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Carrier Mobility Change due to Tapered Through-

Silicon-Via Geometry

by

Jingjing Dou

Abstract

Three-dimensional integration is a solution that vertically stacks multiple layers of silicon
chips by Through-Silicon-Vias (TSVs) to enhance the performance of microelectronic
devices. The tapered TSV profile can help to overcome the technical difficulties. However,
an easily overlooked issue is that tapered TSV can cause wafer warpage during the
fabrication processes. Wafer warpage can cause chip misalignment and impose additional
deformation. In an effort to investigate the TSV geometric effect, a large number of finite
element analysis (FEA) simulations were performed to quantify the thermal stress
distribution and the thermally induced curvature. It was found that the tapered geometry
alone can induce significant wafer bending, which has not been reported by other
researchers. The effect of taper angle, TSV radius, TSV pitch, and wafer thickness were
quantitatively studied. In addition, the incorporations of anisotropic silicon property and
intermediate layers between the copper TSV and silicon into the numerical models were
assessed. Thermally induced stress concentration around copper TSV near the wafer
surface can lead to degradation of the device performance by affecting the carrier mobility
in transistors. This piezoresistivity effect can cause serious reliability concerns. The size of
keep-out zone (KOZ), which is identified as a threshold of 5% carrier mobility change, was

also quantified for various transistor types in different channel directions.
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Chapter 1

Introduction

When the size of microelectronic devices is scaled down, physical limitations are
encountered [1]. Three-dimensional integration is a solution that vertically stacks multiple
layers of electronic components by Through-Silicon-Vias (TSVs), to enhance the
performance of microelectronic devices beyond the 22 nm technology node. 3D integration
comprises 3D IC integration and 3D silicon integration [2-3]. In 3D silicon integration,
TSV wafers are bonded without any bumps by wafer-to-wafer bonding technique, while in
3D IC integration, active IC chips are integrated by microbumps, which are between them,
or by solder bumps with the substrate [3]. There are many benefits to 3D integration,
including lower power dissipation, higher electrical performance, wider bandwidth, and
lower cost. TSV is the heart of three-dimensional integration technology that provides the
shortest interconnection with high chip density to enable direct transmission of signals and
to reduce the resistive-capacitive (RC) delay. TSV interconnection has been applied to
wafer-level packaging of complementary metal-oxide-semiconductor (CMOS) image
sensor (CIS) [4] and to other heterogeneous devices, such as MEMS, RF, and optical
devices. The embedded TSVs in the chips may cause some critical reliability concerns and
thermal management challenges. Due to the significant mismatch in coefficient of thermal
expansion (CTE) between different materials, such as copper-filled via (17.5x10°%/°C) and
surrounding silicon (2.5x10°%/°C), large thermo-mechanical stresses will be generated
during wafer fabrication [5]. This would lead to the failures of materials, such as low-k

dielectric material cracking, delamination, and severe electromigtation, all of which will
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eventually shorten the chip’s lifetime [5]. Overheating is another issue because (a) some
materials in 3D-1Cs (TSV structure), such as solder bumps and oxide layers, have poor heat
conductivities; (b) the heat generated in multi stacked chips is high; and (c) there is limited
space for cooling channels. The silicon dioxide and back end-of-line (BEOL) layers can be
cracked due to copper pumping during heating [6]. Keep-out zone (KOZ) is a term for the
highly stressed region around TSV, where the performance of electronic devices is
degraded. Owing to large carrier mobility change in KOZ, no transistors should exist. X-
ray mircodiffraction used to measure the stress near the interface of TSV shows that the
KOZ is approximately 17 pum in radius [7]. Known-good die (KGD) is a characteristic that
affects the 3D integration manufacturing yield. Enhancing KGD is a significant issue. For
homogeneous structures, the yield isy = YN, in which N is the stacking number of the chips
and Y is the yield of the individual chip. The heterogeneous structure chips can be stacked
in one package to achieve multiple functions. The yield of heterogeneous chips is given by
y =XNYMZP. .. In addition, more efforts should be made on improving thin-wafer handling,
process parameter optimization, wafer-to-wafer bonding misalignment, wafer distortion,

among others.

Thermal stress in straight TSV structure has been studied extensively [8-12]. However, the
effect of tapered TSV geometry has received little attention. The tapered TSV profile helps
to overcome the technical difficulties of conformal depositions of the isolation dielectric
layer, diffusion barrier layer, and copper seed layer, and to ease the void-free copper
electroplating process [13]. It has been reported that the tapered TSV has the lowest
reflection noise and signal loss, compared to straight TSV [14]. An easily overlooked issue
is that the tapered TSV can cause chip warpage. Many sources, such as thick copper
overburden, thin film residual stresses, and high annealing temperature, can result in wafer
warpage. The large thermal stress generated by CTE mismatch between microbumps and
chips or two neighboring heterogeneous chips in multilayer stacking configurations also
can cause warpage. Wafer warpage can cause bump failure and die misalignment issues.
Che et al. reported that the TSV wafer warpage linearly increases with the annealing
temperature and copper overburden thickness [15]. The warpage decreases with the
number of stacked chips because each additional chip stiffens the structure further [16]. A

primary contribution of the present thesis work is to illustrate, through numerical analysis,
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that the tapered TSV can give rise to wafer warpage, the extent of which is comparable to
typically measured warpage caused by other means. Throughout the present analysis, the
thermal stress and deformation fields, along with their influence on carrier mobility change,

are also examined.



Chapter 2

Overview of Fabrication Process

The overall TSV fabrication process flow consists of five main steps and can be
summarized as follows. First, the vias are etched by deep reactive-ion etching (DRIE). The
dielectric layer is subsequently deposited by plasma-enhanced chemical vapor deposition
(PECVD) [1]. Next, the barrier and seed metallization are carried out by physical-vapor
deposition (PVD). The following step is via filling by electroplating. The last step is copper

overburden removal and wafer thinning by chemical-mechanical polishing (CMP).

Vias can be fabricated by two means of etching processes, laser drilling and deep reactive-
ion etching (DRIE). It is very efficient to etch a small amount of low aspect ratio vias in a
single chip by laser drilling. However, because the surface is rough after drilling, chemical
polishing is required to attain a smooth wall, which increases the manufacturing cost.
Compared to laser drilling, DRIE plays a more important role in 3D integration. Because
the vias are formed as blind holes through the wafers, the thickness of which ranges from
30 um to 200 pum, the aspect ratio may exceed 50. The Bosch process, which originally
was developed for MEMS fabrication to achieve vertical sidewalls, has been applied
extensively for high aspect ratio straight vias. The DRIE Bosch technology is an
anisotropic etching process which the etching and passivation steps alternate to form the
vias. The vias are etched in a Surface Technology System (STS) inductive coupled plasma
(ICP) system [17]. The chemical reactions are taken by F+ and SFx+ ion bombardment to
silicon by using sulfur hexafluoride (SFs) as the feedgas. The passivation is accomplished
by deposition of a (CxFy)n polymer layer on the sidewall, which decomposed from CaFs

feedgas. It is known that the Bosch process fabricates the vias with rough and scalloped
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sidewalls because of the cyclic etching/passivation processes. Klumpp et al. developed a
sub-atmospheric chemical vapor deposition (SACVD) process to reduce the sidewall
roughness [18]. Tapered sidewall vias could ensure that there is adequate coverage during
silicon dioxide/diffusion barrier/seed layer depositions and ease the subsequent via
electroplating process. Numerous studies have been devoted to parametrically
investigating the tapered TSV etching process with small scalloped sidewalls while

keeping the required aspect ratio.

