
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

Fall 11-14-2016

Mesh Addition Based on the Depth Image
(MABDI)
Lucas E. Chavez
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

Part of the Mechanical Engineering Commons, and the Robotics Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Chavez, Lucas E.. "Mesh Addition Based on the Depth Image (MABDI)." (2016). https://digitalrepository.unm.edu/me_etds/110

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/110?utm_source=digitalrepository.unm.edu%2Fme_etds%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Lucas E. Chavez

Candidate

Mechanical Engineering

Department

This thesis is approved, and it is acceptable in quality and form for publication: Approved by

the Thesis Committee:

Dr. Ron Lumia, Chair

Dr. Rafael Fierro, Member

Dr. Robert Anderson, Member

i

Mesh Addition Based on the Depth Image
(MABDI)

by

Lucas E. Chavez

B.S., Mechanical Engineering

New Mexico Institute of Mining and Technology, 2009

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2016

Acknowledgments

This work was supported in part by Sandia National Laboratories under Purchase
Order: 1179196 and NSF grant OISE #1131305.

iii

Mesh Addition Based on the Depth Image
(MABDI)

by

Lucas E. Chavez

B.S., Mechanical Engineering

New Mexico Institute of Mining and Technology, 2009

M.S., Mechanical Engineering, University of New Mexico, 2016

Abstract

Many robotic applications utilize a detailed map of the world and the algorithm used

to produce such a map must take into consideration real-world constraints such as

computational and memory costs. Traditional mesh-based environmental mapping

algorithms receive data from the sensor, create a mesh surface from the data, and

then append the surface to a growing global mesh. These algorithms do not provide

a computationally e�cient mechanism for reducing redundancies in the global mesh.

MABDI is able to leverage the knowledge contained in the global mesh to find the

di↵erence between what we expect our sensor to see and what the sensor is actually

seeing. This di↵erence between expected and actual allows MABDI to classify the

data from the sensor as either data from a novel part of the environment or data from

a part of the environment we have already seen before. Using only the novel data,

a surface is created and appended to the global mesh. MABDI’s algorithmic design

identifies redundant information and removes it before it is added to the global mesh.

This reduces the amount of memory needed to represent the mesh and also lessens

the computational needs to generate mesh elements from the data.

iv

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 RGB-D Sensors . 2

1.1.2 Maps . 3

1.2 Goal . 4

1.3 Contribution . 4

2 Related Works 6

2.1 SLAM . 7

2.1.1 Point Locations . 8

2.1.2 Volumetric . 10

2.1.3 Surface . 12

2.2 Surface Reconstruction . 15

2.2.1 Volume-based . 16

2.2.2 Surface-based . 18

v

Contents

2.3 Summary . 21

3 Approach 22

3.1 Algorithmic Design . 22

3.2 Implementation . 24

3.2.1 Surface Reconstruction . 24

3.2.2 Software Design . 28

4 Experimental Setup 32

4.1 Simulation Overview . 33

4.2 Simulating a RGB-D Sensor . 33

4.2.1 Rendering Pipeline . 33

4.2.2 Adding Noise to the Depth Image 34

4.3 Sensor Path . 36

4.4 Simulation Parameters . 37

5 Results 39

5.1 MABDI Performance During Experiments 40

5.1.1 Experiment 1 . 40

5.1.2 Experiment 2 . 42

5.1.3 Experiment 3 . 43

5.2 Global Mesh Results . 45

vi

Contents

5.2.1 Mesh Quality . 45

5.2.2 Mesh Progression . 46

6 Conclusion 50

A MABDI code 51

A.1 FilterDepthImage.py . 51

A.2 FilterClassifier.py . 56

A.3 FilterDepthImageToSurface.py . 59

A.4 FilterWorldMesh.py . 64

References 66

vii

Chapter 1

Introduction

1.1 Overview

Many robotic applications, especially those that involve human-robot interaction,

often require a rich representation of the environment in order to perform such be-

havior as path planning and obstacle avoidance. In general, a rich representation, or

map, is useful for providing situational awareness to an autonomous agent. A map

is also important for applications such as teleoperation [1].

In robotics, map building in an unknown environment is referred to as the Si-

multaneous Localization and Mapping (SLAM) problem [2]. This label describes the

fact that a methodology which solves the SLAM problem must simultaneously locate

the robot in the environment as well as map the environment. The focus of this work

is the mapping aspect of the SLAM problem. Fig. 1.1 gives a visualization of the

goal.

The methodology to build a map is a continuously evolving subject in the field

of robotics and computer graphics. Well known works of map building methods be-

1

Chapter 1. Introduction

Figure 1.1: Goal is to create a map from depth images.

gan to be seen around 1987 [3]. Since then, the methods and the representations

themselves have continued to evolve at an impressive rate. Growth in this field of

research has been fueled by continuous advances in computing and sensing technolo-

gies. Over the years, sensors have continued to generate measurements at higher

rates, higher resolution, and lower cost. RGB-D sensors are a new category of sensor

that have recently gained extensive popularity in the robotics community due to

their a↵ordability and ability to generate a rich amount of data.

1.1.1 RGB-D Sensors

The popularity of RGB-D sensors began with the release and commercialization of

the KinectTM by Microsoft. The arrival of the Kinect brought with it an inexpensive

depth sensor that uses an active range system to generate a depth map of a given

environment [4]. The Kinect and similar sensors, have come to be called RGB-D

sensors. This class of sensors provide images which include both visual (RGB) and

depth (D) values. Several works have taken advantage of this sensor technology in

scenarios such as environmental mapping [5], 3D reconstruction [6], gesture recogni-

tion [7], and altitude control of aerial vehicles [8].

2

Chapter 1. Introduction

RGB-D sensors generally provide data at 30 frames per second and 640⇥480

resolution. Consequently, methods that use RGB-D data must handle over 9 million

pixel values per second, if only using the depth information (D), and over 18 million

if using both color (RGB) and depth (D). The amount of data output from RGB-D

sensors creates the need for mapping methods that are computationally inexpensive

and also influences the type of data structure used to store the map.

1.1.2 Maps

There are di↵erent types of data structures that can define a map. All types have

both intrinsic characteristics that impact the algorithms that generate them and

constraints that must be considered for real-world applications. In addition, we

are concerned with rich representation types, in contrast to sparse representation

types [9], because rich types have the most use in applications such as human-robot

interaction.

Table 1.1: Comparison of constraints for di↵erent map types.

Supported Computationally Low Memory

Inexpensive Requirement

Point Clouds x x -

Surfels - x x

Implicit Functions x - -

Mesh x x x

When considering which type of map is best for real-world applications, we must

consider the constraints imposed by each type:

• Supported - Is there software, tools, research, algorithms, etc., for this type of

map?

3

Chapter 1. Introduction

• Computationally Inexpensive - Can the algorithms run quickly on low cost

computers (rather than specialized hardware)?

• Low Memory Requirement - Can the algorithms run on hardware with a stan-

dard amount of RAM?

Table 1.1 compares the constraints of common map types. We can see, in general

a mesh type map satisfies real-world constraints. Additionally, meshes have been

used extensively by the gaming and graphics communities, and so benefits from an

incredible amount of continued research and advances in hardware such as Graphics

Processing Units (GPUs).

1.2 Goal

The goal of this work is to develop a mapping algorithm that can gracefully utilize

the amount of data output from an RGB-D sensor. Additionally, the algorithm will

make use of software tools and hardware that have been developed for mesh data

structures. The algorithm will be able to make intelligent decisions using the data

it receives based on the knowledge it has been building about the environment. The

decisions will be driven by the leveraging the di↵erence between what the algorithm

is actually seeing and what it expects to see. The decisions will be generated using

computationally inexpensive computer vision methods.

1.3 Contribution

MABDI’s contribution to the state-of-the-art in mesh based environmental mapping

is closing the loop of the algorithmic structure used by current methods. Fig. 1.2a

4

Chapter 1. Introduction

shows the structure of current methods. Data comes in from the sensor, those mea-

surements are used to create a mesh, and then that mesh is appended to a global

mesh. We can then compare the structure of current methods to the structure used

in MABDI, shown in Fig. 1.2b. Both structures have the “Create Mesh from In-

put” component. The input to this component is di↵erent for current methods and

MABDI. Current methods input all data from the sensor whereas MABDI only in-

puts data identified to be from the unknown parts of the environment. The MABDI

algorithm is able to identify this data by leveraging the knowledge contained in the

Global Mesh and intelligently categorizing the incoming data. This categorization

of the incoming data closes the loop of the algorithmic structure used by current

methods and is the contribution of MABDI to the state-of-the-art.

(a) Current methods

(b) MABDI

Figure 1.2: Algorithmic structure of current methods (a) and MABDI (b). Contri-
bution of MABDI to the state-of-the-art shown in red

5

Chapter 2

Related Works

A major problem in robotics has been and continues to be: How can we create the

“best” representation of an unknown environment? There are two main communities

of researchers who been working on developing algorithms and methods to answer

precisely this question. They are the robotics community and the computer graphics

community, but each community has a slightly di↵erent motivation for solving this

problem. The robotics community is concerned with developing a real-time solution

for generating representations in large environments. In the literature, large envi-

ronments usually range in size from multi-room o�ce spaces to a few square miles

on city streets. These representations are used by both fully autonomous and tele-

operated systems. The common name which is used by the robotics community for

this problem is Simultaneous Localization and Mapping or SLAM. The name SLAM

refers to the problem of mapping and locating a robot in an unknown environment.

Early methods generated very sparse representations of the world, as time and sensor

technology progressed the representations became denser. A dense representation is

desired for any system that must have good situational awareness of its environ-

ment. The computer graphics community is concerned with generating high quality

representations of small environments. In the literature, small environments usually

6

Chapter 2. Related Works

range in size from a cubic meter to room size. They generally refer to the problem as

surface reconstruction. These representations are used by augmented reality, com-

puter game object creation, 3D printing, and other applications. In the following

sections we will trace the development of representation generating methods in both

communities.

2.1 SLAM

The problem of SLAM has been a primary focus of the robotics community for more

than 25 years. A complete solution to the SLAM problem must be able to generate

a representation of an unknown environment and track the robot in this new repre-

sentation. In this body of literature the act of generating a representation is referred

to as mapping. A good overview of the problem can be found in [10] and [11]. Each

solution is designed to consider the goal application, type of sensor, computational

constraints, and memory limits. All these factors influence the researcher’s choice of

which type of representation to use for the mapping procedure. In 2002 Thrun wrote

a famous survey [2] of the SLAM literature which categorized existing algorithms on

many traits including the representation. The representation choice of prior work

can be roughly categorized into three types. The first type is characterized by some

sort of list of 2D or 3D points and are usually considered to be sparse representa-

tions. Common names for these types are landmark locations and point clouds. The

second type is considered to be more volumetric based and is often times considered

to be a dense representation. Common names for these types are occupancy grid and

Truncated Signed Distance Function (TSDF). The last type has the characteristic of

being a surface representation and is also considered to be a dense representation.

Common names for these types are surfels and mesh. In the following sections we

will trace the history of each of the three types of representation that are seen in the

7

Chapter 2. Related Works

SLAM literature.

2.1.1 Point Locations

One of the most well known and earliest solution to the SLAM problem, which

uses a point location representation, was proposed by Smith et al. in 1990 [12]. The

mathematical framework that he created was the origin of a family of solutions based

on the Extended Kalman Filter (EKF). The representation he chose was simply a

list of 2D landmark locations. Each location was part of a state matrix which was

estimated at every iteration. A list of landmark locations was chosen because it

allowed the method to have a low computational cost and use a small amount of

memory, important factors in the days of early computing. There have been many

improvements to the family of SLAM solutions which generate a list of point locations

since Smith’s work. One of the first practical implementations on a real robot was

done by Thrun in 1998 [13]. In this work the SLAM problem was posed in an

Expectation Maximization (EM) framework which is similar to the EKF framework

in that landmark locations are saved in a state vector which is estimated at every

iteration. In Thrun’s work an occupancy grid map is generated as a post processing

step from sonar measurements. The results showed that their representation could

become more accurate over time by using new observations to improve the current

estimate. This a highly desired ability of any representation generation method. The

next step was the ability of these methods to include a loop closure procedure. A

loop closure procedure was proposed by Gutmann in 1999 [14]. The key ability of

the method was it could recognize when the robot was revisiting a prior location

and adjust the entire representation with the constraint that the two points must

coincide. In 2001 Dissanayake et al. [9] derived three theorems to theoretically

prove the convergence of the SLAM problem. Their test platform used a millimeter-

wave radar mounted on a vehicle and generated a list of 2D landmark locations.

8

Chapter 2. Related Works

In 2001 Thrun et al. [15] cast the SLAM problem using particle filter techniques.

Their results generated a 2D map and showed an increased robustness and lower

computational cost than prior methods. One of the key disadvantages of methods up

to this point was that complexity scaled quadratically with the number of landmark

locations. In 2002 Montemerlo et al. [16] created a SLAM solution named FastSLAM,

which was able to handle a much larger number of landmarks. They showed results

with maps containing more than 50,000 points. Then, SLAM solutions using point

locations became much more directed towards 3D.

