRAE guidelines immediately, and

therefore did not require any modifications. The model was successfully calibrated

and ready for use within Experiments 2, 3, and 4.

6.3 Rule-Based Model Calibration

The rule-based model, defined in Section 4.2.2, was developed to perform as a

FDD tool for AHU 2. The model was based on a set of rule-based expressions.

These expressions had initial parameters that were based on the design document

2�
actual

µ

actual

Model
Actual

t

y

Figure 6.10: Rule-based pre-

diction range used for calibra-

tion trouble shooting and also

for FD.

specifications. The initial development of the expres-

sions made assumptions that the design documents

represented reality. The intent of the calibration pro-

cess is to review these initial assumptions and mod-

ify where necessary. Modification requirements were

identified through the calculation of the NMBE and

CVRMSE values. Additionally, plots of actual and

modeled results were reviewed to help trouble shoot

during the calibration modification process that was

defined in Section 5.3.

The calibration process began by comparing actual data from AHU 2 with results

from the rule-based expressions defined by Algorithm 3. These results are labeled as

pre-calibration data and the NMBE and CVRMSE were calculated and compared

with their respective thresholds of 10% and 30% respectively as shown in Table 6.2.

Table 6.2 provides a breakdown of the results for each sensor in the three di↵erent
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Table 6.2: Rule-Based: Calibration Results (NMBE & CVRMSE)

Damper Section HX Section Supply Fan Section
NMBE CVRMSE NMBE CVRMSE NMBE CVRMSE

Pre-Calibration 2.72% 97.93% 8.28% 298.11% -49.96% 1798.8%
Post-Calibration 0.67% 24.33% 0.73% 26.37% -0.04% 1.64%

Threshold 10% 30% 10% 30% 10% 30%

sub-systems of the AHU. Unfortunately, none of the three outputs initially complied

with ASHRAE Guidelines, which required the NMBE and CVRMSE to be below

10% and 30% respectively. Therefore, calibration was required to modify parameters

in the model so that an optimal fit with actual values is achieved.

Similar to the physical model approach, a range was placed around the rule-based

Figure 6.11: Rule-based supply air flow rate pre and

post calibration results versus actual sensor values

result of plus or minus the stan-

dard deviation of the actual

data. In this case, the rule-

based expression was updated

to use the mean value (µ) of the

three sensors for the “on” sched-

ule condition as the basis for

the predicted value. Figure 6.10

describes the general form of

the model output in compari-

son with actual. The predicted

supply flow rate was initially set

to be 75% of the maximum flow

rate defined by the design specifications. The supply and mixed air temperatures

were dynamic, and were based on return and outside air temperature conditions as

shown in Algorithm 4.
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The supply fan section, which was represented by data from a air flow sensor,

had a pre-calibration NMBE value of -49.9% and a CVRMSE of 1798.8%. This

CVRMSE was very high, because the initial model assumed a constant flow rate

of about 13m3/sec which was described in Algorithm 3 in Section 4.2.2, while the

actual value had an average value of about 8m3/sec. This deviation from the actual

is shown in the top graph of Figure 6.11. Modifications to the model included the

reduction in the air flow rate by setting the actual mean value as the supply flow

rate.

The supply flow rate expression was changed from 75% of the maximum flow rate

(Algorithm 3) to the mean flow rate shown in Algorithm 4. The mean flow rate was

calculated to be 8.06m3/sec and 1.34m3/sec for “on” and “o↵” schedule conditions

respectively. Therefore, the air flow rate reduced from 13m3/sec to 8.06m3/sec.

Figure 6.12: Rule-based supply temp pre and post

calibration results versus actual sensor values

After this single modification,

the NMBE and CVRMSE im-

proved to -0.04% and 1.64% re-

spectively, and complied with

ASHRAE guidelines. This

change provided an improved fit

to the actual data as shown in

the bottom plot of Figure 6.11.

The supply air tempera-

ture model did not match

well with the actual results.

The pre-calibration NMBE and

CVRMSE were calculated to be

8.28% and 298.11% respectively. The NMBE did comply with guidelines, but the

CVRMSE was well above the acceptable value of 30%. The top graph in Figure 6.12
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provides an example of the initial discrepancies for two days of data. It is clear that

a shift in temperature during the day would provide better results. Therefore, the

“on” condition supply air temperature was changed from the initial value of 13.3�C,

which was set from the design specifications, to the calculated mean of 15.1�C. The

“o↵” schedule conditions were given an o↵set of +2�C to better match the actual

values. The changes improved the NMBE to 0.73% and the CVRMSE to 26.37%

and each complied with the guidelines. The modifications changed the goodness of

fit of the model as shown in the bottom plot of Figure 6.12.

The mixed air temperature output from the model, initially had a NMBE and

CVRMSE of 2.72% and 97.93%. The NMBE met the requirement for the guidelines,

but the CVRMSE of 97.93% was well above the threshold of 30%. Modifications to

the “on” schedule condition were made by setting the output to be the mean value

Figure 6.13: Rule-based mixed air temp pre and post

calibration results versus actual sensor values

(24.34�C) of the actual. The

“o↵” schedule expression was

changed from the average di↵er-

ence of the outside and return

air temperature to the return

air temperature minus an o↵-

set of about 1.5�C. Figure 6.13

describes two days of the pre-

calibration results in the top

graph and the post-calibration

in the bottom graph. The

changes made during the cali-

bration process provided signif-

icant improvements to the ex-

pressions. The NMBE and CVRMSE for each of the outputs were able to fall below

their respective thresholds to 0.67% and 24.33% respectively.
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The results from the calibration process were used to update the expressions found

in Algorithm 3. The final expressions that include the modifications is described in

Algorithm 4. The main changes included the modification of the “on” schedule

values so that they equaled the statistical mean of the actual data. In addition, new

o↵sets were applied to the mixed and supply air temperature values for the night

time operations.

Algorithm 4 Rule-based expressions post calibration

Require: hour of the day (hr), outside and return air temperature

Ensure: predict low and high supply air flow, supply air temp, and mixed air temp

if hr >= 7 AND hr <= 19.5 then

m
supply

= m̄
actualsupply

± �
m

supply

, T
supply

= T̄
actualsupply

± �
T

supply

if T
return

> T
outside

then

T
mixed

= T
outside

± �
T

mixed

else

T
mixed

= T
return

± �
T

mixed

end if

else

m
supply

= 0

if T
return

> T
outside

then

T
mixed

= T
return

± �
T

mixed

T
supply

= T
mixed

± �
T

supply

else

T
supply

= T
return

± �
T

supply

T
mixed

= T
return

± �
T

mixed

end if

end if

This experiment calibrated the physical and rule-based models. The physical

model was updated to match with actual values and provide accurate simulation

110



Chapter 6. Experiment 1: Model Calibration Results

results for Experiments 2, 3, and 4. The rule-based model was calibrated using

the same methods as the physical model. The expressions were updated so that the

outputs matched well with the actual values and therefore ready to be used as a fault

detection tool in Experiment 1. The development and calibration of the rule-based

expressions followed an arbitrary process. The process also required considerably

time and e↵ort to develop.
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Experiment 2: Fault Detection

Results

Training Data

Normal

Faults

17,568

0

Testing Data

Normal

Faults

7,242

1,891

Figure 7.1: The training dataset contains 17,568

normal and 0 fault and the testing set has 7,242

normal and 1,891 faults.

Experiment 2 tested the fault de-

tection abilities of seven di↵erent

tools. The tools trained on a data

set that contained 17,568 normal

data points and 0 faults as shown

in Figure 7.1. After the tools had

gained knowledge during the train-

ing phase, a new set of data that

contained 7,242 normal and 1,891

faults was presented to the FD tools.

Each tool evaluated the features

within each data point and provided a binary prediction. The binary prediction

was either normal behavior or a fault.

The training process used simulated data for a two month span. It began on June
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1, 2014 and ended on July 31, 2014. Over this time period typical meteorological

year (TMY) weather data and occupancy levels were collected and used as inputs

into the physical model simulation. The outputs from the model represented the

sensor values for each of the sub-systems (supply fan, heat exchanger, and mixed air

section). The simulation outputs and the TMY weather were then used as inputs

into the di↵erent models to train and then perform fault detection as described in

Section 5.4 (Figure 5.9 and 5.10).