Tapered sidewall vias normally are developed by three etching process steps. First, straight
sidewalls with slightly reentrant are accomplished with a high etch rate by using the Bosch
anisotropic etching process. The second step is a non-Bosch isotropic process that to

control the positive sidewall angle. The final step is the corner-rounding.

Ranganathan et al. introduced the step-by-step etching mechanism and profile evolution of
tapered via [13]. Praveen et al. improved the Bosch process to produce tapered vias with a
single DRIE step by gradually ramping down the platen power during alternating etching
and passivating cycles, and tuning the etch recipe cycle time and gas flow to reduce the
scallop size [19]. Other researchers [20-21] studied the effect of the process parameters,
such as SFe/O2 mixture gas pressure and gas flow ratio, to efficiently etch the vias by
adjustment of the platen power for given gas mixture and process pressure. The design of
experiment (DoE) is executed to determine the optimal etch rate of the TSVs. It is found
that the larger the via diameter, the higher the TSV etch rate [22].

There are two methods for depositing dielectric layers to avoid current leakage and cross
talk. One is the thermal oxidation, and the other is plasma-enhanced chemical vapor
deposition (PECVD). The uniform SiOz can be fabricated in a furnace over 1000 C.
Because most devices on the chips could endure only less than 400 C, the thermal
oxidation must be dropped for most cases. The dielectric layers deposited by PECVD are
nonuniform, however, they could be formed under 400 ‘C in the PECVD systems

manufactured by SPTS or other companies.

The diffusion barrier layer and seed layer are formed by physical vapor deposition (PVD).

The common materials of the barrier layer are titanium (Ti) and tantalum (Ta).



TSV is filled by copper by electroplating. Copper has good heat and electrical
conductivities. Some researchers studied other materials, such as carbon nanotubes (CNT)
[23-24] and tungsten, as filling via materials. Plating solution and plating current are the
key contributors to void-free copper filling for high aspect ratio tapered vias [25].
Selvanayagam et al. suggested that partially electroplating the via walls with copper,
instead of completely filling the whole vias, could reduce the thermal stress and lower the
cost [26].

Copper overburden needs to be removed by chemical-mechanical polishing (CMP). It can
cause severe wafer warpage. Huang, et al suggested that partially removing copper

overburden prior to the annealing process can reduce the wafer warpage [27].

Front end-of-line (FEOL) is a process that devices are fabricated in semiconductor
fabrication plants (fabs) from a bare wafer to layer metallization. Back end-of-line (BEOL)
is a process that connects the devices with the wafer. Vias can be formed by via-first (via
fabrication before FEOL), via-middle (via fabrication after FEOL and prior to BEOL), and
via-last (via fabrication after BEOL). Via-last usually is carried out in fabs with small

diameter vias and fine redistribution layers (RDLS).

Stap #1 Srep #2 Step #3 Step #4 Srep #5 Srep #6

Via
First
2+ Vi aw

Figure 1: Comparison between via-first, via-middle and via-last 3D TSV integration

scenarios [28].



Chapter 3

Numerical Model

Finite element analysis (FEA) simulations are carried out to predict the thermally induced
out-of-plane deformation and to gain insight into thermal stress distribution in silicon
wafers containing tapered TSVs. The simulations are performed by the ANSYS

mechanical software package.

Figure 2 (a) shows a part of the periodic arrangement of the TSV silicon wafer. The xz-
plane is the silicon wafer plane, with the thickness direction being along the y-axis. The
square enclosed by the dashed lines indicates a full unit cell (repeating unit structure). To
enhance the computational efficiency, a quarter of a 3D TSV unit cell model was
established with the suitable boundary conditions applied. Figure 2 (b) shows the actual
computational domain. It is not practical to model the entire wafer with the detailed TSV
structure, because doing so will require a large number of nodes [15]. Due to the symmetry,
the displacement of the boundary planes, x = 0 and z = 0, are constrained to be zero in the
x and z directions, respectively, during the analysis. The nodes in these two boundary
planes, x = 0 and z = 0, are permitted to have tangential displacements. Point O in Figure
2 (b) is set to be fixed in order to avoid deviation-induced error. The top and bottom
surfaces of the model are set to be traction free. In reality, the Bosch etch process will cause
sidewall roughness and scallops. In the model, it is assumed that the sidewall is smooth.

The copper-filled TSV and its surrounding silicon are perfectly bonded, therefore the



displacement field across the interface is continuous [5]. The 3D coupled-field solid
element was used for the entire analysis. The radius and diameter of the TSV top surface,
the radius and diameter of the TSV bottom surface, the pitch between two adjacent TSVs,
and the thickness of the wafer (TSV depth) are denoted as rl, di, r2, d2, p, and h,
respectively.

-

(@)

Line 3

Line1

Line 4

Line 2

A quater of a TSV unit-cell

(b)

Figure 2 (a) The top view of the periodic arrangement of TSV silicon wafer, and (b) the

3D computational domain



In some of the models, a 1um-thick silicon dioxide layer and a 0.1um-thick tantalum (Ta)
diffusion barrier layer between copper and silicon are included. The diameters of the copper
TSVs in these models are kept as the same as the ones in models that without intermediate

layers.

The intrinsic stresses induced by additional fabrication processes could interfere with the
thermal stress generated by the cooling process or other thermal loading conditions. In the

present study, the intrinsic stresses are ignored for simplicity.

The TSVs are assumed to be equally distributed as a square arrangement with the same
pitch in the wafer. The TSV unit cell structure is periodic with respect to the entire wafer,
rather than being a stand-alone module. In order to maintain the periodic structure,
appropriate boundary conditions are needed. The nodes in the planes x = p/2 and z = -p/2
are constrained by the “slider” element, which allows a "slave” node to slide on a line
joining by two "master” nodes. The nodes in Line 1, Line 2, Line 3 and Line 4 are treated
as master nodes. The nodes in Line 1 and Line 2 are separately coupled in the x direction,
therefore the nodes along their respective lines have the same x-component of displacement.
At the same time, the master nodes in Line 3 and Line 4 are separately coupled in the z

direction.

In reality, there could be three kinds of wafer warpages, cylindrical, spherical, and saddle,
which are caused by various reasons [29]. The CTE-mismatch induced deformation in the

current model setups will only generate spherical warpage.

