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Abstract

A computationally efficient mesh objective algorithm for modeling mode-I cracks

is developed and implemented within a standard finite element formulation. The

algorithm applies the crack opening displacements across the standard nodal de-

grees of freedom that is consistent with formalism of the conventional smeared crack

approach.

Various versions of the conventional smeared crack approach have been proposed

since the introduction of the finite element method. The approach has not been

successful for the following reasons: (i) accumulation of spurious shear resulting in

stress locking, (ii) misalignment of the stress field around the cracked element, and

(iii) incorrect prediction of the crack propagation direction.

Four new and distinct techniques are developed to preclude both spurious shear

accumulation and misalignment of the stress field around the crack tip to provide

mesh objective results. First, to preclude shear locking, a modified failure constitu-

tive model is developed, which derives an alternative for the stress increment rather

than using the full strain field of the cracked element. The crack orientation is held
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fixed after crack initiation to provide an accurate representation of the crack orien-

tation and resulting crack path. A tangent crack stiffness is derived to provide an

explicit update for the stress components without the need for an iterative solver for

both linear and nonlinear softening.

Next, a computationally efficient crack tracking algorithm is implemented to pre-

clude the misalignment of the stress field. The tracking algorithm uses the crack

orientation predicted from the failure model and a series of crack segments to define

the crack path.

An hourglass control method is developed for an element undergoing softening.

The tangent crack stiffness is used to derive hourglass forces that help obtain mesh

objectivity when one-point quadrature is applied.

Finally, a cross-over scaling method is used to provide the correct characteristic

crack length to obtain complete mesh objectivity.

The developed methods work collectively to provide a fully explicit and efficient

algorithm for modeling mode-I failure in brittle materials without mesh bias. It is

demonstrated that the algorithm predicts load deflection curves and crack paths that

are independent of both mesh size and orientation when modeling failure at an angle

through a finite element mesh. The methods developed are expected to be applicable

to higher dimensions and for mode-II failure.
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Chapter 1

Introduction

Several approaches have been formulated to predict crack propagation in a variety of

materials from ductile metals to brittle concrete undergoing controlled quasi-static

deformation and highly dynamic blast or penetration loading. Ultimately, the goal

is the same in either case and that is to develop a numerical method that predicts

the primary features observed in experimental data while at the same time providing

results that are insensitive to the numerical discretization. This dissertation focuses

on developing a simple algorithm that can be used to model cracks within a standard

finite element formulation that is insensitive to the spatial discretization using the

smeared crack approach (SCA) originally proposed by Rashid [1]. This chapter

provides the motivation, objectives, and a brief introduction into the previous work

of other researchers that relate to modeling material failure and concludes with a

narrative summary.
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Chapter 1. Introduction

1.1 Motivation

Structural components inherently contain stress concentrations and defects which

upon loading may eventually create the necessary conditions in a localized region of

the material to initiate cracks leading to bulk structural failure. As a consequence,

there is still a need to develop computational tools and constitutive models that

predict the material failure process. With the popularity of the finite element method

(FEM) over the past several decades in research and applied engineering and its

extensive use in modeling continuum problems, generating cracks within a finite

element framework is relevant and the work within this research area is still vigorous.

Presently, the computational failure mechanics community does not possess an

adequate methodology to simulate failure at an angle through a computational do-

main using a standard finite element formulation. A finite element computational

failure methodology is composed of two key components: (i) a numerical representa-

tion for a crack surface and (ii) a constitutive model that somehow links the traction

acting on the crack surfaces to the crack opening displacement. We believe that

the term adequate embodies the following requirements for the computational fail-

ure methodology: (1) mesh size and orientation independent, (2) computationally

efficient, (3) allows for failure at an arbitrary angle, and (4) is straight-forward to

implement within a finite element framework.

In order to satisfy the requirements stated previously, we feel that a continuous

representation of a crack within a finite element is the best approach because of its

simplicity and the fact that an arbitrary crack orientation can be specified. In addi-

tion, the ability to predict the crack orientation is necessary. If the initial predicted

crack orientation is erroneous, the direction of crack propagation will probably be

incorrect, irrespective of the numerical procedure. We choose to use a decohesive

constitutive model that provides the stress at failure, crack surface orientation, and

crack opening displacement.

2



Chapter 1. Introduction

The pathological sensitivity to the orientation of the mesh was the primary reason

why SCA was abandoned in the 1990’s over discrete methods such as that originated

by Ngo and Scordelus [2] and more recently the extended finite element method

(XFEM) introduced by Belytschko and Black [3]. As a result, SCA requires substan-

tial improvements to alleviate mesh orientation bias. The solutions to these problems

with SCA form the basis of this dissertation.

1.2 Objectives and Scope

The objective of the research is to develop a computationally efficient algorithm

for modeling mode-I cracks in primarily brittle materials using the smeared crack

approach. The materials of interest are concrete and geological materials undergoing

stress paths without much lateral confining stress. Under this loading, concrete and

rock typically fail due to the loss of cohesion that is tied to the most tensile principal

stress. As a result, slip due to shear is rather limited and is not of concern in this

work. Even though concrete can exhibit large plastic deformations prior to failure

under large confining stress, this work assumes that the material behaves elastically

under small deformations for problems with low confining stress prior to mode-I

failure. Much of the history of modeling failure in finite elements is tied to these

very assumptions as many of the original computational methods were developed to

model the brittle response of concrete. Here we formulate a set of requirements for

the computational failure algorithm:

• mesh size and orientation independent - mesh objectivity

• allows for failure at an arbitrary angle

• implemented within a standard finite element formulation

• straightforward to implement into an existing finite element code

• computationally efficient

• remeshing isn’t necessary.

3



Chapter 1. Introduction

1.3 Preliminary Remarks

Before we start to address the problems associated with material failure, there are a

few key points that must first be stated to clarify subsequent concepts. First, material

failure, as it is discussed in this dissertation, is separation of material such that two

new surfaces are generated. The geometric structure generated from the failure

process is denoted a macrocrack and the energy required to form the macrocrack

per unit of surface area generated is termed the fracture energy. The state of the

material in between failure initiation and a macrocrack is termed a microcrack. The

term crack is used to represent either a microcrack or macrocrack.

The focus is on modeling tensile failure of materials that exhibit brittle behavior

under small lateral compression such as concrete where the cohesive characteristics

of the material govern the crack formation and shape of the load deflection curves.

As a result, we assume that the deformation within the material is small and that

the material remains elastic until failure. The general idea is to approximate the

complex behavior of gradual microcracking and tortuous decohesion that eventually

leads to a macrocrack within the material using a failure model that provides the

necessary features observed in experiments such as the crack path shape and load

deflection curves that exhibit a negative slope.

The term smeared crack approach is not a constitutive model, but an approach

that is used to represent a crack continuously in a finite element. This is accomplished

with the assumption that the total strain computed at each quadrature point is

additively decomposed into an elastic and inelastic contribution denoted crack strain,

where the latter is exclusively due to the crack opening displacement. SCA provides

a geometric representation of a crack within a finite element using the standard

nodal degrees of freedom of an element without altering the mesh topology such that

remeshing isn’t necessary. Only elements that have initiated failure contain crack

strain.

4



Chapter 1. Introduction

The term smeared crack model represents a class of failure constitutive models

that use an orthotropic stiffness tensor to directionally degrade the stress in an

element that contains a crack. These models apply the formalism of the smeared

crack approach to represent a crack in a finite element.

Finally, the term standard finite element formulation refers to the classical finite

element method where nodal displacements are the unknowns and standard shape

functions are used. The specific finite element implementation used in this disserta-

tion was taken directly from Hughes [4] with computation of the nodal force vector

rather than the stiffness matrix.

1.4 Previous Research

As stated previously, a finite element computational failure methodology requires a

constitutive model that links the forces acting on the crack surfaces to how far the

crack has opened and a numerical representation for a crack surface. This section will

briefly review previous work of other researchers in these two areas with emphasis

placed on quasi-brittle materials such as concrete, rock, and ice. The intent is to

provide a brief introduction of a few methods that relate to quasi-brittle materials.

1.4.1 Methods for Modeling Failure

The primary objective of computational failure mechanics is to solve a set of gov-

erning equations numerically that describe the material’s response before, during,

and after strain localization, when subjected to certain boundary conditions. The

resulting solution should not depend on the the mesh. The governing equation in

solid mechanics, without thermal considerations can be expressed in terms of the

Cauchy stress tensor σ as

ρü = ∇ · σ + f , (1.1)

5



Chapter 1. Introduction

where u is a vector defining the displacement of a point defined within a body, ü

is the acceleration, ρ the density of the material of which the body is composed,

and f is the body force per unit volume acting on the body at the point. The

nomenclature used is that scalars are italicized, vectors are not italicized and are in

bold, second order tensors are in bold and are capitalized unless they are symbols,

and finally fourth order tensors are denoted by letter like symbols (e.g. E ) unless

otherwise noted. In addition, we also require a relationship between the forces in the

body and the amount of displacement generated by these forces. Practically, this is

accomplished through a definition of a strain measure (kinematic equation) and an

equation relating the stress to the strain (constitutive equation). The form of the

constitutive equations are composed such to reproduce the key features observed in

data acquired through laboratory material testing. Together these equations form a

description for the response of a continuum.

Continuum Softening Models

Continuum softening models involve strain softening and a definition of failure based

on an invariant (often of plastic strain) after which stress is reduced to zero, usually

isotropically, using a damage variable. Although such a constitutive model makes

no pretense of modeling the physical features of material separation, it is such a

convenient approach for use with existing numerical codes that the method is widely

used. Results are mixed for the following reasons: (1) once softening is allowed,

there is the possibility that the problem becomes ill-posed with the consequence

that convergence with mesh refinement cannot be demonstrated and (2) the energy

dissipated prior to failure initiation and fracture energy are combined and rarely

discussed in connection with the choice for the critical value of the invariant used to

define failure.

The primary reason why continuum models are used is because numerical algo-

rithms based on continuum constitutive models can be used with minor modifications

6



Chapter 1. Introduction

to underlying numerical algorithms. The fundamental challenge is solving eq. 1.1 for

which the stress-strain relationship has a negative slope characterized by a reduction

of stress with an increase of strain. This regime of material behavior occurs after

the peak stress has been reached and is referred to as strain-softening. Within this

regime, the governing partial differential equations may lose hyperbolicity (or ellip-

ticity for ü = 0) and the boundary value problem may become ill-posed. This results

in a bifurcation where a unique solution is not available with continuous dependence

on the boundary conditions thereby generating a material instability. Numerically,

the solution becomes pathologically dependent on the numerical discretization or

more specifically the size of the finite elements. In addition, as the size of the fi-

nite element that represents the localization zone is further reduced, the predicted

fracture energy continuously drops towards zero which is nonphysical. As a result,

special treatment of the mathematical problem must be carried out for materials

undergoing strain localization. Determining when or under what conditions material

localization occurs is an important aspect of modeling failure because the point at

which to engage the failure portion of the constitutive equations must be known.

Mathematical Aspects of Continuum Softening

The conditions of bifurcation were examined by Hill [5] who postulated that the

second order work must remain positive generating the necessary condition that the

tensor inner product of the stress rate and strain rate remain positive or σ̇ : ε̇ > 0,

which suggests that the slope of the stress-strain curve remain positive. For problems

where the orientation of the plane of instability is important, the condition that the

acoustic tensor A is positive definite or that the eigenvalues remain positive can be

used as in Schreyer and Neilsen [6, 7] where the acoustic tensor is defined as,

A(n) = n · T · n (1.2)

where T is the fourth order tangent tensor and n is a vector normal to a potential

instability plane. The determination of the plane of instability, which could be

7



Chapter 1. Introduction

assumed to be the plane of material failure, requires a computationally intensive

search for the smallest eigenvalue of the acoustic tensor for all possible orientations

defined by n. The plane of instability is then defined by the normal vector n that

generates the negative eigenvalue of the acoustic tensor. Unfortunately, failure stress

and failure surface orientations predicted from the eigen-analysis of the acoustic

tensor do not match the failure orientations observed in experiments for quasi-brittle

materials [8]. Bazant [9] recognized that if the region of softening was limited to a

fixed width and if the finite element size was limited to this characteristic dimension,

then mesh size objectivity could be obtained. This concept later became the crack

band theory [10] applied to modeling fracture in concrete.

Nonlocal Models

Nonlocal formulations were proposed for modeling fracture by Eringen [11] and later

applied by Bazant and Lin [12] for fracture in concrete. These type of formulations

assume that the stress is a function of a nonlocal strain measure or a spatial average

of some strain measure. In [12], a nonlocal damage variable that is a function of

the spatial average of the most tensile principal strain is used to preclude mesh

dependence. However, as Jirásek [13] found for modeling fracture in quasi-brittle

materials, there can be a residual force in the material as the crack fully opens that

is similar to a stress locking effect. Nonlocal methods in the context of modeling

crack propagation in finite elements are also useful to prevent the crack paths from

following element edges that are at an angle relative to the crack orientation as well

as preclude some of the ill-posedness issues as noted previously. Nonlocal methods

provide a length scale that continuum softening models do not provide. Upon strain

localization, the nonlocal length scale controls the size of the localization zone thereby

precluding some of the problems associated with continuum softening models such

as zero energy dissipation as the mesh size is reduced to zero.

Gradient enhanced methods use higher order strain gradients that introduce a

8



Chapter 1. Introduction

nonlocal effect. Aifantis [14, 15] used strain gradient constitutive equations to pre-

clude strain singularities that arise during strain localization and fracture. Typically,

a higher order differential operator is applied to the strain tensor and added to the

conventional strain. This operator is typically the Laplacean (∇2). Nonlocal and

gradient enhanced approaches introduce complexity in how to handle the additional

boundary conditions, a question on how to interpret material parameters, and added

computational expense in order to resolve the high strain gradients.

Another nonlocal method called peridynamics [16] recasts the divergence of the

stress term, as observed in the traditional equation of motion, with a nonlocal ver-

sion using an integral of force densities exerted by a set of material points over a

finite volume. This approach is designed to eliminate the problems associated with

localization and failure observed with partial differential equations (PDEs), such as

the loss of ellipticity for quasi-static problems. However, the use of traditional stress-

strain based constitutive models is not straight-forward. Research is still on-going

to address these issues [17, 18].

Smeared Crack Models - Fixed and Rotating Crack Models

Smeared crack models, as defined in this dissertation, use a tangent stiffness tensor

to degrade the stress appropriately based on the orientation of the crack surface.

They also follow the smeared crack approach formalism by decomposing the total

strain into elastic and inelastic components. The inelastic strain portion is due to

the crack opening displacements that are smeared over the standard nodal degrees

of freedom of the cracked element. The form of the tangent stiffness tensor controls

the mode of failure introduced into the cracked element. Because these models use

the full strain tensor to compute the stress, they are susceptible to shear locking.

Two common smeared crack models are the fixed crack model and rotating crack

model as studied extensively by Rots [19, 20], de Borst [21], and Jirásek [22]. The

fixed crack model fixes the crack orientation after failure initiates. However, spurious

9



Chapter 1. Introduction

shear stress is allowed to accumulate which leads to shear locking. In contrast, the

rotating crack model allows the crack orientation to evolve such that the shear strain

along the crack surface is zero. This is accomplished by assuming that the crack

surface normal is in the direction of maximum principal strain. In simple terms, the

spurious shear strain is essentially removed by rotating the crack surface. This helps

to preclude some of the shear locking observed in the fixed crack model, but there is

an inconsistency between the physical crack orientation and the orientation predicted

from the model. As a result, the rotating crack model cannot accurately predict the

physical crack path. The rotating crack model is still prone to shear locking for large

crack openings. In [22], the proposed fix to preclude such problems was to introduce

an isotropic damage variable, after the crack opening reached a certain extent, that

would decay all components of the stress to zero as published in [23].

Discrete Crack Models

Discrete models of material failure prescribe an orientation of the failure surface to-

gether with an evolution equation for describing the change in traction on the failure

surface with an increase in the displacement discontinuity of the failure surface. Dis-

crete in this context implies the incorporation of the actual discontinuity as opposed

to a continuum model that is based on the assumption of continuity.

Discrete crack models idealize complicated material behavior by introducing a

constitutive equation that relates the traction along the crack surface τ , defined

by a crack normal vector n, to the crack opening displacement [[u]] in some local

failure plane basis established by the crack orientation. These methods are not to

be confused with discrete numerical representations of a crack as in [2]1.

Discrete crack models that use a failure or decohesion function to predict the

failure stress and orientation of the crack are denoted a decohesion failure model.

The models use a formulation that is similar to plasticity where the crack opening

1Discrete crack models can be used in the smeared crack approach as is done here.

10
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displacement is determined such that the decohesion function is approximately equal

to zero. However, instead of an increase in stress or hardening with an increase in

equivalent plastic strain, a decohesion formulation provides the reduction in traction

or softening, for an increase in the crack opening displacement. This type of model

will be used in this dissertation and examples of such models for predicting failure

in rock, concrete, and ice can be found in Xu [24], Schreyer [25, 8], and Sulsky

[26]. It has been also shown in [8] that these type of models are able to predict the

failure orientations observed in experimental data [27]. Further details are provided

in Chapter 3 for the discrete failure model.

1.4.2 Numerical Representations

Regardless of the class of failure model chosen, we still need to decide how we rep-

resent a crack within our numerical discretization. This choice has ramifications on

the complexity of implementation, the computational efficiency, and properties of

the solution all of which influence development costs, runtime of simulations, and

errors in the solution. In the 1960s and 1970s researchers developed the two primary

numerical representations for failure in finite elements: (1) the continuous approach

in which the effect of the crack is smeared over a finite area typically a finite element

[1] and (2) the discrete approach in which the displacement discontinuities developed

from material fracture are directly represented by the numerical discretization [2].

Continuum Representation

With the smeared crack approach, a crack is represented as a set of crack segments,

where each segment has a constant discontinuity across an element. Figure 1.1

illustrates the differences between a discrete crack and a continuous representation

of a crack. In Figure 1.1(a), the dashed line segments are continuous from one element

to the next, although this isn’t required. The key point is that the finite element

11



Chapter 1. Introduction

b b b b b b b

b b b b b b b

b b b b

b b

b b b

bbbbb

b b b b b b b

bbbbbbb

b b b b b b bbb
bbbb

b b b b b
bbbbbbbb

b b b bb bb

b b b b b b b

b b b b b b b

bbbbbbb

b b b b b b b

bbbbbbb

b

b

bcbcbcbcbc

(a) Continuous (smeared) crack
with mesh topology unchanged

b b b b b b b

b b b b b b b

b b b b

b b

b b b

bbbbb

b b b b b b b

bbbbbbb

b b b b b b b

bbb

b b b

bbbbbbb

b b b bb bb

b b b b b b b

b b b b b b b

bbbbbbb

b b b b b b b

bbbbbbb

b b b b

b b b b

(b) Discrete crack with mesh topol-
ogy discontinuity

Figure 1.1: Smeared vs. Discrete Crack

mesh topology does not change as the crack propagates across the mesh. A uniform

displacement discontinuity of a crack is considered as a corresponding displacement

at the nodes of an element. The use of the conventional finite element kinematics

relations for strain within an element results in a crack strain representing the crack

displacement discontinuity in a continuum sense. The result is that the numerical

scheme contains the same advantages of those of continuum models. However, as

we will see, using the same kinematic relations for a cracked element as those for a

continuum element introduces spurious components.

The advantage of the smeared crack approach is that it is relatively computa-

tionally inexpensive and the underlying finite element numerical structure does not

require significant changes, which makes it straightforward to implement. If pervasive

failure obtained during blast and penetration loading is of interest, then the smeared

crack approach could be applied to a particle method that solves the governing equa-

tions on a background finite element grid such as the Material-point Method (MPM)
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originally developed by Sulsky et. al. [28],[29], and [30] for modeling penetration.

This approach was recently applied to modeling pervasive fracture in blast loading

of rock in Xu et. al. [24]. Another approach that has been applied to modeling

pervasive failure during penetration is a particle conversion method that converts a

finite element into a particle once a criterion is reached such as in Johnson et. al.

[31].

In addition, the angle of failure is not dependent on the topology of the finite

element mesh as is the case in the discrete method in which the cracks must form

along element edges. However, it was discovered that the smeared approach was

susceptible to mesh orientation dependence when the finite element edges were not

aligned with the crack manifested by inaccurate load deflection curves and crack

paths2. Due to the simplicity of the method, a significant effort was made to resolve

the problem by researchers in the 1980’s and 1990s [19, 20, 23] and more recently

[32, 33] with limited success. A more recent effort [34] using a mixed finite element

formulation with displacmements and strains has shown that improved mesh objec-

tivity is obtained if both strain and displacements are computed as unknowns at the

nodes. This type of formulation requires twice as many unknowns as a standard

finite element formulation and there are other stability issues to deal with related to

the Babuška-Brezzi condition.

Embedded Discontinuities

Methods that introduce a discontinuity within a finite element to enrich its degrees

of freedom encompass embedded discontinuities. A thorough review of the subject

is provided by Jirasek [35]. The development of such methods was intended to

help solve some of the issues associated with modeling strain localization and failure

problems using finite elements.

2Having aligned element edges is only a limiting case of a more general requirement
that will be derived in Chapter 2.
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The general approach is to expand the degrees of freedom of an element such that

a discontinuity is represented within a single band inside the element. An enrichment

of the standard element basis functions is made for either strain or displacement.

Ortiz et. al. [36] enriched the strain field within a quadrilateral element to improve

the resolution of shear bands using a weak discontinuity (strain contains a jump and

the displacement remains continuous). This idea was further developed by Belytschko

et. al. [37] by introducing a band of localized strain where the width of the band

was independent of the element size.

Another option is to add in a strong discontinuity (a jump in displacement) within

the element as proposed by Dvorkin et. al. [38]. Linder and Armero [39] introduced

embedded discontinuities that provide additional modes of deformation for a crack

opening to model failure in concrete. For example, a crack is allowed to open linearly

across the finite element, whereas, the standard approach is to assume a constant

crack opening.

Here we note that the intent of embedded discontinuities is related to our own

objective of resolving the problems of modeling cracks using finite elements. It is

interpreted here, in a general sense, that embedded discontinuities are designed to

preclude the formation of spurious shear strains within an element upon the for-

mation of a crack. These methods also require additional integration points along

the discontinuity line. In contrast, we focus here not on introducing more degrees

of freedom within an element, but rather focusing on projecting out the spurious

stresses that accumulate during crack evolution while keeping the properties of the

element unchanged. We note that spurious strain and stress are only part of a

broader problem of modeling cracks within finite elements as will be demonstrated

later.
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Discontinuous Representation

A discontinuous representation of a crack captures the geometric discontinuity that

can be observed directly as shown in Figure 1.1(b). The first of these methods,

introduced by Goodman et. al. [40] used interface elements with zero thickness

along the interelement boundaries. This method was later applied by Hillerborg

et. al. [41] and Rots [19] for modeling cracks in concrete using a cohesive crack

model, which relates the crack surface traction to the crack opening displacement.

