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Abstract

In recent years a large body of research has investigated the dynamics of complex networks,

including percolation [1, 2], epidemics [3, 4], synchronization [5, 6], evolutionary game

theory [7, 8], and traffic dynamics [9, 10, 11]. These study apply to technological networks,

biological networks, and social networks. In general, it has been shown that the topology of

these networks (e.g. the degree distribution [12, 13], degree correlation [14, 15], community

structure [16], etc.) plays a significant role in their dynamical time evolution.
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Chapter 1

Introduction

1.1 Outline

The presence of symmetries is a very common feature in nature. Almost everywhere in

nature we see the symmetries. Symmetries are present in the real networks[21] as well

i.e. technological, social, biological etc. And this feature of network topology plays

an important role in the evolution of a dynamical model on the network but this is still

remained somewhat unexplored with some exceptions[5, 22, 23, 24]. So we considered it

as an important research area where we tried to find the possible effects of symmetries on

the network dynamics.

References [5, 22, 23, 24] have focused on the effect of the network symmetries on the

emergence of cluster synchronization. In our current research, we studied several types

of widely studied dynamical models on networks and try to illustrate the effects of the

underlying network symmetries on each one of those models. Our study indicates that

these symmetries affect the dynamics in all three of the dynamical models considered and

suggest that this may be a general feature of several complex networks, independent of the

particular type of dynamics considered, though the particular effect of the symmetries may

1



Chapter 1. Introduction

vary based on the particular dynamics considered.

References [5, 24] studied the case that the network is formed of coupled nonlinear

oscillators and showed that the underlying network symmetries determine the emergence

of synchronized clusters. In our current research, we consider models characterized by

different types of dynamics, either deterministic or probabilistic, which determine the time

evolution of the network nodes. We will retain the assumptions that the systems are equal

and the connections are equivalent to each other and will show that the symmetries play an

important role on the dynamics in all the models considered, including evolutionary games,

propagation of excitation, and epidemics.

(a) (c) (e)

(b) (d) (f)

Figure 1.1: Effects of the network symmetries in three different dynamical models/networks:
(a-b) Evolutionary game theory played on Zachary’s Karate Club Network [17]. (c-d)
Network traffic model simulated on Bellsouth network [18]. (e-f) random ER graph and
fraction of times each node of this network spends in the excited state according to the
Kinouchi Copelli model [19] of excitable systems. In (a), (c), and (e), nodes colored the
same are in the same cluster except the gray colored nodes, each of which is in a cluster by
itself.

Here, the topology of a network is described by the adjacency matrix A = {Ai j}, where

2



Chapter 1. Introduction

Ai j = A ji is equal to 1 if node j and i affect each other and is equal to 0 otherwise. The

symmetries of the network form a (mathematical) group G . Each element of the group

can be described by a permutation matrix Π that re-orders the nodes in a way that leaves

the network structure unchanged (that is, each Π commutes with A, ΠA = AΠ). The set of

symmetries (or automorphisms) of a network can be quite large, even for small networks,

but it can be calculated from knowledge of the matrix A by using widely available discrete

algebra routines. In fact, while in certain cases it is possible to identify the symmetries by

inspection, in general for an arbitrary network, for which the symmetries may be hidden, the

use of a software is required. In our current study, we used SageMath [25], an open-source

mathematical software. Once the symmetries are identified, the nodes of the network can

be partitioned into M clusters by finding the orbits of the symmetry group, i.e., the disjoint

sets of nodes that when all of the symmetry operations are applied permute among one

another in the same set.

For the current study we have considered three examples of undirected networks, shown

in Figs. 1.1(a), (c) and (e): the Zachary’s Karate Club network [17] of N = 34 nodes, the

Bell South network [26] of N = 51 nodes and a randomly generated ER graph of N = 20

nodes, respectively. Each node of the Karate Club network is a member of a university

karate club and a connection represents a friendship relation between them. The nodes of

the Bell South network are the IP/MPLSs (Multiprotocol Label Switching: a switching

mechanism used in high-performance telecommunications networks). In Fig. 1.1 the colors

of the nodes indicate the clusters they belong to, either non trivial (i.e. clusters with more

than one node in them) or trivial clusters (clusters with only one node in them). All the

nodes in trivial clusters are colored gray while the non-trivial clusters are colored differently.

The Karate club network in Fig. 1.1(a) has C = 4 nontrivial clusters, and 23 trivial clusters.

The Bell South network in Fig. 1.1(c) displays C = 9 nontrivial clusters, and 24 trivial

clusters. The random network in Fig. 1.1(e) has C = 6 non-trivial clusters and 8 trivial

clusters. As we will see, each dynamical system will be applied to each network yielding 9

scenarios.

3



Chapter 2

Symmetries in the Networks

2.1 Basic Terminologies

Network: Network is, in simplest form, a collection of points (vertices or nodes) joined

together in pairs by lines (links, edges or bonds). i.e. lattices, random graphs, small world

networks, scale-free networks.

A complex network is a graph (network) with non-trivial topological features and network

topology is the arrangement of the various elements (links, nodes, etc.) of a network.

Figure 2.1: A small network composed of eight vertices and ten edges.

4



Chapter 2. Symmetries in the Networks

Adjacency Matrix: An adjacency matrix is a square matrix used to represent a Network

topology. The elements of the adjacency matrix indicate whether pairs of vertices are

adjacent or not in the graph. It also shows the weight of each links between two vertices.

Example of an undirected and unweighted graph:

Ai j =

 1 if there is an edge between vertices i and j

0 otherwise.

Figure 2.2: A simple network and its adjacency matrix

2.2 Symmetry

Group theory is the study of symmetry. A Group is an algebraic structure (G,?) that has

four basic properties:

• Closure: a,b ∈ G→ a?b ∈ G

• Associativity: (a?b)? c = a? (b? c)

• Identity: ∃e(a? e≡ e?a = a)

• Inverse: ∀a∃
(
a?a−1 = a−1 ?a = e

)

5



Chapter 2. Symmetries in the Networks

Suppose we have a group (G,?), and let H be a non-empty subset of G. If (H,?) is also a

group then (H,?) is a sub-group of (G,?).

