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Abstract 

The behavior of the suspended particles in a fluid is an important subject in fluid flow 

studies. Earlier research works mostly were performed using a continuum treatment on a 

macro scale level. Recent developments in the field of micro- and nanofluids have led to 

a renewed interest in molecular hydrodynamics phenomena. The micro hydrodynamic 

interactions between particles and solid surfaces have been shown to play important roles 

in the ordering of particles in vibrated fluids, self-organization of biological cells, and 

collective dynamics of swimming particles[Voth2002, Riedel2005, Hernandez2005], 

micro-electronic fluid behaviors and also have great prospects in industry applications.  

 

Though a lot of researches have been done in this area, some problems are still unclear. 

For example, the boundary conditions of the interaction surfaces. For hundreds of years it 

has relied on the no-slip boundary condition at the solid-liquid interface in the continuum 

theory, and it was also applied to model many macroscopic experiments[Batchelor00]. 

However, the no-slip boundary started to break down in molecular level, for certain 

scenarios such as in the near field between a colloidal particle and a solid surface, what 

kind of boundary condition may be applied to the interface are still not clear. Another 

problem is the microscopic particle size. There is no clear theory for the effective particle 

size. As a result, lot of studies all assumed an ad hoc position for the wall that is not been 

defined in terms of the actual interactions with the fluid.  This introduced some ambiguity 



 iv 

in the determination of the correct comparison to the continuum theory as well as to the 

general force versus distance results. Further more, in a number of more recent studies, 

researchers applied either the repulsive Weeks-Chandler-Andersen (WCA) potentials, or 

some cut off and shifted Lennard-Jones (LJ) potentials. The WCA potential is a pure 

repulsive potential, though the regular LJ potential with a finite cutoff distance, has both 

repulsive and attractive parts, LJ potential usually has a discontinuity where it is cut-off, 

this non-smoothness may affect the results. A new potential model is needed to conserve 

the simulation system energy better. 

 

 In this research we focused on the hydrodynamic interactions experienced by colloidal 

particles in the vicinity of a solid surface. We developed a new potential model, which 

was smoothly cut at the finite cutoff distance with both the repulsive and attractive parts. 

Using this new potential model, we investigated the wall-particle interaction and the 

solvation forces for a single suspended particle in a LJ fluid. We also focused especially 

on the phenomena when the suspended sphere is positioned quite close to the wall. 

Additionally, we explored how moving a non-interacting sphere through the particle wall, 

can be used to determine the effective radius of the suspended particle. Next, we analized 

the dynamic drag force of spherical particles of different radii with various velocities to 

assess the validity of Brenner’s expression as the suspended particle approaches the wall. 

The study finally determined the slip or no-slip boundary conditions in the microscale 

hydrodynamics. 
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Chapter 1  

INTRODUCTION 

 

The behavior of the suspended particles in a fluid is an important subject in fluid flow 

studies. Earlier research works mostly were performed using a continuum treatment on a 

macro scale level. Recent developments in the field of micro- and nanofluids have led to 

a renewed interest in molecular hydrodynamics phenomena. The micro hydrodynamic 

interactions between particles and solid surfaces have been shown to play important roles 

in the ordering of particles in vibrated fluids, self-organization of biological cells, and 

collective dynamics of swimming particles[Voth2002, Riedel2005, Hernandez2005], 

micro-electronic fluid behaviors and also have great prospects in industry applications.  

 

Though a lot of researches have been done in this area, some problems are still unclear. 

For example, the boundary conditions of the interaction surfaces. For hundreds of years it 

has relied on the no-slip boundary condition at the solid-liquid interface in the continuum 

theory, and it was also applied to model many macroscopic experiments[Batchelor00]. 

However, the no-slip boundary started to break down in molecular level, for certain 

scenarios such as in the near field between a colloidal particle and a solid surface, what 

kind of boundary condition may be applied to the interface are still not clear. Another 

problem is the microscopic particle size. There is no clear theory for the effective particle 

size. As a result, lot of studies all assumed an ad hoc position for the wall that is not been 

defined in terms of the actual interactions with the fluid.  This introduced some ambiguity 
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in the determination of the correct comparison to the continuum theory as well as to the 

general force versus distance results. Further more, in a number of more recent studies, 

researchers applied either the repulsive Weeks-Chandler-Andersen (WCA) potentials, or 

some cut off and shifted Lennard-Jones (LJ) potentials. The WCA potential is a pure 

repulsive potential, though the regular LJ potential with a finite cutoff distance, has both 

repulsive and attractive parts, LJ potential usually has a discontinuity where it is cut-off, 

this non-smoothness may affect the results. A new potential model is needed to conserve 

the simulation system energy better. 

 

 In this research we focused on the hydrodynamic interactions experienced by colloidal 

particles in the vicinity of a solid surface. We developed a new potential model, which 

was smoothly cut at the finite cutoff distance with both the repulsive and attractive parts. 

Using this new potential model, we investigated the wall-particle interaction and the 

solvation forces for a single suspended particle in a LJ fluid. We also focused especially 

on the phenomena when the suspended sphere is positioned quite close to the wall. 

Additionally, we explored how moving a non-interacting sphere through the particle wall, 

can be used to determine the effective radius of the suspended particle. Next, we analized 

the dynamic drag force of spherical particles of different radii with various velocities to 

assess the validity of Brenner’s expression as the suspended particle approaches the wall. 

The study finally determined the slip or no-slip boundary conditions in the microscale 

hydrodynamics.
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1.1 Previous Research 

 

The problem of a sphere slowly moving with a constant velocity in a viscous fluid (Re << 

1, where Re=rU/ν, r is the radius of the sphere, U is the constant  velocity and ν is the 

dynamic viscosity ) is one of the basic problems in hydrodynamics. Stokes’ Law defines 

the drag force as proportional to the particle’s radius, velocity and the fluid viscosity.  

 

� 

F = 6πµrU  (1.1) 

 

Brenner[Brenner61] obtained exact solutions of the Stokes equations in a viscous fluid of 

a spherical particle moving steadily toward and away from a planar surface of infinite 

extent.  For the case of a solid surface with no-slip boundary condition, incompressible 

follow, and Low Reynolds number, Brenner found that the drag force, F, on the particle 

is given by 

 

� 

F = 6πµrUλ , (1.2)  

 

where µ is the viscosity, r the radius of the sphere, U its velocity, 6 for no-slip conditions, 

and λ is a correction factor given by 

 

, (1.3) 

with 

� 

λ =
4
3
sinhα n n +1( )

2n −1( ) 2n + 3( )n=1

∞

∑ 2sinh 2n +1( )α + 2n +1( )sinh2α
4sinh2 n +1/2( )α − 2n +1( )2sinh2α

−1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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 (1.4) 

 

where h is the distance from the center of the sphere to the plane. At a large distance from 

the surface, , λ tends to one, so that Eq. (2) would simplify to Stokes’ law.  

 At short separation distances from the plane surface (compared to the radius of the 

sphere), this continuum force (Eq.(2)) should diverge as b/h.  At short distances 

compared to molecular dimensions, the continuum assumption must break down because 

of the molecular nature of the fluid, and one expects that the drag force remains finite.  

The assumptions required for Brenner’s solution are no-slip boundary conditions, a 

constant fluid density and infinitely smooth solid and colloid surfaces.  In real atomistic 

systems, these assumptions are not completely valid at sufficiently small length scales, so 

discrepancies should arise.   

 

As the no-slip boundary conditions break, Luo and Pozrikidis[Luo2008] improved Eq.(1) 

as: 

 

� 

F = cπµrU = 6β + 2
β + 3

πµrU  (1.5) 

 

where β is the Basset parameter. As β → 0, the Stokes’ law coefficient of 6 tends 4, 

indicating a substantial reduction in the drag force. 

 

 

� 

α = cosh−1 h
b

+1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ,

� 

h →∞
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In addition, a number of researchers have suggested the no-slip boundary conditions were 

no longer supported in the micro-scale fluid behaviors. There have been a couple of 

previous studies on the validity of Stokes’ law for the case of a spherical particle moving 

toward a wall by employing molecular dynamics. Vergeles et al. [Vergeles96, 

Vergeles97] studied the translational and rotational motion of a colloid particle in a 

viscous Lennard-Jones fluid both near and away from a flat surface. Their study, which 

included both spherical and atomistically structured colloids showed that the drag and 

torque on the sphere in an essentially unbounded fluid agree with the continuum 

hydrodynamics results captured by Stokes’ law.  Similar studies were also performed by 

Heyes et al [Heyes96, Nuevo97].  As the solute approaches the wall, Vergeles et al 

concluded that the Brenner model was supported by their data, although some variations 

were observed at separation distances comparable to the solvent radius.  These authors 

also concluded that the no-slip condition breaks down near the wall.  

 

In a more recent molecular dynamics study that apployed repulsive Weeks-Chandler-

Andersen (WCA) potentials, Challa and van Swol revisited parts of the Vergeles study 

[Challa06].  In their analysis, they found that as a sphere approaches a flat surface the 

drag force on the sphere can be represented by a superposition of two contributions: a 

static solvation force and the hydrodynamic force.  They inferred that the solvation force 

contributes most prominently at small distances between the sphere and the planar 

surface and at small velocities.  For a smooth wall, they found that the static force can 

lead to a total force that oscillates between positive and negative values (depending on 

the discrete size of the solvent molecules), an effect that is not included in the continuum 
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hydrodynamic result [Batchelor00].  After compensating for this, however, they found 

that they did not observe a divergence in the hydrodynamic force as strong as that 

predicted by Brenner. 

 

Kohale and Khare [Kohale2008] provided simulations of a colloid sphere moving inside 

fluid between two confined surfaces. They measured the friction forces between the 

colloid sphere and the fluid and found the values of the friction forces follow the same 

qualitative trend as the continuum results but are consistently lower than the continuum 

values. The continuum results were obtained for the case of no-slip boundary condition 

on the sphere surface; they claim this no-slip boundary condition is clearly not supported 

in their simulations. In their research, in addition to a pure repulsive potential, Kohale 

and Khare also tried a regular LJ potential with a finite cutoff distance, so the interaction 

forces could have both repulsive and attractive parts. Because their LJ potential has a 

discontinuity where it is cut-off, this non-smoothness may affect their results.  

 

 

Several researchers followed up to justify the no-slip boundary condition on the 

microscopic level.  Horn et al [Vinogradova2000] presented data describing the squeeze-

film drainage of an “ ideal elastic” or “Boger fluid”( an elastic liquid with a constant 

viscosity) in submicron films between curved solid surfaces. The thin film does not 

follow the predictions based on the bulk rheological properties of Boger fluid. The film is 

thinning more rapidly than prediction of Newtonian theory with no-slip conditions. To 
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explain this, they invoked slippage at the fluid-solid interface and interpreted the results 

with a simple slip length model. 

 

 Zhu et al [Zhu2006] developed a stable spread-sheet algorithm for the calculation of the 

hydrodynamic forces measured by colloid probe atomic force microscopy to be used in 

investigations of interfacial slip. They claimed their model is accurate enough in the large 

separation limit ( large with respect to the radius of the microsphere ), and can be used to 

predict the hydrodynamic drainage force instead of Brenner equation. But they also 

admitted that their results for a relatively soft cantilever significantly overestimated.  

