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A Visual Velocity Impedance Controller
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Abstract

Successful object insertion systems allow the object to translate and rotate to ac-

commodate contact forces. Compliant controllers are used in robotics to provide this

accommodation. The impedance compliant controller is one of the more researched

and well known compliant controllers used for assembly. The velocity filtered visual

impedance controller is introduced as a compliant controller to improve upon the

impedance controller. The velocity filtered impedance controller introduces a filter

of the velocity impedance and a gain from the stiffness. The velocity impedance

controller was found to be more stable over larger ranges of stiffness values than

the position based impedance controller. This led to the velocity impedance con-

troller being more accurate and stable with respect to external forces. The velocity

impedance controller was also found to have a better compliant response when tested

on various insertion geometries in various configurations, including a key insertion

acting against gravity. Finally, a novel kinetic friction cone compliance model is

introduced for the velocity impedance controller. It was determined that the new

compliance model provided a more reliable insertion than the standard insertion

model by increasing the error tolerance for failure.
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Chapter 1

Introduction

This chapter presents the velocity based visual impedance controller and introduces

the object insertion problem to test the controller. The problem overview and the

controller setup will be discussed in this chapter. This chapter also establishes how

the rest of the thesis will be organized.

1.1 Problem

Compliant motion control is an important robotic technique for manufacturing. In

particular, compliant motion control is useful when a robot must interact with a rigid

environment, another robot, or a human. Object insertion is a great application to

test a compliant motion controller. Compliant motion is needed because orientation

errors can cause jamming or wedging during insertion.

This thesis will use a difficult key and hole insertion to demonstrate the capa-

bilities of a new type of compliant motion controller. The proposed controller is

a velocity filtered visual impedance controller. The key and hole insertion is used

because of the precise position and orientation required.
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Impedance 

Controller Robot Target Object

Manipulator feedback

IBVS

Task

Velocity Control

Vision System

Figure 1.1: Basic Control Scheme.

The velocity filtered impedance controller will use image based visual servoing

(IBVS) combined with an impedance controller. Figure 1.1 depicts the relationship

between the IBVS and the impedance controller. With this velocity filtered visual

impedance controller, a robot will insert a key and generate a friction cone during the

insertion controlling the velocity of the manipulator. Friction cones are the space in

which an applied force will not slip. The cone determines the maximum angle before

slipping occurs. In robotics the friction cone is used as a configuration space model.

This thesis will use a dynamic friction cone approach instead of this static friction

cone. After modeling a kinetic friction cone for an insertion problem, a robot can

learn the most effective path to travel and adjust its forces for a successful motion.

The hypothesis is that by using a velocity filtered visual impedance controller a

robot is capable of extremely difficult object insertions such as key insertion. By

using a velocity based approach the robot will be able to generate a kinetic friction

cone for an improved object insertion compared to the position based position based
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impedance control.

1.2 Contribution

This thesis develops a reliable vision filtered impedance controller by using a fusion

of an impedance controller and an image based visual servoing (IBVS) controller

while introducing the new velocity filter to the controller. Using this velocity filtered

impedance controller, this thesis will develop a method to build the novel kinetic

friction compliance model for challenging insertions used in mechanical assembly.

This thesis will also demonstrate the improvement in object insertions when using

a velocity filtered impedance controller compared to the position based impedance

controller.

1.3 Impact

Using a velocity based approach will improve upon the impedance controller by

increasing the range of stability to higher stiffness values. This is important for object

insertion since the positional and pose accuracy will ensure a successful insertion.

As will be shown later, higher stiffness values will lead to more accurate motions

and will also increase the insertion force needed for object insertion. This velocity

based approach also ensures stability in the high stiffness environment that would

be encountered during more difficult insertions such as the key insertion. As will

also be shown, the position impedance controller can start to lose stability in these

confined environments due to the friction forces. Using a velocity filtered impedance

controller for difficult insertions, such as the key insertion, will not only show that

it is a viable and more stable control method but will also show the practicality of a

kinetic friction cone model.
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Figure 1.2: Basic Control Scheme [61]. Where R is the force vector, N is the vertical
force contribution, and T is the horizontal contribution. φ is the friction cone angle
and µ is the coefficient of static friction.

With the capabilities from the velocity impedance controller, it is possible to

create a kinetic friction cone compliance model. A kinetic friction cone shares the

same principles as the static friction cone, shown in Figure 1.2; however, with the

kinetic friction cone we want the force vector to be outside of the friction cone. To

do this the insertion force will need to be adjusted accordingly, as will be shown

later. Using the kinetic friction cone compliance model and controlling the velocity

to navigate through the insertion, it is possible to wiggle the object to the goal

position.

Ultimately, this controller and kinetic fiction cone compliance model can be ap-

plied to a number of real problems including welding, grinding, dragging an object,

and of course, object insertion.
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1.4 Scope of Work

The focus of the thesis is to introduce a novel impedance controller. The work in this

thesis is to expand upon well known position based methods for control and showcase

a velocity based analog for the proposed controller. This thesis will also introduce

a kinetic friction cone compliance model, modeled after the static friction cone, to

prevent insertion failure. For the vision controller this work uses an IBVS controller

to improve the impedance controller’s accuracy. Using these velocity analogs in

comparison with the position based methods this thesis will showcase the benefits of

using a velocity based impedance controller.

1.5 Thesis outline

Chapter 2 presents the current state of the art in object insertion and impedance

control. Chapter 3 describes the hardware used for the experiments. Chapter 4

defines the object insertion model as well as compares the difficulty of insertion for

various geometries with respect to jamming and wedging, the two types of failure

for object insertion. Chapter 5 defines the impedance controller, first modeling the

controller and modeling the vision control. Next the chapter will demonstrate the

simulation implementation of the model using Simulink, and then the results from

the robot. At the end of chapter 5 the insertion results for the position impedance

controller will be discussed. Chapter 6 defines the velocity impedance controller,

again modeling the controller, showing simulation results, and then results from the

robot. Chapter 6 results will compare the position impedance controller’s responses

from chapter 5 to the results from the velocity impedance controller. The end of

chapter 6 will have insertion results from the velocity impedance controller and will

compare these results with the insertions from the position impedance controller.

Chapter 7 defines and models the kinetic friction cone model. In this chapter the
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compliance model will be defined and the velocity impedance controller stiffness

will be optimized with respect to the accuracy of the robot. At the end of this

chapter the compliance model will be tested against various insertions and compared

to the previous insertion results from the velocity impedance controller. Chapter

8 concludes the thesis with a review of the research and the potential benefits for

future work.
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Chapter 2

Literature Review

The past twenty years has had a large push in robotics research to allow robots to

replace humans in various dangerous tasks. These tasks range from bomb disposal

to detecting environments with hostile threats. The issue is that these types of tasks

are difficult to accomplish since the robot needs to be as capable as a human that

would perform them. In these tasks a robot is likely to have to open a door. One of

the most difficult but useful object insertions for a robot is a key insertion.

2.1 Literature Review

An important field of research previously discussed is the manipulation of unknown

objects. Some of the most common objects that robots will encounter are doors.

Most of the dangerous tasks in which robots would replace humans require mobility

in human-made environments. To navigate through a room, a robot will have to

recognize a door and interact with it to open it [26]. To open the door, the robot

needs to apply a delicate amount of force and also has to be capable of compensating

for various changes in the environment that it cannot detect such as a stiff door hinge.
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For a robot to accomplish a task with fine motion, it needs to be capable of

compliant motion. Compliant motion controllers can interact with objects passively

or actively. Active compliance interacts with objects by controlling the external

forces applied on the robot or using visual feedback.

2.1.1 Assembly

In the past ten years robotics in assembly has been focused on improving upon tasks

currently completed by humans. The two main reasons to replace humans with

robots is because of either the danger involved with the task, i.e., handling radioactive

material, or improves upon the efficiency and time to complete a task. There has

been interest in determining the most efficient use of multi-robotic production for the

automotive industry [27]. There has also been work done in crowd sourcing swarm

manipulation methods to determine how to improve cooperative manipulation in

work spaces [3]. There has also been an increased focus in manipulation of small

objects, as these tasks often prove difficult for humans [56].

Although many of these tasks can be accomplished by robots, there is still a

significant difference in the accuracy and repeatability that humans can achieve.

This is mostly due to the compliance humans provide when they interact with their

environments. To address this there have been an interest in research in robotic

assisted assembly. Some of these experiments include using robotic limbs to lift

and assemble heavy objects through these supernumerary robotic limbs [40]. In one

work, the human worker uses robotic limbs to assist in aircraft fuselage assembly

[39]. There has even been interest in robots cooperating with humans to complete

assembly tasks as well [12].

Although there is considerable research in cooperative robotic and human assem-

bly, there is still a reluctance to introduce humans in robotic work spaces. This is

due to most industrial robotic controllers being position based controllers. These
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types of controllers move straight to the task and adjust their position based on the

error from the goal. Without compliance, the robot will collide with objects that

may be in the path the robot is traveling. With compliance, the robot can soften

the collision and become safer to use alongside humans.

2.1.2 Compliant Motion: Impedance Control

Compliant motion can be categorized in two ways: active or passive [25] [49]. Passive

compliance does not require the robot to know how it is interacting with the envi-

ronment but instead allows the hardware to naturally interact with objects. This

can be a desirable compliant motion if the environment and objects are well-known.

For object insertion, error corrective compliance is used since the contact forces al-

ways push the object towards the insertion goal [42]. Passive compliance may be the

technique humans use to insert objects [15].

The issue with passive compliance is the limitations of its compliance, i.e., com-

pliance in only a single dimension. As such, passive compliance is not typically used

to interact with objects. Instead, active compliance is typically used in robotic sys-

tems. Active compliance differs in that it needs a sensor to detect the interaction

with the environment to help control the motion. One of the few ways to achieve

active compliance is to use a hybrid of force and position control [45]. Compliant

motion is not limited to active or passive, there are hybrid types of compliant mo-

tions that are also used [51]. Typically these hybrid motions are decomposed into the

active parts and the passive parts of the motion. These hybrid compliant controllers

have even been used to grasp various objects [54].

Another technique is to use haptic controllers, which commonly rely on config-

uration spaces to provide force feedback [13, 31, 46, 11]. Haptic control relies on

modeling the forces that the robot experiences; through this interaction the robot

can perceive the forces. As such configuration spaces need to be created to limit
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the forces and directions in which the robot can interact in the environment. The

friction cone is a configuration space representation of the overall stiffness of the

environment when interacting with an object in various directions [31]. Another im-

portant compliance method that relies on modeling the stiffness of the environment

is an impedance controller.

Impedance control is a concept popularized by Neville Hogan in 1985 [14]. The

general idea was to treat the manipulator of the robot as an object that has impedance,

in other words treat the manipulator as something with variable stiffness and damp-

ing. By changing the apparent stiffness and damping of the manipulator, it is possible

to execute compliant moves. More formally, the impedance of the system is repre-

sented as a transfer function of the system that can either be a ratio of displacement

over input force or of velocity to input force.

This type of controller uses the position, velocity, and output force of the manip-

ulator. Using these multiple inputs, the robot is capable of interacting with external

forces applied by the environment. Since the impedance is capable of interacting

with external forces, it is capable of gross and fine motion [14]. The difficult task in

using impedance controllers is determining the impedance for each task. There have

been methods in how to use force references to improve the impedance controller [47],

methods that use impedance controllers without torque feedback [21], and methods

in varying the impedance depending on the environment [17].

There have been stiffness based tuning methods to improve the adaptability of

robot-assisted rehabilitation [24], as well as non-linear adaptive impedance controllers

also intended for rehabilitation purposes [36]. There have even been fuzzy adaptation

impedance controllers used for peg in hole insertions [2]. The impedance controller

has even been used with predictive controllers intended to prevent mechanical losses,

i.e., losses from friction and external forces [10]. In terms of assembly based methods,

there are impedance controllers that provide high-speed position and force responses

for compliant microgrippers [57].
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Various types of impedance control system uses different sensory feedback [44].

In particular, there are impedance controllers that use a vision system to maintain

the desired contact with the robot and the object [32]. These visual impedance

controllers typically estimate the position and the pose of the robot and object and

provide a hybrid visual/force controller [22]. There are various other types of visual

controllers that can be coupled with an impedance controller.

Velocity based impedance methods have been tested and found to be useful and

stable [41, 8, 5]. Using a velocity based method insures that the steady state error

will be zero. This type of impedance controller has been found to be stable in high

stiffness environments using high damping values. This thesis will differ from these

methods in that the velocity impedance contribution will filter the impedance force

and the stiffness of the robot will act as a gain. Based on the stability models used

from the position based impedance model [37] and also through impedance methods

that have used integrator control [20] we have found that this method will also be

able to improve upon the stability due to the stiffness being significantly larger than

the damping.

2.1.3 Visual Servoing: Visual Impedance Control

Visual servoing consists of using information of the environment extracted by one or

several cameras to control the movements of a robot [4]. This allows for a wide range

of tasks that can be achieved such as object tracking, object manipulation, visual

guided motion, and even object insertion [50]. Image based visual servoing is a field

of research where control is based on feature points in the image plane [7]. This is a

robust visual control method since the robot can account for disturbance and noise.

IBVS can track the motion trajectories of objects in an image to execute tasks that

other vision based controllers cannot accomplish due to image based errors [9].

The major disadvantage of visual control is that these camera internal parameters
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must be known through calibration. There is also the issue of depth. Since most

environments are unknown, the typically 2D-sensor is not capable of extracting depth

without some type of reference. Camera calibrations are broken into two categories:

intrinsic calibration and extrinsic calibration. Intrinsic calibration determines the

internal parameters of each camera, such as focal length and pixel height/width.

Extrinsic parameters are the parameters that relate the objects in the environment,

depth and rotation, back to the camera. This includes the transformation matrix

from camera to the origin and the depths of feature points in the image.

Intrinsic camera calibration methods have been thoroughly researched and un-

derstood [60, 59, 52]. Typically calibration objects are well defined object, already

known geometries. Camera calibration is done by taking multiple images of these cal-

ibration objects and determines the intrinsic parameters of each camera from these

images. Extrinsic camera calibration is a bit more difficult since determining the

environment’s depth requires some sort of reference. The use of reference points or

fiduciaries can simplify extrinsic calibration since these reference points are known

and provide enough information in the image to determine the extrinsic parameters

[16]. Extrinsic camera calibration in an unknown environment is much more difficult

since known reference points cannot be used. There are methods that achieve this

calibration by moving unknown detected objects in the environment and taking as

many images as needed until the parameters are determined [58]. The issue with

this type of method is that it tends to be costly computationally.

There are calibration methods that are capable of extracting both the intrinsic

and extrinsic parameters online. In other words, it is possible to do calibration in

unknown environments by navigating in the environment and simultaneously cali-

brating the vision system [1]. One particular method of online calibration is to use

circular motions around a feature point to extract all calibration parameters [34].

Once a camera is fully calibrated to its environment, it is possible to accurately con-

trol the robot using any visual servoing technique. As mentioned before, there exist
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visual/force hybrid controllers, which allow the robot to detect and interact with

various object in the environment [43].