Isomorphism: Two graph G and H are isomorphic if there is a bijection θ :V (G)→V (H)

which preserve adjacency and non-adjacency.

G:

1 2

3 4

5 6

H:

a b

c d

e f

Figure 2.3: Isomorphism

Homomorphism: A Homomorphism from a graph G to a graph H is a mapping (not

necessarily bijective) α : V (G)→V (H) such that xy ∈ E(G)→ α(x)α(y) ∈ E(H).

That means,

G:

a

be

cd

H:

1

23

Figure 2.4: Homomorphism

• α maps edges to edges.

• α may map a non-edge to

- a single vertex

6



Chapter 2. Symmetries in the Networks

- an edge

- a non-edge

In Fig. 2.4 all the edges of G is mapped into H but non-edge eb of G is mapped into edge

32 of H and non-edge bd of G was mapped into a single vertex 2 of H.

Automorphism An automorphism of graph G is

• an isomorphism between G and itself.

• a permutation α : V (G)→V (G) such that it preserves adjacency and non-adjacency.

• describes the symmetries of the graph.

The set of all automorphisms of a graph G, under the operation of composition of functions,

forms a subgroup of the symmetric group on V (G) called the automorphism group of G,

and it is denoted Aut(G).

K3:

a

b c

Figure 2.5: Automorphisms

The automorphisms of the graph K3 are:

• identity, ε = (a)(b)(c)

• reflection, α1 = (a)(bc)

• reflection, α2 = (b)(ac)

7



Chapter 2. Symmetries in the Networks

• reflection, α3 = (c)(ab)

• rotation, r1 = (abc)

• rotation, r2 = (acb)

Then, Aut(K3) = {ε,α1,α2,α3,r1,r2}.

Orbit of an Automorphism Group A relation ∼ on a set (a,b,c) ∈ V is called an

equivalence relation if it is reflexive, symmetric and transitive.

• Reflexive: ∀a in s it holds that a∼ a

• Symmetric: ∀(a,b) in s it holds that if a∼ b then b∼ a

• Transitive: ∀(a,b,c) in s it holds that if a∼ b and b∼ c then a∼ c

1 2

3 4 5

6 7

8 9 10

11 12

Figure 2.6: Colors showing the Orbits of Automorphism Group

If ∼ is an equivalence relation on V , then [u], the equivalence class of u is defined

by [u] = {v ∈V |u∼ v}. The orbit of an element is an equivalent class. Let G be a group

permutation of a set V , For each v ∈V the orbit of v, denoted by OG (v), is the subset of V

such that OG (v) = {u ∈V |∃g ∈ G } such that gv = u. In Fig. 2.6 different colors show the

different orbits of automorphism group.
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Chapter 3

Dynamical Experiments

We are interested in observing and characterizing the overall effect of the network symme-

tries in different scenarios, each of which corresponds to a particular dynamics taking place

on a network.

3.1 Evolutionary Game Theory

In this dynamical scenario each one of the network nodes (agents) iteratively plays a version

of the Prisoner’s Dilemma game [7]. Each node i can either be a cooperator (Si = 1) or a

defector (Si = 0). The network connectivity is described by the matrix A, where Ai j = 1

when agent j is connected to agent i, otherwise Ai j = 0. We define a payoff between two

players based on the “Prisoner’s Dilemma” game. There are two types of strategy adopted

by the players: cooperation and defection. A cooperator pays a cost c for each one of the

agents it is connected to and a defector pays nothing [7]. Each node receives a benefit

equal to b for each cooperator it is connected to. When playing the game, node i receives

a payoff equal to ξi = ∑ j(Ai jbS j−A jicSi). We define the fitness [7] of each node to be

fi = 1−ω +ωξi, where 0 ≤ ω ≤ 1 measures the intensity of selection. ω ' 1 means

9



Chapter 3. Dynamical Experiments

strong selection, that is the fitness is almost equal to the payoff and ω ' 0 means weak

selection, that is the fitness is almost independent of the payoff and close to 1. The literature

[7, 27, 28, 29] focuses on the case of weak selection, which is also what we consider here

(in all our simultions we set ω = 0.1). Following [7] we choose a death-birth updating

rule for the game evolution. Namely, in each time step a random node i is selected to be

replaced by a new offspring (node). The new offspring evolves into either a cooperator or

a defector depending on the fitness of the surrounding agents. We set the probability of

that new node to be a cooperator to be σ(FCi−FDi), where FCi and FDi are the fitnesses of

cooperators and defectors in the neighboring nodes and σ is a monotonically increasing

function such that 0≤ σ ≤ 1. This reflects a higher propensity of turning into a cooperator

based on how well the neighbors of a given node that are cooperators are doing with respect

to the other neighbors of that node that are defectors. The total fitness of the neighbors of

player i is equal to

Fi =
N

∑
j=1

Ai j f j (3.1)

The fitness of the cooperators and defectors in the neighboring nodes of i is defined as,

FCi =
N

∑
j=1

Ai jS j f j = ∑
j

Ai jS j(1−ω)+ω ∑
j

Ai jS jξ j

FDi = Fi−FCi =
N

∑
j=1

Ai j(1−S j)(1−ω)+ω ∑
j

Ai j(1−S j)ξ j (3.2)

Letting, xi = (FCi−FDi), we write the probability that the new offspring will be a cooperator

σ(xi). Here we set σ(xi) = γxi + ε , where γ > 0 and ε are two arbitrary constants. In all

our numerical simulations we have chosen the values of γ and ε so as to ensure 0≤ σ ≤ 1

for all i’s. Since in each time step a randomly chosen node out of the N players is selected

to update its strategy, we can write,

St+1
i =


St

i with probability N−1
N

1 with probability 1
N σ(xi)

0 with probability 1
N (1−σ(xi))