Modeling failure in finite elements using this approach is not prone to shear locking

as observed in [19] because there isn’t spurious kinematic components introduced as

the crack forms. However, the primary disadvantage to this approach is that cracks

are restricted to follow element edge boundaries. Mesh refinement precludes this

problem, but this introduces computational expense as the full mesh must be refined

for problems that involve unknown crack paths a priori.

Automatic mesh refinement methods were used to preclude some of the mesh de-

pendencies in earlier interface element methods. Ingraffea and Saouma [42] applied

automatic mesh refinement to the crack tip region to model crack propagation in con-

crete. However, automatic mesh refinement is computationally expensive especially

when it must be completed several times during a simulation.

The extended finite element method (XFEM) [3] is a numerical method based

on the partition of unity method (PUM) and generalized finite element method

(GFEM) [43]. The method enriches the solution space for discontinuous functions

thereby improving the ability of the finite element method to model problems with

discontinuities. A distinct advantage of the approach is that the discontinuity or

crack can be tracked without remeshing. Usually the level set method is used to

determine where the discontinuity is in the mesh. In simple terms, the crack opening

displacements have their own degrees of freedom. As a result, the use of the standard

nodal degrees of freedom to represent a crack is not required, which precludes some
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of the shortcomings of the smeared crack approach. However, XFEM does have

certain disadvantages which include complexity in the implementation, requirement

to determine the location of the crack tip and it’s trajectory, and the requirement to

use refined meshes in the vicinity of the crack tip.

1.5 Narrative Summary

Chapter 2 provides an analysis of the smeared crack approach. Strain equations for

the 4-node quadrilateral element are derived and are used to illustrate formation

of spurious shear and normal strains. Chapter 2 also provides a summary of other

possible remedies to SCA shortcomings that were examined.

In Chapter 3, a chronological review is provided that outlines the various ap-

proaches that were attempted to alleviate the issues with SCA. An overview of a

decohesion failure model is provided next to introduce the important features of

these class of constitutive models. Finally, a new decohesion failure model appli-

cable to mode-I failure is developed to alleviate spurious shear stress accumulation

during crack evolution for both linear and nonlinear softening.

Chapter 4 provides the necessary equations to implement the numerical algorithm

such as the finite element formulation, the hourglass control methods, the crack

tracking algorithm, and the complete numerical algorithm for an explicit dynamic

time integration scheme. Finally, implementation of the algorithm within a host

finite element code is discussed.

In Chapter 5, several numerical experiments are conducted to test the validity of

the proposed methods. These include a mode-I model problem where a crack forms

in the center of a two-dimensional bar and propagates to the edges. Various mesh

sizes and orientations are examined. A set of double-edge-notch experiments are

simulated under both direct tension and combined shear-tension load paths. Finally,

a summary is provided in Chapter 6 that reviews the primary contributions.
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Chapter 2

Spurious Shear Strain

This chapter provides an analysis of spurious shear strain that accumulates when a

crack is introduced within an element for a standard finite element formulation. In

a mode-I crack, where a normal crack strain is introduced, a spurious shear strain

component is introduced that accumulates linearly with the crack opening displace-

ment. Similarly, for a mode-II crack, where a shear crack strain is introduced, a

spurious normal strain is produced. Finite element simulations have demonstrated

that the bulk of mesh orientation bias, when the traditional smeared crack approach

is applied, is caused from this spurious strain. Understanding the origins of spurious

strain is important when attempting to formulate methods that preclude it.

First, the strain components in the global coordinate system for a 4-node quadri-

lateral element are derived. Next, an analysis is provided that illustrates the as-

sociated problems with opening up a crack in a 4-node quadrilateral element using

the smeared crack approach. Constraints on the element geometry are derived that

precludes spurious shear strain accumulation for a mode-I crack. Finally, a way to

apply the crack opening displacement across the nodes to preclude spurious shear

strain is presented followed by concluding remarks.
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Chapter 2. Spurious Shear Strain

2.1 Strain Components for the 4-node Quad

The equations that follow are the basic equations (e.g. in [4]) obtained from a

standard finite element graduate course. However, what usually isn’t covered are

the resulting strain equations for an arbitrary quadrilateral element in the global

coordinate system. In this section, the equations usually carried through numerically

in a finite element program are evaluated symbolically. A more detailed outline of

the equations is provided in Chapter 4.

Consider an arbitrary 4-node quadrilateral element in a Cartesian coordinate

system {x, y} as shown in Figure 2.1(a). The local element numbering is counter-

clockwise starting from the Southwest node. This arbitrary element geometry maps

to the parent domain with an associated local element coordinate system {ξ, η} as

shown in Figure 2.1(b). The shape functions for the 4-node quadrilateral element in

the parent domain can be written as,

N1(ξ, η) =
1

4
(1− ξ)(1− η) (2.1)

N2(ξ, η) =
1

4
(1 + ξ)(1− η) (2.2)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) (2.3)

N4(ξ, η) =
1

4
(1− ξ)(1 + η). (2.4)

The corresponding shape function derivatives in the local coordinate system become,

N1,ξ =
1

4
(η − 1) (2.5)

N2,ξ =
1

4
(1− η) (2.6)

N3,ξ =
1

4
(1 + η) (2.7)

N4,ξ =
1

4
(−1− η) (2.8)

18



Chapter 2. Spurious Shear Strain

x

y

1

2

3

4

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(a) Global Domain

ξ

η

1 2

34

(-1,-1) (1,-1)

(1,1)(-1,1)

(0,0)

(b) Parent Domain

Figure 2.1: Arbitrary 4-node Quadrilateral

N1,η =
1

4
(ξ − 1) (2.9)

N2,η =
1

4
(−1− ξ) (2.10)

N3,η =
1

4
(1 + ξ) (2.11)

N4,η =
1

4
(1− ξ), (2.12)

where the comma in the subscript denotes a partial derivative. The isoparametric

representation that maps {x, y} based on values of {ξ, η} is as follows:

x =
4∑
i=1

Ni(ξ, η)xei (2.13)

y =
4∑
i=1

Ni(ξ, η)yei , (2.14)
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where {xei , yei } are the global nodal coordinates. Then the respective derivatives are

x,ξ =
4∑
i=1

Ni,ξx
e
i (2.15)

y,ξ =
4∑
i=1

Ni,ξy
e
i (2.16)

x,η =
4∑
i=1

Ni,ηx
e
i (2.17)

y,η =
4∑
i=1

Ni,ηy
e
i . (2.18)

Similarly, the displacement approximations in the x and y directions in the {ξ, η}
coordinate system can be written respectively as

uh =
4∑
i=1

Ni(ξ, η)ui (2.19)

vh =
4∑
i=1

Ni(ξ, η)vi, (2.20)

where ui and vi are the nodal displacements in the x and y directions, respectively.

The strain components are

exx =
4∑
i=1

Ni,x(ξ, η)ui (2.21)

eyy =
4∑
i=1

Ni,y(ξ, η)vi (2.22)

2exy =
4∑
i=1

[Ni,y(ξ, η)ui +Ni,x(ξ, η)vi] . (2.23)

By writing out Ni,ξ and Ni,η using the chain rule and solving the system of equations

for Ni,x and Ni,y we obtain

Ni,x =
Ni,ξy,η −Ni,ηy,ξ

J
, for i = 1..4 (2.24)

Ni,y =
−Ni,ξx,η +Ni,ηx,ξ

J
, for i = 1..4, (2.25)
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where J is the determinant of the Jacobian and is written as,

J = x,ξy,η − y,ξx,η. (2.26)

For simplicity, we evaluate the strain at the center of the element with {ξ, η} = {0, 0}.
Using eqs. 2.1 through 2.26 for ξ = η = 0, the resulting strain components exx, eyy,

and exy become,

exx =
1

2A
[(y2 − y4)(u1 − u3) + (y3 − y1)(u2 − u4)] (2.27)

eyy =
1

2A
[(x4 − x2)(v1 − v3) + (x1 − x3)(v2 − v4)] (2.28)

exy =
1

4A
[(x4 − x2)(u1 − u3) + (x1 − x3)(u2 − u4)] +

1

4A
[(y2 − y4)(v1 − v3) + (y3 − y1)(v2 − v4)] , (2.29)

where A is the element area defined as,

A =
1

2
[(x1 − x3)(y2 − y4) + (x2 − x4)(y3 − y1)] . (2.30)

It turns out that eq. 2.29 is the most important equation to consider when trying

to understand shear locking during mode-I failure. Similarly, for mode-II failure, the

normal strain eqs. 2.27 and 2.28 are useful. Next, let’s compute the spurious strains

that are introduced by both mode-I and mode-II failure.

2.2 Spurious Shear Accumulation

2.2.1 Mode-I Crack

Let’s assume that a crack forms in the center of the element with a crack opening

displacement of [[un]] = 2δ as shown in Figure 2.2(a). Note that the brackets indi-

cate that un is a displacement jump. The crack normal defined by n is in the e1

direction as indicated by the local element crack {n, t} basis in Figure 2.2(a). The
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smeared crack approach formalism is applied and the crack opening displacement

is represented via a displacement of nodes 1 through 4 such that the element ex-

pands by 2δ. The expanded element due to the crack opening is shown in Figure

2.2(b) where the original element geometry is represented by a dotted line. Notice

that the nodes only move in the e1 direction. Because the crack opening is exclu-

sively in the e1 direction, the nodal displacements in the e2 are equal to zero, or

v1 = v2 = v3 = v4 = 0. One form for the nodal displacements in the normal di-

rection that is consistent with the conventional finite element method for either the

stiffness approach or dynamic approach based on nodal forces is that of assuming

u1 = u4 = −δ, and u2 = u3 = +δ. Substituting these displacements into eqs. 2.27

through 2.29, the strains in the element due to the crack denoted ecrxx, e
cr
yy, and ecrxy

simplify to

ecrxx =
δ

A
(y4 − y2 + y3 − y1) (2.31)

ecryy = 0 (2.32)

ecrxy =
δ

2A
(x1 − x4 + x2 − x3) . (2.33)

The result shown in eq. 2.33 is the dreaded spurious shear strain contribution due

to the crack opening. This parasitic shear strain increases linearly with the crack

opening displacement and ultimately spreads across the mesh leading to erroneous

load deflection curves. The spurious shear strain becomes zero for the following

conditions:

δ = 0 (2.34)

x1 − x4 + x2 − x3 = 0. (2.35)

The constraint in eq. 2.34 is a kinematic constraint and the constraint in eq. 2.35

is a geometric constraint on the element. Clearly, if there is no crack or δ = 0, then

there will be no crack shear strain for any element geometry. However, if there is

a crack or δ > 0, then eq. 2.35 must be satisfied to ensure that the shear strain is
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Figure 2.2: Cracked 4-node Quadrilateral Element

zero. One particular element geometry that satisfies eq. 2.35 is an element with the

edges aligned with the crack surface such that x1 = x4 and x2 = x3. However, this

is not the only geometry that precludes spurious shear strain. Even for this simple

crack problem, there are geometric constraints that must be placed on an element

such that spurious shear strain isn’t accumulated. Because the crack orientation isn’t

known a priori, it is not possible to use mesh geometry to preclude spurious shear

for general problems. In general, spurious shear will arise in an arbitrary element

unless the crack opening displacement is distributed across the nodes in a specific

way as shown in Section 2.3.

2.2.2 Mode-II Crack

A similar analysis can be completed for mode-II cracks. Let’s consider an initiated

crack with the same orientation and element geometry as before. However, now

let’s introduce a crack in shear with crack opening displacement [[ut]] = 2δ in the t

direction as shown in Figure 2.3(a). Applying nodal displacements of v1 = v4 = −δ
and v2 = v3 = +δ results in the cracked element shown in Figure 2.3(b). The
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Figure 2.3: Cracked 4-node Quadrilateral Element

corresponding strain components are

ecrxx = 0 (2.36)

ecryy =
δ

A
(x2 − x3 + x1 − x4) (2.37)

ecrxy =
δ

2A
(y4 − y2 + y3 − y1) . (2.38)

Notice now that from eq. 2.37 a spurious normal strain eyy is obtained. Similar

to the mode-I crack, if the element edges are parallel to the crack or x1 = x4 and

x2 = x3 the spurious normal strain vanishes. Note that if the crack normal n is

rotated counter-clockwise by 90o, then a spurious normal strain exx would arise.

2.3 Precluding Spurious Shear

In the previous section, a particular distribution of nodal displacements was used

to represent a crack within an element. Recall that a symmetric displacement dis-

tribution was applied such that each node was moved equally or u1 = u4 = −δ
and u2 = u3 = +δ for a mode-I crack. It was shown that this specific distribution
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resulted in spurious shear strain unless certain element geometry constraints were

satisfied. Now let’s consider another possibility where the nodal displacements due

to the crack are computed based on the distance from the element center to the

node. The smeared crack approach assumes that an element contains a constant

crack strain α located at the element center. The coordinates of the element center

{xc, yc} are computed as follows:

xc =
1

4
(x1 + x2 + x3 + x4) (2.39)

yc =
1

4
(y1 + y2 + y3 + y4) . (2.40)

The nodal displacements due to the crack are computed by integrating the crack

strain over the distance from the element center to the node as follows:

u1 = −α (xc − x1) (2.41)

u2 = α (x2 − xc) (2.42)

u3 = α (x3 − xc) (2.43)

u4 = −α (xc − x4) . (2.44)

At this point, it doesn’t matter how we define the crack strain. Substituting in the

element coordinates xc and yc into eqs. 2.41 through 2.44, we obtain the following

nodal displacement distribution for the crack opening,

u1 =
α

4
(3x1 − x2 − x3 − x4) (2.45)

u2 =
α

4
(3x2 − x1 − x3 − x4) (2.46)

u3 =
α

4
(3x3 − x1 − x2 − x4) (2.47)

u4 =
α

4
(3x4 − x1 − x2 − x3) . (2.48)
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Next, the nodal displacement method can be tested by subsituting in eqs. 2.45

through 2.48 into the strain relations eqs. 2.27 to 2.29 resulting in

ecrxx =
α

2A
[(y2 − y4)(x1 − x3) + (y3 − y1)(x2 − x4)] (2.49)

ecryy = 0 (2.50)

ecrxy = 0. (2.51)

Upon careful examination of eq. 2.49, it is seen that the bracket in the numerator is

equal to 2A and as a result, the strains simplify to

ecrxx = α (2.52)

ecryy = 0 (2.53)

ecrxy = 0. (2.54)

2.4 Concluding Remarks

The results shown in eqs. 2.52 through 2.54 are ideal because the assumed crack

strain is obtained while the shear strain is equal to zero. However, eqs. 2.45 through

2.48 represent global nodal displacements. They are essentially kinematic boundary

conditions that must be imposed. In a real problem, the nodal displacements due to

the crack opening are driven by the unloading of surrounding elements caused by the

reduction in stress imposed by equilibrium. As a result, the motion of the cracked

element nodes is problem dependent (e.g. where the crack forms). In other words, the

nodal displacement distribution shown above, does not satisfy equilibrium in general.

As a result, there is an inconsistency between the kinematic conditions imposed

to eliminate spurious shear for the cracked element and the kinematic conditions

imposed by the equilibrium solution. Another issue is that satisfying the linear

crack distribution in one element would violate the linear crack distribution in the

neighboring element. This would eventually lead to problems.
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Another possibility that was investigated was to alter the distribution of local

element nodal forces. However, the resulting form of the assembled global internal

force vector was inconsistent with the stress field. For example, for the problem with

constant uniaxial stress without body and external forces, the global internal nodal

force vector should be zero. However, by redistributing the local element internal

forces, the resulting assembled global force vector was nonzero. The next chapter

provides an alternative to the standard approach.
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Chapter 3

Failure Model

This chapter provides a modification to a conventional failure model for mode-I

cracks that precludes spurious shear stress formation in a cracked element. A similar

formulation is expected to apply to mode-II failure that would preclude spurious

normal stress. The principal differences between the proposed discrete failure model

and other failure models is that certain components of the stress are projected out

to preclude pollution of the numerical solution due to spurious shear stress. Another

important aspect is that the crack orientation is assumed fixed after crack initiation

and does not rotate as the crack evolves. Only nonspurious total strain compo-

nents are selected to update the stress. The total strain components chosen are also

consistent with the mode of failure.

First, a chronological overview is provided that may provide insights into the

thought processes that led up to the failure model proposed. Next, the layout for a

discrete decohesion failure model is presented to provide background. A generalized

failure constitutive model is presented next to model mode-I cracks. Finally, consti-

tutive equations are derived for specific linear and nonlinear softening functions. The

resulting failure model provides a simple, easily implementable, and computationally

efficient means to model mode-I cracks without mesh orientation bias.
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3.1 Chronological Review

Initial simulations of a crack forming across a 2D bar with uniaxial stress using a

standard decohesion failure model showed that when the element edges were not

aligned with the crack surface, the normal stress in the bar was much larger than the

stress predicted by the analytical solution. As a result, the computed force in the

bar was incorrect. The extent of the error became larger as the element edge angles

increased. These results are consistent with results observed by other researchers

such as Jirásek and Zimmermann [22].

Initially, the focus was to try to derive a kinematic approach of applying the crack

opening displacement across the nodes of the cracked element to preclude spurious

shear strain. Several different approaches were tested including redistributing nodal

forces to achieve a linear crack opening displacement and applying global nodal

displacement boundary conditions for nodes of the cracked element that satisfied the

no shear constraint as derived in Chapter 2. Unfortunately, these methods did not

work primarily because the kinematic and nodal force constraints imposed were not

consistent with the equilibrium solution. In some cases, the numerical method didn’t

converge or distortions of the stress field resulted.

Over time, it became evident that attempting to correct the kinematics of an

element undergoing a crack to preclude spurious shear strain wasn’t really working.

Instead, enforcing conditions on the stress within the cracked element was much more

successful. Eventually, the thinking shifted from kinematics to focusing on the stress

within the cracked element. The logic behind this thinking was that one of the roles

of the failure model is to reduce the traction in the proper direction as the crack

opens. That is, the form of the stress increment should be consistent with the failure

model and mode of failure. These thoughts led to a stress increment based failure

model that doesn’t use strain components that are spurious. Application of this sort

of failure model for mode-I cracks essentially precluded mesh orientation bias with
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respect to the load-deflection curve as long as the crack was allowed to propagate

along element edges.

However, another problem arose. The cracks would follow the column of elements

due to the misalignment of the initial stress field around the initiated crack. It was

discovered, that this problem was unrelated to spurious shear stress. Even when there

was no spurious shear in the solution, the crack direction was still erroneous. These

results were also observed by other researchers and led some to use nonlocal models

such as the nonlocal damage model in [12] and Oẑbolt and Baẑant [44]. A more

direct approach considered here is to use a crack tracking algorithm that propagates

the crack based on the failure orientation obtained from the failure model.

Applying a crack tracking algorithm provided the correct crack path, but also

led to another problem. For straight cracks propagating through an oriented mesh,

a crack cross-over (i. e. a zig-zag pattern) must eventually occur. Once crack cross-

overs were generated, this led to a mild shear locking effect that would not allow the

cross-over elements to fully unload. This led to mesh orientation bias because as the

mesh was rotated, the number of cross-over cracks increased, which led to further

errors in the load-deflection curve. It was discovered that when the characteristic

crack length was adjusted to account for the total length of the cross-over (typi-

cally two elements), then this essentially eliminated the cross-over locking effects

observed. Once the appropriate hourglass methods and characteristic crack dimen-

sion definitions were implemented into the algorithm, both mesh size and orientation

objectivity were obtained.

The chapters that follow will provide the theoretical foundations for the following

key components that are required to obtain mesh objectivity: (1) mode-I failure

model that precludes spurious shear stress, but does not evolve the crack orientation,

(2) crack tracking algorithm that provides the correct crack path, (3) hourglass

control for softening, and (4) cross-over scaling to eliminate unloading errors.
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3.2 Review of a Standard Decohesion Model

A decohesion model, as defined here, is essentially a cohesive crack model that uses a

decohesion function to provide the correct failure stress, failure orientation, fracture

energy, and evolution of failure as the crack opens. To achieve all of these features is

challenging and quite often not appreciated. For concrete materials undergoing large

confining stress, a mode-I failure model is not enough to capture the failure behavior

because concrete begins to fail in combined tension and shear, and the orientation of

the failure plane changes with confining stress as noted in quasi-static experiments

[27]. Much more complicated decohesion models are required to capture the failure

behavior of quasi-brittle materials such as the model proposed in [8]. Here, the scope

is limited to mode-I fracture for brittle materials such as concrete under very little

confining stress. First, the general structure of a failure model is presented based

on a general decohesion model that provides the failure orientation, failure stress,

fracture energy, and failure evolution.

The model begins with the assumption that the complex process of turning a

network of microcracks into a macrocrack occurs along an oriented plane of failure

defined by a unit normal vector n and two unit orthogonal vectors t and p defined

such that p = n× t, where p is out of the plane shown in Figure 3.1. The traction

is represented by the vector τ = τnn + τtt + τpp as shown in Figure 3.1(a). The

corresponding crack opening displacement vector [[u]] is shown in Figure 3.1(b) where

[[u]] = [[un]]n + [[ut]]t + [[up]]p. Here it is assumed that a crack initiates at an

orientation defined by n. The crack then evolves as the crack opening displacement

[[u]] increases while the traction τ decreases. The traction is obtained from the stress

as follows:

τ = σ · n. (3.1)

A discrete failure model defines the relationship between the forces acting on the

crack surface defined by τ and how far the crack has opened as defined by [[u]].
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Figure 3.1: Failure Model Crack Representation

Mathematically the failure model provides the function τ = τ ([[u]]). For mode-I

failure, the relationship is simplified to τn = τn([[un]]) with τt = τp = [[ut]] = [[up]] =

0. The basis vectors in the crack coordinate system are defined in terms of the global

orthonormal basis {e1, e2, e3} as

n = n1e1 + n2e2 + n3e3 (3.2)

t = t1e1 + t2e2 + t3e3 (3.3)

p = p1e1 + p2e2 + p3e3. (3.4)

A transformation matrix A is used to map the stresses between the global and local

basis as follows:

[A] =


n1 t1 p1

n2 t2 p2

n3 t3 p3

 . (3.5)

The stress in the crack basis σcr is computed using A and the stress in the global

basis σ with

σcr = ATσA. (3.6)
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Similarly, the stress in the global basis is computed from the stress in the crack basis

with

σ = AσcrAT . (3.7)

The components of A are computed by finding the crack normal n that maximizes

the value of the decohesion function. Some examples of decohesion functions are

F TR =

√
τ 2
t

τsf
− fs, (Tresca) (3.8)

FR =
τn
τnf
− fs, (Rankine) (3.9)

FMC =

√
τ 2
t

τ ∗sf
+

τn
τ ∗nf
− fs, (Mohr− Coulomb), (3.10)

where τsf is the shear strength for Tresca, τnf is the tensile strength of the material

for Rankine, τ ∗sf , τ
∗
nf , are material parameters used for Mohr-Coulomb formulation,

and fs is a softening function used to incorporate softening, fracture energy, and

failure evolution. When the crack initiates, [[u]] = 0 and fs = 1. Once the crack

opening displacement reaches u0, the crack is traction free and fs = 0. To predict

the failure stress and failure orientation, the decohesion function with fs = 1 is used.