Visual impedance controllers use the visual data and provide feedback from the

environment to an impedance controller [33]. A visual impedance controller uses

vision to determine position and orientation errors. Figure 1.1, shows the basic

control scheme for a visual impedance controller. In this case the velocity is provided

by vision instead of position. An example of a vision based impedance approach is

to follow the contours of an object’s edge [18]. By using an impedance controller, a

robot performing edge tracking can smooth out the trajectories and can accomplish

these motions at high velocities without sacrificing accuracy. Although there are

velocity based impedance controllers, there are no velocity based visual impedance

controllers.

Visual impedance controllers have also been used for the task of object insertion

[53] [48]. These controllers are very useful for insertion because of the orientation

required to properly insert an object. To prevent failure the initial orientation of the

object must be within a certain tolerance. It is difficult to determine whether the

object is within this tolerance without vision. Using these vision control methods

the robot is capable of fixing the orientation errors in real time and improving the

chances of a successful insertion.

2.1.4 Friction Cones

Object insertion is the one of the best methods to test a compliant controller. Object

insertion has been shown to depend on how the objects interact with each other as

they pass through different contact states [55]. The two types of failure during the

insertion are known as jamming and wedging, shown in Figure 2.1. Wedging occurs

when a contact force becomes compressive and holds the object in place. To avoid

wedging, the orientation error of the object insertion must always be minimized.
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Figure 2.1: Modes of Failure Jamming (A) and Wedging (B)

Jamming occurs when the insertion force is misaligned with the insertion axis. To

avoid this failure, the object needs to rotate to compensate for the misalignment[55].

One particular method to avoid both types of failures is to create friction cones.

A friction cone is a 3 dimensional representation of the friction angle. The friction

angle is determined as the maximum angle a force vector can have before slipping

occurs [35]. This is shown in Figure 1.2. The friction cone was found to be bounded

by the following relationship,

tan(θ) = µ, (2.1)

where θ is the friction angle defined by the force vector and µ is the coefficient of

friction.

Friction cones in robotics are ranges created in configuration space that determine
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whether an insertion will be successful as long as the robot avoids entering this space

[6]. By creating these regions, it is possible to know which motions will succeed with

insertion and which will fail [38]. The concept of the friction cone is not limited to

insertion. It has also been applied in grasping objects [30].

Figure 2.2: Key inserted in lock [23]

The friction cone is not limited to modeling the static friction limits; it can also be

applied to Coulombic friction [29]. For this thesis we will introduce a kinetic friction

cone that will model the kinetic friction the same way the friction cone models the

static friction limits.

Key insertion is an extremely difficult object insertion task due to the geometric

constraints. A door that may need to be opened by a robot may be locked, so the

robot needs to be capable to insert a key and rotate it to unlock the door. Here

lies the major problem; not only must the object be fully inserted, must be able to

rotate after insertion. Figure 2.2 shows how the key must be aligned before being

able rotate it to unlock it. There is similar work in rotating inserted objects into
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object with varying friction[19]. This work is important since the robot needs to be

able to distinguish between when it is capable of rotating and when it is not.

2.2 Summary

Robotic assembly continues to grow as a field and will accelerate with the use of

compliant controllers. The impedance controller was originally introduced when the

hardware did not exist to realize the controller [14]. Now that the hardware exists, the

impedance controller has been used to complete various assembly tasks. To improve

upon the accuracy of the impedance control system the impedance controller has

been used in various vision control systems. With the recent developments in visual

servoing, the accuracy and capabilities of the impedance controller has improved and

grown. Finally, through the use of configuration space models such as friction cones,

the impedance controller has improved its compliance capabilities, which can be very

useful for object insertion. The position based position impedance controller tends

to go unstable in high stiffness environments normally encountered during insertion.

The need to improve the stability of the impedance controller at high stiffness still

exists.
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Chapter 3

Hardware and Testing

The system developed and tested in this thesis consists of equipment from the

Robotics Lab in UNM’s South Campus MTTC building. The system consists of a

Barrett Technology Whole Arm Manipulator (WAM), two cameras, reflective mem-

ory, a computer controller, and stationary objects for insertion. An example of the

experimental setup for the key insertion is shown in Figure 3.1 .

3.1 Hardware

The WAM is a 7 degree-of-freedom robotic arm developed by Barrett Technology.

The WAM communicates through reflective memory to a target computer, which

controls the robot through a Simulink controller. For this thesis, a velocity based

impedance controller was implemented in Simulink, compiled, and loaded onto a

xpctarget through Matlab. For the xpctarget to communicate with the WAM the

xpctarget communicates directly to the reflective memory using C/C++ wrappers.

The xpctarget communicates with the reflective memory by reading and writing from

specific memory addresses, called nodes. The WAM has an on-board computer that

also reads and writes to the reflective memory. Specifically, the controller computer
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Figure 3.1: Experiment setup.

writes 6 stiffness, 6 damping, 7 joint torques, and 6 goal positions while the WAM’s

on board computer writes the 7 current joint torques and the 7 current joint angles

of the WAM. The controller computer reads the goal positions, the current joint

angles, and the current joint torque while the WAM’s on board computer reads the

stiffness, damping, motor currents, force, and joint torques.

The controller computer, the computer running the Simulink controller, has a 2.4

GHz Intel processor and eight Gigabytes of RAM. The controller computer simul-

taneously reads the WAM’s position, calculates the next position in the trajectory,

and also communicates with the vision systems to determine how to adjust the tra-

jectory. For the vision systems, a Logitech c270 and c260 cameras were used. Both

cameras have resolution up to 1280 × 720 and communicate via USB. To commu-

nicate to Matlab, additional drivers had to be installed using a webcam toolbox for

image processing. The image processing done in Matlab sends the results to the

impedance controller in Simulink , which sends the positional and compliance data
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to the reflective memory.

The WAM works in joint space; its on-board computer reads and writes its posi-

tions based on the angles and torques on each joint. However, the vision controller

and impedance controller work in Cartesian space. The 7× 6 Jacobian for the robot

is already known and used to convert Cartesian torques 6× 1 to joint torques 7× 1.

To determine the end effector with respect to the WAM, a homogeneous 4× 4 trans-

formation matrix is used. To avoid singularities, the rotation matrix is converted into

quaternions. The quaternions and the translation vector are used for the path plan-

ning in the controller. For every clock cycle in Simulink, about 0.005 seconds, each

of these parameters is calculated and communicated through the reflective memory.

Figure 3.2: Experiment setup. Insertion of circular peg into fixed block.
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For the object insertion the initial testing will be done on a circular peg-and-hole

made out of ABS, shown in Figure 3.2. The circular peg is used as a baseline since

this type of object insertion is one of the easier types of insertions, as will be shown

in Chapter 6. Next, insertions will be done for the square peg and the cross peg. The

cross peg will also be tested against gravity to shown the response of the controllers.

The final type of object insertion will be done using a nickel silver key to be inserted

inside a brass keyhole. The exact model and setup for this experiment will be further

discussed in Chapter 7.
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Chapter 4

Object Insertion

In this chapter we will first model an object insertion using the simple peg and hole

model. We will then look into failure modes for the peg and hole model, particular

jamming and wedging. To do this we will be using a peg and hole insertion model

defined by Whitney. [55] Next we will look into expanding the simple axial-symmetric

model to various insertion cross sections. We will expand upon the Whitney model

for axisymmetric insertions and apply the same model to other geometries. Finally,

we will look into applying this insertion model to the complicated geometry of a key

and lock insertion.

4.1 Peg and Hole Model

To begin, this analysis we will be using a two-dimensional model because of the

axisymmetric properties of a circular peg. The two-dimensional model captures all

of the kinematics of the three-dimensional system, and later we will expand this

model for non-axisymmetric geometries. Figure 4.1 demonstrates a two-dimensional

progress of a peg insertion. In the first stage of insertion we have the robot making

a gross motion to prepare for the insertion. In this stage the alignment correction
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Figure 4.1: Chamferless insertion strategy. Stage 1 is the approach, 2 is the one-point
contact, 3 is two point contact, and 4 is line contact and successful insertion [48]

begins, fixing these lateral and rotational errors play a large part to the success to

the insertion. The next stage we begin to insert the peg into the hole. If the peg

has a chamfer this will assist in guiding the peg into the hole. A chamfer peg will

allow the peg to slide into the hole and correct for any additional lateral error. In the

chamferless case, as will be the case in our testing, the peg must be angled as it is

inserted to mimic this chamfer sliding. During this stage there will only be one point

of contact between the peg and the hole. In the chamfer case the next stage will be

the one point contact past the chamfer as the peg is inserted. This additional stage

is shown in Figure 4.2. For both cases the next stage is the two-point contact stage.

In this stage the peg comes into contact with the hole at two points. This is the

most important stage as this is the likely point for failure, as jamming and wedging

can occur at this stage. The final stage is a completed insertion.

To successfully insert an object the second, third, and fourth stages are the
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Figure 4.2: Chamfered insertion. There is one additional step for chamfered assem-
bly, 2. chamfer crossing. [48]

most important for compliant control. We will soon explore the limitations in error

for the two-dimensional case where an insertion can be successful. To determine

these limitations we need to try to minimize the likelihood of jamming and wedging.

Jamming occurs when the axial force inserting the peg is too far away from the axis

of insertion. Jamming is avoided by designing the compliance of the peg to allow

it to translate and align by a result of the moments generated during the two-point

contact. Wedging occurs upon the onset of two-point contact if the contact forces

create a compressive forces that deforms the peg instead of assisting in aligning it.

Wedging is avoided by maintaining proper alignment of the peg and hole as two-

point contact approaches. Figure 4.3 illustrates these two modes of failures for this

two-dimensional model.

The success of the peg and hole insertion depends on keeping the insertion force

aligned properly. To do this we need to engineer the compliance of the system to
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Figure 4.3: Modes of Failure Jamming (A) and Wedging (B)

allow the peg to be able to translate and rotate as needed to reject errors in the face

of contact forces during insertion. To design this type of compliant system, we will

treat the robot and peg as a system of linear springs. These linear springs can impose

forces on the peg as a reaction to translation and rotational parts of the insertion.

To fully model the degrees of freedom allowed by the robot and peg we will have

six different stiffness values, 3 translational and 3 rotational. As will be shown in

chapters 5-7, we can vary these stiffness values in each degree of freedom to improve

the accuracy of the insertion and change the response from contact forces. However,

in this case we will be modeling these stiffness values as springs acting against the

environment.

To make this compliant model we will treat the robot and peg system as these

six linear springs. Doing this we can model the compliant interaction between the

peg and the hole during insertion.
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F6X1 = K6X6U6X1 (4.1)

where U is the displacement, K is the stiffness matrix, and F is a vector of external

forces.

As can be seen from (4.1) the stiffness matrix contains 36 different stiffness vari-

ables to control while interacting with the environment. While this has been used

in various systems , it is more desirable to simplify this stiffness matrix to a diag-

onal matrix. This makes modeling simple since we can now treat motion in each

dimension as having two acting springs, a translational and rotational spring. For

now we will start with the axisymmetric case where we can further simplify the

model, we will discuss the modeling for the other geometry specific cases later. Since

the circular peg has an axisymmetric insertion we can simplify the insertion model

into a single dimension. Two assumptions for these insertion models are that the

insertions will be slow enough for quasi-static interactions, and that the peg is stiff

enough to be modeled as a rigid body. We will expand upon the quasi-static model

such that we try to prevent these interactions when we start to look at the kinetic

friction cone modeling in chapter 7.

This two dimensional model will start with the clearance between the peg and

the hole. We will introduce a dimensionless factor called the clearance factor, this

dimensionless factor provides a measure of clearance between the diameter of the

peg and the diameter of the hole,

c =
D − d
D

, (4.2)

where D is the diameter of the hole and d is the diameter of the peg.

We will begin to analyze the peg and hole model to prevent wedging. Wedging is
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Figure 4.4: Diagram of chamferless peg partially inserted.

primarily a function of the initial error of the peg relative to the hole and insertion

axis. To begin this analysis we need to determine the clearance angle between the

peg and hole during this stage of insertion. Figure 4.4 shows a model of a peg at

two-point contact, we can derive a model of the maximum amount of angular error

as a function of depth during insertion,

L tan(θ) = cD, (4.3)

where L is the length of the peg currently inserted in the hole, which can be deter-

mined as L = z cos(θ). This equation shows that the amount of lateral error allowed

with this rotational error cannot exceed the clearance between the peg and the hole.

Equation (4.3) shows that the insertion depth and the rotational error are in-

versely proportional. As the depth of insertion increases the rotational error de-

creases which means the likelihood of a successful insertion increases. This means
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Figure 4.5: Diagram of a peg failing due to wedging. Wedging occurs when the two
friction force vectors, f1 and f2, align forcing the peg to compress from the aligned
forces.

that failure is most likely to occur during the initial parts of the insertion, since

there is a larger range of allowable rotational error. For wedging to occur the con-

tact forces become compressive and store energy in the peg from the deformation.

These contact forces are largely friction limited so we can apply small friction cones

to each of the contact forces. As defined before, friction cones are cones that model

the space where the vectors of forces on an object will keep the object static. As

long as the force vector at the point of contact remains in the friction cone, then the

object will not move.

Figure 4.5 shows this wedging model with these friction cones at the two contact

points. To cause this compression we need the friction forces to point towards each

other. Figure 4.6 shows the relationship between the friction cone and the friction

angle. We define the friction angle as tan(θ) = µ. Using this relationship and that

shown in Figure 4.6 we get the following relationship with the insertion depth and
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Figure 4.6: Diagram of aligned friction forces during wedging. Here we see the
minimum angle needed to cause compression and the geometric relationship with
the peg and the insertion depth.

the friction cone,

µ =
L

d
=
z cos(θ)

d
. (4.4)

Equation (4.4) defines the relationship between the friction at the contact points

and the allowable rotational error for the depth insertion. Combining 4.4 and 4.3 we

can rewrite the maximum rotational error as a function of the clearance factor,

tan(θ) =
cD

µd
. (4.5)

Since this rotational error has to be as small due to the geometric constrains, we

will use the small angle approximation to simplify (4.5),
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θ =
cD

µd
. (4.6)

Equation (4.6) defines the maximum allowable rotational error before wedging if

there is no lateral error present. If the rotational error exceeds the value from (4.6)

then the friction force vectors will align and the forces will become compressive on

the peg. Now that we have a rotational error model we need to define a maximum

allowable lateral error. To do so, we will look at Figure 4.7, which shows the lateral

error allowable for the chamfered case and the chamferless case. Where R is the

hole’s radius and r is the peg’s radius,

x x

R R

r

Figure 4.7: Here we see the maximum allowable lateral error for the chamferless case
and the chamfered case. We can see that chamfer case will have a larger tolerable
lateral error determined by the chamfer width.

−R < ε < R (4.7)
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for the chamfered case where the chamfer width is the same as the peg’s radius,

−(R− r) < ε < R− r (4.8)

for the chamferless case. In both cases D = 2R and d = 2r.

We should note that this maximum lateral error cannot exceed the values from

(4.7) or (4.8) since the peg will miss the hole regardless of rotational error. So for

our failure model we define our bounds within (6.7) or (6.8) depending on the peg.

As previously mentioned there is a relationship in which the lateral error contributes

to the rotational error. Whitney [55] showed this relationship for the case of shallow

insertion depths as the following,

θtotal = θ + Sε, (4.9)

where S is defined as S = L

L2+
Kθ
Kx

, and where Kθ and Kx are the rotational stiffness

and the lateral stiffness, respectively.