10



Chapter 3. Dynamical Experiments

From this equation, we can compute the expected value of Si at time t +1,

〈S〉t+1
i =

N−1
N
〈S〉ti +

1
N
〈σ(xi)〉 , (3.3)

where the symbol 〈· · · 〉 indicates an average over several realizations. By using 〈σ(xi)〉=

σ(〈xi〉), Eq. (3.3) becomes,

〈S〉t+1
i −〈S〉ti =−

1
N

(
〈S〉ti−σ(〈xi〉)

)
(3.4)

The quantity 〈xi〉= (2〈FCi〉−〈Fi〉) and from Eqs. (3.2) and (3.1) we see that

〈Fi〉=
N

∑
j=1

Ai j
〈

f j
〉
=

N

∑
j=1

Ai j
[
1−ω +ω

〈
ξ j
〉]

(3.5)

and

〈Fci〉=
N

∑
j=1

Ai j
〈
S j f j

〉
=

N

∑
j=1

Ai j
〈
S j
〉〈

f j
〉
=

N

∑
j=1

Ai j
〈
S j
〉[

1−ω +ω
〈
ξ j
〉]

(3.6)

where in order to obtain (3.6) we have made use of the assumption that S j and f j are

statistically independent. The assumption of statistical independence is reasonable if the

network has few short loops and low average degree, see e.g. [2], [30]. For the Bellsouth

network the value of average node degree is 2.59 and our numerical results also showed the

consistency of this assumption.

In vector form, Eq. (3.4) becomes

〈S〉t+1−〈S〉t =− 1
N

(
〈S〉t−σ(〈x〉)

)
(3.7)

where the vectors 〈x〉= 〈FC〉−〈FD〉= 2〈FC〉−〈F〉, S= [S1,S2, . . . ,SN ], F= [F1,F2, . . . ,FN ]

and FC = [FC1,FC2, . . . ,FCN ]. We see that at steady state, 〈S〉= σ(〈x〉).

We see that Eq. (3.7) can be solved iteratively at steady state in the unknown quantities

〈S〉i, i = 1,2, ...,N. This is shown in Fig. 4.4(a) where 〈S〉i obtained by the iterative solution

of Eq. (3.7) at steady state is plotted versus the value of 〈S〉i obtained from the numerical

simulation of the game averaged over a number of realizations colors are consistent with

Fig. 1.1(a).
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Chapter 3. Dynamical Experiments

3.2 Network Traffic Model

We consider a simplified version of the network traffic model studied in [10, 9, 11, 31, 32].

In this model at each time the network evolution is characterized by the following sequence

of steps:

1. Each node produces a data packet at a given generation rate.

2. Each packet that is generated is assigned a destination, which is a randomly chosen

node in the network.

3. Each node has a temporary memory (a queue) in which packets can be stored. When

a node receives a packet it is placed at the bottom of its queue.

4. For each node that has at least one packet in its queue, the packet at the top of the

queue is routed to one of its neighboring nodes.

5. The routing of packets depends on the queue length of the neighboring nodes. In

what follows we make the assumption that the probability that a packet is routed to a

certain node is inversely proportional to the node’s queue length.

6. If two or more neighboring nodes are equally preferable for routing then a node will

be chosen randomly.

7. If a packet reaches its target, it is removed from the queue of the destination node.

We assume, after time t the number of packets in the queue of node i be qt
i and qt

i 6= 0. Then

at time t +1 the probability that node i sends one packet to node j is equal to,

Pt+1
ji =

A ji
1
qt

j

N
∑
`

A`i
1
qt
`

(3.8)
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Chapter 3. Dynamical Experiments

We define the packet generation rate to be λ and the packet delivery rate to be µ j. The

packet delivery rate µ j may not be same for all nodes. This is because even when nodes are

equally likely to be selected as destinations for the packets, packets that are trying to reach

certain destinations spend more time in the queues of the intermediary nodes than others,

which decreases the effective delivery rate of those destinations. This can be seen from

Table 4.1 that shows the average delivery rate (µ) numerically observed for the random ER

graph in Fig.1.1(e) and λ = 0.84. Then, at time t +1 the queue length of node j will be

equal to,

qt+1
j = qt

j +
N

∑
k

A jkP
t
jk +λ −µ j−Ψ j, (3.9)

where Ψ j is the number of packet routed by node j in a time step and is equal to either 0

or 1 (depending on whether there is at least one packet in the queue of node j or not). In

the congested state, Ψ j = 1 for all j’s; then, by taking into account that the entries of the

matrix A are either 0 or 1, Eq. (3.9) becomes,

qt+1
j −qt

j =
N

∑
k

A jk

qt
j

N
∑
`

A`k
1
qt
`

+λ −µ j−1 (3.10)

In simulation we observed the emergence of a congested state for which the queue lengths

of the network nodes grow approximately linearly over time. Based on this observation,

we introduce the assumption that, in the congested state, the queue length of node j can

be written as qt
j ' α jt, where α j is the rate of growth of the queue length (queue angle) at

node j. Then we can write,

qt+1
j −qt

j = α j =
N

∑
k

A jk

α jt
N
∑
`

A`k
1

α`t

+λ −µ j−1 (3.11)

α
2
j =

N

∑
k

A jk
N
∑
`

A`k
1

α`

+α j(λ −µ j−1) (3.12)

13



Chapter 3. Dynamical Experiments

By introducing the quantities α̃i =
1
αi

, we obtain,

α
2
j −α j(λ −µ j−1) =

N

∑
k

A jk
N
∑
`

A`kα̃`

(3.13)

The above equation can be re-written as,

α j(α j−λ +µ j +1) =
N

∑
k

A jk

α̂k
(3.14)

where, the vector α̂ = AT α̃. By using a contraction mapping Eq. (3.14) can be solved

iteratively in the unknown quantities α j, that is, in the rates of growth at different nodes. In

vector form we can write Qt =αt, where Q = {q1,q2, ...,qN} and α= {α1,α2, ...,αN}.

