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Abstract

Viscoelasticity is the property of materials that exhibits both viscous and elastic

characteristics when undergoing deformation. In polymeric materials, the mechani-

cal behavior is dominated by this viscoelastic phenomenon. Creating computational

models for these materials can be quite complicated due to their frequency depen-

dent and temperature dependent material properties. The research presented in

this paper will use state of the art methods to fully develop a material model for a

filled polydimethylsiloxane-polydiphenynlsiloxane (PDMS/PDPS) copolymer foam

that has yet to be characterized. Mechanical properties of PDMS/PDPS copoly-

mers are currently being studied to assess engineering performance, and to provide

accurate models that can be used to gain a fundamental understanding of the ma-

terial behavior. The properties for this material have been measured using multiple

experiments. All of the parameters required to populate the Simplified Potential

Energy Clock (SPEC) model were measured. The SPEC model can now be used

to accurately predict the behavior of the material under di↵erent shock and loading

environments.
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Chapter 1

Introduction

This work focuses on a particular polymer, called PDMS/PDPS copolymer. It’s fa-

vorable thermal and mechanical properties make it ideal for numerous engineering

applications. The viscoelastic thermal and mechanical material properties for the

PDMS/PDPS copolymer of interest have not been determined until now. The com-

position of the copolymer presented in this research is described in Section 1.1. To

provide a foundation for how these materials behave during arbitrary strain condi-

tions the basic concepts of linear viscoelasticity are presented in Sections 2.1-2.3. The

material properties were determined by using various experiments. An overview of

these experiments is provided in Section 1.2. Once the material properties were deter-

mined through experimentation, they were used to calibrate a material model. The

calibration techniques used are presented in Sections 4.1-4.2. All of the properties

required for the Simplified Potential Energy Clock (SPEC) model were determined.

An accurate viscoelastic SPEC model for this material will enable more accurate

predictive models. The SPEC model is explained in Section 2.4. Additional exper-

iments and analysis were preformed to validate the calibrated SPEC model for the

PDMS/PDPS copolymer. These experiments are presented in Section 3.1.4. The

overall goal of this research was to accurately predict the viscoelastic behavior of the

1



Chapter 1. Introduction

PDMS/PDPS copolymer in preload and shock environments. Accurately predicting

the behavior of the material during these environments will allow for better design

and engineering for its applications. Some of the materials applications include gas-

kets, tires, and aircraft.

1.1 Material

One of the most commonly used silicone elastomers is poly(dimethyl siloxane)

(PDMS). Recently, the use of copolymers between PDMS and poly(diphenyl silox-

ane)(PDPS) have garnered attention. The attention is justified due to some of the

unique thermal and mechanical properties the PDMS/PDPS copolymer possess such

as, their ability to withstand shock environments. The viscoelastic properties of the

material can be used for design purposes in these environments.

The PDMS/PDPS copolymer is part of a polymer family known as silicone rub-

ber. Silicone rubbers are elastomeric copolymers consisting of a silicone polymer

that contains carbon, hydrogen, and oxygen. The siloxane polymer of interest con-

sists of dimethyl (DMS), diphenyl (DPS), and methyl vinyl (MVS) siloxane monomer

units. The composition is approximately 90.7 wt% DMS, 9.0 wt% DPS, between 0.1

and 0.5% MVS, and 6.8 wt% ethoxy-endblock siloxane processing aid.

1.2 Overview of Experiments

Several of the viscoelastic properties for PDMS/PDPS were obtained using dynamic

mechanical analysis (DMA). One of the most commonly used instruments for con-

ducting a DMA is the forced resonance analyzer. This apparatus, using a drive shaft,

applies either an axial or a torsional sinusoidal force to a suspended specimen. The

2



Chapter 1. Introduction

frequency of the machine is varied to determine the viscoelastic characteristics. The

DMA performed for PDMS/PDPS is presented in full detail in Section 3.1.1.

Another characterization technique that was used is thermal mechanical analysis

(TMA). TMA was used to cool, heat, and calculate the resulting thermal strain of

the material. The resulting thermal strain measurements were used to determine the

materials thermal mechanical properties. The TMA preformed for the PDMS/PDPS

copolymer is explained in Section 3.1.2.

The bulk modulus for the material was also measured. A pressure dilatometer was

used to determine the volumetric response of the material. A sample of the material

was suspended in a hydraulic fluid and then a hydrostatic pressure was applied. The

bulk modulus can be calculated by the volumetric response. The pressure dilatome-

try experiment is explained in Section 3.1.3

To get a better understanding of the calibrated models behavior an oscillatory test

was performed to obtain the uniaxial storage modulus. For this experiment the sam-

ple was clamped at both ends and an oscillatory strain was applied. This experiment

is explained in Section 3.1.4.

Additionally, a three point bend test was performed to obtain the flexural stor-

age modulus. A rectangular sample was simply supported at opposite ends while

an oscillatory force was applied to the center of the sample. The three point bend

test will be used to validate the calibrated viscoelastic model. This experiment is

explained in section 3.1.4.

3



Chapter 1. Introduction

1.3 Material Model

Viscoelastic material models can be used in commercial Finite Element Analysis

(FEA) software packages to determine the materials response to di↵erent loading

environments. Software packages such as ANSYS, Abaqus, and Sierra use material

models that include Neo-Hookian, Mooney-Rivlin, and SPEC. However, using these

material models is nontrivial due to polymers complex relationship between stress

and strain that is dependent on time. There are multiple approaches that can be

used to overcome the obstacles with modeling viscoelastic materials. The methods

used in this research is presented in Section 2.3.1.

4



Chapter 2

Viscoelastic Theory

2.1 Viscoelastic Behavior

Materials exhibit both viscous and elastic characteristics when undergoing deforma-

tion. This behavior is called “viscoelasticity.” Viscoelastic behavior was first studied

in the nineteenth century by eminent figures, such as Boltzmann, Coriolis, Gauss,

and Maxwell [2]. The constitutive equations for linear viscoelasticity are based on

some of the early mathematical modeling of relaxation and creep in silk, glass fibers,

and rubber [3]. It was determined that the mechanical properties of viscoelastic

materials depends upon time. Because of this dependence on time, the material ex-

hibits multiple phenomena such as creep, stress relaxation, hysteresis, and strain-rate

dependent sti↵ness. If the stress is held constant as seen in Figure 2.1a, the strain

increases with time. This behavior is known as creep and it is illustrated in Figure

2.1b.