Using equations (4.6) to (4.9) we now have a two-dimensional model that restricts

the rotational error and translational error to prevent wedging. This two-dimensional

model to prevent wedging is shown in Figure 4.8. We can see that wedging is con-

strained to the initial accuracy of the robotic system instead of the compliance of

the controller. As such, wedging prevention is mostly related to the path planning

during the insertion and less related to the compliance of the robot.

Moving on to the issue of jamming we will see that this is where the compliance

controller plays an important role in the insertion. Jamming occurs because of the

insertion force vector of the peg being unaligned from the axis of insertion. To

determine these force limitation we will again look at the model derived from Whitney
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Figure 4.8: The wedging model for the chamferless case. The boundaries to prevent
wedging are a function of geometry and friction.[55]

on jamming [55]. Figure 4.9 shows the jamming avoidance model with respect to

contact forces Fx, Fz, and M .

The jamming diagram differs from the wedding diagram in that it changes with

respect to insertion depth, z, and is constrained by insertion forces which can be

controlled by a complaint controller. The depth relationship is due to its linear

relationship with the introduced variable λ,

λ =
z

µD
. (4.10)

From figure 4.9 and equation (4.10) we can see that the quadrilateral to prevent

jamming will grow larger as the insertion depth increases. However the width of this

quadrilateral does not increase since it is constrained by coefficient of friction. As we

can see from the jamming diagram the success of the insertion is dependent upon the
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Figure 4.9: Jamming diagram as defined by Whitney. These boundaries expand in
the vertical axis as the depth of insertion increases. [55]

force and moment relationships during insertion. These force and moment relations

change during insertion so we need to define them for the three important stages of

insertion. For the sake of our testing we will only focus on two stages: one-point

contact and two-point contact.

To begin the one-point jamming force model we will use Figure 4.10 as a reference

for our model. During one-point contact, the single contact point is the source of

reaction forces and moments acting on the peg. Using Figure 4.10 we can see that

the rotational error is simply θ. The lateral error can be found as the following,

U =
cD

2
+ L sin(θ)− z sin(θ). (4.11)

Again we will use small angle approximation to simplify our model as well as

define the initial error of the peg as U0 = ε0 + Lθ0. So our error model, combining
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Figure 4.10: Force model for one point contact stage.

both the rotational error and the lateral error, becomes the following,

U0 − U = ε0 −
cD

2
+ L(θ0 − θ) + zθ. (4.12)

To find a force relationship to represent the errors independently, U and θ, we will

treat the reaction forces as quasi-static forces. Doing this we will have the reaction

forces shown in Figure 4.10. These friction reaction forces are the only external forces

exerted on the peg during insertion.

f1 = fN [cos(θ) + µ sin(θ)] (4.13)

f2 = fN [− sin(θ) + µ cos(θ)] (4.14)

Now we will find the relationship between these contact forces and the forces and
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moments applied to the peg.

Fx = −f1 (4.15)

Fz = f2 (4.16)

M = f1[L cos(θ)− z] + f2[
D

2
− cD

2
+ zθ − Lθ] (4.17)

We can simplify the moment further since we have been applying the small angle

approximation throughout our analysis. When we make this assumption we can

simplify the acting contact force contributing to the moment as one dimension and

relate it to a simple moment arm. This is an important simplification since this

allows us to separate the rotational and lateral error.

M = f2
d

2
(4.18)

Now that we have a physical relationship between the contact forces, let us look

at the compliance force acting on the peg and the robot. To do this we will be

using our compliance model including our stiffness variables. We should note that

the insertion force, Fz, will be a constant force during the insertion.

Fx = −Kx(U0 − U) (4.19)

M = LKx(U0 − U) +Kθ(θ0 − θ) (4.20)

Using these values Whitney found the forces and moments to be the following

[55].
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Fz =
µKxKθ(ε0 − cD

2
+ Lθ0)

Kx(L− z − µd
2

)(L− z) +Kθ

(4.21)

Fx = −
KxKθ(ε0 − cD

2
+ Lθ0)

Kx(L− z − µd
2

)(L− z) +Kθ

(4.22)

M =
LKxKθ(ε0 − cD

2
+ Lθ0)

Kx(L− z − µd
2

)(L− z) +Kθ

− Kθ [
Kx(L− z − µd

2
)(ε0 − cD

2
+ Lθ0) +Kθθ0

Kx(L− z − µd
2

)(L− z) +Kθ

− θ0]

(4.23)

Where FZ is the insertion force, FX is the lateral force, and M is the moment.

Now we have force and momentum equations entirely with respect to geometric con-

stants, depth, and the compliance stiffness we have a model to control the jamming.

Reviewing figure 4.9 the horizontal dimension is Fx
Fz

and the horizontal axis is M
rFZ

. As

we can see the horizontal axis from equations (4.21) and (4.22) is simply the friction

constant, which is not a concern for jamming since the insertion force is expected to

be much larger and should not be the jamming limitation. Instead the vertical axis

will be the focus for jamming prevention. When plugging in equations (4.23) and

(4.21) into the ratio we get an equation of the form of M
rFZ

= a(z). This is simply

a function and geometric constants, there is no depth dependence for this stage of

insertion.

Finally we will look at the two point contact case. Figure 4.11 shows the geometry

and model of a peg in two point contact. This model does not require the static model

as the one-point contact model as the system is fully geometrically constrained.

Instead we will use the constraint for wedging introduced by equation (4.3) and

modify it to reflect the constraints from the wall.

R =
z

2
θ +

d

2
(4.24)



Chapter 4. Object Insertion 36

d

f3

f4

fn

Kx(U0-U)
Kϴ(ϴ-ϴ0)

fnμ

z

f2

f1

fnμ

M
FxFz

Figure 4.11: Force model for two point contact stage.

The maximum rotational error is found simplifying (4.3) with the small angle

approximation θ = cD
z

. Finding the lateral error is similar for the one-point contact

case.

U0 − U = ε0 +
cD

2
+ L(θ0 − θ) (4.25)

Determining the insertion force, lateral force, and moment requires a different

force model because of the second point of contact. Using this two-point error model

Whitney found the forces and moments to be the following [55].
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Fx = −KxL(θ0 −
cD

z
)−Kx(ε0 +

cD

2
) (4.26)

M = (KxL
2 +Kθ)(θ0 −

cD

z
) +KxL(ε0 +

cD

2
) (4.27)

Fz =
2µ

z
[(KxL

2 +Kθ)(θ0 −
cD

z
) +KxL(ε0 +

cD

2
)]

+ µ(1 +
µd

z
)[−KxL(θ0 −

cD

z
)−Kx(ε0 +

cD

2
)] (4.28)

Again for this model, when we look at preventing jamming we want to focus on

M
rFz

. In this case there is now a compliance relationship. This jamming parameter

has the following form M
rFz

= b(z, Kθ
Kx

). This means that the compliance ratio is now

a control parameter for this jamming model.

Now that we have a model to prevent jamming using compliance control we need

to be able to distinguish the difference between the different stages, particularly

between one-point to two-point contact. Whitney [55] has determined the depth at

which two point contact begins.

z2−point ∼=
cD

θ0
(4.29)

We can also use Whitney’s derivation for when the two point contact becomes a

line contact [55].

zend ∼=
Kθ

Kx

θ0

ε0 + cD
2

− z2−point (4.30)

Again we see the important compliance factor Kθ
Kx

for insertion. We can see that

this factor will be our controllable parameter to improve the quality of insertion. We

will now expand upon Whitney’s peg insertion model and look at object insertions
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for different geometries of insertion. All of the relevant force and moment equations

will change slightly for certain parameters but the overall models will not change

significantly for the axisymmetric case.

4.2 Insertion Geometry Analysis

D
S

w w

hh
S

Figure 4.12: Cross section of the extra geometries that will be compared to the
axisymmetric case (circular cross section).

For this section we will look at three additional geometries for insertion. Figure

4.12 shows the different cross-section geometries that we will be exploring: a square,

a rectangle, and a cross. In the previous case for the circular cross section, the

axisymmetric case, we did not need to define an exact axis. Now we will define all

cross-sections axis as shown in Figure 4.12. As for the wedging and jamming diagram

dimensions we will have to extend the models to both planes, the x − z and y − z

plane. We will limit our comparison between the geometries to the limits in error

for wedging and jamming, Figures 4.8 and 4.9. We will also limit our analysis to

pegs without corners. Corners require additional analysis for the wedging diagrams

as they will require multi-dimension analysis instead of the simplified model we will
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be using. This additional analysis has been done for the square case by Meitinger

[28].

To begin our analysis we need to define a metric to compare the different geome-

tries. The best metric to set constant for all geometries would be the surface area

of the hole. This is because of regardless of the geometry there will be the same

number of points in contact at the same depths. Since the depths will be identical

for all geometries we will focus on looking at the perimeter for each geometry and

set these permiters equal to each other. Starting with the circular cross sections as

a base we have the following relationship.

πD = 4S = 2h+ 2w = 8h− 4w (4.31)

where D is the diameter for the circle, S is the square length, h is the height of

the rectangle, and w is the width of the rectangle. We will determine all of these

parameters in terms of D and apply all of the previous jamming and wedging models

to each of the geometries. To simplify the rectangle and cross cases we will make

the width w some fraction of the height, w = h/k, which will be treated as a known

constant. From this we get the following effective lengths for each cross section.

H =
π

4
D ≈ .79D (4.32)

hrect =
π

2 + 2
k

D (4.33)

hcross =
π

8− 4
k

D (4.34)

We can see that if k = 1 we will get back the same relationship for a square so

we will determine the lower bound for the rectangle and the cross. Doing this we

find the following inequalities.
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π

2
D > hrect >

π

4
D (4.35)

π

8
D < hcross <

π

4
D (4.36)

From this we can also determine the bounds on the width. For both cases as k

approaches infinity we see that the width approaches zero. The respective inequalities

for the width are as follows.

0 < wrect <
π

4
D (4.37)

0 < wcross <
π

4
D (4.38)

Note that the left sides of (4.35)-(4.38) correspond to the same limits, where

k → 0, as well as the right side, where k = 1.

We can also apply these same constraints on the peg. For these three geometries

we would get the same values with respect to the peg’s diameter d. From this we can

extend this model to compare the jamming and wedging for each geometry. Starting

with wedging we have the lateral error limit for the circular cross-section as ε = D−d
2

and the rotational error was θ = CD
µd

. We can see from these equations that for

wedging the only change in the limits will be in the lateral error; this is because the

clearance factor will not change for any of these cases.

Since the change in limit will be some factor we will treat the new lateral error

as εsquare = aε, for the case of the square a = π
4
. Figure 4.13 shows these change

in lateral error for the three cases with respect to the circular cross section. From

figure 4.13 we can see that the area where no wedging occurs is also scaled by the

same factor depending on geometry. This means that there is even less allowable



Chapter 4. Object Insertion 41

D-d
-D-d

1.26(D-d)

.79(D-d)
.449(D-d)𝑐𝐷/

𝜇𝑑

𝑐𝐷/

𝜇𝑑
/

D-d
-D-d

.31(D-d)

.79(D-d)

.26(D-d)𝑐𝐷/

𝜇𝑑

𝑐𝐷/

𝜇𝑑
/

ϴ0

ϴ0

ϵ0ϵ0

Figure 4.13: Change in the wedging diagram for the various geometries. The black
line is for the circle, the red line is the square, the green line is the rectangle, and
the blue line is the cross. The two graphs correspond to the wedging for the two
different planes. These graphs correspond to when k = 4.

errors for a successful insertion. We will again use this area of no wedging as a base

for the other geometries. However, this only applies to one plane, x− z or y − z, so

we will have to find the area with respect to both planes. Recall that the width is

defined as a friction of height, w = h
k

Asquare =
π

4
Acirc Asquare =

π

4
Acirc (4.39)

Arect =
π

2 + 2
k

Acirc Arect =
π

2k + 2
Acirc (4.40)

Across =
π

8− 4
k

Acirc Across =
π

8k − 4
Acirc (4.41)

We can see that for the square and the cross geometries the area for no wedging
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is smaller than that for the circular cross section. The one exception is that in one

dimension for the rectangle there can be an area that is larger than the circle baseline,

so long as k > 2
π−2

. The issue is that the area for the other dimension, width or

height, will then be less than π
2
− 1 ≈ .57 of the circle’s area. So even if we make one

dimension easier for insertion compared to the circular cross section we significantly

increase the difficulty for the other dimension. For the wedging it is easy to see that

the circular cross section is the easiest geometry for insertion, the next being the

square which has 79% of the success area. To determine whether the rectangle or

the cross is the more difficult insertion we find the Euclidean distance.

Ar =
π

2 + 2
k

Acirc

√
k2 + 1

k2
(4.42)

Ac =
π

8− 4
k

Acirc

√
k2 + 1

k2
(4.43)

From this it is clear that the rectangle insertion will be easier than a cross inser-

tion. With this wedging analysis, we see that the accuracy of the position and pose

of the insertion is more important for these different geometries.

Next we will look at how these different geometries affect the success with respect

to jamming. To do this we will use Whitney’s jamming parameter, λ = z
µD

, for the

case of a circle. Figure 4.9 shows that the horizontal axis will be bounded by the

friction so it will not change. To find these new jamming parameters we will scale λ

using the relationship from equations (4.32)-(4.34).
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λsquare =
4

π
λ (4.44)

λrect =
2 + 2

k

π
λ (4.45)

λcross =
8− 4

k

π
λ (4.46)

From this we see the opposite relationship as wedging; the geometries that require

more accuracy to prevent wedging are easier to prevent jamming. This is because

smaller holes for insertion will assist the object being inserted. The issue with this

is that a smaller clearance parameter means an even more likely chance for wedging

to occur. This also means that the area for the jamming cross section will be larger

than the circles jamming for the more complicated geometries.

Since we will be controlling the compliance of the robot we should expect less

difficulty of insertion once the one-point contact stage is reached. We should expect

significant difficulty preventing wedging for these additional geometries. In other

words, initial insertion for complicated geometries will pose greater difficulty but

once wedging is prevented the insertion will be easier.

4.3 Key Insertion Modeling

Continuing to use the geometry models from the previous section we will begin

at looking how to model a keyhole geometry. Figure 4.14 shows the geometry for a

keyhole. As in the previous section we will look particularly at the increased difficulty

in wedging. We will again constrain the surface area of the geometry to be equal to

the cross section of the circle case.

To simplify the keyhole model, the keyhole will be a combination of rectangles.

For the model in figure 4.14 the thinnest width, tw, is the only factor that affects
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Figure 4.14: Cross section of key hole model

the surface area for the keyhole. This means the height and width of the simple

keyhole geometry will be a function of this parameter. We will define this width as

a percentage of the width.

tw = a ∗ w (4.47)

where a is between the values of (0 1) and h is the total height of the rectangle

and w = h
k

is the total width.

We define the surface area for the keyhole and the circle cross section as the

following.

πD = 2(h+
5h

k
+

4a

k
) (4.48)
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which means that wedging bounds for the height and the width now become .