3.3 Biological Excitable System

The Kinouchi and Copelli model [19] has been used to model the activity of a network of

coupled biological excitable systems [33, 34, 35]. Each node i in the network is an excitable

element and can be in one of (m+1) states: κi = 0 is the resting state, κi = 1 corresponds

to the excited state and the remaining κi = 2, .....,m are refractory states, namely a state

in which an excitable element is unable to receive or respond to an excitation. In each

time-step an element (node) that is in resting state can become excited with a transition

probability r (i.e. transition from κi = 0 to κi = 1) in two ways: either through an external

excitation described by a Poisson process with probability η or with a probability Ai j

for each neighbor j that was in the excited state in the previous time-step. Nodes in the

excited and refractory state will transition deterministically into the next refractory state, if

available, otherwise return to the resting state (Fig. 3.1).

The topology of the network is also described by the matrix A = {Ai j}, where we

set Ai j = A ji to be equal to 0.5/K if node j can excite node i, otherwise Ai j = 0 and

K = N−1
∑i, j Ai j is the average node degree of the network. A node that is in the excited or

14



Chapter 3. Dynamical Experiments

Resting State,
κ = 0

Excited State,
κ = 1

Refactory
States,

κ = 2,3, ...,m

r1

1− r1

Figure 3.1: Schematic representation of the Kinouchi-Copelli Model

refractory state will deterministically transition into the next refractory state, until κi = m

after which it will transition again into the resting state κi = 0.

Using the analysis developed in Ref. [34] by Larremore. et al. we refer to Eq. (9) and

Eq. (10) from [34] and write as the following.

pt+1
i =

(
1−

m

∑
k=1

pt+1−k
i

)(
η +(1−η)

[
1−

N

∏
j

(
1−Ai j pt

j
)])

, (3.15)

where pt
i represents the probability that node i is excited at time t, m represents the number

of refractory states (i.e. κ = 0,1,2, ...,m) and η is the probability that a node is exited by

an external stimulation. To understand Eq. (3.15), first note that a node can become excited

at time t +1 only if it is in the susceptible state at time t, which explains the first term on

the right hand side of Eq. (3.15). The second term on the right hand side of Eq. (3.15)

represents the probability that a node that is susceptible at time t becomes excited, either via

an external excitation described by the probability η or if at least one stimulus is received

by one of the neighboring nodes (1 minus the probability that no stimulus is received).

Note the underlying assumption of statistically independence. For more details, refer to

Ref.[2, 30]. Following [34] by assuming that Ai j p j is small we replace ∏
N
j

(
1−Ai j pt

j

)
by

exp
(
−∑

N
j Ai j pt

j

)
and write,

pt+1
i =

(
1−

mi

∑
k=1

pt+1−k
i

)(
η +(1−η)

[
1− exp

(
−

N

∑
j

Ai j pt
j

)])
(3.16)

and at steady state,

pi = (1−mi pi)

(
η +(1−η)

[
1− exp

(
−

N

∑
j

Ai j p j

)])
(3.17)
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Chapter 4

Results

4.1 Evolutionary Game Theory

We numerically iterated the game on all the networks shown in Figs. 1.1 (a), (c) and (e) for

a number of time-steps and for each node i we monitored 〈Si〉 the fraction of times a node

spends in the cooperator state. For each run, the game was iterated until a state was reached

in which the number of cooperators and defectors did not change with time. Figs. 1.1(b)

and 4.1 show the time fraction that each node spends in the cooperator state (results are

averaged over both realization and time) for each one of the nodes of the network in Fig.

1.1(a), (c) and (e). Figure 4.1 presents the results of our numerical computations for the

cases of the Bellsouth network in Fig. 1.1(c) and of the small random graph in Fig. 1.1(e).

Note that in the figure the nodes are ordered by their degree. We observed that the nodes in

the same cluster approximately show the same probability to be a cooperator (or defector)

but that does not correlate with the degree. Here we see that the symmetries in the network

topology plays a clear role on the resulting the dynamics more than the degree of the nodes.
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Chapter 4. Results

(a) (b)

Figure 4.1: (a-b) Evolutionary game theory played on Bellsouth and random ER graph,
see Fig. 1.1(b, c). Bars that are colored the same correspond to nodes in the same cluster
(coloring is consistent with Fig. 1.1(b, c), the gray colored nodes, all of which are in a
cluster by themselves.

4.2 Network Traffic Model

For this experiment, we set the generation rate to be equal to 0.84. That means in average

84% of nodes will generate a packet at each time step. Then, we have measured the

queue angle of each node after a million of time-steps. Figures 1.1(d) and 4.2 show the

outcome for the networks in Figs. 1.1(a), (c) and (e). For these networks, the nodes in the

same clusters (as determined by the symmetry analysis) display similar queue lengths and

delivery rate.

Table 4.1: Average delivery rate (µ) on the random ER graph shown in fig 1.1(c)

Node µ Node µ Node µ Node µ

1 0.0928 6 0.2231 11 0.2325 16 0.0780
2 0.0688 7 0.1622 12 0.0829 17 0.1223
3 0.0682 8 0.1262 13 0.0626 18 0.0780
4 0.2207 9 0.1237 14 0.0622 19 0.1219
5 0.0327 10 0.1231 15 0.0840 20 0.0833
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Chapter 4. Results

(a) (b)

Figure 4.2: (a-b) Network traffic model simulated on Karate club and random ER graph,
see Fig. 1.1(a, c).. Bars that are colored the same correspond to nodes in the same cluster
(coloring is consistent with Fig. 1.1(a, c), the gray colored nodes, all of which are in a
cluster by themselves.

4.3 Biological Excitable System

We numerically simulated the KC model on the networks shown in Figs. 1.1 (a), (c) and (e).

We set m = 6, η = 0.01 and record the average time that each node spends in the excited

state over a large number of time-steps. Figures 1.1(f) and 4.3 show the average node

status (fraction of times a node spends in the excited state) after a million of time-steps for

all three networks in Figs. 1.1. From these figures we see that, the effect of the network

symmetries is apparent for the nodes that are in the same cluster.