5



Chapter 2. Viscoelastic Theory

(a) Cause: Constant Stress (b) E↵ect: Increased Strain

Figure 2.1: Creep behavior. If a constant stress is applied to a viscoelastic material
the resulting strain will increase.

However, if the strain is held constant as seen in Figure 2.2a, the stress decreases
with time. This behavior is known as stress relaxation and is illustrated in Figure
2.2b.

(a) Cause: Constant Strain (b) E↵ect: Stress Relaxation

Figure 2.2: Stress relaxation behavior. If a constant strain is applied to a viscoelastic
material the resulting stress will decrease over time.

Another phenomenon viscoelastic materials exhibit is the e↵ects of hysteresis and

strain-rate dependent sti↵ness that occur during loading and unloading. Hysteresis

is the energy lost during cyclic loading, and it can be seen on the stress vs. strain

plot in Figure 2.3.

6



Chapter 2. Viscoelastic Theory

Figure 2.3: Hysteresis e↵ect. Viscoelastic material during loading and unloading.

It is also important to note that the sti↵ness of a viscoelastic material is dependent
upon the rate at which it is being deformed [4]. This behavior is known as strain-rate
dependence and is illustrated in Figure 2.4.

Figure 2.4: Strain-rate dependence of a viscoelastic material.

Arguably most materials exhibit some viscoelastic response [2]. Synthetic polymers

display large viscoelastic e↵ects. Depending on the application of the material these

responses can be significant.The mathematical formulation of viscoelasticity theory is

presented in this chapter with the aim of enabling prediction of the material response

to an arbitrary loading history.

7



Chapter 2. Viscoelastic Theory

2.2 Linear Viscoelasticity

The siloxane polymer characterized in this research is assumed to be a linear vis-

coelastic material. A material model using linear viscoelasticity must satisfy two

assumptions: first, the relationship between stress and strain is linear; second, the

relaxation modulus is independent of the applied strain level [2]. The relationship

between stress and strain are still time dependent. This means that the current

mechanical state of the material depends on the previous loading history. To get

a better understanding of this e↵ect on the polymer, a fundamental background

describing the transient behavior of viscoelastic materials has to be outlined.

2.2.1 Transient Behavior

The relationship between stress and strain within the linear elastic region of these

solid materials can be described by Hooke’s law, where stress, �, is proportional to

the strain, ✏. Hooke’s law can be expressed as:

� = E✏ (2.1)

where E is the Young’s Modulus of the material. The use of Hooke’s law to ap-

proximate the relationship between stress and strain is an excellent assumption for

solid materials with infinitesimal strains within the linear elastic region. However,

it is important to note that all materials deviate from Hooke’s law in some way [2].

Viscoelastic materials are those for which the relationship between stress and strain

is dependent on time. If the strain in Eq. 2.1 is applied instantaneously, it can be

represented by ✏
o

. The time dependent stress response to an instantaneous strain

8



Chapter 2. Viscoelastic Theory

application is given by:

�(t) = E(t)✏
o

(2.2)

where E(t) is known as the relaxation modulus, which is a material property that

characterizes the stress relaxation over time. For viscoelastic materials, the stress

will decrease with time if the instantaneous strain is held constant. In linear vis-

coelastic materials, E(t) is independent of the strain level; that is, E(t) is a function

of time alone [4]. Stress relaxation can also be observed during shear and volu-

metric deformation, and the relaxation functions are represented by G(t) and K(t),

respectively. A plot of the relaxation modulus vs. time is illustrated in Figure 2.5.

Figure 2.5: Relaxation Modulus. The relaxation modulus characterizes the viscoelas-
tic materials stress relaxation over time.

Figure 2.5 illustrates that as time approaches infinity the modulus reaches a steady

state. This region is known as “rubbery” response, which occurs above the materials

glass transition temperature (T
g

). During this phase, the material is more pliable

(i.e., has a reduced sti↵ness) hence the term “rubbery.” As an example the rubbery

shear modulus is denoted by G1. The phase below T
g

is known as the “glassy” re-

sponse. The material has an increased sti↵ness during this phase. The instantaneous

modulus, G
o

, represents the maximum sti↵ness of the viscous (time-dependant) re-

laxation component [5]. The relaxation modulus can be defined by both the glassy

and rubbery modulus. The mathematical form of the relaxation function is not

9



Chapter 2. Viscoelastic Theory

arbitrary; thermodynamic restrictions require it to be a monotonically decreascing

function [4]. A linear viscoelastic relaxation function derived from the standard

linear solid model can be expressed in the following equation [5]:

G(t) = G1 +G
o

e
�t

⌧

r (2.3)

where ⌧
r

is the relaxation time, and t represents time. The instantaneous relaxation

component corresponds to the time constant ⌧
r

. The relaxation time is a time con-

stant for the system to return to its steady-state, or rubbery region, in response to

a disturbance where it is in its glassy region. The relaxation time is illustrated in

Figure 2.5.

2.2.2 Dynamic Loading

Suppose that the stress �(t) from Eq. 2.2 varies sinusoidally with respect to time:

�(t) = �
o

sin(2⌫t) (2.4)

where ⌫ represents the frequency. In linear viscoelastic materials subjected to har-

monic oscillations, the strain is out of phase with the stress due to the internal

material damping. This behavior corresponds to the viscous component of the mate-

rial [2]. Figure 2.6 illustrates how the strain lags the stress for a viscoelastic material

during cyclical loading.

10



Chapter 2. Viscoelastic Theory

Figure 2.6: Cyclic behavior of viscoelastic material. The strain lags the stress by a
phase shift.