 

With increasing interest in micro- and nanofluidics, many researchers have focused on 

the modeling of the motion of liquids over surfaces, and led to the concept of the 

effective tensorial slip. Vinogradova and Belyaev[Vinogradova2010] discussed the issue 

of boundary conditions at smooth hydrophobic and rough hydrophilic surfaces, and then 

given the especial emphasis to the derivation of effective boundary conditions for a flow 

past hydrophobic solid surfaces with special textures that can exhibit greatly enhanced 

properties, compared to analogous flat or slightly disordered surfaces. They derived 

accurate formulas describing effective boundary conditions for pressure-driven flow past 

super-hydrophobic textures. They analyzed both thin and thick channel situations, and in 

some special cases, obtained exact solutions valid for an arbitrary thickness of the 

channel. They also gave the exact solutions for optimization of the transverse flow and 

analytical results for the hydrodynamic resistance to the approach of two surfaces. 

Furthermore, they discussed the electrokinetic pumping in microfluidic devices. In 2011 
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Asmolov, Belyaev, and Vinogradova[Vinogradova2011] analyzed theoretically a high-

speed drainage of liquid films squeezed between a hydrophilic sphere and a textured 

superhydrophobic plane that contains trapped gas bubbles. They showed that at a thinner 

gap the force reduction becomes more pronounced, and that it depends strongly on the 

faction of the gas area and local slip lengths. For small separations they derived an exact 

equation, which introducess a correction for effective slip to texture parameters. 

 

Bocquet and Barrat [Bocquet2007] have recently reviewed slippage at atomistic scales 

and shown the connection with slip length models. They suggested the friction coefficient 

κ and hence the slip length b (b=µ/κ ), depend strongly on the strength of the solid-liquid 

interactions. They found that slip length achieved for modified Lennard-Jones (LJ) 

models may vary between a few molecular diameters for a traditional (LJ) potential and 

50 to 60 molecular diameters for reduced interactions; the slip length is highly dependent 

on the value of the interaction parameter that defines the solid-liquid attraction.  

 

In order to make comparisons to the continuum models, these studies all assumed the 

sizes of the fluid and suspended particles (as well as the particles that form the wall if a 

non-smooth wall is employed) to be fixed at some nominal value determined by the 

parameters of the applied potentials.  For example, if the range of the Lennard-Jones 

interaction is σ, the radius of the particle is often taken to be σ/2. In the analyses of these 

studies, the position of the wall was assumed to be at either the origin of the potential, 

where the potential becomes zero (for WCA type models), or at a distance σ/2 from the 

atomic centers for LJ-type models. However, due to the softness of the interactions, it is 
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reasonable to expect that the effective sizes, particularly near the flat surface, to be 

determined by the competing interactions of the fluid molecules located between the 

spherical particle and the wall. This also means that the effective particle sizes can 

become subtle functions of the conditions of the simulations (eg. temperature and 

pressure).  As a result, the studies cited above all assume some ad hoc position for the 

wall that has not been defined in terms of the actual interactions with the fluid.  This 

introduces ambiguity in the determination of the correct comparison to Brenner’s 

expression (2) as well as to general force versus distance results.  The fundamental issue 

of defining the size of the solute or the position of the wall impacts a large number of 

similar studies comparing fluid-flow analyzed by molecular dynamics simulations [for 

example, [Kohale10], [Koplik89]], especially where it is of interest to obtain a 

quantitative comparison with the continuum theories and to assess slip/no-slip 

interactions.  As it is now possible to perform measures on the colloid and surface 

interactions at molecular level resolution  it is important to clarify how such results can 

be interpreted. 

 

1.2 Narrative Summary 

 

In our investigation our interest is investigating the wall-particle interactions, including 

solvation forces for a single suspended spherical particle in a viscous fluid, the friction 

coefficient, and the boundary conditions. In the first part of the research, we focus both 

on the effective size of colloid particles suspended in a fluid in the vicinity of a rigid wall 

and on the effective position of the wall.  We calculate the solvent forces on spherical 
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particles of different radii as a function of varying positions near and overlapping the wall 

and compare them to continuum models. Based on those data, the effective sizes of the 

particles and the position of the wall are investigated using several different metrics.  

 

In addition, the study determined the slip or no-slip boundary conditions in the 

microscale hydrodynamics. We calculated the friction coefficient of spherical particles 

with different masses and radii that moves freely inside a viscos fluid with an initial 

velocity. The friction coefficient can be determined by measuring the velocities and mean 

square displacements of the sphere. Slip or no-slip boundary conditions can be analyzed 

by investigating those results.  

 

Next, we analysis the dynamic drag force of a spherical particle of different radii with 

various velocities and to assess the validity of Brenner’s expression as the suspended 

particle approaches the wall.  The simulations focused on the analysis of equilibrium 

simulations with a colloid particle moving with a constant velocity approaching and 

leaving both the smooth wall and an atomic wall, and apply continuum analogies to the 

behavior of those resulting forces with respect to radius and separation distances. 
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Chapter 2  

THE EFFECTIVE PARTICLE SIZE 

 

In this charpter, we investigate the effective particle size of the colloidal particle 

suspended in a fluid in the vicinity of a rigid wall. In order to determine the effective size 

of the particles, we calculate the solvent forces on spherical particles of different radii as 

a function of different positions near and overlapping the wall and compare them to 

continuum models.  In addition, this procedure also determines the effective position of 

the wall. All simulations reported here are performed with the LAMMPS package 

[LAMMPS] for molecular dynamics. 

 

2.1 Simulation Approach  

 

2.1.1    Interaction Potentials 

 

The fluid particles have a mass m, and interact via a pairwise potential. For the fluid-fluid 

interaction potentials, we used two different variations of the Lennard-Jones (LJ) 

potential. For the first set of simulations, we used the well-known repulsive WCA 

potential [Challa06] that was used in many previous studies: 

 

 (2.1) 

 

with � 

φ r( ) =
φ12−6 r( )−φ12−6 rc( ), r < rc

0, r > rc

⎧ 
⎨ 
⎩ 
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, (2.2) 

the cutoff radius is chosen at the minimum of the LJ potential, rc/σ = 21/6 ≈ 1.12 and r is 

the distance between the center of the two fluid particles.  The parameter ε is the depth of 

the LJ potential, and represents our fundamental energy unit, and similarly σ is the 

fundamental length unit. The potential between the fluid particles and the suspended 

sphere is described using a shifted WCA potential, as was used in previous studies. 

  (2.3) 

 

Here b0 is the radius of the hard-core region of the sphere (which allows its effective size 

to be arbitrarily adjusted) and r is the distance between the center of the sphere and the 

center of a fluid particle.  These potentials are continuous and smooth to arbitrary order 

(except at the inner cut-off b0 which shouldn’t be accessible), and short-ranged.  

Consequently, there are no complicating factors in their numerical evaluation and for the 

standard time step of ∆𝑡 = 0.005𝜎 𝑚/𝜖 , there is a very high degree of energy 

conservation.  

� 

φ12−6 r( ) = 4ε σ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
12

−
σ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
6⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

φ r( ) =
∞, 0 <r < b0

φ12−6 r −b0( )−φ12−6 rc( ), b0 < r < rc +b0
0, r > rc +b0

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Fig. 2.1. WCA potential and cut off at r=1.122. 

 

 In order to explore the effect of attractive forces under similar simulation conditions, we 

then use a quadratic LJ-spline pair potential to do the similar simulation to add the 

attractive part to the force. Because of the moderately long range of the LJ potential, 

many previous studies either cut-off the interaction at an arbitrary distance (resulting in 

an interaction that is neither continuous nor smooth at the cut-off), or employed a cut-

and-shifted potential form that is continuous at the cut-off, but not smooth.  Consequently, 

the simulations do not conserve energy during the dynamics runs, and the method of 

simulation and/or the analyses require corrections for this defect.  Other resolutions of 

this problem are either to include a very large range of pairwise interactions (which is 

very computationally intensive) or to more smoothly truncate the tail of the LJ potential 

[Holian]. Here, we define a modified LJ form that smoothly (to second order) approaches 
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zero at a distance rmax.  This potential consists of the standard LJ potential up to its 

inflection point at rspl = (26/7)1/6 σ  ≈ 1.24 σ, as proposed earlier [Holian].  There (and 

distinct from [Holian]), it switches to a quartic polynomial spline that is smoothly (to 

second order) matched at this point and goes smoothly to zero at a non-arbitrary value 

rmax.   

 

    The LJ-spl potential is built by using the usual LJ 12-6 potential for separations r < rspl 

= (26/7)1/6 σ  ≈ 1.24 σι, 

                  ` (2.4) 

Where rspl, is the distance of maximum attractive force, i.e., . 

 

Between   and  ,   is a 4th order spline: 

  (1.5) 

with A and B chosen such that at : 

  (2.6) 

When : 

.  (2.7) 

From (2.5), (2.6) and (2.7), our results of A and B are: 

, and . 

� 

φ12−6 r( ) = 4ε σ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
12

−
σ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
6⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

φspl
" = 0

� 

rspl

� 

rmax =
55
36

26
7

⎛ 
⎝ 

⎞ 
⎠ 

1/ 6

σ =
55
36
rsplσ ≈1.90σ

� 

φ

� 

φspl(r) = A(r − rmax )
4 + B(r − rmax)

3

� 

r = rspl

� 

φ = φspl
φ ' = φspl

'

φ" = φspl
" = 0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

� 

r > rmax

� 

φ = φ ' = 0

� 

A =
5184
133

936
133
⎛ 
⎝ 

⎞ 
⎠ 

2 7
26

⎛ 
⎝ 

⎞ 
⎠ 

14 / 3 ε
σ 4 ≈ 4.23

ε
σ 4

� 

B = 25184
133

936
133
⎛ 
⎝ 

⎞ 
⎠ 
7
26

⎛ 
⎝ 

⎞ 
⎠ 

7 / 2 ε
σ 3. ≈ 5.56

ε
σ 3
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Fig. 2.2 shows the LJ-spline potential. Fig. 2.3 shows the forces derived from the 4th 

order spline. Both the potential and the force go smoothly to zero at .  

 

 

Fig. 2.2. LJ-spline pair potential. The dotted line is the 4th order spline; the solid line is 

the LJ 12-6 potential. The new potential contains two parts, the 1st part is the LJ 12-6 

potential when , the 2nd part is the 4th order spline, when .              

� 

rmax

� 

r < rspl

� 

rspl < r < rmax
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Fig. 1.3. Forces vs. separation. The dotted line is the 4th order spline force; the solid line 

is the LJ 12-6 force.  The minimum occurs at . 

 

We use this LJ-spline potential as the interactive potential between fluid-fluid particles, 

and wall particles. The shifted LJ-spline potential is the interactive potential between 

fluid particles and the sphere. Since both the potential and the force go smoothly to zero 

at . Consequently, the simulations conserve energy during the dynamics runs. 

 

Fig. 2.4 shows the energy and temperature in a test simulation.  We use the same system 

try an NVE simulation, with our newly designed 4th order spline potential. The figure 

shows a good energy conservation. We set the initial temperature at kT/ε=3, then let the 

system reach the thermo-equilibrium (at step 60000), after that let the simulation start and 

note down the temperature, pressure and energy of the system.  