The results from each tool were broken out by fault type (Section 5.2) and were

evaluated based on the probability for detection and false alarm, as well as precision

as defined in Section 5.7.1. This required the calculation of TP (True Positive), FP

(False Positive), FN (False Negative), and TN (True Negative) values. The calculated

values were then used to compare the methods on a particular fault and their overall

performance.

7.1 Qualitative Method Results

The qualitative method is probably the most commonly used FDD tool for HVAC

systems. In this experiment a threshold FD system was implemented. While this

method is easy to implement, understand, and maintain, the hypothesis is that it

has a performance level that is will below all other methods.

7.1.1 Threshold Method

The threshold FDD method was described in Section 4.2.1. The method can be

found in many BAS to monitor HVAC equipment. The basic approach for AHU 2

is described in Algorithm 2, and includes fan status, freeze protection, and filter

status. The supply fan status alarm system was the only one that could be applied
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to this experiment. However, the supply fan status binary input and supply fan

start/stop binary output values were not monitored in the present work. Therefore,

to replicate this type of alarm, the supply air flow sensor was used. The sensor value

was compared with a schedule that defined optimal system operations. This updated

evaluation criteria is described in Algorithm 5.

Algorithm 5 AHU Supply Fan Threshold FDD Algorithm

Require: Supply Air Flow

Ensure: alert users of supply fan faults

if hour > 7 and hour < 19.5 then

if supply flow > 0 then

No Alarm

else

Alarm

end if

else

if supply flow > 0 then

Alarm

else

No Alarm

end if

end if

Algorithm 5 did not require training, calibration, or cross validation to determine

the expressions. It was applied directly to the testing data and the results were

recorded. The testing data included the four fault types described in Section 5.2 as

well as normal behavior. The results were broken down by fault type and then the

overall results were plotted in ROC space.

Detection: Type A Fault

The first type of fault tested by the threshold method was where the CHW tempera-

ture was too high, and as a result the supply fan had to provide larger flow rate than

normal. The testing process presented a total of 7,650 inputs and 7,325 of them were

normal and the remaining 325 were type A faults. In this case, the threshold method
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did not perform well because the fault condition did not a↵ect the schedule of the

fan. Therefore, this method could not detect a single fault. As a result the number

of true positives and true negatives were both zeros. The probability of detection

and the precision were equal to zero, and the the number of faults that were classified

as normal was 325. The probability of detection and false alarm are both zero and

plotted in Figure 7.2.

Detection: Type B Fault

The second fault was due to a malfunction in the mixed air damper section. This

Figure 7.2: Threshold precision (circle size), probability of de-

tection (y-axis), and probability of false alarm (x-axis) results.

fault had an impact

on the mixed air tem-

perature sensor value.

A total of 7,475 in-

puts were presented

to threshold algorithm

and 150 of them con-

tained faults and the

remaining 7,325 were

normal. The posi-

tive and negative clas-

sification results end

up with a TPR, FPR,

and precision equal to

zero as shown in Fig-

ures 7.2. Again, the threshold method is not able to detect a single fault because

the AHU fan schedule was not compromised.
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Detection: Type C Fault

The type C fault is the situation where the VFD was stuck at a fixed position.

The threshold algorithm analyzed 8,525 total inputs that contained a total of 1,200

fault conditions. This method could not recognize any of the faults. Therefore the

probability for detection, false alarm, and precision were zero as shown in Figures 7.2.

Detection: Type D Fault

The final fault introduced to the threshold algorithm was the o↵-schedule fan opera-

tions. The threshold method was ideal for identifying this type of fault and detected

100% of the 216 faults. The probability for detection was calculated to be 100%, as

shown in Figure 7.2, because the number of false negative classifications was zero.

Additionally, the method did not produce any false alarms, and therefore produced

a precision of 100%.

Detection: Overall

The results from the individual fault detection tests showed that the threshold

Table 7.1: Exp 2: Threshold cumulative

conf. matrix for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP=216 FN=1,675

y=0 FP=0 TN= 7,242

method could not detect the type A, B,

and C faults. It was able to detect the

type D fault well because the fault oc-

curred during o↵-schedule times which

is exactly what the threshold algorithm

was set up to recognize. The overall,

that combined type A, B, C, and D fault

results, are described within a confusion

matrix in Table 7.1. It is evident that the method had a low missed detection rate
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(TPR = 11%) and a very good false alarm rate (FPR = 0%). The overall accu-

racy, which is the total correct over the total, was calculated to be a very good

81%. Finally, the precision was 100%, because the method did not produce any false

alarms.

7.2 Quantitative Method Results

The quantitative method, which for the experiment included the rule-based model,

provided a quantitative assessment of the actual data versus a prediction. The

prediction, which represented the “ideal” case, produced values for the mixed air

temperature, supply air temperature, and supply air flow for each time-step. A

range, set by the standard deviation, surrounded the prediction and was compared

with actual values to determine compliance as defined by Figure 6.10. If the actual

value fell outside of the range it was classified as a fault.

7.2.1 Rule-Based Results

Section 4.2.2 defines the rule-based expressions that were initially developed based on

expert knowledge of the system. The expressions were then calibrated (Section 6.3)

and adjusted to match with actual sub-system operations so that they could be

applied to the present experiment. In this experiment test data were presented to

the expressions that contained four types of faults. The evaluation assessed the

methods to detect each fault as well as an overall review of its performance.
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Detection: Type A Fault

The rule-based expression considered a total of 7,650 inputs and was able to positively

identify 115 faults. However, it falsely identified 389 faults that should have been

normal. The probability of detection and false alarm were equal to 35% and 5%

Figure 7.3: Rule-based precision (circle size), probability of

detection (y-axis), and probability of false alarm (x-axis) re-

sults.

respectively. The pre-

cision was calculated to

be 22% as shown in Fig-

ure 7.3.

Detection: Type B

Fault

The rule based expres-

sion was able to iden-

tify 112 faults out of

the 150. In addition

it incorrectly classified

389 false positives. This

produced a probability

of detection equal to 74% as shown in Figure 7.3. Additionally, the precision value

for was calculated to be 22%.

Detection: Type C Fault

The rule-base expression did not perform well at classifying type C faults. It was

only able to detect 41 out of the 1,200 total faults. This produced a probability of

detection equal to a very low 3% as shown in Figure 7.3. In this case, a random
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guess would have been more productive. Also, the precision for this fault type had

a very low value of 9%.

Detection: Type D Fault

The rule-based expression was able to detect 100% of the 216 type D faults. This

produced a probability of detection equal to 100% as shown in Figure 7.3. However,

the expression incorrectly classified 389 normal data points and produced a low

precision value of 35%.

Detection: Overall

This fault detection tool was able to predict actual operations fairly well as shown

in the actual versus predicted plot in Figure 7.4. Figure 7.4 provides four graphs

that describe actual and rule-based results for a two day period. It is evident that

the actual air flow results remained within the predicted range except at the end

of each day. The supply and mixed temperatures had very similar patterns but

tended to not match with the prediction at hour 7 when the system first turned on.

These discrepancies indicate that the model cannot represent the ramp rate for the

Figure 7.4: Rule-based experiment 2 time-series example results
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temperatures at equipment start up. This trend occurred each day throughout the

entire testing data set. To fix this issue an extra expression would need to be added

that would a↵ect the rate of increase or decrease. This could be di�cult because the

rate changes from day to day.

The overall results for the entire experiment are described in Table 7.2.

Table 7.2: Exp 2: Rule-Based cumulative conf. matrix for

type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0
T
ru
th

y=1 TP=484 FN=1,407

y=0 FP=389 TN=6,936

The TP, FN, FP, and TN

where 484, 1,407, 389, and

6,936 respectively. Based

on these values the over-

all accuracy, which is the

amount correct over the to-

tal data points considered,

was 80.5% because it was

able to classify normal behavior well. Yet, its ability to detect faults was weak

and had a precision of 55.4%. This means that if a fault occurs the probability that

it will be correctly detected is 25.6%. On the other hand, there is a small (5%)

chance that the method will produce a false alarm.