The phase lag between the stress and strain can be represented by the phase angle,

�. The resulting out of phase strain is dependent on the phase angle and can be

represented by:

✏(t) = ✏
o

sin(2⇡⌫t� �) (2.5)

where ✏
o

is the instantaneous strain. As a result of the phase lag between stress and

strain, a dynamic sti↵ness can be computed as a complex number E⇤ [4]:

�

✏
o

= E⇤ = E 0 + iE 00 (2.6)

which the magnitude is:

|E⇤| =
p

(E 0)2 + (E 00)2 (2.7)

where single and double primes designate the real and imaginary parts; they do not

represent derivatives; i =
p
�1. The E 0 in Eq. 2.7 represents the storage modulus,

and E 00 is the loss modulus. Both the storage and loss modulus can be related to the

phase angle by the following:

E 0 = |E⇤|cos(�) (2.8)

E 00 = |E⇤|sin(�) (2.9)

11



Chapter 2. Viscoelastic Theory

where the dynamic functions E 0,E 00, and � depend on frequency. The tangent of the

loss angle is called the loss tangent (tan(�)) and is a measure of the internal damping

[2]. The storage modulus E 0 is proportional to the energy stored within the material.

The loss modulus E 00 is proportional to the energy dissipated per cycle.

2.2.3 Constitutive Equations

Heretofore, all of the equations presented considered either transient or cyclical be-

havior; however, sometimes the loading history is arbitrary. Constitutive equations

will be derived in order to predict the viscoelastic behavior with an arbitrary loading

history. The Boltzmann superposition principle will be used to approximate the pre-

vious loading history into step functions. For this assumption, the strain history need

not be a di↵erentiable function of time [2]. Earlier, the instantaneous application of

strain was represented by ✏
o

. Now, the instantaneous strain will be a applied with a

Heaviside step function. This relation can be expressed in the following equation:

✏(t) = ✏
o

H(t) (2.10)

where the Heaviside step function H(t) is defined as:

H(t) =

8
>>><

>>>:

0 t < 0

1

2

t = 0

1 t > 0

(2.11)

A series of such step increases in strain can be used to describe any arbitrary strain

input profile [2]. For an arbitrary strain history ✏(t), consider a segment of time

defined as t� ⌧ where ⌧ is a time variable. The ⌧ in Eq. 2.12 should not be confused

with the relaxation time in Eq. 2.4. A series of step increases in strain can be used

to describe any arbitrary strain input profile. Therefore, for r discrete step increases

12



Chapter 2. Viscoelastic Theory

in strain, Eq. 2.10 can be recast as:

✏(t) =
rX

i=1

�✏
i

H(t� ⌧
i

) (2.12)

where the term �✏
i

represents the change in the strain magnitude for the ith step

occurring at time ⌧
i

, and t is the current time [4].

Now, the Boltzmann superposition principle can be used to develop the constitutive

equations for linear viscoelastic materials. The principle states that the e↵ect of a

compound cause is the sum of the e↵ects of the individual causes [2]. Using Eq.

2.2, the resulting strain output can be determined with an arbitrary strain history

using Eq. 2.12. The relaxation modulus is now taken over the time step and can be

expressed as E(⌧ � t). Therefore, the resulting stress output can be expressed by:

�(t) =
rX

i=1

�✏
i

E(t� ⌧
i

)H(t� ⌧
i

) (2.13)

As the number of time steps increase to infinity Eq. 2.13 will eventually converge to

a hereditary integral which leads to:

�(t) =

tZ

0

E(t� ⌧)H(t� ⌧)d✏(⌧) (2.14)

and ⌧ is now a continuous time variable of integration representing the history e↵ect.

The Heaviside function in Eq. 2.14 will equal one since ⌧ > 0 is imposed and falls

within the bounds of integration [2]. The constitutive relation for a linear viscoelastic

material for a di↵erentiable strain history can then be represented by the following:

�(t) =

tZ

0

E(t� ⌧)
d✏(⌧)

d⌧
d⌧ (2.15)

Consequently, the response of a linearly viscoelastic material to any load history

can be found for the purpose of analysis or design [2]. For an instantaneous strain

history expressed in Eq. 2.10, the transient stress response given by Eq. 2.2 can be

13



Chapter 2. Viscoelastic Theory

determined by Eq. 2.15. If there is a harmonic strain history ✏(t) imposed, the stress

in Eq. 2.15 can be represented by a complex number 2.9 [4]. Recall that the form of

the shear relaxation function (Eq. 2.3) can also be used for the uniaxial relaxation

modulus:

E(t) = E1 + E
o

e�
t

⌧

r (2.16)

If Eq. 2.16 is used as an input for 2.15, the complex moduli can be determined by

the following set of equations [4].

E 0(!) = E + E
o

!2⌧ 2
r

1 + !2⌧ 2
r

(2.17)

E 00(!) = E
o

!⌧
r

1 + !⌧
r

(2.18)

where ! = 2⇡⌫ (⌫ is the loading frequency).

2.3 Time-Temperature Superposition (TTS)

If an oscillatory strain is applied to a linear viscoelastic solid the oscillatory stress is:

�(!)e�i!t = E(!)✏(!)e�i!t (2.19)

where E(!) is a complex number that can be broken into Eq. 2.17 and Eq. 2.18. To

determine the oscillatory relaxation modulus, E(!), in a large frequency range, it is

possible to measure E(!) in a very limited frequency interval over a range of tem-

peratures [6]. This procedure is known as Time-Temperature Superposition(TTS),

and can be used with amorphous polymers. This procedure was first developed by

Williams-Landel-Ferry(WLF) [7]. It states that the ratio of all mechanical relax-

ation times at temperature, T , to their values at a reference temperature, T
ref

, can

be expressed, after suitable choice of T
g

, by the equation (WLF equation) [7]:

log(a
T

) = �C
1

(
T � T

ref

C
2

+ T � T
ref

) (2.20)
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where a
T

is the shift factor that is dependent on temperature. Essentially, the

frequency segments for each temperature are shifted along the frequency axis to

obtain a continuous master curve. The master curve is a continuous curve that

represents the relaxation behavior. The formulations presented in this section used

the relaxation modulus, E(!), that is usually determined in an oscillatory tensile

test. However, TTS also holds for the shear relaxation modulus, G(!), which is

usually obtained in torsional experiments. In order to use TTS the material has

to be a thermorheologically simple viscoelastic material. According to Ferry TTS

holds when: (i) exact matching of shapes of adjacent (time or frequency dependent)

curves is obtained; (ii) a
T

has the same value for all viscoelastic functions; (iii)

the temperature dependence of a
T

has reasonable form (WLF, Arrhenius) [8]. The

PDMS/PDPS copolymer was determined to be a thermorheologically simple material

because TTS was used to construct the shear master curve presented in Section 3.1.1.