Some of the first interesting works that represented the world as a list of 3D

point locations were done by Thrun et al. in 2000 [17], Liu and Emery in 2001 [18],

and Hähnel et al. in 2003. In these works the 2D landmark locations and robot

position were estimated using techniques from Thrun’s past work [13]. Once this

had been done the 3D laser scan data was simply appended to each estimated robot

location. Then, a mesh was created by post processing the 3D point cloud. Their

works utilized the fact that the laser collected the data in an incremental manner

and simply connected neighboring 3D points. Finally, the mesh was simplified by

looking for large planar sections and merging the corresponding mesh elements. One

of the first SLAM solutions which used a single camera to generate a list of 3D points

was done by Davison in 2003 [19]. Here he used a single camera to generate a very

sparse list of 3D points. This method was limited to small environments. Future

advances allowed representations of larger environments. In 2003 Thrun et al. [20]

created a SLAM procedure which did not rely on having a structured environment

and was applied to mapping large mines. In 2004 Howard et al. [21] created a SLAM

system based on a Segway platform equipped with a 3D laser which could map areas

of roughly 0.5 km on each side. One of the results showed a map with approximately

8 million points. In 2006 Cole and Newman [22] continued work in large-scale SLAM

by increasing robustness and also generated maps with many 3D points using a laser

sensor. In 2007 Clemente et al. created a large-scale SLAM system that used a single

9

Chapter 2. Related Works

camera. The system had an advanced loop closing procedure based on visual features

and created large maps of 3D points. In 2001 Klein and Murray [23] developed a

SLAM solution which used a single camera. The uniqueness of their method was the

algorithmic structure. Their SLAM solution consisted of two separate processes: a

tracking process and a map building process. This algorithmic structure has become

very common in many current SLAM solutions because of the advances in pose

estimation technology. Klein and Murray were able to get very good results for a

small environment and showed Augmented Reality (AR) applications. Many of the

future advances of SLAM solutions, which generated 3D point sets, dealt with camera

systems [24, 25, 26] and improved speed and robustness. Most current methods that

produce a list of points use a relatively new type of sensor named a RGB-D sensor.

One good example is a work that was produced in 2011 by Engelhard et al. [27].

In this work they used an algorithm named the Iterative Closest Point (ICP) [28] to

align point clouds coming from the RGB-D sensor into a large colored point cloud.

The resulting maps were visually impressive. However, the map could not be adapted

to new information and was not well suited for other applications, such as obstacle

avoidance. These limitations are inherent in maps that consist of lists of points.

2.1.2 Volumetric

Many SLAM solutions generate a 2D volumetric representation of the world because

they are especially advantageous in dealing with noisy sensors. Two of the first major

works that generated a 2D volumetric representation were done in 1998 by Yamauchi

et al. [29] and Schultz et al. [30]. These works generated a 2D occupancy grid, which

is a type of volumetric representation. Here the environment was divided into a 2D

grid. Each square of the grid contained the probability that it was occupied with an

object. All squares would be updated iteratively based on the current sensor readings.

Occupancy grids, like any other volumetric-based representation, are limited by the

10

Chapter 2. Related Works

amount of available memory. In 2002 Biswas et al. [31] extended occupancy grid

methods by allowing dynamic environments. This was done by looking at past

“snapshots” of the map. In 2004 Eliazar and Parr [32] continued the advancement

by decreasing computational cost and implemented a loop closure method.

There have been a few impressive SLAM solutions that generate a 3D volumetric

representation. There are three major works that generated a result very similar to

a 3D occupancy grid, which was saved as in a octree data structure [33, 34, 35, 36].

Each work had a slightly di↵erent name and procedure for generating the represen-

tation, but in general the representations divided the environment into cubes and

had a scalar value representing the belief of a surface being there. Octrees were used

to save memory by only having a fine resolution of cubes at places where there was

a surface. There are many advantages to a 3D occupancy grid representation. The

representation is well suited for obstacle avoidance and path planning applications.

Also, the representation is very adaptable to new information. The major disadvan-

tage is that the representation can not be visualized immediately. In order to render,

an image must be generated at each desired viewpoint by ray tracing the volume.

This can be a problem when using such method for applications such as teleoperation

due to the computational cost of rendering. The current state of the art for gener-

ating a volumetric representation was done by Newcombe et al. in 2011 [6]. Their

system used a RGB-D sensor and generated a 3D voxelized grid Truncated Signed

Distance Function (TSDF) of the environment. For this type of representation each

cube contains the value of the distance to the nearest surface. The sign of the value

is based on which side of the surface the cube is relative to the sensor. This work

has been the most capable at dealing with extremely noisy data and dynamic scenes.

However, due to memory constraints the method can only represent environments

that are about the size of a 4m cube. Also, it must be ray traced in order to be

visualized.

11

Chapter 2. Related Works

2.1.3 Surface

One of the first major works that created a surface representation of the environment

in real-time was done by Martin and Thrun in 2002 [37]. Their method utilized an EM

framework to fit plane models to 3D point cloud data. Polygon mesh elements were

then easily assigned to each plane. The main drive behind this work was to generate

a map of the environment that uses a small amount of memory. Their method worked

well for structured environments. One of the major limitations of their method, and

other methods that only mesh large planar sections, is that the representation will

only consist of planar sections and not capture the fine detail of the environment. In

2004 Viejo and Cazorla [38] developed a methodology for generating a mesh that can

contain more information of the environment than large planar sections. Due to this

ability, they termed their method to be “unconstrained.” Essentially their method

was based on a 3D Delaunay triangulation algorithm. Giesen surveyed Delaunay

triangulation methods in [39]. Viejo and Cazorla were not able to obtain real-time

results and, in fact, it has been seen that it is extremely di�cult to run a 3D Delaunay

triangulation in real time because of the numerous distance calculations required.

One of the next major advances came from Weingarten and Siegwart in 2006 [40].

Their work also created a mesh that was only capable of capturing large planar

surfaces. However, they showed increased robustness. In 2007 Pollefeys et al. [41, 42]

developed a large urban mapping system consisting of a vehicle and eight camera

systems. The processing was carried out by multiple CPUs and optimized for speed

with Graphics Processing Unit (GPU) calculations. In their work they used the

camera systems to generate an initial set of depth maps. This set was then reduced

using their depth map fusion method. The method combined multiple depth maps

to reject erroneous depth estimates and remove redundancy from the data, resulting

in a reduced set of depth maps that was more accurate than the initial set of depth

maps. The reduced set was then used by a triangulation procedure to create a mesh

12

Chapter 2. Related Works

of the environment. The mesh generation procedure was based on a work from 2002

by Pajarola et al. [43]. This method defines a mesh in the depth image. It starts

from a very coarse mesh and continues to refine in areas of the depth image based on

a confidence criteria. In the work of Weingarten and Siegwart, these meshes that are

defined for each fused depth image are then checked for overlaps and duplicates are

removed to make a single large mesh. One of the major drawbacks of this approach is

that the output mesh can not be adapted by measurements that come from revisited

parts of the scene. Another major advancement came in 2008 from Poppinga et

al. [44]. In this work they used a Time of Flight (ToF) camera to generate a

mesh representation of the large planar structures in the environment. Here they

also develop a procedure to determine a mesh in a depth image. They leverage

the structure of the depth image to make the method computationally inexpensive.

In their work they simply append the meshes that are created from each depth

image into a global coordinate system. They obtain very good results from a simple

method. However, the method is not adaptive to new information. Also, a mesh is

created for each depth image instead of updating and maintaining a global mesh.

A major advancement came from work done by Newcombe and Davison in 2010

[45]. In this work they designed a method to create a mesh reconstruction from a

single video camera. Their method used Structure From Motion (SFM) to obtain

a sparse point cloud of the scene. Then an implicit function was fit to the point

cloud using the methodology of Ohtake et al. [46]. A bundle of depth maps is then

selected. From the bundle a single reference depth image is selected and a “base”

model is constructed by sampling the implicit surface for vertices in the reference

frame. The neighboring frames are used to better the “base” model and create a

more accurate mesh. Each reference frame has its own mesh and all the meshes are

put into a global coordinate system. Duplications are then detected and removed.

Again, the representation is not adaptive to new information. In 2010 Stühmer et

al. [47] generated very accurate depth maps from several color images in real-time.

13

Chapter 2. Related Works

They showed very impressive results but their method was not designed to maintain

a representation in a global coordinate frame.

The next major advances in methods that generated surface representations of

the environment, were based on RGB-D sensors. This type of sensor has become

very popular since the release of the Kinect from Microsoft that was the first mass

produced RGB-D sensor of its kind. RGB-D sensors are inexpensive and produce

noisy 640x480 depth images at 30Hz. The RGB-D sensor has excited the robotics

community because this has been the first time that depth data has been so readily

accessible from such an inexpensive sensor. Therefore, these methodologies must be

able to quickly deal with very high rates of information. One impressive work came

from Henry et al. in 2012 [48]. In this work they designed a system that used a

RGB-D sensor to build a map made of surfels (Surfels are circular disks which have

a particular position and orientation and also a radial size based on confidence.).

In order to generate and maintain the surfel map they used the work of Weise et

al. [49]. The map consists of a large number of surfels. The surfel map can be

updated given new registered depth images from the sensor. Decisions are made how

to handle each measurement in the depth image based on the di↵erence between

an expectation generated using the current map and the actual readings from the

sensor. Rendering a surfel map requires special methods [50] and is di�cult to use

in applications such as obstacle avoidance.

One of the next major advances is a highly-related work that was published by

Whelan et al. in 2012 [51] and more recently in 2013 [52]. The system they developed

was named Kintinuous and was able to produce a high quality mesh representation

of the environment. Their hybrid system utilized the KinectFusion method [6] of

Newcombe et al. to create a volumetric representation of the portion of the environ-

ment in front of the sensor. As the sensor moves, portions of the environment that

leave the volume in front of the sensor are ray cast and turned into a mesh. They

14

Chapter 2. Related Works

obtain very impressive results but also mention a limitation of their system for future

work. The limitation is that the mesh can not be updated once created, which is

an issue when revisiting parts of the environment that may have changed. One of

the most impressive current works which has an adaptable mesh came from Cashier

et al. in 2012 [53]. In this work, they were able to generate and update a mesh

with new measurements from a ToF sensor. They used the di↵erence between the

existing model and the actual measurements to decide whether to adapt the mesh

or add new elements. The mesh topology was not adaptive to the environment and

their experiments only showed results of mapping a single flat wall with no robot

movement. The system needs to be tested for object addition and removal.

2.2 Surface Reconstruction

The computer graphics field has spent considerable e↵ort to develop methodologies

for creating representations from sets of data. Generally, these sets of data are ac-

quired from a sensor. Methodologies have progressed steadily and are often designed

for a specific application. One of the original motivations was to generate surfaces

from medical imaging data. This improves a doctor’s decisions because the data

are presented in a more intuitive manner. Current applications include augmented

reality and 3D printing. Older methodologies were not as concerned with speed and

often times had a large computational cost. Also, the methodologies are often de-

signed for single objects or small environments. Following the taxonomy of such well

known works as [54, 55], the field can be roughly divided into representations that

are generated with volume-based techniques and those that use surface-based tech-

niques. Methods that use volume-based techniques are characterized by spatially

subdividing the environmental volume and are usually computationally expensive

and require a large amount of memory. Methods that use surface-based techniques

15

Chapter 2. Related Works

generate the representation using surface properties of the input data. Both types

of methods can have mechanisms to adapt the mesh to noisy or new information. In

the following section we will trace the progression of the methodologies.

2.2.1 Volume-based

Volume-based methods have the characteristic of spatially subdividing the volume

into smaller parts. One of the first well known works that used a volume-based

technique was proposed by Lorensen and Cline in 1987 [3]. In this work they proposed

a method named marching cubes, which is still known for its reliability and simplicity

and is used by applications that do not have a computational requirement. Marching

cubes subdivides the space into cubes. The data contained in each cube dictate how

the surface connectivity will be defined in that cube. Possible vertex locations are at

the corners and along the edges. Once this has been done for all cubes the process is

complete. One of the next major steps came from Hoppe et al. in 1992 [56] In this

work they used the input points to define a Signed Distance Function (SDF) in 3D

space and then meshed the zero-set to obtain the output mesh. A SDF is a spatial

function that has the value of the distance to the nearest surface at each point.

The sign is used to specify if the point is inside or outside of the surface relative to

the sensor. The zero-set of the SDF is the surface where the values transition from

positive to negative. Using a SDF has proven to be very e↵ective and has been the

core idea of many methodologies that came after this work of Hoppe et al., such as

KinectFusion [6]. One of the next advances came from Edelsbrunner and Mücke in

1994 [57] with a method named alpha shapes. They used 3D Delaunay triangulation

and the input point set to decompose the volume into a Delaunay tetrahedrization.

This gives a triangulation of the input set which involves all points. A sphere of radius

alpha is then used to remove edges and vertices to obtain a mesh of user specified

resolution. Many works have made use of 3D Delaunay triangulation to create a

16

Chapter 2. Related Works

mesh. Methods which use 3D Delaunay on the input set have a large computational

cost and often cannot be executed in real-time. The next valuable contribution came

from Bloomenthal in 1994 [58] as open source software for surface polygonization

of implicit functions. This was a stable and robust open source software that has

been used in many well-known algorithms [45]. Another major advance came from

Curless and Levoy in 1996 [59]. In this work they also constructed a Truncated Signed

Distance Function (TSDF). A TSDF is very similar to a SDF; the only di↵erence

is that distance values are truncated after they exceed a threshold. Their method

was one of the first to be able to handle several registered range scans. Their work

showed how well a TSDF can deal with several noisy scans by naturally integrating

out the noise. They obtained very good results but were not even close to real-time.