It is easy to see that by removing the refractory period, the Kinouchi and Copelli model

is mathematically equivalent to the classic SIS (susceptible-infected-susceptible) model

used to model the spread of an epidemic in a population [12]. Indeed, our numerical

investigations show the emergence of symmetries in the dynamics of the SIS model as well

(not shown).

We have solved Eqs. (3.7), (3.14) and (3.17) iteratively in the steady-state and have

18



Chapter 4. Results

(a) (b)

Figure 4.3: (a-b) Kinouchi Copelli model simulated on Bellsouth and Karate club network,
see Fig. 1.1(a, b). Bars that are colored the same correspond to nodes in the same cluster
(coloring is consistent with Fig. 1.1(a, b), the gray colored nodes, all of which are in a
cluster by themselves.

shown the comparison between the iterative and full simulation results in Fig. 4.4. We see

the analytic and simulation results are in good agreement between them. To conclude, the

symmetry and clusters in the network topology play an important role. From the presence

of symmetry and clusters, we can predict the possible contribution of the nodes in a cluster.

This can reduce the computation effort significantly.
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(a)
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Figure 4.4: Each plot shows the comparison between the analytical results and the simula-
tion results for one of the three dynamical scenarios. (a) shows the comparison for the case
of evolutionary game theory results applied to the Karate club network, (b) shows the queue
angle comparison for the network traffic model on Bellsouth Network and (c) represents
the average node status comparison for the biological excitable system on Random ER
network. Points that are colored the same correspond to nodes in the same cluster (coloring
is consistent with Fig. 1.1, except for the gray colored nodes, each of which is in a cluster
by itself.
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Chapter 5

Symmetries and Stability Analysis

We analyzed each one of the three dynamical models that we have described above. We

proved analytically that the equations admit solutions for which nodes that are swapped by

a permutation matrix in the symmetry group maintain the same state indefinitely in time.

We perturbed these particular solutions and analyze stability of each one of them. Just to

provide some insight in how we proceeded, consider the mathematical description of the

Kinouchi-Copelli model provided in Ref. [34, 36],

pt+1
i =

(
1−mpt

i
)(

η +(1−η)

[
1− exp

(
−

N

∑
j

Ai j pt
j

)])
, (5.1)

i = 1, ...,N, where pt
i is the probability that node i is in the excited state at time t and here

we assume m = 6. By considering the vector pt = [pt
1, pt

2, ..., pt
N ] and premultiplying the

vectorial version of Eq. (5.1) by Π ∈ G , we see that Eqs. (5.1) admit a solution where

nodes that are symmetric maintain the same value of pt
i over time. By applying a small

perturbation, it will then be possible to ascertain whether this particular solution is stable or

unstable.

21



Chapter 5. Symmetries and Stability Analysis

5.1 Evolutionary Game Theory

We are now looking for the effect of the network symmetries on the dynamics. Our goal is

to prove that Eq. (3.7) is equivariant under permutations of the network nodes that are in the

automorphism group of A. We look at Eq. (3.7) and consider symmetries(Π) of A, that is, Π

is a permutation matrix such that ΠA = AΠ. Our goal is to prove that if Π〈S〉t = 〈S〉t , then

Π〈S〉t+1 = 〈S〉t+1. To this end it is sufficient to observe that Π〈F〉= 〈F〉, Π〈FC〉= 〈FC〉

and Πσ (〈x〉) = σ (〈x〉).

Let’s first apply the permutation matrix Π to σ(〈x〉). Then,

Πσ (〈x〉) = Πσ(2〈FC〉−〈F〉) = 2γΠ〈FC〉− γΠ〈F〉+ ε

Now if we can show that Π〈F〉 = 〈F〉 and Π〈FC〉 = 〈FC〉, then we see that Πσ(〈x〉) =

σ(〈x〉).

We write the payoff vector, ξ= bAT S−cΩS =
(
bAT − cΩ

)
S, where Ω is a diagonal matrix

such that Ωii = ∑
N
j Ai j. Then from Eqns. (3.5) and (3.6) we write the vector form of 〈F〉

and 〈FC〉,

〈F〉= A
[
1−ω +ω

(
bAT − cK

)
〈S〉
]

〈FC〉= A
[
〈S〉 ◦

(
1−ω +ω

(
bAT − cK

)
〈S〉
)]
,

(5.2)

where, the symbol "◦" represents the "Hadamard Product". Applying the permutation

matrix Π to 〈F〉. Then,

Π〈F〉= AΠ
[
1−ω +ω(bAT − cK)〈S〉

]
= A

[
1−ω +ω(bAT − cK)Π〈S〉

]
= 〈F〉

We note that nodes that are symmetric to each other have also the same degree. Thus

from the definition of the matrix Ω it follows that ΠΩ = ΩΠ. We can also show that

ΠAT =ΠT AT =(AΠ)T =(ΠA)T =AT ΠT =AT Π. Similarly we can write, Π〈FC〉= 〈FC〉.

Therefore,

Π〈S〉t+1 =
N−1

N
Π〈S〉t + 1

N
Πσ(〈x〉) = N−1

N
〈S〉t + 1

N
σ(〈x〉) = 〈S〉t+1
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We see that Eq. (3.7) can be solved iteratively at steady state in the unknown quantities 〈S〉i,

i = 1,2, ...,N. This is shown in Fig. 4.4(a) where 〈S〉i obtained by the iterative solution

of Eq. (3.7) at steady state is plotted versus the value of 〈S〉i obtained from the numerical

simulation of the game averaged over a number of realizations colors are consistent with

Fig. 1.1(a).