2.3.1 Prony Series

It is complicated to use viscoelastic materials in three-dimensional finite element

analysis due to their time-dependent stress and strain profiles. In all FEA codes

the stress tensor has to be computed and stored at each integration point and time

step throughout the analysis. It can be computationally expensive to store the stress

tensor at each integration point for viscoelastic materials because of their complex

material properties. To simplify this process, a discrete series of exponentials called a

Prony series is used to describe the relaxation modulus. The Prony series allows the

current stress to be computed from a state variable stored from the preceding time

step, thereby avoiding the need to store the stress at each time point in the analysis

[9]. The relaxation modulus, E(t), in Eq. 2.15 represents the material’s time depen-

dent relationship between stress and strain. There are a couple of restrictions placed

on the relaxation modulus; specifically, it must be a continuous and monotonically

15



Chapter 2. Viscoelastic Theory

decreasing function to remain thermodynamically consistent.

For large problems, it is intractable to numerically solve Eq. 2.15. As a result, it

is common to approximate the relaxation modulus, E(t), using a discrete spectrum

Prony series [9]:

E(t) =
NX

i=1

E
i

e
�(

t

⌧

i

) + E1 (2.21)

where E
i

represents the Prony weight that is associated with the time constant ⌧
i

.

The Prony series is discrete because there is a finite number (N) of Prony terms.

Both E
i

and ⌧
i

must be positive and satisfy the thermodynamic restrictions placed

on E(t).

2.4 SPEC model

Linear viscoelasticity theory can be used to develop material models. Most mod-

els use the application of TTS and Prony series. The viscoelastic model that was

used for the PDMS/PDPS siloxane copolymer was the Simplified Potential Energy

Clock (SPEC) model. The SPEC model is a thermodynamically consistent, phe-

nomenological, fully nonlinear viscoelastic constitutive model. The model is based

on the Potential Energy Clock (PEC) model [10]. These models have been used

to successfully predict the viscoelastic behavior of glassy [11] and semi-crystalline

[12] polymers. The model is built to capture the wide range of behavior observed in

glassy polymers, including such phenomena as stress/volume relaxation.

The SPEC model uses a material clock that is driven by temperature, volume, and

strain. The equations and parameters used to model the PDMS/PDPS will be

outlined in this section. The equation that the SPEC model uses to calculate stresses
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in glassy polymers is as follows:

� =

2

4�K

tZ

0

dsf
v

(t⇤ � s⇤)
dI

1

ds
(s)��(K�)

tZ

0

dsf
v

(t⇤ � s⇤)
dT

ds
(s)

3

5 I

+ 2�G

tZ

0

dsf
s

(t⇤ � s⇤)
d✏

dev

ds
(s) + [K1I

1

�K1�1�T ] I + 2G1✏
dev

(2.22)

where the subscript“1” represents rubbery values. The terms �K and �G are the

di↵erence between the glassy and rubbery values. A full derivation and explanation

of Eq. 2.22 can be found in the literature [11]. The material clock for Eq. 2.22 is:

t� s =

tZ

s

dw

a(w)
(2.23)

where:

log(a) = �C
1

✓
N

C
2

+N

◆
(2.24)

where a is the shift factor explained in section 2.3, and N is:

N =

2

4[T (t)� T
ref

]�
tZ

0

dsf
v

(t⇤ � ss)
dT

ds
(s)

3

5

+ C
3

2

4I
1

(t)
ref

�
tZ

0

dsf
v

(t⇤ � s⇤)
dI

1

ds
(s)

3

5+ C
4

2

4
tZ

0

dsf
s

(t⇤ � s⇤)
✏
dev

(s)

ds

3

5

(2.25)

All but two of the parameters in Eq. 2.25, C
3

and C
4

, are standard inputs to linear

viscoelasticity [11]. For this analysis both C
3

and C
4

will be set to zero due to the

linear viscoelasticity assumption.
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Each of the parameters in Eq. 2.22 were determined to populate the SPEC model in

Sierra/Solid Mechanics [13]. Table 2.1 gives a description of each of the parameters

for the SPEC model.

Table 2.1: Parameters required by the SPEC equation

Symbol Definition

T
ref

Reference temperature

K1 Rubbery bulk modulus

dK1
dT

Derivative of K1 with respect to temperature

K
g

Glassy bulk modulus

dK

g

dT

Derivative of K
g

with respect to temperature

�1 Rubbery coe�cient of thermal expansion

d�1
dT

Derivative of ↵1 with respect to Temperature

�
g

Glassy coe�cient of thermal expansion

d�

g

dT

Derivative of ↵
g

with respect to temperature

G1 Rubbery shear modulus

dG1
dT

Derivative of G1 with respect to temperature

G
g

Glassy shear modulus

dG

g

dT

Derivative of G
g

with respect to temperature

C
1

First Williams-Landel-Ferry (WLF) coe�cient

C
2

Second WLF coe�cient

f
v

Volumetric relaxation spectrum

f
s

Shear relaxation spectrum
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Two relaxation functions are used to characterize the thermal and volumetric shear

relaxation responses. Both the shear, f
s

, and volumetric, f
v

, relaxation spectrum’s

were determined. These functions are typically quite di↵erent and are expressed as

a Prony series:

f
s

(t) =
NX

i=1

w
i

e
� t

⌧

i (2.26)

and:

f
v

(t) =
MX

j=1

w
j

e
� t

⌧

j (2.27)

where ⌧ is the relaxation time, and w is the Prony weight. The Prony series used

in Eq. 2.26 was used to fit the master curve that was explained earlier in section

2.3. To determine the volumetric spectrum for the PDMS/PDPS copolymer a single

uniform-gradient (UG) finite element was used to predict the thermal strain data.

The results for the volumetric relaxation function are provided in section 4.2.1.