π

2
D > hrect >

π

4(3− 2a)
D (4.49)

0 < wrect <
π

4(3− 2a)
D (4.50)

In the case that a = 1 the key hole becomes a rectangle and has the same bounds

as our rectangle geometry. However, since a ranges from (0 1) we can see that the

wedging bounds are smaller than the rectangle geometries. In the case where a→ 0

the wedging bounds get three times smaller than the rectangle case. From these

bounds we can see that the key hole insertion can be as difficult as the rectangle case

or three times more difficult.

Similar to the jamming relationship defined in the previous section, the jamming

parameter will become much larger now. Again we will be using the Whitney jam-

ming parameter λ = z
µD

. In this case, wedging becomes three times more difficult.

The jamming will then be as easy or three times easier.

λkeyhole =
2(1 + 5−4a

k
)

π
λ (4.51)

From this key hole model we can see that the wedging model has become signifi-

cantly harder than the rectangle model as well as the cross model, but the jamming

is easier than the rectangle model. In actuality this keyhole insertion is much more

difficult since the corner effects have been ignored and the key hole was simplified

to this geometry. We will be using this simplified rectangle model for our insertion

model as we complete our key insertion.
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Chapter 5

Visual Position Impedance

Controller

As discussed in Chapter 2, there are many different control strategies for compli-

ance controllers. This thesis will focus on impedance control; impedance control is a

method that allows the robot to change its impedance and admittance of the envi-

ronment through contact with the environment. An impedance controller is capable

of simultaneously managing a relationship between the position and velocity of the

robot’s end effector and the forces applied by the environment. Some impedance

controllers also provide the additional benefit of eliminating the need for inverse

kinematics when used on redundant robots, i.e., robots with more than 6 DOF.

This chapter will first discuss the position based impedance controller introduced

by Hogan [14], along with a vision system to be used with the controller. Then

simulation results of the controller will be shown using various stiffness values for

the modeled robot. The controller will move to specified points to test the accu-

racy, along with the improved accuracy provided by the vision system. Finally the

controller will complete various object insertions and we will analyze the controller

responses during these insertions.
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5.1 Impedance Controller Modeling

This section presents the theory used in modeling the standard Hogan impedance

controller, the position based impedance controller. The first step in designing an

impedance controller is defining a relationship between the force output and the

resulting displacement of the end effector in Cartesian coordinates. This requires

the robot to have joints that are controlled by commanded torques, T , encoders

capable of reading joint angles, θ, and known forward kinematics, L, of the robot

to transform each joint position to the end effectors Cartesian position, X = L(θ).

For a robot that has these capabilities, the impedance controller will be capable

of following a desired trajectory with reasonable performance as well as interacting

with external forces from the environment. The benefit of this type of controller is

the ability to transition between stiffness values during contact and when there is no

contact. The effective stiffness is a control gain that defines the relationship between

the Cartesian position and the control force applied by the end effector. The effective

stiffness K has the following relationship with the force applied to the end effector

F = K[X0 −X] (5.1)

where X0 is the actual position for the end effector and X is the goal position.

Equation (5.1) is clearly similar to the force model for a spring, F = Kx. From

this we can see that we can model the robot’s end effector as a combination of six

linear springs for the six DOF in Cartesian space. We typically break up this stiffness

into the positional stiffness, Kx, and the pose stiffness, Kθ.

Next we need the Jacobian matrix J(θ). The Jacobian matrix is a matrix that

relates the robot’s joint velocities to the Cartesian velocity, dX = J(θ)dθ. From the

virtual work principle, the joint torques can be related to the force necessary to carry

out the desired motion by using the Jacobian’s transpose, T = J(θ)TF . Combining
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these definitions with equation (5.1) we can relate the Cartesian position to the joint

torque.

T = J(θ)TK[X0 −X] (5.2)

Equation (5.2) relates the joint torque to the desired stiffness with the associated

trajectory for the end effector. Since this only includes the relationship to the position

we need to introduce the similar relationship between the force applied by the end

effector and the velocity of the end effector. As the position relationship paralleled

to a spring stiffness, the velocity relationship will be similar to damping B. The

damping of the end effector can also be controlled to modify the robots response to

velocity errors. This force and velocity relationship is shown in equation (5.3).

F = B[V0 − V ] (5.3)

where V0 is the actual velocity and V is the goal velocity.

The above relationship with the Jacobian matrix can also be used to relate the

velocity to the joint angular velocity, V = J(θ)ω. We can again use the principle of

virtual work to relate the torque to the force and again combine these relations with

(5.3).

T = J(θ)TB[V0 − V ] (5.4)

This controller model is not finished yet because the controller has no means of

compensating for the robot’s own weight. Next we introduce a gravity compensation

model to keep the robot from falling under its own weight. The impedance controller

also accounts for the inertial effects from the robot’s limbs. To simplify modeling
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these extra terms, the robot is assumed to follow rigid body motion. This allows the

controller to use predefined mass and moments about the link. To do this we model

the robots mass, M , and the inertia, I(θ), matrices for the impedance controller. The

mass and inertia information for this robot is already well defined and determined

by the manufacturer. However, the WAM is a redundant robot, has an extra degree

of freedom, so we need to use a null space controller. The null space controller

makes it possible to use an invertible Jacobian, J−1, and limit the torque model to

six joints. Combining the position, velocity, inertia, and mass into a single control

equation yields an equation to define the torque by each joint of the robot using

desired positions and velocities.

Figure 5.1: This Impedance Controller includes the additional velocity impedance
term. We can see the damping forces and the stiffness forces being sent to the velocity
impedance controller which outputs the force to be converted to torque for the robot
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T = I(θ)J−1M−1K[X0 −X] + I(θ)J−1M−1B[V0 − V ] + I(θ)J−1M−1F

+ S(θ) + V (ω)− JT (θ)F + C(θ, ω)− I(θ)J−1(θ)G(θ, ω) (5.5)

where S(θ) is the gravity compensation, V (ω) is the velocity dependent torques,

G(θ, ω) is the accelerative coupling terms, and C(θ, ω) is the inertial coupling terms

[14].

In equation (5.5) the values are either known, controllable, or actively determined

values. The two control parameters, K and B, will be varied for performance specific

values. As such, the two parameters also get written into the reflective memory for

the robot’s onboard computer to use. This allows the control computer to vary these

parameters as needed.

With this we have a full model for our impedance controller, which we will imple-

ment in Simulink. Figure 5.1 shows the structure of the impedance controller. The

Simulink model that implements the impedance controller, gravity compensation,

and null space controller is shown in Figure 5.2. This model is compiled in Simulink

and sent through the xpctarget to the reflective memory which is sent to the WAM

target computer at a rate of 200Hz.

5.2 Vision Modeling

The vision system will be integrated into the control scheme as shown in figure 5.3.

Here we have the vision controller correct any errors during motions. Later in this

chapter we will compare the response between the impedance controller without the

vision system and with a vision system.

Before we can begin using a vision controller we need to ensure that our camera is
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Figure 5.2: This is the entire controller including the gravity compensation and
a null-space controller. This also includes blocks where the Jacobian and forward
kinematics are determined.

completely calibrated. As mentioned in 2.1.3, camera calibration can be done using a

calibration tool. Matlab provides an easy to use camera calibration app that requires

more than 10 images taken from the camera at various distances and orientations.

In our case both cameras are stationary and the calibration object is moved for each

image. All of the intrinsic calibrations are completed prior to the experiments. For

the extrinsic parameters, the depth of objects from the camera, we also have an

accurate knowledge of the setup ahead of time. To improve the vision controller’s

accuracy, the extrinsic parameters will be determined by the geometric constraints

of the robot hand. Using these constraints we can have an accurate estimate of the

depth as the robot’s depth will change during the motion.

The intrinsic parameters are the focal length f and the principal point (u0, v0),

with respect to the pixel coordinate system. Here we treat the focal length as a
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Figure 5.3: Vision controller integrated with the impedance controller

vector [fx, fy] to also represent the pixel width and height scaling with the focal

length. We will define the depth of the camera as Z, as well as the pixels along the

width u as X and the pixels along the height v as Y . Figure 5.4 shows the geometry

between the two coordinate systems. The following equation can represent the global

position from the pixel point.

X =
u− u0
Zfx

, Y =
v − v0
Zfy

(5.6)

Now that we have a way to control the positions of the robot with vision we need

to work on controlling the pose with vision. We are going to need to implement

some feature detection tools to determine the orientation of our objects that we will

insert. For feature detection we will use the method of subtracting the current image

to a base image to detect any new objects in the image. When we do this we can

convert a grayscale image, an image where each pixel is indexed from 0 to 255, into a



Chapter 5. Visual Position Impedance Controller 53

Xc

z=f

Yc

Z

u

0

0

Zc

p = (u
,v)

P = (X,Y,Z)

v

Figure 5.4: Camera coordinate systems. The global point is (X,Y,Z) and the image
location is (u,v).

binary image. With the binary image we can detect regions and determine features

from these regions such as area, centroid, bounding box, eccentricity, and major and

minor axis.

To determine the orientation of the peg we will use the region feature to determine

the orientation similar to finding the centroid and bounding box. Doing this in

Matlab, we create an ellipse around the major axis, the long diagonal of the bounding

box, and the minor axis, the short diagonal length. The orientation is determined

by the angle made between the u-axis, or the horizontal axis, to the major axis.

For simplification the angle is from [−π
2
, π

2
]. For example, Figure 5.6 highlights the

ellipse around the detected peg. In this example the angle was found to be around

−83◦, or 1.45 radians.

From this angle we can determine the orientation offset, and since we know the
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(a) Image with Peg and Centroid detected (b) Binary image of peg detected

Figure 5.5: The images show the peg being detected and the region where all the
parameters including the centroid location are being determined.

camera’s location with respect to the WAM, we can now implement a vision controller

that will integrate with the impedance controllers.

5.3 Controller Simulation of Single Joint

For this section we will simulate the impedance controller response for a single joint.

We will treat a single joint as an actuator with inertia, Ia, and internal friction, Bv,

or F = Ias
2 +Bvs. From this simple model we can expand the single joint model to

the rest of the robot. We will be testing the effects of a straight forward impedance

controller, i.e., no feedback filter function.

Figure 5.7 has a simulink model of the position impedance method without the
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Figure 5.6: Ellipse highlighting detected peg.

Figure 5.7: The simulation model for the position impedance method. Note there is
no feedback function. Impedance controller is directly applied to the joint. In this
model the environment is not acting on the controller.

environment acting on the controller. In this example the stiffness is K = 10, the

damping is B = 0.5, the mass is M = 2, the inertia Ia = 1, and the internal
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resistance is Bv = 2. This model is for pure simulation purposes as the actual robot

has varying inertias and unknown internal resistances for each joint. This simulation

model is simply to test the controller’s response without the environment acting on

the controller and with the environment acting on the controller. Figure 5.8 shows

the controller model with the environment acting on the controller. In this model

we are treating the environment as a mass-spring-damper system

Figure 5.8: The simulation model for the position impedance method. Note there is
no feedback function. Impedance controller is directly applied to the joint. In this
model the environment is acting on the controller.

Using these simulation models we can find the Laplace transformation for both

cases.

xout(s)

xgoal(s)
=

kp
Ias2 +Bvs+ kp

(5.7)

for the response without the environment acting on the controller. And the response

with the environment acting on the controller is the following.
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xout(s)

xgoal(s)
=

kp(Ms2 +Bs+K)

IaMs4 + IaBs3 + [kp(M +Me) +BBv]s2 + kp(B +Be)s+ kp(K +Ke)

(5.8)

where Me is the environment’s mass, Be is the environment’s damping, and Ke

is the environment’s stiffness. From (5.7) the impedance controller will always be

stable with steady state error. This response is the ideal 2nd order response from a

joint and is easily controllable. However, (5.8) shows that this controller will have

trouble with the environment acting back on the controller. Using the Routh-Hurwitz

stability criterion we see that (5.8) remains stable when Me

M
+ B2Bv

kp
> Be

B
and when

B[kp(M + Me) + BBv](B + Be) > Mkp(B + Be)
2 + B2Ia(K + Ke). Looking at the

first stability criterion, we see that the ratio between the environment’s mass to the

controller’s mass needs to be larger than the damping ratio. From the second stability

criterion, we see that a high stiffness environment will also cause the controller to

become unstable.

We will now look at the response from both responses, starting with the response

without the environment.

From Figure 5.9, we get the expected second order position response. This is to

be expected since (5.7) is the standard 2nd order response. Now let us look at the

response of the controller with the environment acting on the controller

Figure 5.10 shows the response with environment parameters Me = 10, Be = 0.5,

and Ke = 10. Here we see that although the system is stable the response is slow

and chatters. The main difference with this model, (5.8), compared to the model

without the environment, (5.7), is that the controller is capable of actively varying

the stiffness and damping terms during the motion. This is a very important aspect

of the impedance controller as this changes the location of both the poles and zeros

in (5.8). The issue with this controller, as shown from the second stability term, is

that if the robot or the environment has high stiffness the controller will go unstable.
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Figure 5.9: The impedance controller response without environment.

Figure 5.10: The simulation model with environment acting on controller.

Figure 5.11 shows a response of the controller when the environment’s stiffness is

changed to Ke = 100.

Here we see out system going unstable by increasing the stiffness of the environ-
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Figure 5.11: Unstable response from an environment with high stiffness.

ment acting on the robot. Using the stability criterion we see that if we decrease

the impedance stiffness, i.e, become more compliant, we will be able to maintain

stability. By varying these parameters we can account for the environments we will

interact and change these impedance parameters.

5.4 Controller Response

For this section we are going to compare the different responses of the position

impedance controller. Before we start with the analysis of the impedance controller

we will be using stiffness and gain values that have been tested. [48] In this thesis

the WAM position impedance controller was found to maintain stability at positional

stiffness of Kx = Ky = Kz = 1000 and pose stiffness Kθx = Kθy = Kθz = 1. As

for the damping, varying the damping causes the response to be unpredictable so

the author found the following values to be the best: Bx = 15, By = 10, Bz = 5 and

Bθx = Bθy = Bθz = 0.1. We will use these same stiffness values to later compare
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both the position and velocity impedance methods.

5.4.1 Non-Contact motion

For the first experiment we are going to look at the position impedance controller

and velocity impedance controller response to the same goal. Since both controllers

will not start at the exact same location in space, the distance from the starting point

to the goal point will be scaled. First, let us look at the response of the controller’s

position.

Figure 5.12: The scaled position response of the position based impedance controller
(blue) and the goal (black).

In Figure 5.12 we see the response of the position impedance controller. The

positional stiffness values for the controller are: Kx = Ky = Kz = 1000, and the

pose stiffness values are: Kθx = Kθy = Kθz = 1. The damping values for the

controller are: Bx = 15, By = 10, Bz = 5 and Bθx = Bθy = Bθz = 0.1. These values

were chosen since these values are the largest stiffness values where the controller

response was still stable. The impedance controller has some visible chattering in
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its response which shows that these stiffness values are the highest this controller

can handle. This chattering is also visible in the Figure 5.10 only the response

from Figure 5.12 seems overdamped, likely due to the gravity affecting the controller

(which is not modeled in the simulation results).

Figure 5.13: The scaled pose response of the impedance controller (blue) and goal
(black).

Now let us look at Figure 5.13 which shows the response of the robot’s pose,

or orientation. We see that this response has more overshoot than the position

response and also has a significant amount of steady state error. The error of the

pose response is 25%, which is significant when compared to the 1% error from

the position response. It has been found that larger stiffness values improve the

accuracy response of the controller[48], but with the current standard model these

stiffness values are the largest values where the controller is still stable.