� 

r = 21/ 6σ

� 

rmax
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Fig. 2.4. Energy and temperature in the NVE simulation. The energy conserved well in 

the system. 

 

 

2.1.2  Simulation Procedure 

 

The simulations were performed in a box of dimensions Lx/σ × Ly/σ × Lz/σ =13.68 ×  

13.68 × 32.20  with periodic boundary conditions applied to the x and y directions, while 

a pair of parallel walls was placed normal to the z direction near the two ends of the box. 

The atomistic wall that was used to explore the behavior of the suspended spherical 

particle consisted of two layers each of 200 atoms.  These were placed in a face centered 

cubic (fcc) arrangement with a lattice spacing of 1.094σ to form a wall that would be 

impervious to the solvent atoms.   The inner most layer of wall atoms was positioned 
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with their atomic centers at z=0.  These wall atoms interacted with the solvent atoms with 

the same potential as a solvent-solvent interaction, but they were not allowed to move 

during the simulations. The wall at the far end of the simulation box (z = 32.20 ) was a 

simple smooth wall that interacted with the solvent atoms by a planar 9-3 potential as 

used in earlier work [Vergeles96,97].  The potential energy between the suspended 

sphere and the wall particles was set to zero so that the wall exerted no direct force on the 

sphere.  In all simulations described here, the position of the colloid with respect to the 

wall was fixed during the data acquisition periods, so the magnitude of this interaction 

has no significance on the simulation. 

 

Fig. 2.5. Simulation box and the initialization of the system. 

 

The simulations were initialized by filling up the region to the right of the wall with fluid 

particles (see Fig. 2.5). The fluid particles were initiated in an fcc crystal structure with a 
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lattice constant 1.094σ giving an initial solvent density of ρσ3=0.8.  The first layer of 

solvent was placed at z = 1.094 σ. Then, a colloid sphere with a core radius of b0 and 

mass M was placed at an arbitrarily selected initial point.  Any solvent particle whose 

center was within b0 + xσ  of the colloid center was then removed. In order to get a 

relatively consistent pressure values, the x values were carefully chosen. For the WCA 

cases, x was around 0.7; for the LJ-spline cases, x was around 0.9.   This method 

generated fairly consistent solvent densities regardless of the size and initial position of 

the colloid.  The system was then randomized for 40000 time steps using a Nose-Hoover 

thermostat and setting the temperature to a high value of kT/ε = 3 to liquify the solvent.  

The temperature was then lowered to a value of either kT/ε = 1.2 or kT/ε = 1.6, again 

using a Nose-Hoover thermostat, and the system was allowed to equilibrate for 20000 

time steps.  After this, the simulation was continued in an NVE ensemble, and the z-

component of net solvent force on the sphere was evaluated 1000 times, collecting a 

static snapshot every 200 time steps. 

 

This procedure was performed for 100 different static positions of the suspended sphere 

for each selected core radius, potential set and temperature.  The range of initial positions 

was incremented from starting at a location where the center of the sphere was well 

separated from the wall, and was repeated until the sphere had moved completely through 

the wall and there was no longer any perturbation to the solvent.  Effectively, this tracks 

the equilibrium forces resulting from moving the colloid from the bulk fluid and through 

the wall.  By reinitializing the simulations for each new initial colloid position, a fairly 

constant solvent density and thermodynamic state was maintained. 
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The pressure of the simulation system was calculated by averaging the total interaction 

force on the smooth wall at the far end of the simulation box. We set up a region close to 

the smooth wall (27.93<z<32.30), during the simulation, if the fluid particles fell into that 

region, the interaction forces between the fluid particles and the wall would be noted 

down and accumulated, eventually, this total interaction force value was be averaged by 

the area of the smooth wall.  We use this value as the system pressure for the simulation 

(See figures in the Appendix for the pressure values).  

 

2.2    Solvation Force 

 

Figure 2.6 shows a schematic of the geometry as the sphere approaches the wall.  

Because the fluid particles interact with the wall, there is a region of thickness Δ1 

between the center of the first layer of wall atoms and the center of the closest layer of 

fluid molecules where the density of the fluid vanishes.  Similarly, the radius of the 

suspended particle, as defined in the potential energy of Eq. (2.3), is b0 and we assume 

that there is a region of thickness Δ2 that defines its effective size.  We intend to calculate 

these parameters in a non-ambiguous manner by determining the net solvation force on 

the spherical particle obtained from the simulations and equating it to the force one would 

calculate assuming that this solvation force arises from a continuous fluid exerting a 

hydrostatic pressure.  Also note that because we do not have an interaction between the 

suspended sphere and the wall, the parameters Δ1 and Δ2 originate purely from the 

interactions between the fluid and the wall and the fluid and the suspended particle.  
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Fig. 2.6. Schematic of the geometry as the sphere approaches the wall. 

 

In the continuum limit, the solvent force on the colloid comes from the hydrostatic 

pressure, p, that is exerted by the fluid normal to the surface of the suspended particle.  In 

this coordinate system, the net force in the z direction is given by the difference of the 

force on the right hemisphere minus the force on the left hemisphere.  The net forces in 

the perpendicular directions (x,y) will be zero because of the cylindrical symmetry of the 

system.  As the sphere starts penetrating the wall (Fig. 2.6), the intersection plane can be 

defined by the angle with respect to the equatorial plane of the sphere.  Our convention 

is to define  as positive for the left half of the sphere, and it will be negative if the 

intersection is on the right half of the sphere. 
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!



 22 

We assume that the hydrostatic pressure, p, is exerted by the fluid on the suspended 

particle, the net force is given by the difference of the force on the right hemisphere 

minus the force exerted by the fluid particles located between the suspended particle and 

the wall.  The area in this case is not necessarily that of the entire left hemisphere because 

of the region of thickness Δ1 that is devoid of fluid molecules. 

 

The net force along the z direction on the hemisphere on the right side can be calculated 

by integrating the z component of the force exerted by the fluid on the right hemisphere, 

−p sin θ, over a circular element of area, 2π (d + Δ2)2 cos θ dθ, that is 

 (2.8)  

 

The corresponding force on the left side of the sphere is

 (2.9)  

where cos θ0 = (z − Δ1)/(d + Δ2); θ0 being half the angle subtended at the center of the 

sphere by the spherical cap defined by the plane at Δ1.  The net force is then

. (2.10) 

This is a parabolic equation giving the force as a function of the distance between the 

suspended particle and the wall.  As we will see below, the force versus distance curves 

we obtain from the simulations are approximately parabolic. 

 

 

� 
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π / 2

∫
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∫
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cosθ sinθ = πp b0 + Δ 2( )2 cos2θ0 = πp z − Δ1( )2,
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F = Fright + Fleft = −pπ b0 + Δ 2( )2 − z − Δ1( )2[ ]= pπ z2 − 2Δ1z + Δ1
2 − b0 + Δ 2( )2[ ]
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2.3 Results and Discussion 

 

Simulations where run for five different sphere sizes with radii b0/σ = 0, 1, 2, 3, and 4. 

The case where b0/σ = 0 corresponds to the “suspended” particle being exactly equivalent 

to a fluid particle.  The remaining cases correspond to an increasingly larger sphere, 

though the range and energetics of the interactions between the sphere and solvent was 

maintained fixed. Since the simulation box size is fixed, the number of fluid particles in 

the box decreases as the sphere size is increases by the algorithm we employed in the set-

up.  Similarly, as the sphere passes into the wall, the number of fluid particles increases 

to compensate for the sphere’s incomplete presence.  Overall, the set-up algorithm we 

employed kept the solvent pressure (and presumably its density as well) maintained at a 

fixed value +- 4% (See the Appendix for figures of pressures). 

 

Repulsive Weeks-Chandler-Andersen potential: The first set of simulations we carried out 

using the repulsive WCA potential of Eqs. (2.1) and (2.3).  The z component of the 

solvation force for d/σ = 0, 1 , 2, 3 , and 4  at temperatures kT/ε = 1.2 and kT/ε = 1.6 are 

shown in Fig. 2.7.  The pressures for these two sets of runs are around =6.5 and 

=8.2. (See the Appendix figures). This figure reports the solvation force ( ) as 

the sphere is moved toward and through the wall. For the sphere approaching the wall, 

the force oscillates between positive (repulsive) and negative (attractive) values with a 

period that is associated with the size of the fluid particles.  This phenomena has been 

noted previously and is associated with discrete layering of the solvent between the 

colloid and the surface. As the sphere moves through the wall the force becomes 

!
3
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!
3
/ "

� 

Fσ /ε



 24 

increasingly attractive as predicted by Eq. (2.10). The magnitude of the force is 

maximally attractive exactly at the point where only the right hemisphere of the 

suspended sphere is exposed to the fluid.  From this point on as the sphere continues to 

move through the wall the force decreases in magnitude until it is zero at the point where 

the sphere is no longer exposed to the fluid.   
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Fig. 2.7. The z component of the solvation force. The cross symbols are the force values 

of colloid  b0 = 0, star symbols are the force values of colloid  b0 = 1, diamond symbols 

are the force values of colloid  b0 = 2, square symbols are the force values of colloid  b0 = 

3, triangle symbols are the force values of colloid  b0 = 4. 

 

LJ-spline potential: We use the same simulation approach as for the WCA potential to 

run simulations. The values of the sphere radius are again b0= 0, 1, 2, 3, and 4 and the 

temperatures are kT/ε=1.2 and kT/ε=1.6.  The pressures  for  these  two  sets  of  runs 

are around  =3.2 and =4.8. ( See the Appendix ). Note that P(LJ kT/ε  = 1.6) 

= P(WCA kT/ε  = 1.2) which was purposefully done. The results are plotted in Fig. 2.8 

and it is seen that they are qualitatively similar to what was we found for the WCA fluid. 

The most striking difference is that the attractive force is significantly larger in the case 
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of the WCA potential. This is a result of the pressure in the system being larger in this 

case.  Note differences between this and WCA. 
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Fig. 2.8. The z component of the solvation force. The diamond symbols are the force 

values of colloid  b0 = 0, square symbols are the force values of colloid  b0 = 1, cross 

symbols are the force values of colloid  b0 = 2, triangle symbols are the force values of 

colloid  b0 = 3, star symbols are the force values of colloid  b0 = 4. 

 

From Eq.(2.10) we know it is a parabolic equation giving the force as a function of the 

distance between the suspended particle and the wall. We performed a parabolic fitting to 

the solvation data we got from the simulations, and extract the ∆1, ∆2 values (See the 

Appendix for the fittings). 

 

The position parameters Δ1 and Δ2 defined in Fig.2.6 can now be obtained by fitting Eq. 

(2.10) to the part of the data shown in Fig. 2.7 that represents the direct contact between 

the sphere and the wall. It is clear from Eq. (2.10) that these parameters can be obtained 
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without explicit knowledge of the pressure p. The parameters obtained for different radii 

are reported in Tables 2.1 Table 2.2, and plotted in Fig. 2.9. 

 

Table 2.1. Fitted values of  and  as a function of the hard-core radius b0 at two 

different temperatures kT/ε =1.2 and kT/ε =1.6 for a WCA fluid. 