Because the appropriate kind of coupled-field element is used, the coupled structural and
steady-state thermal analyses can be performed. The initial temperature and the reference
temperature are specified as 250 ‘C, because the cooling process usually is carried out
from this temperature. The reference temperature is applied as the stress-free temperature
for thermal-stress calculations. In most cases, a 20 C temperature is applied on all the
nodes in the models for the static analyses. In the analysis that quantifies the wafer
curvature with respect to the temperature change, the temperature function T=250-
38.3333xStep Number (°C) is applied on all the nodes in the models. Therefore, a six-step

procedure is implemented.



The silicon, silicon dioxide, and tantalum are considered as isotropic linear elastic solids.
The copper is defined as an isotropic elastic-plastic solid material with linear-strain

hardening, which follows the von Mises criterion and flow theory [5].

The material properties used in the FEA models are listed in the Table 1 below.

A large number of models with regular configurations are simulated, as listed in the Table
2.

Copper Silicon Silicon Dioxide | Tantalum
Yongs Modulus (MPa) 1.1x10° 1.3x10° 7.31x10* 1.86x10°
Poisson's Ratio 0.34 0.28 0.17 0.34
CTE (1/°C) 1.70x10° | 2.60x10° 5.50x107 6.50x10°
Thermal conductivity
(W/(mxK)) 401 149 1.4 57.5
Density (g/(mm)?) 8.90x10° | 2.33x107 2.20%x10° 1.67x10%
Initial Yield Stress (MPa) 155
Tangent Modulus (GPa) 17.8

Table 1: Material properties
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Variables

the angle of the intermediate
Section tapered TSV the base radius of the TSV wafer thickness pitch silicon elastic property layers loading condition
pure
5 10 | 15 | 20 | 25 | h=50 | h=75 | h=100 | h=125 | p=100 | p=200 cooling mechanical
o°[3°|[6°[9° | um |[um | um | um | um pm pm pm pm pm pm isotropic | anisotropic without with process bending

4.1 baseline

models I AR AR AR AR R R AR AR 4 4 * *
4.2 curvature

evolution * * 4 < 4 4

4.3 pure
mechanical

bending <& <& <* < < < g
4.4 models

with
intermediate

layers AR AR AR IR R AR R K 2R / 4 4 < <

4.5
anisotropic

models AR AR AR IR AR AR AR R 2R ¢ ¢ * *
4.6 different
thicknesses

models (O [0 [0 0 6| 0|0 0 O | o o | o ¢ ¢ 4 4
4.7 different

pitches

models (O [0 [0 ¢ ¢ 0 0 o * 4 * *

Table 2: Configurations of model
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Chapter 4

Results and Discussion: Thermal Stresses

and Wafer Curvature

4.1 The Stress fields and Curvature after the Cooling Process

The baseline models without silicon dioxide and barrier/seed layers are first considered.
The pitch between two adjacent TSVs is fixed at 100 um. The units for displacements and
stresses in contour plots generated by ANSYS are millimeter (mm) and mega Pascal (MPa)

correspondingly.

Figure 3 (a)-(e) show the contour plots of the x displacement (ux), the x-component of
stress (oxx), the xy-shear stress (oxy), the von Mises stress, and the equivalent plastic strain
after the cooling process, respectively. The TSV structure in the model has a base radius
of 10 um and a 3° tapered profile. It can be seen that the boundary surface area x = p/2 is
perfectly constrained to be a plane by the slider elements in Figure 3 (a). The displacement
field is very nonuniform. The edge of the TSV at the boundary plane z = 0 near the top and
bottom free surfaces has the greatest negative x deformation. This is because the top and
bottom surfaces of copper TSV are free, so their contraction is less constrained by silicon
compared to the central portion of the TSV. In other words, the strain energy can be more

easily released from these surfaces. The TSV is perfectly bonded with its surrounding

12



silicon. The interface between copper and silicon is continuous, therefore the edge of the
silicon has the same displacement as the edge of the copper TSV. It is noticed in the contour
plot of the x-component of stress (Figure 3 (b)) that the tensile x-component of stress
exceeds 333 MPa at the center of the TSV, and both ends of the TSV are subject to
compressive x-component of stresses. There are x-component of stress concentrations at
the edge of the TSV near the top and bottom surfaces of silicon. In Figure 3 (c), the shear
stress is located at the copper and silicon interfaces near the free surface. The shear stress
may cause delamination at the interface and result in “copper-pumping” to crack the on-
chip structures. The large stress concentration at the interface can also be observed in the
von Mises stress contour plot, as shown in Figure 3 (d). The maximum value of the von
Mises stress exceeds 645 MPa inside silicon. The equivalent plastic strain also is located
near the top and bottom free surfaces along the material interface, as shown in Figure 3 (e).
The observations above indicate that the internal damage in the TSV structure is a real

possibility, due to the thermally induced stresses alone.
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Figure 3: Contour plots of (a) the x displacement (ux) (mm), (b) the x-component of stress
(oxx) (MPa), (c) the xy-shear stress (oxy) (MPa), (d) the von Mises stress (MPa), and (e) the
equivalent plastic strain after the cooling process. The model represents a quarter of a TSV
unit cell in the 50 um thickness isotropic silicon wafer. The TSV structure has a base radius

of 10 um and a 3° tapered profile.

The models with a fixed 10 um base radius of the TSV and increased taper angles are
analyzed. Figure 4 (a)-(d) show the x-displacements in the cases of 0°, 3°, 6°, and 9° taper
angles, respectively, after cooling. It can be seen in Figure 4 (a) that the surface x = p/2 is
vertical in the model which has the straight TSV structure. It indicates that the entire wafer
is flat, therefore no warpage occurs. Figure 5 shows that the maximum magnitude of the x

displacement increases linearly as the angle of the tapered TSV increases.
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Figure 4: Comparison of the contour plots of the x displacement after the cooling process.
The models represent a quarter of a TSV unit cell in the 50 um thickness isotropic silicon
wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°, and (d)
9° tapered profiles.
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Figure 5: The maximum values of the x displacement with respect to different angles of
TSVs when the base radius of the TSV is fixed at 10 pum.
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Figure 6 (a)-(d) show the x-component of stresses in the cases of 0°, 3°, 6°, and 9° taper
angles, respectively, after cooling. Figure 7 (a)-(d) illustrate the von Mises stresses in the
cases of 0°, 3°, 6°, and 9° taper angles after cooling, respectively. It is observed in Figure
6 and Figure 8 that the area, where high x-component of stress and von Mises stress are
concentrated, tends to expand as the taper angle increases. Figure 8 demonstrates that the
maximum compressive oxx in silicon increases linearly with the taper angle, while the
maximum tensile oxx in copper stays relatively unchanged. The maximum value of the von

Mises stress also approximately increases linearly with tapering, as shown in Figure 9.