An alternative method for representing the relaxation functions in SPEC is to use a

streched exponential. The function takes the form of:

f(t) = exp

 
�
✓
t

⌧

◆
�

!
(2.28)

where the ⌧ and � parameters can be varied until of the model matches the experi-

mental data. Using the streched exponential will provide a new set of Prony terms

and relaxation times.
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Chapter 3

Experimentally Determining

Viscoelastic Properties

3.1 Experiments

This chapter will present the experiments that were conducted to obtain the vis-

coelastic material properties of the PDMS/PDPS copolymer. The shear moduli

and the two WLF coe�cients were determined using commercial rheometers. There

are multiple methods of determining the bulk modulus such as: pressure dilatome-

try, ultrasonic techniques, or measurements of Poisson’s ratio in tension. Pressure

dilatometry was chosen to determine the volumetric response of the PDMS/PDPS

copolymer. The coe�cient of thermal expansion (CTE) was obtained from commer-

cial thermomechanical analyzers. Nearly all of the parameters for the SPEC model

were extracted from the data. There where some assumptions that had to be made,

and they are also presented in this chapter.
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3.1.1 Experimentally Determining the Shear Coe�cients

To determine the shear relaxation modulus of the material, a Dynamic Mechanical

Analysis (DMA) was performed. The apparatus used was an ARES-G2 rheometer.

Figure 3.1 displays the apparatus.

Figure 3.1: The shear response of the material of the material was calibrated using
the ARES-G2 rheometer.

Both the glassy and long term shear moduli where determined. DMA measures the

response of a material to a sinusoidal stress as described in Eq. 2.4. The basic

principle of an oscillatory rheometer is to induce a sinusoidal shear deformation in

the sample and measure the resultant shear stress response; the time scale probed is

determined by the frequency of oscillation of the shear deformation.

For this experiment, the frequency ranged from 1 - 15 Hz. A forced convection

oven was used to vary the temperature range from -100 oC to 50 oC. Due to the

sample geometry, and the sti↵ness of the material, the experiment could not reach

sub-ambient temperatures lower than -100 oC.
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Chapter 3. Experimentally Determining Viscoelastic Properties

Figure 3.2: The experimental Rheology setup for DMA used to measure shear re-
sponse (adapted from Weitz [1])

The test specimen was placed between two flat plates as seen in Figure 3.2 (adapted

from Weitz) [1]. The plates are both 25 mm in diameter. A small normal force was

applied to hold the apparatus together. The top plate remains stationary as a motor

rotates the bottom plate, applying a time dependent strain. At the same time, the

frequency dependent shear stress, G(!), is calculated by measuring the torque that

the sample imposes on the top plate [1]. The data from this experiment produced

the storage modulus, loss modulus, tan(�), and the oscillatory stress/strain. The

data for this experiment is illustrated in Figures 3.3 - 3.5.
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Figure 3.3: Experimental data for the storage modulus vs. temperature at multiple
frequencies

Figure 3.4: Experimental data for the loss modulus vs. temperature at multiple
frequencies
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Figure 3.5: Experimental data for tan(�) vs. temperature at multiple frequencies

Each data point represents a frequency of the storage modulus, loss modulus, and

tan(�). The data points at 15 Hz will be discarded because at higher frequencies

inertial e↵ects in the material start to become a concern. The DMA data presented

in Figures 3.3-3.5 was calibrated in section 4.1.

3.1.2 Experimentally Determining Thermal Coe�cients

A thermal mechanical analysis was used to determine the thermal properties of

PDMS/PDPS. The apparatus used for this analysis was a PerkinElmer TMA 4000.

Figure 3.6 displays the apparatus.
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Figure 3.6: Apparatus used to determine thermal response of the material
PerkinElmer TMA 4000.

The system has a linear variable di↵erential transformer (LVDT) position sensor

that provides sensitivity to small changes in volume and the ability to track large-

dimensional changes. A small static force of 10 mN was applied to a test sample with

a diameter of 3 mm and height of 8.814 mm. The experiment temperature started at

-150 oC and was held constant for 20 minutes. The sample was heated from -150 oC

to 70 oC with a heating rate of 2 oC per minute. Afterward, the sample was cooled

back to the original temperature at the same rate it was heated. The thermal strain

was calculated during the heating and cooling cycles. The experimental thermal

strain data for this experiment can be seen in Figure 3.7.
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Figure 3.7: Experimental results for linear thermal strain of PDMS/PDPS.

According to the data in Figure 3.7 the T
g

occurs in this material around �110oC.

The linear CTE for the material was determined by taking the derivative of the

thermal strain data in Figure 3.7 as illustrated in Figure 3.8.

Figure 3.8: Experimental Thermal Strain
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There was a small discrepancy in the thermal strain curve in Figure 3.7, that occurs

around -40 oC. However, due to the size of this singularity it is negligible. The TMA

data presented is analyzed in Section 4.2.

3.1.3 Experimentally Determining Bulk Modulus

Pressure dilatometry was used to determine the bulk modulus. The test sample was a

cylinder 28.956 mm in height and a radius of 6.25 mm. Multiple LVDT’s were placed

strategically around the sample. The sample was placed inside a pressure vessel

while being suspended in a hydraulic fluid. The LVDT’s measured the volumetric

changes as the hydrostatic pressure was increased. Figure 3.9 illustrates a plot of the

experimental results.

Figure 3.9: Hydrostatic response of the PDMS/PDPS copolymer.
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This experiment was conducted at room temperature. Only the rubbery bulk mod-

ulus, K1, could be obtained from the experiment. It is often di�cult to obtain

data for the volumetric response at sub-ambient temperatures, due to crystallization

occurring in the hydraulic fluid. The bulk response data presented in Figure 3.9 was

analyzed and presented in section 4.3.

3.1.4 Experimentally Determining Flexural Storage Modu-

lus

Another type of DMA performed was a three-point bend test. The data from this

experiment will be used to calibrate the SPEC model. The apparatus used for this

experiment was an RSA-G2 solids analyzer. Figure 3.10 displays the test set up for

this procedure.

Figure 3.10: Three-point bend experimental setup on the RSA-G2 solids analyzer.

The sample is deformed around three point contacts at both ends and its middle.

The geometry consisted of a rectangular square sheet 25 mm x 12.8 mm x 1mm.
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The sample was subjected to a small oscillatory strain with a constant angular fre-

quency of 1 Hz. The flexural modulus is computed by measuring the displacement

of the material. The procedure starts at -140 oC, and is increased to 30 oC at a rate

of 2 oC per minute. The data from this experiment is illustrated in Figure 3.11.