WCA  Δ1 Δ1
 Δ2 Δ2 

b0 kT/ε = 1.2 kT/ε = 1.6 kT/ε = 1.2 kT/ε = 1.6 

0 0.66 0.66 0.80 0.79 

1 0.64 0.62 0.75 0.76 

2 0.64 0.63 0.77 0.76 

3 0.63 0.63 0.72 0.76 

4 0.64 0.63 0.74 0.73 

 

It is noteworthy than in this case the size parameters a roughly independent of the 

temperature and only decrease slightly as the sphere is increased. Also, it is seen that  Δ2  

which  is related to the size of the sphere is slightly larger that Δ1, which is related to the 

position of the wall. From the definition of these parameters (Fig.2.6) it appears that they 

are probing similar physics so it is reasonable to assume that the slight difference in their 

values is related to the curvature of the surface they are associated with.  

 

Table 2.2. Fitted values of  and  as a function of the hard-core radius b0 at two 

different temperatures kT/ε =1.2 and kT/ε =1.6 for a LJ-spline fluid. 
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LJ-spline Δ1 Δ1
 Δ2 Δ2 

b0 kT/ε = 1.2 kT/ε = 1.6 kT/ε = 1.2 kT/ε = 1.6 

0 0.58 0.61 0.65 0.72 

1 0.48 0.56 0.67 0.77 

2 0.40 0.48 0.72 0.76 

3 0.40 0.47 0.72 0.74 

4 0.24 0.37 0.85 0.84 
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Figure 2.9. Values of  and  as a function of the hard-core radius b0 at two different 

temperatures kT/ε =1.2 and kT/ε =1.6 for both WCA and LJ-spline fluid. 

 

From Table 2.2 we see that Δ2 is roughly independent of temperature and of the size of 

the sphere. Furthermore, its values are essentially as for the WCA case. In contrast Δ1 

depends on temperature as well as on the size of the sphere. 

 

The reported values of Δ1 and Δ2 where as mentioned obtained from Eq. (2.10) without 

explicit use of values for the pressure. However, as a consistence check we can also make 

use of the pressure to estimate Δ2 by noticing that the maximum attractive force on the 

sphere is given by   
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where we have used the notation  to distinguish this quantity from Δ2. Since the 

minimum force can be obtained from Figs. 2.7 and 2.8 and since the pressure is known 

we can use Eq. (2.11) to obtained a value for . The results are given in Table 2.3 and 

plotted in Fig. 2.10. 

 

Table 2.3.  values obtained using Eq. (11).  

b0 

WCA,     

kT/ε = 1.2 

WCA,     

kT/ε =  1.6 

LJ-spline, 

kT/ε =  1.2 

LJ-spline, 

kT/ε = 1.6 

0 0.73 0.76 0.91 0.85 

1 0.74 0.72 0.91 0.84 

2 0.72 0.73 0.91 0.84 

3 0.73 0.71 0.91 0.82 

4 0.72 0.73 0.87 0.80 

 

Figure 2.10 shows that  is very similar to Δ2 for both the WCA potential and for the 

LJ-spline potential. 
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Fig.2.10. Values of  as a function of the hard-core radius b0 at two different 

temperatures kT/ε =1.2 and kT/ε =1.6 for both WCA and LJ-spline fluid. 

 

In our simulations we noticed that before the sphere pushed out of the fluid, there was a 

small region the interaction forces became positive (forces pushing to the colloid away 

from particle walls). These values were smaller than the solvent diameter (1.0σ). Table 

2.4 and figure 2.11 show these values.  

 

Table 2.4. Values of distance as a function of the hard-core radius b0 at two different 

temperatures kT/ε =1.2 and kT/ε =1.6 for both WCA and LJ-spline fluids.  
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b0 

WCA,       

kT/ε = 1.2 

WCA,       

kT/ε =  1.6 

LJ-spline, 

kT/ε =  1.2 

LJ-spline, 

kT/ε = 1.6 

0 0.68 0.77 0.51 0.51 

1 0.51 0.68 0.77 0.60 

2 0.51 0.85 0.77 0.51 

3 0.77 0.51 1.03 0.68 

4 0.51 0.51 0.68 0.60 

     

     

     

 

Fig. 2.11. Values of distance as a function of the hard-core radius b0 at two different 

temperatures kT/ε =1.2 and kT/ε =1.6 for both WCA and LJ-spline fluids. 
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2.4    Conclusions 

 

We have used molecular dynamics simulations to investigate the hydrodynamics forces 

on a sphere embedded in a viscous fluid closed to a solid wall. We have applied two 

different LJ-type potentials to model the fluid-fluid, fluid-wall, and fluid-sphere 

interactions. In addition to the purely repulsive WCA potential we have used a LJ-spline 

potential with a finite-range minimum to model these interactions. We have shown that 

the obtained force versus distance curves can be captured in a continuum framework that 

require a reinterpretation of the wall position as well as the sphere size. The effective 

position of the wall as given by the quantity Δ1 was shown to depend on the applied 

potential (WCA or LJ-spline) as well as on, temperature and sphere size. The temperature 

and size dependence was most pronounced for the softer LJ-spline potential. In contrast 

we found the effective radius of the sphere, r=r0+Δ2, to be remarkably independent of the 

interaction potential and temperature. We believe that our finds will prove to be useful 

when making connections between atomic scale simulations and continuum theories 

should as Brenners’ results Eq. (1.2). 

 

In earlier researches, the effective radius of the sphere was usually considered as half the 

distance where the minimum potential occurs. For LJ type potentials including WCA 

potential, the minimum occurs at , so the sphere radius was often 

considered about 0.56σ. While the results in our simulations showed the effective radii 

were larger then that value. Figure 2.12 shows the schematic of the interaction force and 

particle positions as the sphere approaches the wall. 

2
1/6
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Fig. 2.12. Schematic of the interaction force and geometries of particle positions as the 

sphere approaches the wall. 

 

The zero net solvent force on colloid requires a balancing force pushing colloid away 

from wall. From figure 2.11 and table 2.4, it was a small gap (less than solvent diameter) 

gets this extra tangential force from solvent force to fill the gap. This builds to a positive 

force (away from wall) when gap is close to solvent diameter and pressure fills the gap. 

This makes the effective sphere radius larger than the earlier assumed value 0.56σ. 
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Chapter 3  

FRICTION COEFFICIENT AND DIFFUSION COEFFICIENT 

 

In this Chapter, we investigate the friction and diffusion coefficients associated a large 

smooth sphere moving inside of a viscous fluid.  This is a problem with a large history, 

whose mathematical analysis goes back to Stokes in the middle of the 19th century 

[Batchelor, p. 229]. For this analysis, one needs to know the sphere radius, the effective 

solvent viscosity, and the slip / no-slip boundary conditions appropriate for this situation.  

Previous analyses have assumed values for the radius and taken the effective solvent 

viscosity to be the same as the equilibrium bulk value [literature refs].  Here, we will use 

the radius values that have been derived in the previous chapter. As shown there, they 

include the effects of the discreteness of the fluid molecules and thus, they are different 

from what has been used in the previous analyses.  This will affect our interpretation of 

the viscosity and boundary conditions, as we will see below.  

 

For this analysis, we construct an atomistic simulation with a large smooth sphere located 

in the central region of a large box of a viscous Lennard-Jones fluid with periodic 

boundary conditions.  Initially, the sphere will be constrained to move with an initial 

velocity with respect to the solvent box to establish a quasi-equilibrated flow situation, 

and then it will be allowed to freely move in that box such that the relative velocities of 

the particle and the solvent equilibrate. We will use Stokes’ Law and the Stokes-Einstein 

model to analyze the results and calculate the friction coefficient and diffusion coefficient 

from these trajectories. All simulations reported here are performed with the LAMMPS 



 37 

package [LAMMPS] for molecular dynamics, and the simulation conditions will be 

similar to the ones used in the previous chapter. 

 

3.1 Drag and Boundary Conditions 

 

The problem of a sphere slowly moving with a constant velocity in a viscous fluid 

(Re<<1) is one of the basic problems in hydrodynamics.  The primary quantity of our 

interest is the friction force experienced by the spherical particle that is moving though 

the fluid with a fixed velocity. According to the Stokes’ Law, the slip or no-slip boundary 

conditions for this flow behavior can be determined by the relation between the friction 

forces the sphere experiences and the velocity with which the sphere moves.  

 

 

Stokes’ law gives the force acting on a sphere of a radius b0 moving with a velocity U in 

a fluid with viscosity : (Kohale & Khare) 

.         (3.1) 

The coefficient  assumes the values of 4 and 6 for slip and no-slip (stick) boundary 

conditions, respectively.  These are the Maxwell and Stokes limits, respectively, that are 

commonly cited in the literature. The drag coefficient is defined as ξ=cπµb; it depends on 

both the particle radius and the local viscosity.  This quantity is then situation dependent 

and has units of mass/time. The value of the coefficient  in expression (3.1) can be 

evaluated in several ways. First, it can be evaluated from the friction coefficient, which is 

obtained by measuring the velocity and mean square displacement of a large (with 
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respect to the size of the fluid molecules) sphere moving inside a viscous fluid. Secondly, 

it can be determined by focusing on the behavior of the fluid, specifically, the velocities 

of each fluid particle. 

 

3.2 Diffusion and Friction Coefficients 

 

From the discussion in 3.1, one of the methods to evaluate the constant c is investigating 

the Friction Coefficient of the large colloidal sphere, that is, by studying the diffusion of 

the particle in the fluid.   

 

The simplest model describing the diffusion of a spherical particle in a viscous fluid is 

the Stokes-Einstein model [REFERENCE], which gives the following mean square 

displacement of the diffusing particle at large time: (A. Einstein, “Investigations on the 

Theory of the Brownian Motion” (Dover, New York, 1956) OR R, M, Mazo, “Brownian 

Motion, Fluctuations, Dynamics and Applications” (Oxford University Press, Oxford, 

2002)) 

r
2

= 6Dt            (3.2) 

where 

        (3.3) 

is the diffusion coefficient (which has the units of mass2/time).  

  

D = kT /! = kT /(c"µb)
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Because of the hydrodynamic and inter-particle forces, the colloid experiences Brownian 

motion. We use the averaged velocity square and mean square displacement to describe 

this phenomenon.   

 

Consider the velocity of the Brownian particle it obeys the Langevin equation: [stochastic 

processes in physics and chemistry] 

        (3.4) 

The last term on the right hand side is the random force exerted by the molecules of the 

surrounding fluid.  Here, γ ( the friction coefficient ) is defined as ksi/m and has units of 

1/time.  This is the friction coefficient and is seen to play the role of fundamental time 

decay constant for the system.  acts as an random fluctuation force, which is caused 

by the collisions of the individual molecules of the surrounding fluid and varies rapidly 

and randomly as a function of time This is expressed by the postulate for its 

autocorrelation function , where  is a constant. Its average 

vanishes, . If the initial velocity is , then equations (3.4) can be 

solved explicitly: 

.       (3.5) 

We average (?) this equation over a sub ensemble of Brownian particles all having the 

same initial .  Since , and  for  is independent of , we have 

.         (3.6) 

After squaring we abtain: 
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.       (3.7) 

The constant  can be identified by invoking the fact that for  the mean square 

velocity must have the known thermal value namely 

        (3.8) 

Thus, we can get the expression for the averaged squared velocity: 

         (3.9) 

 

Using a similar argument we can get the mean square displacement 
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   (3.10) 

For γt ≥ 1, the exponential is negligibly small (for γt ≥ 5 which means exp ( -γt ) ≤ 0.01), 

yielding: 

,     (3.11) 

.      (3.12)
 

Hence, at longer times one should observe linear behavior with a slope of , 

and an intercept given by the first term.   
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In each simulation, we note down the velocity and displacement of the colloid particle, 

and calculate the squared velocity and mean square displacement. After that, use equation 

(3.9) and (3.10) to do a nonlinear least squares fit to get the value of the friction 

coefficient . This method works better for the large time intervals (100<t/ 𝜎 𝑚/𝜖<300). 