A speed up in processing time was achieved by Pulli et al. in 1997 [60] by utilizing

octrees. They obtained good results and their method was used by Surmann et

al. [61] in a well-known robotic mapping work. Another major advance came in

2001 from Zhao et al [62]. They used Partial Di↵erential Equation (PDE) methods

to obtain a final reconstruction that was of better quality than prior methods. In

2001 Carr et al. [63] created a volumetric method based on the radial basis function

(RBF). Their method was able to successfully deal with holes and generate water

tight models. A water tight model is useful for single object reconstruction. However,

it is not desired for mapping large environments. One of the next major advances

was published in 2003 by Ohtake et al. [46]. In this work they created a method that

was faster than the work of Carr et al. [63] by implementing a hierarchical approach

with compactly supported basis functions. At the time, their work was considered

to be the state of the art for calculating an implicit function of a noisy point set and

was used by Newcombe et al. [45]. Volume-based methods have been able to create

high quality representations and work well for single objects and small environments.

These methods must spatially divide the environmental volume and therefore have

a high memory requirement.

17

Chapter 2. Related Works

2.2.2 Surface-based

One of the first interesting and adaptive surface-based methods was published by

Terzopoulos and Vasilescu in 1991 [64] and dealt with 2.5D data such as intensity

and range images. The goal of their work was to create an adaptive mesh of an

input image. The mesh was initialized as a 2D sheet of mesh elements with virtual

springs along each edge. The sti↵ness of each virtual spring would then adjust based

on the image information at its locations. The mesh was able to adapt to be more

dense in regions of higher intensity. In 1992 Terzopoulos and Vasilescu extended their

methodology to 3D data [65]. In this work they used the distance between the mesh

and the data to drive the vertices to be near the surface. In this early work they

needed to initialize the mesh and control the subdivision of mesh elements to obtain

a suitable resolution. In 1993 Hoppe et al. [66] published a method that used an

energy minimization framework. Their method minimized an energy function that

modeled the competing desires of conciseness of representation and fidelity to the

data. They successfully used their method for both surface reconstruction and mesh

simplification. One of the next advances in physical based adaptation of meshes came

in 1993 from Huang and Goldof [67]. In this work they were able to adjust the size of

the mesh elements to obtain a dense resolution in areas of high frequency information

using a physical based model. In addition, it was one of the first works to represent

an object undergoing deformation. Their method was able to perform tracking on

simple simulation examples. Another advancement came in 1994 Rutishauser et al.

[68] with a method specifically designed for incremental data. Their methodology

worked with a sequential input set of range data and used a probabilistic framework

to adjust the vertices of a mesh to the expected value given the prior observations.

Their methodology also modeled the noise of the sensor with a sensor model. In

1994 Delingette [69] developed a methodology to generate a simplex mesh model

of structured and unstructured 3D datasets. Elastic behavior of the mesh surface

18

Chapter 2. Related Works

was modeled by local stabilizing functionals. Also, they implemented an iterative

refinement process to refine the mesh in areas of high frequency information. One of

the next steps was published by Turk and Levoy in 1994 [70]. Their method allowed

overlapping meshes to be “zippered” into a single mesh surface. This ability is espe-

cially important for methods that generate a mesh for each depth image of the sensor

and then need to combine all registered meshes into a single mesh. Their method is

computationally expensive due to distance calculations. An interesting work came

in 1995 from Chen and Medioni [71]. They devised an adaptive mesh methodology

based on the inflation of a balloon. A mesh sphere was first initialized within the

registered range measurements of the object. Virtual inflation forces were then used

to expand the balloon until the mesh surface was a minimal distance from the range

data. This method was limited to objects that are water tight. A major advance-

ment came in 1999 from Bernardini et al., [72] in a method named the ball-pivoting

algorithm. Their method is a good example of an advancing front method. These

types of algorithms start with a seed mesh element and advance the boundary by

adding new mesh elements in the immediate area of the boundary which is supported

by measurements. Advancing front algorithms di↵er in how it is decided to add new

mesh elements. In the work of Bernardini et al., a virtual sphere of a user defined

radius is rolled along the boundary of the mesh and new elements are added if the

ball touches another measurement. Their methodology became popular because of

its simplicity. One major disadvantage was that the generated mesh was a fixed

topology. Another advancing front method came in 2001 from Gopi et al. [73, 54].

Here, they sampled the input dataset to obtain a new dataset with a lower density

of points in areas of lower frequency information. This e↵ectively gave their method

an adaptive topology. Next, a local neighborhood was computed at each data point

and projected to a plane tangent to the surface. The triangulation is then computed

on this local tangent plane. They obtained impressive results on datasets of varying

sample density and curvature. An interesting work was published in 2003 by Ivris-

19

Chapter 2. Related Works

simtzis et al. [74]. Here they used a neural network model to adapt a mesh model

to the data. They claimed that their method is computationally independent of the

size of the input dataset because the dataset is only sampled by the method. There

obtained good results. In 2004 Alexa et al. published a very interesting work to gen-

erate point set surfaces from an input dataset [75]. They use moving least squares

(MLS) to locally approximate the surface with polynomials. The original dataset is

then no longer used. Instead, they develop tools to sample the approximated surface

to any resolution desired so that the end result is another point set of user specified

resolution lying closer to the surface than the input dataset. One drawback is they

had to develop their own methodology to render a point set. In 2005 Scheidegger

et al. used the work of Alexa et al. to develop an advancing front methodology

to generate concise meshes of high accuracy. Their main contribution was to aug-

ment an advancing front algorithm with global information so that the triangle size

could adapt gracefully to any change. They obtained very impressive results. Most

methodologies in Surface Reconstruction had been solely concerned with object or

small environment recreation and have computational or memory requirements that

do not work well with large environments. One of the first successful methods in-

tended for large environments was published in 2009 by Marton et al. [76]. Their

methodology was an advancing front algorithm that worked on a point set sampled

from the MLS surface of the original point set. They were able to obtain impressive

and near real-time results on datasets of large environments. They also developed a

method to deal with revisited parts of the scene by determining the overlapping area

and reconstructing only the updated part of the surface mesh. To support dynamic

scenes they developed mechanisms to decouple and reconstruct the mesh quickly.

They only discussed these mechanisms in theory and had no results of how these

mechanisms work.

20

Chapter 2. Related Works

2.3 Summary

The fields of Robotics and Computer Vision have developed many exciting method-

ologies to construct representations from a noisy input dataset. However, there is

still work to be done to obtain the ideal reconstruction method. A mesh is clearly

a desirable type of representation. An ideal method both generates and maintains a

mesh representation e�ciently. Also, many existing methods do not leverage the in-

herent structural information contained within the depth image. There are imaging

processing techniques that could be used to answer some of the remaining problems

in surface reconstruction, such as the need for adaptive topology and the need to

decide how each measurement should be used to update the existing mesh. Henry et

al. [48] have already investigated using the di↵erence between the expected and ac-

tual measurements to guide the decision of how to use each measurement. However,

their work was intended for surfels and needs to be extended to meshes. A method to

generate a representation is needed which is computationally and memory e�cient

and can adapt the representation to new information.

21

Chapter 3

Approach

3.1 Algorithmic Design

The algorithmic structure of MABDI can be seen in the system diagram shown in

Fig. 3.1. Table 3.1 gives a description of the main variables.

Table 3.1: Description of the main variables

Variable Name Description
D Depth image from RGB-D sensor
P Pose of the sensor
D

n

Parts of D that are novel
S Novel surface generated from D

n

M Global mesh

The system diagram of Fig. 3.1 is a more detailed version of the diagram seen in

Fig. 1.2b. The “Identify Novel Data” component, shown in Fig. 1.2b, corresponds

with the Classification component, shown in blue. This Classification component is

MABDI’s contribution to the state-of-art in mesh based mapping algorithms, and

is what gives MABDI the ability to make decisions about the incoming data. The

22

Chapter 3. Approach

Simulated for the Experiments

Classification

Generate Expected Depth Image (E)

 Classify Depth Image (D):

Classification is based on the difference between
expected (E) and actual (D).

(Dn) are novel values in the depth image (D).

Add Novel Surface (S) to Global Mesh (M)

Input
Depth Image (D) and Pose (P) from sensor.

P

 Surface Reconstruction:

Novel Surface (S) generated from Novel Values (Dn).

Any surface reconstruction algorithm can be used.

E

Dn

S

M

D

Figure 3.1: MABDI system diagram

Classification component consists of two parts:

1. Generate Expected Depth Image E - Here we take the global mesh M , render

it using computer graphics, and use the depth bu↵er of the render window

to create a depth image E of what we expect to see from our sensor. This

method requires the current pose P of the actual sensor (simulated for our

experiments).

2. Classify Depth Image D - Here we classify the actual depth image D (simulated

23

Chapter 3. Approach

for our experiments) by first taking the absolute di↵erence between E and

D and thresholding, as shown in the equation below. If the di↵erences are

small, those points are thrown away and if the di↵erences are large, those

points are kept as D

n

. The idea behind this is, if the di↵erence is large, the

measurements are coming from a part of the environment that has not been seen

before, i.e. novel. We found threshold=0.01 worked well in our simulations.

The implication of assuming all large di↵erences signifies novel data is that

this version of MABDI cannot handle object removal. It is worth noting that

MABDI can be extended to handle object removal by using the sign of the

di↵erence between E and D instead of the absolute value.

D

n

= |D � E| > threshold (3.1)

The system diagram in Fig. 3.1 also shows the Input and the Surface Reconstruc-

tion components. The Input component has been simulated for our experiments.

More details of this simulation will be covered in Chapter 4. The Surface Recon-

struction component of the MABDI algorithm can be implemented with any viable

surface reconstruction method. Our implementation utilizes the structural informa-

tion contained within the depth image. We will discuss this in more detail in the

next section.

3.2 Implementation

3.2.1 Surface Reconstruction

The Surface Reconstruction component, as shown in Fig. 3.1, is responsible for

creating a surface S from the novel points D
n

. The surface S is a mesh data structure

that consists of a list of vertices and elements. Vertices are points and elements define

24

Chapter 3. Approach

connections between vertices. Our method outputs a triangle mesh, and so elements

define the connection between three vertices. D

n

is a subset of D and is a list of

pixel locations. For this discussion, it will also be useful to define D

k

as the set of

pixels in D that are not pixels of D
n

, shown in the equation below. D
known

is labeled

with “known” because it represents data from the not novel or “known” parts of the

environment. In the equation below “\” is the set di↵erence operator.

D

known

= D \D
n

(3.2)

Our surface reconstruction method first defines S using all pixels from D. We

define the topology of the elements on the depth image. We can do this because a

depth image is not a set of unorganized points, but has inherent structural informa-

tion. This characteristic of the depth image allows us to define a topology on the 2D

depth image that is preserved when projected to 3D coordinates. The topology we

define can be visualized in Fig. 3.2. Elements of the mesh are shown in light blue

and pixels from D are shown as blue dots. Next we will identify elements to remove

from S.

In order to remove elements defined by points that lie on completely di↵erent

surfaces, we use an imaging technique in the form of a convolution filter. A two

dimensional, di↵erencing convolution filter is passed over D. This filter has a mag-

nified response at points where the di↵erence between neighboring pixels is large.

Remembering pixel values signify depth, it is assumed pixels with large di↵erences

between themselves and their neighbor lie on di↵erent surfaces and therefore lie on

the “boundary” of the real surface. A large di↵erence is defined by thresholding on

the result of the convolution. We found threshold=0.01 worked well in our simula-

tions. (The threshold value is unitless because the depth image is defined by the

z-component of the view coordinates, which are normalized between 0 and 1.) Pixels

identified through this thresholding are marked as D
boundary

and are defined by the

25

Chapter 3. Approach

Width of depth image

H
ei

gh
t o

f d
ep

th
 im

ag
e

Figure 3.2: Topology defined on the depth image (not all elements are shown)

equation below where K signifies the kernel of the di↵erencing convolution filter.

K =

2

4 2 �1

�1 0

3

5 (3.3)

D

boundary

= (D ⇤K) > threshold (3.4)

Elements are removed from the S if they touch pixels from the sets:

• D

known

- Pixels from the known parts of the environment.

• D

boundary

- Pixels that lie on the boundary of the actual surface.

26

Chapter 3. Approach

• D

invalid

- Pixels that are invalid measurements. The RGB-D sensor naturally

has pixels that are invalid, for example, those that are out of range.

Let us combine the sets defined above into one set D
throwaway

:

D

throwaway

= D

known

[D

boundary

[D

invalid

(3.5)

Our method removes elements that contain pixels from the set D
throwaway

. This

can be seen in Fig. 3.3. Red dots signify pixels from D

throwaway

and elements that

contain these pixels are removed from S. In the final step, all pixels are projected

into 3D coordinates using the transformation matrix of the sensor. These coordinates

are the vertices of S.