Figure 3.11: Experimental results for flexural storage modulus with three-point bend
test.

The data in Figure 3.11 for the PDMS/PDPS copolymer is consistent with similar

materials because there glassy and rubbery values are on the same magnitude and

the overall shape is similar. However, above the glass transition temperature the

data was pretty noisy due to very low forces.
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3.1.5 Experimentally Determining Uniaxial Storage Modu-

lus

An additional test was conducted to compare the uniaxial storage modulus to the

flexural storage modulus that was determined in Section 3.1.4. The same RSA-G2

solid analyzer was used for this experiment. However, the experimental setup has

changed. Figure 3.12 displays the configuration for this experiment.

Figure 3.12: Uniaxial experimental setup on the RSA-G2 solids analyzer.

The same frequency and temperature profile that was used for the three point bend

test was used for this experiment. Ideally both the storage modulus and flexural

modulus should have similar values. The data for the uniaxial test is provided in

Figure 3.13.
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Figure 3.13: Experimental results for uniaxial storage modulus.

The uniaxial storage modulus matches up well with the flexural storage modulus

from the three-point bend test. The glassy and rubbery values are similar in both

experiments. The comparison between the uniaxial and flexural storage modulus is

illustrated in Figure 3.14.

Figure 3.14: Comparison of experimental results for uniaxial and flexural storage
modulus.
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There is a sudden increase and then decrease in the uniaxial storage modulus data

that occurs around �70oC. It is unknown why this bump is occurring in the data. It

could be due to experimental conditions, or the actual response of the material. One

possibility is there could be crystallization occurring in the material. The overall

shape of the uniaxial data is similar to that of the three-point bend. Therefore,

because the data lines up well, and the origin of the bump is unknown, the uniaxial

data can be used for calibration.
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Analysis of Experimental Results

4.1 Constructing the Shear Master Curve

This section will construct the shear master curve using the data presented in Sec-

tion 3.1.1, and applying TTS described in Section 2.3. Recall that the relaxation

modulus must be continuous and monotonically decreasing. The experimental data

was smoothed after the frequency shifts were constructed in order to satisfy these

conditions. The following figures show the logarithmic shifted frequency curves, and

the smoothed curves. Both the storage modulus, G
storage

, and the loss modulus,

G
loss

, as a function of shifted frequency are shown in Figure 4.1 and Figure 4.2,

respectively.
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Figure 4.1: Smoothed and original data of the storage modulus after frequency shifts
have been made.

Figure 4.2: Smoothed and original data of the Loss modulus after frequency shifts
have been made.

The new smoothed data creates a monotonically decreasing smooth curve. This will

make it easier to fit a Prony series to the data. Figure 4.3 illustrates the logarithmic

plot of tan(�) vs. frequency.
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Figure 4.3: Smoothed and original data of tan(�) after frequency shits have been
made.

Section 2.3 also mentioned the WLF curve that is dependent on the shifted data.

Figure 4.4 shows the WLF curve for the corresponding shifted data that was illus-

trated in Figures 4.1-4.3 as a function of temperature.

Figure 4.4: Log(a) as a function of Temperature, and the WLF fit.
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The first WLF constant, C
1

, has a dimensionless value of 80, and the second constant,

C
2

, has a value of 500 oC. One thing to note is the log(a) values are high compared

to other materials like Sylgard 184 [14].

4.1.1 Fitting Prony Coe�cients to the Shear Master Curve

Now that the master curves have been constructed, the shear relaxation spectrum,

f
s

, mentioned in Section 2.4 can be determined. The Prony terms in Eq. 2.26

were fit to the data by defining a spectrum of relaxation times. The relaxation

times started at the lowest frequency and incremented by decades to the largest

frequency. An optimization study was conducted that discarded any negative Prony

terms associated with the corresponding relaxation time. A total of 29 Prony terms

were used. The values for the Prony terms and the corresponding relaxation times,

⌧
k

, are listed in Appendix A. Figure 4.5 shows how well the Prony series approximates

the master curve for the storage modulus constructed in section 4.1.

Figure 4.5: Prony series approximation for the storage modulus compared to the
shifted and smoothed data.
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It can be seen in Figure 4.5 that the Prony series matches up exceptionally well

with the experimental data. The corresponding Prony fit for the loss modulus, G
l

,

is shown in Figure 4.6.

Figure 4.6: Prony series approximation for the loss modulus compared to the shifted
and smoothed data.

The Prony series matches up well with the experimental data in the glassy region

for the loss modulus illustrated in Figure 4.6. However, as the relaxation time in-

creases the Prony series tends to deviate from the experimental data. Since in most

applications of this material, the relaxation times are well below the point where the

Prony series starts to deviate this is not a concern.

The Prony terms used to create the curves in Figures 4.5 - 4.6 can now be used in

the SPEC model. In addition, the rubbery shear modulus and glassy shear modulus

were determined by the fit. The glassy value for the PDMS/PDPS copolymer is

5.347 GPa, and the rubbery has a value of 2.576E-3 GPa.
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4.2 Calibrating Thermal Expansion

The rubbery coe�cient of thermal expansion (CTE), �1, and glassy CTE, �
g

, were

calibrated to the TMA data presented in section 3.1.2. The linear CTE, ↵, was

determined in section 3.1.2, as illustrated in Figure 3.8. The volumetric CTE will

have to be used in the SPEC model. For isotropic materials the volumetric thermal

expansion coe�cient is three times the linear coe�cient. This ratio arises because

volume is composed of three mutually orthogonal directions. Thus, in an isotropic

material, for small di↵erential changes, one-third of the volumetric expansion is in a

single axis. The volumetric rubbery CTE, �1, is 8.07E-04 and the glassy CTE, �
g

,

is 2.1E-04 for the PDMS/PDPS copolymer.