 

A second way to calculate the friction coefficient is to focus on the fluid particle behavior.  

Since the colloid is moving inside the fluid, Newton’s Second Law gives 

         (3.13) 

where  is the drag constant. From the discussion above, we can conclude that , 

so equation (3.13) can be written as 

,          (3.14) 

where  is the mass of the fluid particles. Let , equation (3.14) can 

be solved and we get 

. 

In the simulations reported here, before t = 100, the colloid moves at a constant velocity, 

so that, 

,         (3.15) 

From the same simulations, we note down the velocities of each fluid particle, using the 

data from the beginning short time period (0<t/ 𝜎 𝑚/𝜖<100) and equation (3.15), we get 

another way to calculate the friction coefficient . 
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3.3 Simulation Method 

 

All simulations reported here were performed with the LAMMPS package for molecular 

dynamics.  

 

For the fluid-fluid interaction potentials, we used two different variations of the Lennard-

Jones (LJ) potentials. In order to study the effect of attractive forces we use a modified 

version of the Lennard-Jones potential. It is the same LJ-Spline potential we discussed in 

Chapter 2.1. Then we used the well-known repulsive WCA potential to redo the same 

simulations and compare the results. 

 

The simulation box size is =27.3596 in all 3 directions, with periodic boundary 

conditions. The mass of the colloid particle is 200, the core radius changes from b0/σ=0 

(a marked fluid particle) to b0/σ=3. The mass of fluid particle is set to be 1. The fluid 

particles were initiated in a FCC crystal structure with a lattice constant 1.094σ 

corresponding to a typical liquid argon volume density of ρσ3=0.8. The initial 

temperature of the system is set at  and the system is left to thermalize. After the 

system is thermalized, the colloid particle starts to move at τ/σ without any force 

exerted on it, during the time interval  𝜎 𝑚/𝜖 and  𝜎 𝑚/𝜖. After 

 𝜎 𝑚/𝜖, the colloid particle starts to experience the hydrodynamic and inter-particle 

forces. For each simulation case ( the colloid has a different radius ), the simulation was 

repeated for 30 time with different initial random thermal velocities, to get the averaged 

value of the mean square displacement and averaged velocity square. The value of 

 

L /!

 

kT /! = 3

 

v = 1.4

 

t = 0

 

t = 100

 

t = 100
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friction coefficient was then valued from the fitting of the averaged velocity square and 

mean square displacement of the colloid. 

 

3.4 Data Analysis 

 

In Section 3.2, we discussed the analytical solution of the mean square displacement and 

the velocity squares. In our systems, once the large colloid starts to move at a fixed 

velocity with respect to the fixed box frame, the fluid also begins to pick up a velocity by 

the drag interaction.  Thus, the center of mass of the system also acquires a net velocity. 

In order to use the equations in Section 3.2, after each simulation, we let LAMMP dumps 

the positions and velocities of all the fluid particles at every time step, thus, the velocity 

and displacement of the mass center can be calculated. Then, the relative velocity of the 

colloid to the fluid and relative displacement of the colloid to the fluid can be obtained. 

These relative velocity and relative displacement are the data that can be fit to equation 

(3.9) and equation (3.12).  Examples of data are shown in Figure 3.1 and Figure 3.2. 

From the figures we can see that in both cases there are oscillations and a lot of noises 

and in early stage the fit is not very good. In order to have a better way to get more 

accurate fitting data, we tried different ways fitting methods as talked in the next section. 
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Figure 3.1 Mean Square Displacement and the Analytical Solutions of colloidal sphere 

with mass=200 and core radius=2. The simulation potential is LJ-Spline potential. 
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Figure 3.2 Velocity Square and the Analytical Solutions of colloidal sphere with 

mass=200 and core radius=2. The simulation potential is LJ-Spline potential. 

 

3.5 Fitting Method 

3.5.1 Friction Coefficient From Both Velocity and Displacement 

 

First, we fit the velocity data at late times to get an accurate value for T from equation 

(3.9). Second, fit the diffusion data at late times to get an accurate value for the linear 

slope.  Then turn that into a value for  using the value of T from step 1 and the slope 

from equation (3.12). From the sample data Figure 3.1, we can tell, just as equation (3.12) 

!
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described that in “later times” we observe linear behavior with a slope of . 

Because “late times” is somewhat subjective, redefine late times rigorously as  

using  from step 2, and redo steps 1 and 2 appropriately so that the analysis is self-

consistent.  

 

The following are the results we get from the fittings. 

 

Table 3.1  Fitted values of T and γ as a function of “real” radius b0+Δ2 and mass. 

WCA 
     m  b0+Δ2  T fit  γ 

100  2+0.76  2.27  0.98 
200  2+0.76  2.20  0.42 
300  2+0.76  2.21  0.20 

       200  0+0.76  2.04  0.05 
200  1+0.76  2.12  0.21 
200  2+0.76  2.20  0.42 
200  3+0.76  2.32  0.67 

 

Table 3.2  Fitted values of T and γ as a function of the “real” radius b0+Δ2 and mass. 

LJ‐spline 
     m  b0+Δ2  T fit  γ 

100  2+0.76  1.97  0.86 
200  2+0.76  1.90  0.34 
300  2+0.76  1.95  0.22 

       
200  0+0.76  1.87  0.06 
200  1+0.76  1.84  0.27 
200  2+0.76  1.90  0.34 
200  3+0.76  2.05  0.71 

 

6kT /m! = 6D

! t " 5

!
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Figure 3.3  Fitted values of γ as a function of hard-core radius for both WCA and LJ-

spline fluid. The mass of the colloid is 200. The interception is not zero but near zero. 

The slope of the line should be cπµ/m. 
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Figure 3.4  Fitted values of γ as a function of 1/ mass for both WCA and LJ-spline fluid.    

The intercept is very near zero, and the slope should be cπµr based on equation 3.3. 

 

3.5.2 Friction Coefficient From Self-Correlation Function 

Equation 3.2 and 3.3 show the relations between mean square displacement and the 

friction coefficient. We calculated the self-correlation function of the mean square 

displacement.  
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thus 
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with ! ! m /"  and !t >> !  

r(t)! r(t + "t)[ ]
2

# 6D"t  (3.18) 

that is the same result as equation 3.2 shows. 

 

Once we get the slope of the fitting, from equation 3.2, the friction coefficient can be 

calculated from the slop. Figure 3.5 and Figure 3.6 show the example data of the 

simulation where the colloid mass is 200, radius is 2, and the LJ-Spline was used for the 

simulation. Just as we mentioned in section 3.4, in figure 3.5, the data are noisy to get a 

clear slope from it. When we tried the self-correlation function of it, we can tell from 

figure 3.6, the data are much more smoother, and we can calculate the slope from it. 
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Figure 3.5  Mean Square Displacement data of the colloidal particle with mass=200 and 

radius=2.  
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Figure 3.6  Self-Correlation Function of displacement for the same colloidal particle. 

 

The following are the results we get from the fittings. 

 

Table 3.3  Fitted values of T and γ as a function of the “real” radius b0+Δ2 and mass. 
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WCA 
     m  b0+Δ2  slope  γ 

100  2+0.76  0.17  0.80 
200  2+0.76  0.16  0.43 
300  2+0.76  0.17  0.27 

       200  0+0.76  0.88  0.07 
200  1+0.76  0.30  0.22 
200  2+0.76  0.16  0.43 
200  3+0.76  0.10  0.68 
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Table 3.4  Fitted values of T and γ as a function of the “real” radius b0+Δ2 and mass. 

LJ‐spline 
     m  b0+Δ2  slope  γ 

100  2+0.76  0.14  0.88 
200  2+0.76  0.15  0.40 
300  2+0.76  0.16  0.25 

       200  0+0.76  0.73  0.07 
200  1+0.76  0.22  0.26 
200  2+0.76  0.15  0.40 
200  3+0.76  0.08  0.73 

 

 

Figure 3.7  Fitted values of γ as a function of colloid radius for both WCA and LJ-spline 

fluid.  The interception is not zero but near zero. The slope of the line should be cπµ/m. 
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Figure 3.8  Fitted values of γ as a function of 1/ mass for both WCA and LJ-spline fluid.  

Add linear fit.  The intercept is very near zero, and the slope should be cπµr. 

  

 

3.5.3 Friction Coefficient From The Fluid 

 

In section 3.2, we also missioned, from the same simulations, instead of focusing on the 
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y = 78.165x + 0.0214 

y = 94.271x ‐ 0.0674 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

0  0.002  0.004  0.006  0.008  0.01  0.012 

γ 
 

1/m 

Friction CoefBicient vs Mass 

wca 

LJ‐spline 

Linear (wca) 

Linear (LJ‐spline) 

 

!



 54 

 

Table 3.5 Fitted values of γ as a function of the “real” radius b0 and fixed mass. 

m  b0+Δ2  γ (LJ‐spline)   γ (WCA) 
200  0+0.76  0.07  0.07 
200  1+0.76  0.22  0.20 
200  2+0.76  0.39  0.36 
200  3+0.76  0.59  0.55 

 

 

Figure 3.9  Fitted values of γ as a function of colloid radius for both WCA and LJ-spline 

fluid.  The interception is very near zero. The slope of the line should be cπµ/m. 
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3.6 Viscosity 

 

LAMMPS gives several ways to simulate the viscosity of a fluid, in our work we perform 

a reverse non-equilibrium MD simulation, which implements the rNEMD algorithm of 

Muller-Plathe [Muller99]. Momentum in one dimension is swapped between atoms in 

two different layers of the simulation box in a different dimension. This induces a 

velocity gradient which can be monitored by LAMMPS, which tallies the cummulative 

momentum transfer that it performs.  Figure 3.6 shows the viscosity model we used in 

our simulations. 

 

 

Figure 3.10 Viscosity model using the algorithm of Muller-Plathe. 
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3.7 Results and Discussion 

3.7.1 Results 

 

From these results, we can consider to two major alternative approaches interpret the data.  

The first approach follows the more conventional method of interpretation which is to 

assume that the value of the viscosity can be taken as the bulk equilibrium value, and one 

then derives values for c which would depend upon the value for the radius.  We will also 

examine a second approach where we assume that c must be equal to 4, because the 

colloid particle is smooth and there is no inherent mechanism to create stick (partial or 

complete) with respect to the solvent.  [Supporting evidence for this model will be 

presented in the next chapter.]  With that assumption, one then derives a value for the 

viscosity as a function of the radius. 

 From the first model we can calculate the coefficient c in equation 3.1. Since 

 𝐹 = 𝑐𝜋𝜇𝑏 (3.19) 

which means 

m! = c"µb  (3.20) 

c =
m!