Next we are going to look at the controller’s response in the dimensions gravity

acts against, in this case the Z and θy axis. Figure 5.14 shows both of these responses

side by side and we can see that the positional accuracy has less than a 1% of error

but again the pose is bad, with 24 % error. In fact, the θy dimension is where most of
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(a) Position response against gravity (b) Pose response against gravity

Figure 5.14: Scaled response of movements against gravity.

the error from the rotational response. As this is a significant amount of rotational

error we will need our vision system to be able to overcome these pose errors in order

to have a system that can successfully insert an object without wedging. The pose

error can also improve by increasing the stiffness; however, these stiffness values are

the largest values where the robot can maintain stability.

5.4.2 External Force Response

Next we are going to test the controller by finding the response of the controller

when it collides with an object in its path. For this experiment the WAM’s hand

will run into a secured block that is unable to move, i.e., high stiffness and large mass

environment. The robot will continue to plan its path as if the object is not there

for this experiment. Because of this we should expect a somewhat linear response
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after the initial collision. Again in this case we will use the same initial stiffness and

gain values from the previous response experiment. We will also look at the response

from both controllers at high stiffness values to compare the responses.

Figure 5.15: The position impedance controller contact force. The stiffness values
were set at Kx = Ky = Kz = 800, Kθx = Kθy = Kθz = 0.1

The response of the position impedance controller with an object in its path is

shown in Figure 5.15. When the robot has initial contact with an object at t = 0,

the controller nearly becomes unstable. We see noticeable force chattering from the

collision, where the robot hand chatters against the object and eventually stabilizes.

Eventually the controller recovers and can maintain the disturbance force response.

We also see a similar chattering in the robot that was modeled in the position response

in simulation. For this response the stiffness was decreased from the previous 1000

value to 800 because the response becomes unstable at the higher stiffness. Figure

5.16 has the position impedance controller response making the same motion with a

collision but at the high stiffness of 1000.

What we see in Figure 5.16 is a stable initial contact with the object but then the

force quickly becomes unstable. This is expected, as the simulated control response
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Figure 5.16: The position impedance controller unstable contact force. The stiffness
values are set at Kx = Ky = Kz = 1000, Kθx = Kθy = Kθz = 0.1

with the environment acting on the controller loses stability when interacting with a

high stiffness environment. If a high stiffness environment acts on the controller, the

controller needs to decrease its stiffness to maintain stability. This is very important

for object insertion since the inserted object will end up making contact with the

hole. The frictional forces from the hole will also provide this kind of resistance that

can cause the controller to become unstable.

5.4.3 Vision Control Response

We will now use the vision system as discussed in section 5.2 to correct the large

pose errors. In Figure 5.12, we found the pose error to be mostly from the motions

made against gravity. As such, we will focus on the response of the position and

orientation moving against gravity.

First, let us look at the the response of a visual impedance controller. In Figure

5.17 we can see that the position acting against gravity loses some accuracy; however,
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Figure 5.17: Visual position impedance controller response. Stiffness values were set
the same as Figure 5.12.

we can see the tremendous improvement in the pose accuracy. We have a large error

at the initial impedance response, almost 20%, but with the vision controller the error

decreases to less than 1%. The important thing to notice is that we do sacrifice some

positional accuracy for pose accuracy but the gain in pose accuracy is important to

avoid wedging when inserting objects.

5.5 Insertion Testing

In this section we tested insertions for three geometries; circle, square, and cross

geometry. Figure 5.18 shows the top view for these three holes that we will be

testing, along with their dimensions. For these three insertions we will be looking at

insertion with gravity acting along the direction of the insertion force, and insertion

with gravity in the direction of the lateral force.
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Figure 5.18: Image of testing geometries taken from Gilli et al. [11]

As discussed in the previous section, the important compliance parameter is Kθ
Kx

.

In order to decrease the M
rFz

parameter to avoid jamming we need to decrease Kθ
Kx

as

much as possible. The issue with decreasing Kθ
Kx

is that we need to either sacrifice

stiffness in pose, leading to more rotational error, or increase the positional stiffness,

risking stability. Since the position impedance controller has limited stability we

will use its stiffness stability range to define this compliance ratio. After testing the

range of stability for the position impedance controller it was found that rotational

stiffness of Kθ = 0.1 was the largest possible stiffness during insertion. It was also

found that the positional stiffness of Kx = 500 is the smallest stiffness where the

position error is less than 10%. As such we will define our compliance parameter as

the following.

Kθ

Kx

= 0.0002 (5.9)

For the rest of this thesis we will keep this compliance factor the same for both

controllers. For the velocity impedance controller, we will use the same compliance
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factor but we can increase the stiffness values for both parameters since the controller

has a large range of stability, as shown in chapter 4. For the position impedance

controller the stiffness values are KX = KY = Kz = 500 and KθX = KθY = KθZ =

0.1.

Figure 5.19: Circular peg insertion error. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

5.5.1 Circular Peg Insertions

For the first experiment we did the insertion with the circular peg. For this peg

we expect fewer wedging issues than the other controllers but for the likelihood of

jamming to increase. The controller kept failing from the initial onset of two-point

contact, in order to successfully insert the peg it needed to be manually assisted to

minimize the initial error for insertion. Figure 5.19 shows the percentage error of
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Figure 5.20: Jamming parameter response during insertion. The black line is the
jamming parameter varying with the depth and blue line is the jamming response
during insertion.

the impedance controller for the circular peg insertion. The black lines correspond

to the wedging models maximum allowable error while the red and blue lines are the

actual responses. Figure 5.20 shows the jamming parameter, M
rFz

, response of the

controller during the insertion.

From Figure 5.19 we see that even with manual assistance that the initial error

interferes with the insertion until the errors become smaller than the maximum

wedging error for that dimension. From Figure 5.20, we see the interval for the

largest jamming parameters is during the initial insertion. This is likely the point

where the insertion switches from one point contact to two point contact. From the

response of these two failure types it appears that the impedance controller has the

largest issue with wedging. Since the impedance controller can vary its compliance,

jamming failure is minimized and less likely to occur. Wedging, on the other hand,

is controlled by the accuracy of the system. As we have seen from the previous

section, without a vision controller our impedance controller cannot reliably achieve
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Figure 5.21: Insertion Force response during insertion. The black line is the modeled
insertion force and blue line is the actual insertion force response.

this level of accuracy to prevent wedging. As we will see with the next insertions the

positional errors will get larger and the prevention of wedging will get more difficult,

as modeled in section 4.2.

Figure 5.21 shows the insertion force response along the modeled insertion force

response. From Figure 5.21 we can see that the insertion force does indeed follow

a similar profile to the insertion force but at some delay. We should also note that

steady state force, where the model levels off, is smaller than the actual response.

This may be due to the fact that the peg is still experiencing a frictional force resisting

the peg or there are extra forces acting on the peg. We expect all of the insertion

force response to behave this way. We should also note that in all three figures the

response of the robot has slight chattering during motions, which was visible in our

simulation results with an external environment.
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Figure 5.22: Square peg insertion error. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

5.5.2 Square Peg Insertion

Figure 5.22 is the impedance controller error during insertion for the square peg.

Here we see a unique situation where the controller begins to insert but fails and

stops. After the orientation error drops below the maximum modeled error the

insertion starts again and the peg moves once again. As we will be seeing for all the

insertion response for this impedance controller, the chattering during the motions

is the largest during the initial motions likely due to the fact that this is when the

peg experiences the largest resistance from the environment. Figure 5.23 shows the

jamming parameter response of our controller. Again we see that the jamming is

not an issue during the insertion. However, the jamming parameter has increased

in response during this insertion, which does not follow the model from section 4.2
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Figure 5.23: Jamming parameter response during square peg insertion. The black
line is the jamming parameter varying with the depth and blue line is the jamming
response during insertion.

where we would expect the jamming response to decrease. This is likely due to the

fact that the large spikes are at the locations where the controller response is the

noisiest.

As for the insertion force, Figure 5.24 shows the insertion force response along

with the modeled response. This time the insertion force response appears to have

less of a delay but this time it has an overshoot of the insertion force. Again the

steady state force is larger for the actual response compared to the modeled response.

During this insertion it is clearer that the chattering is the most distinct as the

robot experience larger insertion forces and starts to stabilize as the insertion force

decreases.
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Figure 5.24: Insertion Force response during square peg insertion. The black line is
the modeled insertion force and blue line is the actual insertion force response.

5.5.3 Cross Peg Insertion

Figure 5.25 shows the impedance controller response to the cross peg insertion error.

From section 4.2 we expect the cross insertion to have the most difficulty during

wedging and we see this in Figure 5.25. This time the position error is preventing

the peg from insertion. It is worth noting that the clearance factor, c = D−d
D

, is

about two times larger for this insertion, c = 0.0197, compared to the circular peg,

0.0066. The jamming model and response are shown in Figure 5.26. Here we see no

jamming response when compared to the maximum allowable jamming model. This

is expected since preventing jamming for the cross insertion should be the easiest

from the section 4.2 model.

As for the insertion response, Figure 5.27 shows the response for the cross inser-

tion. This insertion response is interesting because the insertion doesn’t begin until

the third attempt, which can be seen in Figure 5.25. Here we see three different

modeled forces response with the third finally finishing with a successful insertion.
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Figure 5.25: Cross peg insertion error. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

In the actual response we again see large overshoots in force and even larger chatter-

ing during the initial force responses. On the third attempt the peg is successfully

inserted and the insertion force follows the model up until the end where it settles

at a much larger value then the model. This force insertion model does follow the

other models in that the actual insertion force is much larger and settles at larger

values than modeled.

5.5.4 Cross Insertion against Gravity

Figure 5.28 shows the insertion errors for the cross peg insertion where gravity

is acting the lateral direction of the peg. We can see how this additional external

effect the insertion from Figure 5.28. After the second insertion attempt the insertion
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Figure 5.26: Jamming parameter response during cross peg insertion. The black
line is the jamming parameter varying with the depth and blue line is the jamming
response during insertion.

Figure 5.27: Insertion Force response during cross peg insertion. The black line is
the modeled insertion force and blue line is the actual insertion force response.
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Figure 5.28: Cross peg insertion against gravity error. The top graph shows position
error, the middle graph shows orientation error, and last graph is the depth during
insertion. The red lines correspond the Z and θZ for the top and bottom graphs,
respectively. The blue line corresponds to the X and θX coordinate. The black
horizontal lines are the maximum allowable wedging value.

begins and starts to wedge, likely due to gravity pulling down on the peg. As we

have seen from the simulation results, an increase in the stiffness of the environment

causes our controller to become unstable. Eventual the force becomes large enough to

complete the insertion. Figure 5.29 shows the jamming parameter response during

this insertion. As suspected the jamming parameter grows significantly when the

controller starts to become unstable. Even though jamming is not an issue during

this insertion it is also affected by insertions against gravity.

In Figure 5.30 we will only be looking at the force during the insertion. We

again see a delayed insertion along with a very noisy response. We also see a very

significant overshoot in the response. All of these changes are due to the fact that

the insertion model does not account for gravity acting on the peg. From this we can

see that the majority of the insertion is to overcome the additional frictional force
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Figure 5.29: Jamming parameter response during cross peg insertion against gravity.
The black line is the jamming parameter varying with the depth and blue line is the
jamming response during insertion.

Figure 5.30: Insertion Force response during cross peg against gravity insertion. The
black line is the modeled insertion force and blue line is the actual insertion force
response.
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from gravity pulling down on the peg.

Figure 5.31: WAM holding key to be inserted into keyhole

5.5.5 Key Insertion

For the key insertion test we had to use a different setup. Figure 5.31 shows the

WAM holding a key to be inserted.

Looking at the percentage errors we see fewer issues with the key insertion in the

orientation, shown in Figure 5.32. Typically the orientation causes the most error

but this is not the case. Since the key is lighter and shorter, the gravitational force

from holding the key up against gravity is not as significant as compared to the

cross insertion against gravity. The biggest source of error for this insertion comes
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Figure 5.32: Key Insertion. The top graph shows position error, the middle graph
shows orientation error, and last graph is the depth during insertion. The red lines
correspond the Y and θY for the top and bottom graphs, respectively. The blue line
corresponds to the Z and θZ coordinate. The black horizontal lines are the maximum
allowable wedging value.

from the horizontal alignment of the key, the Y -axis. As seen in the key insertion

model, the more complicated geometry allows for more potential wedging failures,

as jamming becomes less likely. We can see the point the error in the Y -axis spikes

up the error in the orientation drops and the insertion depth increases rapidly. This

is the keyhole geometry assisting the compliant controller with the insertion.

Figure 5.33 shows the jamming response for the key insertion. As we expected

from all the other insertions, the jamming parameter only spikes during the initial

motion before the insertion begins. Afterwardsthere is nearly no response. Again

this is due to the very compliant nature of the impedance controller. As for the

insertion force we get a very different response than expected. Figure 5.34 shows

the insertion response for the key insertion. In this insertion force response we not

only get a large overshoot when compared to the model but we also get a significant
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Figure 5.33: Jamming parameter response during key insertion. The black line is the
jamming parameter varying with the depth and blue line is the jamming response
during insertion.

Figure 5.34: Insertion Force response during key insertion. The black line is the
modeled insertion force and blue line is the actual insertion force response.



Chapter 5. Visual Position Impedance Controller 80

delay in the with respect to the model. This delayed insertion force response may

be from the complicated keyhole geometry aligning the key before insertion begins.

This would also account for the additional insertion force required for the insertion.

5.6 Summary

In this chapter we introduced the standard Hogan impedance controller, also know as

the position based impedance controller. We modeled and simulated this controller’s

response when interacting with the environment. We then introduced a vision system

to improve the accuracy of the controller. Finally we used the position impedance

controller to successfully insert objects into multiple geometries. We will be this

position based impedance controller as the baseline for comparison when the velocity

based impedance controllers of Chapter 6 and 7 are introduced.

Through these various insertions we have seen the usefulness of the impedance

compliance controller. With the compliance from an impedance controller jamming

is avoided by controlling the compliance parameters. As for the wedging, so long

as the initial insertion errors are minimized (which can be done through a vision

system) the compliance of the controller can allow the inserted object to align itself

for a successful insertion. We did see instances when the stiffness of the environment

was too large and the controller nearly became unstable. The insertion forces for all

the insertions tended to be larger than modeled. This is expected since the insertion

model assumes the force interactions to be quasi-static when they are actually more

dynamic.
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Chapter 6

Velocity Filtered Impedance

Controller

In this chapter we build off the previously described impedance controller and intro-

duce the velocity filtered impedance controller. We will then model the controller

and simulate the controller, comparing the stability and response with the position

based impedance controller. Then the two controllers will be compared based on the

same controller responses, single motion, external force, and visual control. Finally,

the two controller responses will be compared for all object insertions.

6.1 Velocity Filter Impedance Model and Simula-

tion

The impedance controller introduced earlier in chapter 5 is a straightforward method

that does not use any state feedback. For the straightforward case the error terms

can be made small by using a very stiff position controller. This has been shown

to improve the accuracy of the controller [48], but as we have shown increasing the
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stiffness of the controller will also cause the controller to go unstable.