NODAL, SOLOTTON

STEF=1

SR =1

TIME=1 .

o {BE) =451.79
REYS=0

MY =.1748-03
BN =451.793
SM =334.523

(@)
NODAL, SOLITION
STEP=1
B =%
TIME= -
= (B —478.80
RSYS=0
IMY{ =, 186E-03 —388.573
SMH =475, 308
SMY =333.309 —298.337,
=208, 102]
—117.867
27,631
62.6037
152.839
243,074
333.309

(b)

18



(d)
Figure 6: Comparison of the contour plots of the x-component of stress after the cooling
process. The models represent a quarter of a TSV unit cell in the 50 pm thickness isotropic
silicon wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°,

and (d) 9° tapered profiles.
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Figure 7: Comparison of the contour plots of the von Mises stress after the cooling process.
The models represent a quarter of a TSV unit cell in the 50 um thickness isotropic silicon
wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°, and (d)

9° tapered profiles.
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of TSVs when the base radius of the TSV is fixed at 10 pm.
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Figure 9: The maximum values of the von Mises stress with respect to different angles of
TSVs when the base radius of the TSV is fixed at 10 um.

Figure 10 (a)-(d) show the xy-shear stresses in the cases of 0°, 3°, 6°, and 9° TSV tapered
profiles, respectively, after cooling. It can be seen in the straight TSV model that the largest
positive and negative xy-shear stresses are in silicon near the top and bottom surfaces.
However, in the tapered TSV models, the largest positive xy-shear stress near the top
surface is inside the TSV and the largest negative xy-shear stress near the bottom surface
is inside the silicon. Apparently, the deviation from 90° between the interface and free
surface created an uneven material distribution, which influences the local shear stress

across the interface.
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Figure 10: Comparison of the contour plots of the xy-shear stress after the cooling process.
The models represent a quarter of a TSV unit cell in the 50 um thickness isotropic silicon
wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°, and (d)

9° tapered profiles.

Figure 11 shows the maximum values of the xy-shear stress with respect to different taper
angles. It indiacates that the maximum magnitudes of the positive and negetive xy-shear
stresses are the same in the straight TSV model. It can also be seen that the maximum
negetive oxy in silicon increases linearly with the taper angle, while the maximum positive
oxy In copper stays relatively unchanged. This phenomenon suggests that the delamination

concern may rise with the taper angle.
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Figure 11: The maximum values of the xy-shear stress with respect to different angles of
TSVs when the base radius of the TSV is fixed at 10 um.

Figure 12 (a)-(d) show the equivalent plastic strains in the cases of 0°, 3°, 6°, and 9° TSV
tapered profiles, respectively, after cooling. The plasticity in TSV is stronger at the wider
end of the TSV. Figure 13 shows the maximum values of the equivalent plastic strain with
respect to different angles of TSVs. The trend is not strictly monotonic increasing.
However, in general, the maximum equivalent plastic strain increases with the taper angle

when the angle is greater than 3°, as shown in Figure 13.

25



NODAL, SOLIJTION

STEP=1
B =1
TIME=1 B
NIEPEQ  (AVG) 0
REYE=D
MK =. 174E-03 BASE-03
SMi =, 005352
.0B1189
001784
0062379
002973
LU03568
004163
004757
! 005352'
(a)
WODAL SCLITTON
STEP=]
B =1
TIME=1 B
NIEPEQ — {(AVG) 0
FSYS=0
LMY =, 186E-03 _B8TE-03
S =, 00528
001173
00176}
.0nz3aT
002934
00352
|
004107
004594

f 00528I

(b)

NCDAL  SOLITTON

]
.B18E-03
001236
001853
002471
. 003089
003707
004325
004942

.00556'

()

26




NODAL SOLITION
STEP=1
SUB =1
TIME=1 a

T0BE-03
001416

.0n2124}

SME =, 006372

.OEI2832!
00354
004248

.004956i |

005684
.006372'

(d)
Figure 12: Comparison of the contour plots of the equivalent plastic strain after the cooling
process. The models represent a quarter of a TSV unit cell in the 50 pm thickness isotropic
silicon wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°,

and (d) 9° tapered profiles.
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Figure 13: The maximum values of the equivalent plastic strain with respect to different
angles of TSVs when the base radius of the TSV is fixed at 10 pm.
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The x displacements of the specific nodes in the models shown above are extracted to
calculate the curvatures, as shown in Figure 14. Itis found that the curvature approximately

increases linearly with the TSV sidewall inclining when the base radius of the TSV is fixed.
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Figure 14: Wafer curvatures with respect to different angles of TSVs when the base radius
of the TSV is fixed at 10 pm.

Attention is now focused on the variation of the TSV width, under a fixed taper angle.

Figure 15 shows the x displacement fields in the models with 5 um, 10 um, 15 pm, 20 pm,
and 25 um TSV base radii, respectively, and a fixed 3° taper angle.
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Figure 15: Comparison of the contour plots of the x displacement after the cooling process.
The models represent a quarter of a TSV unit cell in the 50 um thickness isotropic silicon
wafer. The TSV structures have (a) 5 um, (b) 10 pum, (c) 15 pm, (d) 20 um, and (e) 25 um

base radii and a fixed 3° tapered profile.

Figure 16 shows the maximum values of the x displacement with respect to different base
radii of the TSVs when the angle of tapered TSV is fixed at 3°. It demonstrates that the
maximum value of the x displacement increases with the volume fraction of TSV in a linear

manner, when the 3° angle of tapered TSV is fixed. The greatest negative x displacement
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occurs at the top surface in the interface area, due to the large copper volume at the wider

end. Therefore a greater curvature can be expected, which will be shown later in this section.
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Figure 16: The maximum values of the x displacement with respect to different base radii
of the TSVs when the angle of tapered TSV is fixed at 3°.

Figure 17 and Figure 18 show the x-component of stress and the von Mises stress fields in
the models with 5 pm, 10 um, 15 pum, 20 um, and 25 pm TSV base radii and a fixed 3°
taper angle, respectively. It is seen that the high tensile oxx (over 300 MPa) exists at the
center of the TSV after cooling. Within silicon, the thermally induced stresses will reach
high magnitudes and become concentrated near the top and bottom free surfaces around
the interface. Figure 19 shows that the maximum value of the x-component of compressive
stress stays relatively constant with the base radius of the TSV. Figure 20 illustrates that
the maximum value of the von Mises stress generally is linearly enlarged with an increase
in TSV volume fraction. Figure 21 shows that the curvature is proportional to the base
radius of the TSV when the angle of tapered TSV is fixed at 3°.
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Figure 17: Comparison of the contour plots of the x-component of stress after the cooling
process. The models represent a quarter of a TSV unit cell in the 50 pm thickness isotropic
silicon wafer. The TSV structures have (a) 5 um, (b) 10 um, (c) 15 um, (d) 20 um, and (e)

25 um base radii and a fixed 3° tapered profile.
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Figure 18: Comparison of the contour plots of the von Mises stress after the cooling
process. The models represent a quarter of a TSV unit cell in the 50 pm thickness isotropic
silicon wafer. The TSV structures have (a) 5 um, (b) 10 um, (c) 15 pm, (d) 20 um, and (e)

25 um base radii and a fixed 3° tapered profile.
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Figure 19: The maximum values of the x-component of stress with respect to different base
radii of the TSVs when the angle of tapered TSV is fixed at 3°.
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Figure 21: Wafer curvatures with respect to different base radii of the TSVs when the angle
of tapered TSV is fixed at 3°.