"µb
  (3.21) 

The coefficient c assumes the values of 4 and 6 for slip and no-slip (stick) boundary 

conditions respectively.  
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The following tables show the c value from our friction coefficient γ. In order to make 

the radius of the colloidal particle more accurate, we use the value of (b0+Δ2) that was 

determined in Chapter 2 as the core radius of the colloidal particle.  

 

Table 3.6  c values from the velocity and displacement fitting (section 3.5.1). 

WCA 
         m  b0 γ  Δ2  μ  c 

100  2  0.98  0.76  1.91  5.93 
200  2  0.42  0.76  1.91  5.08 
300  2  0.2  0.76  1.91  3.63 

           200  0  0.05  0.76  1.93  2.17 
200  1  0.21  0.76  1.92  3.96 
200  2  0.42  0.76  1.91  5.08 
200  3  0.67  0.76  1.90  5.97 

           
LJ‐spline 

         m  b0 γ  Δ2  μ  c 
100  2  0.86  0.76  1.94  5.11 
200  2  0.34  0.76  1.94  4.04 
300  2  0.22  0.76  1.94  3.92 

           200  0  0.06  0.76  1.97  2.55 
200  1  0.27  0.76  1.96  4.99 
200  2  0.34  0.76  1.94  4.04 
200  3  0.71  0.76  1.93  6.22 

 

 

Table 3.7  c value from the fittings of self-correlation function of the MSD (section 
3.5.2). 

WCA 
         m  b0 γ  Δ2 µ c 

100  2  0.8  0.76  1.91  4.84 
200  2  0.43  0.76  1.91  5.20 
300  2  0.27  0.76  1.91  4.90 
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200  0  0.07  0.76  1.93  3.03 
200  1  0.22  0.76  1.92  4.15 
200  2  0.43  0.76  1.91  5.20 
200  3  0.68  0.76  1.90  6.06 

           
LJ‐spline 

         m  b0 γ  Δ2 µ c 
100  2  0.88  0.76  1.94  5.23 
200  2  0.4  0.76  1.94  4.75 
300  2  0.25  0.76  1.94  4.45 

           200  0  0.07  0.76  1.97  2.97 
200  1  0.26  0.76  1.96  4.81 
200  2  0.4  0.76  1.94  4.75 
200  3  0.73  0.76  1.93  6.39 

 

 

Table 3.8  c values from fitting of the fluid particles (section 3.5.3). 

fluid 
         m  b0  γ (WCA)  Δ2 µ c 

200  0  0.07  0.76  1.93  3.03 
200  1  0.2  0.76  1.92  3.77 
200  2  0.36  0.76  1.91  4.35 
200  3  0.55  0.76  1.90  4.90 

           m  b0 
γ (LJ‐
spline) Δ2 µ c 

200  0  0.07  0.76  1.97  2.97 
200  1  0.22  0.76  1.96  4.07 
200  2  0.39  0.76  1.94  4.63 
200  3  0.59  0.76  1.93  5.17 

 

The problem with these results is that the values of c are very scattered and can be 

outside the accepted bounds.  Consequently, we consider an alternative analysis where 

we assume a fixed value of c = 4 and determine what the value of viscosity would be 

under that assumption. 
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The corresponding results are shown in Table 3.9, Table 3.10 and Table 3.11. 

 

Table 3.9 Viscosity values from the velocity and displacement fitting with fixed c. 
(section 3.5.1). 

WCA 
         m  b0 γ  Δ2  c  μ 

100  2  0.98  0.76  4.00  2.83 
200  2  0.42  0.76  4.00  2.42 
300  2  0.2  0.76  4.00  1.73 

           200  0  0.05  0.76  4.00  1.05 
200  1  0.21  0.76  4.00  1.90 
200  2  0.42  0.76  4.00  2.42 
200  3  0.67  0.76  4.00  2.84 

           
LJ‐spline 

         m  b0 γ  Δ2  c  μ 
100  2  0.86  0.76  4.00  2.48 
200  2  0.34  0.76  4.00  1.96 
300  2  0.22  0.76  4.00  1.90 

           200  0  0.06  0.76  4.00  1.26 
200  1  0.27  0.76  4.00  2.44 
200  2  0.34  0.76  4.00  1.96 
200  3  0.71  0.76  4.00  3.01 

 

Table 3.10 Viscosity values from the fittings of self-correlation function of the MSD with 
fixed c. (section 3.5.2). 

WCA 
         m  b0 γ  Δ2 c  µ 

100  2  0.8  0.76  4.00  2.31 
200  2  0.43  0.76  4.00  2.48 
300  2  0.27  0.76  4.00  2.34 

           200  0  0.07  0.76  4.00  1.47 
200  1  0.22  0.76  4.00  1.99 
200  2  0.43  0.76  4.00  2.48 
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200  3  0.68  0.76  4.00  2.88 

           LJ‐spline 
         m  b0 γ  Δ2 c  µ 

100  2  0.88  0.76  4.00  2.54 
200  2  0.4  0.76  4.00  2.31 
300  2  0.25  0.76  4.00  2.16 

         
 200  0  0.07  0.76  4.00  1.47 

200  1  0.26  0.76  4.00  2.35 
200  2  0.4  0.76  4.00  2.31 
200  3  0.73  0.76  4.00  3.09 

 

 

Table 3.11 Viscosity values from fitting of the fluid particles with fixed c. (section 3.5.3). 

fluid 
         m  b0  γ (WCA)  Δ2 c  µ 

200  0  0.07  0.76  4.00  1.47 
200  1  0.2  0.76  4.00  1.81 
200  2  0.36  0.76  4.00  2.08 
200  3  0.55  0.76  4.00  2.33 

           m  b0 
γ (LJ‐
spline) Δ2 c  µ 

200  0  0.07  0.76  4.00  1.47 
200  1  0.22  0.76  4.00  1.99 
200  2  0.39  0.76  4.00  2.25 
200  3  0.59  0.76  4.00  2.50 
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3.7.2 Discussion 

 

In section 3.7.1, we calculated the c values which indicate the boundary conditions of our 

simulation. From the results we have, the c values change from less than 3 to more than 6, 

it seems we can not tell the exact boundary conditions of the simulations. While, in our 

simulations, the large colloidal particle is smooth and we also use smooth interaction 

potentials, we believe the boundary conditions should be a smooth one, though from the c 

values we can not tell the boundary conditions. A recent research by Luo and Pozrikidis 

[Luo2006] on the motion of a spherical particle in infinite linear flow and near a plane 

wall, indicates that the slip velocity reduces the drag force, torque, and the effective 

viscosity of a dilute suspension. They derived a more general form of the drag resistance. 

That means our viscosity model for the simulation is too simply and cannot reflect the 

“true” values of the viscosity. According to their research, the force exerted on the sphere 

is F = !8!µag = !6!a
"
p
+ 2

"
p
+ 3
(V !U) . As βp → 0, the Stokes-law coefficient of six 

tends to four, indicating a substantial reduction in the drag force. That also emphasizes 

our belief that the c values should be close to 4 and the viscosities may change in the 

region near the large colloidal particle surface. 

 

We also calculated the drag constant ξ. From equation (3.3) we can tell the drag constant 

ξ=mγ. From section 3.5.1 and 3.5.2, in each case, for the same radius b0 = 2, we have 3 
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different friction coefficient data for different mass. As an example we calculated the 

drag constant using the data in section 3.5.1. 

 

Figure 3.11 Drag Constant as a function of colloid radius for wca fluid. (Data are from 

section 3.5.1). 
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Figure 3.12 Drag Constant as a function of colloid radius for LJ-spline fluid. (Data are 

from section 3.5.1). 
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with simple viscoelectric theory. The latter was found to give a respectable description of 

the data, and discrepancies were pointed out. A group of Australia researchers Hansen et 

al. [Hasen2007] also reported that the viscosity can change with the radius and mass of 

the colloid particle. The real space viscosity kernel has a width of 2 to 3 atomic diameters, 

that means that the generalized hydrodynamic constitutive relation is required if the stain 

rate varies significantly over this distance. They also pointed out that in general only for 

fluid flows in which the gradient of the strain rate is constant or zero can the classical 

Navier-Stokes equation with constant transport coefficients be considered exact 

[Todd2008]. Again, they emphasized that the strain rate varies appreciably over the width 

of the kernel in real space. Such conditions are likely to be dominant for nanofluidic 

flows. Furthermore, they suggested the viscosity must be treated as nonlocal property of 

the fluid, they showed that a gradient expansion of the nonlocal constitutive equation 

gives a reasonable approximation to the shear stress in the small wave vector limit 

[Todd2008]. 

 

The resolution of our results would then be that viscosity is not a constant.  Assuming c = 

4, values for viscosity are shown in Table3.9, 3.10 and 3.11.  There does appear to be a 

trend the viscosity value depends on the radius of the sphere.  The Australian group has 

performed MD simulations showing gradients in velocities can have a significant impact 

on the effective value of the viscosity.  Our systems will have such gradients as the 

solvent flows past the sphere, and they should increase with the radius of the sphere for a 

fixed velocity.  Our results are consistent with this argument and we believe this is the 
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preferred way to resolve our results.  Studies in the next chapter support our assertion that 

we should treat c=4 for these smooth sphere simulations. 
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Chapter 4  
 

MOVING COLLOIDAL PARTICLE 

 

In this chapter, we investigate the static and dynamic components of the drag force as a 

function of separation for a colloid particle moving toward an atomic wall or a smooth 

wall. We also compare the results with Brenner’s solution, and again try to determine the 

appropriate boundary condition for the system. All simulations reported here are 

performed with the LAMMPS package [LAMMPS] for molecular dynamics. 

 

In the earlier work, the solvation force near a wall was determined by observing a large 

colloid moving in close proximity to the wall. Vergeles et al. performed a study of both 

transitional and rotational motions of a single sphere in a Lennard-Jones fluid as it 

approaches a planar wall. Van Swol specifically separated the contributions of the drag 

force experienced by a smooth sphere as it approaches a smooth planar surface, and static 

solvation forces (the same that cause the force oscillations discussed in Chap 2/3) by 

observing the colloid motions when the colloid moves away from a planar wall. An issue 

that was not specifically addressed by those researches is that when the colloid moves to 

a position that is very near the wall, some fluid particles may get trapped in the small 

region between the wall and the colloid surface. The solvent force values may become 

too large in the small gap between the surface of the colloid and the wall, thus making the 

results of the drag force is unreliable.  
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To avoid those situations, in our simulations, we do not stop the colloid when it is close 

to the wall.  Instead, we let the colloid continue to penetrate through the wall, by ignoring 

the forces between the colloid and the wall.  If a solvent atom as becomes trapped 

between the particle and the wall, the force between the solvent and the particle and the 

wall will diverge and cause the simulation to terminate.  The results from such 

simulations were discarded. We will vary the wall character, particle size and velocity 

and compare with previous results and the Brenner solution. 

 

4.1 Simulation Approach 
 

The simulations were performed in a box of dimensions Lx/σ × Ly/σ × Lz/σ =13.68 ×  

13.68 × 32.20  with periodic boundary conditions applied to the x and y directions, while 

a pair of parallel walls was placed normal to the z direction near the two ends of the box.  