The Tresca decohesion function is primarily used for metals that fail due to shear

along 45o failure planes with respect to the direction maximum of principal stress.

The Rankine decohesion function is used for brittle materials that fail due to loss

of cohesion in tension where the crack normal is in the direction of the most tensile

principal stress. The Mohr-Coulomb (MC) decohesion function has been used to

model quasi-brittle materials where the shearing action is dependent on the extent

of normal traction on the failure plane.

To compute the failure angle, the decohesion function is first expressed in terms

of the principal stresses and failure angle β (see Figure 3.1(a)). A Newton solver,

when an analytical solution isn’t available, can be used to find at what value of β

∂F/∂β = 0 is satisfied. A closed form solution to find β may exist when the failure

angle doesn’t depend on the state of stress. As an example, the decohesion functions
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provided earlier are expressed as functions of the principal stress and failure angle β

below.

F TR =

√
(1− γ)γ(σmax − σmin)

τsf
− 1, (Tresca) (3.11)

FR =
(1− γ)σmin + γσmax

τnf
− 1, (Rankine) (3.12)

FMC =

√
(1− γ)γ(σmax − σmin)2

τsf
+

(1− γ)σmin + γσmax
τnf

− 1, (MC), (3.13)

where γ = sin2(β) and σmax and σmin are maximum and minimum principal stresses,

respectively. None of the failure models above provide a failure angle that is depen-

dent on the state of stress. The crack normal for the Tresca and Rankine failure

models is always 45 and 0o, respectively, with respect to the direction of maximum

principal stress. The failure orientation for a Mohr-Coulomb material is dependent

on the shear and tensile strengths. The decohesion models above have an analytical

σ2

σ1
αr

R

F = 0

(R cos β,R sin β)

Figure 3.2: Failure Surface
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solution for the failure angle as follows:

γTR =
1

2
⇒ βTR = ±π

4
= ±45o, (Tresca) (3.14)

γR = 0, 1⇒ βR = 0,
π

2
= 0, 90o, (Rankine) (3.15)

γMC =
τ 2
nf + τ 2

sf ±
√
τ 4
sf + τ 2

sfτ
2
nf

2(τ 2
nf + τ 2

sf )
⇒ βMR = sin−1

(
±
√
γMR

)
, (MC). (3.16)

In order to fit a decohesion model to experimental data, the failure surface defined

by the locus of points satisfying F = 0 where F = max Fn ∀ n must be extracted

from the decohesion function Fn. Because the failure surface is commonly expressed

in σmax − σmin space, it is convenient to transform the principal stresses into polar

cooordinates as follows:

σ1 = R cos(αr) (3.17)

σ2 = R sin(αr), (3.18)

where R is the length of a vector R extending to the failure surface and αr is the angle

from the σ1 axis as shown in Figure 3.2. The failure surface is then mapped out by

incrementing R and for each increment the failure angle β is computed numerically

using Newton’s method. The radius R is incremented until the value of the function

F is positive at which point the values of σ1 and σ2 are computed from eqs. 3.17 and

3.18. This is repeated for remaining increments in the polar angle αr for 0 ≤ αr ≤ 2π

such that enough points are generated to plot a failure surface such as that shown

in Figure 3.2 for plane stress. Note that for some segments, σmax and σmin are zero.

Decohesion function parameters are then optimized to minimize an error function

that compares the failure surface to experimental data.

The total fracture energy Wf per unit of area that considers all modes of fail-

ure is computed by integrating the product of the tractions and the crack opening

displacement rates over time as follows:

Wf =

∫ t

0

{τt[[u̇t]] + τn[[u̇n]] + τp[[u̇p]]}dt. (3.19)
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The corresponding fracture energy for mode-I failure incorporating u0 is,

GfI =

∫ u0

0

τn[[dun]]. (3.20)

The softening function parameters are chosen such that the correct fracture energy

is obtained. Quite often u0 and the shape of the softening function are adjusted to

obtain the correct fracture energy. For simplicity, often a linear softening function is

used.

The remaining feature of the decohesion model is the mechanism to evolve the

failure surface as the material softens. A decohesion model is formulated as an

analogy to rate independent plasticity where the decohesion function is analogous

to the yield function, the crack opening displacement vector is analogous to the

plastic strain tensor, and the traction is analogous to the stress tensor. Assuming an

associated failure rule, the crack opening displacement vector evolves as,

[[u̇]] = ω̇
∂F

∂τ
, (3.21)

where ω̇ is a positive monotonically increasing function and is determined from the

consistency condition.

Ḟ = 0. (3.22)

The components of [[u̇]] follow from eq. 3.21:

[[u̇n]] = ω̇
∂F

∂τn
(3.23)

[[u̇t]] = ω̇
∂F

∂τt
(3.24)

[[u̇p]] = ω̇
∂F

∂τp
. (3.25)

The decohesion model is activated if Fmax > 0 at which point the value of the

increment in crack opening displacement is computed such that Fmax ≈ 0, where

Fmax is defined as the largest value of the decohesion function F obtained over the

space of all possible orientations n.
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The remaining part of the formulation shows how to incorporate the decohesion

model into a continuum representation. An additive decomposition is applied where

the total strain e consists of an elastic strain ee and an inelastic strain, denoted the

crack strain ecr, as follows:

e = ee + ecr. (3.26)

The crack strain is computed by casting the crack opening displacement over a

characteristic length Lc. Recall that the fracture energy is dissipated within a finite

region to avoid numerical issues. This finite region has a dimension equal to Lc.

Because we want the crack band to consist of a width of a single element, Lc is on

the order of the element size h. Generally, the crack strain is computed from

ecr =
1

Lc
{[[u]]⊗ n}S, (3.27)

where the superscript S indicates that the symmetric part of the tensor is taken.

Note that a more thorough formalism is introduced in Chapter 4 for handling strong

discontinuities. The stress is evaluated using the elastic part of the strain as follows,

σ = E : ee = E : (e− ecr) , (3.28)

where E is the fourth order elasticity tensor. What is important to note is that

smeared crack methods have in the past used the formalism of eq. 3.28 to compute

the stress. However, using all strain components in e to compute the stress, results

in spurious shear stress because as we know from Chapter 2, a spurious shear strain

arises within the total strain e when a mode-I crack is opened in a finite element.

Now let’s formulate a modification to the standard decohesion model that provides a

way to model mode-I cracks without introducing spurious shear stress in the cracked

element.
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3.3 Failure Model

The key idea behind the failure model is to update the stress in the cracked ele-

ment without introducing spurious shear stress components. This generally can be

considered as a new method for numerically implementing the constitutive equation.

Certain components of the stress are projected out to preclude pollution of the nu-

merical solution due to spurious shear stress. Another important aspect is that the

crack orientation is assumed fixed after crack initiation and does not rotate as is

assumed in the rotating crack model. This allows the actual physical crack path to

be predicted more accurately. First, the generalized constitutive equations will be

derived for mode-I failure that are applicable to a general softening function. The

remaining sections will provide the specific equations for both linear and nonlinear

softening.

3.3.1 Generalized Constitutive Equations

In Section 2.2.1, it was demonstrated that opening a crack in mode-I introduces a

spurious shear strain within the total strain tensor e. For a mode-II crack opening,

a similar analysis showed that spurious normal strains arise. The standard smeared

crack approach that provides a continuum representation of a crack assumes that

the total strain is additively decomposed into an elastic strain ee and a crack strain

ecr as follows:

e = ee + ecr. (3.29)

The stress in the cracked material is then updated using the elastic strain determined

from eq. 3.29 and Hooke’s law as

σcr = E : ee = E : (e− ecr) . (3.30)

Applying the formalism of eq. 3.30 causes spurious shear stress to accumulate in

elements that contain a crack strain because of the spurious shear strain component
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appearing in the total strain e. For example, in a mode-I crack, the crack shear strain

component in the local crack basis ecrnt = 0 because the crack opening displacement

is exclusively in the n direction. However, upon opening a crack, the total strain

component ent is non-zero and spurious as derived in Section 2.2.1. As a result, the

elastic shear strain component eent = ent−ecrnt will be nonzero and this will result in a

nonzero spurious shear stress component σnt. This spurious shear stress component

will then accumulate with the crack opening displacement and will ultimately cause

spurious shear stress transfer across the mesh or shear locking resulting in erroneous

load-deflection curves and crack paths. If the crack surface is parallel to the element

edges, then during a mode-I crack opening, ent = ecrnt = 0 and as a result σnt = 0.

However, this situation in general cannot be assumed if failure at an angle through

a mesh is of interest as is the focus of this dissertation. Therefore, another approach

is required.

From the onset, we will seek a relationship between how the stress in the cracked

element changes with a change in the total strain e that is consistent with the

mode of failure and does not introduce spurious stress components. As mentioned in

Chapter 1, the dissertation research is focused on modeling cracks that are formed

in brittle materials when the material is loaded in tension. The failure mechanism

is predominately due to loss of cohesion and during the failure process the material

cannot sustain much shear loading along the crack surface. For this reason we assume

that during the crack evolution the rate of shear stress in the local crack basis is

approximately zero. As a result, we state the functional forms of the constitutive

equations that govern the failure model as follows:

σ̇nn ≡ σ̇nn (ėnn, ėtt) (3.31)

σ̇tt ≡ σ̇tt (ėnn, ėtt) (3.32)

σ̇nt ≡ 0 (3.33)

where the superscript cr on σ̇nn, σ̇tt, and σ̇nt have been dropped for convenience.
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Let’s also make a strong statement as to what the stresses will not depend on to

alleviate any confusion as follows:

σ̇nn 6≡ σ̇nn (ėnt) (3.34)

σ̇tt 6≡ σ̇tt (ėnt) (3.35)

σ̇nt 6≡ σ̇nt (ėnt) . (3.36)

By stating eqs. 3.34 through 3.36, the condition of spurious free stress in a cracked

element is enforced for the specific finite element formulation and specific finite ele-

ment used. These same equations cannot be stated until a spurious strain analysis

has been conducted for the specific finite element formulation and specific element.

The fundamental difference between the proposed failure model and the equations

of the standard smeared crack approach is that the total shear strain rate ėnt is never

used to compute the stress in the proposed model. The proposed approach doesn’t

require ėnt because the accumulation of shear stress in the local crack basis isn’t

allowed or σ̇nt = 0. Kinematically, this is equivalent to allowing the crack shear

strain rate to evolve such that the elastic shear strain rate is zero or that the shear

crack strain rate is equivalent to the total shear strain rate or ėcrnt = ėnt. Also, note

that the rates can be removed and that the same statements hold for the actual

strain measure, that is to say ecrnt = ent.

The first step is to develop a decohesion function for the material of interest. As

mentioned previously, for modeling mixed mode failure in concrete requires advanced

models [8, 45] that depend on all three traction components. However, for modeling

brittle materials such as concrete under little confining stress, a Rankine failure

model suffices as follows:

F =
τn
τnf
− fs =

σnn
τnf
− fs, (3.37)

where fs is the softening function and τnf is the tensile strength. The failure ori-

entation was provided in the previous section where n is always aligned with the

direction of most tensile principal stress.
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Next, we must define explicitly the stress rate functions which describe how the

stress components change in time. It is convenient to transform the stress tensor

that defines the stress in the cracked material to a vector form that can be more

readily applied in the finite element formulation. Here we invoke the plane stress or

strain assumption which leads to a rate form of the elastic constitutive equation in

matrix form as follows:
σ̇nn

σ̇tt

σ̇nt

 =


C11 C12 0

C12 C22 0

0 0 C33



ėenn

ėett

0

 , (3.38)

where C11, C22, and C33 are elastic constants that depend on which planar assumption

is made and will be defined in Section 4.2.2. Next, we apply the smeared crack

formalism of eq. 3.29. Note that there is only a crack opening displacement in the n

direction. As a result, ecrtt = 0 and therefore ett = eett. The stress rate equations then

become 
σ̇nn

σ̇tt

σ̇nt

 =


C11 C12 0

C12 C22 0

0 0 0



ėnn − ėcrnn

ėtt

0

 . (3.39)

Carrying out the matrix-vector product of eq. 3.39 results in the following explicit

stress rate functions

σ̇nn = C11 (ėnn − ėcrnn) + C12ėtt (3.40)

σ̇tt = C12 (ėnn − ėcrnn) + C22ėtt (3.41)

σ̇nt = 0 (3.42)

Note that we assume that the material is isotropic and as a result the elastic constants

will remain the same for the global and local crack bases. We now require an equation

for the crack strain rate ėcrnn. We apply the rate form of the strong discontinuity eq.

3.27 with 〈u̇〉 = 〈u̇n, 0, 0〉, 〈n〉 = 〈1, 0, 0〉, and Lc = hc resulting in,

ėcrnn =
u̇n
hc
. (3.43)
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Note that the [[ ]] has been dropped on un for convenience. The characteristic

element size hc is defined as,

hc =
h

cos β
, −π

4
≤ β ≤ π

4
(3.44)

hc =
h

sin β
,

π

4
≤ β ≤ 3π

4
, (3.45)

where β is the orientation of n as shown in Figure 3.1(a) and h =
√
A where A is

the element area. The derivation of the failure model will be kept general in terms

of differential functions. As a result, the functional dependencies must be known to

establish which time derivatives to take. We note the variables in F that depend on

time are as follows:

F = F (σnn, fs) . (3.46)

Next, the variables that depend on time in F are identified i. e. σnn, fs, and un:

σnn = σnn (enn, e
cr
nn, ett) (3.47)

fs = fs (un) (3.48)

un = un (enn) . (3.49)

It is hopefully clear at this point that we have not assumed a specific decohesion or

softening function. All that we have assumed is what variables each function depends

on. We have also assumed a specific relationship between the strain rates and stress

rate acting normal to the crack as defined in eq. 3.40.

The objective now is to differentiate F with respect to time considering the

functional dependencies defined previously to obtain Ḟ . The consistency condition

Ḟ = 0 is then applied to obtained the relationship between the crack strain rate

and the total strain rates acting normal and tangential to the crack or we seek

ėcrnn = ėcrnn (ėnn, ėtt). We will then substitute this result into eq. 3.40. Taking the

time derivative of a notional decohesion function F using eq. 3.46 results in

Ḟ =
∂F

∂σnn
σ̇nn +

∂F

∂fs
ḟs. (3.50)
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Next, we apply the functional dependencies of σnn and fs shown in eqs. 3.47 and

3.48 to define their time derivatives as follows:

σ̇nn =
∂σnn
∂enn

ėnn +
∂σnn
∂ecrnn

ėcrnn +
∂σnn
∂ett

ėtt (3.51)

ḟs =
∂fs
∂un

u̇n (3.52)

u̇n =
∂un
∂ecrnn

ėcrnn. (3.53)

Using eqs. 3.51 through 3.53 with eq. 3.50 results in the final form for Ḟ

Ḟ =
∂F

∂σnn

(
∂σnn
∂enn

ėnn +
∂σnn
∂ecrnn

ėcrnn +
∂σnn
∂ett

ėtt

)
+
∂F

∂fs

∂fs
∂un

∂un
∂ecrnn

ėcrnn. (3.54)

Collecting like terms for ėcrnn, ėcrtt , and ėnn results in a simplified form for Ḟ

Ḟ =
∂F

∂σnn

∂σnn
∂enn

ėnn +
∂F

∂σnn

∂σnn
∂ett

ėtt +

(
∂F

∂σnn

∂σnn
∂ecrnn

+
∂F

∂fs

∂fs
∂un

∂un
∂ecrnn

)
ėcrnn. (3.55)

Next, applying the consistency condition Ḟ = 0 and solving for ėcrnn results in one of

our objectives of finding ėcrnn = ėcrnn (ėnn, ėtt) as follows:

ėcrnn =
Ψn

Ψ
ėnn +

Ψt

Ψ
ėtt, (3.56)

where Ψn, Ψt, and Ψ are defined as

Ψn = − ∂F

∂σnn

∂σnn
∂enn

(3.57)

Ψt = − ∂F

∂σnn

∂σnn
∂ett

(3.58)

Ψ =
∂F

∂σnn

∂σnn
∂ecrnn

+
∂F

∂fs

∂fs
∂un

∂un
∂ecrnn

. (3.59)

Finally, substituting eqs. 3.56 through 3.59 into eqs. 3.40 and 3.41 results in the

stress rate functions that we originally set out to discover as follows:

σ̇nn = C11 (1−Ψ∗n) ėnn + (C12 − C11Ψ∗t ) ėtt (3.60)

σ̇tt = C12 (1−Ψ∗n) ėnn + (C22 − C12Ψ∗t ) ėtt (3.61)

σ̇nt = 0, (3.62)
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where Ψ∗n and Ψ∗t are

Ψ∗n = Ψn/Ψ (3.63)

Ψ∗t = Ψt/Ψ. (3.64)

In order to update the stress in a numerical procedure, the incremental form of the

governing equations are more useful. Also, putting the constitutive equations in

matrix form provides the tangent crack stiffness matrix. The incremental matrix

form of eqs. 3.60 through 3.62 for the failure model becomes,
∆σnn

∆σtt

∆σnt

 =


C11 (1−Ψ∗n) (C12 − C11Ψ∗t ) 0

C12 (1−Ψ∗n) (C22 − C12Ψ∗t ) 0

0 0 0




∆enn

∆ett

0

 . (3.65)

The tangent crack stiffness contained in the 3x3 matrix of eq. 3.65 can be applied

to derive hourglass forces for the softening element for use in a one-point Gauss

quadrature scheme as detailed in Section 4.3.2. Note that the crack tangent stiffness

matrix is symmetric even though it appears otherwise.

Next, we must consider the conditions imposed on the normal stress rate σ̇nn.

For a positive increment of total strain normal to the crack enn, a reduction of σnn

must be enforced. Finally, we must ensure that the stress rates remain bounded or

Ψ 6= 0. With these statements and using eqs. 3.60 and 3.61 the following conditions

must be satisfied

Ψ∗n > 1 (3.66)

Ψ 6= 0. (3.67)

The stress is updated by adding the current stress increments to the stress at the

previous increment as follows:

{σcr}n+1 = {σcr}n + {∆σcr}n+1, (3.68)
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where {∆σcr}n+1 is updated using eq. 3.65. The crack opening displacement incre-

ment ∆un is computed by substituting in the incremental form of eq. 3.56 into the

incremental form of eq. 3.53 with use of eqs. 3.63 and 3.64 as follows:

∆un =
∂un
∂ecrnn

∆ecrnn = hc∆e
cr
nn = hc (Ψ∗n∆enn + Ψ∗t∆ett) . (3.69)

The current crack opening displacement is then updated by adding the current crack

opening displacement increment to the previous crack opening displacement with

un+1
n = unn + ∆un+1

n . (3.70)

In summary, we have assumed a specific form for the decohesion function that is

consistent with mode-I failure or failure that depends on the traction normal to the

crack surface. A representation for the crack strain was also assumed that depends

on the crack opening un and the characteristic element size hc. However, the form

for the softening function was kept general. A set of constitutive equations were then

derived to update the crack opening displacement and stress components. Next, let’s

derive specific equations for both linear and nonlinear softening functions.

3.3.2 Linear Softening

Now we assume specific decohesion and softening functions for a brittle material

undergoing mode-I failure. It turns out that only an update for Ψ is required if a

different softening function is assumed. As a result, there is no change to Ψn or Ψt

required from Section 3.3. The complete set of specific equations that are required

to derive the specific Ψn, Ψt, and Ψ are

σnn = C11 (enn − ecrnn) + C12ett (3.71)

F =
σnn
τnf
− f ls (3.72)

f ls = 1− un
u0

(3.73)

ecrnn =
un
hc
→ un = ecrnnhc. (3.74)
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Note that the superscript l on f ls represents the linear softening function. The soft-

ening function decays starting from one at un = 0 to zero at un = u0, where u0 is

the crack opening displacement when τn = 0. Next, the differentials in Ψn, Ψt, and

Ψ can be defined using the specific eqs. 3.71 through 3.74 of the failure model as

follows:

∂F

∂σnn
=

1

τnf
(3.75)

∂σnn
∂enn

= C11 (3.76)

∂σnn
∂ett

= C12 (3.77)

∂σnn
∂ecrnn

= −C11 (3.78)

∂F

∂f ls
= −1 (3.79)

∂f ls
∂un

= − 1

u0

(3.80)

∂un
∂ecrnn

= hc. (3.81)

Substituting eqs. 3.75 through 3.81 into eqs. 3.57 through 3.59 and simplifying we

obtain the specific form of Ψn, Ψt, and Ψ for linear softening as follows:

Ψn = −C11

τnf
(3.82)

Ψt = −C12

τnf
(3.83)

Ψl =
hc
u0

− C11

τnf
, (3.84)

where the superscript l in Ψl represents Ψ for linear softening. Next, we apply the

constraints imposed in eqs. 3.66 and 3.67 as follows:

Ψ∗n =
Ψn

Ψl
> 1→ hc

u0

> 0 (3.85)

Ψl 6= 0→ 1− τnfhc
C11u0

> 0→ hc <
C11u0

τnf
. (3.86)
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The constraint in eq. 3.85 is always satisfied because all of the parameters are

assumed positive. As a result, a negative stress increment will always arise. Finally,

the constraint imposed on the element size hc is a result of precluding snapback

and is a common result. The constraint imposed on the element size can also be

expressed in terms of the fracture energy due to the specific softening function used.

The fracture energy is determined by integrating τn = τn(un) over the interval [0, u0]

as follows:

GfI = Gf =

∫ u0

0

τndun =

∫ u0

0

τnff
l
sdun =

1

2
u0τnf . (3.87)

Because Gf and τnf are considered material properties, we can estimate u0 if the

fracture energy is known with

u0 =
2Gf

τnf
. (3.88)

Subsituting in eq. 3.88 into the constraint on the element size in eq. 3.86 we obtain

hc <
2C11Gf

τ 2
nf

. (3.89)

Once eqs. 3.82 through 3.84 are substituted into eqs. 3.65 and 3.69, the updates

for the crack opening displacement and the stress components become explicit with

application of eqs. 3.68 and 3.70. Next, let’s consider a failure model that uses a

nonlinear softening function.

3.3.3 Nonlinear Softening

A linear softening function is useful for investigating the performance of the algo-

rithm in mode-I model problems (see Section 5.2) because the resulting slope of the

load-deflection curve is constant. This allows convenient study of mesh orientation

bias and convergence. However, the shape of the load-deflection curve in some ex-

periments (see Section 5.3) is nonlinear. As a result, to simulate experiments more

accurately, a nonlinear softening function is often useful.
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We choose an exponential decay function as follows:

fnls = exp

(
−αun

u0

)
, (3.90)

where α is a positive constant that determines the value of fnls for un = u0, and u0 is

a parameter used to obtain the appropriate fracture energy. The only modification

to the specific equations for nonlinear softening is for ∂fnls /∂un with

∂fnls
∂un

= − α
u0

exp

(
−αun

u0

)
. (3.91)

Substituting in eq. 3.91 into eq. 3.59, results in the specific form of Ψ for nonlinear

softening,

Ψnl =
αhc
u0

exp

(
−αun

u0

)
− C11

τnf
. (3.92)

For nonlinear softening, the crack opening displacement and stress increments now

depend on the crack opening un because Ψnl now depends on un. Substituting eq.