4.2.1 Calibrating fv using CTE Data

All of except for three parameters have been determined for the SPEC model. This

only leaves the volumetric relaxation function f
v

(t). This parameter was defined by

Eq. 2.27 in Section 2.4. To determine the volumetric spectrum a computational

analysis was performed to predict the thermal strain response illustrated in Figure

3.8. The computational predictions were obtained using a single uniform-gradient

(UG) finite element which was subjected to the same heating and cooling boundary

conditions used in the TMA. The SPEC parameters determined in the previous

section were used in Sierra/SM [13]. Figure 4.7 illustrates the comparison of the

experimental and model data for the engineering strain vs. temperature.
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Figure 4.7: Computational prediction of thermal response compared to experimental
data

Figure 4.7 shows how the SPEC model captures the change in thermal strain resulting

from the glass transition. The model predictions match up well with the experimen-

tal data. The corresponding Prony values and relaxation times determined for the

volumetric relaxation function, f
v

, are listed in Appendix A.

4.3 Calibrating Experimental Bulk Data

Recall, in Section 3.1.3, the volumetric response of the material was determined by

using pressure dilatometry. As mentioned before this experiment could only be con-

ducted at room temperature. The rubbery bulk modulus was determined by taking

the slope of the volumetric response illustrated in Figure 3.9. The SPEC model

also requires an input for the glassy bulk modulus, K
g

. For this parameter, previ-

ously published data for Sylgard 184 was used [14]. The value for the rubbery bulk

modulus is 1.1 GPa and the glassy bulk modulus is 7.25 GPa for the PDMS/PDPS

copolymer. It is extremely hard to measure bulk response at sub-ambient tempera-

tures due to crystallization in the hydraulic fluid. Currently there is no solution for
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obtaining these measurements. One possibility could possibly be using a gas instead

of a liquid. This has not yet been tested, but might o↵er a solution.

The SPEC model was used to simulate the volumetric changes of the material

with an applied hydrostatic pressure. For this a single uniform-gradient (UG) finite

element with the same pressure boundary condition that was used in the simulation.

Figure 4.8 shows the how the model predictions match up with the experimental

data.

Figure 4.8: Comparison of model prediction for bulk modulus compared to experi-
mental results.

The model predictions match up exceptionally well with the experimental data. This

behavior was expected because the model inputs were directly taken from the exper-

imental data. If data becomes available for the bulk response through T
g

it would

advised to conduct a simulation over the temperature range to see if the model

accurately predicts the behavior.

40



Chapter 4. Analysis of Experimental Results

4.4 Calibrating the Accuracy of the Viscoelastic

SPEC Model

The calibrated SPEC parameters are listed in Table 4.1.

Table 4.1: Final Parameters for SPEC Model

Symbol Definition Units

T
ref

-100 oC

K1 1.1 GPa

dK1
dT

0 GPa

o

C

K
g

7.25 GPa

dK

g

dT

0 GPa

o

C

�1 8.07E-04 ppm

o

C

d↵1
dT

0 -

�
g

2.100E-04 ppm

o

C

d↵

g

dT

0 -

G1 2.576E-3 GPa

dG1
dT

0 GPa

o

C

G
g

5.347 GPa

dG

g

dT

0 GPa

o

C

C
1

80 -

C
2

500 oC

f
s

See Appendix A -

f
v

See Appendix A -

In order to evaluate the accuracy of the populated SPEC model, the fitted param-

eters (Table 4.1) were used to predict the temperature-dependent uniaxial storage
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modulus, E 0, that was experimentally determined in Section 3.1.5. An oscillatory

uniaxial load was applied to a single UG finite element model with the same boundary

conditions as the experiment. The comparison of the viscoelastic model predictions

using the parameters listed in Table 4.1 to the experimental data for the storage

modulus over multiple temperatures is illustrated in Figure 4.9.

Figure 4.9: Model prediction of storage modulus at multiple temperatures.

The model under predicts the glassy region and over predicts the rubbery region.

The glassy and rubbery shear values were measured experimentally and have some

level of uncertaintyassociated with them. The uncertainty in these measurements

could be the reason why the model is not predicting the experimental values. To

acquire the correct shear modulus values the glass and rubbery shear modulus was

varied until the model accurately predicts the two regions. The new comparison with

the calibrated shear values are illustrated in Figure 4.10.
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Figure 4.10: Model prediction of storage modulus at multiple temperatures with
calibrated shear values.

The predictions match up well with the glassy and rubbery region of the experimental

data. However, the glass transition temperature of the model does not match that of

the experiment. In Section 2.4, a new method was introduced that used a stretched

exponential to represent the shear relaxation function in the SPEC model. This new

approach will provide a new set of Prony terms and relaxation times. Figure 4.11

illustrates the relaxation function vs. time when using the stretched exponential.
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Figure 4.11: Shear relaxation function using a stretched exponential using calibrated
⌧
s

and �
s

values.

The new model comparison using the stretched exponential is illustrated in Figure

4.12.

Figure 4.12: Model prediction of storage modulus at multiple temperatures using
stretched exponential.
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The glass transition does still occur at a slightly higher temperature than the exper-

imental data, but it is a better prediction than using the original values that were

used in Figure 4.9. The SPEC parameters used for the model predictions in 4.12 are

listed in Table 4.2.

Table 4.2: Final Parameters for SPEC Model

Symbol Definition Units

T
ref

-100 oC

K1 1.1 GPa

dK1
dT

0 GPa

o

C

K
g

7.25 GPa

dK

g

dT

0 GPa

o

C

�1 8.07E-04 ppm

o

C

d↵1
dT

0 -

�
g

2.100E-04 ppm

o

C

d↵

g

dT

0 -

G1 2.576E-3 GPa

dG1
dT

0 GPa

o

C

G
g

26.735 GPa

dG

g

dT

0 GPa

o

C

C
1

80 -

C
2

500 oC

⌧
s

1.0E-5 s�1

�
s

0.1 -

⌧
v

6.0 s�1

�
v

0.14 -
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4.5 Applications of the SPEC model

The overall goal of this research was to accurately predict the viscoelastic behavior of

the PDMS/PDPS copolymer in preload conditions followed by a consistant held load,

and also in shock environments. To see how the SPEC model captures the viscoelastic

response of the material during preload environments a single finite element was used

in Sierra/SM to simulate loading conditions. A force of 200 N was applied to one

side of the element in one direction while the opposing side was held fixed. The force

gradually increased with a cosine ramp function illustrated in Figure 4.13.

Figure 4.13: Smooth loading boundary condition for preloading single finite element.