7.3 Process-History

This experiment evaluated the performance of four process history methods, which

were regression, BP, single Fuzzy ART, and LAPART. The regression, BP, and LA-

PART involved the development of a model that predicted the sub-system sensor

values. These predictions were compared with actual values and faults were recog-

nized through the review of the residuals. The ART ANN was developed to classify

patterns as either normal or as a fault.
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7.3.1 Regression

The regression process entailed training and testing activities. First, training was

accomplished by fitting non-linear equations to a data set. Three equations were

developed that had the independent variables supply air flow rate, supply air tem-

perature, and mixed air temperature. These independent variables were picked so

that during the testing phase predictions could be made and compared with the ac-

tual sensor values. After the coe�cients for the three equations were found, the test

data was presented to each equation to calculate a predicted value for the supply air

flow, supply air temperature, and mixed air temperature.

Training

The development of the regression expressions was performed for each of the three

sensor points. This meant that the independent variable was either supply air flow,

supply air temperature, or mixed air temperature. For each of the expressions the

dependent variables, which a↵ect the AHU system performance greatly, were outside

air temperature (OSA), and hour of the day. Figures 7.5, 7.6, and 7.7 describe the

Figure 7.5: Supply air flow
regression

Figure 7.6: Supply air
temp regression

Figure 7.7: Mixed air
temp regression

basic surfaces that represent the training data for the three independent variables.

The supply air flow was represented by a quadratic equation described in Equa-
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tion 7.1:

Supply Flow = a(OSA) + b(Hour�3) + c (7.1)

The coe�cients for the supply air flow were discovered in the regression optimization

to be a = 8.88e-02, b = 7.48e+02, and c = 6.30. The supply air flow regression

only considered data points between the hours of 7:00 and 19:30. During the night

and early morning the flow should be zero and therefore if flow occurred it would

immediately be flagged as a fault.

The supply air temperature was described by Equation 7.2:

Supply Temp = a(OSA5) + b(Hour2) + c (7.2)

The exponents for the outside air and hour variables were determined through trial

and error. The coe�cients for Equation 7.2 were a = -9.95e-08, b= -1.60e-03, and

c = 2.57e+01 were determined using the regression optimization. In this case the

regression found the best fit curve for the data when the system was o↵ which was

before hour 7:00 and after hour 19:30. The temperature was set to 15.3�C from hour

7:00 to 19:30.

The final sensor value, mixed air temperature, is represented by Equation 7.3:

Mixed Temp = OSA(1/a) + 2sin(0.8Hour + b) + c (7.3)

This equation was developed based on user intuition and trial and error. The coef-

ficients a = -1.48e+11, b = 3.96 , and c = 2.39e+01 were determined through the

regression optimization process. The surface was constrained during the night when

the system was o↵ and also at mid-day when the system was often at a constant

temperature that matched with the building return.

Previously unseen data was presented to the regression equations in the testing

process. The equations produced outputs that were then compared with actual data
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to determine if a fault had occurred or not. This process was conducted for the four

di↵erent fault types, and the probability of detection and false alarm was calculated.

Detection: Type A Fault

The regression method had an accuracy of about 80% for type A faults. This high

accuracy was due to the number of correctly classified data points versus the total

number considered. For example, it was able to classify 241 faults and 5,870 normal

data points correctly. The probability for detection was calculated to be 74%, but the

precision value was only 14% as shown in Figure 7.8. This revealed that the model

did not perform as well as the accuracy initially indicated. This was because the

number of correctly classified faults was much less than the number of false alarms.

Figure 7.8: Regression precision (circle size), probability

of detection (y-axis), and probability of false alarm (x-axis)

results.

The probability for false

alarm was a very high 19%.

Detection: Type B

Fault

The regression equations

had an accuracy of 80%

when they attempted to

identify type B faults. It

was able to correctly iden-

tify 110 out of the 150 pos-

sible faults. This ratio pro-

duced a probability of de-

tection of 73% as shown in

Figure 7.8. However, the
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precision was only 7% because the number of false alarms was very high in com-

parison to the number of correctly detected faults.

Detection: Type C Fault

The results from the detection of type C faults indicated a low probability of detection

(52%) as shown in Figure 7.8. This meant that the equations were able to detect

627 faults out of the total 1,200. The accuracy, which is the amount of true positive

and true normals over the total, was calculated to be 70%, however the precision was

much less at 30%. This indicated that the number of correctly identified faults was

small in comparison to the total number of false positives.

Detection: Type D Fault

The final fault type, that produced o↵-schedule fan operations, was easily detected

by the regression equations, and had a probability of detection equal to 100% as

shown in Figure 7.8. This meant that all of the 216 faults were detected and no false

classifications were made. However, the equations flagged 1,455 false alarms. This

produced an overall precision that was a very low 12%.

Detection: Overall

The regression equations could predict the air flow rate and supply temperature sen-

sor values well. However, the mixed air prediction equation was not as successful

at estimating the mixed air temperature values and the discrepancies ended up cre-

ating a lot of false alarms. These results are shown in an example plot provided

in Figure 7.9, where the actual and modeled results are plotted for a two day pe-

riod. The regression model results are plotted with a range that is plus and minus
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Figure 7.9: Experiment 2: Regression prediction versus actual for fault detection example
plot for two days. The plot includes actual data that is normal and type A fault behavior.

the standard deviation. The “on” and “o↵” schedule times have di↵erent standard

deviations, and therefore their respective ranges are di↵erent sizes. It is evident that

Table 7.3: Exp 2: Regression cumulative conf.

matrix for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP=1,194 FN=697

y=0 FP=1,455 TN=5,870

the supply flow and temperatures

match well but the mixed air model

does not fit as well. The mixed air

temperature pattern was very di�-

cult to represent using an optimized

regression equation.

The overall results for the regres-

sion analysis produced the following

results: TP = 1,194, FN = 697, FP = 1,455, and TN = 5,870. This results are

provided in the confusion matrix given in Table 7.4. The overall accuracy was cal-

culated to be 76%, but the precision was 45%. Additionally, the TPR or probability

of detection was equal to 63% and the probability for false alarm was 19%.
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7.3.2 Support Vector Machine

The typical SVM, presented in Section 4.2.3, provides a two-class classification eval-

uation. However, the training data for this experiment only contain one class that

does not have any faults. Therefore, a one-class SVM provided in the Python

Scikit-Learn Package [95] can be used for novelty detection. Unlike the multiclass

Min. Novelty
Region

Figure 7.10: Exp. 2 One-class SVM cross validation of free

parameters ⌫ and �

approach, this algo-

rithm learns in an un-

supervised manner. It

can then perform nov-

elty detection by classi-

fying data that is simi-

lar to the training data

set as normal. If it

is not similar than the

data point is classi-

fied as a fault. The

results could then be

compared with actual

to define the overall ac-

curacy and precision.

The first step in the implementation of the one-class SVM was to perform a cross

validation that defined the best free parameters for the particular data set.

Cross Validation

The one-class SVM incorporates a radial basis non-linear kernel that is shown in

Equation 7.4. This approach uses two free parameters ⌫ and � to define the decision
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function which is given by Equation 4.15. The ⌫ parameter defined the upper bound

on the fraction of training errors and a lower bound of the fraction of support vectors

and is between 0 and 1. The � parameter represents the kernel coe�cient that is

shown in Equation 7.4.

K(x,x0) = exp(�||x� x0||2) (7.4)

The K-Fold cross validation described in Section 5.1.1 was used to define the best

⌫ and � parameters for the training dataset. In this case the data is broken out into

6 folds and the number of novelties for each fold were recorded and averaged for the

corresponding free parameter. The final results for the di↵erent free parameter iter-

ations are shown in Figure 7.10. For this dataset, the best free parameter scenarios

Figure 7.11: OC SVM precision (circle size), probability

of detection (y-axis), and probability of false alarm (x-

axis) results.

were at ⌫ equal to 0.001 and �

equal to 10.

Training/Testing

The first step in the training

process was to set the free pa-

rameters defined in the cross

validation process. The free

parameters were ⌫ equal to

0.001, which set the size of

the margin and the number of

support vectors, and then � =

10. During training the algo-

rithm builds a model that as-

signs new examples into one

category or the other. The categories are divided by two planes that are at a dis-
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tance from each other that is as wide as possible. After training is complete, new

examples are than mapped into the space and a prediction of the particular category

is produced based on which side of the planes the new point is located. Throughout

the testing of the four faults the TP, FN, FP, TN and other values were calculated

and recorded.

Detection: Type A Fault

The first new examples that were mapped into the space that was defined during

training where type A faults intermixed with normal data. The result was a detec-

tion accuracy of 98%. However, this accuracy is somewhat deceiving because the

algorithm was able to identify 189 out of the 325 total faults. This ratio produced

a probability of detection equal to 58% that is shown in Figure 7.11. The SVM did

not produce many false alarms in comparison to the correctly identified faults and

had a precision of 89%.