For the velocity impedance control method we will be using an impedance filter of

1
Bs

and the impedance feedback is Ms2 +K [41]. Figure 6.1 shows the control model

with the included impedance filter and impedance feedback. As seen in Figure 6.1

we are running our controller on a single joint model. We will use the same modeling

parameters for our simulation as the position based impedance controller. We will

also be looking at the response with and without an external environment. However,

for this model we will be changing the gain kp = K, where K is the stiffness of the

impedance controller.

Figure 6.1: The simulation model for the position impedance method. Note there is
a feedback function with the velocity impedance acting as a filter to the impedance
force in. In this model the environment is not acting on the controller.

Using this simulation models we can find the Laplace transform for the case of

no external environment and with an external environment.

xout
xin

=
K(Ms2 +Bs+K)

IaBs3 + (KM +BBv)s2 +KBs+K2)
(6.1)

for the response without the environment acting on the controller. The response
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Figure 6.2: The simulation model for the velocity impedance method. Note there is
a feedback function with the velocity impedance acting as a filter to the impedance
force in. In this model the environment is acting on the controller.

with the environment acting on the controller is the following.

xout
xin

=
K(Ms2 +Bs+K)

IaBs3 + (K(M +Me) +BBv)s2 +K(B +Be)s+K(K +Ke))
(6.2)

From (6.1) and (6.2), we have a third order system for both controllers. Again

we are treating the environment as a mass-spring-damper system. Using Routh-

Hurwitz stability criterion for third order systems, we get stability for (6.1) when

M+ BBv
K

> Ia and stability for (6.2) when [(M+Me)+ BBv
K

](B+Be) > IaB(K+Ke).

Now let us compare these stability criterion with the benchmark for the position

based impedance controller.

For the velocity based impedance controller with no external environment we

saw that the position based method was always stable and the velocity impedance

method requires Ia < M + BBv
K

. This means that at higher stiffness values the mass

of the robot needs to be larger than the inertia of the joint. The stiffness of the

controller also affects the location of the 2 zeros of the system and the gain.
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For the velocity based controller with an external environment we saw that the

position based method had two stability requirements: Me

M
+ B2Bv

K
> Be

B
and when

B[K(M +Me) +BBv](B +Be) > MK(B +Be)
2 +B2Ia(K +Ke). For the velocity

impedance controller the only requirement is [(M +Me) + BBv
K

](B+Be) > IaB(K +

Ke). For the position based impedance controller there is an additional stability

requirement for the ratio of the mass of the environment to be larger than the ratio

of the damping. This does not exist for the velocity impedance controller. This gives

us the freedom of also using the damping of the impedance controller as a compliance

parameter. In this type of mass-spring-damper model, the mass of the environment

is the mass of what is acting against the robot. For example, if the robot was to

push a block along a table the mass is only of the block. However, if the robot were

to push the block into the table the mass would include both of the objects.

Both controllers, become unstable at high stiffness values for the robot or the

environment. The major difference is at which point that threshold is reached for

each controller. To find this threshold we will define the velocity impedance stiffness

at the point of marginal stability, (K +Ke)v =
[(M+Me)+

BBv
K

](B+Be)

IaB
. After doing this

we get the following relationship between the stiffness threshold between the velocity

impedance and the position based method.

K

IaB
(K +Ke)v −

MK(B +Be)
2

B
> (K +Ke)s (6.3)

where (K+Ke)v is the stiffness for the velocity impedance and (K+Ke)s is the stiff-

ness for the position impedance. We should note that the improvement in stability

does not depend on the mass of the environment. From (6.3) we can see that the

stability threshold for the velocity impedance will be larger than the position based

method.
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Figure 6.3: The velocity impedance controller response without environment.

6.1.1 Simulation Results

Now that we have seen the difference in stability for both methods let us look at the

difference in simulated response between both controllers. To do this we will be using

the same modeling parameters as the position impedance controller simulation model

from section 5.3. These parameters are M = 2,Me = 10, B = 0.5, Be = 0.5, K =

10, Ke = 10, Ia = 1, and Bv = 2.

First let us look at the response of the velocity impedance controller to the ideal

case of no environment acting on the controller. Figure 6.3 shows the response from

the velocity impedance controller from the ideal case. From this image we see that

the controller has a very fast rise time but there is a long settling time due to the

ringing from the response.

To compare this ideal controller response with the position based impedance

controller response we will look at Figure 6.4. In this figure we see that the ideal

case has for the position based impedance controller has a slower rise time but a
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Figure 6.4: Both controllers response without environment. The blue line is the
velocity impedance controller and the red line is the position based impedance con-
troller

significantly faster settling time than the velocity impedance controller. For motions

made with no environment acting on the robot we would expect the position based

impedance controller to be the better controller with the faster settling time.

Now we will look at how the velocity impedance controller responds with an

external environment acting on the controller, in Figure 6.5. As we expected the

response of the system has a significant amount of ringing but it also has a stable

response that settles quickly. To see how this response compares to the position

impedance method we will look to Figure 6.6.

In this response we see that the position impedance method has some additional

frequencies in its response when compared to the velocity controller’s response. We

also see that over time the velocity impedance controller starts to respond slower

than the position method. From these simulation results we can expect the po-

sition impedance controller to have the faster response compared to the velocity

impedance controller. However, we can expect more stable responses from the ve-
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Figure 6.5: The velocity impedance controller response with environment.

Figure 6.6: The impedance controllers response with environment. The blue line is
the velocity impedance controller and the red line is the position based impedance
controller

locity impedance controller when interacting with external forces.

Now let us look at the response of the velocity impedance controller when we
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Figure 6.7: The velocity impedance controller response from a high stiffness environ-
ment.

increase the stiffness of the environment to the same high stiffness as done at the

end of section 5.3. Here the environment stiffness is increased to Ke = 100. Figure

6.7 shows the velocity impedance controller response to the increased environment

stiffness. As we have determined from our stability analysis the controller is still

stable but we can see a significant amount of ringing in the controller.

Now let us compare the stable response from the velocity impedance controller to

the unstable response of the position impedance controller, show in Figure 6.8. In this

response we see that position impedance controller becomes unstable immediately

and that the velocity impedance controller will maintain stability. From figure 6.7

we know that the velocity impedance method will continue to ring until it converges

after a very long time.

As we have seen from these simulation results we can expect the position based

and the velocity impedance controller to have similar accuracy with respect to posi-

tion error. We do expect that the position impedance controller will reach its goal
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Figure 6.8: Both controllers response to a high stiffness environment. The blue line
is the velocity impedance controller and the red line is the position based impedance
controller, which is clearly unstable.

faster than the velocity impedance controller in both the ideal case and in the case

with a low stiffness environment. When interacting with high stiffness environments,

we expect the velocity impedance controller to maintain stability and to respond sim-

ilarly. As for the position impedance controller we have to worry about maintaining

stability in many of these environments, as we have seen for the object insertions for

this impedance controller.

6.2 Controller Response

In this section we will be looking at the response from the velocity impedance con-

troller. First we will look at the response of the controller to a specified position.

Next we will look at the controller’s response when the robot collides into an object.

Finally we will be looking at the improvement in the controllers response with a

vision system added into the controller. For each experiment we will also be com-
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paring the responses from the velocity impedance controller to the responses from

the position based method.

Figure 6.9: The velocity impedance controller pose response. The black line is the
goal and the blue line is the response.

6.2.1 Non-Contact Motion

For this experiment we sent both impedance controllers to the same goal position. We

will scale the motion based off the goal position due to the fact that both controllers

will not be starting in the same exact position. Figure 6.9 shows the position response

of the velocity impedance controller.

The positional stiffness values for the controller are: Kx = Ky = Kz = 1000,

and the pose stiffness values are: Kθx = Kθy = Kθz = 1. The damping values for

the controller are: Bx = 15, By = 10, Bz = 5 and Bθx = Bθy = Bθz = 0.1. These

are the exact same compliance parameters used with the position based impedance

controller. From Figure 6.10 we can see that the position response is very accurate

and close to the goal position with some steady state error. As for Figure 6.11, we
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Figure 6.10: The velocity impedance controller response of the position in the direc-
tion of gravity. The black line is the goal and the blue line is the response.

see that there is some significant steady state error in the pose.

Figure 6.11: The velocity impedance controller pose acting against gravity. The
black line is the goal and the blue line is the response.

To compare the velocity impedance controller response with the position based
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impedance controller we will look at Figures 6.12 and 6.13 for the position and the

pose response, respectively. Comparing the two impedance controllers we see that

the position impedance controller has the faster and more accurate response. This is

to be expected when comparing the simulation responses. In the case of Figure 6.12

we see that the position errors for the two controllers are relatively similar; whereas,

Figure 6.13 shows a significant difference in the accuracy of the two controllers.

Figure 6.12: Comparison between both impedance controllers. The blue line is
the position based impedance controller and the red line is the velocity impedance
controller. Again the black line is the goal.

As shown in the simulation model, the velocity impedance controller has a larger

range of stability with respect to the controller’s stiffness. Let us look at the im-

provement of the accuracy of the robot if we increase the stiffness values for the pose.

Figures 6.14 and 6.15 show the response of the velocity impedance controller when

the pose stiffness is increased by a factor of five (Kθx = Kθy = Kθz = 5).

For Figure 6.14 we see that the accuracy of the position does increase a slight

amount. Figure 6.15 shows a substantial amount of improvement in the accuracy in

the pose of the robot. By increasing the pose stiffness by a factor of five we were
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Figure 6.13: Comparison between both impedance controllers. The blue line is
the position based impedance controller and the red line is the velocity impedance
controller. Again the black line is the goal.

Figure 6.14: Velocity impedance position response at higher stiffness values. Kθx =
Kθy = Kθz = 5
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able to decrease the error in the pose by 90%. We cannot compare the position

based impedance controller response at these same compliance parameters since the

controller becomes unstable at these values.

Figure 6.15: Velocity impedance position response at higher stiffness values. Kθx =
Kθy = Kθz = 5

6.2.2 External Force Response

Next we are going to look at the force response of the velocity impedance controller

when the robot collides with an object in its path.

As for the velocity impedance response, in Figure 6.16, we can see that the

initial collision, at t = 0, causes the force to dip down then continue linearly. This

mostly linear response is the same as the high stiffness response from the position

impedance controller, which makes sense since they both have the same stiffness

values. However, we can see that this response remains stable past 20N where the

position controller started to go unstable. We can see this difference in Figure 6.17.

Again from the simulation results we expect both controllers to maintain some sort
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Figure 6.16: The velocity impedance controller contact force. The stiffness were set
at Kx = Ky = Kz = 1000, Kθx = Kθy = Kθz = 1.0

of similar response. The main difference being we expect the velocity impedance

controller to maintain stability.

Figure 6.18 shows the force response for higher stiffness values, same stiffness

values used in Figures 6.14 and 6.15.

Figure 6.18 compares the two velocity impedance controller responses. Again we

increase the pose stiffness by a factor of 5 and we can see the slight increase in the

force response. We should also note that both controllers have the small initial dip

once contact is made. This is likely an impulse response from the high stiffness in

the collision. Both responses remain stable for the high stiffness collision whereas

the position based impedance controller became unstable.
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(a) Velocity impedance force response
(b) Position based impedance controller force
response

Figure 6.17: Comparison of force response for same stiffness values.

6.2.3 Visual Control Response

Next, let us look at a visual velocity impedance controller response using the same

stiffness as the impedance controller in chapter 5. In Figure 6.19 we see that the

position accuracy improves for a bit and goes back to its original position. As for

the pose accuracy we see the error decrease slowly but substantially. In Figure

6.20 we compare both impedance controllers. We can see that the position based

impedance controller initially has more pose error but has a faster response to this

error. However, we can see the velocity controller has less error for both the position

and the pose overall. It is also worth noting that the velocity controller has a faster

response at high stiffness values, a consequence of its large range of stability.

Let us look at the pose response for both controllers, as shown in Figure 6.20.

Here we can see the larger initial error for the position impedance controller but it
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Figure 6.18: The velocity impedance controller with high and lower stiffness values.
The high stiffness are set at Kx = Ky = Kz = 1000, Kθx = Kθy = Kθz = 1.0 (blue)
and Kx = Ky = Kz = 1000, Kθx = Kθy = Kθz = 5.0 (red)

Figure 6.19: Visual velocity impedance controller response. Stiffness values were set
at Kx = Ky = Kz = 1000, Kθx = Kθy = Kθz = 1.0.
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Figure 6.20: Comparison of the velocity and position controller pose response. The
position controller response is in magenta and the velocity controller response is in
black.

has the faster response to the goal. For the velocity controller we see a much slower

but accurate response when compared to the position controller response. In Figure

6.13 we saw both controllers with low stiffness values having large errors but now

with a vision controller in place it is possible to substantially improve the pose of the

robot. As seen in the insertion results from the position based impedance controller,

the increase in pose accuracy will increase the chances of the objects insertion. If

the pose has too much error then the insertion will fail. As we have seen for both

controllers, the inclusion of a vision controller increases the accuracy in the response

of the robot without having to sacrifice its stability.

Again we saw in the simulation results that the position impedance controller

will respond faster than the velocity impedance controller. Even with vision control

we see that both controllers’ accuracy is similar and they behave as simulated.
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6.3 Insertions Testing

In this section we will be doing all of the same insertions from chapter 5 at the same

stiffness values. In for each insertion we will be directly comparing the insertion

results from the velocity impedance controller with the position based impedance

controller.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.21: Circle peg insertion errors. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

6.3.1 Circular Peg

First let us look at the insertion error response for both impedance controller in-

sertions, Figure 6.21. We can notice that both the position and pose exceed the

allowable error for the velocity impedance controller. As for the position based
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.22: Circle peg jamming response. The black line is the modeled maximum
jamming parameter and the blue line is the jamming response.

impedance controller, only the pose exceeds this tolerance initially. For the velocity

impedance controller the insertion begins while this error is still outside this toler-

ance where as the position based impedance controller does not start insertion until

the error is smaller than this tolerance.

Figure 6.22 shows the jamming parameter response of both impedance controllers.

For the velocity impedance we see no visible jamming response whereas the position

based impedance controller does have some initial response. For both controllers we

see that jamming is the least likely mode of failure due to the compliance controllabil-

ity of the controllers. As seen from the simulation, the velocity impedance controller

responds better to external forces acting on the controller than the position based

impedance controller.

Finally Figure 6.23 shows the insertion force profile for both impedance con-

trollers. The velocity impedance controller follows the insertion force model better

than the position based impedance controller method. The velocity impedance
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.23: Circle peg insertion force. The black line is the modeled insertion force
while blue line is the actual response.

controller does not have delay associated with it but does seem to significantly over-

shoot the model when compared to the position based impedance controller. Both

controllers seem to have larger steady state responses than the modeled profiles.

6.3.2 Square Peg

For the square peg case the insertion error response for both impedance controllers is

shown in Figure 6.24. For this insertion we can see that the pose error is initially large

for one dimension when compared to the position based impedance response. The

major difference between these two controllers is the lack of noise or chattering from

the velocity impedance method. As discussed before, the position based impedance

method has less stability when interacting with high stiffness environments compared

to the velocity impedance controller. This can be seen in the difference in responses

from this difficult insertion.