Figure 3.3: Removal of elements

27

Chapter 3. Approach

Our surface reconstruction method was chosen for its ability to be implemented

simply and run quickly. One consequence of our method is that the resulting surface

S can have a large number of elements. For example, if no points are contained in

the set D
throwaway

(this can happen on the first frame), S will contain over 600,000

elements. We can see this by looking at Fig. 3.2, assuming a depth image of size

640⇥480, and considering the equation below.

612, 162 = ((640� 1)⇥ 2)⇥ (480� 1) (3.6)

Many surface reconstruction methods have been developed to create a surface

more intelligently than our surface reconstruction method, as discussed in Chapter

2. For example, the advancing front method developed by Marton et al. [76] is

capable of creating surfaces with fewer elements than our method by utilizing a

robust resampling method. A capability of the MABDI algorithm is that the method

developed by Marton et al. can be used in place of our surface reconstruction method.

This characteristic of MABDI is advantageous because MABDI does not depend

on the choice of surface reconstruction method and the method can be chosen as

the state-of-the-art changes or to suit a particular application. Also, due to our

implementation’s modular software design, the entire code base would not need to

be changed in order to accomplish this. We will discuss the software design in the

next section.

3.2.2 Software Design

From a software perspective, the major di�culty of implementing the MABDI algo-

rithm was found to be creating both the simulated depth image D and the expected

depth image E. In addition, managing the complexity of the data pipeline needed

to run the algorithm and the simulation of the sensor proved to be di�cult. Thank-

28

Chapter 3. Approach

fully, Kitware, which is a leading edge developer of open-source software, created

the Visualization Toolkit (VTK) [77, 78]. At the time of this writing the VTK

Github repository has over 60,000 commits and is contributed to by supporters such

as Sandia National Labs [79].

VTK is suitable for the implementation of MABDI for many reasons. Perhaps

the most important is the concept of a vtkAlgorithm (often called a Filter). This

allows a programmer to create a custom and modular processing pipeline by defining

classes that inherit vtkAlgorithm and then defining the connections between these

classes. For example, you could have a pipeline that reads an image from a source

(component 1), performs edge detection (component 2), and then renders the image

(component 3).

Using the concept of VTK filters, the individual elements of MABDI can be

succinctly defined in individual classes. With that in mind, we can see in Fig. 3.4

the layout used in our implementation of MABDI. vtkImageData and vtkPolyData

are VTK types used to represent an image and mesh respectively. The elements

shown in blue in Fig. 3.4 are the core components of the MABDI algorithm and are

implemented as custom VTK filters. Their source code is included in Appendix A.

Here we will discuss all components in detail:

• Source - Classes with the prefix Source define the environment that is used for

the simulation and provide a mesh in the form of a vtkPolyData.

• FilterDepthImage - Render the incoming vtkPolyData in a window and output

the depth bu↵er from the window as a vtkImageData. The output additionally

has pose information of the sensor.

• FilterClassifier - Implements the true innovation of MABDI, i.e., takes the

di↵erence between the two incoming depth images (vtkImageData) and outputs

29

Chapter 3. Approach

a new depth image where the data that is not novel is marked to be thrown

away.

• FilterDepthImageToSurface - Performs surface reconstruction on the novel

points. For more detail see Section 3.2.1. The surface is output as a vtkPoly-

Data.

• FilterWorldMesh - Here we simply append the incoming novel surface to a

growing global mesh that is also output as a vtkPolyData.

MABDI is implemented in Python and uses VTK. Our implementation is dis-

tributed under the BSD license and is available on Github at the address below:

FilterWorldMesh

FilterDepthImage FilterDepthImage

FilterClassifier

vtkImageData vtkImageData

vtkPolyData vtkPolyData

vtkImageData

vtkPolyData
FilterDepthImageToSurface

Source

Figure 3.4: MABDI software diagram

30

Chapter 3. Approach

https : //github.com/lucasplus/MABDI

At the time of this writing, it consists of over 1,400 lines. The code that imple-

ments the MABDI algorithm itself is around 750 lines.

31

Chapter 4

Experimental Setup

MABDI was developed and tested in a completely simulated environment for several

reasons. First, all results are repeatable. Having repeatable results is important for

algorithm development because the e↵ects of code changes in the implementation

can be directly correlated to changes in the output. This facilitates isolation and

identification of trouble spots in the code. In addition, it is possible to test the algo-

rithm in the most ideal environment before adding complexity. The ability to ramp

up the di�culty of the environment in which MABDI is performing is important for

making informed design decisions. Finally, by performing the analysis in simulation

we can quickly see how the map produced by MABDI compares with the simulated

environment. This comparison is an important tool for development.

In this chapter we will give an overview of the simulation environment, discuss

how noise was generated to mimic the input of a real RGB-D sensor, and look at the

parameters chosen for the experimental runs.

32

Chapter 4. Experimental Setup

4.1 Simulation Overview

For the experiments, we simulate a sensor moving in a fixed environment along a

defined path. The simulation consists of two main coordinate systems. A coordinate

system fixed to the environment called the global coordinate system and one attached

the origin of the sensor’s viewing frustum. Fig. 4.1 shows the two coordinate systems

from two di↵erent vantage points. In the figure red, green, and blue arrows represent

the x, y, and z axis respectively.

Figure 4.1: Overview of the simulation. Left: Top view. Right: Third person view.

4.2 Simulating a RGB-D Sensor

4.2.1 Rendering Pipeline

In order to simulate the depth output of a RGB-D sensor, the environment is rendered

from the sensor’s point of view. The rendering process produces a depth image and

this image is used as the simulated output of the sensor. Rendering is performed by

the Open Graphics Library (OpenGL). OpenGL creates a rendering pipeline that

33

Chapter 4. Experimental Setup

consists of a series of transformations to project 3D global coordinates to 2D pixel

coordinates. A diagram of the rendering pipeline is shown in Fig. 4.2. T
pcm

represents

the pinhole camera model and transforms geometry in the sensor’s coordinate system

to homogenous coordinates. The z-component of the homogenous coordinates is what

defines the depth image. Note, the use of a pinhole camera model for simulating

RGB-D output has been validated in the localization work of Fallon [80] and the

intrinsic camera parameters of the model were chosen to replicate the Kinect sensor

[81].

Global Coordinate
System

Fixed in the
environment

Sensor Coordinate
System

Moves with the sensor

View Coordinate
System

Display
Pixel values

displayed on the
render window

Tpcm

Figure 4.2: Render pipeline: projects 3D global coordinates to 2D pixel coordinates.

The pinhole camera transformation, T
pcm

, creates a non-linear relationship be-

tween values in the depth image and their corresponding location in the sensor’s

coordinate system. This relationship is visualized in Fig. 4.3.

4.2.2 Adding Noise to the Depth Image

To simulate a realistic RGB-D sensor, we add noise to the depth image D with the

goal of approximating RGB-D error models from the literature. Researchers have

created error models to describe the standard deviation of measurement error found

in various RGB-D sensors. For this work, we seek to match the well-known error

model of Khoshelham [82] that is based on the original Kinect. The error model is

defined in Equation 4.1. The equation expresses the standard deviation of error in

the z-component of a point in the sensor’s coordinate system �

z

(cm) as a function

of the value of the z-component Z (m). Measurements further away from the sensor

34

Chapter 4. Experimental Setup

Figure 4.3: View coordinates to the sensor’s coordinates.

have a larger standard deviation of error. The error model is graphed as the red line

in Fig. 4.4.

�

z

= 1.425e�5⇥ Z

2 (4.1)

To approximate a real RGB-D sensor that matches Khoshelham’s noise model,

noise is added to the depth image D by sampling a normal distribution and adding

the value to each pixel. as defined in the equation below. The mean of the nor-

mal distribution in Equation 4.2, �=0.002, was experimentally found to provide a

conservative approximation of Khoshelham’s error model.

D

noisy

(i, j) = D(i, j) +N (µ=0, �=0.002) (4.2)

In order to compare the magnitude of the standard of deviation of error used

in our experiments with that of Khoshelham’s error model, we graph them on the

35

Chapter 4. Experimental Setup

same plot (Fig. 4.4). Each line shows how the measurement’s standard deviation of

error changes as the point moves along the z axis in the sensor’s coordinate system.

The standard deviation of error simulated in our experiments is larger than that

defined by Khoshelham’s model for points within the sensor’s range. Therefore, our

experiments are a conservative estimate of the error found in real world RBG-D

sensors.

Figure 4.4: Comparison of standard deviation of the error used in the MABDI sim-
ulation and the error model from Khoshelham.

4.3 Sensor Path

All experimental runs define a helical path for the sensor to follow during the sim-

ulation. The path is shown in Figure 4.5. The blue line indicates the path and the

pink points indicate where the sensor stops along the path. The path circles the

objects in the environment twice. A helical path was chosen because it returns to a

part of the environment that has already been mapped and is thus “known” to the

36

Chapter 4. Experimental Setup

algorithm. Also, because the path is a helix and not just a circle, the sensor views

the environment from a slightly di↵erent position on each pass.

Figure 4.5: View of the sensor path. The blue line indicates the sensor path and the
pink points indicate where the sensor stops along the path.

4.4 Simulation Parameters

The simulation was designed to be highly configurable and is implemented by a class

named MabdiSimulate. This class is responsible for connecting all the components

expressed in Fig. 3.4 of Chapter 3. MabdiSimulate is initialized with parameters

that control all aspects of the simulation. Parameters of a particular importance are

discussed in more detail here:

• Environment - This parameter specifies the environment used to generate the

simulated depth images. Table is an environment consisting of a table and two

cups placed on the table. The table is 1 meter tall. Bunnies is an environment

37

Chapter 4. Experimental Setup

consisting of three bunnies that are around 1.5 meters tall. These bunnies

are created using the Stanford Bunny [70], a well known data set in computer

graphics.

• Noise - If true, adds noise to the depth image of the simulated sensor.

• Dynamic - If true, adds an object during the simulation. In the case of this

analysis, a third bunny is added half-way through the simulation.

• Iterations - The number of times MABDI will run. This number is equal to

the number of stops the sensor makes along the path because every time the

sensor stops MABDI is run to update the global mesh. Figure 4.5 shows sensor

stops along the sensor path.

We will be exploring three experimental runs to demonstrate the ability of the

MABDI implementation to generate valid results. Additionally, the experimental

runs will be able to show the capabilities of the MABDI algorithm such as handling

object addition in the environment.

Table 4.1: Description of the experimental runs.

Environment Noise Dynamic Iterations

Run 1 Table False False 30

Run 2 Bunnies True False 50

Run 3 Bunnies True True 50

38

Chapter 5

Results

For each experimental run, a dashboard view was created that can be shown for each

iteration of the simulation. The dashboard view combines several di↵erent views of

information useful for understanding the inner workings of the MABDI algorithm.

As an example, Figure 5.1 shows the dashboard view for the first experimental run.

For these experiments, all dashboard views follow the same pattern as described

below:

• (a) - Shows the global mesh M from a third-person point of view and in the

context of the simulated environment. The multi-colored mesh isM . The mesh

is multi-colored in order to show the passage of time. For example, in Run1,

The mesh is colored yellow, light green, and dark green for iterations 1, 2, and

3 respectively. Additional items in the view show elements of the simulated

environment: the wire frame corresponds to the viewing frustum of the sensor,

the light blue helical line is the path of the sensor, and the translucent gray

mesh is the simulated environment.

• (b) - Same as (a) except it shows the novel surface S instead of the global mesh

M .

39

Chapter 5. Results

• (c) - Plot showing the number of elements in the global mesh M after this

iteration.

• (d & e) - Actual D and expected E depth image respectively.

• (f) - The classified depth image. Points that will be used to generate the novel

surface S are shown in black. Points to be thrown away are shown in white.

The dashboard views are an excellent way to visualize important aspects of

MABDI. In the next section, Section 5.1, we will utilize key dashboard views to

look at the behavior and performance of MABDI at one particular iteration of each

experimental run. In section 5.2 we will analyze the quality and progression of the

resultant global mesh from each experiment.

5.1 MABDI Performance During Experiments

5.1.1 Experiment 1

Figure 5.1 shows the dashboard view of the first experiment during the third iteration.

Note that 5.1(a) shows M after the third iteration. As stated before, M is multi-

colored in order to show the passage of time. The mesh is colored yellow, light

green, and dark green for iterations 1, 2, and 3 respectively. During iteration 3, M

is composed of only the yellow and light green parts.

Examining Figure 5.1 demonstrates how the novel surface S is appended to the

global mesh M after each iteration of MABDI. Let’s use the figure to follow the

process. It will be useful to refer to Figure 3.1 for this section.

1. Input - 5.1(d) shows the depth image D generated from the simulated sensor.

5.1(a) shows us two important aspects to consider about D. First, the pose P

40

Chapter 5. Results

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Dashboard view of the first experimental run.

of the sensor is shown by looking at the sensor’s view frustum, indicated by the

blue wireframe. Second, the only environmental information used to generate

the depth image is shown in light gray.

2. Generate Expected Depth Image (E) - 5.1(e) shows the expected depth image

E. 5.1(a) also shows us two important aspects to consider about E. First,

the same pose P is used to create both D and E (as indicated by the blue

wire frame). Second, the only environmental information used to create E is

the yellow and light green parts of M because that is the only information M

contains during iteration 3.