3.92 into eq. 3.69 results in

∆un =
hc (C11∆enn + C12∆ett)

C11 −
αhcτnf
u0

exp

(
−αun

u0

) . (3.93)

For simplicity we use an explicit update for the crack opening displacement increment

at the current increment n+ 1 as follows:

∆un+1
n =

hc
(
C11∆en+1

nn + C12∆en+1
tt

)
C11 −

αhcτnf
u0

exp

(
−αu

n
n

u0

) , (3.94)

where unn is the crack opening displacement at the previous increment n. The crack

opening displacement at the current increment un+1
n is then updated using eq. 3.70.

The stress update follows that of eqs. 3.65 and 3.68. The resulting constitutive

equations remain explicit and therefore no iterations are required.
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Next, we apply the constraints imposed in eqs. 3.66 and 3.67 as follows:

Ψ∗n =
Ψn

Ψnl
> 1→ αhc

u0

exp

(
−αun

u0

)
> 0 (3.95)

Ψnl 6= 0→ C11

τnf
− αhc

u0

exp

(
−αun

u0

)
> 0→ hc <

C11u0

τnf exp

(
−αun

u0

) . (3.96)

The constraint imposed in eq. 3.95 is always satisfied because the exponential func-

tion is always positive and α, hc, and u0 are assumed positive constants. The smallest

constraint on hc imposed in eq. 3.96 is for un = 0 and it is the same constraint re-

quired for linear softening.

Following eq. 3.87, the fracture energy becomes

Gf =

∫ u0

0

τndun =

∫ u0

0

τnff
nl
s dun =

u0τnf
α

[1− exp(−α)] . (3.97)

As in the previous section, if Gf is known, then u0 can be estimated by applying eq.

3.97 as follows:

u0 =
αGf

τnf [1− exp(−α)]
. (3.98)

3.3.4 Concluding Remarks

In the previous section, a set of constitutive equations were presented to compute

the stress in an element undergoing failure. The symmetry in the stress tensor

is contained in Ψn and Ψt, which allows Ψ to take a general form. The form of

the softening function is contained in Ψ and as a result Ψn and Ψt will remain

unchanged if a different softening function is used. For implementation of the failure

model into an existing finite element code, it is recommended that the stress and

crack opening displacement relations that contain Ψ∗n and Ψ∗t be used to simplify the

implementation. As a result, only an update to Ψ is required if a different softening

function is used. This also helps simplify the hourglass force implementation as

discussed further in Section 4.3.2.
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Algorithm

This chapter provides the numerical algorithm that employs the following compo-

nents: (i) standard finite element formulation, (ii) failure model proposed in Chapter

3, (iii) new hourglass control methods, (iv) crack tracking algorithm, and (v) the

complete numerical algorithm.

First, the strong form of the governing equations is presented followed by the weak

form. The resulting set of finite element equations are then provided. Next, new

hourglass control methods are derived that exactly reproduce four-point quadrature

when only one integration point is employed and do not require hourglass coefficients

when applied to square, rectangular, or parallelogram quadrilateral elements. The

crack tracking algorithm is presented next which provides the correct crack path.

Finally, the complete numerical algorithm is detailed for explicit time integration.
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Figure 4.1: Solid Continuum Domain

4.1 Governing Equations

4.1.1 Kinematics

Consider a solid material domain Ω ∈ R3 with positive density ρ ∈ R and boundary

∂Ω with displacement and traction boundary conditions applied to ∂Ωu and ∂Ωt,

respectively, such that ∂Ω = ∂Ωu∪∂Ωt as shown in Figure 4.1. The material domain

is assumed to follow small deformation kinematics. As a result, the reference and

deformed configurations are the same. The location of a point P in Ω is defined

with the position vector x ∈ Ω, where x is defined using the Cartesian basis vectors

x = x1e1 + x2e2 + x3e3. Let the possibility exist for a discontinuity to form due

to a crack opening with displacement [[u]] such that a new surface S is formed

creating two sub-domains Ω− and Ω+. The crack boundary S is defined by the

normal vector n and tangential vectors t and p, respectively, where n · t = 0 and

n × t = p. Following the strong discontinuity formulation presented in the works
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of Oliver [46, 47] and Sanchez [45], the displacement field at x and at time t can be

described in terms of regular (continuous) ū(x, t) and discontinuous HS(x)[[u]](x, t)

components as follows:

u(x, t) = ū(x, t) +HS(x)[[u]](x, t), (4.1)

where HS(x) is the Heaviside step function defined from

HS(x) =

1 ∀ x ∈ Ω+

0 ∀ x ∈ Ω−
(4.2)

The strain is computed by taking the symmetric part of the gradient of the displace-

ment field from eq. 4.1 as follows:

e(x, t) = (∇u)S = (∇ū)S +HS (∇[[u]])S + δS ([[u]]⊗ n)S , (4.3)

where δS is the Dirac delta function. The first two terms of eq. 4.3 represent the

regular or continuous strain ē(x, t). Hence we can write the total strain as follows:

e(x, t) = ē(x, t) + (∇[[u]])S + δS ([[u]]⊗ n)S . (4.4)

Because δS is singular it must be regularized. The regularization gives a function

that can be evaluated pointwise. We follow the method proposed in [48] where

the discontinuity is assumed with finite dimension Lc over the domain ΩLc . The

characteristic length Lc is equal to the size of the crack band dimension or the

characteristic element size hc as discussed in Chapter 3. A regularized version of the

Dirac delta function is expressed as,

δLc
S =


1

Lc
∀ x ∈ ΩLc

0 ∀ x ∈ Ω/ΩLc

(4.5)
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4.1.2 Constitutive Equations

The stress update in the material follows that of the failure model for mode-I cracks

derived in Chapter 3. However, the model is generalized to three-dimensions here.

The stress in the continuous material is computed from Hooke’s law as follows,

σ = E : ee ∀ x ∈ Ω/S. (4.6)

where the elastic strain ee is computed from

ee(x, t) = (∇u)S ∀ x ∈ Ω/S, (4.7)

Recall that σ is the Cauchy stress. If failure has initiated or if the decohesion function

F > 0, then the stress is updated based on a stress increment tensor ∆σcr as follows:

σcr = σcr
n + ∆σcr ∀ x ∈ S, (4.8)

where σcr
n is the stress from the previous increment. The decohesion function defined

in Section 3.3 is the following:

F =
τn
τnf
− fs =

σnn
τnf
− fs, (4.9)

where fs is defined either for linear or nonlinear softening using eqs. 3.73 or 3.90,

respectively. The components of the stress increment tensor in the crack basis is

built to accommodate mode-I failure in the crack basis as follows:

[∆σcr] =


∆σnn 0 0

0 ∆σtt 0

0 0 0

 , (4.10)

where the stress increment components ∆σnn and ∆σtt are defined using equation

3.65.
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4.1.3 Initial Boundary Value Problem Statement

The governing equations that predict the response of a solid material domain Ω

with boundary ∂Ω at time t as shown in Figure 4.1 are provided. Without the

consideration of thermodynamic effects, the governing equations are the conservation

of linear and angular momentum

ρü = ∇ · σ + ρf ∀ x ∈ Ω, t ≥ 0 (4.11)

σ = σT ∀ x ∈ Ω, t ≥ 0, (4.12)

where ü(x, t) is the acceleration of a material point P with density ρ(x, t) located

at x and f(x, t) is the body force per unit mass acting at point P for all x ∈ Ω and

t ≥ 0.

Because the governing equation involves a partial differential equation (PDE) of

order two with respect to time, the initial displacement u(x, 0) = u0(x) and velocity

u̇(x, 0) = u̇0(x) must be specified for all points x ∈ Ω. These requirements represent

the initial conditions. In addition, the requirements for all points on the boundary

x ∈ ∂Ω for all time t ≥ 0 must be specified. These set of requirements are the

boundary conditions. In this instance, the displacement boundary conditions are

applied to all x ∈ ∂Ωu such that u(x, t) = g(x, t). The traction boundary conditions

are applied to all x ∈ ∂Ωt such that σ(x, t) · v = h(x, t), where v is the unit normal

vector of ∂Ωt. The initial and boundary conditions are summarized below:

u(x, 0) = u0(x) ∀ x ∈ Ω

u̇(x, 0) = u̇0(x) ∀ x ∈ Ω

u(x, t) = g(x, t) ∀ x ∈ ∂Ωu

σ(x, t) · v = h(x, t) ∀ x ∈ ∂Ωt.

The strong form of the initial boundary value problem can now be stated. Given

ρ(x, t), f(x, t), u̇0(x), u0(x), g(x, t), and h(x, t), find u(x, t) such that the following
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equations are satisfied:

ρü = ∇ · σ + ρf ∀ x ∈ Ω, t ≥ 0 (4.13)

u(x, 0) = u0(x) ∀ x ∈ Ω (4.14)

u̇(x, 0) = u̇0(x) ∀ x ∈ Ω (4.15)

u(x, t) = g(x, t) ∀ x ∈ ∂Ωu (4.16)

σ(x, t) · v = h(x, t) ∀ x ∈ ∂Ωt, (4.17)

where the stress in the material is computed as follows:

σ = E : ee ∀ x ∈ Ω/S (4.18)

σ = σcr ∀ x ∈ S (4.19)

σ · n = τ = σcr · n ∀ x ∈ S (4.20)

ee = (∇u)S ∀ x ∈ Ω/S. (4.21)

The stress in the crack basis σcr is updated following eqs. 4.8 through 4.10.

4.2 Finite Element Formulation

The finite element formulation given is a standard formulation following that given

by Hughes [4]. However, rather than forming a stiffness matrix, nodal forces are

computed directly from the stress that is computed explicitly. This allows a general

constitutive model to be applied.

4.2.1 Weak Form

The algorithms that are used to simulate the response of the material body Ω are

based on a set of finite element equations that are valid for a subdomain of Ω denoted

Ωe or the domain of a single finite element. However, before these finite element
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equations can be derived, the weak form of eq. 4.13 must be available. In simple

terms, the weak form is obtained by forming a residual version of the strong form of

eq. 4.13 and then integrating over the problem domain Ω the product of the residual

with a weight function or variation of the solution w(x, t) as follows:∫
Ω

w · (ρü−∇ · σ − ρf) dΩ (4.22)

The evaluation of the second term of eq. 4.22 requires further attention. By applying

the product rule of differentiation, the second term can be expressed as

−
∫

Ω

w · ∇ · σdΩ =

∫
Ω

∇w : σdΩ−
∫

Ω

∇ · (w · σ) dΩ. (4.23)

The divergence theorem can be applied to the last term in eq. 4.23 resulting in∫
Ω

∇ · (w · σ) dΩ =

∫
∂Ω

w · σ · nd∂Ω =

∫
∂Ω

w · τd∂Ω. (4.24)

But w is required to be zero on ∂Ωu therefore∫
∂Ω

w · τd∂Ω =

∫
∂Ωt

w · τd∂Ωt. (4.25)

Subsituting eqs. 4.23 through 4.25 into eq. 4.22, the weak form of eq. 4.13 becomes∫
Ω

w · ρüdΩ = −
∫

Ω

∇w : σdΩ +

∫
∂Ωt

w · τd∂Ωt +

∫
Ω

w · ρfdΩ. (4.26)

For simplicity, let’s assume that no body forces such as gravity act on Ω or f = 0.

The final weak form simplifies to∫
Ω

w · ρüdΩ = −
∫

Ω

∇w : σdΩ +

∫
∂Ωt

w · τd∂Ωt. (4.27)

4.2.2 Discrete Finite Element Equations

The weak form ultimately involves a sum of integrals over Ωe, the local element do-

main, that are evaluated using shape functions and their derivatives over an isopara-

metric element in the parent {ξ, η} domain. These integrals ultimately become
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sums over the quadrature points in the parent domain after Gauss quadrature is

implemented. The global effect of all the element domain quantities are captured

through an assembly process where the nodal force contributions from each element

are summed and placed into a global nodal force vector. For simplicity, the finite

element equations will be formulated in two dimensions with coordinates {x1, x2}
and basis vectors {e1, e2}. Also, here we assume that {x, y} = {x1, x2}.

The first step in the process of deriving the local element integrals from the weak

form is to express Galerkin approximations to the weight function w and the solution

u using element shape functions. Then the components of w and u are represented

as follows:

whi (x, t) =
Nn∑
A=1

NA(x)wiA(t) (4.28)

uhi (x, t) =
Nn∑
A=1

NA(x)uiA(t), (4.29)

where NA(x) are the shape functions, wiA(t) and uiA(t) are the values of whi (xA, t)

and uhi (xA, t) at the nodes, and the numbered subscripts on wiA and uiA represent

the components in the ei direction. The general procedure is to factor out the

summations and the wiA terms from the integrals that will allow the derivation of

the internal force vector, external force vector, and the mass matrix. First, let’s

convert eq. 4.27 into indicial notation as follows1:

E1 = E2 + E3, (4.30)

where

E1 =

∫
Ω

ρwiüidΩ (4.31)

1T : S = TS : S, where T is a nonsymmetric tensor, S is a symmetric tensor, and TS is
the symmetric part of T. This relation is used in the term E2.
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E2 = −
∫

Ω

wi,jσi,jdΩ (4.32)

E3 =

∫
∂Ω

wiτid∂Ω. (4.33)

Now eqs. 4.28 and 4.29 are substituted into eq. 4.30 to obtain

E1 = δij

∫
Ω

ρ

Nn∑
A=1

NA(x)wiA(t)
Nn∑
B=1

NB(x)üjB(t)dΩ (4.34)

E2 = −
∫

Ω

Nn∑
A=1

NA,j(x)wiA(t)σij(x, t)dΩ (4.35)

E3 =

∫
∂Ω

Nn∑
A=1

NA(x)wiA(t)τi(x, t)d∂Ω. (4.36)

Simplifying eqs. 4.34 through 4.36 results in,

E1 =
Nn∑
A=1

wiA(t)
Nn∑
B=1

δij

(∫
Ω

ρNA(x)NB(x)dΩ

)
üjB(t) (4.37)

E2 = −
Nn∑
A=1

wiA(t)

∫
Ω

NA,j(x)σij(x, t)dΩ (4.38)

E3 =
Nn∑
A=1

wiA(t)

∫
∂Ω

NA(x)τi(x, t)d∂Ω. (4.39)

By substituting E1, E2, and E3 into eq. 4.30 and observing that the result is satisfied

for all wiA subject to the conditions that wiA = 0 on ∂Ωu, the discrete finite element

equations reduce to

[M ]{ü} = {F}I + {F}E, (4.40)

where [M ] is the mass matrix, {F}I is the internal nodal force vector, and {F}E

is the external nodal force vector. The mass matrix and nodal force vectors can be

thought of as a sum of integral contributions over each element area Ae as follows:

[M ] =
∑∫

Ae

[m]dAe (4.41)

{F}I =
∑∫

Ae

{f}IdAe (4.42)

{F}E =
∑∫

Ae

{f}EdAe, (4.43)
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where the components of the local element mass matrix [m] and local element internal

and external nodal force vectors {f}I and {f}E are

mpq = δij

∫
A

ρNA(x)NB(x)dA (4.44)

f Ip = −
∫
A

BA
ik(x)σvk(x, t)dA (4.45)

fEp =

∫
∂Ωt

NA(x)τi(x, t)dA. (4.46)

Note that the indices p and q are used for convenience to populate computational

arrays. They represent positions within the finite element arrays and this convention

is used in [4]. The indices p and q are

p = Ndof (A− 1) + i, for A = 1...Nen, i = 1...Ndof (4.47)

q = Ndof (B − 1) + j, for B = 1...Nen, j = 1...Ndof . (4.48)

where Nen are the number of nodes per element and Ndof is the number of degrees of

freedom per node. Note that for the 4-node quad Nen = 4 and with nodal displace-

ments in the e1 and e2 directions Ndof = 2. The matrix [B]A is filled with shape

function derivatives as follows:2.

[
BA
]

=

NA,x 0 NA,y

0 NA,y NA,x

 , A = 1..4 (4.49)

The respective stress and strain vectors are

{σv} =


σxx

σyy

σxy

 (4.50)

{ev} =


exx

eyy

2exy

 , (4.51)

2[B]A is actually the transpose of the matrix usually used in common textbooks.

59



Chapter 4. Algorithm

where the strain components are computed using eqs. 2.21 through 2.23. Given

the stress and strain vectors defined in eqs. B.9 and B.10, the elasticity matrix

[C], a matrix version of the fourth order elasticity tensor E, can be defined. With

assumptions of isotropy, the number of elastic constants reduces to two. For x ∈ Ω/S,

[C] is defined below for plane stress and plane strain, respectively.

[C] =
Y

1− ν2


1 ν 0

ν 1 0

0 0 1−ν2
2(1+ν)

 (Plane− Stress) (4.52)

[C] =
Y

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1
2
− ν

 (Plane− Strain) (4.53)

where Y is Young’s modulus and ν is Poisson’s ratio. For x ∈ Ω/S, the stress is

computed as follows:

{σv} = [C] {ev} (4.54)

The discrete finite element equations are now in terms of the global coordinates x

because the shape functions and their derivatives are evaluated at x and the limits of

the integrals are also in the global coordinates. Figure 2.1 shows an arbitrary quadri-

lateral element in the global {x, y} domain and {ξ, η} parent domain. Isoparametric

mapping will be applied next to transform the finite element equations to a more

user friendly domain.

4.2.3 Isoparametric Mapping and Gauss Quadrature

The isoparametric element in the {ξ, η} coordinate system with four quadrature

points is shown in Figure 4.2(a) and with one integration point in Figure 4.2(b). The

shape functions were provided in eqs. 2.1 through 2.4, the shape function derivatives

in {ξ, η} were provided in eqs. 2.5 through 2.12, and the shape function derivatives
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(a) Four Integration Points
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(ξ̃1, η̃1)

(b) One Integration Point

Figure 4.2: 4-node Quadrilateral Isoparametric Element

in {x, y} that are required to evaluate [B]A are shown in eqs. 2.24 through 2.25. The

important equations are repeated for convenience below.

NA,x =
NA,ξy,η −NA,ηy,ξ

J
, for A = 1..Nen

NA,y =
−NA,ξx,η +NA,ηx,ξ

J
, for A = 1..Nen,

where J is the determinant of the Jacobian and is written as,

J = x,ξy,η − y,ξx,η.

The derivatives of the global coordinates with respect to the local coordinates can be

computed by summing over the nodes the product of the shape function derivatives

and the nodal coordinates as follows:

x,ξ =
4∑
i=1

Ni,ξx
e
i

y,ξ =
4∑
i=1

Ni,ξy
e
i
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x,η =
4∑
i=1

Ni,ηx
e
i

y,η =
4∑
i=1

Ni,ηy
e
i ,

where {xei , yei } are the global nodal coordinates. The shape function derivatives in

{ξ, η} are shown below.

N1,ξ =
1

4
(η − 1), N2,ξ =

1

4
(1− η), N3,ξ =

1

4
(1 + η), N4,ξ =

1

4
(−1− η)

N1,η =
1

4
(ξ − 1), N2,η =

1

4
(−1− ξ), N3,η =

1

4
(1 + ξ), N4,η =

1

4
(1− ξ).

The local element mass matrix and internal nodal force vector in the {ξ, η} domain

can be evaluated using J(ξ, η) as follows:

mpq = δijteρ

∫ 1

−1

∫ 1

−1

NA(ξ, η)NB(ξ, η)J(ξ, η)dξdη (4.55)

f Ip = −te
∫ 1

−1

∫ 1

−1

BA
ik(ξ, η)σvk(ξ, η, t)J(ξ, η)dξdη, (4.56)

where te is the constant thickness out of plane and a constant density ρ is assumed

for simplicity. Applying Gauss quadrature at the coordinates {ξ̃, η̃} and using a

Gauss weight W for the lth quadrature point results in the approximation of the

local element mass matrix and internal nodal force vector,

mpq ≈ δijteρ

Nint∑
l=1

NA(ξ̃, η̃)NB(ξ̃, η̃)J(ξ̃, η̃)Wl (4.57)

f Ip ≈ −te
Nint∑
l=1

BA
ik(ξ̃, η̃)σvk(ξ̃, η̃, t)J(ξ̃, η̃)Wl, (4.58)

where W = 4 ∀ l for one integration point and W = 1 ∀ l for four integration

points. The quadrature point coordinates are shown in Figure 4.2.
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4.2.4 Time Integration

The finite element or Galerkin equations that are to be solved are from eq. 4.40 and

repeated below.

[M ]{ü} = {F}I + {F}E

The global mass matrix [M ] and the global force vectors {F}I and {F}E are com-

puted by assembling all of the local element contributions. A lumped mass matrix

[M ]D is used in the algorithm where [M ]D is formed by adding the rows of [M ] and

placing the values along the diagonal of an empty matrix [M ]D.

Let {u}k, {v}k, and {a}k be numerical approximations to {u(tk)}, {u̇(tk)}, and

{ü(tk)}, respectively. The time tk at time increment k is defined with tk = k∆t for

k = 0, 1...Ns, where ∆t is the time step and Ns is the number of time increments. Let

the inverses of the lumped masses be stored in a vector {m}d, where each element of

{m}d represents the inverse of the row sum of the consistent mass matrix [M ]. The

ith component of the acceleration, velocity, and displacement are approximated for

the k or k + 1 time increment using the following explicit time integrator:

aki = md
i

[(
F I
i

)k
+
(
FE
i

)k]
(4.59)

vk+1
i = vki + ∆taki (4.60)

uk+1
i = uki + ∆tvk+1

i . (4.61)

The prescribed displacement boundary conditions are imposed by simply overwriting

uk+1
i in the appropriate positions. The time integration scheme provided is condi-

tionally stable. A necessary, but not sufficient condition for stability requires that

the time step be no larger than the time th it takes a wave of speed c to travel a

distance hct, where hct is a good estimate for the smallest element dimension in the

discretization. The transit time is th = hct/c. The stability requirement goes as

follows:

∆t ≤ NCFLth ≤ NCFL
hc
c
≤ NCFL

hc√
Y/ρ

, (4.62)
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where Y is Young’s modulus and NCFL ≡ 1 and is known as the Courant-Friedrichs-

Lewy number or CFL number. The stability condition imposed on ∆t is referred to

as the CFL condition. The actual wave speed in the material might be difficult to

estimate. As a result, a safety factor Nsf is typically used to prevent instabilities as

follows:

∆t ≤ NsfNCFL
hc√
Y/ρ

, (4.63)

where Nsf ≤ 1. An example could be Nsf = 0.8.