Finally, the 3D curvature surface plot is generated with respect to two variables, the angle
and the base diameter of the tapered TSV, as shown in Figure 22. It can be seen that the
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curvature is largely proportional to the value of one variable while the value of the other is
fixed. Therefore, the curvature value for any combination of the TSV size, of which the
base radius ranges from 3 um to 25 um, and the taper angle, which ranges from 0° to 9°,

may be easily estimated.

curature (14m)

|he dinmater of TSV botieen sraa (mm)

snifle of tspperd TSV (7

Figure 22: 3D curvature surface plot of the 50 um thickness isotropic tapered TSV wafers

with respect to different angles and base diameters of the TSVs.

4.2 Curvature Evolution as a Function of Temperature Change

Depending on the processing history, such as the wafer annealing temperature and bonding
temperature, the TSV structure may be subject to various temperature changes. Here, the
evolution of wafer curvature is presented as a function of temperature change for different

combinations of TSV base radii and taper angles.

Figure 23 and Figure 24 show the wafer curvatures with respect to the temperature change.
It is observed that the evolution of curvature with respect to temperature change generally
follows a linear relationship. It is thus straightforward to estimate the wafer curvature if the

temperature change involved in the processing is not 230 “C. In fact, the same type of linear
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relationship was found to hold true when the temperature change extended to about 400 C.

In experiments, the precision wafer curvature technique was used to measure the curvature
change during thermal cycling [30]-[33]. The values of the curvature obtained from the
present simulation results fall in the general range of the experimental data gained from the
precision wafer curvature technique, even though the curvature technique was used to
detect the blind vias causing wafer warpage [30]. This demonstrates that the TSV tapered

geometry effect is a significant source of wafer bending.

-3

%10
45 T T T T
—=— r2=10pm, 3 degree tapered TSV A
dr | —— r2=10pm,6 degree tapered TSV /’J h
—+— r2=10pm, 9 degree tapered TSV o
35 &
//f°é
3 " j
A
248 / &

curvatura (1/m)

1 1 1
il 50 100 150 200 250

temperature changs (°)

Figure 23: The curvature evolution during temperature change. The TSV structures have
a fixed 10 um base radius and 3°, 6°, and 9° tapered profiles. The TSVs are in the 50 pm

thickness isotropic silicon wafer.
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Figure 24: The curvature evolution during temperature change. The TSV structures have
a fixed 3° tapered profile and different base radii. The TSVs are in the 50 um thickness

isotropic silicon wafer.

4.3 Wafer Warpage under Pure Mechanical Bending

For gaining insight into the stress fields, pure mechanical bending was also investigated.
In the case of thermal-stress-induced warpage of the 50 pum thickness isotropic silicon
wafer, which has 10 um base radius and 3° profile tapered TSVs, the curvature was found
to be 6.808x10*/m and the rotations of the planes x = p/2 and z = -p/2 in each quarter unit
cell were 3.4x107° rad. Here, the same extent of curvature is simulated using pure
mechanical bending. First, two single points, denoted as A and B, are set up outside of the
model. The rigid beam element is used to constrain all of the nodes in the boundary plane
X = p/2 with the single point A and all of the nodes in z = -p/2 with the point B. A large
rotation or a moment can be prescribed by using the rigid-beam element. A rotation of
3.4x107 rad with respect to z axis is imposed on the point A, therefore all of the nodes in
the boundary plane x = p/2 are subject to the same rotation at the same time. The same
value rotation with respect to x axis is imposed on the nodes in z = -p/2 plane as well.
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Figure 25 shows the contour plots of the x displacement, the x-component of stress, the xy-
shear stress, and the von Mises stress of the same configuration model as in Section 4.1.
The maximum value of the x-component of stress is 38.3 MPa. The maximum value of the
von Mises stress is 39.6 MPa. The stress values are thus much smaller than those caused
by cooling process. This indicates that, under the same overall deformation, the thermally

induced stress in the TSV structure plays a dominant role in affecting the structural integrity.
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Figure 25: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
Xy-shear stress, and (d) the von Mises stress. The model represents a quarter of a TSV unit
cell in the 50 pum thickness isotropic silicon wafer. The TSV structure has a 5 um base

radius and a 3° tapered profile. The model is subject to pure mechanical bending.

4.4 Effect of Intermediate Layers

Next we consider the TSV structure with a dielectric silicon dioxide layer and a barrier
layer, in order to mimic the conditions in real life. The silicon dioxide layer and tantalum
(Ta) diffusion-barrier layer between copper TSV and its surrounding silicon are set as 1
pm-thick and 0.1-um thick, respectively, based on the typical dimensions used in

experiments.

One major issue about including the ultra-thin intermediate layers is the need to mesh every
part of the TSV structure extremely well so as to resolve the deformation characteristics in

sufficient detail. In each of these models, more than 250,000 nodes have been generated.
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Simulating such highly meshed models dramatically increases the CPU time and may pose

numerical convergence problems.

Figure 26 and Figure 27 show the contour plots of the x displacement, the x-component of
stress, the xy-shear stress, the von Mises stress, and the equivalent plastic strain after the
cooling process. The models in both Figures have inter-layers. The TSV structure in Figure
26 has a 10 um base radius and a 6° tapered profile, while in Figure 27, it includes a 25 pm
base radius and a 9° tapered profile. It can be noticed that the contour plots of these models
have similar patterns as the ones of the same configuration models which are without the
intermediate layers, except that the maximum magnitude of each stress component is much
higher. The maximum value of the x-component of stress is 100 MPa higher, and the
maximum value of the von Mises stress is 200 MPa higher in the model with the
intermediate layers, as shown in Figure 26. The von Mises stress even exceeds 1,117 MPa,
and the equivalent plastic strain is generated in the central part of the wider TSV, as shown
in Figure 27 (d). Because the intermediate layers are extremely thin, large thermal stresses
are concentrated at the interface between these ultra-thin layers. Debonding is thus a real

concern, which can cause crosstalk, electromigration damage, and current leakage.
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Figure 26: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
Xy-shear stress, (d) the von Mises stress, and (e) the equivalent plastic strain after cooling.
The model represents a quarter of a TSV unit cell in the 50 um thickness isotropic silicon
wafer. The model has a silicon dioxide layer and a Ta barrier layer. The TSV structure has

a 10 um base radius and a 6° tapered profile.
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Figure 27: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
von Mises stress, and (d) the equivalent plastic strain after cooling. The model represents
a quarter of a TSV unit cell in the 50 pm thickness isotropic silicon wafer. The model has
a silicon dioxide layer and a Ta barrier layer. The TSV structure has a 25 um base radius

and a 9° tapered profile.