Chapter 6. Velocity Filtered Impedance Controller 102

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.24: Square peg insertion errors. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

Figure 6.25 shows the jamming parameter response for both controllers. As seen

from the last insertion response, the velocity impedance controller has no visible

jamming response when compared to the position based impedance controller. Again

we see the difference in the smoothness from the actual response between the two

controllers.

For the insertion force, Figure 6.26 shows the response of the two impedance

controllers. Again we see that the velocity impedance controller is more similar to

the modeled insertion response than the position based impedance controller. For

this insertion we even see that the velocity impedance controller has less overshoot

than the position based impedance controller. We also see that the insertion force

settles down faster than the insertion model. There is also a noticeable difference in
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.25: Square peg jamming response. The black line is the modeled maximum
jamming parameter and the blue line is the jamming response.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.26: Square peg insertion force. The black line is the modeled insertion force
while blue line is the actual response.
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the amount of overshoot for the position based impedance controller when compared

to the overshoot from velocity impedance controller.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.27: Cross peg insertion errors. The top graph shows position error, the
middle graph shows orientation error, and last graph is the depth during insertion.
The red lines correspond the Y and θY for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black horizontal lines
are the maximum allowable wedging value.

6.3.3 Cross Peg

Starting with Figure 6.27, we see that the initial error is much smaller for the velocity

impedance controller than for the other insertions. This does not follow the insertion

model from section 4.2, since the cross geometry should be a more difficult insertion,

with respect to wedging. We see this high error response from the position based

impedance controller in its position response. When comparing the overall error

between the two controllers, the velocity impedance controller method quickly falls

within the wedging tolerance and begins the insertion quickly.
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.28: Cross peg jamming response. The black line is the modeled maximum
jamming parameter and the blue line is the jamming response.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.29: Cross peg insertion force. The black line is the modeled insertion force
while blue line is the actual response.
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Figure 6.28 shows the jamming responses between the two impedance controllers.

For both controllers we see no visible jamming response. However, the velocity

impedance controller has the more stable and smooth profile. This is due to the

position based impedance controller needing three motions to complete the inser-

tion. After the insertion finally begins for the position based impedance controller

the jamming model quickly becomes similar to the velocity impedance controllers

jamming model.

Finally, the insertion force response for both controllers is shown in Figure 6.29.

Both insertion forces seem to be the least smooth for this insertion when compared

to the previous insertions. Again for this insertion we see the velocity impedance

controller follows the insertion force model better. There is a noticeable delay and

overshoot in the velocity impedance controller. As for the position based impedance

controller, the response is very noisy and on the final motion the insertion force

has a similar shape but seems to settle at a very large force. Based off these two

insertion force responses, it appears that the velocity impedance controller follows

the insertion force model better than the position based impedance controller.

6.3.4 Against Gravity Peg

For this insertion the difficulty of the insertion is increased as gravity will be pulling

down on the peg. As mentioned in chapter 5, the addition of gravity acting in

the peg insertion is not modeled in the compliance model. We expect to have some

additional noise introduced in the system from un-modeled external forces acting on

our system. Figure 6.30 shows the response of the insertion errors of both impedance

controllers. As we expected both the position and the pose errors are the largest

for all the insertions for both controllers. The major difference between the two

controllers is that the velocity impedance controller is able to quickly compensate

for this error and insert the peg; whereas, the position based impedance controller
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.30: Cross peg against gravity insertion errors. The top graph shows position
error, the middle graph shows orientation error, and last graph is the depth during
insertion. The red lines correspond the Z and θZ for the top and bottom graphs,
respectively. The blue line corresponds to the X and θX coordinate. The black
horizontal lines are the maximum allowable wedging value.

nearly loses stability inserting the peg. The addition of gravity acting on the peg

during insertion is similar to increasing the stiffness of the environment acting on

the peg. We see that this nearly causes the position impedance controller to become

unstable. We also see that the additional presence of gravity acting on the peg does

not affect the stability or the insertion.

Figure 6.31 shows the jamming parameter response between the two controllers.

For the velocity impedance controller we still see no noticeable jamming response.

The position based impedance controller does have some significant jamming re-

sponse but this is well within the modeled tolerance.

The insertion forces for both controllers are shown in Figure 6.32. For this inser-

tion we see the noisiest insertion force response for the velocity impedance controller.
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(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.31: Cross peg against gravity jamming response. The black line is the
modeled maximum jamming parameter and the blue line is the jamming response.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.32: Cross peg against gravity insertion force. The black line is the modeled
insertion force while blue line is the actual response.
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Both impedance controllers have a significant delay and overshoot in response when

compared to the models. The velocity impedance controllers insertion force seems

to settle at a significantly larger force than the position based impedance controller.

(a) Velocity Impedance Controller (b) Position based Impedance Controller

Figure 6.33: Key insertion errors. The top graph shows position error, the middle
graph shows orientation error, and last graph is the depth during insertion. The red
lines correspond the Y and θY for the top and bottom graphs, respectively. The
blue line corresponds to the Z and θZ coordinate. The black horizontal lines are the
maximum allowable wedging value.

6.3.5 Key Insertion

For the key insertion we expect wedging to be the most difficult aspect of the

insertion; in particular the axis gravity acts on, the Z-axis. From the position

based impedance controller’s insertion, we saw that the accuracy was the main factor

to prevent the insertion of the key. We can see the response of both controllers

key insertion in Figure 6.33. Instead, the velocity impedance controllers cause of

error comes from the orientation of θY , the pose acting against gravity. Once this
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(a) Velocity Impedance Controller (b) position based Impedance Controller

Figure 6.34: Key jamming response. The black line is the modeled maximum jam-
ming parameter and the blue line is the jamming response.

pose becomes corrected by the vision system the insertion quickly happens. Both

impedance controllers have similar quick insertion for this key insertion.

The jamming response for both controllers is shown in Figure 6.34. Here we

again see initial spikes of jamming at the beginning of the position based impedance

insertion and nearly no response from the velocity impedance controller. As we have

expected for the key insertion model done in chapter 4, a jamming failure is very

unlikely for these compliance controllers.

Finally we will look at the odd behavior from the insertion forces shown in Figure

6.35. Here we see that both insertion forces have some sort of delay, also see in the

cross insertion against gravity. Similar to the cross insertion acting against gravity,

the velocity impedance model approaches a larger force than the insertion model.

From both of these responses we can see that not including the effects of gravity

acting on the peg in the Whitney model is causing noticeable errors for the insertion

force model.
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(a) Velocity Impedance Controller (b) position based Impedance Controller

Figure 6.35: Key insertion force. The black line is the modeled insertion force while
blue line is the actual response.

As we have seen for all of the insertions, the velocity impedance controller main-

tains better stability than the position based impedance controller. Particularly in

the cross insertion acting against gravity, we see the position impedance controller

nearly become unstable. For all of the insertions, we see similar levels of initial inser-

tion accuracy but faster insertion results compared to the position based impedance

controller. This is due to the stable response from an external environment and

having a closer response to the insertion force as modeled by Whitney. From these

insertion results we see that the velocity impedance controller is a more stable compli-

ant controller than the position based impedance controller that will improve object

insertion results when compared to the position based impedance controller.
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Chapter 7

Velocity Impedance Controller

with Kinetic Friction Cone

In this chapter we will model the kinetic friction cone based upon the friction cone

model presented in chapter 4. We will then simulate the improvement of insertion

using this compliance model. After simulation, we will show experimentally the ve-

locity impedance controller responses at higher stiffness values than the experiments

done in chapter 5 and 6. We will show how varying the stiffness for the controller

changes the accuracy and response of the system. Finally, we will look at some of

the same insertions using the kinetic friction cone compliance model and compare

the results with the simulation model and the previous insertion results.

7.1 Kinetic Friction Cone Insertion Model

The kinetic friction cone differs from the typical friction cone by its force limit and

dynamically changing size. Equation (7.1) shows the friction cone angle relationship

with respect to the normal force and the kinetic friction force. The kinetic friction

cone has the same physical relationships as the static friction cone, in that there is
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a friction force acting against an object on contact. The two differences from the

static case are that the frictional force has a linear relationship with the velocity of

the object and that we want the force vector outside of the cone. Classically there

is a velocity limit in kinetic friction where Coulomb friction will start to dominate;

this is called the Stribeck effect. We will call these limits vmin for the velocity and

Fc for the kinetic friction.

tan(θ) =
µsv

Fx
(7.1)

Equation (7.1) shows the kinetic friction cone equation that is similar to the static

friction cone. In this model we are going to ensure that our force vector, F = [Fx, Fz],

is outside of the cone. This is the major point of the kinetic friction cone model.

This means that the insertion force is always larger than the kinetic friction force

Fz > µsv.

Figure 7.1: Kinetic friction model, where Fm is the static friction force and Fc is the
minimum friction before the onset of the Stribeck effect

Figure 7.1 shows the velocity limit at the onset of the Stribeck effect, or Fc =
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µsvmin where µs is the kinetic coefficient for kinetic friction. For the kinetic friction

cone model we need the model to be able to prevent both modes of failure, jamming

and wedging. Starting with wedging prevention, we will use the same Whitney wedg-

ing model to determine the compliance required to prevent wedging while moving.

To prevent jamming we need to ensure that the insertion force is larger than the

resistant kinetic friction force. Therefore, to prevent failure for the kinetic friction

model we will use the following relationships.

Using equation (7.1) and the fact that tan(θ) = L
d

and L tan(θ) = cD, from

section 4.1, we can solve for a minimum orientation error for the wedging model.

Using the small angle approximation we get the following orientation relationship

with the kinetic friction.

θ <
FxcD

µsvd
(7.2)

The major difference between the kinetic friction cone wedging model and the

Whitney quasi-static model is that the orientation, θ, is now a function of lateral

force and velocity. So by this definition we see that decreasing the insertion velocity

and increasing the lateral force prevents wedging.

For jamming, we will calculate Whitney’s jamming parameter with respect to the

kinetic forces acting on the peg during insertion.

λ =
Fxz

µsvD
(7.3)

The last two restrictions for the kinetic friction cone model will ensure that the

robot is constantly moving during insertion. This means that the robot never en-

counters the Stribeck effect until the insertion is completed.
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Fz > Fc (7.4)

v > vmin (7.5)

From equations (7.2) and (7.3) we see that the jamming and wedging model

will now be affected by the velocity of the insertion and the lateral force of the

insertion. Equation (7.4) determines the minimum insertion force to maintain motion

during insertion and equation (7.5) restricts the insertion velocity to never reach the

minimum.

7.1.1 Kinetic Friction Wedging Model

The main difference in the wedging model is in the increased upper bounds in allow-

able orientation error with respect to lateral insertion force and decreased bounds

with respect to the insertion velocity. To show this we need to again look at the

Whitney wedging error model and compare this to the kinetic friction cone (KFC)

model. As the lateral error (R − r) > |ε| does not change between the two models

we will only be looking at how the orientation, θ, changes.

θKFC <
FxcD

µsvd

θWhitney <
cD

µd
(7.6)

From Equation (7.6) we can see that the Whitney orientation error remains con-

stant for all lateral forces and insertion velocities. This means that the allowable
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orientation error can vary with changes to the insertion velocity and the lateral force

during insertion. To see how the orientation error can change with respect to the

insertion velocity and lateral we will look at Figure 7.2.

(a) Insertion Velocity (b) Lateral Force

Figure 7.2: Comparison of the KFC model and Whitney model while varying the
insertion velocity or the lateral force

We can see that in the case where the force is held constant that the lower

velocities allow for more orientation errors than the Whitney model. Looking at

the lateral force, with a constant velocity, the force linearly improves the allowable

orientation error. In both cases we can see that the KFC model intersects the

Whitney model at some force and velocity, this intersection is defined by µFX = µsv.

For the insertions testing the KFC model we will try to maintain this relationship.

We will do this to compare the Whitney wedging model and the KFC wedging

model. Although we will try to maintain that µFX = µsv is true, there will actually

be variance so we will compare the KFC model to show that this variance improves

the wedging model.
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7.1.2 Kinetic Friction Jamming Model

We will again compare the difference in the jamming model between the KFC and

the Whitney model. For the jamming model’s force relationship, we first get the

relationship between the lateral and insertion force Fx
Fz

< Fx
µsv

. From this we get a

familiar requirement to prevent jamming Fz > µsv, which ensures that equation

(7.3) is true at even the lowest allowable velocity, vmin. We see that we have the

same upper bound relationship as the wedging model. The following equation shows

the difference between the jamming parameter for the KFC model and the Whitney

model.

(a) Insertion Velocity (b) Lateral Force

Figure 7.3: Comparison of the KFC model and Whitney model while varying the
insertion velocity or the lateral force
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λKFC =
Fxz

µsvD

λWhitney =
z

µD
(7.7)

Similar to equation (7.6) we see that the jamming parameter will behave similar

to the wedging. Figure 7.3 shows this relationship between the KFC and the Whitney

jamming parameter. From Figure 7.3 we see the same type of profile for how the

jamming parameter varies for insertions velocities and lateral forces. We also see

that the jamming parameter has the same intersection point between the Whitney

and KFC model where µFX = µsv. This means that now the impedance controllers

now have two methods of preventing jamming. The controller can now vary the

compliance to minimize M
rFz

or also control the insertion velocity and lateral force.

7.1.3 Kinetic Friction Cone Compliance Model

The Whitney model for insertion assumes quasi-static force interaction. We will

impose an extra kinetic friction constraint. In particular we will set the kinetic

friction to be approximately the same as the static friction force. From Figures 7.2

and 7.3 this is the point where the KFC model intersects the Whitney model.

µFx ≈ µsv (7.8)

Equation (7.6) can be rewritten as Fx ≈ µsv
µ

. By setting this constraint we can

preserve the Whitney jamming model. To relate this back to the reaction forces the

robot and peg would expect to experience from the insertion we have to split the

analysis into the one-point contact and two-point contact conditions. Once again for
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Figure 7.4: Minimum stiffness profile during Cross peg insertion. The blue line is
estimating the profile with a constant velocity and the red line is calculating the
velocity.

both stages we have a predetermined Kθ
Kx

. Finding the control stiffness for the one

point contact we will combine (4.21) with Fz > µsv.

Kx >
µsv

µ
[
Kx
Kθ

(L− z − µd
2

)(L− z) + 1

ε0 − cD
2

+ lθ0
] (7.9)

We can see that as the depth increases the stiffness required decreases. Solving

for the stiffness for the two-point contact, we will combine (4.28) and Fz > µsv.

Kx >
µsv
a

(7.10)

a =
2µ

z
[(L2 +

Kθ

Kx

) (θ0 − cD
z

) + L(ε0 + cD
2

)] + µ(1 + µd
z

)[−L(θ0 − cD
z

)− (ε0 + cD
2

)]

(7.11)
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For this model we will look at the differences when we treat v as constant vs.

when it is used as a variable for insertion. To do this we will take an insertion

profile from one of the previous insertions, in particular the cross insertion for the

velocity impedance controller. Figure 7.4 shows the minimum stiffness needed for

the kinetic friction model. Here we compare the response using a constant velocity

model with dynamically calculating the velocity during the insertion. From Figure

7.4, we can see that the constant velocity profile is either very close to the actual

velocity profile or larger than the actual profile. The profile we are calculating is

the minimum stiffness required for a successful insertion. For our insertions we will

be using compliance parameters much larger than these values so we do not need to

worry about jamming.