3. Classify Depth Image (D) - 5.1(f) visualizes the classification process. More

specifically, it shows the points as expressed in Equation 3.5 in white

(D
throwaway

). 5.1(f) is important for understanding how MABDI works be-

cause it clearly shows which points will be thrown away (white) and which

41

Chapter 5. Results

points will be kept for generating the novel surface S (black).

4. Surface Reconstruction - 5.1(b) shows the novel surface S in the context of the

simulated environment. S is constructed using all the points colored black in

5.1(f).

5. Add Novel Surface (S) to Global Mesh(M) - 5.1(a) shows the novel surface S

appended to the global mesh M in dark green.

5.1.2 Experiment 2

The second experiment gives us a clear example of how the classification process

is able to identify points from the depth image D that correspond to parts of the

environment that have not been seen before. In this example the global mesh M has

a partial representation of the objects in the environment and when the sensor is

moved to the next pose P , the new perspective reveals a portion of the object that

has not been seen before. This novel portion of the environment, which we will be

referring to, is shown by the red ellipse in Figure 5.2.

Figure 5.2: Novel portion of the environment that we will be referring to in this
section.

42

Chapter 5. Results

Figure 5.3 shows the dashboard view of the second experiment during the second

iteration. Using the dashboard view, we can follow how MABDI handles the novel

portion of the object step-by-step:

1. 5.3(a) shows the global mesh M . The yellow portion of the mesh constitutes

the entirety of M after the first iteration. We can see the novel portion of the

environment was not represented in M after the first iteration due to occlusion.

2. 5.3(d) shows the depth image D from the new sensor pose P . We can see the

novel portion can be seen by the sensor on this iteration.

3. 5.3(e) shows the expected depth image E. During the second iteration M con-

sists of only the yellow portion shown in 5.3(a) consequently, E does not show

any points in the area corresponding to the novel portion of the environment.

4. 5.3(f) shows the classification process successfully identifying points in D that

correspond to the novel portion as indeed novel. In the figure the points are

highlighted by a red circle.

5. 5.3(b) shows the novel surface S now represents the novel portion of the envi-

ronment.

6. Finally, the orange mesh in 5.3(a) shows the novel portion of the environment

is now represented by the global mesh M .

5.1.3 Experiment 3

Experiment three shows how MABDI reacts to object addition. Figure 5.4 shows the

dashboard view of the third experiment during the twenty-sixth iteration. At this

iteration the middle bunny is suddenly added to the simulated environment. We can

use the dashboard view to see the behavior of MABDI to this new object:

43

Chapter 5. Results

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Dashboard view of the second experimental run.

1. In 5.4(d) we see the depth image D shows the new bunny.

2. In 5.4(e) the expected depth image E does not show the new bunny because

M has no representation of the new bunny.

3. 5.4(f) shows the classification process successfully identified the points corre-

sponding to the new bunny as novel.

4. The novel points are used to generate the novel surface S and then S is ap-

pended to M , shown in 5.4(a & b).

5. The addition of the new object resulted in a S with a large number of elements

for this particular iteration. 5.4(f) plots the resulting jump in the number of

elements contained with M .

44

Chapter 5. Results

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Dashboard view of the third experimental run.

5.2 Global Mesh Results

5.2.1 Mesh Quality

Figure 5.5 shows the resultant global mesh from experiment 3. In this section we

will use this figure to make observations about the quality of the global mesh for all

three experiments.

There are gaps in the mesh that occur typically along the boundaries of where the

novel surface S is appended to the global mesh M . This behavior is common for Sur-

face Reconstruction methods as those discussed in Section 2.2. Algorithms exist for

merging these gaps as a post processing step such as Turk’s Zippered Polygon Meshes

[70]. The aforementioned methods are typical for single object reconstruction. Tra-

ditional mesh-based environmental mapping algorithms simply append overlapping

layers of mesh resulting in no gaps but a heavily redundant representation with a

45

Chapter 5. Results

high memory cost.

The mesh is noisy. This noisiness is due to the simplicity of our implemen-

tation’s surface reconstruction method as discussed in Section 3.2.1. Our method

simply connects neighboring points in the point cloud without additional steps such

as Laplacian smoothing [83]. Our reconstruction method was su�cient for demon-

strating the usefulness of the MABDI algorithm, but results in a mesh with the same

magnitude of noise as the sensor’s simulated noise.

Figure 5.5: Global mesh at the end of experiment 3.

5.2.2 Mesh Progression

To appreciate the true benefit of the MABDI algorithm it is helpful to look at how

the number of elements in the global mesh M progress over time. In this section

we will analyze plots showing how the number of elements in M change during the

experiments. Note, the dashboard views also showed this plot. For example, the

plot of Figure 5.6 is the same as Figure 5.1(c), but Figure 5.6 shows the plot at the

46

Chapter 5. Results

completion of the experiment.

Figure 5.6 shows the resultant mesh and mesh progression for the first experiment.

The plot highlights the major di↵erence between MABDI and traditional mesh-based

environmental mapping methods. Traditional methods would have a plot similar to

that indicated by the red arrow on the graph because these methods have no ability

to identify or remove redundant mesh elements. Due to MABDI’s algorithmic design,

MABDI has the intrinsic ability to identify points in the depth image corresponding

to parts of the environment that are already known by the global mesh M . MABDI

then simply does not use those points for surface reconstruction and consequently

does not create redundant mesh elements. For this reason, the number of elements

in M levels o↵ as the environment becomes more known.

Figure 5.6: Experiment 1 global mesh results.

Figure 5.7 shows us the resultant mesh after the second experiment. Here we can

see that MABDI is reactive to the environment. In the preceding experiment, the

environment was symmetrical. In this experiment, the environment is not symmet-

47

Chapter 5. Results

rical and we can see the e↵ects by looking at the progression of the global mesh M .

First let us note that the sensor circles the objects twice during the experiment and

in total travels 720� during the 50 iterations. We notice when the sensor gets to 90�

(around iteration 7) the number of elements begins to level o↵ and then increases

again as the sensor travel to 270� (around iteration 19). This behavior occurs because

the information rich perspectives of the environment occur at 0� and 180�. There is

less for the sensor to look at when viewing the environment from the sides. In this

way, MABDI is reactive as the sensor moves to parts of the environment that are

rich in information. Consequently, the mesh grows rapidly based on the needs of the

environment.

Figure 5.7: Experiment 2 global mesh results.

Figure 5.8 shows us the resultant mesh after the third experiment. In this exper-

iment the middle bunny was added during the twenty-sixth iteration. This object

addition had two e↵ects on the global mesh. First, it created a sudden jump in the

plot as highlighted by the red circle. Second, the middle bunny is colored blue in the

48

Chapter 5. Results

resultant mesh, signifying that it was added to M during a di↵erent iteration than

the bunnies on the left and the right. Both of these e↵ects indicate that MABDI

was able to successfully identify the new bunny as novel and incorporate the bunny

in to the global mesh within one iteration.

Figure 5.8: Experiment 3 global mesh results.

49

Chapter 6

Conclusion

The goal of MABDI is to identify data from the sensor that has not yet been repre-

sented in the map and use this data to add to the map. MABDI does this by lever-

aging the di↵erence between what we are actually seeing and what we expect to see.

MABDI can work in conjunction with any current mesh-based surface reconstruction

algorithms, and can be thought of as a general means to provide introspection to

those types of reconstruction methods.

The MABDI implementation was able to successfully perform in a realistic simula-

tion environment. The results show how novel sensor data was successfully classified

and used to add to the global mesh. Also, the MABDI algorithm runs at around

2Hz on a consumer grade laptop with an Intel i7 processor. This performance means

that it is capable of real-world applications.

Currently MABDI is only designed to handle object addition, but the idea can

be extended to handle both object addition and removal as discussed in Section 3.1.

This would give the system the capability to handle highly dynamic environments

such as a door opening and closing.

50

Appendix A

MABDI code

A.1 FilterDepthImage.py

FilterDepthImage.py

1 import vtk

2 from vtk . u t i l . vtkAlgorithm import VTKPythonAlgorithmBase

3 from vtk . u t i l import numpy support

4 from vtk . numpy inter face import da ta s e t adapte r as dsa

5

6 import numpy as np

7

8 from t ime i t import d e f au l t t ime r as t imer

9 import l ogg ing

10

11

12 c l a s s Fi lterDepthImage (VTKPythonAlgorithmBase) :

13 ”””

14 Create a depth image o f a scene

15

16 This c l a s s uses the geometr ic in fo rmat ion o f the scene (vtkPolyData) and the

17 o r i e n t a t i o n o f the depth senso r .

18 ”””

19

20 de f i n i t (s e l f ,

51

Appendix A. MABDI code

21 name=’ none ’ ,

22 o f f s c r e e n=False ,

23 no i s e =0.0 ,

24 depth image s i z e =(640 , 480)) :

25 ”””

26 : param name : d e f au l t =’none ’

27 Used f o r the l ogg ing statements .

28 : param o f f s c r e e n :

29 Create the render window that i s used to produce the depth image o f f s c r e e n

.

30 : param no i s e :

31 Noise to add to depth image .

32 : param depth image s i z e :

33 S i z e o f the depth image .

34 ”””

35

36 VTKPythonAlgorithmBase . i n i t (s e l f ,

37 nInputPorts=0,

38 nOutputPorts=1, outputType=’ vtkImageData ’)

39 s e l f . name = name

40

41 i f type (no i s e) == bool :

42 i f no i s e :

43 no i s e = 0.002

44 e l s e :

45 no i s e = 0 .0

46 s e l f . n o i s e = no i s e

47

48 # vtk render ob j e c t s

49 s e l f . r en = vtk . vtkRenderer ()

50 s e l f . renWin = vtk . vtkRenderWindow ()

51 s e l f . i r e n = vtk . vtkRenderWindowInteractor ()

52

53 # wire them up

54 s e l f . renWin . AddRenderer (s e l f . r en)

55 s e l f . i r e n . SetRenderWindow (s e l f . renWin)

56

57 # o f f s c r e e n render ing

58 i f o f f s c r e e n :

59 s e l f . renWin . SetOf fScreenRender ing (1)

60

61 # kinec t i n t r i n s i c parameters

62 # https : //msdn . m i c ro so f t . com/en�us/ l i b r a r y /hh438998 . aspx

52

Appendix A. MABDI code

63 s e l f . renWin . Se tS i z e (depth image s i z e)

64 s e l f . r en . GetActiveCamera () . SetViewAngle (6 0 . 0)

65 s e l f . r en . GetActiveCamera () . SetClippingRange (0 . 8 , 4 . 0)

66 s e l f . i r e n . Ge t In t e r a c t o rS ty l e () . SetAutoAdjustCameraClippingRange (0)

67

68 # have i t l ook ing down and underneath the ” f l o o r ”

69 # so that i t w i l l produce a blank vtkImageData un t i l

70 # s e t s e n s o r o r i e n t a t i o n () i s c a l l e d

71 s e l f . r en . GetActiveCamera () . S e tPos i t i on (0 . 0 , �20.0 , 0 . 0)

72 s e l f . r en . GetActiveCamera () . SetFoca lPoint (0 . 0 , �25.0 , 0 . 0)

73

74 # ca l c u l a t e image bounds

75 s e l f . imageBounds = [0 , 0 , 0 , 0]

76 viewport = s e l f . r en . GetViewport ()

77 s i z e = s e l f . renWin . GetSize ()

78 s e l f . imageBounds [0] = in t (viewport [0] ⇤ s i z e [0])

79 s e l f . imageBounds [1] = in t (viewport [1] ⇤ s i z e [1])

80 s e l f . imageBounds [2] = in t (viewport [2] ⇤ s i z e [0] + 0 . 5) � 1

81 s e l f . imageBounds [3] = in t (viewport [3] ⇤ s i z e [1] + 0 . 5) � 1

82

83 de f s e t po l yda ta (s e l f , i n po lyda ta) :

84 ”””

85 What t h i s f i l t e r w i l l render and consequent ly produce a depth image o f .

86 : param in po lydata : vtkAlgorithm that produces a vtkPolyData

87 ”””

88 l o gg ing . i n f o (’ ’)

89

90 mapper = vtk . vtkPolyDataMapper ()

91 mapper . SetInputConnect ion (in po lydata . GetOutputPort ())

92

93 ac to r = vtk . vtkActor ()

94 ac to r . SetMapper (mapper)

95

96 s e l f . r en . AddActor (ac to r)

97

98 s e l f . i r e n . I n i t i a l i z e ()

99 s e l f . i r e n . Render ()

100

101 de f se t po lydata empty (s e l f) :

102 ”””

103 Use to i n i t i a l i z e t h i s f i l t e r with an empty vtkPolyData

104 ”””

105 l o gg ing . i n f o (’ ’)

53

Appendix A. MABDI code

106

107 polydata = vtk . vtkPolyData ()

108

109 mapper = vtk . vtkPolyDataMapper ()

110 mapper . SetInputDataObject (polydata)

111

112 ac to r = vtk . vtkActor ()

113 ac to r . SetMapper (mapper)

114

115 s e l f . r en . AddActor (ac to r)

116

117 s e l f . i r e n . I n i t i a l i z e ()

118 s e l f . i r e n . Render ()

119

120 de f s e t s e n s o r o r i e n t a t i o n (s e l f , i n p o s i t i o n , i n l o o k a t) :

121 ”””

122 : param i n p o s i t i o n : Po s i t i on o f s enso r in world coo rd ina t e s .