Detection: Type B Fault

The second set of data presented to the SVM algorithm contained the type B faults.

This fault was located in the mixed air sub-system. The SVM algorithm was able

to again provide a high accuracy of 98%. However, the accuracy value was very

misleading, because the probability of detection was very low (18%) as shown in

Figure 7.11. Also, the the SVM tool produced a precision value of 57%. This

moderate precision value was due to a similar quantity of correct and false alarm

classifications which were 28 and 21 respectively.
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Detection: Type C Fault

The type C, which was the VFD malfunction that caused the fan to go to a constant

value, was presented to the SVM algorithm for testing. The result was an overall

accuracy of 87%. Yet, the probability for correct classification of a fault was a very

low 13%. This was because it was only able to correctly classify 154 out fo the total

1,200 faults as described in Figure 7.11. Similar to the algorithm’s performance on

the type B faults a random guess would have provided better results. It did however

avoid false alarms in relation to the number of correctly identified faults. Because of

this it produced a precision value of 87%.

Detection: Type D Fault

The final fault presented to the SVM algorithm was the o↵-schedule fan operations.

In this case the SVM achieved a very high accuracy of 100%. It was able to correctly

Table 7.4: Exp 2: OC SVM cumulative conf. ma-

trix for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP= 587 FN = 1,304

y=0 FP= 21 TN = 7,304

classify all o↵ the 216 total faults. In

addition, it had probability of detec-

tion equal to 100% as shown in Fig-

ure 7.11. The precision value was

also high at 91%, which indicated

that the ratio of the amount of true

fault classifications was much larger

than the number of false alarms.

The number of true fault classifications was 216 while the number of false alarms

was 21.
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Detection: Overall

The SVM was able to accurately (85%) and precisely (95%) detect sub-system faults

in the AHU. The overall TP, FN, FP, and TN were found to be 371, 1,304, 21,

and 7,304 respectively as shown in the confusion matrix in Table 7.4. This equated

to a probability of detection and false alarm equal to 31% and 0.28% respectively.

Although the probability of detection was low the SVM algorithm had a precision

value that was very high. The precision value provides a good assessment of the

methods ability to detect faults. This is because the number of faults is low in

comparison to the normal data points, and therefore the precision measures the

fraction of detections that are actually faults.

7.3.3 Back-propagation

Min. Error
Region

Figure 7.12: Exp. 2 Back-propagation cross val-

idation of free parameters learning rate (⌘) and

Momentum (m)

The back-propagation algorithm,

described in Section 4.2.4, is a pop-

ular implementation of a multi-layer

perceptron. The input layer, in

this case, accepted hour of the day,

outside air temperature, and occu-

pancy. The input nodes were con-

nected to two hidden layers each

with eight nodes. Finally, the out-

put layer had three nodes that corre-

spond to the supply air flow, supply

air temperature, and mixed air tem-

perature outputs. The algorithm has two free parameters which were the learning

rate and the momentum term. The identification of the best value for the given
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dataset was accomplished through a K-Folds cross validation process.

Cross Validation

The intent of the cross validation process for the back-propagation algorithm was

to identify the learning rate and momentum term that produced the smallest mean

square error (MSE) during testing. This process involved a K-folds cross validation

procedure that considered 64 di↵erent free parameter combinations. The di↵erent

combinations were tested in four folds and each fold was trained using 600 epochs.

The result was a distribution of free parameters and MSE that is shown in Fig-

ure 7.12. The surface shown in Figure 7.12 has many peaks and valleys because the

each iteration began with di↵erent initial weights. The lowest MSE, indicated by

the arrow in the figure, was at a learning rate (⌘) equal to 0.7 and a momentum

term (m) of 0.1. For ⌘ close to 0 and m close to 1 produces increasing speed of

convergence. The opposite, where ⌘ is closer to 1 and m is near 0 provides higher

learning stability [43]. The learning rate and momentum term were then applied to

the training algorithm.

Training

The training algorithm used the learning rate and momentum term found during

the cross validation process to produce the weights for the input, hidden, and out-

put layers. The training process described in Section 4.2.4 required 600 epochs (or

iterations) of the forward and backward pass process. This process provided the

best weights for the various layers of the network. The weights were then sent to a

MySQL database for storage. The testing phase would then access the weights and

provide a prediction based on the new inputs.
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Detection: Type A Fault

Figure 7.13: BP precision (circle size), probability of detec-

tion (y-axis), and probability of false alarm (x-axis) results.

The CHW supply tem-

perature fault and nor-

mal data were evaluated

by the BP method. It

was able to detect these

faults with an accuracy

of 87%. The probabil-

ity of detection was cal-

culated to be 76% based

on the fact that the BP

method was able to de-

tect 249 out of the 325 to-

tal faults as shown in Fig-

ure 7.13. However, there

were 916 false alarms de-

tected which created a a probability of false alarm to be 13%, and a low precision

value of 21%.

Detection: Type B Fault

The second fault, which was the malfunction of the mixed air damper sub-system,

was also evaluated by the BP method. Similar to the type A fault it had an accuracy

of 87%. It was able to detect 70 out of the 150 total faults, which produced a 47%

probability of detection as shown in Figure 7.13. Additionally, the approach produced

very low precision value that was 7%.
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Detection: Type C Fault

A total of 8,525 data points containing normal and the type C faults were introduced

to the BP method. The outcome provided an accuracy of 81%. However, it was only

able to correctly detect 570 out of the 1,200 total faults. Therefore, the probability

of detection was 47%, which is shown in Figure 7.13. Additionally, the calculated

precision was 38%.

Detection: Type D Fault

The o↵-schedule supply fan fault was also evaluated, and the accuracy was 88%. It

was able to classify 100% of all of the faults, which meant that 0% of the faults

were classified as normal. This produced a probability of detection to be 100% as

shown in Figure 7.13. However, there were still many false alarms in comparison to

the number of correct fault classifications. Therefore, the precision calculation was

a very low 19%.

Figure 7.14: Experiment 2: Example output of the back-prop prediction for two days
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Detection: Overall

The BP was trained using two months worth of data and then tested on the one

month of data that contained normal sensor values and four types of faults. The

approach was able to provide an accurate prediction that represented the actual

sensor data, and a two day sample is shown in Figure 7.14. However, the prediction

could not provide a reliable means for fault detection because the actual often strayed

slightly away from the prediction and a false alarm was thus initiated often.

Table 7.5: Exp 2: BP cumulative conf. matrix

for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP= 1,105 FN = 780

y=0 FP= 916 TN = 6,409

The overall results for the BP

method are TP = 1,105, FN = 780,

FP = 916, and TN = 6409, and are

shown as a confusion matrix in Ta-

ble 7.5. The accuracy of this method

was 81% when applied to all of the

faults. Also, the probability for cor-

rect detection and false alarm were

58% and 13% respectively. Lastly, the precision of this method for the entire data

set was 54%.

7.3.4 ART

The algorithm for the single Fuzzy ART was described in Section 4.1.1. It was

developed in the Python script language. The algorithm has one free parameter

that required the cross validation process to define the optimal value. Similar to the

previous tests, such as the SVM and BP, the best free parameter was found using

the K-Folds cross validation process.
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Cross Validation

The K-Folds cross validation process was implemented to discover the best free

parameter (⇢). The ⇢ value is known as the vigilance parameter and defines the

complexity of the system. The cross validation was set up in a simple loop within the

Figure 7.15: Exp. 2: Number of novelties (size of

circle) for a give ⇢ (x axis) and categories (y axis) pro-

duced during the cross validation.

Python script and ran four dif-

ferent folds or iterations on the

training data. For each itera-

tion the ART algorithm trained

and tested on data that con-

tained no faults. After each

iteration the number of novel-

ties and created categories were

recorded for each ⇢ value. The

results from this test are plot-

ted in Figure 7.15. The ⇢ val-

ues less than 0.7 were consid-

ered too general and would not

provide su�cient complexity to identify faults. The ⇢ values larger than 0.9 resulted

in over 20 categories which hinted that the trained algorithm could be too complex

and thus cause false alarms to be prevalent. Therefore a middle ground was found

and a ⇢ value of 0.85 was chosen.