4.2.5 Viscous Damping

The discrete finite element equations in 4.40 predict dynamic wave propagation where

waves will travel back and forth across Ω as they reflect off the boundary ∂Ω. How-

ever, the experiments that we seek to simulate, are quasi-static. As a result, the

wave mechanics part of the solution is not that important in this instance. Viscous

nodal damping can easily be added to force the solution to a quasi-static state much

more rapidly thereby reducing simulation run times. Without going through the

derivation, a damping term in the finite element equations can be added as follows:

[M ]{ü}+ [C]{u̇} = {F}I + {F}E. (4.64)

The viscous damping matrix [C] is commonly expressed as a scalar product of the

mass matrix [M ] or [C] = c[M ], where c is the viscous damping coefficient. Substi-

tuting [C] into eq. 4.64 and solving for the acceleration results in

{ü} = [M ]−1
(
{F}I + {F}E − [C]{u̇}

)
(4.65)

= [M ]−1
(
{F}I + {F}E − c[M ]{u̇}

)
(4.66)

= [M ]−1
(
{F}I + {F}E

)
− c{u̇}. (4.67)
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The resulting time integration scheme becomes

aki = md
i

[(
F I
i

)k
+
(
FE
i

)k]− cvki (4.68)

vk+1
i = vki + ∆taki (4.69)

uk+1
i = uki + ∆tvk+1

i , (4.70)

where no sum on i is implied. Comparing the time integration schemes with and

without damping shows that only one extra term is required during the computation

of aki as shown in eq. 4.68. The critical time step may be affected by damping [49],

but this analysis is beyond the scope of this dissertation. For now we will let the

safety factor Nsf take care of such possibilities.

4.3 Hourglass Control

In order to compute the local element internal nodal force vector, the stress at each

quadrature point and every element must be computed for every time step in explicit

dynamic solvers. For iterative methods that solve the static problem, the constitutive

model must be evaluated for each iteration for every quadrature point and element.

Initially, reduced integration was used to alleviate locking when the material becomes

incompressible. Here we note the importance of reducing the number of constitutive

model evaluations as much as possible. Reduced integration serves this purpose. For

the 4-node quadrilateral element, reduced integration involves evaluating the internal

force vector using one integration point located at the center of the element. In

comparison, full integration requires four integration points or quadruple the number

of constitutive evaluations. For 3D applications, the computational savings is even

more dramatic. However, using reduced integration leads to the activation of zero

energy modes which results in errors in the solution and distortions in the mesh that

have an hourglass (HG) shape. Methods that correct these errors are called hourglass

control methods (HGM). A common HGM used today in many commercial and
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government finite element codes was developed by Flanagan and Belytschko (FB) in

1981 [50]. This method derives a set of hourglass forces that are added to the local

element nodal force vectors to remove the hourglass mode. However, an hourglass

control coefficient is required which quite often requires a trial and error approach to

optimize. For many problem types such as elasticity, the results are not too sensitive

to the errors introduced by the HGM. However, for modeling softening, the HGM

must be more precisely defined.

A set of two new hourglass control methods are derived to alleviate the errors

and ambiguity generated by existing methods for a hardening element and a soft-

ening element. Here we define a hardening element to be an element whose stress

increases with an increase in total strain. In contrast, a softening element undergoes

a reduction in stress with an increase in total strain.

4.3.1 Hardening Element

Derivation of Exact Hourglass Forces

The procedure for deriving the exact hourglass forces that reproduce full integra-

tion is straightforward although algebraically cumbersome. This is the most direct

approach to understanding what information gets lost when going from full or four-

point quadrature to reduced or one-point quadrature. A similar and quite thorough

analysis that considers the stiffness matrix to be additively composed into a stiffness

matrix obtained from one-point integration and a stabilization matrix is provided

in Liu et. al. [51] for several element types. Full integration is required to get the

optimal accuracy, but not needed to maintain the rate of convergence with mesh

refinement in continuous problems. The idea is to add this missing information back

to the nodal force vector when using reduced integration with simple equations.

An algebraic manipulation package Maple [52] was used to perform the symbolic

quadrature operations.
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The procedure is first to evaluate the 8 × 8 stiffness matrix following Gauss

quadrature symbolically using four integration points for a single element. Next, the

procedure is repeated with only one integration point. Subtracting these two results

generates a Gauss quadrature stiffness error matrix. The exact hourglass corrective

forces are derived by multiplying the stiffness error matrix by the 8×1 local element

displacement vector. The resulting exact hourglass forces are algebraically simple for

square, rectangular, and parallelogram shaped elements. However, for an arbitrary 4-

node quad, the resulting equations are algebraically too complicated to be practically

used in a code. Because many meshes are structured and contain simple element

geometries, this method is still applicable to many problems.

The local element stiffness matrix [k]e for a unit thickness single element is com-

puted by the following integral over the element area in the {x, y} coordinate system

as follows:

kepq = eTi

∫∫
[B]A[D]{[B]B}TdAej. (4.71)

Similarly, the same integral over the parent domain {ξ, η} is

kepq = eTi

∫ 1

−1

∫ 1

−1

[B]A[D]{[B]B}TJdξdηej. (4.72)

The corresponding Gauss quadrature formula that approximates the preceding inte-

gral can be written as follows:

kepq ≈ eTi

Nint∑
l=1

[B]A[D]{[B]B}TJWlej, (4.73)

where [B]A/[B]B are defined by eq. 4.49, [D] is a generalized material stiffness matrix

that can be used either for a hardening element or a softening element, J with eq.

2.26 and W = 4 ∀ l for one integration point and W = 1 ∀ l for four integration

points. Note also that p = Ndof (A − 1) + i for A = 1..4 and q = Ndof (B − 1) + j

for B = 1..4 where Ndof is the number of degrees of freedom per node which equals

two in this instance. Also, [B]A and [B]B are evaluated for the Ath and Bth shape
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Figure 4.3: Hourglass Control Element Geometry

function at the lth quadrature point in the parent domain, respectively. Finally, eTi

and ei are the ith component of the basis vectors e1 and e2, where i = 1..2 and

j = 1..2. The reason why the basis vectors show up here is that for each A and B a

2× 2 submatrix is formed. The ej term chooses the proper column of the submatrix

and the eTi term chooses the proper row of this column to define the correct kepq

term. For example, the ke11, ke12, ke21, and ke22 terms of the stiffness matrix would

use A = 1, B = 1, i = 1..2, and j = 1..2. Another way to look at it is that the A

and the B indices choose which submatrix to compute, while the i and the j indices

choose which elements of the submatrix to extract. Of course, these terms must be

summed over the quadrature points. Now, we form the quadrature error matrix that

will provide exactly what the differences are between full and reduced integration as

follows:

[E]e = [k]e4 − [k]e1, (4.74)

where [k]e4 is the stiffness matrix computed symbolically using four integration points

and [k]e1 is the stiffness matrix computed symbolically using one integration point.

The exact hourglass force vector for a single element becomes,

{f}hg = [E]e{u}, (4.75)

where 〈u〉 = 〈u1, v1, u2, v2, u3, v3, u4, v4〉.
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Consider the element shown in Figure 4.3 of height a, width b, offset δ and thick-

ness te. The corresponding hourglass forces that exactly reproduce full integration

for an arbitrary material stiffness matrix [D] are as follows:

{fhg} = te



fhg1

fhg2

−fhg1

−fhg2

fhg1

fhg2

−fhg1

−fhg2



, (4.76)

where fhg1 and fhg2 are defined as

fhg1 =
1

12

[
a

b
D11 +

(
b

a
+
δ2

ba

)
D33

]
ū− 1

12

δ

b
(D33 +D12) v̄ (4.77)

fhg2 = − 1

12

δ

b
(D33 +D12) ū+

1

12

[
a

b
D33 +

(
b

a
+
δ2

ba

)
D22

]
v̄. (4.78)

In addition the terms ū and v̄ are functions of the nodal displacements in the x and

y directions written respectively as

ū = u1 − u2 + u3 − u4 (4.79)

v̄ = v1 − v2 + v3 − v4. (4.80)

The material stiffness matrix [D] is assumed to have the following form:

[D] =


D11 D12 0

D12 D22 0

0 0 D33

 . (4.81)

To obtain {fhg} for a rectangle set δ = 0 and for a square set δ = 0 and a = b. If the

material stiffness [D] is equal to the material stiffness for plane stress or eq. 4.52,
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then the resulting hourglass force components become

fhg1 =
Y te

24 (ν2 − 1)
[K1 (u1 − u2 + u3 − u4)−K3 (v1 − v2 + v3 − v4)] (4.82)

fhg2 =
Y te

24 (ν2 − 1)
[−K3 (u1 − u2 + u3 − u4) +K2 (v1 − v2 + v3 − v4)] , (4.83)

with K1 and K2 defined as

K1 =
b

a
(ν − 1)− 2

a

b
+
δ2

ab
(ν − 1) (4.84)

K2 =
a

b
(ν − 1)− 2

b

a
− 2δ2

ab
(4.85)

K3 =
δ

b
(ν + 1) . (4.86)

Comparisons to the FB Hourglass Approach

Next, we focus on comparing the algebraic equations that result from the FB method

to the hourglass forces that were just derived. Normally, the hourglass coefficient

used in the FB method isn’t known a priori. This section provides a way compute

the optimum hourglass coefficient for the FB method. If the hourglass forces from

the FB method [50] are derived symbolically for the parallelogram element in Figure

4.3, the resulting FB hourglass force vector {fhgFB} becomes

{fhgFB} =
(ν − 1)Y te

128 (1 + ν) (2ν − 1)



κfb
a

b
(u1 − u2 + u3 − u4)

κfb
b2 + δ2

ab
(v1 − v2 + v3 − v4)

−κfb
a

b
(u1 − u2 + u3 − u4)

−κfb
b2 + δ2

ab
(v1 − v2 + v3 − v4)

κfb
a

b
(u1 − u2 + u3 − u4)

κfb
b2 + δ2

ab
(v1 − v2 + v3 − v4)

−κfb
a

b
(u1 − u2 + u3 − u4)

−κfb
b2 + δ2

ab
(v1 − v2 + v3 − v4)



, (4.87)
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where κfb is the hourglass coefficient used in the FB method. Now comparing the

exact hourglass force vector shown in eqs. 4.76 through 4.78 with the FB hourglass

forces shown in eq. 4.87, we can make a few interesting observations. First, the

FB approach will always contain error for nonsquare elements no matter what hour-

glass coefficent is used. This is because it uses one hourglass coefficient per spatial

dimension κfb. If δ = 0 is substituted into the exact hourglass forces in eq. 4.84

through 4.86, then K3 = 0 and we essentially obtain two separate coefficients that

operate on fhg1 and fhg2 . As a result, in order for the FB method to reproduce full

integration it would need two hourglass coefficients κ1 and κ2, but it only uses one.

Further, for the parallelogram element, notice how the exact hourglass force compo-

nents have coupled displacements ui and vi which arises for δ 6= 0. However, for the

FB hourglass force components ui and vi are never coupled.

We compare the two methods for a simple reason. That is because it is possible

to make a trivial modification to the FB approach such that it becomes exact for

the square and rectangular element. This modification is to add a κi to FB where

i = 1..Nsd, where Nsd is the number of spatial dimensions. By enforcing the condition

where {fhg} = {fhgFB}, it is possible to derive the optimum hourglass coefficients κ1

and κ2 such that FB becomes exact. The optimum hourglass coefficients are shown

below for a square and rectangular element. Note that in order for the FB method

to be exact for a parallelogram element, both κ1 and κ2 would need to depend on the

nodal displacements. As a result, each element would need to have its own hourglass

coefficients. We introduce this modification because the FB method is so widely used

in the finite element community and improving it is rather simple. The key point

however is that FB still works for an arbitrary element geometry, whereas, the exact

hourglass forces are only exact for specific element geometries.

We also note that another type of coefficient could be introduced into the proposed

hourglass control method denoted an antilocking coefficient. It is known that full

integration may introduce locking into an element. Because the proposed approach
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is equivalent to full integration, it may be susceptible to locking for incompress-

ible materials. By introducing another coefficient, the antilocking effects of reduced

integration could be obtained.

κ1 = κ2 =
16 (ν − 3) (2ν − 1)

3 (ν − 1)2 (square) (4.88)

κ1 =
16 (2ν − 1)

3 (ν − 1)2

[
b2

a2
(ν − 1)− 2

]
(4.89)

κ2 =
16 (2ν − 1)

3 (ν − 1)2

[
a2

b2
(ν − 1)− 2

]
(rectangle) (4.90)

4.3.2 Softening Element

For an element undergoing softening, a similar hourglass force derivation procedure

that was used for the hardening element is applied. However, the material stiffness

[D] must be defined for an element undergoing softening. Recall that in Section 3.3,

the tangent crack stiffness (eq. 3.65) in the {n, t} basis was derived as follows:

[Ccr] =


C11 (1−Ψ∗n) (C12 − C11Ψ∗t ) 0

C12 (1−Ψ∗n) (C22 − C12Ψ∗t ) 0

0 0 0

 , (4.91)

where Ψ∗n = Ψn/Ψ and Ψ∗t = Ψt/Ψ. Recall that [Ccr] is symmetric. The terms Ψn,

Ψt, and Ψ are parameters that relate the normal crack strain rate ėcrnn to the total

normal strain rates ėnn and ėtt that were derived using the consistency condition of

the decohesion function Ḟ = 0 as follows:

ėcrnn = Ψ∗nėnn + Ψ∗t ėtt. (4.92)

The definition of Ψ∗n and Ψ∗t for linear and nonlinear softening were provided in eqs.

3.82 through 3.84 and 3.92, respectively. Recall that Ψ is dependent on the specific

softening function chosen while Ψn and Ψt are valid for any softening function. The

parameters C11, C22, and C12 are the elements of the elasticity matrix defined in eqs.
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4.52 and 4.53. The form of the stiffness in eq. 4.91 arises because the crack stiffness

is only dependent on ėnn and ėtt and not on ėnt. Also recall that the crack stiffness

was designed to produce a reduction in stress with an increase in total strain.

The nodal forces are computed in the global coordinate system. However, the

crack stiffness matrix is defined in the local crack coordinate system. As a result, the

nodal displacements are mapped to the {n, t} basis where the hourglass forces are

computed. The hourglass forces computed in the crack basis are then mapped to the

global basis and subsequently used to compute the total local element internal nodal

force vector. First, the nodal displacements are mapped to the crack coordinate

system as follows:

uni = n1ui + n2vi (4.93)

vti = −n2ui + n1vi, (4.94)

where n1 and n2 define the orientation of the {n, t} axes (i. e. the failure orientation

in this instance), ui and vi are the nodal displacements in the x and y directions

for the local element node number i, where i = 1..4, and uni and vti are the nodal

displacements in the n and t directions. The hourglass forces for a softening element

in the crack basis are computed using eqs. 4.77 and 4.78 with [D] = [Ccr] and using

the nodal displacements uni and vti resulting in

fhgsn =
1

12b

(
aCcr

11ū
n − δCcr

12v̄
t
)

(4.95)

fhgst =
1

12b

[
−δCcr

12ū
n +

1

a

(
b2 + δ2

)
Ccr

22v̄
t

]
, (4.96)

where

ūn = un1 − un2 + un3 − un4 (4.97)

v̄t = vt1 − vt2 + vt3 − vt4. (4.98)
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The hourglass forces are then mapped to the global coordinate system as follows:

fhgs1 = n1f
hgs
n − n2f

hgs
t (4.99)

fhgs2 = n2f
hgs
n + n1f

hgs
t . (4.100)

The local element hourglass force vector then follows similarly from eq. 4.76. Based

on the results of using the proposed hourglass control method for the softening

element in crack propagation problems, we note that it is only necessary to include

the non-softening portion of the hourglass forces provided in eqs. 4.95 and 4.96. The

non-softening portion of the hourglass forces can be determined by setting ∂fs/∂un =

0 in the failure model. This results in Ψ∗n = 1 and Ψ∗t = C12/C11. As a result,

Ccr
11 = Ccr

12 = 0 and Ccr
22 = C22 − C2

12/C11. The hourglass force method used for

cracked elements then reduces to

fhgsn = 0 (4.101)

fhgst =
1

12b

[
1

a

(
b2 + δ2

)(
C22 −

C2
12

C11

)
v̄t
]
. (4.102)

We again note that based on simulation results, we use only the vertical component of

the hourglass forces and from eq. 4.100, the hourglass forces in the global coordinate

system reduce to

fhgs1 = 0 (4.103)

fhgs2 = n1f
hgs
t . (4.104)

The reason why only the vertical portion of fhgst must be used is not yet understood.

Note that for plane stress, C22 − C2
12/C11 = Y , where Y is Young’s modulus. Also,

for a two-dimensional state of stress, the orientation of the principal axes β (i.e. the

failure angle in this instance), the principal basis vectors, and principal stresses can
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be computed analytically as follows:

β =
1

2
tan−1

(
2σxy

σxx − σyy

)
(4.105)

n1 = cos(β) (4.106)

n2 = sin(β) (4.107)

t1 = cos
(
β +

π

2

)
(4.108)

t2 = sin
(
β +

π

2

)
(4.109)

σnn =
1

2
(σxx + σyy) +

√
1

4
(σxx − σyy)2 + σ2

xy (4.110)

σtt =
1

2
(σxx + σyy)−

√
1

4
(σxx − σyy)2 + σ2

xy (4.111)

Again if hourglass forces for the square or rectangular element are desired, appropri-

ate assumptions for a, b, and δ are applied. In practice, for either the hardening or

softening element, for elements that are not square, rectangular, or a parallelogram

a simple approach is followed to estimate the proper a, b, and δ where average values

are computed using the local element coordinates as follows:

a ≈ 1

2
(|y3 − y2|+ |y4 − y1|) (4.112)

b ≈ 1

2
(|x2 − x1|+ |x3 − x4|) (4.113)

δ ≈ 1

2
(|x3 − x2|+ |x4 − x1|) . (4.114)

4.4 Crack Tracking Algorithm

Even though the failure model was formulated to preclude spurious shear stress accu-

mulating in the cracked element, the algorithm must also contain another ingredient

such that the crack path remains mesh objective. A separate approach that provides

the correct crack path is necessary because the predicted crack path tends to natu-

rally follow the element edges. This leads to an inability in predicting curved crack
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trajectories in which the crack must traverse the mesh at an angle. Even when there

is no spurious shear stress in the solution, the crack path can still be incorrect. This

happens because the stress field around the crack tip is misaligned with respect to

the crack orientation determined from the failure model. This phenomenon is shown

in Figure 4.4. The stress field should be oriented such that the peak stresses around

the crack are straight up and down. However, the stresses are slightly rotated which

ultimately causes the crack to propagate along the element edges.

Figure 4.4: Stress Field Misalignment Around Crack Tip

The finite element approaches that have been successfully used to provide the

correct crack path are of two primary categories: (1) nonlocal damage, stress, or

strain measure and (2) a crack tracking algorithm. Some examples of the first for

modeling concrete include the work of Bazant and Lin [12], Jirasek and Zimmermann

[23], and Geers et. al. [53]. Although using a nonlocal measure can preclude some

mesh dependence on the crack path, it requires additional computational expense.

This is because the nonlocal measure is typically computed by taking an average

of some variable, usually strain, over a neighborhood of points centered around the

integration point. In addition, the mesh objectivity with respect to orientation of

the elements of such methods is not well characterized especially for quadrilateral

elements.

A more direct approach is to explicitly determine the crack path and allow fail-

ure to occur exclusively on this predicted path. This approach is applied in crack
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tracking algorithms. Crack tracking algorithms do not necessarily preclude stress

misalignment in a direct sense. Rather, the elements that would normally initiate

failure during stress misalignment are not allowed to fail. Only elements that lie on

the predicted crack path are allowed to fail and this restriction essentially realigns

the stress field around the crack. However, crack tracking algorithms are susceptible

to error because they can only be as good as the predicted crack orientation. For

failure models that assume that the crack orientation is related to the principal stress

basis, spurious shear can alter the predicted crack orientation and therefore lead to

incorrect crack paths. Examples of local crack tracking algorithms can be found in

Cervera and Chiumenti [54] and Cervera et. al. [55]. An example of a tracking

algorithm that uses a nonlocal strain measure to define the crack direction can be

found in Grassl and Jirásek [56].

The crack tracking algorithm that is proposed next was developed independently

of the references cited previously. However, the algorithm is most similar to that

proposed by Cervera et. al. [55]. In [55], a local stress measure is used to compute

the crack orientation and subsequently a set of crack segments is determined for

triangular elements. A set of algorithm flags is established that allows elements to

initiate failure that intersect the computed crack segments. However [55] uses an

isotropic continuum damage model and it isn’t clear how spurious shear stress is

handled in cracked elements. Further, mesh orientation objectivity with respect to

the crack path isn’t really demonstrated.

The following crack tracking algorithm proposed isn’t necessarily the only way

that it can be implemented within a code. There might be a more efficient computa-

tional way to construct the arrays and we leave it up to the reader to find other such

possibilities. We begin by introducing a patch of nine quadrilateral finite elements

where a crack initiates first in the element B as shown in Figure 4.5. This crack starts

an individual crack branch. The patch contains eight adjacent elements defined by

the Southwest element (SW), South (S), and so on. Because the location of the crack
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Figure 4.5: Tracking a Crack Through a Mesh

is immaterial for obtaining the smeared crack strain, we choose the crack segment

to go through the center of initiated element (element B in this instance). The co-

ordinates of element B of the first initiated element are defined with (xc, yc) and the

orientation of the initiated crack is defined with the crack normal vector nb. The in-

tersection of the line segment representing the initiated crack with the element edges

are denoted the cracked element edge coordinates (CEECS). The CEECS of the first

initiated crack are defined with (xc1, y
c
1) and (xc2, y

c
2). The local node numbering con-

vention for all elements is shown for the center element in Figure 4.5. The starting

crack coordinates (SCCS) are the coordinates of the crack root that start each crack

segment after the first initiated crack and they are either (xe1, y
e
1) or (xe2, y

e
2). This
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convention helps generalize the CEECS equations into three categories as shown in

Appendix A. For subsequent cracked elements traveling away from the first initiated

crack, a similar approach is applied to define the crack normals and CEECS. For

example, for a crack traveling northward, the CEECS that must be updated are

denoted as (xe2, y
e
2), where e denotes corresponding CEECS of the adjacent element.

For cracks traveling southward, the CEECS that must be updated are (xe1, y
e
1).

For simplicity and consistency with a single crack forming in an element, one

point integration is assumed. Here the mesh is assumed regular defined by horizontal

(x) and vertical (y) lines. With reference to Figure 4.5, the following algorithm is

followed:

1. We identify element B as having a crack. Elements C (above) and A (below)

are identified as specific elements to be tested for crack initiation to indicate

when the crack propagates.

2. Suppose element C next indicates a crack initiation with normal nc which, in

general, is not the same as nb. We adjust the location of this crack segment

so that it is continuous with the crack segment in element B. Now element D

(above C) is identified as an element to be followed for crack initiation.