123 : param in l o o k a t : Where the s enso r i s l ook ing in world coo rd ina t e s .

124 ”””

125 l o gg ing . i n f o (’ p o s i t i o n {} l ookat {} ’ . format (i n p o s i t i o n , i n l o o k a t))

126

127 s e l f . r en . GetActiveCamera () . S e tPos i t i on (i n p o s i t i o n)

128 s e l f . r en . GetActiveCamera () . SetFoca lPoint (i n l o o k a t)

129 s e l f . i r e n . Render ()

130

131 de f get vtk camera (s e l f) :

132 r e turn s e l f . r en . GetActiveCamera ()

133

134 de f g e t w i d th by h e i gh t r a t i o (s e l f) :

135 r e turn f l o a t (s e l f . renWin . GetSize () [0]) / f l o a t (s e l f . renWin . GetSize () [1])

136

137 de f k i l l r ende r w indow (s e l f) :

138 ”””

139 K i l l render window that t h i s i n s t anc e owns . Only to be used when the user

140 i s sure the f i l t e r w i l l not be run again .

141 ”””

142 # http :// s tackove r f l ow . com/ que s t i on s /15639762/ c l o s e�vtk�window�python

143 s e l f . renWin . F i n a l i z e ()

144 s e l f . i r e n . TerminateApp ()

145 de l s e l f . renWin , s e l f . i r e n

146

147 de f RequestInformation (s e l f , request , i n In fo , out In fo) :

148 l o gg ing . i n f o (’ ’)

54

Appendix A. MABDI code

149 s i z e = s e l f . renWin . GetSize ()

150 extent = (0 , s i z e [0] � 1 , 0 , s i z e [1] � 1 , 0 , 0)

151 i n f o = out In fo . GetInformationObject (0)

152 i n f o . Set (vtk . vtkStreamingDemandDrivenPipeline .WHOLEEXTENT() ,

153 extent , l en (extent))

154 r e turn 1

155

156 de f RequestData (s e l f , request , i n In fo , out In fo) :

157 l o gg ing . i n f o (’ {} ’ . format (s e l f . name))

158 s t a r t = timer ()

159

160 # get the depth va lue s

161 vfa = vtk . vtkFloatArray ()

162 ib = s e l f . imageBounds

163 s e l f . renWin . GetZbufferData (ib [0] , ib [1] , ib [2] , ib [3] , v fa)

164

165 # add no i s e

166 i f s e l f . n o i s e i s not 0 . 0 :

167 nvfa = numpy support . vtk to numpy (vfa)

168 nvfa += s e l f . n o i s e ⇤ nvfa ⇤ np . random . normal (0 . 0 , 1 . 0 , nvfa . shape)

169 vfa = dsa . numpyTovtkDataArray (nvfa)

170

171 # pack the depth va lues in to the output vtkImageData

172 i n f o = out In fo . GetInformationObject (0)

173 ue = in f o . Get (vtk . vtkStreamingDemandDrivenPipeline .UPDATEEXTENT())

174 out = vtk . vtkImageData . GetData (out In fo)

175 out . GetPointData () . S e tS ca l a r s (v fa)

176 out . SetExtent (ue)

177

178 # append meta data to the vtkImageData conta in ing i n t r i n s i c parameters

179 out . s i z e x = s e l f . renWin . GetSize () [0]

180 out . s i z e y = s e l f . renWin . GetSize () [1]

181 out . v iewport = s e l f . r en . GetViewport ()

182 vtktmat = s e l f . r en . GetActiveCamera () . GetCompositeProjectionTransformMatrix (

183 s e l f . r en . GetTiledAspectRatio () ,

184 0 . 0 , 1 . 0)

185 vtktmat . Inve r t ()

186 out . tmat = s e l f . vtkmatrix to numpy (vtktmat)

187

188 end = timer ()

189 l o gg ing . i n f o (’ Execution time { : . 4 f } seconds ’ . format (end � s t a r t))

190

191 r e turn 1

55

Appendix A. MABDI code

192

193 de f vtkmatrix to numpy (s e l f , matrix) :

194 ”””

195 Copies the e lements o f a vtkMatrix4x4 in to a numpy array .

196

197 : param matrix : The matrix to be copied in to an array .

198 : type matrix : vtk . vtkMatrix4x4

199 : r type : numpy . ndarray

200 ”””

201 m = np . ones ((4 , 4))

202 f o r i in range (4) :

203 f o r j in range (4) :

204 m[i , j] = matrix . GetElement (i , j)

205 r e turn m

A.2 FilterClassifier.py

FilterClassifier.py

1 import vtk

2 from vtk . u t i l . vtkAlgorithm import VTKPythonAlgorithmBase

3 from vtk . u t i l import numpy support

4

5 from t ime i t import d e f au l t t ime r as t imer

6 import l ogg ing

7

8

9 c l a s s F i l t e r C l a s s i f i e r (VTKPythonAlgorithmBase) :

10 ”””

11 vtkAlgorithm with 2 inputs o f vtkImageData and an output o f vtkImageData

12 Input : Depth images

13 Output : C l a s s i f i e d depth image

14 ”””

15

16 de f i n i t (s e l f , p a r am c l a s s i f i e r t h r e s h o l d =0.01) :

17 ”””

18 : param pa r am c l a s s i f i e r t h r e s h o l d : d e f au l t =0.01

19 Threshold to determine when the d i f f e r e n c e in the depth images i s too big

20 and i s t h e r e f o r e a nove l measurement .

21 : r e turn :

56

Appendix A. MABDI code

22 ”””

23

24 VTKPythonAlgorithmBase . i n i t (s e l f ,

25 nInputPorts=2, inputType=’ vtkImageData ’ ,

26 nOutputPorts=1, outputType=’ vtkImageData ’)

27

28 s e l f . p a r am c l a s s i f i e r t h r e s h o l d = pa r am c l a s s i f i e r t h r e s h o l d

29

30 s e l f . p o s t p r o c e s s = []

31 s e l f . po s tp roc e s s im1 = []

32 s e l f . po s tp roc e s s im2 = []

33 s e l f . p o s t p r o c e s s d i f im = []

34

35 de f s e t p o s t p r o c e s s (s e l f , do pos tp roce s s) :

36 s e l f . p o s t p r o c e s s = do pos tp roce s s

37

38 de f get depth images (s e l f) :

39 ”””

40 Get the depth images . User has to c a l l s e t p o s t p r o c e s s (True) f i r s t .

41 : r e turn : Depth images

42 r e turn [0] � ac tua l

43 r e turn [1] � expected

44 r e turn [2] � th r e sho ld abso lu t e d i f f e r e n c e

45 ”””

46 r e turn s e l f . pos tproce s s im1 , s e l f . pos tproce s s im2 , s e l f . p o s t p r o c e s s d i f im

47

48 de f RequestInformation (s e l f , request , i n In fo , out In fo) :

49 l o gg ing . i n f o (’ ’)

50

51 # input images dimensions

52 i n f o = in I n f o [0] . GetInformationObject (0)

53 ue1 = i n f o . Get (vtk . vtkStreamingDemandDrivenPipeline .UPDATEEXTENT())

54 i n f o = in I n f o [1] . GetInformationObject (0)

55 ue2 = i n f o . Get (vtk . vtkStreamingDemandDrivenPipeline .UPDATEEXTENT())

56 i f ue1 != ue2 :

57 l o gg ing . warning (’ Input images have d i f f e r e n t dimensions . {} {} ’ . format (

ue1 , ue2))

58

59 extent = ue1

60 i n f o = out In fo . GetInformationObject (0)

61 i n f o . Set (vtk . vtkStreamingDemandDrivenPipeline .WHOLEEXTENT() ,

62 extent , l en (extent))

63

57

Appendix A. MABDI code

64 r e turn 1

65

66 de f RequestData (s e l f , request , i n In fo , out In fo) :

67 l o gg ing . i n f o (’ ’)

68 s t a r t = timer ()

69

70 # in images (vtkImageData)

71 inp1 = vtk . vtkImageData . GetData (i n I n f o [0])

72 inp2 = vtk . vtkImageData . GetData (i n I n f o [1])

73

74 # convert to numpy ar rays

75 dim = inp1 . GetDimensions ()

76 im1 = numpy support . vtk to numpy (inp1 . GetPointData () . GetSca lars ()) \
77 . reshape (dim [1] , dim [0])

78 dim = inp1 . GetDimensions ()

79 im2 = numpy support . vtk to numpy (inp2 . GetPointData () . GetSca lars ()) \
80 . reshape (dim [1] , dim [0])

81

82 # d i f f e r e n c e in the images

83 # im1 i s assumed to be from the ac tua l s enso r

84 # im2 i s what we expect to see based on the world mesh

85 # Anywhere the d i f f e r e n c e i s small , throw those measurements away

86 # by s e t t i n g them to one . By doing t h i s Fi lterDepthImageToSurface

87 # w i l l assume they l i e on the c l i p p i n g plane and w i l l remove them

88 d i f im = abs (im1 � im2) < s e l f . p a r am c l a s s i f i e r t h r e s h o l d

89 i f s e l f . p o s t p r o c e s s :

90 s e l f . po s tp roc e s s im1 = im1 . copy ()

91 s e l f . po s tp roc e s s im2 = im2 . copy ()

92 s e l f . p o s t p r o c e s s d i f im = di f im . copy ()

93 imout = im1

94 imout [d i f im] = 1 .0

95

96 i n f o = out In fo . GetInformationObject (0)

97 ue = in f o . Get (vtk . vtkStreamingDemandDrivenPipeline .UPDATEEXTENT())

98

99 # output vtkImageData

100 out = vtk . vtkImageData . GetData (out In fo)

101 out . SetExtent (ue)

102 (out . s i z ex , out . s i z ey , out . tmat , out . v iewport) = \
103 (inp1 . s i z ex , inp1 . s i z ey , inp1 . tmat , inp1 . v iewport)

104 out . GetPointData () . S e tS ca l a r s (

105 numpy support . numpy to vtk (imout . reshape (�1)))

106

58

Appendix A. MABDI code

107 end = timer ()

108 l o gg ing . i n f o (’ Execution time { : . 4 f } seconds ’ . format (end � s t a r t))

109

110 r e turn 1

A.3 FilterDepthImageToSurface.py

FilterDepthImageToSurface.py

1 import vtk

2 from vtk . u t i l . vtkAlgorithm import VTKPythonAlgorithmBase

3 from vtk . u t i l import numpy support

4 from vtk . numpy inter face import da ta s e t adapte r as dsa

5

6 from U t i l i t i e s import DebugTimeVTKFilter

7

8 import numpy as np

9 from sc ipy import ndimage

10

11 from t ime i t import d e f au l t t ime r as t imer

12 import l ogg ing

13

14

15 c l a s s Fi lterDepthImageToSurface (VTKPythonAlgorithmBase) :

16 ”””

17 vtkAlgorithm with input o f vtkImageData and output o f vtkPolyData

18 This f i l t e r f i r s t d e f i n e s a c onne c t i v i t y on the depth image that i s l i k e a

19 checkerboard but with two t r i a n g l e s in each square . I t then throws away a l l

po in t s

20 f a r t h e r than the param fa rp lane thr e sho ld and a l l po in t s with a l a r g e d i f f e r e n c e

21 between ne ighbors (c on t r o l l e d with param convo lut ion thesho ld)

22 Input : Depth image

23 Output : Mesh crea ted by p r o j e c t i n g depth image

24 ”””

25

26 de f i n i t (s e l f ,

27 param fa rp lane thr e sho ld =1.0 ,

28 param convo lut ion thre sho ld =0.01) :

29 ”””

30 Algorithm setup and de f i n e parameters .

59

Appendix A. MABDI code

31 : param param fa rp lane thr e sho ld : d e f au l t =1.0

32 Values on the depth image range from 0.0 �1 .0 . Points with depth va lue s

g r e a t e r

33 than param fa rp lane thr e sho ld w i l l be thrown away .

34 : param param convo lut ion thre sho ld : d e f au l t =0.01

35 Convolution i s used to determine p i x e l ne ighbors with a l a r g e d i f f e r e n c e .

I f

36 the re i s one , the po int w i l l be thrown away . This th r e sho ld c on t r o l s

s e n s i t i v i t y .