Training

The training and testing process used a ⇢ value of 0.85 found during the cross valida-

tion. Then, two months of input data from the TRNSYS simulation were provided

to the algorithm and the ART gained knowledge about the sub-systems of the AHU.
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The knowledge was stored in the form of templates inside of a MySQL database

table. A total of 34 templates were created to represent the training data set. Each

of the templates was below the maximum size of 0.9 as defined in Section 4.1.1.

Detection: Type A Fault

Figure 7.16: ART precision (circle size), probability of detec-

tion (y-axis), and probability of false alarm (x-axis) results.

A total of 7,649 data

points that contained nor-

mal and 325 type A faults

were presented to the

ART algorithm. The al-

gorithm was able to clas-

sify 296 faults correctly

and 160 incorrectly. The

probability of detection

was found to be 91% (Fig-

ure 7.16) while the false

alarm rate was calculated

to be 2%. In addition,

the overall accuracy of the

algorithm for this testing

data set was 97%, and the precision was 65%.

Detection: Type B Fault

The type B fault was di�cult to detect for the ART algorithm. Although the overall

accuracy was 95% it was only able to correctly classify 62 out of the 150 total faults.

The probability for detection was calculated to be 41% as shown in Figure 7.16.
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The ratio of correct classified versus false alarms was low and therefore produced a

precision value of 22%.

Detection: Type C Fault

The third test considered type C faults. A total of 8,524 data points of which 1,200

of them were faults. The ART algorithm had a overall accuracy of 90% and was

able to correctly classify 541 of the 1,200, which equated to a medium probability

of detection equal to 45% as shown in Figure 7.16. The precision was 77% which

indicated that it could produce a high probability of correct fault classification while

maintaining a low false alarm rate.

Detection: Type D Fault

The final test for fault detection using the ART algorithm considered 7,540 total

inputs and 216 of them were type D faults. The ART algorithm performed well at

an accuracy of 97%. It was able to correctly identify 100% of the faults without

classify any faults as normal. In addition, the precision was calculated to be 57%

and the probability for false alarm was 2% as shown in Figure 7.16.

Detection: Overall

The ART algorithm had an overall accuracy of 90% for all four of the faults. It was

able to correctly classify type A faults very well at a probability of detection that

was 91% and a precision of 65%. For instance, the type A fault and normal data

are plotted in Figure 7.17. The ART algorithm performed FD by checking each data

point versus the algorithm’s stored knowledge. If the actual data point fell within

the stored knowledge, shown as the green shading in Figure 7.17, then the point
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was considered normal. If the stored knowledge could not recognize the actual point

then it was considered a fault. The stored knowledge was based on the training

process performed by the ART algorithm where multi-dimensional hyperboxes were

Figure 7.17: Exp. 2: Example output of the Fuzzy ART for two days

created as described in Section 4.1.1. The example shown in Figure 7.17 shows that

the algorithm was able to correctly detect a type A fault on day one. During the

second day the algorithm detected a fault around hour 8. However, the sensor data

Table 7.6: Exp 2: ART cumulative conf. matrix

for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP= 1,115 FN = 773

y=0 FP= 160 TN = 7,164

represented normal behavior and

therefore the algorithm produced a

false alarm.

The TP, FN, FP, and TN values

were 1,115, 773, 160, and 7,164 re-

spectively, and are shown as a confu-

sion matrix in Table 7.6. The overall

precision, probability for detection,

and false alarm were calculated ass 87%, 60%, and 2% respectively.
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7.3.5 LAPART

The final method used to evaluate Experiment 2 data was the LAPART algorithm.

This algorithm was described in Section 4.1.2 and can provide outputs that predict

the AHU sensor values. The prediction values were then compared with actual values

and if the actual fell outside of the range determined by the algorithm the particular

input was flagged as a fault. Similar to the SVM, BP, and ART algorithms the

LAPART was subjected to a cross validation process. The cross validation process

evaluated the two free parameters, ⇢
A

and ⇢

B

, to find the match that provide the

smallest mean square error.

Consider
⇢A,⇢B region

Figure 7.18: MSE was plotted for each
free parameter scenario. At low ⇢ values
the MSE was 0. The MSE was high at
larger ⇢

B

and decreased as ⇢
A

increased.

A-Side

B-Side

Figure 7.19: The number of categories
at the corresponding free parameters.
The A categories increase at a larger rate
than the B side as the ⇢ values increase.

Cross Validation

The cross validation process used the K-Fold method with four folds. The cross

validation considered the mean square error between the predicted value and the

actual. It also took into account the number of categories created for the di↵erent free

parameter values. The intent was to find a free parameters that had a small error and

139



Chapter 7. Experiment 2: Fault Detection Results

medium number of categories. A mean square error of zero was calculated for small

⇢

B

values as shown Figure 7.18. However, a small ⇢
B

value would produce results

that would be too general. In this case, the probability for detection would likely

be zero. Therefore, the free parameters must provide a level of complexity that can

Figure 7.20: LAPART precision (circle size), probability of

detection (y-axis), and probability of false alarm (x-axis) re-

sults.

detect faults while also

providing a generalization

that allows for correct

detection of data points

that have not previously

been seen. The best

⇢

A

and ⇢

B

were 0.9 and

0.7 respectively as indi-

cated by the arrow shown

in Figure 7.18. This

arrangement of vigilance

values produced an aver-

age number of categories

that was 61.75 for the A

side and 5 for the B side

which is shown with the number of category results for the respective free parameter

scenarios in Figure 7.19.

Training

The training of the LAPART algorithm used 17,567 inputs that contained no faults.

It produced 53 categories on the A-side and 6 on the B-side. Each of the categories

on the A-side had euclidean size of 0.3 or less. The categories on the B-side had a

maximum size of 0.9. The training process, which presented of all of the inputs twice
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to the algorithm, took 467 seconds (7.8 minutes). After the training was complete the

algorithm used hour of the day, occupancy, and outside air temperature as an input

on the A-side and no inputs on the B-side. Instead the B-side provided a prediction

output of the mixed air temperature, supply air temperature, and supply air flow

rate. The algorithm considered 9,216 inputs and took 161 seconds (2.7 minutes) to

run. The prediction was then compared with actual values to detect if a fault had

occurred or not.

Detection: Type A Fault

The LAPART algorithm was able to detect the CHW temperature fault at an accu-

racy of 95%. It was able to correctly detect 256 out of the 325 total type A faults.

This produced a probability of detection equal to 78% as shown in Figure 7.20. How-

ever, the method did classify 279 false alarms and therefore had a probability of false

alarm equal to 4% and a precision of 47%.

Detection: Type B Fault

The mixed air damper fault (type B) was more di�cult to detect than the type A

fault. Although the LAPART method had an accuracy of 95% it was only able to

detect 75 out of the total 150 faults. This ratio produced a probability of detection

equal to 50% as shown in Figure 7.20. Also, the precision was also very low at 21%.

Detection: Type C Fault

The presentation of the normal and type C fault data to the LAPART algorithm

produced an accuracy of 87%. However, it was only able to correctly identify 342

out of the 1,200 total faults. Based on these results, the probability for detection was
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calculated to be a very low 28%. The precision was moderate at 55%, because the

number of false alarms was less than the number of correct detections (Figure 7.20).

Detection: Type D Fault

The LAPART algorithm was able to perform at an accuracy of 96% when it reviewed

the normal and type D fault data. Similar to the other fault detection methods it

was able to detect 100% of the faults without mis-classifying a fault data point as

normal data.

Figure 7.21: Exp. 2: Example output of the LAPART for two days

Detection: Overall

The LAPART algorithm was able to detect faults in the AHU sensor data. The

method used all of the input features including hour of the day, occupancy, outside
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air temperature, and each of the three AHU sensors to train. Then, only hour of

the day, occupancy, and outside temperature were used as inputs and the algorithm

Table 7.7: Exp 2: LAPART cumulative conf. ma-

trix for type A, B, C, and D faults

Estimate

ŷ=1 ŷ=0

T
ru
th

y=1 TP= 889 FN = 1,002

y=0 FP= 279 TN = 7,044

produced three predictions that is

shown graphically in Figure 7.21.

The bottom plot in Figure 7.21 de-

scribes the false alarms and correct

detections.