Now we want to find the stability of a fixed point solution for Eq. (3.7). We linearize

Eq. (3.7) about fixed point ¯〈S〉,

δ 〈S〉t+1 =
N−1

N
δ 〈S〉t + γ

N
δ 〈x〉 , (5.3)

which is the same as,

δ 〈S〉t+1 =
N−1

N
δ 〈S〉t + 2γ

N
δ 〈FC〉−

γ

N
δ 〈F〉 (5.4)

and we can write,

δ 〈S〉t+1 =

[
N−1

N
− γ

N
Aω
(
bAT − cΩ

)]
δ 〈S〉t + 2γ

N
δ 〈FC〉 (5.5)

and finally we get,

δ 〈S〉t+1 =

[
N−1

N
− γ

N
AD+

2γ

N
M ¯〈S〉

]
δ 〈S〉t , (5.6)

where the matrices, M ¯〈S〉 = diag( ¯〈S〉)D+diag(D ¯〈S〉+1−ω) and D = ω
(
bAT − cΩ

)
.
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5.2 Network Traffic Model

As before, assume that Π is a permutation of A. We want to show that if ΠQt = Qt , then

ΠQt+1 = Qt+1, assume ΠQt = QtΠ. We will now try to prove ΠQt+1 = Qt+1 from Eq.

(3.10) without using the ansatz qt
j = α t

jt. We can rewrite Eq. (3.10) in vector form,

Qt+1 = Qt +AT (1◦−1 (AT (1◦−1 Qt)))◦ (1◦−1 Qt)+λ −µ−1 (5.7)

Where, the symbol "1◦−1" represents the Hadamard division, i.e., multiplication with the

inverse elements of the matrix or vector. We pre-multiply both sides of Eq. (5.7) by Π and

obtain,

ΠQt+1 = ΠQt +ΠAT (1◦−1 (AT (1◦−1 Qt)))◦Π
(
1◦−1 Qt)+λ −µ−1 =

Qt +AT (1◦−1 (
ΠAT (1◦−1 Qt)))◦ (1◦−1

ΠQt)+λ −µ−1 =

Qt +AT (1◦−1 (AT
Π
(
1◦−1 Qt)))◦ (1◦−1 Qt)+λ −µ−1 =

Qt +AT (1◦−1 (AT (1◦−1
ΠQt)))◦ (1◦−1 Qt)+λ −µ−1 =

Qt +AT (1◦−1 (AT (1◦−1 Qt)))◦ (1◦−1 Qt)+λ −µ−1 = Qt+1

Another way to prove the same result is by using our ansatz qt
j = α t

j , which holds for

the congested state. Then it follows immediately that Πα=α and that ΠQt+1 = Qt+1.

Adding small perturbations, from eq. 3.10 we see that the perturbations δqt
j obey the

following equation,

δ q̇ j =−
N

∑
k

A jk

q2
j α̂k

δq j +
1
q j

N

∑
k

A jk
1

α̂2
k

N

∑
`

A`k
1
q2
`

δq` (5.8)

And finally we can write,

δ̇q = Ξδq (5.9)

where, δq = [δq1,δq2, ...,δqN ] and the entries of the matrix Ξ, Ξi j =
1

qiq2
j
∑

N
` Ai`

1
α̂2
`
A j`−

δi j ∑
N
`

Ai`
q2

i α̂`
and δ jl is the Kronecker delta.
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5.3 Biological excitable system

We also want to analyze the effect of symmetry in the biological excitable system [19], [34].

To this end, we write the vector versions of Eq.(3.16) and Eq.(3.17),

Pt+1 =

(
1−

m

∑
k=1

Pt+1−k

)
◦
(
η +(1−η)

[
1− exp

(
−APt)]) (5.10)

and for the steady state,

P = (1−mP)◦ (η +(1−η) [1− exp(−AP)]) (5.11)

We look at Eq. (5.10) and consider symmetries(Π) of A, that is permutation matrices such

that ΠA = AΠ. Again, we assume that Π permutes with Pt ,Pt−1, ...,Pt−m+1 then we want

to show that Π also permutes with Pt+1. Let’s premultiply by Π both sides of the Eq. (5.10)

and we write,

ΠPt+1 = Π

((
1−

mi

∑
k=1

Pt+1−k

)
◦
(
η +(1−η)

[
1− exp

(
−APt)]))=

Π

(
1−

mi

∑
k=1

Pt+1−k

)
◦Π
(
η +(1−η)

[
1− exp

(
−APt)])=(

1−Π

mi

∑
k=1

Pt+1−k

)
◦
(
η +(1−η)

[
1− exp

(
−ΠAPt)])=

(
1−
(
ΠPt +ΠPt−1 + ...+ΠPt−m+1))◦ (η +(1−η)

[
1− exp

(
−AΠPt)])=(

1−
(
Pt +Pt−1 + ...+Pt−m+1))◦ (η +(1−η)

[
1− exp

(
−APt)])=(

1−
mi

∑
k=1

Pt+1−k

)
◦
(
η +(1−η)

[
1− exp

(
−APt)])= Pt+1

We note that Eq. (5.11) can be iteratively solved in the unknown quantities P1,P2, ...,PN .

This is shown in Fig. 4.4(c) where we plotted the average status of a node from iteration of

Eq. 5.11 versus the average time that it is found in the excited state from the full simulation

of the Kinouchi and Copelli model [19].
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To analyze stability of the solution, following Ref.[36] we linearize Eq. (5.10) around

the quiescent fixed point P = 0,

δPt+1 = (1−mP̄)◦ (1−η)Aexp(−AP̄)δP(t) (5.12)

when there is no external excitation i.e. η = 0, we can write Eq. (5.12)

δPt+1 = AδP(t) (5.13)

The result of the stability analysis will extend to the case of η > 0, because here η plays

the role of an external input.
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Chapter 6

Quotient Graph Reduction

6.1 Quotient Graph

As mentioned in the introduction, symmetries are common features of real networks.

For example biological network, technological network, social network etc. We have

displayed a short table for these networks and the data were collected from the article [20]

by MacArthur. et al.

Table 6.1: No of symmetries in some real world networks [20]

Network No of nodes No of edges No of symmetries
Human B Cell Genetic (BCell) [37] 5,390 64,645 5.9374×1013

Internet (AS Level) (IntAS) [38] 22,332 45,392 1.2822×1011298

US Power Grid (USPow) [39] 4,941 6,594 5.1851×10152

US Airports (USAir) [40] 332 2,126 2.5916×1024

PhD network (PhD) [41] 1,025 1,043 2.9810×10292

PGP users network (PGP) [42] 10,680 24,316 4.4963×101251

Intensive research in social sciences, biology, engineering and physics attempts to use

numerical simulations of large dynamical networks to understand and predict their behavior,
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Chapter 6. Quotient Graph Reduction

often with the goal of better characterizing and understanding of real world phenomena.