37 ”””

38

39 VTKPythonAlgorithmBase . i n i t (s e l f ,

40 nInputPorts=1, inputType=’ vtkImageData ’ ,

41 nOutputPorts=1, outputType=’ vtkPolyData ’)

42

43 s e l f . pa ram fa rp l ane th r e sho ld = param fa rp lane thr e sho ld

44 s e l f . param convo lut ion thesho ld = param convo lut ion thre sho ld

45

46 s e l f . s i z e x = []

47 s e l f . s i z e y = []

48 s e l f . v i ewport = []

49

50 s e l f . d i s p l a y p t s = []

51 s e l f . v i ewpo r t p t s = []

52 s e l f . wo r ld p t s = []

53

54 s e l f . p o i n t s = vtk . vtkPoints ()

55 s e l f . p o l y s = vtk . vtkCel lArray ()

56 s e l f . po lydata = vtk . vtkPolyData ()

57 s e l f . po lydata . SetPo ints (s e l f . p o i n t s)

58 s e l f . po lydata . SetPolys (s e l f . p o l y s)

59

60 s e l f . e x t r a c t = vtk . vtkExtractPolyDataGeometry ()

61 DebugTimeVTKFilter (s e l f . e x t r a c t)

62 s e l f . e x t r a c t . SetInputData (s e l f . po lydata)

63 plane func = vtk . vtkPlane ()

64 plane func . SetNormal (0 . 0 , �1.0 , 0 . 0)

65 plane func . SetOr ig in (0 . 0 , �1.0 , 0 . 0)

66 s e l f . e x t r a c t . Se t Imp l i c i tFunc t i on (p lane func)

67

68 de f RequestData (s e l f , request , i n In fo , out In fo) :

69

70 l o gg ing . i n f o (’ ’)

60

Appendix A. MABDI code

71 s t a r t = timer ()

72

73 # input (vtkImageData)

74 inp = vtk . vtkImageData . GetData (i n I n f o [0])

75

76 # i f the vtkImageData s i z e has changed or t h i s i s the f i r s t time

77 # save new s i z e i n f o and i n i t i a l i z e c on ta i n e r s

78 i f (s e l f . s i z e x , s e l f . s i z e y , s e l f . v i ewport) != (inp . s i z ex , inp . s i z ey , inp .

v iewport) :

79 (s e l f . s i z e x , s e l f . s i z e y) = (inp . s i z ex , inp . s i z e y)

80 s e l f . v i ewport = inp . v iewport

81 s e l f . i n i t c o n t a i n e r s ()

82

83 # the incoming depth image

84 di = numpy support . vtk to numpy (inp . GetPointData () . GetSca lars ()) \
85 . reshape ((s e l f . s i z e y , s e l f . s i z e x))

86

87 # add z va lues to v i ewpor t pt s based on incoming depth image

88 s e l f . v i ewpo r t p t s [2 , :] = di . reshape (�1)

89

90 # pro j e c t to world coo rd ina t e s

91 s e l f . wo r ld p t s = np . dot (inp . tmat , s e l f . v i ewpo r t p t s)

92 s e l f . wo r ld p t s = s e l f . wo r ld p t s / s e l f . wo r ld p t s [3]

93

94 ””” Remove i n v a l i d po in t s ”””

95

96 # index to pts ou t s i d e s enso r range (de f ined by vtkCamera c l i p p i n g range)

97 ou t s i d e r ange = ˜(d i < s e l f . pa ram fa rp l ane th r e sho ld)

98

99 # f ind p i x e l ne ighbors with l a r g e d i f f e r e n c e s in value

100 # http :// docs . s c ipy . org /doc/ s c ipy / r e f e r e n c e / t u t o r i a l /ndimage . html

101 kh = np . array ([[1 , �1] , [0 , 0]])

102 edges h = abs (ndimage . convolve (di ,

103 kh ,

104 mode=’ nea r e s t ’ ,

105 o r i g i n=�1)) > s e l f . param convo lut ion thesho ld

106 kv = np . array ([[1 , 0] , [�1 , 0]])

107 edges v = abs (ndimage . convolve (di ,

108 kv ,

109 mode=’ nea r e s t ’ ,

110 o r i g i n=�1)) > s e l f . param convo lut ion thesho ld

111

112 # combine a l l the po in t s found to be i n v a l i d

61

Appendix A. MABDI code

113 # and s e t them to a value underneath the ” f l o o r o f the environment”

114 # http :// s tackove r f l ow . com/a/20528566/4068274

115 i n v a l i d i nd e x = np . l o g i c a l o r . reduce ((ou t s i d e r ange . reshape (�1) ,

116 edges h . reshape (�1) ,

117 edges v . reshape (�1)))

118 s e l f . wo r ld p t s [0 : 3 , i n v a l i d i nd e x] = np . array ([[0 . 0] , [�2 .0] , [0 . 0]])

119

120 ””” Update and s e t f i l t e r output ”””

121

122 # update vtkPoints

123 vtkarray = dsa . numpyTovtkDataArray (s e l f . wo r ld p t s [0 : 3 , :] . T)

124 s e l f . p o i n t s . SetData (vtkarray)

125

126 # update output (vtkPolyData)

127 out = vtk . vtkPolyData . GetData (out In fo)

128 s e l f . e x t r a c t . Update ()

129 l o gg ing . i n f o (’Number o f t r i a n g l e s : {} ’ . format (s e l f . e x t r a c t . GetOutput () .

GetNumberOfCells ()))

130 out . ShallowCopy (s e l f . e x t r a c t . GetOutput ())

131

132 end = timer ()

133 l o gg ing . i n f o (’ Execution time { : . 4 f } seconds ’ . format (end � s t a r t))

134

135 r e turn 1

136

137 de f i n i t c o n t a i n e r s (s e l f) :

138 l o gg ing . i n f o (’ I n i t i a l i z i n g ar rays f o r p r o j e c t i o n c a l c u l a t i o n . ’)

139 t s t a r t = timer ()

140

141 # he lpe r v a r i a b l e s (width , he ight)

142 (w, h) = (s e l f . s i z e x , s e l f . s i z e y)

143

144 ””” d i sp l ay po in t s (l i s t o f a l l p i x e l c oo rd ina t e s) ”””

145

146 s e l f . d i s p l a y p t s = np . ones ((2 , w ⇤ h))

147 s e l f . d i s p l a y p t s [0 , :] , s e l f . d i s p l a y p t s [1 , :] = \
148 z ip (⇤ [(j , i) f o r i in np . arange (h) f o r j in np . arange (w)])

149

150 ””” viewport po in t s ”””

151 # https : // github . com/Kitware/VTK/blob /52

d45496877b00852a08a5b9819d109c2fd9bfab/Rendering/Core/ vtkCoordinate . h#L26

152

153 s e l f . v i ewpo r t p t s = np . ones ((4 , s e l f . d i s p l a y p t s . shape [1]))

62

Appendix A. MABDI code

154 s e l f . v i ewpo r t p t s [0 , :] = 2 .0 ⇤ (s e l f . d i s p l a y p t s [0 , :] � w ⇤ s e l f .

v i ewport [0]) / \
155 (w ⇤ (s e l f . v i ewport [2] � s e l f . v i ewport [0])) � 1 .0

156 s e l f . v i ewpo r t p t s [1 , :] = 2 .0 ⇤ (s e l f . d i s p l a y p t s [1 , :] � h ⇤ s e l f .

v i ewport [1]) / \
157 (h ⇤ (s e l f . v i ewport [3] � s e l f . v i ewport [1])) � 1 .0

158

159 ””” new world po in t s (j u s t i n i t i a l i z i n g the conta ine r) ”””

160

161 s e l f . wo r ld p t s = np . ones (s e l f . v i ewpo r t p t s . shape)

162

163 ””” c e l l s (l i s t o f t r i a n g l e s c r ea ted by connect ing ne ighbors in depth image

space) ”””

164

165 # conne c t i v i t y on the depth image i s almost l i k e a checkerboard pattern

166 # except with two t r i a n g l e s in every checkerboard square

167 nt = (2 ⇤w) ⇤ (h�1) # number o f t r i a n g l e s

168 c e l l s = np . z e r o s ((3 , nt) , dtype=np . i n t)

169 i = 0

170 whi le i < (nt /2) :

171 i f ((i +1) % w) != 0 : # i f on the s i d e o f the image sk ip

172 c e l l s [: , 2⇤ i] = (i , i +1, w+i)

173 c e l l s [: , 2⇤ i +1] = (i +1, w+i +1, w+i)

174 i += 1

175

176 # remove columns with z e ro s (the ones we skipped in the whi l e loop)

177 index = np . where (c e l l s . any (ax i s=0)) [0] # a l l columns that are non zero

178 c e l l s = c e l l s [: , index]

179

180 # turn our c onne c t i v i t y l i s t i n to a vtk ob j e c t (vtkCel lArray)

181 f o r tpt in c e l l s .T:

182 s e l f . p o l y s . In s e r tNextCe l l (3)

183 s e l f . p o l y s . I n s e r tCe l lPo i n t (tpt [0])

184 s e l f . p o l y s . I n s e r tCe l lPo i n t (tpt [1])

185 s e l f . p o l y s . I n s e r tCe l lPo i n t (tpt [2])

186 s e l f . po lydata . SetPolys (s e l f . p o l y s)

187

188 # time me

189 tend = timer ()

190 l o gg ing . i n f o (’ I n i t i a l i z i n g ar rays f o r p r o j e c t i o n c a l c u l a t i o n { : . 4 f } seconds ’

. format (tend � t s t a r t))

63

Appendix A. MABDI code

A.4 FilterWorldMesh.py

FilterWorldMesh.py

1 import vtk

2 from vtk . u t i l . vtkAlgorithm import VTKPythonAlgorithmBase

3 from vtk . numpy inter face import da ta s e t adapte r as dsa

4

5 import numpy as np

6 import matp lo t l i b . pyplot as p l t

7

8 from i t e r t o o l s import cy c l e

9

10 from t ime i t import d e f au l t t ime r as t imer

11 import l ogg ing

12

13

14 c l a s s FilterWorldMesh (VTKPythonAlgorithmBase) :

15 ”””

16 vtkAlgorithm with input vtkPolyData and output vtkPolyData

17 Input : Sur face to be added to the g l oba l mesh

18 Output : The g l oba l mesh

19 ”””

20 de f i n i t (s e l f , c o l o r=Fal se) :

21 ”””

22 : param co l o r : d e f au l t=Fal se

23 Color every new su r f a c e o f the g l oba l mesh a d i f f e r e n t c o l o r .

24 : r e turn :

25 ”””

26

27 VTKPythonAlgorithmBase . i n i t (s e l f ,

28 nInputPorts=1, inputType=’ vtkPolyData ’ ,

29 nOutputPorts=1, outputType=’ vtkPolyData ’)

30

31 s e l f . worldmesh = vtk . vtkAppendPolyData ()

32

33 # colormap f o r changing polydata on every i t e r a t i o n

34 # http :// matp lo t l i b . org / examples / c o l o r / co l o rmaps r e f e r enc e . html

35 s e l f . c o l o r = co l o r

36 i f s e l f . c o l o r :

37 g i s t r a i nbow r = p l t . cm . get cmap (name=’ g i s t r a i nbow r ’)

38 mycm = g i s t r a i nbow r (range (160 , 260 , 5)) [: , 0 : 3]

39 s e l f . c o l o r c y c l e = cyc l e (mycm)

64

Appendix A. MABDI code

40

41 de f RequestData (s e l f , request , i n In fo , out In fo) :

42 l o gg ing . i n f o (’ ’)

43 s t a r t = timer ()

44

45 # input polydata

46 # have to make a copy otherw i s e po lys w i l l not show up in the render

47 # even though GetNumberOfCells () says they should be the re

48 tmp = vtk . vtkPolyData . GetData (i n I n f o [0])

49 inp = vtk . vtkPolyData ()

50 inp . ShallowCopy (tmp)

51

52 # change c o l o r o f a l l c e l l s

53 i f s e l f . c o l o r :

54 n c e l l s = inp . GetNumberOfCells ()

55 c = s e l f . c o l o r c y c l e . next ()

56 vtkarray = dsa . numpyTovtkDataArray (np . t i l e (c , (n c e l l s , 1)))

57 inp . GetCellData () . S e tS ca l a r s (vtkarray)

58

59 # add to world mesh

60 s e l f . worldmesh . AddInputData (inp)

61 s e l f . worldmesh . Update ()

62

63 l o gg ing . i n f o (’Number o f c e l l s : in = {} t o t a l = {} ’

64 . format (inp . GetNumberOfCells () ,

65 s e l f . worldmesh . GetOutput () . GetNumberOfCells ()))

66

67 # output world mesh

68 out = vtk . vtkPolyData . GetData (out In fo)

69 out . ShallowCopy (s e l f . worldmesh . GetOutput ())

70

71 end = timer ()

72 l o gg ing . i n f o (’ Execution time { : . 4 f } seconds ’ . format (end � s t a r t))

73

74 r e turn 1

65

References

[1] M. W. Kadous, R. K.-M. Sheh, and C. Sammut, “E↵ective user interface design
for rescue robotics,” in Proceeding of the 1st ACM SIGCHI/SIGART conference
on Human-robot interaction - HRI ’06. New York, New York, USA: ACM Press,
mar 2006, p. 250.

[2] S. Thrun, “Robotic mapping: A survey,” Exploring artificial intelligence in the
new millennium, no. February, 2002.

[3] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface
construction algorithm,” Computer, vol. 21, no. 4, pp. 163–169, 1987.

[4] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using
projected patterns,” 2012.

[5] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, apr 2012.

[6] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time
dense surface mapping and tracking,” in 2011 10th IEEE International Sym-
posium on Mixed and Augmented Reality, ISMAR 2011. IEEE, oct 2011, pp.
127–136.

[7] L. Xia, C.-C. Chen, and J. K. Aggarwal, “Human detection using depth in-
formation by Kinect,” in CVPR 2011 WORKSHOPS. IEEE, jun 2011, pp.
15–22.