The overall results for all of

the faults are as follows: TP=889,

FN=1,002, FP=279, and TN=7046

as shown in Table 7.7. The overall accuracy and precision were 86% and 76% respec-

tively. The probability for detection and false alarm were 47% and 4% respectively.

7.4 Fault Detection Method Comparison

The criteria used for measuring and comparing the binary classification methods

include accuracy, probability for false alarm, probability for detection, and precision

(Section 5.7.1). The accuracy, defined by Equation 5.3, describes the quantity of

normal and fault cases that were correct in comparison to the total number of data

points considered. This measure can be helpful, but in cases such as these, where

there are limited occurrences of faults it does not provide a meaningful measure. For

example, the rule-based method had a high accuracy of 80%. However, it had a low

precision and probability of detection equal to 55% and 26% respectively. Therefore,

the present work plots the probability of detection (TPR) and false alarm (FPR)

results from each method in ROC space (as described in Section 5.7.1). In addition

to ROC space where TPR and FPR are plotted, the present work plots precision

versus the probability for detection. This comparison is considered the most critical
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because it describes the fraction of classifications that were correct over the total

detected.

7.4.1 ROC Space Plots

The TPR versus FPR results for each method’s ability to detect type A faults are

plotted in Figure 7.22. The ART algorithm was the top performer for the detection

of type A faults with a TPR equal to 91% and a FPR of 2%. It plotted very close
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Figure 7.22: Type A fault TPR and
FPR results for each detection method
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Figure 7.23: Type B fault TPR and
FPR results for each detection method

to the optimal point which is (0,1). The next best performer was the LAPART

algorithm followed by the BP. The type B TPR and FPR results indicated that

the rule-based method performed the best as shown in Figure 7.23. The next best

performers were the ART and LAPART who both had smaller FPR, but had smaller

TPR in comparison to the rule-based results.

The results from the third fault type (Type C) showed that the ART algorithm

performed better than the others (Figure 7.24) with a TPR and FPR equal to 45%

and 2% respectively. The next best was the LAPART and then the SVM. The BP

and regression methods had high TPR in comparison to the others but had much
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Figure 7.24: Type C fault TPR and
FPR results for each detection method
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Figure 7.25: Type D fault TPR and
FPR results for each detection method

larger FPR. Each of the methods performed well when presented with the fourth

fault type (Type D) as shown in Figure 7.25. All seven methods tested had a TPR

equal to one and therefore the methods with the smallest FPR, such as SVM and

ART, were considered the best for this fault type.

7.4.2 Precision Results

The final review of the fault detection methods was the comparison of the precision.

This comparison was performed by plotting the precision value versus the probability

of detection (or TPR) for each of the fault types (Figures 7.26 to 7.29). The optimal

result would be at point (1,1) on the precision versus TPR graph. Therefore, the

results for the type A fault detection indicate that the best methods are ART, and

SVM (Figure 7.26). All of the methods did not perform as well on the type B fault.

However, the best method was rule-based approach as shown in Figure 7.27.

The results from the type C fault test show that the ART and LAPART al-

gorithms performed the best because they had the highest precision and TPR as

shown in Figure 7.29. The final test results for the type D fault indicate that the
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Figure 7.26: Type A fault TPR and Pre-
cision results for each detection method
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Figure 7.27: Type B fault TPR and Pre-
cision results for each detection method

best method was the threshold method because it did not produce any false alarms

and therefore had a precision and TPR equal to one. The next best method was the

SVM because it had the lowest probability for false alarm.
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Figure 7.28: Type C fault TPR and Pre-
cision results for each detection method
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Figure 7.29: Type D fault TPR and Pre-
cision results for each detection method
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7.4.3 Overall ROC & Precision Results

The overall results showed that the ART algorithm was the best choice for fault

detection on an AHU where only training data without faults were available. This

conclusion was based on the compilation of data from the four tests that considered

the faults: CHW high temperature, mixed air damper malfunction, VFD fan failure,
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Figure 7.30: Overall TPR and FPR re-
sults for each detection method
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Figure 7.31: Overall TPR and precision
results for each detection method

and o↵-schedule fan operations. The first metric, which was the comparison of

TPR versus FPR showed that the ART algorithm plotted the closest to the optimal

(Figure 7.30). Additionally, the ART algorithm had the best ratio of precision versus

recall as shown in Figure 7.31.

The LAPART algorithm was able to provide a good prediction of the three sensor

values, however it fell short at providing the best fault classification results for this

test. The LAPART algorithm did not perform as well as ART because of the reset

mechanism used to define the correct link between the A and B side templates. The

reset could have decreased its ability to provide accurate classifications, and it is

hypothesized that the LAPART algorithm would have performed better if it acted as

a binary classifier that defined the data as a fault or normal. Instead the experiment
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used the algorithm as a predictor and identified faults based on the comparison of

the prediction with the actual.
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Experiment 3: Adaptability

Results

Initial Training

Normal

Faults

17,568

0

Adapted
Training

Normal

Faults

27,360

0

Testing Data

Normal

Faults

3,126

260

Figure 8.1: The initial training data set contained 17,568 normal

and 0 fault, the adapted training set contained 27,360 normal and

0 fault, and the testing set contained 3,126 normal and 260 faults.

In the previous chap-

ter, Experiment 2 was

used to evaluate the

performance of de-

tection methods that

considered faults in-

termixed with normal

data. The statistics

of the normal data

remained the same

throughout the experiment, which meant that the average, maximum, minimum,

and standard deviations were constant throughout. However, in practice this is un-

likely to occur and normal data statistics will change often. For example, the training

and testing data in the Chapter 7 were based on occupancy patterns that did not

include students because the school year had not started. As opposed to this exper-
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iment that applied the top detection tools from Experiment 2 to normal data that

experiences significant statistical changes. In this case the fault detection tool must

adapt to the changing circumstances and e�ciently learn new normal behavior.

This experiment begins with the initial training of 17,568 normal data points and

then tested on 3,216 normal data points and 260 faults as shown in Figure 8.1. This

initial training and testing process is considered to be the baseline case. The next

step was to add to the previous knowledge by training on 9,792 new data. The results

from this test were considered adapted and defined how well the method could learn

di↵erent normal data.

The best fault detectors from Experiment 2 were ART, LAPART, and the one-

class SVM. These algorithms were already subjected to a cross validation process for

Experiment 2 tests. Therefore, the same free parameters discovered for each method

were used for the baseline and adapted tests in the present experiment. The baseline

test used the same training data from Experiment 2 and then tested the data on one

week of normal and fault data when school was in session. The adapted test applied

new normal data that had di↵erent statistical properties to the existing training.

Then it performed fault detection on the same testing data set.

8.1 Normal Data Statistics

The normal data statistics varied depending on the occupancy levels. This ex-

periment addressed the di↵erence between the summer and fall semesters. During

the summer few students were present, while many students attending classes were

present in the fall. The operational supply and mixed air temperatures in the AHU

were not observed to change. However, the air flow rate went from a median value of

9.4m3/sec to 10.2m3/sec. Also, the flow rate standard deviation increased from 0.49

to 1.15. The change in the normal data distribution is shown in Figure 8.2 between
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the occupancy levels with and without students. The air flow rate is the only sensor

value that changes because it had to increase the amount of thermal power in order

to account for the increased cooling load caused by the students. The supply and

mixed air temperature are set to a specific set point and therefore would not change

due to increased occupancy.

8.2 Baseline Test

Figure 8.2: Exp. 3: The normal data in the training and

testing sets change depending on the occupancy.

The baseline test used

data that were produced

from the TRNSYS sim-

ulation. The simula-

tion took into account

the summer reduced oc-

cupancy and then the

fall semester student oc-

cupancy levels. The data

from the two occupancy

periods had di↵erent sta-

tistical properties, and

the SVM, ART, and LAPART were trained on the summer data and then tested

on the fall semester data.

8.2.1 One-Class SVM

The one-class SVM correctly detected 293 out of 390 faults in the baseline test. This

ratio produced a probability of detection of 75%. This probability was considered
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good, but the probability for false alarm was also very high at 30%. Additionally,

the precision value, which is the probability of a fault given that a fault has occurred,

was a very low 11%.

8.2.2 ART

The ART algorithm considered a total of 4,952 points and flagged 390 of them as

faults. It correctly identified 253 out of the 390 and therefore it had a probability

of detection that was 65%. However, the algorithm had a total of 1,346 false alarms

Figure 8.3: Exp. 3: Sample three days of ART algorithm results for the baseline data set

which produced a false alarm rate of 30%. Additionally, its overall precision value

was 15%, which is considered a low value. The ART algorithm did not perform well

overall for the baseline case.