Our results in Secs. II and III point out that nodes that are symmetric to each other often

display the same average behavior (if the cluster state is stable). This immediately raises the

question whether a reduction of the dynamics is possible in which duplicate nodes can be

omitted, which would be helpful in reducing the computational complexity of simulations

of large complex networks. Indeed, we know that in the case of synchronizaion, a quotient

network reduction is possible, in which the exact cluster-synchronous time evolution of the

nodes can be generated by a reduced number of nodes, equal to the number of clusters (i.e.,

a node for each cluster).

Here we explain how the quotient network can be obtained. A graph is an ordered pair

G = (V,E) consisting of a nonempty vertex set V of vertices (n(V ) = N) and edge set E

of edges and automorphism permutes the vertices (v ⊂ V ) preserving the adjacency and

non-adjacency of the graph or network. The set of all automorphisms of a graph form a

group called the Automorphism Group written as Aut(G). We can say under the action of

G = Aut(G) the vertex set V (G) is partitioned into C disjoint structural equivalence classes

called G-orbits of v such that

OG (v) = {u ∈V |∃g ∈ G such that gv = u}
C⋃
`=1

n
(
O`

G

)
= N and O i

G ∩O j
G = 0, where i, j = 1,2, ...,C, j 6= i

The nodes or vertices of an orbit hold the equivalence relation ∼, The quotient graph of G

with respect to ∼ is a graph QG such that its vertex set is the quotient set V/∼ and two

equivalence classes [u], [v] form an edge iff uv forms an edge in G . Graphs in Figs. 6.3 and

6.7 are the quotient graphs of the graphs in Figs. 6.2 and 6.6. If Ov,Ou are any two orbits

or equivalence classes of the group G , then we can write the expression of the quotient

graph QG of graph G such that for each pair of sets (Ov,Ou),

Quv =
1

n(Ou) ∑
i∈Ou

∑
j∈Ov

Ai j,
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Figure 6.1: The Random ER graph and its quotient graph reduction

where u,v = 1,2, ...,C. In Fig. 6.1 we demonstrate an example of quotient graph reduction

from if’s full graph shown in Fig. 1.1(e), where we can see the nodes in the same orbit are

reduced to one node and the corresponding color identifies each reduced node.

6.2 Quotient Graph Analogy

We envision that the quotient graph of a network could be an conveniently exploited in

simulations involving large networks to reduce their computational complexity. These

simulations may be used to study epidemics, congestion, emergence of cooperation, as

discussed in Chapter. III - V, just to mention a few examples. In order to demonstrate the

potential usefulness of an equivalent model on the quotient network, we choose to work

with the Kinouchi Copelli model. For a number of networks, we use their quotient graph

reductions to study how well they can approximate the full Kinouchi Copelli dynamics of

the original network.

We start by considering a simple network of five nodes shown in Fig. 6.2 with two

nontrivial clusters and one trivial cluster. The mathematical equations we have derived in
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Chapter. III for all the three models can be easily projected on to the corresponding quotient

network equations. However coming up with an equivalent model that can be simulated

on the quotient network may require a particular adaptation of the model, which is model

specific. To show this last point we consider the particular case of the Kinouchi Copelli

model, which we describe in detail in what follows.

1 2 3 4 5

β

β

β

β

β

β

β

β

A =


0 β 0 0 0
β 0 β 0 0
0 β 0 β 0
0 0 β 0 β

0 0 0 β 0


Figure 6.2: 5 Nodes Network. Colors distinguish the orbits of the automorphism group.
The matrix A on the right describes the adjacency of the network

From (3.15) for the network presented in Fig. 6.2 we can write,

pt+1
1 =

(
1−

m

∑
k=1

pt+1−k
1

)(
η +(1−η)β pt

2
)

(6.1)

pt+1
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(
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m
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2

)(
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[
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(
1−β pt

1
)(

1−β pt
3
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pt+1
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(
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∑
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3

)(
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[
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(
1−β pt

2
)(

1−β pt
4
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pt+1
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(
1−

m

∑
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4

)(
η +(1−η)

[
1−
(
1−β pt

3
)(

1−β pt
5
)])

(6.4)

pt+1
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(
1−

m

∑
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pt+1−k
5

)(
η +(1−η)β pt

4
)

(6.5)
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We define the cluster state, where yt
1 = pt

1 = pt
5, yt

2 = pt
2 = pt

4 and yt
3 = pt

3. So we can

rewrite Eqs. (6.3), (6.4) and (6.5) in the new y-coordinate system as,

yt+1
1 =

(
1−

m

∑
k=1

yt+1−k
1

)(
η +(1−η)βyt

2
)

(6.6)

yt+1
2 =

(
1−

m

∑
k=1

yt+1−k
2

)(
η +(1−η)

[
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(
1−βyt

1
)(

1−βyt
3
)])

(6.7)

yt+1
3 =

(
1−

m

∑
k=1

yt+1−k
3

)(
η +(1−η)2βyt

2
)

(6.8)

From the eqs. (6.6), (6.7) and (6.8) we can build the reduced matrix B shown in figure

6.3, which coincides the quotient graph obtained from the full network A.

1 2 3

β

β

2β

β

B =

0 β 0
β 0 β

0 2β 0


Figure 6.3: Quotient graph of the 5 Nodes Network 6.2. Colors distinguish the orbits of the
automorphism group. The matrix B on the right describes the quotient network.

We verified this fact with the iterative solution of the problem as well. We also applied

this quotient graph reduction for the network in Fig. 6.2 to the other dynamical models and

found it matched pretty well with the full graph results.