The back wall was smooth and used to evaluate the pressure as in Chap 2/3.  The front 

wall was defined as either rough or smooth to determine how that effects the results. 

 

First we describe the rough wall, which is made of atoms. The atomistic wall that was 

used to explore the behavior of the suspended spherical particle consisted of two layers 

each of 200 atoms.  These were placed in a face centered cubic (fcc) arrangement with a 

lattice spacing of 1.094s to form a wall that would be impervious to the solvent atoms.   

The inner most layer of wall atoms was positioned with their atomic centers at z=0.  

These wall atoms interacted with the solvent atoms with the same potential as a solvent-



 68 

solvent interaction, but they were not allowed to move during the simulations.  In our 

current work, we use the WCA potential as the interaction potential. 

 

          (4.1) 

 

with 

             (4.2) 

The cutoff radius is chosen at the minimum of the LJ potential, rc/σ  = 21/6 ≈ 1.12 and r is 

the distance between the center of the two fluid particles.  The parameter ε is the depth of 

the LJ potential, and represents our fundamental energy unit, and similarly σ is the 

fundamental length unit. The potential between the fluid particles and the suspended 

sphere is described using a shifted WCA potential, as was used in previous studies. 

      

 (4.3) 

Here b0 is the radius of the hard-core region of the sphere (which allows its effective size 

to be arbitrarily adjusted) and r is the distance between the center of the sphere and the 

center of a fluid particle.  These potentials are continuous and smooth to arbitrary order 

(except at the inner cut-off b0 which shouldn’t be accessible), and short-ranged. 

Consequently, there are no complicating factors in their numerical evaluation and for the 

standard time step of , there is a very high degree of energy 

conservation. 
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The wall at the far end of the simulation box (z = 32.20 s) was a simple smooth wall that 

interacted with the solvent atoms by a planar 9-3 potential as used in earlier work[van 

Swol2006]. 

 

∅ r = (!
!
)!/! !

!
!
!

!
− !

!
!
!

!
        (4.4) 

 

The potential energy between the suspended sphere and the wall particles was set to zero 

so that the wall exerted no direct force on the sphere.   

 

The simulations were initialized by filling up the region to the right of the wall with fluid 

particles. Those particles were set in an fcc crystal structure with a lattice constant 1.094σ 

giving an initial solvent density of ρσ3=0.8. A colloid sphere with a core radius of b0 and 

mass M was placed at an arbitrarily selected initial point. Any solvent particle whose 

center was within b0 +σ  of the colloid center was then removed in order to establish a 

fairly consistent solvent density for the systems with different colloid radii. The system 

was then randomized for 40000 steps in NVE ensemble, to disorder the solvent.  To 

obtain the 300 different starting configurations discussed below, different random 

number seeds were chosen for the initial velocities of the solvent atoms. The temperature 

was the rescaled back to kT/ε = 1.2 using a Nose-Hoover thermostat, and the system 

equilibrated for 20000 steps. After this, the simulation was continued in an NVE 

ensemble, a constant velocity U was set on the colloid at z direction to keep the colloid 

moving towards the wall, and the z-component of net solvent force on the sphere was 

collected every time step and these were averaged over sets of 200 time steps. This 
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procedure was performed for 300 different configurations of the fluid particles (generated 

by the different random thermalization procedure described above) for each selected core 

radius, potential set and temperature. We then averaged the results of these three hundred 

configurations over the discrete time window of 200 time steps.  Because a constant 

particle velocity is being applied, this also corresponds to a discrete window of the 

suspended particle position. 

 

As we mentioned in the beginning, we will let the colloid push through the wall. After the 

colloid has pushed through the wall, we let it stay for 10000 time steps (U=0) to let the 

temperature and pressure of fluid particles re-equilibrate back to kT/ε = 1.2 Then, the 

colloid was given the same constant velocity but in the reversed direction -U to have the 

colloid re-emerge from the wall and move back to its initial position. The z-component of 

net solvent force on the sphere was collected and averaged the same way as before. 

 

As part of our analysis, we monitor the pressure of the system.  It should remain 

approximately constant until the particle overlaps with the wall, except for minor heating 

due to the forced particle translation.  Since in our simulations, the wall is also made of 

particles, and those particles constrained not to move in the simulation procedure, the 

LAMMPS calculated pressure value will be larger than that of the real system pressure. 

Consequently, we used a separate method to calculate the system pressure.  This was 

determined by summing the forces on the right wall of the simulation box (a smooth 

planar LJ-9-3 wall), and dividing by its area (defined by the x-y dimensions of the 

simulation box) to get the actual system pressure. 
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4.2 Static and Dynamic Components 
 

The molecular-dynamics results for the drag forces are qualitatively different when the 

colloid moves toward and away from the wall in the near field (i.e., h/ b0 < 1). When 

leaving the wall, the colloid experiences a drag force that is not only the negative of the 

drag force when moving toward the wall, the magnitude of the force is considerably less 

negative near the wall than antisymmetry would suggest. 

 

Challa & van Swol pointed out that the antisymmetry to the hydrodynamic theory is not 

shared by the actual MD simulations, and the drag force can be extracted into a static and 

a dynamic component: 

 

𝐹!"#"$% 𝑈, ℎ = !
!
𝐹 𝑈, ℎ + 𝐹(−𝑈, ℎ)        (4.5) 

𝐹!"#$%&' 𝑈, ℎ = !
!
𝐹 𝑈, ℎ − 𝐹(−𝑈, ℎ)        (4.6) 

 

where h is the separation between the surface of the colloid and the wall, U is the colloid 

velocity. The static force (4.5) vanishes for large h, while the dynamic force (4.6) should 

approach a non-zero value, namely the Stokes drag. Again, Challa & van Swol’s study 

did not show a clear view of the colloid effective size and the wall position. That may 

cause ambiguity in the determination of the correct comparison to Brenner’s expression.  

Our study presents a more reliable way in comparison with continuum theory. 
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As with previous simulations, we observe that when the fluid particles interact with the 

wall, there was a region of space between the center of the first layer of wall atoms and 

the center of the closest layer of fluid molecules.  If one defines the volume of space 

associated with either the solvent or the wall by simply the region sampled by the nuclear 

positions, then this region does not belong to either element. In the earlier work of other 

researches, this issue has never been thoroughly addressed. In both Vergeles and van 

Swol’s work, none of them investigated what would constitute a better definition of the 

wall position.  Similarly, they lacked a rigorous definition of the particle radius.   

 

In our previous work ( the second chapter ), we determined a correction term for the wall 

position , and a correction term for the colloid radius . Similarly, the radius of the 

suspended particle, as defined in the potential energy of Eq. (4.3), is b0 and we assume 

that there is a region of thickness Δ2 that defines its effective size. From our early work, 

we have found out the correction term of this simulation, when r=4, Δ1= 0.5664, and 

Δ2=0.7059. So the separation was calculated as h= z-Δ1-Δ2, where z=|zi-zw| means the 

distance of the colloid particle from the center of the closest layer of the atomic wall.  We 

now use these definitions for our analysis. 

 

4.3 Results 
 

4.3.1 Rough Wall Results 
 

! 

"1

! 

"2
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Figure 4.1 shows an example of the colloid with a radius 4 in the near field of the atomic 

wall. We plot the total force in z-direction on the colloid as a function of the separation. 

The force oscillates with a period that closely reflects the molecular size of the fluid 

particles, 1σ, in our simulations. The oscillations increase when the colloid in the near 

region of the wall. Though the interaction potential is purely repulsive, the solvation 

force is negative (attractive) almost in all the positions when the colloid moves away 

from the wall, and positive (repulsive) when approaching the wall. The two curves 

remain perfectly in phase with each other. Figure 4.1 also shows the static and dynamic 

components of the drag force for the colloid of a core radius 4.  

 

 

Figure 4.1 The drag force as a function of separation for a colloid of radius 4, moving 

toward (and away) from the atomic wall at a velocity U=0.068. The solid curve with 
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crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.2 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 
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the wall. The curve shows the same tendency as Brenner’s curve, and approaches the 

non-zero value as Brenner’s solution suggested for large h. 

 

Figure 4.3 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.3 shows the system pressure when the colloid moves toward and away from the 

atomic wall. The system pressure is quite stable, before the colloid penetrates the wall. 

After the colloid begins to push through the wall, the system pressure starts to drop. 

When the colloid moves back to the simulation box, the pressure increases back to the 

stable value. 

−2 0 2 4 6 8 10
5

5.5

6

6.5

7

7.5

separation h

pr
es

su
re

−2 0 2 4 6 8 10
5

5.5

6

6.5

7

7.5

separation h
pr

es
su

re



 77 

 

Figure 4.4 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 

 

Figure 4.4 shows the system temperature. The system temperature keeps a stable value, 

despite the considerable noise present. 

 

Similarly Figure 4.5, Figure 4.6 show the static and dynamic components of the drag 

force for the colloid of a core radius 2 and comparison with Brenner’s solution. Figure 

4.7 and Figure 4.8 show the system pressure and temperature. These results agree with 

those of the r=4 simulations.  
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Figure 4.5 The drag force as a function of separation for a colloid of radius 2, moving 

toward (and away) from the atomic wall at a velocity U=0.068. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.6 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 
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Figure 4.7 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

 

Figure 4.8 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.9, Figure 4.10 show the static and dynamic components of the drag force for 

the colloid of a core radius 2 and compared with Brenner’s solution. Figure 4.11 and 

Figure 4.12 show the system pressure and temperature. These results agree with those of 

the r=4 and r=2 simulations, and the only differences are that since the colloid radius is 

smaller, there are more fluid particles in the system, thus the system pressure and 

temperature are higher than in r=4 and r=2 systems. 

 

Figure 4.9 The drag force as a function of separation for a colloid of radius 2, moving 

toward (and away) from the atomic wall at a velocity U=0.068. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.10 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 
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Figure 4.11 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.12 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.13 shows the drag forces when the colloidal particle moves towards and away 

from the atomic wall. When the colloidal particle is approaching the wall, the maximum 

value of the force is similar to the case of smaller velocity but when leaving, the curve is 

more flat, thus the peak value of the dynamic force is larger due to a higher velocity 

(Figure 4.14). The system pressure is about the same, but the temperature changes more 

dramatically due to a higher velocity (Figure 4.16).  

 

Figure 4.13 The drag force as a function of separation for a colloid of radius 4, moving 

toward (and away) from the atomic wall at a velocity U=0.1. The solid curve with crosses 

denotes the force while the colloid approaching the wall; the curve with circles denotes 

the force while moving away from the wall. 
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Figure 4.14 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.1. The 

broken curve is Brenner’s solution. 
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Figure 4.15 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.1. (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.16 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.1. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.17 The drag force as a function of separation for a colloid of radius 2, moving 

toward (and away) from the atomic wall at a velocity U=0.1. The solid curve with crosses 

denotes the force while the colloid approaching the wall; the curve with circles denotes 

the force while moving away from the wall. 
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Figure 4.18 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.1. The 

broken curve is Brenner’s solution. 
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Figure 4.19 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.1. (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

 

Figure 4.20 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.1. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.21 The drag force as a function of separation for a colloid of radius 1, moving 

toward (and away) from the atomic wall at a velocity U=0.1. The solid curve with crosses 

denotes the force while the colloid approaching the wall; the curve with circles denotes 

the force while moving away from the wall. 
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Figure 4.22 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an atomic wall with a velocity U=0.1. The 

broken curve is Brenner’s solution. 
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Figure 4.23 The system pressure as a function of separation for a colloid particle moving 

toward and away from an atomic wall with a velocity U=0.1. (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.24 The system temperature as a function of separation for a colloid particle 

moving toward and away from an atomic wall with a velocity U=0.1. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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4.3.2 Smooth Wall Results 
 

With the same system, we tried a smooth LJ-93 wall instead of the atom wall to repeat 

the simulations again. The following figures are the results of r=4,2,1 with U=0.068, 0.1. 