The fault detection process performed by the ART algorithm considered the three

actual AHU sensor values. The actual and the anticipated value produced by ART

are plotted in Figure 8.3. The graph at the bottom of the figure shows the resulting

actual and detected faults. The graph confirms that there are a high number of false

alarms.
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8.2.3 LAPART

In the initial application of the LAPART algorithm it was able to detect 348 out of the

390 faults. Based on this the probability for detection was a very high 89%. However,

the algorithm flagged a total of 1,427 false alarms which produce a probability of

false alarm to be 31%. Additionally, the precision was a relatively poor at 20%.

8.3 Adapted Test

The adapted test used the same data set for testing the fault detection algorithms,

but it expanded the training to include more data (27,360) as described by Figure 8.1.

The additional data contained no faults, and was more representative of the normal

conditions that would be seen in the testing data. Again, the one-class SVM, ART,

and LAPART algorithms were trained and tested.

8.3.1 One-Class SVM

The one-class SVM trained on an additionally 9,792 data points. Then it tested on

the same data set as the baseline test and the results were recorded. The algorithm

improved its probability for producing false alarms by reducing its FPR from 30% to

1.6%. Its probability for detection decreased from 75% to 53%. The probability for

detection was high in the baseline case because its precision was very low. After it

was retrained on the new data points the probability of detection decreased because

the algorithm became more complex. The SVM algorithm still preformed well and

its precision increased from a very low 11% to 74% because the number of FP went

from 1,352 to 74.
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8.3.2 ART

The ART algorithm increased the number of templates, which represented its stored

memory, from 33 to 41. This improved its fault detection abilities in all areas from

Figure 8.4: Exp. 3: Sample three days of ART algorithm results for the adapted testing
data set

the baseline to the adapted test. First, the probability of detection increased from

65% to 85%. Additionally, the probability of false alarm decreased from 30% to

1.6%. This decrease prompted the precision to increase as well from 15% to 81%.

This drastic increase in improved fault detection is evident in Figure 8.4 which plots

the results for the adapted case over the same time period as the baseline test shown

in Figure 8.3. The number of false alarms decreased considerably along with the

number of true positives for this three day span.

8.3.3 LAPART

The number of categories increased from 104 to 142 on the A-Side and from 33 to 44

on the B-Side. The adapted LAPART algorithm correctly detected 306 out of the
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390 total faults. The probability of detection decreased from 89% to 78% from the

baseline to adapted case. The probability of false alarm did improve significantly,

decreasing from 31% to 4%. This reduction in the false alarm rate increased the

precision from 20% to 62%.

8.4 Overall Results

The ART, LAPART, and SVM algorithm were all able to adapt to the change in

normal data. Their probability of false alarm for each of the algorithms decreased

to less than 4% as shown in Figure 8.5. The best algorithm according to the TPR

versus FPR ROC space was the ART algorithm with a TPR of 84% and an FPR of

1.6%. The ART algorithm also had the best precision value of 81% as shown in the

precision versus TPR plot (Figure 8.6).
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Exp. 4: Fault Diagnostics Results

Training Data

Normal

Faults

13,672

1,496

Testing Data

Normal

Faults

7,372

1,844

Figure 9.1: The training data set contains 13,672

normal and 1,496 fault while the testing set con-

tains 7,372 normal and 1,844 faults.

This experiment performed the task

of distinction or characterization of

the particular input features. The

experiment implemented the LA-

PART and multi-class SVM. The

two algorithms were trained using

data that contained normal and

fault behavior. There were 13,672

and 1,496 normal and fault data

points respectively as shown in Fig-

ure 9.1. Additionally, the particular

type of data were labeled as either a zero for normal behavior or 1 through 4 for

fault conditions. The testing data set contained 7,372 and 1,844 normal and fault

data respectively as shown on the right side of Figure 9.1. The experiment first

discovered the best free parameters for the LAPART and SVM algorithm. This was

accomplished through a cross validation process. Then the algorithms were trained

with the best parameters and tested on previously unseen data. Finally, the results
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from the FDD were analyzed based on the F1-scores calculation. The F1 score is a

measure of the method’s accuracy. It considers both the precision and probability of

detection to compute an overall score.

9.1 Cross Validation

Best
⇢A,⇢B

Figure 9.2: MSE as a function of the free parameters.

At high ⇢ A and B values the MSE tended towards

zero. The best free parameters were: ⇢A = 0.8 and ⇢B

= 0.8

Similarly to experiments 2 and

3, the K-Folds cross valida-

tion method was used to find

the optimal free parameters for

the LAPART and SVM algo-

rithms. In this case, the algo-

rithms were subjected to 6 folds,

and the average mean squared

error was calculated for each it-

eration. The free parameters

corresponding with the smallest

error were chosen and used for

training and diagnostic testing.

9.1.1 LAPART

The free parameters that defined the size of the categories for the LAPART algorithm,

were denoted as ⇢A and ⇢B. The cross validation process introduced 49 di↵erent

combinations and the mean square error for each are plotted in Figure 9.2. The

lowest mean square error (60.5) was produced by a ⇢A equal to 0.9 and ⇢B equal to

0.9. The number of categories created on the A and B side of the LAPART algorithm
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are shown in Figure 9.3. The number of categories on the B-Side remained constant

at 5 throughout the validation iterations. The categories in the A-Side, however,

increased in an exponential manner as ⇢A increased, and increased slightly in a

linear manner as ⇢B increased. The average number of categories for the optimal

free parameters were 92 and 5 for the A and B side respectively.

9.1.2 Multi-Class SVM

A-Side

B-Side

Figure 9.3: Number of categories as a function of the

free parameters. The B-Side remained constant at 5,

while the A-Side increased in an exponential manner

as ⇢A increased.

The optimal free parameters, C

and �, for the multi-class SVM

were found through a 6 fold K-

Fold process as well. The di↵er-

ent combination of the penalty

parameter of the error term,

C, and the kernel coe�cient,

gamma were tested to find the

mean square error for diagnos-

tics of the AHU fault condi-

tions. The lowest error was cal-

culated to be 0 and the highest was 645.1. The combination C = 0.8 and � = 10

had an error of 0 and was used for the training and diagnostic tests.

9.2 Training

The training process for each of the algorithms introduced two months of data that

represented faults and normal behavior. In addition, labels were used that were

associated with a specific fault conditions. The algorithms learned the di↵erent
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classifications and the associated features and stored the knowledge for diagnostic

testing.

9.3 Diagnostics

Best
C,�

Figure 9.4: MSE as a function of the free parameter.

At high C values the MSE was 0. The MSE increased

as the gamma value increased at low C.

The diagnostic tests for the

LAPART and SVM were both

presented with one month of

data that were previously un-

seen during the training pro-

cess. The results from each

of the tests produced TP, FN,

FP, and TN values for each

fault types. The analysis con-

sidered these values in the F-

score statistic that was defined

in Section 5.7.2. Finally, the

scores for each algorithm were compared to define the best algorithm for this type

of data.

9.3.1 LAPART

The diagnostic results for the LAPART algorithm for each of the fault types are

presented in Table 9.1. The diagnostics of the Type A fault was very successful and

did not produce any false alarms or missed detections. This produced a precision

and a probability of detection equal to 100%. The second fault, Type B, resulted

in 17 false alarms and 153 false detection. As a result the precision and probabil-
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Table 9.1: The LAPART results for each of the fault types

Fault A Fault B Fault C Fault D
ŷ=1 ŷ=0 ŷ=1 ŷ=0 ŷ=1 ŷ=0 ŷ=1 ŷ=0

y=1 257 0 y=1 150 153 y=1 513 658 y=1 72 0
y=0 0 7,342 y=0 17 7,342 y=0 13 7,342 y=0 0 7,342

ity of detection where 89% and 50% respectively. The diagnostic performance for

fault type C was not perfect either, and produced 658 false detections and 13 false

alarms. Diagnostics for fault type D was much more successful with a precision and

probability of detection of 100%.