The displacement was measured at the nodes that the force in Figure 4.13 was

applied. Figure 4.14 illustrates how the displacement changes with time as the 200

N force is being applied.
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Figure 4.14: Displacement vs. Time with a 200 N force applied.

As the force is being applied the displacement decreases until it reaches the end of the

force ramp. To see if the SPEC model captures any of the viscoelastic behavior such

as creep and stress relaxation the force is held constant after it reaches its maximum

value of 200 N. Figure 4.15 illustrates the displacement of the material during the

consistant loading conditions for one hour.

Figure 4.15: Relaxation occurring in model with constant force held for over an hour.
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Most preload cases are held for longer than an hour, but Figure 4.15 shows that

there is not a significant change in displacement for long periods of time. This is

because the creep that occurs in the material happens quickly. Figure 4.16 shows the

displacement response in the first minute of the constant force. The displacement

is significantly smaller, so the displacement axis was normalized to better illustrate

the viscoelastic behavior occurring.

Figure 4.16: Relaxation occurring in model with constant force held for one minute.

The SPEC model captures the creep that occurs in the material during the first 20

seconds while the preload is held constant. Then the displacement starts to increase

again until it reaches equilibrium where it is at a constant displacement for the rest

of the simulation. Even though the displacements are small during the period of

time when the force is held constant, they are important to be aware of.

The PDMS/PDPS copolymer is also used in applications such as tires or aircraft.

These applications subject the material to multiple shock environments. To simulate

these environments a single finite element was subjected to an applied acceleration

in one direction. The arbitrary shock used for the simulation is illustrated in Figure
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4.17.

Figure 4.17: Applied shock environment.

To show the di↵erence between the calibrated SPEC model and other models the von

Mises stress was compared to a Mooney Rivlin model for a similar material. Figure

4.18 illustrates the von Mises stress of the material during the shock environment.

Figure 4.18: von Mises stress vs. time for the applied shock boundary condition.
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The overall shape between the two models during the shock simulation are similar.

However, the stress values are di↵erent between them. As time continues to increase

during the simulation the larger the di↵erence in the stress values between the models.

The SPEC model captures a larger stress state than the Mooney Rivlin model.
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Conclusions

The work presented in this report is a summary of the calibration for PDMS/PDPS

copolymer using various experimental procedures and the viscoelastic SPEC model.

The viscoelastic behavior for the PDMS/PDPS copolymer have yet to be determined

until now. The shear moduli were determined by using DMA testing. The data

obtained from the DMA was used to create a shear master curve for the material

using the application of TTS and fitting a Prony series to the master curve. Once the

shear master curve was constructed both the rubbery and glassy shear moduli were

determined as well as the WLF coe�cients. It was determined that the relaxation

function did not accurately predict the glass transition when the model was compared

to experimental uniaxial data. A stretched exponential was used to create new Prony

terms and relaxation times to calibrate the model to uniaxial storage modulus data.

The rubbery bulk modulus was determined by the pressure dilitometer. The glassy

bulk modulus was assumed to be similar to Sylgard 184. The rubbery and glassy

CTE values were determined by TMA. The TMA data was also used to determine

the volumetric relaxation function.

The populated SPEC model can now be used to simulate multiple applications for
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which the silicone rubber may be used. It was shown that the model can be used

for predicting both shock and preloading applications. The viscoelastic behavior of

the material was captured in the preload case using the SPEC model. Also, it was

shown that the SPEC model captures a di↵erent stress state when compared to other

models during shock environments.

5.1 Future Work

One of the short comings of the model is that the glassy bulk modulus, K
g

, was

not obtained through experimentation. As it stands, most pressure dilatometers do

not have the capability to reach sub-ambient temperatures. Coming up with an

experimental procedure to measure the bulk modulus at colder temperatures would

be highly beneficial. It would help improve the accuracy of the model, and allow for

better understanding of this parameter. Also, it could be used for another validation

technique for predicting volumetric response throughout the materials temperature

dependent range.

As mentioned in section 3.1.1, the DMA was not able to reach sub-ambient temper-

atures lower than -100 oC. If measurements below the T
g

could be obtained it would

allow the model to be used in a wider range of applications. It would be possible to

obtain this data if di↵erent sample geometry was available.
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Prony Terms and Relaxation

Times
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Table A.1: Prony terms for the shear relaxation function

Prony Term relaxation time
6.90545929e-01 8.20571980e-02
9.38524924e-02 9.89564331e-01
9.28911314e-02 1.19335974e+01
3.20773206e-02 1.43912571e+02
1.17727261e-02 4.99761052e+02
1.32204749e-02 1.73550585e+03
1.23357611e-02 6.02684131e+03
4.91126605e-03 2.09292387e+04
8.99414879e-03 7.26803661e+04
4.48650599e-03 2.52395020e+05
3.96960692e-03 8.76484934e+05
4.92863883e-03 3.04374406e+06
2.10156570e-03 1.05699226e+07
2.78459077e-03 3.67058664e+07
3.57275204e-03 1.27467408e+08
3.45560815e-03 1.53718630e+09
7.20338172e-04 5.33814270e+09
1.52516596e-03 1.85376148e+10
2.11960521e-03 6.43750425e+10
1.55031123e-03 7.76327335e+11
1.19037131e-03 2.69592964e+12
1.55092161e-03 3.25114173e+13
1.03674180e-03 3.92069675e+14
5.44479491e-04 1.36152910e+15
1.18409771e-03 1.64192863e+16
6.26831620e-05 1.98007493e+17
1.06834569e-03 6.87614935e+17
4.87279837e-04 8.29225503e+18
1.05913974e-03 2.87962759e+19
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Table A.2: Prony terms for the volumetric relaxation function

Prony Term relaxation time
6.25672474e-02 1.23607138e-06
2.23797281e-03 5.32346686e-06
4.58570909e-02 2.29269117e-05
4.45947999e-02 9.87407820e-05
7.45425573e-02 4.25253176e-04
9.66983627e-02 1.83146477e-03
1.28953881e-01 7.88768527e-03
1.53801560e-01 3.39703934e-02
1.60796015e-01 1.46302444e-01
1.34305718e-01 6.30089996e-01
7.21520950e-02 2.71364847e+00
2.34927008e-02 1.16870416e+01
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