3. Suppose element A is the next one to show crack initiation. A process similar

to Step 2 is followed and the element below element A is identified as one to

be checked for crack initiation with continued load steps.

4. Now if element D is the next element to initiate a crack segment with normal

nd, the crack segment is made continuous with that in element C. However,

now the crack segment passes through portions of two elements: element D

and element E. Elements D and E are called cross-over elements and are forced

to have identical characteristic crack lengths hc, where hc = hd + he. The

element dimensions for elements D and E are hd and he, respectively. If no
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change is made to the characteristic crack length for cross-over elements, the

dissipated fracture energy is too large or the rate of unloading is to small. The

adjustment to hc causes the cross-over elements to unload at about the same

rate as a single element that is adjacent to the cross-over (e.g. element C).

5. Element F is now designated as the element to be followed for crack continua-

tion.

Let’s now introduce a computational array of integers Eadj of dimension Nele×8 that

contains the adjacent element numbers associated with each element in the mesh,

where Nele is the number of elements. For example, the eight adjacent element

numbers associated with element number 10, would be stored in the 10th row of

Eadj with adjacent element numbers stored along the columns as follows: SW, S,

SE, E, NE, N, NW, W, and SW. This array is used to conveniently determine which

elements are next in line to fail based on the CEECS of the current crack as discussed

later. This array is formed during preprocessing.

Next, we introduce another computational array of integers Ccond of dimension

Nele× 3. This array is used to apply flags that control which elements are allowed to

fail and which require cross-over scaling. The first column of Ccond stores a value of 1

in the en row for elements that have initiated a crack branch where en is the element

number. Taking the sum of all elements in the first column of Ccond equals the total

number of independent crack branches or separate initiated cracks. However, to save

computational expense, an accumulated sum of the total initiated number of cracks

Ncr is determined and stored. Once the total number of allowed crack branches

Ncrall are formed, then the algorithm no longer allows new cracks to initiate. The

second column of Ccond is used to store the crack condition number. The crack

condition number is either 0, 1, or 2. A crack condition number of 0 (default)

indicates the element has not yet cracked and isn’t slated for cracking in the next

strain increment. A crack condition number of 1 indicates that the crack tracking
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algorithm has identified potential adjacent elements that intersect an evolving crack

and these elements are now allowed to fail if the failure model deems it is appropriate.

If the crack condition number is 2, then the crack is active and evolving. The third

column of Ccond is used to store the cross-over flag Icross. If Icross = 0 (default), then

the current crack is not part of a cross-over. However, if Icross = 1, then the cracked

element is within a cross-over and hc is adjusted such that it equals the sum of the

characteristic element dimensions that are within the cross-over.

Finally, an array of doubles Cdbl of dimension Nele×8 is formed and the following

components are stored in columns 1 through 8, respectively, as follows: N1, N2, T1,

T2, xe1, ye1, xe2, and ye2, where N1 is the e1 component of the crack normal vector n,

N2 is the e2 component of the crack normal vector n, T1 is the e1 component of the

crack tangential vector t, T2 is the e2 component of the crack tangential vector t,

and the CEECS are stored in (xe1, y
e
1) and (xe2, y

e
2).

Once failure initiation is detected, which is easily known once the decohesion

function F > 0, the crack tracking algorithm must decide what failure scenario to

engage from the following options: (1) the crack is newly initiated, (2) the crack is

in an adjacent element, or (3) the crack is evolving. The framework of these choices

is placed inside the failure model subroutine in the form of if-elseif statements. The

first option or a newly initiated crack always occurs first because it is assumed that

a propagating crack requires a single point of failure to start things off.

To identify scenario (1), the state of the crack condition array Ccond and the num-

ber of initiated cracks Ncr is examined. If Ccond(en, 1) = 0 and Ncr < Ncrall, then the

crack is newly initiated and the following actions are completed: (1a) increment the

current number of initiated cracks Ncr, (1b) set Ccond(en, 1) = 1 , (1c) set the CEECS

compute flag Cceecs = 1, (1d) set Ccond(en, 2) = 2, (1e) compute the CEECS, (1f)

extract the adjacent elements that intersect current crack, (1g) set Ccond(Nadj, 2) = 1

where Nadj are the element numbers of the adjacent elements that are intersected by

the initiated crack and are slated next for cracking, and (1h) update crack informa-
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tion array Cdbl. In step (1c), the CEECS compute flag Cceecs is an integer between

1 and 3 that is used to identify which set of CEECS equations are to be used. The

CEECS equations are derived and stated in Appendix A.

Failure scenario (2) is identified by checking the value of Ccond. If Ccond(en, 2) = 1,

then the adjacent element that was flagged in scenario (1) has now cracked. As a

result, the following actions are performed: (2a) set Ccond(en, 2) = 2, (2b) determine

the CEECS compute flag and starting crack coordinates SCCS, (2c) compute the

CEECS, (2d) extract the adjacent elements that intersect current crack, (2e) set

Ccond(Nadj, 2) = 1, and (2f) update the crack information array Cdbl.

Finally, scenario (3) is identified by checking the value of Ccond. If Ccond(en, 2) = 2,

then the crack is evolving and the stress in the element is updated according to eq.

3.65. No other actions are necessary. See Appendix A for more details.

4.5 Complete Mesh Objective Algorithm

This section presents the complete numerical algorithm that unites the finite element

equations, time integration scheme, constitutive equations, and crack tracking algo-

rithm. The algorithm presented was programmed in FORTRAN 90/95 using a serial

implementation. What will not be covered is array initialization, file input/output,

and the preprocessing steps that are common in the finite element method such as

reading in the mesh, applying boundary conditions, etc.

In addition, the following standard finite element computational arrays are used:

AIECM of dimension Nen×Nele, ALM of dimension Nel×Nele, and AXY of dimension

Nnode×Nsd where Nen is the number of nodes per element, Nel = Ndof (Nen−1)+Ndof ,

Ndof is the number of degrees of freedom per node, Nnode is the total number of nodes,

and Nsd is the number of spatial dimensions. In this instance Ndof = 2, Nsd = 2,

Nen = 4, and Nel = 8. The array AIECM is the element connectivity array that

defines the global node numbers associated with each element, ALM is the global
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equation array that maps the global equation number to the global node number,

and AXY is the nodal coordinate array that defines the coordinates of each node.

For a more detailed description of the computational arrays see [4]. The stress

components are stored in arrays Sxx, Syy, Sxy of dimension Nint × Nele, where Nint

is the number of integration points and Nele is the number of elements. The total

strain components are stored in arrays Exx, Eyy, Exy of dimension Nint ×Nele. The

crack opening displacement is stored in array Un of dimension Nint ×Nele.

Before entering the main load/displacement increment loop, the crack tracking

algorithm arrays Ccond and Cdbl and the number of initiated cracks Ncr are initialized

to zero. The acceleration, velocity, displacement, internal/external force vectors are

also initialized.

Upon entering the main load/displacement increment loop, the following steps

are performed k times until the desired time t = k∆t is reached:

1. For i = 1 to Ndof ·Nnode, compute the ith component of the acceleration vector

at the previous time step k using eq. 4.68

aki = md
i

[(
F I
i

)k
+
(
FE
i

)k]− cvki
2. For i = 1 to Ndof ·Nnode, compute the ith component of the velocity vector at

the current time step k + 1 using eq. 4.69

vk+1
i = vki + ∆taki

3. For i = 1 to Ndof ·Nnode, compute the ith component of the displacement vector

at the current time step k + 1 using eq. 4.70

uk+1
i = uki + ∆tvk+1

i

4. Apply displacement boundary conditions by overwriting uk+1 in proper loca-

tions (ignoring applied tractions)
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5. For in = 1 to Nint and en = 1 to Nele, update the stress components and

crack opening displacement Sxx(in, en), Syy(in, en), Sxy(in, en) , and Un(in, en)

as follows:

(a) Compute the current total strain vector 〈ev〉 = 〈exx, eyy, 2exy〉 using eqs.

2.21 through 2.23

Exx(in, en) =
4∑
i=1

Ni,xui

Eyy(in, en) =
4∑
i=1

Ni,yvi

2Exy(in, en) =
4∑
i=1

[Ni,yui +Ni,xvi]

(b) Compute the current stress components assuming material is elastic using

eq. 4.54

Sxx(in, en) = C11Exx(in, en) + C12Eyy(in, en)

Syy(in, en) = C12Exx(in, en) + C22Eyy(in, en)

Sxy(in, en) = C332Exy(in, en)

(c) Compute the crack orientation β, principal basis vector components n1,

n2, t1, t2, and principal stresses σnn, σtt using eqs. 4.105 through 4.111

β =
1

2
tan−1

(
2σxy

σxx − σyy

)
n1 = cos(β)

n2 = sin(β)

t1 = cos
(
β +

π

2

)
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t2 = sin
(
β +

π

2

)
σnn =

1

2
(σxx + σyy) +

√
1

4
(σxx − σyy)2 + σ2

xy

σtt =
1

2
(σxx + σyy)−

√
1

4
(σxx − σyy)2 + σ2

xy

(d) Evaluate the softening function fs using either eq. 3.73 or 3.90

f ls = 1− ukn
u0

(linear− softening)

fnls = exp

(
−αu

k
n

u0

)
(nonlinear− softening)

(e) Evaluate the decohesion function using eq. 3.37

F =
σnn
τnf
− fs

(f) If F < ε (ε ≈ 1× 10−5) then the step is elastic, update the crack opening

displacement, and exit constitutive model subroutine

Un(in, en) = Uk
n(in, en)

(g) Else

If Ccond(en, 1) = 0 and Ncr < Ncrall then a new crack has initiated and

the following steps are performed

i. Increment the current number of initiated cracks Ncr = Ncr + 1

ii. Set Ccond(en, 1) = 1

iii. Set the CEECS compute flag Cceecs = 1

iv. Set Ccond(en, 2) = 2

v. Compute the CEECS

vi. Extract the adjacent element numbers that intersect current crack

vii. Set Ccond(Nadj, 2) = 1
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viii. Update crack information array Cdbl.

(h) If Ccond(en, 2) = 1 then an adjacent element has cracked

i. Set Ccond(en, 2) = 2

ii. Determine CEECS compute flag and starting crack coordinates SCCS

iii. Compute the CEECS

iv. Extract the adjacent element numbers that intersect current crack

v. Set Ccond(Nadj, 2) = 1

vi. Update crack information array Cdbl.

(i) If Ccond(en, 2) = 2 then the crack is evolving

i. Compute the current total strain increment components using the

stored strain components at the previous step k

∆exx = Exx(in, en)− Ek
xx(in, en)

∆eyy = Eyy(in, en)− Ek
yy(in, en)

∆exy = Exy(in, en)− Ek
xy(in, en)

ii. Transform the global strain increments ∆exx, ∆eyy to local crack basis

increments ∆enn, ∆ett as follows:

∆enn = ∆exxn
2
1 + ∆eyyn

2
2 + 2∆exyn1n2

∆ett = ∆exxt
2
1 + ∆eyyt

2
2 + 2∆exyt1t2

iii. If Ccond(en, 3) = 1, then cracked element is part of a cross-over, update

the characteristic crack dimension hc
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iv. Compute the crack opening displacement increment using eq. 3.69

∆un = hc (Ψ∗n∆enn + Ψ∗t∆ett)

Ψn = −C11

τnf

Ψt = −C12

τnf

Ψl =
hc
u0

− C11

τnf
(linear− softening)

Ψnl = − α
u0

exp

(
−αUk(in, en)

u0

)
(nonlinear− softening)

v. Compute the current crack opening displacement using eq. 3.70

Un(in, en) = Uk
n(in, en) + ∆un

vi. Compute stress increments ∆σnn, ∆σtt, and ∆σnt depending on state

of crack

A. If Un(in, en) ≥ u0 then the the following stress and crack opening

increments are not allowed

∆σnn = 0

∆σnt = 0

Un(in, en) = Uk
n(in, en)

B. Else compute ∆σnn, ∆σtt, and ∆σnt using eq. 3.65

∆σnn = C11 (1−Ψ∗n) ∆enn + (C12 − C11Ψ∗t ) ∆ett

∆σtt = C12 (1−Ψ∗n) ∆enn + (C22 − C12Ψ∗t ) ∆ett

∆σnt = 0

vii. Transform the stress increments ∆σnn, ∆σtt, and ∆σnt back to the
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global basis3

∆σxx = ∆σnnn
2
1 + ∆σttt

2
1

∆σyy = ∆σnnn
2
2 + ∆σttt

2
2

∆σxy = ∆σnnn1n2 + ∆σttt1t2

viii. Compute the current stress components in the global basis and exit

constitutive model subroutine

Sxx(in, en) = Skxx(in, en) + ∆σxx

Syy(in, en) = Skyy(in, en) + ∆σyy

Sxy(in, en) = Skxy(in, en) + ∆σxy

6. Update global internal nodal force vector, for en = 1 to Nele

(a) If Nint = 1 and Ccond(en, 2) = 0 or Ccond(en, 2) = 1 compute local element

hourglass force vector {f}hg for uncracked element using eqs. 4.76 through

4.78

(b) Else if Nint = 1 and Ccond(en, 2) = 2 then compute local element hourglass

force vector {f}hgs for softening element using eqs. 4.101 through 4.104

(c) Compute the local element internal force vector {f}int using eq. 4.58

(d) If Nint = 1 and Ccond(en, 2) = 0 or Ccond(en, 2) = 1 apply the hourglass

force vector {f}hg to the local element force vector {f}int = {f}int−{f}hg

(e) If Nint = 1 and Ccond(en, 2) = 2 apply the hourglass forces for softening

{f}hgs to the local element force vector {f}int = {f}int − {f}hgs

(f) Map local element internal force vector components into global force vec-

tor {F}I

7. Update variables for next increment.

3Because ∆σnt = 0 the shear terms vanish.

88



Chapter 4. Algorithm

4.6 Implementation

One advantage of the proposed algorithm is that it can be implemented easily into

an existing finite element code. This is because the failure model and crack tracking

portions can be included into a single constitutive model subroutine. As a result,

one subroutine can be written that accepts the current strain increments (or global

nodal displacements) and returns the updated stress for the next increment as well

as update the necessary crack tracking arrays Ccond and Cdbl. The primary difficulty

in the implementation is establishing the logic for the crack tracking algorithm.

However, use of the adjacent element array Eadj greatly simplifies the coding and

streamlines the searches required to update the crack path.

A recommended subroutine structure is to develop four crack tracking subroutines

that are called within the failure model subroutine as follows: (1) Compute-CEECS

- computes the cracked element edge coordinates that are necessary to identify the

next elements slated for failure, (2) Extract-Adjacent-Elements - determines which

elements that are adjacent to evolving cracks that are allowed to fail next, (3) Get-

Crack - determines the crack condition flag and starting crack coordinates (SCCS)

required to update the CEECS, and (4) Update-Crack-Info - updates Ccond and Cdbl.

The crack tracking subroutines can be relatively simple that consist of no more than

30 lines of code each.

A slight modification would be necessary in the host code’s hourglass control

subroutine that would update the local element force vector given the hourglass

control force vector for softening. The existing hourglass control approach used in

most host codes for the hardening element should be sufficient. However, use of the

proposed hardening hourglass control scheme might be of use as it doesn’t require an

hourglass coefficient and it has also demonstrated applicability to arbitrary shaped

elements.

For implementation into a three-dimensional code, some alterations of the pro-
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posed algorithm would be required. First, a good eigenvalue and eigenvector sub-

routine is required to determine the {n, t,p} basis and the principal stresses. Next,

the strain and stress vectors now require the additional components for a three-

dimensional state of stress and strain. As a result, the generalized stress transfor-

mation relations are used to map back and forth from the crack and global bases.

Finally, the failure model would need to add dependence on the total strain increment

∆epp. The additional shear stress increments along the crack surface are assumed

zero or ∆σnp = ∆σtp = 0.

The failure model, crack tracking algorithm, and hourglass control schemes can

also be applied to static solvers that use iterative schemes to compute the nodal

displacements such that equilibrium is achieved such as Jacobian free Newton-Krylov

methods. However, these methods may require special treatment of how failure is

allowed to initiate to obtain stability such as the approach used in Wellman [57].
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Results

This chapter presents the results obtained using the algorithm provided in Section

4.5. First, the efficacy of the hourglass control scheme for the hardening element is

investigated by comparing solutions obtained with full integration and the hourglass

control scheme provided in [50].

Next, a two-dimensional model problem of a bar pulled in tension with a crack

initiating in the center is examined to evaluate the proposed algorithm. Several

different meshes are chosen to evaluate the sensitivity of the crack path and load

deflection curve to the orientation and size of the finite element mesh. Finally, the

effects of the characteristic element size are studied.

A double-edge notched (DEN) direct tension concrete experiment is simulated

next to investigate the ability of the algorithm to propagate straight cracks that are

initiated from geometric discontinuities. A couple of mesh orientations are investi-

gated.

Finally, a DEN shear-tension concrete experiment is examined to investigate the

algorithm’s ability to model curved crack trajectories. This experiment is composed

of a dual-stage load path that consists of first loading the specimen in shear. Then

the shear is held fixed while the specimen is stretched in tension.
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5.1 Hourglass Control for Hardening Element

Consider a two-dimensional unit bar with sides equal to 1 and thickness te = 1

as shown in Figure 5.1. The left side is fixed in the x and y directions such that

u(0, y, t) = v(0, y, t) = 0. The right side is fixed in the y-direction and the displace-

ment in the x-direction at x = 1 is incremented such that u(1, y, t) = uend(t) = vct

where vc = 0.0001. The traction along the top and bottom is equal to zero. The

Poisson’s ratio, density, Young’s modulus, and damping coefficient are respectively

equal to ν = 0.3, ρ = 1, Y = 1, and c = 4. Let’s also assume that the initial velocity

everywhere is zero. The imposed boundary conditions will cause the bar to expand

axially and contract laterally. Let’s consider two discretizations one with rectangular

elements and the other with elements that are slanted at a varying angle as respec-

tively shown in Figures 5.2(a) and 5.2(b). The simulation is run until the end of

the bar reaches a displacement of 0.02. For each mesh, three sets of simulations are

completed as follows: (1) four-point quadrature, (2) one-point quadrature using the

τ (x, 1, t) = 0

τ (x, 0, t) = 0

u(0, y, t) = 0

v(0, y, t) = 0 v(1, y, t) = 0
u(1, y, t) = uend(t)

ν = 0.3, Y = 1, ρ = 1, c = 4

x

y

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure 5.1: Unit Bar Pulled in Tension
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HGC method by Flanagan and Belytschko [50] and denoted FB, and (3) one-point

quadrature using the HGC method proposed in Section 4.3.1. For each simulation

set in (2), several runs are performed that increment the hourglass coefficient κ be-

tween 10 and 15 at intervals of 0.25. Similarly, a fictitious hourglass coefficient κf

is used to perturb the solution for the new HGC method with κf incremented at

0.025 between 0.8 and 1.2. Recall that the proposed HGC method does not require

an actual hourglass coefficient.

An error vector ehgc is established by comparing the solution vector obtained using

four-point integration to the solution obtained from one-point integration written as

ehgc = u4(x, y, tend) − u1(x, y, tend), where tend is the problem end time. With the

mesh size fixed, the vector L2-norm is used to establish a scalar error metric as

follows:

Ehgc =

(
2Nnode∑
i=1

∣∣∣ehgci

∣∣∣)1/2

. (5.1)

The error norm is plotted against the normalized hourglass coefficient for both the

rectangular and slanted meshes in Figure 5.3. The FB hourglass coefficient κ was

normalized by dividing by the hourglass coefficient that produced the smallest error

or 12.3 for the square mesh and 12.0 for the slanted mesh. The fictitious hourglass

coefficient κf was not normalized.

The results for the rectangular mesh plotted in Figure 5.3(a) show that the pro-

posed HGC method for the hardening element provides essentially zero error. How-

ever, the FB hourglass control method cannot reproduce full-integration as noted in

a nonzero minimum error at a normalized hourglass coefficient of 1. This response

occurs because FB only uses one hourglass coefficient. If eqs. 4.89 and 4.90 are used

to find the hourglass coefficients that reproduce full-integration for a modified FB

with two hourglass coefficients, then κ1 = 15.56 and κ2 = 10.06.
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Figure 5.2: Meshes Used in Hourglass Control Studies
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Figure 5.3: One-point Integration Error: Hardening Element
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Finally, the error norm for the slanted mesh is shown in Figure 5.3(b). For

the slanted mesh, now the proposed HGC method contains more error than FB.

This is not surprising because the proposed HGC method assumes that the elements

are either square, rectangular, or parallelograms. These results show that if the

mesh is composed of structured square, rectangular, or parallelogram elements, then

the propose HGC method will provide no integration error. However, for arbitrary

element geometries, the error in the FB HGC method is expected to be smaller.

However, for the problems considered here, the proposed hourglass scheme worked

equally well to the FB method. The general comment is that the differences in the

results (e.g. load-deflection curves) between the FB and proposed methods are nearly

indistinguishable.

The HGC method proposed for the hardening element can be thought of as an

alternative to other approaches. The primary benefit of the proposed hourglass

method is that an hourglass coefficient isn’t necessary. In addition, the method

reproduces four-point quadrature using simple analytical equations for structured

meshes. Some computational speedup due to the smaller number of floating point

operations has been observed. Estimated speedup is on the order of 5% based on

compute time measurements. For static iterative solvers, the reduced integration

error might provide further benefits by reducing the number of iterations to obtain

convergence. These observations were noted in crack propagation simulations that

employed a Jacobian free Newton-Krylov solver using the proposed HGC method.

5.2 Mode-I Failure Model Problem

This section is devoted to investigating the performance of the proposed algorithm for

modeling mode-I failure in a two-dimensional bar. This particular problem provides

an indication of how the algorithm will perform in more general problems that involve

propagating cracks at an angle through a finite element mesh. The effects of mesh
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size and orientation are investigated followed by studies of the proposed hourglass

control scheme and characteristic crack dimension.

5.2.1 Effects of Mesh Orientation and Size

We choose a model problem that allows a focused examination of the effects of both

mesh size and orientation as shown in Figure 5.4. A slender bar is chosen such that

the shear stress near the ends of the bar are minimal for a nonzero Poisson’s ratio.

The left end of the bar is held fixed in the x and y directions while at the right

end of the bar, the displacement is prescribed with u(1, y, t) = vct with vc = 0.0001.

The bar is allowed to laterally contract at x = 1. The top and bottom surfaces are

traction free.

A crack is initiated in the center of the bar by reducing the tensile strength τnf

of the center element. The crack is then allowed to propagate across the bar in

a manner predicted by the crack tracking algorithm. The material properties are

shown in Figure 5.4 where ν = 0.2, Y = 1, ρ = 1, τnf = 0.011, c = 4, and the tensile

strength of the element that initiates failure τ fnf = 0.01. The following meshes are

considered with maximum slant angle γ as follows: (1) γ = 0, (2) γ = 30o, (3) γ = 60o

where the maximum slant angle γ occurs in the center of the bar. For each rotation,

three different meshes each containing Nx × Ny elements in the x and y direction,

respectively as follows: (i) 11×5, (ii) 23×11 and (iii) 47×23. One-point integration

is used with the proposed hourglass control methods. For comparison purposes, the

results obtained using a standard decohesion failure model are also shown where

noted. The particular standard decohesion failure model used is listed in Appendix

B. The performance metrics are the load-deflection curves and the predicted crack

path.