The F1 score statistic (Equation 5.7) was calculated based on the micro-averaging

precision provided by Equation 9.1:

Micro-Avg Precision =
257

257+0 +
150

150+17 +
513

513+13 +
72

72+0

4
= 0.97 (9.1)

and the micro-averaging recall defined by Equation 9.2:

Micro-Avg Recall =
257

257+0 +
150

150+153 +
513

513+658 +
72

72+0

4
= 0.73 (9.2)

The micro-averaging precision and recall for the LAPART were 0.97 and 0.73 re-

spectively. These values were substituted into the F1 score statistic equation and

computed a value of 0.83 as shown in Equation 9.3:

F1Scorelapart =
2(0.97)(0.73)

(0.97 + 0.73)
= 0.83 (9.3)

9.3.2 Multi-Class SVM

The multi-class SVM algorithm developed in Python script using the Sklearn pack-

age [95] produced successful results as shown in Table 9.2. The TP, FN, FP, and

TN results for the four di↵erent fault scenarios are defined in this table. The SVM

algorithm was able to diagnose the Type A fault with a precision of 100% and a

160



Chapter 9. Exp. 4: Fault Diagnostics Results

Table 9.2: The Multi-class SVM results for each of the fault types

Fault A Fault B Fault C Fault D
y=1 y=0 y=1 y=0 y=1 y=0 y=1 y=0

y=1 218 335 y=1 185 115 y=1 1073 127 y=1 72 0
y=0 0 7,266 y=0 0 7,266 y=0 106 7,266 y=0 0 6729

probability of detection of 86%. The algorithm’s ability to diagnose the second fault,

Type B, was not as e↵ective with a precision and probability of detection equal to

100% and 62% respectively. The Type C fault resulted in a precision of 91% and a

probability of detection equal to 89%. The final fault, Type D, was easily detected

accurately, and had a precision and probability of detection equal to 100%.

The micro-averaged precision was calculated in Equation 9.4,

Micro-Avg Precision =
218

218+0 +
185

185+0 +
1073

1073+106 +
72

72+0

4
= 0.99 (9.4)

and was found to be 0.99. The micro-averaged recall value was also calculated as

shown in Equation 9.5:

Micro-Avg Recall =
218

218+335 +
185

185+115 +
1073

1073+127 +
72

72+0

4
= 0.73 (9.5)

The micro-averaged precision and recall were then used in Equation 9.6 to

F1 Score
svm

=
2(0.99)(0.73)

(0.99 + 0.73)
= 0.84 (9.6)

calculate an F1 score of 84% for the SVM algorithm.

9.3.3 Comparison

The precision and recall results of the LAPART and SVM algorithms for the four

faults are shown in Figure 9.5. Both of the algorithms performed very well. For each

of them their precision and TPR results were close to one. The LAPART algorithm

was able to correctly detect every fault and avoid any false alarms for Type B and
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D faults. The SVM algorithm was able to accomplish perfect classification for the

Type D fault.

Overall the LAPART and SVM algorithms produced very similar results. For in-

stance, the harmonic mean of the precision and recall for the the LAPART algorithm

was 97% and 73% respectively. Similarly, the precision and recall for SVM was 99%

and 73% respectively. These values were used as inputs into the F1 score equation and
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SVM Type D Fault LAPART Type D Fault

Figure 9.5: Overall TPR and precision re-

sults for Type A, B, C and D faults

calculated 83% for the LAPART and

84% for the SVM. Because these results

were so similar a further investigation

was performed that considered the false

positive versus false negative tradeo↵.

The LAPART algorithm had a total of

30 false positives, whereas the SVM had

106. However, the LAPART only had

811 false negatives versus the SVM, that

had 577 false negatives. Definition of the

best algorithm depends on the applica-

tion. If a low number of false alarms

is required then the LAPART algorithm

should be used. If a low number of false

negatives is desired then the multi-class SVM is the best choice.
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Chapter 10

Conclusions & Future Work

It is well known that the commercial building sector consumes about 20% of the

total energy in the U.S. A significant portion of the energy is wasted due to sub-

system HVAC faults. The present work implemented a sophisticated platform that

performed detailed fault detection and diagnostics on a single AHU system located

in the mechanical room of the UNM MEBldg. The IT framework included sensor

network extraction and data storage and visualization. The present work evaluated

multiple FDD tools such as threshold method, rule-based expressions, regression,

SVM, BP, LAPART, and ART. The intent was to test the FDD tools’ abilities to

detect faults, adapt to changes in normal behavior, and diagnose faults.

10.1 AHU Sensors

The AHU system was broken out into three sub-systems: mixed air section, HX

section, and the centrifugal fan. The mixed air and HX sections were each moni-

tored with a temperature sensor. The fan sub-system was monitored with a air flow

measurement device. The device was constructed as a sub-task to the present work
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to measure the static and total pressure caused by the fan. It was constructed at a

low cost and was installed successfully in many locations throughout the building to

monitor air flow rates. The device could potentially be used in many retrofit or new

construction applications to monitor air flow reliably at a low cost.

10.2 IT Infrastructure

The IT infrastructure utilized the existing BAS sensor network (BACnet) and ex-

tracted sensor data using an o↵ the shelf data web client [56]. The data was stored in

a MySQL database where it was accessed by a visualization interface and the seven

FDD tools. The transfer of sensor data from the BACnet to the MySQL database

was accomplished in an automated fashion, and provided su�cient data for the FDD

analysis.

10.3 Fault Detection

The tools were evaluated based on the probability of detection, probability of false

alarm, and the precision. However, there is no defined metric for finding the optimal

tool. For instance, the best tool depends on the user preference. If energy savings

is the goal and maintenance man power is not a concern than a high quality of false

alarms can be tolerated and a tool with the highest probability of detection can be

chosen regardless of the false alarm rate. The opposite can be true as well, where

the maintenance sta↵ may want to avoid false alarms and chose to miss some faults

for a more reliable detection tool. For example, the threshold method is a common

tool found in BAS that has a very low provability for false alarm (0%), but a very

low probability for detection (11%).
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The fault detection test (Experiment 2) used 7,242 normal and 1,891 fault data

points to evaluate all seven tools. Overall the tool with the lowest probability of

false alarm was the ART algorithm at 2%. The ART algorithm also had the second

highest overall probability of detection (60%), and the third highest precision (87%).

The SVM and LAPART tools also performed well with precision rates of about 95%

and 76% respectively. These three tools were then used in the third experiment to

evaluate their abilities to adapt.

10.4 Adaptability

In man cases sensor data may change statistically and not because a fault condition

has occurred. When this happens the FD tools must adapt. The third experiment

evaluated the capabilities of the ART, LAPART, and SVM algorithms to adapt to

changes in the AHU performance when the occupancy schedule changed from summer

to fall semester. The initial training was the same as Experiment 2 which included

17,568 normal data points and then the algorithms were tested on summer and fall

occupancy levels. This initial test provided a baseline assessment of the algorithms

abilities to detect faults. Then the training set was updated to 27,360 data points

and included data from the new occupancy level. Finally, the trained algorithms

were tested on 3,126 and 260 normal and fault data points respectively.

In the baseline case the ART was the worst performer followed by SVM and

then LAPART. After the algorithms were updated the ART algorithm performed

better than the other two algorithms with a probability of detection and false alarm

equal to 84% and 1.6% respectively. The algorithms were able to adjust and provide

acceptable results quickly.
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10.5 Fault Diagnostics

The final experiment evaluated the abilities of the LAPART and multi-class SVM to

diagnose faults. The experiment trained the two algorithms with data that contained

normal (13,672) and fault (1,496) behavior that were labeled. The algorithms were

then tested on 7,372 and 1,844 normal and fault conditions respectively. The F1

statistics was used to determine their success and the SVM had a score of 84%

and LAPART was 83%. Each tool had a very high precision of 97% and 99% for

the LAPART and SVM respectively. The experiment results indicated that the

two algorithms could successfully perform fault diagnostics given a training set that

contained labeled normal and fault conditions.

10.6 Future Work

The process history methods, which include machine learning and neural network

techniques, successfully performed fault detection and diagnostics on the AHU 2

apparatus. This type of approach can be scaled to more AHU as well as other

HVAC sub-systems. There is a significant potential for the IT infrastructure and the

FDD tools to be integrated into maintenance and/or energy performance contractor

operations. Future research work could apply the tools used in the present work

to new data sets. Research could also expand the present work to evaluate the

transformation of learning. In this case learning could be based on data from a

single building, and then the gained knowledge can be applied for fault detection on

a di↵erent building.
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