Figure 7.5: Stiffness profile during insertion.

This explains why there is no jamming in all of the insertions for both impedance

controllers. The largest value from the minimum required stiffness profile during the

two point contact is about KX ≈ 475N
m

. Since all insertions were done well above
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this value, with the insertion stiffness set at KX = 500N
m

, we never saw any jamming

issues after the initial point of contact. For insertion testing using this compliance

model we will use the same profile as the minimum stiffness profile. However, we will

be doubling the stiffness values for our controller during the insertion. This stiffness

profile is shown in Figure 7.5

For wedging, we can see that the differences made to the model is the allowable

orientation error, θ < FxcD
µsvd

. In the general case we can see that the best wedging

prevention strategy would be to insert as slowly as possible and to provide the most

amount of lateral force. The issue with this strategy is that increasing the lateral force

requires more energy from the robot during insertion. For jamming, we have already

established that jamming will be prevented as long as Fz > µsv. In other words, as

long as the insertion force is larger than the kinetic friction force then increasing the

lateral force during insertion will not cause jamming. Finally we also see that the

jamming parameter, λ = Fxz
µsvD

, decreases as we increase the insertion velocity and

decrease the lateral force. This means that the likelihood of jamming will increase

as we increase the velocity during insertion. This is the draw back to high speed

insertions, but with an active complaint controller we can vary the compliance during

insertion to prevent jamming. Finally we note that by setting Fx ≈ µsv
µ

, the wedging

and jamming parameters return to the same Whitney parameters determined in

chapter 4.

7.2 Insertion Testing with Kinetic Friction Cone

Model

Shown in Figure 7.6 is the kinetic friction cone control model. We will use the

kinetic friction cone restrictions to control the velocity through the path planner

and we will prevent jamming using the kinetic friction compliance parameters. For
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Figure 7.6: Model of kinetic friction cone controller. (KFC-VIC)

the compliance parameters we will complete all of the insertions using the stiffness

values from equations (7.9)-(7.11). To accomplish this we can only use the velocity

impedance controller since the position based impedance controller will lose stability

at these compliance values. We will call this enhanced velocity impedance compliance

controller the kinetic friction cone velocity impedance controller (KFC-VIC) and the

velocity impedance controller (VIC).

To be able to compare the insertion results from the quasi-static model to the

dynamic model we will set the lateral force to Fx ≈ µsv
µ

to be able to compare the

difference in the models. When we compare the Whitney wedging model, θ < cD
µd

,

with the kinetic friction cone model wedging, θ < FxcD
µsvd

, we expect insertions to be

possible when the Whitney model predicts wedging failure. In the Whitney model

we always need the error to be below a set value but for the kinetic friction cone

model the error tolerance can be increased as the insertion velocity and lateral force

vary. This explains why multiple insertions succeeded in chapters 5 and 6 when the
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(a) Whitney Model (b) KFC Model

Figure 7.7: Cross peg insertion with KFC-VIC. The top graph is position error, the
middle graph orientation error, and the last graph depth of insertion.The red lines
correspond the Y and θY for the top and bottom graphs, respectively. The blue line
corresponds to the X and θX coordinate. The black lines are the maximum allowable
wedging value, Whitney model for (a) and KFC model for (b).

insertions should have failed due to wedging. In this section we will only compare the

velocity impedance controller’s response without the kinetic friction cone compliance

and with its compliance model. This will show that the Whitney model predicts a

failure when the insertion will actually succeed. We will also display the KFC wedging

model during these insertions to display how the insertions are able to succeed.

7.2.1 Cross Insertion

First, let us look at the error response between the Whitney and the KFC wedging

model. Figure 7.7 shows the response of the cross insertion for the KFC-VIC and

Figure 7.8 shows the response for the VIC. In both figures we see that the KFC
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(a) Whitney Model (b) KFC Model

Figure 7.8: Cross peg insertion with VIC. The top graph is position error, the middle
graph orientation error, and the last graph depth of insertion.The red lines correspond
the Y and θY for the top and bottom graphs, respectively. The blue line corresponds
to the X and θX coordinate. The black lines are the maximum allowable wedging
value, Whitney model for (a) and KFC model for (b)

model only intersects with the error at a few points during the insertion. In Figure

7.7 we see that the Whitney model has multiple points in the orientation error where

the insertion should fail whereas the KFC model barely intersects at this point. In

Figure 7.8 we see that the Whitney model has a better initial model of the error,

as the insertion does not begin until the error drops below this threshold. This is

due to the fact that at the beginning of the insertion the peg is hardly moving and

this would make the allowable error to become incredibly large, as shown in Figure

7.2(a).

The first noticeable difference between the controllers is how the KFC-VIC has

multiple points where the error is greater than the maximum wedging error predicted

by the Whitney model. This shows that while we increase the velocity of the insertion
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(a) KFC-VIC (b) Velocity Impedance Controller

Figure 7.9: Cross peg jamming response. The black line is the modeled maximum
jamming parameter and the blue line is the jamming response.

we also increase the position and orientation error.

In Figure 7.9 we see the jamming response generated by both controllers. As

we have seen in all insertions for both the position based impedance controller and

the velocity impedance controllers and again in Figure 7.9, there is no noticeable

jamming response when compared to the maximum allowable jamming parameter,

the black line in Figure 7.9. This is very important because increasing the velocity

also increases the likelihood for jamming, as shown in Figure 7.3 (a). Both compliance

models are good enough to prevent causes for concern with jamming. For the rest

of the insertions we will not look at the jamming responses since the compliance

controllers significantly reduces the likelihood of failure from jamming.

In Figure 7.10 we compare the experimental insertion force to the modeled inser-

tion force. The profiles of the actual insertion forces are very similar between the two

controllers. The kinetic friction cone model has a larger error but this is mostly due
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(a) KFC-VIC (b) Velocity Impedance Controller

Figure 7.10: Cross peg insertion force. The black line is the modeled insertion force
while blue line is the actual response.

to the fact that this insertion force model uses the Whitney insertion force model.

This means that there are dynamic responses from the reaction forces during inser-

tion not modeled, such as damping forces from the robot and the environment. This

also explains why the initial insertion force response closely resembles the Whitney

model as the velocities are small enough where kinetic friction force starts to become

µFX = µsv.

Based on Figures 7.7 and 7.8 we can see that the the KFC model predicts suc-

cessful insertions even when the Whitney model predicts the insertion to fail. The

caveat is that this requires the robot to push against the environment more than the

regular model. For the position based impedance controller this additional force to

the environment will likely cause the controller to become unstable which makes the

KFC model only possible with the velocity impedance controller.
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(a) Whitney Model (b) KFC Model

Figure 7.11: Cross peg insertion against gravity for KFC-VIC. The top graph is posi-
tion error, the middle graph orientation error, and the last graph depth of insertion.
The red lines correspond the Z and θZ for the top and bottom graphs, respectively.
The blue line corresponds to the X and θX coordinate. The black lines are the
maximum allowable wedging value, Whitney model for (a) and KFC model for (b)

7.2.2 Cross Insertion Against Gravity

Now let us look at the error response from the cross insertion acting against gravity,

Figures 7.11 and 7.12 shows this error response for the cross peg insertion against

gravity. In both figures we see that the KFC models the wedging failure threshold

better than the Whitney model. We also see that the KFC-VIC has much larger

errors than the VIC again.

As in the previous insertion, we see the KFC-VIC has significant error during the

insertion, which should cause it to fail. We also have similar insertion profiles from

the previous cross insertion with the velocity impedance controller. Again we see

from the KFC model, the insertion is able to be successful even with errors where
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(a) Whitney Model (b) KFC Model

Figure 7.12: Cross peg insertion against gravity for VIC. The top graph is position
error, the middle graph orientation error, and the last graph depth of insertion. The
red lines correspond the Z and θZ for the top and bottom graphs, respectively. The
blue line corresponds to the X and θX coordinate. The black lines are the maximum
allowable wedging value, Whitney model for (a) and KFC model for (b)

the Whitney model predicts wedging failure.

Figure 7.13 shows the insertion force response for cross peg insertion against

gravity. For this insertion the KFC-VIC is more similar to the insertion model than

the VIC. As was the case for the position based impedance controller, both insertion

forces settle at much larger values than those predicted by the Whitney insertion

force model. This is likely due to the gravity acting on the peg because gravity

causes the peg to experience an additional moment and force not modeled in the

Whitney model. We also see that the insertion force required for the KFC-VIC for

this insertion is still larger than the velocity impedance controller.
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(a) KFC-VIC (b) Velocity Impedance Controller

Figure 7.13: Cross peg insertion force against gravity. The black line is the modeled
insertion force while blue line is the actual response.

7.2.3 Key Insertion

The final insertion we will compare for the KFC model is the key insertion. Figures

7.14 and 7.15 show the errors from the experimental response for the key insertion.

For this insertion we see a few points where the error intersects with the maximum

allowable wedging value. There is a point where the KFC-VIC passes the error

threshold and the insertion still continues for the KFC model. We see the KFC

model has multiple points of intersection for the VIC. Interesting enough the last

points where the error intersects with the KFC model the insertion hastens. In

the Whitney model, we see that the insertions begin when the errors fall below the

Whitney models threshold. The insertion velocity for this experiment is low enough

where the Whitney model is the more accurate model.

Figure 7.16 shows the insertion force responses during key insertion. In this image
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(a) Whitney Model (b) KFC Model

Figure 7.14: Key insertion for the KFC-VIC. The top graph is position error, the
middle graph orientation error, and the last graph depth of insertion. The red lines
correspond the Y and θY for the top and bottom graphs, respectively. The blue line
corresponds to the Z and θZ coordinate. The black lines are the maximum allowable
wedging value, Whitney model for (a) and KFC model for (b)

we see the initial insertion force response is similar in both responses. The KFC-VIC

is again closer to the insertion model. Both responses settle at a larger value than

the Whitney model due to the gravity acting on the key. Finally we also see that

the insertion force required for the KFC-VIC is about 3 times as much as the VIC.

These three insertion responses have shown that the KFC model does increase the

allowable error for successful insertion when the velocity is large enough for the quasi-

static assumption to break down. We saw that at lower velocities, where the quasi-

static assumption can remain true, the Whitney model is a more accurate wedging

model. The issue with increasing the velocity during insertion is that all three KFC-

VIC responses have produced larger, but comparable, errors than the normal velocity

impedance controller method. We also see that the KFC-VIC requires a much larger
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(a) Whitney Model (b) KFC Model

Figure 7.15: Key insertion for the VIC. The top graph is position error, the middle
graph orientation error, and the last graph depth of insertion. The red lines cor-
respond the Y and θY for the top and bottom graphs, respectively. The blue line
corresponds to the Z and θZ coordinate. The black lines are the maximum allowable
wedging value, Whitney model for (a) and KFC model for (b)

insertion force than the standard insertion method. This increased insertion force

can cause the position based impedance controller to become unstable. From these

results we see that the KFC model does increase the allowable orientation error to

prevent wedging. We also saw that increasing the velocity will decrease the jamming

parameter but any compliance controller will be enough to prevent jamming. In

turn, using the kinetic friction cone compliance model for insertion will provide more

reliable insertions with the larger threshold for orientation error.
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(a) KFC-VIC (b) Velocity Impedance Controller

Figure 7.16: Key insertion force. The black line is the modeled insertion force while
blue line is the actual response.

7.3 Summary

From the KFC model, we saw that at velocities where µFX < µsv the KFC model

better predicts the orientation tolerance for wedging. At velocities below this thresh-

old we saw that the Whitney model was reliable and better modeled the orientation

tolerance. This is due to the fact that at these lower velocities we can use the

quasi-static assumption. We also saw that the jamming tolerance would decrease as

we increased the insertion velocities but this was never an issue as our compliance

controllers effectively prevent jamming.

We noticed that the KFC-VIC insertion force response was more similar to the

Whitney model than the response of the VIC. The main difference is that all of the

insertion forces from the KFC-VIC are much larger than the insertion forces from

the VIC.
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From these results we saw that the KFC-VIC provides a closer insertion profile

to what we expect. We also saw that the KFC-VIC has faster insertions than the

VIC. The issue with the KFC-VIC is that it also generates larger position and pose

errors than the VIC. The KFC-VIC also demands higher insertion forces than the

VIC. From these results the benefit to using the KFC-VIC is that the insertion forces

will be closer to the expected value and that the insertions will be faster.

From the kinetic friction cone model results, we saw that as we increase the veloc-

ity we need to increase the lateral force to ensure we have a large enough orientation

tolerance. Regarding the position impedance controller we know that increasing this

lateral force during insertion will likely cause it to become unstable. We did see that

the position impedance controller has the smaller initial errors than the VIC. This

implies that the position impedance controller is a preferable impedance controller

to use for insertions at lower velocities where the Whitney model is still accurate.

However, for high speed insertions, which are clearly advantageous, the KFC-VIC is

the preferred controller due to its insertion and compliance model.

From these results we see that using the kinetic friction cone model for insertion

modeling improves the accuracy in the allowable wedging and jamming for the inser-

tion. We saw that this model falls apart when µFX > µsv and the Whitney model

is the better insertion model at these lower velocities. We also saw that the kinetic

friction cone compliance controller, KFC-VIC, improves the insertion force and the

rate of insertion. However, we saw an increase in position and pose error and that

the insertion requires a larger insertion force than the velocity impedance controller.



134

Chapter 8

Conclusion

In this thesis we introduced a new compliance controller to rival the well-known po-

sition impedance controller. We compared the stability of the two controllers and

demonstrated the response of both controllers with the inclusion of a vision controller

to improve both impedance controllers accuracy. We then tested both controllers’

response to various insertion geometries in various configurations. While the posi-

tion impedance controller has the faster and slightly more accurate response at the

same stiffness values as the velocity impedance controller, the velocity impedance

controller has a larger range of stability with respect to higher stiffness values . The

velocity impedance controller also stays stable when interacting with high stiffness

environments. During the insertion experiments we saw the limitations of using the

position impedance controller at higher stiffness values with respect to stability.

We also introduced the idea of kinetic friction cone compliance model to improve

upon insertions for the velocity impedance controller. We saw that the velocity

impedance controller was capable of using the kinetic friction model due to its larger

range of stability, whereas the position impedance controller would become unstable.

This is because of the larger insertions forces required for the kinetic friction cone

model which was found to be three to fives times larger than the normal insertion
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force. We saw that KFC-VIC was capable of successful insertions for errors that

would cause wedging. From these results we can conclude that the proposed velocity

based visual impedance controller is a viable compliance controller with the bene-

fit of having more stability at higher stiffness values than the position impedance

controller.

Another important aspect of the velocity based visual impedance controller is

that the compliance can also be controlled using the damping parameters. These

damping control responses were not explored in this thesis work since the position

impedance controller was not able to reliably vary these parameters. As we needed

to compare the improvements using the velocity impedance controller over using

the position based impedance controller we needed to compare the two controllers

using the same compliance values. Since this work has shown the difference of the

velocity and position based impedance controllers while using similar parameters,

future research would look at the improvement of the compliance model by including

the damping response into the model. By including the damping as an active force

into the compliance model we can further extend the kinetic friction cone compliance

model and model additional dynamic insertion forces. By doing this it may be

possible to develop a dynamic controllable object insertion model.
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