Figure 28 and Figure 29 show the contour plots of the individual silicon dioxide layer and
barrier layer, respectively, in the model with a 10 um base radius and a 6° taper angle TSV.
It can be seen that the x-component of stress, and the von Mises stress is higher than the

ones in the model without inter-layers.
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Figure 28: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
xy-shear stress, and (d) the von Mises stress in the silicon dioxide layer after cooling. The
model represents a quarter of silicon dioxide layer in a TSV unit cell model. The model is
in the 50 um thickness isotropic silicon wafer and has a silicon dioxide layer and a Ta

barrier layer. The TSV structure has a 10 um base radius and a 6° tapered profile.
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Figure 29: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
xy-shear stress, and (d) the von Mises stress in the barrier layer after cooling. The model
represents a quarter of barrier layer in a TSV unit cell model. The model is in the 50 pm
thickness isotropic silicon wafer and has a silicon dioxide layer and a Ta barrier layer.

The TSV structure has a 10 um base radius and a 6° tapered profile.

Figure 30 shows the 3D curvature surface plot of the models with the inter-layers with
respect to the angle and the base diameter of the tapered TSV. Even though there are high
thermal stresses in intermediate layers, the volume occupied by these layers is relatively
small. The 3D curvature surface plot of the models with intermediate layers indicates that
the wafer curvature is generally the same, except slightly lower, compared to the one of the
models without layers. Because this thesis mainly focuses on the wafer warpage under
thermal loading, from this point on we ignore the details of the intermediate layers between

the TSV and silicon in order to enhance the computational efficiency.
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Figure 30: 3D curvature surface plot with respect to different angles and base diameters
of TSVs. The TSVs have a silicon dioxide layer and a Ta barrier layer, and are in 50 um

thickness isotropic silicon wafers

4.5 Effect of Anisotropic Silicon

The thermally induced wafer warpage had been characterized above. The silicon wafer was
assumed to have isotropic elastic material properties. However, in reality, the single-crystal
silicon wafer is anisotropic. The effect of silicon anisotropy is now examined. The X, v,
and z directions of the anisotropic model are taken to be along the crystallographic [100],
[001], and [010] directions, respectively. The FEA models are built with the following

silicon stiffness matrix.

a6 614 &4 0 ] 7
644 1662 644 0 D O
| 644 644 1662 0 0 0
L1 0 0 0 798 0 0O
0 0 0 0 798 0
0 0 1} 0 0 708]

GPa
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The anisotropic models have the same geometry and boundary conditions as the ones in
the section 4.1.

Figure 31 shows the contour plots of the x displacement, the x-component of stress, the xy-
shear stress, the von Mises stress, and the equivalent plastic strain of the anisotropic model
after the cooling process. The stress concentration is more severe at the interfaces near the
top and bottom free surface in the anisotropic model. In the isotropic model, the von Mises
stress contour plot exhibits axisymmetry around the TSV (e.g. Figure 7). While in the
anisotropic model, a fourfold symmetry can be seen in Figure 31 (d), due to the cubic
symmetry of the silicon. This demonstrates that the von Mises stress in the anisotropic

model is highly dependent on the orientation of the silicon.
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Figure 31: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
Xy-shear stress, (d) the von Mises stress, and (e) the equivalent plastic strain after cooling.
The model represents a quarter of a TSV unit cell in the 50 um thickness anisotropic silicon

wafer. The TSV structure has a base radius of 10 um and a 3° tapered profile.

Figure 32 and Figure 33 show the contour plots of the x-component of stress and the von
Mises stress fields, respectively, of the anisotropic models, which have 0°, 3°, 6°, and 9°

taper angles and a fixed 10 um base radius TSVs.

Figure 34 and Figure 35 show that the maximum magnitudes of the compressive oxx and
the von Mises stress of the anisotropic models generally increase linearly with the taper
angle, except for the tensile oxx Which stays relatively constant. The tensile oxx is higher
than the corresponding one in isotropic model, but the magnitude of the compressive oxx IS
lower. This indicates that the x-component of stress in anisotropic model is also highly

dependent on the orientation of the silicon.
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Figure 32: Comparison of the contour plots of the x-component of stress after cooling. The

models represent a quarter of a TSV unit cell in the 50 um thickness anisotropic silicon
wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°, and (d)

9° tapered profiles.
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Figure 33: Comparison of the contour plots of the von Mises stress after cooling. The
models represent a quarter of a TSV unit cell in the 50 pm thickness anisotropic silicon
wafer. The TSV structures have a fixed 10 um base radius and (a) 0°, (b) 3°, (c) 6°, and (d)

9° tapered profiles.

400 : : : . : .

- 4 & L &
m I0F -
o
E 200k —&— compressive stiess In anisotropic models i
@ —+—— tenslle stress in anisotropic models
Z qoot —#— compressive stress in isotropic models -
[ g1 e . ’

- —&—tensile stress in isofropic models

£ 0F &
(e}

c

S 100}

= - -
o

()

= 200F &

s
-

@ 300 -
=
=
E 400k -
=3 d
E 3\6‘\5\2
5 -500 (\‘\;\
_EDU 1 1 Il Il 1 Il Il Il
il 1 2 3 4 5 6 7 g 8

taperad angle of TSV (%)

Figure 34: Comparision of the maximum values of x-component of stress between isotropic
and anisotropic models with respect to different angles of TSVs when the base radius of
the TSV is fixed at 10 um.
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Figure 35: Comparision of the maximum values of the von Mises stress between isotropic
and anisotropic models with respect to different angles of TSVs when the base radius of
the TSV is fixed at 10 pm.

Figure 36 and Figure 37 demonstrate that the maximum values of the x-component of
tensile and compressive stresses in the anisotropic models stay fairly constant with the TSV
base radius, and the maximum value of the von Mises stress increases with a larger volume
fraction of TSV at a fixed angle. The von Mises stress and tensile oxx in anisotropic models

are higher than the ones in isotropic models.
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Figure 36: Comparison of the maximum values of the x-component of stress between
isotropic and anisotropic models with respect to different base radii of the TSVs when the

angle is fixed at 3°.
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Figure 37: Comparision of the maximum values of the von Mises stress between isotropic
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angle is fixed at 3°.

61



The curvature data are compiled to generate the 3D curvature surface plot with respect to
the angle and the base diameter of the tapered TSV, as shown in Figure 38. It can be seen
that the value of curvature is nearly proportional to the value of one variable while fixing
the other. Figure 38 shows that the curvature of the anisotropic silicon wafer is only slightly

smaller than the one of the isotropic silicon wafer.

angla af tapgard TSV (7

Figure 38: 3D curvature surface plot of the 50 um thickness anisotropic tapered TSV

wafers with respect to different angles and base diameters of the TSVs.

4.6 Effect of Wafer Thickness

In addition to studying the 50um-thick wafer, various models with 75 pm, 100 um, and

125 pum wafer thicknesses have been established to study the effect of wafer thickness.