To investigate the effects of mesh orientation and size, for each mesh size, the

load-deflection curves are plotted for all mesh slant angles as shown in Figure 5.5.
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τ (x, 0.25, t) = 0

τ (x, 0, t) = 0

u(0, y, t) = 0

v(0, y, t) = 0

x

y

(0, 0)

(0, 0.25)

(1, 0)

(1, 0.25)
ν = 0.2, Y = 1, ρ = 1, c = 4

u(1, y, t) = vctτnf = 0.011, τ fnf = 0.01, u0 = 0.030

Figure 5.4: Slender Bar Pulled in Tension

The results provided in Figure 5.5 show that there is essentially no sensitivity to the

orientation of the mesh. The differences in the predicted peak load are attributed

to the mesh size and not the mesh orientation because as the mesh is refined, these

differences become smaller. The predicted crack paths are shown with a black line

in Figure 5.6 for the 47× 23 mesh for all mesh orientations. The crack paths shown

in Figure 5.6 are formed by plotting the cracked element edge coordinates (CEECS)

and connecting them with a line segment. The results show that the predicted crack

path is mesh objective.

To compare the proposed failure model with a standard decohesion model, the

load deflection curves for the 23 × 11 mesh are plotted for γ = 30 and γ = 60o in

Figure 5.7. Notice that the standard model cannot even predict softening in the bar.

This is due to the accumulation of parasitic shear stress that leads to shear locking.

The results get progressively worse as the mesh orientation is increased. This shows

that the standard approach contains significant mesh orientation bias as compared to

the proposed approach. A detailed comparison between the standard and proposed

failure models is conducted in Appendix B.
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Figure 5.5: Effect of Mesh Orientation on Load Deflection Curve
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Examining the mesh distortion during the the later stages of the failure process

is also a valuable metric to gage how well the algorithm is performing. What we seek

is to have the crack open up in the proper direction without distorting the mesh. For

the present problem, this means that the crack should open horizontally. Figure 5.8

compares the final state of the mesh at Uend = 0.04 for a displacement scaling factor

of 5 for the proposed and standard model failure for γ = 30 and γ = 60o. Notice

that in Figure 5.8(a), the standard model provides a distorted crack opening. For

γ = 60o, the standard model cannot introduce a crack opening due to the extent of

shear locking as shown in Figure 5.8(c). In contrast, the proposed model provides

essentially the same crack opening regardless of mesh orientation as shown in Figures

5.8(b) and 5.8(d)

(a) γ = 0o

(b) γ = 30o

(c) γ = 60o

Figure 5.6: Predicted Crack Paths
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Figure 5.8: Final Mesh State at Full Crack Opening
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5.2.2 Effects of Characteristic Crack Dimension

The characteristic crack dimension hc plays an important role in crack propagation

problems. When crack cross-overs occur, it is important to adjust hc such that the

crack dimension is equal to the sum of the element dimensions h that compose the

cross-over. We denote adjusting hc for cross-over cracks as cross-over scaling or COS.

This section will examine the effects of cross-over scaling and its role in obtaining

mesh objectivity.

First, let’s examine more closely the implications of adjusting hc. In this instance

for linear softening, the key crack tangent modulus component from Section 3.3 is

restated here as

Ccr
11 = C11 (1−Ψ∗n) = C11

(
1− Ψn

Ψl

)
= C11

(
1− 1

1− κ

)
, (5.2)

where

κ =
hcτnf
u0C11

. (5.3)

For softening and no snapback where snapback is defined to be the case where Ccr
11 >

0, we require Ψ∗ > 1 or κ < 1, which leads to the following inequality obtained in

eq. 3.86,

hc <
C11u0

τnf
.

If κ is increased, subject to the constraint on hc, then the magnitude of the softening

slope is also increased. For the cross-over case, the characteristic crack length is

the sum of the element dimensions that compose the cross-over. An increase in

hc automatically adjusts the increase in softening slope and the dissipated fracture

energy for the two elements is equivalent to the fracture energy dissipated in one

element. As a result, the energy dissipated in the cross-over becomes consistent to

the energy dissipated in adjacent cracked elements that consist of only one element.

As will be seen in the results that follow, this rather simple modification has extensive

and important implications.
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We will consider the 23× 11 mesh from Section 5.2.1 with orientations of γ = 30

and γ = 60o. Two cases will be considered for each orientation: (a) with COS for

crack cross-overs such that hc is the total width of the cross-over and (b) without

COS.

The results are shown in Figure 5.9. Notice that when the dimension of the

crack is adjusted properly for cross-overs in case (a), the 30 and 60o meshes obtain

essentially the same load-deflection curve indicating that the stress in the bar is

decaying to zero. However, when the crack dimension is not adjusted for cross-over

cracks, then there is mesh orientation bias. The mesh orientation bias becomes

increasingly worse as the mesh orientation increases for case (b). This suggests that

without cross-over scaling, mesh objectivity cannot be achieved.

A stiffening response is obtained for case (b) indicating that normal stress is

accumulating in the bar as the crack opens. Figure 5.10 compares the normal stress

σxx in the bar for δ = 0.04. Notice that with COS turned on, the normal stress in the

bar is uniform and close to zero. However, with COS turned off, large normal stresses

are centered around crack cross-overs. This suggests that there is an inconsistency

in the rate of unloading between cross-over elements and adjacent cracked elements.

By increasing hc for all elements within the cross-over, this causes the cross-over

elements to unload at the same rate as adjacent elements and as a result there is

no spurious normal stress accumulation. This was the final piece of the puzzle that

provided complete mesh objectivity.
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Figure 5.9: Effects of Characteristic Crack Dimension hc
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Figure 5.10: Spurious Normal Stress Without Cross-over Scaling
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5.3 Double-Edge-Notch Direct-Tension

So far we have dealt with initiating a crack by reducing the tensile strength of one

element, which causes a crack to propagate through the mesh. Now we turn to real

experiments where a crack initiates due to a stress concentration brought on by a

geometric discontinuity. A detailed and thorough research effort to characterize brit-

tle material failure of double-edge-notch (DEN) concrete specimens was conducted

by Nooru-Mohamed [58] in the early 1990s. Here we simulate experiments from [58]

that focus on 0.2 × 0.2 × 0.050 m concrete specimens possessing two 0.025 × 0.005

m notches as illustrated in Figure 5.11.

The first loading case examined in this section is of direct tension where the

specimen is pulled axially in tension under displacement control. Platens that are

glued to the top and bottom surfaces are used to apply the controlled displacement.

The tensile force and the crack opening displacement are both monitored through-

out the duration of the experiment. The displacement δc, shown in Figure 5.11, is

defined as the crack opening displacement. Finite element simulations of the exper-

iment were conducted by applying a uniform displacement over the bottom edge of

vt(x, 0.2, t)

ν = 0.2, Y = 3.0× 1010 Pa

x

y

(0, 0) (0.2, 0)

(0.2, 0.2)(0, 0.2)

vt(x, 0, t)

τnf = 2.8× 106 Pa, α = 10

ρ = 2400 kg/m3, c = 4000 N·s/m

u0 = 3.5× 10−4 m, Gf = 100 J/m2

δ 25 x 5 mm

Figure 5.11: DEN Direct-Tension Problem Setup
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v(x, 0, t) = −vct and over the top edge of v(x, 0.2, t) = vct with vc = 0.00025 m/s.

The horizontal displacement along the bottom and top edges were set to zero or

u(x, 0, t) = u(x, 0.2, t) = 0. Traction free boundary conditions were assumed on the

left and right edges or τ (0, y, t) = τ (0.2, y, t) = 0.

The elastic material properties assumed were ρ = 2400 kg/m3, Y = 3.0 × 1010

Pa, and ν = 0.2. Viscous damping is applied assuming a damping coefficient of

c = 4000 N · s/m. Nonlinear softening was used with τnf = 2.8 × 106 Pa, α = 10,

and u0 = 3.5× 10−4 m. Note that a fracture energy of Gf = 100 J/m2 was used to

compute u0 using eq. 3.98.

Two 41× 41 meshes with γ = 0 and γ = 30o were used to discretize the concrete

specimen. Each mesh consisted of 1671 quadrilateral elements and 1764 nodes. Note

that the oriented mesh is shown later in Figure 5.13(b). One-point quadrature was

used with the proposed hourglass control methods for hardening and softening. The

crack tracking algorithm with cross-over scaling was also used. Another simulation

was ran with hourglass control for softening (HGCS) turned off for the 30o mesh to

illustrate the importance of hourglass control for mesh objectivity.

The resulting load-deflection curves are shown in Figure 5.12 with the experi-

mental data. We first note that the load-deflection curves for the 0 and 30o meshes

are nearly the same. This demonstrates that the proposed algorithm is obtaining

results that are not sensitive to the orientation of the mesh. Next, notice that the

load-deflection curve for the 30o mesh without hourglass control is different than the

other curves that use hourglass control for cracked elements. This shows that with-

out hourglass control employed for cracked elements, there is some mesh orientation

sensitivity.

We next discuss the differences between the predicted load-deflection curve and

the experimental data of which we assume is accurate. First, the predicted load

of the specimen during load-up between δ = 0 and δ = 0.01 mm is smaller than

what was measured in the experiment. Upon initial loading for δ < 0.002 mm,
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the predicted load matches that of the experiment which would correspond to elastic

material behavior. However, as the peak load is reached, the predicted curve becomes

somewhat shifted in δ as compared to the measured response. This may be attributed

to a more localized region of failure initiation in the specimen during the experiment

as compared to what was assumed in the simulation. In the simulation, failure

initiates in a single element within the root of each notch, which is rather large. This

element fails well before the peak load is reached and this plays an important role in

the shape of the load-deflection curve prior to the peak load. If a greater portion of

the material is assumed to initiate failure, this perhaps generates a softer response

as compared to the experiments.

For large δ, the shape of the load-deflection curve as measured in the experiments

is no longer an exponential function. Because the failure model assumes an expo-

nential function for all δ, it isn’t surprising that the predicted load-deflection curve

diverges from experimental data for large δ. A simple modification to the softening

function that provides a nonzero contribution for large δ would offer more accurate

results. However, the key point is that using a simple algorithm and relying on ma-

terial properties alone, the key features observed in experimental data are predicted

reasonably well without mesh orientation bias.

The normal stress contours are provided for both meshes for a few different sim-

ulation steps in Figure 5.13. The scale has been left off for clarity, but the minimum

normal stress equal to zero is represented with a blue color and the maximum stress

equal to τnf = 2.8 × 106 Pa is represented with red. The left column shows normal

stress contours for γ = 0o and the right column shows normal stress contours for

γ = 30o. The results at the same simulation step are shown for comparison. Note

that the displacements have been scaled by 400 to highlight the crack opening. The

results show that the normal stress contours are very similar for the two meshes

further demonstrating mesh objectivity. In addition, the displacement δ obtained

from the two meshes are essentially the same as noted in the captions for Figure
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Figure 5.12: Load-deflection Curve - DEN Direct Tension

5.13. For the 30o mesh, there are a few uncracked elements along the crack that

have slightly higher normal stress than the bulk material. The locations of these

hotspots are near crack cross-overs. It is suspected that even though cross-over scal-

ing dramatically reduces the effects associated with crack cross-overs, the approach

employed isn’t exact. As a result, there will be some elements that may contain

slightly higher normal stresses. However, this only mildly affects the resulting load-

deflection curve. Future research could improve the cross-over scaling methods such

that these hotspots are completely removed. It is noted that stress contours are

typically not provided for crack propagation problems in the literature especially for

different mesh orientations.
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(a) δ = 0.0031 mm (b) δ = 0.0030

(c) δ = 0.0071 (d) δ = 0.0071

(e) δ = 0.024 (f) δ = 0.024

(g) δ = 0.074 (h) δ = 0.074

Figure 5.13: Normal Stress - DEN Direct Tension Simulations (scale factor = 400)
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5.4 Double-Edge-Notch Shear-Tension

In the previous section, the loading conditions were such that a crack propagated

straight across the DEN specimen. In this section, we examine the algorithm’s ability

to predict curved crack trajectories by adding a shear loading stage. The experiments

were conducted under load path 4 as described in [58]. The DEN specimen geometry

is identical to that of Section 5.3. The only difference is the boundary conditions

imposed on the specimen.

The loading of the specimen consists of two loading stages. In the first stage,

controlled lateral displacements us are applied uniformly to the top-left and bottom-

right surfaces of the specimen as shown in Figure 5.14 such that the specimen is put

into a state of lateral shear. The axial displacements are then controlled such that

the net force acting on the specimen in the y-direction is zero. The lateral force is

monitored while the lateral displacements are being applied. After the desired lateral

force Fs is obtained, the second loading stage begins.

In the second loading stage, the lateral force Fs is held constant while the speci-

us(0, y, t)

vt(x, 0.2, t)

us(0.2, y, t)

ν = 0.2, Y = 3.0× 1010 Pa

x

y

(0, 0) (0.2, 0)

(0.2, 0.2)(0, 0.2)

vt(x, 0, t)

τnf = 2.3× 106 Pa, α = 10

ρ = 2400 kg/m3, c = 4000 N·s/m

u0 = 3.9× 10−4 m, Gf = 100 J/m3

δ

Figure 5.14: DEN Shear-Tension Problem Setup
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men is pulled in tension. The lateral displacements are adjusted such that the lateral

force is held at Fs while the top and bottom surfaces are placed under displacement

control. As the specimen cracks, the lateral displacements are appropriately adjusted

to provide a constant lateral force.

This presents a challenging set of boundary conditions for the finite element

simulations. Because the effective stiffness of the specimen is nonlinear due to the

formation of cracks, an iterative method must be added to the main load increment

loop that computes us such that a constant lateral force is maintained as the specimen

cracks. A secant algorithm was chosen that is essentially Newton’s method that

approximates the derivative of the residual with respect to the lateral displacement.

A residual is formed by taking the difference between the lateral force set point Fs

and the calculated lateral force obtained by summing the normal stress-area products

of all the elements that compose the lateral surfaces. The iterations continue until

the residual is less than a specified tolerance.

The loading of the specimen goes as follows in the finite element simulations.

Lateral displacements us(0, y, t) = vst and us(0.2, y, t) = −vst are prescribed with

vs = 0.0002 m/s for 0.105 ≤ y ≤ 0.2 and 0 ≤ y ≤ 0.095 m, respectively. At the same

time, axial displacements vt(x, 0, t) and vt(x, 0.2, t) are proportionally prescribed such

that the net axial force is close to zero. Because the stiffness of the material is nearly

constant during the first loading stage, a proportionality constant that relates vt to

us is used to keep the axial force close to zero. Once the lateral force is greater

than the set point Fs, then the axial displacements vt(x, 0, t) and vt(x, 0.2, t) are

incremented starting from where they left off from the first loading stage. The

secant algorithm iterations are then performed for all subsequent time steps that

control the magnitude of us(0, y, t) and us(0.2, y, t) for every increment in the axial

displacements vt such that a constant lateral force is maintained. Note that it is

assumed that us(0, y, t) = −us(0.2, y, t).

The material properties used in the DEN direct-tension simulations in Section
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5.3 were carried over with the exception of the tensile strength. In [58], it was

observed that in experiments which used four platens, the measured tensile strength

was smaller than experiments that only used two platens. Note that the extra two

platens are placed along the lateral edges for 0.105 ≤ y ≤ 0.2 and 0 ≤ y ≤ 0.095 m,

respectively. In the DEN shear-tension experiments, four platens were used. As a

result, the tensile strength was scaled based on direct tension experiments obtained

using four platens to τnf = 2.3× 106 Pa with a corresponding u0 = 3.9× 10−4 m.

The material properties used here were ρ = 2400 kg/m3, Y = 3.0× 1010 Pa, and

ν = 0.2. Viscous damping was applied assuming a damping coefficient of c = 4000

N · s/m. Nonlinear softening was used with τnf = 2.3 × 106 Pa, α = 10, and

u0 = 3.9× 10−4 m.

Various meshes were chosen to investigate sensitivity to mesh size. Square meshes

of 23×23, 41×41, and 82×82 were chosen. Two different lateral shear loads of 5 and

10 kN were studied. Note that for the 23×23 mesh, the notch size was 0.026×0.009

m, which is larger than the actual notch size of 0.025× 0.005 m.

The resulting load deflection curves for lateral shear forces Fs = 5 and 10 kN are

shown in Figures 5.15 and 5.16, respectively. The experimental data is also provided.

Note that for the 10 kN case, there are two experimental data sets shown which

represent two separate experiments of similar concrete materials. Observing Figure

5.15, the predicted load-up is stiffer than the experimental result. This is in contrast

to the DEN direct-tension experiments in which the predicted load-up response was

softer than what was measured. This might suggest that the material damage that

occurs in the experiment during nucleation and propagation of microcracks is more

diffuse than what is assumed in the simulation. The simulation assumes that failure

initiates only in two locations located near the notch root. As a result, the quantity

of microcracks within the actual experiment could be much larger of which would

create a softer loading response. It is emphasized that failure initiation occurs before

the peak load is reached. Recall that the discrete failure model is an approximation to

112



Chapter 5. Results

the complex nucleation of microcracks that do not necessary occur on a single failure

plane. Therefore, it isn’t too surprising that there is some error in the predicted

load-up response of which includes this complex material failure process. The key

point is that even with an approximate failure model and a relatively coarse mesh,

the features observed in the experiments can be predicted with relatively little mesh

dependence.

The predicted stress contours suggest that for the most part, the stress distribu-

tion within the concrete specimen is mesh objective. In Figures 5.17 and 5.18, the

normal stresses for the 82 × 82 mesh are shown in the left column and the normal

stresses for the 41×41 mesh are shown in the right column for a shear load of Fs = 5

kN. The minimum scale value was set to −2.3× 106 Pa and is represented with blue

colors. The maximum scale was set to 2.3×106 Pa and is represented with red colors.

A state of zero stress is represented by green. The normal stress contours provided

in Figure 5.17 highlight the propagation of the crack as shown in the localized region

of high normal stress at the crack tip. Note that the displacements have been scaled

by a factor of 200 to highlight the crack opening.

For the 82 × 82 mesh, there is a small region of large normal stress (σyy) near

the notch. The coarser 41× 41 mesh does not possess as strong of stress magnitudes

within these areas. It is suspected that this feature is caused from not allowing

the crack to propagate away from the notch towards the left and right sides of

the specimen. The crack gets essentially pinned or stuck and as a result stress

accumulates near the notch. We suspect that it is the higher stresses within this

region that causes the load-deflection curve to shift upward as the mesh is refined.

The fact that the stress distributions in the 41× 41 and 82× 82 meshes are similar

further suggests that the shift in the load-deflection curve is a result of the larger

localized stresses in the notch area. These effects get worse as the lateral load

increases. We do not believe that the shift in the load deflection curve is caused by

mesh bias due to the crack propagation. Fixing this is a matter of fine-tuning the
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crack tracking algorithm to allow additional cracks to form around the notch.

Observing the normal stresses (σxx) in Figure 5.18 shows a transfer of stress

into the center of the DEN specimen once the crack begins to propagate. This

suggests that once the microcrack forms, the center portion of the specimen goes into

compression due to applied lateral compressive load. As the microcrack continues

to propagate and open, the material that is adjacent to the crack goes into tension.

If cracks were allowed to form in this region, then other microcracks would initiate

and the stresses in these areas would decrease.

The shear stress (σxy) is plotted in Figure 5.19. Upon crack initiation at each

notch, there is a large shear stress where the crack orientation is greatest. As the

crack propagates, this shear stress increases in expanse. It is noted that the shear

stress where the crack normal is nearly parallel to the y-axis or vertical is close to

zero. Large shear stresses accumulate in areas where the crack normal contains the

largest orientation. This would be consistent to what is allowed in the failure model.

Once the crack orientation n is parallel to the y-axis, then we would expect that the

shear in the global basis σxy to be close to zero. This is what we observe in Figure

5.19. Note that the large shear stresses near the notch could also be an artifact of

the crack getting pinned as discussed earlier.

Finally, Figure 5.20 shows the predicted crack paths for the 41 × 41 mesh for

both lateral shear loads. Notice that the crack predicted for the 10 kN lateral force

contains more curvature than that predicted for the 5 kN lateral force, which is

consistent with the experiments. The predicted crack curvature for the 5 kN case

is slightly too large compared to experiment. However, this is primarily due to the

crack branching that occurs in the experiment. The initial crack curvature near the

notch in the experiment is consistent to that predicted from the simulation.
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Figure 5.15: Load-deflection Curve - Shear-Tension (Fs = 5 kN)
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Figure 5.16: Load-deflection Curve - Shear-Tension (Fs = 10 kN)
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(a) δ = 0.0028 mm (b) δ = 0.0029

(c) δ = 0.024 (d) δ = 0.024

(e) δ = 0.044 (f) δ = 0.044

(g) δ = 0.123 (h) δ = 0.123

Figure 5.17: Normal Stress (σyy) - DEN Shear-Tension Simulations (scale = 200)
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(a) δ = 0.0028 mm (b) δ = 0.0029

(c) δ = 0.024 (d) δ = 0.024

(e) δ = 0.044 (f) δ = 0.044

(g) δ = 0.123 (h) δ = 0.123

Figure 5.18: Normal Stress (σxx) - DEN Shear-Tension Simulations (scale = 200)
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(a) δ = 0.0028 mm (b) δ = 0.0029

(c) δ = 0.024 (d) δ = 0.024

(e) δ = 0.044 (f) δ = 0.044

(g) δ = 0.123 (h) δ = 0.123

Figure 5.19: Shear Stress (σxy) - DEN Shear-Tension Simulations (scale = 200)
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(a) Predicted - 5kN (b) Experiment - 5kN [58]

(c) Predicted - 10kN (d) Experiment - 10kN [58]

Figure 5.20: Crack Patterns for DEN Shear-Tension Problem

119



Chapter 6

Summary

6.1 Review of Contributions

This dissertation provides an algorithm for modeling mode-I failure using quadrilat-

eral finite elements with standard nodal basis functions. The principal contribution

of the dissertation is the development, implementation, and validation of an algo-

rithm that provides a means to predict material failure at an angle through a finite

element mesh without mesh bias. To the author’s knowledge, this work represents

the first time that mesh objectivity has been achieved in modeling mode-I failure

at an angle through a finite element mesh using a discrete constitutive model, a

standard finite element formulation, and the smeared crack approach.