[8] J. Stowers, M. Hayes, and A. Bainbridge-Smith, “Altitude control of a quadro-
tor helicopter using depth map from Microsoft Kinect sensor,” in 2011 IEEE
International Conference on Mechatronics. IEEE, apr 2011, pp. 358–362.

66

References

[9] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, “A
solution to the simultaneous localization and map building (SLAM) problem,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241,
jun 2001.

[10] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part
I,” Robotics & Automation Magazine, 2006.

[11] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” Robotics & Automation Magazine, no. September, 2006.

[12] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relation-
ships in robotics,” Autonomous robot vehicles, 1990.

[13] S. Thrun, W. Burgard, and D. Fox, “A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots,” Autonomous Robots, vol. 5, no.
3/4, pp. 253–271, 1998.

[14] J. Gutmann and K. Konolige, “Incremental mapping of large cyclic environ-
ments,” in Proceedings 1999 IEEE International Symposium on Computational
Intelligence in Robotics and Automation. CIRA’99 (Cat. No.99EX375). IEEE,
1999, pp. 318–325.

[15] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo local-
ization for mobile robots,” Artificial Intelligence, vol. 128, no. 1-2, pp. 99–141,
may 2001.

[16] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored
solution to the simultaneous localization and mapping problem,” Proceedings of
the National conference on Artificial Intelligence, pp. 593–598, 2002.

[17] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3D mapping,” in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1. IEEE, 2000,
pp. 321–328.

[18] Y. Liu and R. Emery, “Using EM to learn 3D models of indoor environments
with mobile robots,” in Machine Learning-International Workshop Then Con-
ference, 2001.

[19] A. Davison, “Real-time simultaneous localisation and mapping with a single
camera,” in Proceedings Ninth IEEE International Conference on Computer
Vision. IEEE, 2003, pp. 1403–1410 vol.2.

67

References

[20] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard,
C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker, “A system for vol-
umetric robotic mapping of abandoned mines,” in 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422), vol. 3. IEEE,
2003, pp. 4270–4275.

[21] A. Howard, D. Wolf, and G. Sukhatme, “Towards 3D mapping in large urban
environments,” 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 1, pp. 419–424, 2004.

[22] D. Cole and P. Newman, “Using laser range data for 3D SLAM in outdoor
environments,” in Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1556–1563.

[23] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality. IEEE, nov 2007, pp. 1–10.

[24] L. Paz, P. Pinies, J. Tardos, and J. Neira, “Large-Scale 6-DOF SLAM With
Stereo-in-Hand,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 946–957,
oct 2008.

[25] K. Konolige and M. Agrawal, “FrameSLAM: From Bundle Adjustment to Real-
Time Visual Mapping,” IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1066–1077, oct 2008.

[26] H. Strasdat, J. Montiel, and A. Davison, “Scale drift-aware large scale monocular
SLAM,” Proceedings of Robotics: Science and Systems (RSS). Vol. 2. No. 3.
2010, 2010.

[27] N. Engelhard, F. Endres, and J. Hess, “Real-time 3D visual SLAM with a
hand-held RGB-D camera,” Proc. of the RGB-D Workshop on 3D Perception
in Robotics at the European Robotics Forum, no. c, 2011.

[28] S. Rusinkiewicz and M. Levoy, “E�cient variants of the ICP algorithm,” in Pro-
ceedings Third International Conference on 3-D Digital Imaging and Modeling.
IEEE Comput. Soc, 2001, pp. 145–152.

[29] B. Yamauchi, A. Schultz, and W. Adams, “Mobile Robot Exploration and Map-
Building with Continuous Localization,” Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat. No.98CH36146), vol. 4, no. May,
pp. 3715–3720, 1998.

68

References

[30] A. Schultz and W. Adams, “Continuous localization using evidence grids,” in
Proceedings. 1998 IEEE International Conference on Robotics and Automation
(Cat. No.98CH36146), vol. 4. IEEE, 1998, pp. 2833–2839.

[31] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object mapping in
non-stationary environments with mobile robots,” in IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 1. IEEE, 2002, pp. 1014–
1019.

[32] A. Eliazar and R. Parr, “DP-SLAM 2.0,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. IEEE, 2004,
pp. 1314–1320 Vol.2.

[33] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for autonomous
mining vehicles using 3D-NDT,” Journal of Field Robotics, vol. 24, no. 10, pp.
803–827, oct 2007.

[34] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM3D map-
ping outdoor environments,” Journal of Field Robotics, vol. 24, no. 8-9, pp.
699–722, aug 2007.

[35] A. Huang and A. Bachrach, “Visual odometry and mapping for autonomous
flight using an RGB-D camera,” Int. Symposium on . . . , pp. 1–16, 2011.

[36] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An
evaluation of the RGB-D SLAM system,” in 2012 IEEE International Confer-
ence on Robotics and Automation, vol. 3, no. c, IEEE. IEEE, may 2012, pp.
1691–1696.

[37] C. Martin and S. Thrun, “Real-time acquisition of compact volumetric 3D maps
with mobile robots,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No.02CH37292), vol. 1. IEEE, 2002, pp. 311–
316.

[38] D. Viejo and M. Cazorla, “Unconstrained 3D-Mesh Generation Applied to Map
Building,” Progress in Pattern Recognition, Image Analysis and Applications,
vol. 3287, pp. 161–207, 2004.

[39] F. Cazals and J. Giesen, “Delaunay Triangulation Based Surface Reconstruction
: Ideas and Algorithms,” INRIA Rapport de recherche, no. November, pp. 1–45,
2004.

[40] J. Weingarten and R. Siegwart, “3D SLAM using planar segments,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
oct 2006, pp. 3062–3067.

69

References

[41] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup,
P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius,
R. Yang, G. Welch, H. Towles, D. Nister, and M. Pollefeys, “Towards Urban
3D Reconstruction from Video,” in Third International Symposium on 3D Data
Processing, Visualization, and Transmission (3DPVT’06). IEEE, jun 2006, pp.
1–8.

[42] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,
C. Engels, D. Gallup, S.-J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton,
L. Wang, Q. Yang, H. Stewénius, R. Yang, G. Welch, and H. Towles, “De-
tailed Real-Time Urban 3D Reconstruction from Video,” International Journal
of Computer Vision, vol. 78, no. 2-3, pp. 143–167, oct 2007.

[43] M. Sainz, R. Pajarola, and Y. Meng, “Depth-Mesh Objects: Fast Depth-Image
Meshing and Warping,” Ukpmc.Ac.Uk, no. 03, 2003.

[44] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast plane detection and
polygonalization in noisy 3D range images,” in Intelligent Robots and Systems
(IROS) 2008. Ieee, sep 2008, pp. 3378–3383.

[45] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with a sin-
gle moving camera,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE, jun 2010, pp. 1498–1505.

[46] Y. Ohtake, A. Belyaev, and H. Seidel, “A multi-scale approach to 3D scattered
data interpolation with compactly supported basis functions,” in 2003 Shape
Modeling International. IEEE Comput. Soc, 2003, pp. 153–161.

[47] J. Stühmer, S. Gumhold, and D. Cremers, “Real-time dense geometry from a
handheld camera,” Pattern Recognition, pp. 11–20, 2010.

[48] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping: Using
Depth Cameras for Dense 3D Modeling of Indoor Environments,” The Interna-
tional Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, feb 2012.

[49] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning with online
loop closure,” 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pp. 1630–1637, sep 2009.

[50] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels : Surface Elements
as Rendering Primitives,” in SIGGRAPH 2000. New York, New York, USA:
ACM Press, jul 2000, pp. 335–342.

70

References

[51] T. Whelan, M. Kaess, and M. Fallon, “Kintinuous: Spatially extended kinect-
fusion,” RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
p. 7, 2012.

[52] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. B. McDonald,
“Robust Tracking for Real-Time Dense RGB-D Mapping with Kintinuous,” in
ICRA 2013, no. MIT-CSAIL-TR-2012-031. Computer Science and Artificial
Intelligence Laboratory, MIT, sep 2012.

[53] L.-K. Cahier, T. Ogata, and H. Okuno, “Incremental probabilistic geometry
estimation for robot scene understanding,” in ICRA 2012. Ieee, may 2012, pp.
3625–3630.

[54] M. Gopi and S. Krishnan, “A fast and e�cient projection-based approach for
surface reconstruction,” in SIBGRAPI’02, 2002, pp. 0–7.

[55] R. Mencl and H. Muller, “Interpolation and approximation of surfaces from
three-dimensional scattered data points,” Scientific Visualization Conference,
1997, 1997.

[56] H. Hoppe, T. DeRose, and T. Duchamp, Surface reconstruction from unorga-
nized points. ACM, 1992, no. July 1992.

[57] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM
Transactions on Graphics, vol. 13, no. 1, pp. 43–72, jan 1994.

[58] J. Bloomenthal, “An Implicit Surface Polygonizer,” In Graphics Gems IV, pp.
324–349, 1994.

[59] B. Curless and M. Levoy, “A volumetric method for building complex models
from range images,” in SIGGRAPH ’96, 1996, pp. 303–312.

[60] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuetzle,
“Robust meshes from multiple range maps,” in International Conference on
Recent Advances in 3-D Digital Imaging and Modeling. IEEE Comput. Soc.
Press, 1997, pp. 205–211.

[61] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile robot with
a 3D laser range finder for 3D exploration and digitalization of indoor environ-
ments,” Robotics and Autonomous Systems, vol. 45, no. 3-4, pp. 181–198, dec
2003.

[62] H. Zhao, S. Osher, and R. Fedkiw, “Fast surface reconstruction using the level
set method,” in Variational and Level Set Methods in Computer Vision, 2001,
2001, pp. 0–7.

71

References

[63] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans, “Reconstruction and representation of 3D objects
with radial basis functions,” SIGGRAPH ’01, pp. 67–76, 2001.

[64] D. Terzopoulos and M. Vasilescu, “Sampling and Reconstruction with Adap-
tive Meshes,” in Computer Vision and Pattern Recognition, 1991. Proceedings
CVPR ’91., 1991.

[65] M. Vasilescu and D. Terzopoulos, “Adaptive meshes and shells: irregular trian-
gulation, discontinuities, and hierarchical subdivision,” in Computer Vision and
Pattern Recognition, no. 1. IEEE Comput. Soc. Press, 1992, pp. 3–6.

[66] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh Op-
timization,” in Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, ser. SIGGRAPH ’93, vol. d. New York, NY, USA:
ACM, 1993, pp. 19–25.

[67] W.-C. Huang and D. Goldgof, “Adaptive-size meshes for rigid and nonrigid
shape analysis and synthesis,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 15, no. 6, pp. 611–616, jun 1993.

[68] M. Rutishauser, M. Stricker, and M. Trobina, “Merging range images of arbi-
trarily shaped objects,” Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition CVPR-94, pp. 573–580, 1994.

[69] H. Delingette, “Simplex meshes: a general representation for 3D shape recon-
struction,” in Computer Vision and Pattern Recognition, 1994, pp. 856–859.

[70] G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in SIG-
GRAPH ’94. New York, New York, USA: ACM Press, 1994, pp. 311–318.

[71] Y. Chen and G. Medioni, “Description of Complex Objects from Multiple Range
Images Using an Inflating Balloon Model,” Computer Vision and Image Under-
standing, vol. 61, no. 3, pp. 325–334, may 1995.

[72] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[73] M. Gopi, S. Krishnan, and C. Silva, “Surface reconstruction based on lower
dimensional localized Delaunay triangulation,” Computer Graphics Forum,
vol. 19, no. 3, 2001.

72

References

[74] I. Ivrissimtzis, W.-K. Jeong, and H.-P. Seidel, “Using growing cell structures
for surface reconstruction,” 2003 Shape Modeling International., vol. 2003, pp.
78–86, 2003.

[75] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva, “Point
set surfaces,” Proceedings Visualization, 2001. VIS ’01., pp. 21–537, 2004.

[76] Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruction meth-
ods for large and noisy point clouds,” in 2009 IEEE International Conference
on Robotics and Automation. IEEE, may 2009, pp. 3218–3223.

[77] W. J. Schroeder, B. Lorensen, and K. Martin, The Visualization Toolkit, 4th ed.
Kitware, 2006.

[78] Kitware. (2016) VTK The Visualization Toolkit. [Online]. Available:
http://www.vtk.org/overview/

[79] S. N. Labs. (2016) SNL Computational Systems and Software Environment.
[Online]. Available: http://www.sandia.gov/asc/computational systems/

[80] M. F. Fallon, H. Johannsson, and J. J. Leonard, “E�cient Scene Simulation
for Robust Monte Carlo Localization using an RGB-D Camera,” in 2012 IEEE
International Conference on Robotics and Automation. IEEE, may 2012, pp.
1663–1670.

[81] Microsoft. (2016) Microsoft Robotics Kinect Sensor. [Online]. Available:
https://msdn.microsoft.com/en-us/library/hh438998.aspx

[82] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of Kinect depth
data for indoor mapping applications.” Sensors (Basel, Switzerland), vol. 12,
no. 2, pp. 1437–54, 2012.

[83] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh optimiza-
tion,” Proceedings of the 4th . . . , p. 381, 2006.

73