Figure 39, Figure 40, and Figure 41 show the contour plots of the models with 75 um, 100
pum, and 125 um thicknesses, respectively. The patterns in the corresponding contour plots

are very similar.
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Figure 39: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
Xy-shear stress, (d) the von Mises stress, and (e) the equivalent plastic strain after cooling.
The model represents a quarter of a TSV unit cell in the 75 um thickness isotropic silicon

wafer. The TSV structure has a base radius of 10 um and a 3° tapered profile.
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Figure 40: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
xy-shear stress, (d) the von Mises stress, and (e) the equivalent plastic strain after cooling.
The model represents a quarter of a TSV unit cell in the 100 pum thickness isotropic silicon

wafer. The TSV structure has a base radius of 10 um and a 3° tapered profile.
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Figure 41: Contour plots of (a) the x displacement, (b) the x-component of stress, (c) the
Xy-shear stress, (d) the von Mises stress, and (e) the equivalent plastic strain after cooling.
The model represents a quarter of a TSV unit cell in the 125 pum thickness isotropic silicon

wafer. The TSV structure has a base radius of 10 pm and a 3° tapered profile.

Figure 42 shows the maximum values of the von Mises stress with respect to different
angles of TSVs and different wafer thicknesses when the base radius of the TSV is fixed
at 10 um. It is evident that the maximum value of the von Mises stress generally increases

linearly with the taper angle. The von Mises stress value decreases as the wafer thickness
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Figure 42: Comparision of the maximum values of the von Mises stress with respect to
different angles of TSVs and different wafer thicknesses when the base radius of the TSV is

fixed at 10 pum.

Figure 43 shows the maximum values of the von Mises stress with respect to different base
radii of the TSVs and different wafer thicknesses when the angle of the TSV is fixed at 3°.
The maximum values of the von Mises stress are observed to increase with the base radius

of the TSV, and the von Mises stress magnitude decreases with the wafer thickness.
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Figure 43: Comparision of the maximum values of the von Mises stress with respect to
different base radii of the TSVs and different wafer thicknesses when the angle of the TSV

is fixed at 3°.

Figure 44, Figure 45, and Figure 46 show the 3D curvature surface plots of the 75 pum, 100
um, 125 um thicknesses isotropic tapered TSV wafers with respect to different angles and

different base diameters of the TSVs, respectively.
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Figure 44: 3D curvature surface plot of the 75 um thickness isotropic tapered TSV wafers

with respect to different angles and different base diameters of the TSVs.
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Figure 45: 3D curvature surface plot of the 100 um thickness isotropic tapered TSV wafers

with respect to different angles and different base diameters of the TSVs.
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Figure 46: 3D curvature surface plot of the 125 um thickness isotropic tapered TSV wafers

with respect to different angles and different base diameters of the TSVs.
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Figure 47 shows the overall curvature plots. It demonstrates that increasing the wafer
thickness can dramatically reduce the wafer curvature caused by thermal loading. This is
because the thick TSV wafer stiffens the wafer matrix and reduces wafer warpage.
However, the high aspect ratio TSVs, caused by a thicker wafer, may bring some other
problems, such as the difficulties of depositions of intermediate layers and copper

electroplating.
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Figure 47: The overall 3D curvature surface plots of the 50 um, 75 pm, 100 um, and 125
pum thicknesses of isotropic tapered TSV wafers with respect to different angles and

different base diameters of the TSVs.
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4.7 Effect of TSV Pitch

Up to this point, the distance between two adjacent TSVs was considered as 100 um. To
study the effect of TSV pitch, a distance of 200 um is now used in the models.

Figure 48 shows the contour plots of the x displacement, the x-component of stress, the
von Mises stress, and the equivalent plastic strain of 200 um-pitch model. The TSV
structure has a base radius of 10 um and a 3° tapered profile.
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Figure 48: Contour plots of the (a) the x displacement, (b) the x-component of stress, (c)
the von Mises stress, and (d) the equivalent plastic strain after cooling. The model
represents a quarter of a TSV unit cell in the 50 um thickness isotropic silicon wafer. The
TSV structure has a base radius of 10 um and a 3° tapered profile. The pitch between two
adjacent TSVs is 200 pm.

Figure 49 shows a comparison of the maximum values of the von Mises stress between p
=100 pm and p = 200 um models with respect to different angles. The maximum value of
the von Mises stress in the 200 um-pitch model increases linearly with the taper angle. The
von Mises stress in the 200 um-pitch model is much lower compared to the one in the 100

um-pitch model.
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Figure 49: Comparision of the maximum values of the von Mises stress between p = 100
pm and p = 200 pum models with respect to different angles of TSVs when the base radius
of the TSV is fixed at 10 pum.

Figure 50 shows the 3D curvature surface plot of the 50 um thickness isotropic tapered
TSV wafers with respect to the angle and the base diameter of the TSV. The pitch between
two adjacent TSVs is 200 pm.
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Figure 50: 3D curvature surface plot of the 50 um thickness isotropic tapered TSV wafers
with respect to different angles and different base diameters of the TSVs. The pitch between

two adjacent TSVs is 200 pum.

It is noticed that, compared to Figure 22, the curvature of the 200 um-pitch TSV wafer is
approximately half of the 100 um-pitch case, because there is a greater silicon volume in

each unit cell and it stiffens the entire TSV wafer with less bending.
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Chapter 5

Carrier Mobility Change and Keep-Out
Zone (KOZ)

Thermally induced stress concentration around copper TSV can lead to degradation of the
device performance by affecting the MOSFET device’s carrier mobility. It causes some
serious reliability concerns. Piezoresistivity of silicon refers to the change in the electrical
resistivity while mechanical stress is applied. This effect can be used to make piezoresistive
devices for stress sensing [34]. However, the same effect also detrimentally impacts the
performance of microelectronic devices. The electronic components are fabricated near the
silicon wafer surface. KOZ is a region near the silicon wafer surface where high stresses
are concentrated, therefore active transistors should be kept away. In this chapter, the KOZ
is identified based on the thermal stress modeling results and a threshold mobility change
of 5%.

3D FEA models are used to characterize the thermal stress distribution as in the previous
chapter. The mobility change and the size of KOZ are further calculated by extracting the
near-surface stresses and putting them into relevant equations (see below). The anisotropic
elastic silicon wafer is considered, as in section 4.5. Two vertical channel directions, [100]
and [010], and two types of MOSFET devices, n-type and p-type, are considered to

quantify the piezoresistivity effect on transistor’s carrier mobility [35].
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The resistivity change (Api) is related to stress (ok) by a piezoresistance tensor (mik) [36],
Api/p = ik Ok 1)

Here, for cubic semiconducting crystals, the piezoresistance tensor is a 6x6 matrix:

11 12 12

T2 11 12 0 0 0
o mT192 m12 11 0 0 0
k= 0 0 a4 0 0

0 0 0 0 a4 0

0 0 0 0 0 T4

The piezoresistance coefficients of n-MOSFET and p-MOSFET measured along with the

current in the [100] direction are given in Table 3.

T T2 Tqq
n-type Si -102.2 53.7 -13.6
p-type Si 6.6 -1.1 138.1

Table 3: The piezoresistance coefficients for n-MOSFET and p-MOSFET (unit: 10 ** Pa™?)