Another important contribution is the simplicity, implementation convenience,

and computational efficiency of the algorithm (see Section 4.6). The equations that

govern the algorithm are explicit requiring no iterative methods and are formulated

around one-point quadrature. The algorithm can be housed within a single consti-

tutive model subroutine that is called by a traditional host finite element code to

update the stress. The only modification necessary within the host code is to update

the hourglass force contributions for a cracked element.
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This contribution required the development and implementation of the following

components: (1) mode-I failure model that precludes spurious shear stress along the

crack surface, but keeps the crack orientation fixed as the crack evolves, (2) a crack

tracking algorithm that provides the correct crack path, (3) an hourglass control

method for an element undergoing softening, and (4) a cross-over scaling method

that provides the correct characteristic crack dimension as a crack segment passes

through two elements. All four components are necessary in order to alleviate mesh

orientation bias with respect to the crack path and the load-deflection curve.

The distinguishing feature of the discrete failure model (see Section 3.3) is that

the increment in shear stress along the crack surface is not allowed while the crack

orientation is fixed. As a result, the total shear strain is not necessary to compute the

shear stress and this paradigm precludes spurious shear stress accumulation. Spu-

rious shear stress accumulation was identified as the primary cause of shear locking

when modeling cracks using finite elements and the smeared crack approach. Be-

cause the crack orientation does not evolve with the crack opening, the crack path

can be accurately represented using the crack tracking algorithm. This is in contrast

to some models that must continuously rotate the crack surface.

One advantage of using a discrete failure constitutive model is that there is a spe-

cific representation of the mode of failure, which can be correlated with experimental

observations. A nonlocal damage model has the disadvantage that the mode of fail-

ure can only be presumed from the path of failed elements based on the numerical

solution.

A second advantage of the discrete model with a smeared crack representation is

that the stability of the numerical solution is assured once it is shown that element

snapback does not occur for the failure mode. Any deformation that does not ac-

tivate the failure mode is elastic and therefore, stable. On the other hand, when a

continuum damage model is used, there is the possibility of loss of stability and, as

a consequence, a loss of convergence with mesh refinement. The stability associated
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with the tangent tensor based on a discrete constitutive equation with small enough

mesh size is important also in connection with hourglass control with softening.

The crack tracking algorithm (see Section 4.4) assumes that a crack is represented

by a series of line segments that intersect element edges. The primary function of the

crack tracking algorithm is to preclude mesh dependence of the crack path caused by

the misalignment of the stress field around the crack tip. Without it, the crack would

simply follow the element edges. With it brings about crack cross-over effects that

must be handled appropriately as discussed later. The tracking algorithm decides

which elements can fail based on which elements intersect the path of line segments

that represent the crack.

Because one-point quadrature is intrinsic to the proposed algorithm, a set of

appropriate hourglass control methods are required to preclude the formation of

hourglass modes. More importantly, an hourglass control method for softening is

required in order to obtain mesh objectivity in crack problems. Although hourglass

control methods are well established for elements undergoing hardening, methods

that apply to softening are not well established. A set of two new hourglass control

methods are developed for both an element undergoing hardening (see Section 4.3.1)

as well as softening (see Section 4.3.2). For both cases, a set of simple algebraic

equations are derived for structured meshes that provide exact hourglass forces or

those that reproduce four-point integration without error. For the hardening ele-

ment, the primary contribution is an hourglass control method that does not require

an hourglass coefficient. For the softening element, the hourglass control method

selected, provides mesh objectivity. A suggested method to improve a commonly

used hourglass control method is also provided.

The final piece of the mesh objective puzzle is dealing with crack cross-overs (see

Section 5.2.2). Even when contributions (1) through (3) were implemented, there

was still some mesh orientation bias. The load-deflection curve unloading slope was

too small. These effects became worse as the mesh orientation was increased. It was
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reasoned that when a cross-over crack occurs, the characteristic element dimension

changes. When the cross-over dimension was used as the characteristic crack length

for both elements that compose the cross-over, full mesh objectivity was obtained.

When the crack tracking algorithm identifies a crack cross-over, the characteristic

crack length used is simply the sum of the element dimensions that compose the

cross-over. This approach was denoted cross-over scaling.

The ultimate success of the algorithm is due to integrating all contributions (1)

through (4) together. Without one another mesh objectivity wouldn’t have been

possible. Without the proposed failure model, then spurious shear stress would

result in shear locking, the crack orientation couldn’t be accurately predicted, and

the load-deflection curve would be erroneous. Without the crack tracking algorithm,

the crack path would always follow the element edges. Without the hourglass control

and cross-over scaling methods then mesh objectivity would be nearby, but would

still remain elusive.

6.2 Summary of Results

The efficacy of the hourglass control method derived for the hardening element was

investigated and compared to an existing approach (see Section 5.1). It was demon-

strated that the integration error was zero when one-point quadrature was used for

a structured mesh (i. e. square, rectangular, or parallelogram elements) with the

proposed hourglass control method for hardening. In contrast, the existing approach

couldn’t achieve zero error for non-square elements. For arbitrary meshes, the exist-

ing hourglass control method provided a smaller minimum error than the proposed

approach. It was observed that the proposed hourglass control method for a hard-

ening element works equally well to the existing approach for the meshes considered

in this dissertation.

A mode-I failure model problem was chosen to systematically investigate algo-
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rithm performance for several mesh orientations and sizes (see Section 5.2). Failure

was initiated in the middle of a two-dimensional bar by reducing the tensile strength

of the center element. A crack was then allowed to propagate across the bar using the

crack tracking algorithm. The results showed that the crack path, stress distribution,

and load-deflection curves were essentially free of both mesh size and orientation bias.

As the mesh was refined, the load-deflection curves became essentially the same.

The effects of crack cross-overs were investigated to show the efficacy of the cross-

over scaling method proposed (see Section 5.2.2). Without cross-over scaling, mesh

orientation bias was still pronounced. Stress contours showed that there were large

normal stresses in cross-over elements. It was hypothesized that the accumulation

of normal stress was due to an inconsistency in the unloading rate between the

cross-over cracks and the cracks that are adjacent. Introducing cross-over scaling

in elements within a cross-over effectively caused the cross-over cracks and adjacent

cracks to unload at the same rate, which precluded the development of spurious

normal stresses. Upon the implementation of cross-over scaling, mesh objectivity

was finally achieved.

A set of double-edge-notch concrete experiments were selected to investigate the

performance of the algorithm in modeling straight and curved cracks initiated from

stress concentrations due to geometric discontinuities. In the direct-tension simula-

tions that pull the specimen in tension (see Section 5.3), it was shown that the same

load-deflection curve was obtained with an unrotated and rotated mesh. In addi-

tion, the normal stress distributions generated from both meshes were essentially the

same. Finally, it was shown that when hourglass control for softening was turned

off, the load-deflection curve for the oriented mesh deviated from the result obtained

for the unrotated mesh. This suggested that hourglass control for softening plays an

important role in obtaining mesh objectivity.

A combined shear-tension DEN simulation (see Section 5.4) was conducted to

predict curved crack paths for two different lateral load cases using square meshes

124



Chapter 6. Summary

of difference size. The simulation consisted of two loading stages. In the first stage,

a lateral load is applied using displacement control such that the net axial force is

about zero. Once the lateral force has reached the desired magnitude, the lateral

and axial displacements are controlled such that the lateral force is held constant as

the crack propagates.

The resulting load-deflection curves reasonably matched the experimental results.

The predicted crack trajectories were curved and similar to what was obtained in the

experiments. The model could also predict the larger curvature obtained in the larger

lateral load case. The resulting stress contours between a coarse and a fine mesh were

similar indicating that the forces in the material are represented without mesh bias.

As the mesh was refined, the load-deflection curves shifted slightly upward. It was

hypothesized that the root cause of this behavior was the spurious accumulation of

normal stress near the notch brought on by not allowing additional cracks to form

around the notch. The crack essentially gets pinned or stuck and normal stress

continues to rise beyond the tensile strength. A fix for this would be to adjust the

crack tracking algorithm to allow more cracks to occur in the notch region to prevent

stress accumulation.

The failure model could still represent the unloading stage of the experimental

data reasonably well even when the shear stress along the crack surface wasn’t allowed

to accumulate. This might suggest that for this specific combined shear-tension

problem, the effects of shear along the crack surface are a minor contribution to the

overall load-deflection curve. This isn’t too surprising as the primary load path in

the material during the cracking phase is of tension. In general, the algorithm was

able to capture the features observed in the experiments.
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6.3 Limitations to Proposed Methods

The assumptions initially defined set the course for many of the limitations of the

proposed algorithm. The algorithm was formulated under the pretense of brittle ma-

terial failure with little to no confining stress and small deformations. A limitation of

the procedure is the step taken to prevent the development of parasitic shear; namely,

a constraint that enforces zero shear stress once a mode-I crack is initiated. Recall

that the shear stress is zero at crack initiation, and is zero when the complete crack

is formed. As a result, the error caused by enforcing zero shear stress throughout

the crack development may be significant. The constraint of zero shear stress implies

that the potential evolution of shear due to a change in the loading path occurs in

adjacent elements and, hence, will affect the orientation of the crack continuation.

This is the approach that may be considered as an alternative and an improvement

to the algorithm often used in the literature based on the assumption of a rotating

crack, which does not address the issue of parasitic shear stress.

For more general discrete constitutive failure models that allow mixed mode be-

havior, corresponding constraints can be constructed that also prevent corresponding

parasitic stress components. For many problems, a shear force along the crack sur-

face is necessary such as for ductile material failure of concrete under large confining

stress.

Because small deformations were assumed, it is unknown how applying large

deformation kinematics will affect the results. This sort of formulation would be re-

quired for problems that involve plastic deformation prior to the onset of failure such

as ductile failure in metals. However, adding plasticity would be rather straightfor-

ward as a plastic strain contribution to the total strain would be added. A separate

portion of the constitutive model would handle the hardening response while the

decohesion portion would still handle the softening response.

The algorithm was implemented and tested using a two-dimensional finite ele-
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ment formulation to simplify the implementation, but mostly to simplify the post-

processing, interpretation of the results, and reduce simulation run times. Presently,

we do not foresee an issue in moving to three dimensions. Additional components of

strain, stress, and crack opening displacement would be required. However, because

code implementation usually presents a painful journey, at least for this author, we

list this aspect as a possible issue principally due to unforeseen computational aspects

that may present themselves.

6.4 Follow-on Research

The potential limitations presented in the previous section present possible future re-

search efforts. A similar algorithm for mode-II failure could be developed to preclude

spurious normal stress for failure in ductile materials. Large deformation kinematics

could be introduced along with plasticity. Mixed mode failure could be investigated

for concrete failure under large confining stress.

Another branch of research is applying the algorithm to particle methods that

use finite element calculations in the background such as the Material-Point Method

(MPM) [28]-[30]. In theory, the algorithm should also make MPM computations ob-

jective with respect to the computational grid when modeling mode-I brittle failure.

This might apply to problems that involve ice, rock, and concrete.
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Derivation of Cracked Element

Edge Coordinates

The cracked element edge coordinates (CEECS) are used in the crack tracking al-

gorithm to compute the path of the crack through the mesh based on the crack

orientation n and the starting crack coordinates (SCCS) of the initiated crack de-

noted (xecr, y
e
cr). The SSCS are the coordinates of the crack root that start each

crack segment after the first initiated crack has formed and they are either (xe1, y
e
1)

or (xe2, y
e
2) from the previous cracked element in the crack branch. For example, for

cracked element 1 in Figure A.1, the SCCS are (x1
cr, y

1
cr) = (xn2 , y

n
2 ), where (xn2 , y

n
2 ) are

the CEECS for the North element (N). For tracking cracks in problems considered

here, we define three sets of CEECS: (1) coordinates for first initiated cracks (xc1, y
c
1)

and (xc2, y
c
2), (2) coordinates (xe2, y

e
2) for the crack segment leading off of either (xc2, y

c
2)

or (xecr, y
e
cr), and (3) coordinates (xe1, y

e
1) leading off of either (xc1, y

c
1) or (xecr, y

e
cr). The

CEECS compute flag listed in the algorithm in Section 4.5, corresponds to cases (1)

through (3). Note that for case (1), the first initiated cracks are those that initiate

a crack branch. For example, for the double-edge-notch simulations in Section 5.4,

there are two first initiated cracks because there are two separate crack branches. As
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Figure A.1: Tracking a Crack Through a Mesh

a result, (xc1, y
c
1) and (xc2, y

c
2) are computed only twice in the simulation.

The general procedure for deriving the CEECS is to express the equation of the

line representing the crack segment in terms of the crack orientation n and another

equation for the line representing the element edge that corresponds to the CEECS

that are to be computed. These two equations are then solved simultaneously to

determine the CEECS. The first equation is formed by taking the dot product of

the normal vector n and a vector defining the crack segment in terms of nodal

coordinates. The second equation is formed by using the point-slope formula and
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setting x = xei and y = yei . Applying this for case (1), we have

0 = (xc1 − xc)n1 + (yc1 − yc)n2 (A.1)

0 =
xc1 − x1

x2 − x1

− yc1 − y1

y2 − y1

, (A.2)

where n1 and n2 are the vector components of n in the global {x, y} coordinate

system, (xi, yi) are the nodal coordinates, and (xc, yc) are the coordinates for the

element center corresponding to the first initiated crack. Solving eqs. A.1 and A.2

results in

xc1 =
[x2y1 − x1y2 + (x1 − x2) yc]n2 + (x1 − x2)n1xc

(x1 − x2)n1 + (y1 − y2)n2

(A.3)

yc1 =
[x1y2 − y1x2 + (y1 − y2)xc]n1 + (x1 − x2)n2yc

(x1 − x2)n1 + (y1 − y2)n2

(A.4)

xc2 =
[x4y3 − x3y4 + (x3 − x4) yc]n2 + (x3 − x4)n1xc

(x3 − x4)n1 + (y3 − y4)n2

(A.5)

yc2 =
[x3y4 − y3x4 + (y3 − y4)xc]n1 + (y3 − y4)n2yc

(x3 − x4)n1 + (y3 − y4)n2

. (A.6)

If we have a first initiated crack starting a crack branch, the CEECS compute flag

is set to 1 and eqs. A.3 through A.6 are used to compute the CEECS.

Following a similar procedure from the previous example and setting up equa-

tions for the crack segments leading from (xc2, y
c
2) and (xc1, y

c
1), results in the CEECS

equations for cases (2) and (3), respectively as follows:

xe2 =
[x4y3 − x3y4 + (x3 − x4) ycr]n2 + (x3 − x4)n1xcr

(x3 − x4)n1 + (y3 − y4)n2

(A.7)

ye2 =
[x3y4 − y3x4 + (y3 − y4)xcr]n1 + (y3 − y4)n2ycr

(x3 − x4)n1 + (y3 − y4)n2

(A.8)

xe1 =
[x2y1 − x1y2 + (x1 − x2) ycr]n2 + (x1 − x2)n1xcr

(x1 − x2)n1 + (y1 − y2)n2

(A.9)

ye1 =
[x1y2 − y1x2 + (y1 − y2)xcr]n1 + (x1 − x2)n2ycr

(x1 − x2)n1 + (y1 − y2)n2

. (A.10)
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For case (2), we set the CEECS compute flag to 2 and eqs. A.7 and A.8 are used to

compute the CEECS. Finally, for case (3), the CEECS compute flag is set to 3 and

eqs. A.9 and A.10 are used to compute the CEECS.

All that is required to compute current crack segment information is the crack

normal n of the current initiated crack, the SCCS, (xecr, y
e
cr), which are equal to either

(xe1, y
e
1) or (xe2, y

e
2) from the previous cracked element in the crack branch, and the

nodal coordinates of the current initiated cracked element or the adjacent element

that is slated to crack next. The CEECS and the adjacent element array Eadj are

used to choose which elements are next in line to fail. If one of the adjacent elements

has cracked, then a search is performed to find which element is evolving a crack or

which element has a crack condition code Ccond(ne, 2) = 2. The CEECS compute

flag and SCCS are then chosen based on which position in the adjacent element array

the evolving crack is located. Then the next set of adjacent elements are determined

using logic comparisons based on comparisons between the CEECS and the nodal

coordinates of the evolving cracked element. This process continues as new cracks

initiate.

For crack paths that involve an inflection in the crack path, then slight modifi-

cations to the SCCS and CEECS compute flag are necessary. For example, in the

DEN direct-tension simulations, the crack normal component in the x-direction n1

changes sign as the crack path goes downward for the top crack (or upward for the

bottom crack). In the Get-Crack subroutine, which determines the SCCS and the

CEECS compute flag, a search is performed to identify when a crack inflection oc-

curs. If the condition is true, then the SCCS and compute flags for cases (2) and (3)

are switched. The CEECS are then computed with the swapped SCCS and CEECS

compute flag in the Compute-CEECS subroutine. Finally, it might be necessary to

adjust the definition of the failure angle in eq. 4.105 depending on the interval that

the ATAN function is defined. Another approach is to setup the problem such that

the curved cracks travel up/down if ATAN is defined on the interval [−π, π].
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Standard Decohesion Model

In Section 5.2, results were compared to a standard decohesion model. This Appendix

presents the equations for a standard mode-I decohesion model that uses the full

strain field to compute the stress.

We start with the same decohesion function as used in the proposed model that

assumes linear softening

F =
τn
τnf

+
un
u0

− 1. (B.1)

Applying eq. 3.23 results in

[[u̇n]] = ω̇
∂F

∂τn
=

ω̇

τnf
, (B.2)

where ω̇ is a positive monotonically increasing function. Dropping the [[ ]] on u̇n and

applying the consistency condition Ḟ = 0 results in

Ḟ =
τ̇n
τnf

+
u̇n
u0

= 0. (B.3)

Substituting in eq. B.5 into eq. B.3 and solving for ω̇ results in

ω̇ = −τ̇nu0. (B.4)

Substituting in eq. B.4 into eq. B.5 results in

u̇n = − τ̇nu0

τnf
. (B.5)
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Appendix B. Standard Decohesion Model

Next, we apply the smeared crack formalism such that the total strain is additively

decomposed into elastic and crack strain contributions as follows:

e = ee + ecr. (B.6)

Applying Hooke’s law and eq. B.6 results in the stress for a cracked element

σ = E : ee = E : (e− ecr) . (B.7)

Next, we transform the generalized Hooke’s law relation for the stress into a matrix-

vector relation for a two-dimensional state of stress using the 3× 3 elasticity matrix

[C] and the strain vector ev as follows:

{σv} = [C] {ev}, (B.8)

where

{σv} =


σxx

σyy

σxy

 (B.9)

{ev} =


exx

eyy

2exy

 . (B.10)

When a crack forms, the stress update takes place in the {n, t} basis. As a result,

we must have equations that define σnn, σtt, and σnt. These equations are as follows

for the standard decohesion model:

σnn = C11(enn − ecrnn) + C12ett (B.11)

σtt = C12(enn − ecrnn) + C22ett (B.12)

σnt = 2C33ent. (B.13)

Because a mode-I Rankine failure model is assumed, the only strain component that

contains a crack strain is the normal component. Hence ecrtt = 0 and ecrnt = 0 From
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eq. 3.27, the crack strain is

ecrnn = un/hc. (B.14)

If the decohesion function F > 0, then eqs. B.11 through B.14 are used to update

the stress in the crack basis. The algorithm computes the un required that achieves

F ≈ 0. Then the local stress components are transformed back to the global basis.

Now let’s examine the differences between the failure model proposed in Section

3.3 and the standard model proposed here. First, notice that now we have a nonzero

σnt component defined in eq. B.13 that is a function of the shear strain ent. As

we know from Section 2.2.1, once a mode-I crack is opened up in a finite element,

a spurious ent component accumulates linearly with the crack opening displacement

un. Applying σnt = 2C33ent then results in a spurious shear stress. This is the root

cause of the poor performance of the standard decohesion model observed in Section

5.2.

In contrast, the new failure model is formulated to ensure that spurious shear

stress does not accumulate when a crack opens by setting ∆σnt = 0. Hence, the

new failure model doesn’t use ent. The implication of such an approach, is that the

shear stress in the crack cannot evolve. This assumption is appropriate for concrete

under very little compression which is assumed here. For materials that require

shear evolution such as concrete under large compression, the evolution equation for

the shear stress could be related to the normal stress σnn using a Mohr-Coulomb

relationship.

The rotating crack model (RCM) enforces ent = 0 by rotating the crack orien-

tation throughout a simulation defined by the the eigenvectors of the strain tensor

such that the crack normal is always in line with the most tensile principal strain. It

is then interpreted that the resulting principal strains are enn and ett. However, this

model leads to an inconsistency between the physical crack orientation and what is

termed the computational crack or the crack orientation necessary to enforce ent = 0.

Therefore, it is difficult to use this model to predict the physical crack orientation.
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[44] J. Oẑbolt and Z. P. Baẑant. Numerical smeared fracture analysis: nonlocal
microcrack interaction approach. International Journal for Numerical Methods
in Engineering, 39:635–661, 1996.

[45] J. Sanchez. A Critical Evaluation of Computational Fracture Using a Smeared
Crack Approach in MPM. PhD thesis, University of New Mexico, 2010.

[46] J. Oliver. Modelling strong discontinuities in solid mechanics via strain soft-
ening constitutive equations. part 1: Fundamentals. International Journal for
Numerical Methods in Engineering, 39(21):3575–3600, 1996.

138



References

[47] J. Oliver, A. E. Huespe, M. D. G. Pulido, and E. Chaves. From continuum me-
chanics to fracture mechanics: the strong discontinuity approach. Engineering
Fracture Mechanics, 69:113–136, 2002.

[48] J. Oliver. Modelling strong discontinuities in solid mechanics via strain softening
constitutive equations. part 2: Numerical simulation. International Journal for
Numerical Methods in Engineering, 39(21):3601–3623, 1996.

[49] H. L. Schreyer. Introduction to computational mechanics. Book in Draft, 2010.

[50] D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadri-
lateral with orthogonal hourglass control. International Journal for Numerical
Methods in Engineering, 17(5):679–706, 1981.

[51] W. K. Liu, J. S.-J. Ong, and R. A. Uras. Finite element stabilization matrices - a
unification approach. Computer Methods in Applied Mechanics and Engineering,
53:13–46, 1985.

[52] Maplesoft. Maple 18. Maplesoft, a division of Waterloo Maple Inc., Waterloo,
Ontario.

[53] M. G. D. Geers, R. de Borst, and R. H. J. Peerlings. Damage and crack modeling
in single-edge and double-edge notched concrete beams. Engineering Fracture
Mechanics, 65:247–261, 2000.

[54] M. Cervera and M. Chiumenti. Mesh objective tensile cracking via a local
continuum damage model and a crack tracking technique. Computer Methods
in Applied Mechanics and Engineering, 196:304–320, 2006.
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[56] P. Grassl and M. Jirásek. On mesh bias of local damage models for concrete. In
Li VC et. al., editor, Proceedings of the 5th International Conference on Fracture
Mechanics of Concrete Structures (FraMCoS-5), pages 255–262, 2004.

[57] G. W. Wellman. A simple approach to modeling ductile failure. Technical
Report SAND2012-1343, Sandia National Laboratories, JUNE 2012.

[58] M. B. Nooru-Mohamed. Mixed-mode fracture of concrete: an experimental ap-
proach. PhD thesis, Delft University of Technology, 1992.

139