 

Figure 4.25 The drag force as a function of separation for a colloid of radius 4, moving 

toward (and away) from the smooth wall at a velocity U=0.068. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.26 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an smooth wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 

−2 0 2 4 6 8 10
10

15

20

25

30

35

40

45
smooth wall, dynamic force r=4,v=0.068

separation h

fo
rc

e

 

 
dynamic force
Brenner’s solution



 100 

 

Figure 4.27 The system pressure as a function of separation for a colloid particle moving 

toward and away from an smooth wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

 

Figure 4.28 The system temperature as a function of separation for a colloid particle 

moving toward and away from an smooth wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 

−2 0 2 4 6 8 10
5

5.5

6

6.5

7

7.5

separation

pr
es
su
re

−2 0 2 4 6 8 10
5

5.5

6

6.5

7

7.5

separation

pr
es
su
re

−2 0 2 4 6 8 10
1

1.05

1.1

1.15

1.2

1.25

1.3

separation

te
m
p
e
ra
tu
re

−2 0 2 4 6 8 10
1

1.05

1.1

1.15

1.2

1.25

1.3

separation

te
m
p
e
ra
tu
re



 101 

 

Figure 4.29 The drag force as a function of separation for a colloid of radius 2, moving 

toward (and away) from the smooth wall at a velocity U=0.068. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.30 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an smooth wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 
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Figure 4.31 The system pressure as a function of separation for a colloid particle moving 

toward and away from an smooth wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.32 The system temperature as a function of separation for a colloid particle 

moving toward and away from an smooth wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.33 The drag force as a function of separation for a colloid of radius 1, moving 

toward (and away) from the smooth wall at a velocity U=0.068. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.34 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an smooth wall with a velocity U=0.068. 

The broken curve is Brenner’s solution. 
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Figure 4.35 The system pressure as a function of separation for a colloid particle moving 

toward and away from an smooth wall with a velocity U=0.068.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

 

Figure 4.36 The system temperature as a function of separation for a colloid particle 

moving toward and away from an smooth wall with a velocity U=0.068. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.37 The drag force as a function of separation for a colloid of radius 2, moving 

toward (and away) from the smooth wall at a velocity U=0.1. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.38 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an smooth wall with a velocity U=0.1. 

The broken curve is Brenner’s solution. 

−2 0 2 4 6 8 10 12
−150

−100

−50

0

50
smooth wall, static force r=2,v=0.1

separation h

fo
rc

e

−2 0 2 4 6 8 10 12
0

5

10

15

20

25

30
smooth wall, dynamic force r=2,v=0.1

separation h

fo
rc

e

 

 
dynamic force
Brenner’s solution



 111 

 

Figure 4.39 The system pressure as a function of separation for a colloid particle moving 

toward and away from an smooth wall with a velocity U=0.1.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.40 The system temperature as a function of separation for a colloid particle 

moving toward and away from an smooth wall with a velocity U=0.1. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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Figure 4.41 The drag force as a function of separation for a colloid of radius 1, moving 

toward (and away) from the smooth wall at a velocity U=0.1. The solid curve with 

crosses denotes the force while the colloid approaching the wall; the curve with circles 

denotes the force while moving away from the wall. 
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Figure 4.42 The static and dynamic component of the drag force as a function of 

separation for a colloid particle moving toward an smooth wall with a velocity U=0.1. 

The broken curve is Brenner’s solution. 
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Figure 4.43 The system pressure as a function of separation for a colloid particle moving 

toward and away from an smooth wall with a velocity U=0.1.  (left) colloid particle 

approached the wall. (right) colloid particle left the wall. 

 

Figure 4.44 The system temperature as a function of separation for a colloid particle 

moving toward and away from an smooth wall with a velocity U=0.1. (left) colloid 

particle approached the wall. (right) colloid particle left the wall. 
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wall. The spike is narrower with a smooth wall, and the peak value depends on the 

colloidal moving velocity: the higher the velocity is, the higher the peak value is. 

 

4.4 Boundary Condition 
 

In previous chapter we discussed the boundary condition of the system. Here let us 

compare the dynamic force with the Brenner’s solution and the Stokes’ solution with 

both slip and no-slip boundary conditions.  

We use the same data from the simulations we have, and compare the dynamic forces 

with the Stokes’ solution with slip boundary condition (F=4πµb) and no slip boundary 

condition (F=6πµb). 
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Figure 4.45 Rough wall r=4 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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Figure 4.46 Rough wall r=2 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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Figure 4.47 Rough wall r=1 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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From the rough wall simulations, we can tell for r=2 and r=1 cases, the Stokes solutions 

with slip boundary conditions agree more with the dynamic forces. The r=4 simulations, 

both the slip and no slip boundary conditions are not behave so well, we think that is 

caused by the colloidal particle size. For r=4, the colloidal particle is a little bit larger for 

the simulation box size Lx/σ × Ly/σ × Lz/σ =13.68 × 13.68 × 32.20.  

 

The smooth wall simulations give the similar results, the following are the corresponding 

figures. Compare to the rough wall results, the spikes of the smooth wall simulations are 

narrower and sharper, the peak values are lower than those of the rough wall simulations. 

 

Figure 4.48 Smooth wall r=4 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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Figure 4.49 Smooth wall r=2 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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Figure 4.50 Smooth wall r=1 simulation with a lower velocity U=0.068 and a higher 

velocity U=0.1. Dynamic force vs Brenner’s solution and Stokes’ solution with slip 

boundary condition and no slip boundary conditions. 
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the full-range of slip to stick, incorporating a variable slip-length parameter. According to 

their research, the drag force exerted on the sphere in free solution is  

 F = !8!µag = !6!a
"
p
+ 2

"
p
+ 3
(V !U) , where βp is Basset parameter which depends on the 

inverse of the slip-length. As βp → 0, which corresponds to an increasing value of slip-

length from 0 (pure stick conditions) to infinity (pure slip conditions), the Stokes-law 

coefficient smoothly changes from 6 for pure stick to 4 for pure slip (the Maxwell limit).  

Pozrikidis had also extended this model to the case of a sphere approaching a wall, but 

their expression was not reduced to a simple analytic form. An important conclusion of 

that analysis is that if either the wall or the particle has pure slip, there should be no 

Brenner term, just constant drag up to wall contact.  One might expect that there would 

still be a Brenner type contribution if either the wall or the sphere were rough, but the 

Pozrikidis analysis suggests not.  

Our results for the smallest particle, r = 1, are in excellent agreement with the pure slip 

case: there is no increase in the hydrodynamic drag as the particle approaches the wall, 

and the magnitude of the drag is in very good agreement with c=4. These are independent 

of whether the wall is smooth or rough. There is a spike in the drag force at close 

distances to the wall whose width and magnitude do depend on the wall characteristics. 

This likely arises from second-order terms, such as high gradients in the local solvent 

velocity, that are not included in the analyses by Brenner or Pozrikidis.  But these are 

highly localized, and there is an obvious lack in the increased resistance predicted by the 

Brenner model for distances further away from the wall. The position of that spike 

coincides quite well with how we defined position of the wall and the size of the colloid 
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particle in earlier chapters.  This both validates that work and limits any shifts that might 

be made to obtain a better fit to the Brenner model.  That is, similar spikes at contact 

were observed in the previous Vergeles and van Swol work, and were interpreted as 

arising from the Brenner term. 

For r = 2, we get fairly good agreement with the pure slip case. The drag term is fairly 

constant, though now with an apparent c values of ~5. There is perhaps a slight increase 

in drag at very short distances, but this is still much smaller than the Brenner prediction. 

The spike at the wall is now significantly greater in magnitude and slightly greater in 

width, which is consistent with it arising from second-order, velocity gradient terms.  

For r = 4, drag term is still fairly constant away from the wall, though its value is now 

greater than that predicted by the stick / Brenner solution. Treated at face value, its 

apparent c value would be ~8 which is outside the range that is physically expected. 

However, there is still no significant increase in drag on approaching the wall compared 

to what is predicted by the Brenner solution. The spike term at contact with the wall has 

again increased dramatically in intensity and somewhat in width.  

We have used a smooth particle in all cases with a radially symmetric potential. 

Consequently, there is no mechanism by which these particles themselves can develop a 

tangential force that would correspond to “stick”.  Analysis by Bouquet showed that the 

sticking coefficient (slip length) results from atomistically detailed surfaces; a particle 

sliding across those surfaces experiences friction by sliding across one atom on the 

surface, but then bumping into the next atom.  Consequently, our smooth particles should 
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be considered as having a pure slip surface. Therefore, we expect our results to reproduce 

the c = 4 result, which is what we have observed for r = 1.  

The minor deviation for r=2 and large deviation for r=4 in the constant drag term away 

from the wall likely arises from using too small of a simulation box.  That is, the 

displacement of the solvent around the colloid particle as it moves towards or away from 

the wall interacts with the periodic images defined by the size of our simulation box.  If 

the box is too small, that flow around the colloid becomes restricted and this would add 

an additional drag term.  This would not depend on the distance from the wall, but arises 

because the wall is present forcing that flow to occur. The lack of a significant increase 

with distance from the wall supports this explanation for that increased resistance, rather 

than it arising from the Brenner term.  These results are then consistent with the c=4 

conclusion reached for the r=1 simulations.  This conclusion could be verified by 

repeating these simulations with a larger box. 

The appearance of a spike in the drag force as the particle contacts the wall deserves 

some discussion. This increases with both the size of the particle and its velocity, and that 

dependence appears to be quadratic. This supports the argument that these arise from 

second order effects, such as the gradient in the velocity of the solvent around the colloid 

particle. They also differ significantly between the smooth wall and rough wall, 

indicating that surface roughness plays a role here while it does not effect the drag in 

approaching the wall.  This suggests that perhaps one could add some second order 

corrections to the Pozrikidis model to account for them.  What is particularly interesting 

is that the widths of these spikes are smaller than the size of the solvent atoms.  
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Consequently, we again reach the conclusion that the continuum fluid flow laws can be 

applied down at the atomic level.  

Overall, these results are in excellent agreement with the Pozrikidis model that allows for 

slip, and disproves the application of the Brenner no-slip model for this situation. The 

agreement with the Pozrikidis model is especially noteworthy for the lack of a drag term 

for the mixed case of smooth particle and rough wall. Both Brenner and Vinogradova 

have formulated more complex models for the drag terms that allowed for slip.  However, 

both of their formulations differ from the Pozrikidis model in that they did not limit to the 

pure slip drag (c=4) in the bulk solution.  Our results are clearly consistent with the 

Pozrikidis model in that regard. 
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