Resistivity is inversely proportional to mobility, and thus the carrier mobility change (Ap )

owing to piezoresistivity can be presented as following:

Ap/p=—Ap/p. (2)

For the case that the transistors’ channels are along with the [100] direction, and the current
is imposed in the same direction, the magnitude of the carrier mobility change can be

presented as follows [35, 37]:
Ap/p= |m1oxx + m12(6zz + oyy)| . (3)

For the case that the transistors’ channels are along with the [010] direction, and the current
is imposed in the same direction, the magnitude of the carrier mobility change is then

expressed as follows [35, 37]:

A/p= |(m11 + m12) (Oxx + 622)/2 + T440xz (4)
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The values of the stress components on the top surface of the TSV structure were extracted
from the FEA simulation results to calculate the carrier mobility change. Figure 51 shows
the top view of a quarter of the TSV unit cell structure. The contour plots shown in Figure
51 represent the carrier mobility change for n-MOSFET and p-MOSFET devices that are
along with the [100] and [010] directions in the model with a 3° taper angle and 10 pm
base radius TSV.
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Figure 51: Mobility change contour plots for (a) n-MOSFET aligned along the [100]
channel, (b) p-MOSFET aligned along the [100] channel, (c) n-MOSFET aligned along
the [010] channel, (d) p-MOSFET aligned along the [010] channel. The model represents
a quarter of a TSV unit cell in the 50 pum thickness isotropic silicon wafer. The TSV

structure has a base radius of 10 um and a 3° tapered profile.

The boundary of KOZ is marked with the white line, within which the carrier mobility
change is more than 5%. It can be seen that the effect of piezoresistivity is much more
prominent for n-MOSFET along with the [100] channel and p-MOSFET along with the
[010] channel. The lengths of KOZs for n-MOSFET along with the [100] direction and p-
MOSFET along with the [010] direction are denoted by a and B, respectively. In the model
that has the TSV with a base radius of 10 um and a 3° tapered profile, the characteristic

length a is 25.5 um and the characteristic length 8 is 29.2 um.

Figure 52, Figure 53, and Figure 54 show the contour plots of the carrier mobility change
for n-MOSFET and p-MOSFET devices that are in the [100] and [010] directions in the

cases with 0°, 6°, 9° taper angles, respectively, and a fixed 10 pum base radius TSVs.
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Figure 52: Mobility change contour plots for (a) n-MOSFET aligned along the [100]
channel, (b) p-MOSFET aligned along the [100] channel, (c) n-MOSFET aligned along
the [010] channel, (d) p-MOSFET aligned along the [010] channel. The model represents

a quarter of a TSV unit cell in the 50 um thickness isotropic silicon wafer. The TSV

structure has a base radius of 10 um and a straight profile.
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Figure 53: Mobility change contour plots for (a) n-MOSFET aligned along the [100]
channel, (b) p-MOSFET aligned along the [100] channel, (c) n-MOSFET aligned along
the [010] channel, (d) p-MOSFET aligned along the [010] channel. The model represents

a quarter of a TSV unit cell in the 50 pum thickness isotropic silicon wafer. The TSV

structure has a base radius of 10 um and a 6° tapered profile.
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Figure 54: Mobility change contour plots for (a) n-MOSFET aligned along the [100]
channel, (b) p-MOSFET aligned along the [100] channel, (c) n-MOSFET aligned along
the [010] channel, (d) p-MOSFET aligned along the [010] channel. The model represents

a quarter of a TSV unit cell in the 50 um thickness isotropic silicon wafer. The TSV

structure has a base radius of 10 um and a 9° tapered profile.
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Figure 55: The characteristic length o with respect to the angle of tapered TSV when the

base radius is fixed at 10 um.
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Figure 56: The characteristic length g with respect to the angle of tapered TSV when the

base radius is fixed at 10 pm.
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Figure 55 and Figure 56 show the characteristic lengths a. and 3, respectively, as a function
of taper angle when the base radius of the TSV is fixed at 10 um. In both cases, the KOZ
characteristic length increases linearly with the angle from 0° to 6°. Beyond 6°, however,
the length a could not be used to quantify the size of KOZ, because it is out of domain,

while for length B, it remains relatively constant.

Figure 57 shows a comparison of mobility change contour plots for p-MOSFET aligned

along the [010] channel direction.
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Figure 57 Comparison of mobility change contour plots for p-MOSFET aligned along the

[010] channel. The model represents a quarter of a TSV unit cell in the 50 pum thickness

91



isotropic silicon wafer. The TSV structures have (a) 5 um, (b) 10 um, (c) 15 pm, (d) 20 pm,
and (e) 25 um base radii and a fixed 3° tapered profile.

Figure 58 shows the length  with respect to the base radius of the TSV when the angle of
tapered TSV is fixed at 3°. It can be seen that the KOZ size first increases with the TSV
size and then decreases when the TSV base radius is beyond 15 pm. It is noticed that when
the TSV base radius is greater than about 15 pum, the KOZ becomes large enough that
practically no transistors should exist on the silicon wafer surface for this p-MOSFET [010]

channel configuration.
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Figure 58: The characteristic length £ with respect to the base radius of the TSV when the
angle of tapered TSV is fixed at 3°.
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Chapter 6

Conclusions

The key finding of this thesis is that the tapered TSV can cause wafer warpage under
thermal loading. In order to quantify the wafer curvature, a large number of simulations
with different TSV geometries were performed by FEA software package. It was found
that the CTE mismatch-induced stresses increase linearly with the angle and the radius of
the tapered TSV. The resulting wafer curvature is also proportional to the angle and the
radius of the tapered TSV, as well as to the temperature change involved during the thermal
loading process. The internal thermal stresses were found to be much higher than those
caused by mechanical bending, under the same extent of overall wafer curvature.
Incorporation of intermediate layers between copper and silicon into the model leads to
higher local stresses, but the curvature remains relatively unchanged. The effect of
anisotropic elastic property of silicon is also studied. The stresses are highly dependent on
the orientation of silicon. The curvature of the anisotropic silicon wafer is only slightly
lower than the isotropic counterpart. The wafer thickness and interspacing between
adjacent TSVs were also found that can affect the curvature. In general, a thicker wafer
and farther spaced TSVs tend to reduce the warpage, because a greater silicon volume
enhances the stiffeness of the wafer matrix.

Due to piezoresistivity, the thermal-mismatch-induced stress can change the carrier
mobility and degrade the performance of MOSFET devices. The n-MOSFET and p-
MOSFET devices along with two channel directions were taken into account. The KOZ is
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defined based on the critical 5% carrier mobility change. The sizes of KOZ in different
models were quantified. The effect of piezoresistivity was found to be much more
prominent for n-MOSFET along with the [100] channel and p-MOSFET along with the
[010] channel. The KOZ size of n-MOSFET along with the [100] channel direction and p-
MOSFET along with the [010] channel direction can be significantly affected by the taper
angle and the size of the TSV.
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