6.3 Simulation with network quotients

We applied the network quotients in the simulations of different dynamical models. Due

to some incompatibility between the network quotient structure and the philosophy of the
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model, some simulations on the quotient graphs needed to rescale to compare with the

result of full network simulations. For example we have accomplished the simulation of

Kinouchi Copelli Model on several simple networks shown in Figs. (6.2 - 6.5) and tabulated

the results in table 6.2.

1 2 3 4 5 6

β

β

β

β

β

β

β

β

β

β

A =


0 β 0 0 0 0
β 0 β 0 0 0
0 β 0 β 0 0
0 0 β 0 β 0
0 0 0 β 0 β

0 0 0 0 β 0


Figure 6.4: Simple 6 Nodes Network. Colors distinguish the orbits of the automorphism
group. The matrix A on the right describes the adjacency of the network

1 2 3

β

β

β

β

β B =

0 β 0
β 0 β

0 β β


Figure 6.5: Quotient graph of the 6 Nodes Network 6.4. Colors distinguish the orbits of the
automorphism group. The matrix B on the right describes the connectivity of the network.

Table 6.2: Comparison between full and quotient graph

5-Nodes Network 6-Nodes Network
Full Quotient Full Quotient

Node pi Node pi Node pi Node pi

1 0.0112 1 0.0110 1 0.0112 1 0.0111
2 0.0127 2 0.0122 2 0.0127 2 0.0124
3 0.0129 3 0.0129 3 0.0129 3 0.0112
4 0.0126 4 0.0128
5 0.0112 5 0.0126

6 0.0112

Refer to table 6.2, when we compared the outcomes of simulations of Kinouchi Copelli
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model done on the network in fig 6.6 and its quotient graph 6.7 we needed to rescale the

outcome because of the presence of self loop in the quotient graph.

This self-loop describes the probability of that node to be excited by itself but as per the

dynamical scenario a node cannot excite it-self. So the effect of self-loop is ignored in the

simulation. Since we ignored the self-loop in our simulation, we lost the contribution of

that probability in the simulation. This is why we needed to adjust the outcomes making

some projections. In this case we made a suitable projection function like eq. (6.9) and was

able to achieve the result close to the results of full simulation. We extend the results for

simple 9 nodes network shown in Fig. 6.6 and its quotient shown in Fig. 6.7. We presented

the result after the scaling in table 6.3.

q f
i =

(
1− ni

m
−qini

)
qi (6.9)

where, q f
i represents the outcome after the projection of qi and ni represents the number of

self connections in the orbit of node i.

1 2 3 4

5

6 7

8

9

B=



0 β 0 0 0 0 0 0 0
β 0 β 0 0 0 0 0 0
0 β 0 β β 0 0 0 0
0 0 β 0 β β 0 0 0
0 0 β β 0 0 0 β 0
0 0 0 β 0 0 β 0 0
0 0 0 0 0 β 0 0 0
0 0 0 0 β 0 0 0 β

0 0 0 0 0 0 0 β 0


Figure 6.6: Simple 9 Nodes Network. Colors distinguish the orbits of the automorphism
group. The matrix A on the right describes the adjacency of the network

33



Chapter 6. Quotient Graph Reduction

1 2 3

β

β

β

β

2β B =

0 β 0
β 0 β

0 β 2β


Figure 6.7: Quotient graph of the 9 Nodes Network 6.6. Colors distinguish the orbits of the
automorphism group. The matrix B on the right describes the connectivity of the network.

Table 6.3: Comparison between full and quotient graph

9-Nodes Network 6-Nodes Network
Full Quotient Full Quotient

Node pi Node pi Node pi Node pi

1 0.0110 1 0.0108 1 0.0112 1 0.0111
2 0.0123 2 0.0119 2 0.0127 2 0.0124
3 0.0140 3 0.0144 3 0.0129 3 0.0129
4 0.0139 4 0.0128
5 0.0143 5 0.0126
6 0.0123 6 0.0112
7 0.0109
8 0.0122
9 0.0109

6.4 Modification of the Model

To overcome the limitations in simulation with quotient graph we modified the Knouchi

Copelli model. To incorporate the self-loop excitation of quotient graph we introduced a

second transition probability r2 to go to the refractory state from the excited state as shown

in figure 6.8. The transition probability r2 j will depend on number of self-loop present in

node j. If there is no self-loop present in node j then r2 j = 1, other wise r2 j will depend

on the self-loop present in the nodes. This is how for no self-loop the modified model

converges with the original model.

We have done the simulations with quotient graphs based on the dynamics of modified

Kinouchi Copelli model on the simple networks shown in Figs. (6.4-6.7) and tabulated in
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Resting State,
κ = 0

Excited State,
κ = 1

Refactory
States,

κ = 2,3, ...,m

r1

1− r1

r2

1− r2

Figure 6.8: Schematic representation of the modified Kinouchi-Copelli Model

table 6.4 to compare the results with the full graphs and achieve good matching with the

simulations done on the full networks.

Table 6.4: Comparison between full and quotient graph

9-Nodes Network 6-Nodes Network
Full Quotient Full Quotient

Node pi Node pi Node pi Node pi

1 0.0110 1 0.0109 1 0.0112 1 0.0112
2 0.0123 2 0.0123 2 0.0127 2 0.0126
3 0.0140 3 0.0140 3 0.0129 3 0.0128
4 0.0139 4 0.0128
5 0.0143 5 0.0126
6 0.0123 6 0.0112
7 0.0109
8 0.0122
9 0.0109

At this point we can conclude saying that, to solve a dynamical scenario iteratively,

its quotient graph can reduce the computational effort to produce the same solution and

depending upon the topology of any network a suitable projection of results of quotient

graph can lead to a good consensus of the results with full network simulation.
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Discussion

7.1 Summary

Symmetry is evident is almost everywhere form a mechanical structure to biological

organism. In our everyday life we can see a lot of examples of the presence of symmetry

i.e. crystal structure of a molecule, HiV virus, flowers etc. For this reason my study of

symmetries in dynamical networks is very significant in light of network redundancy and

computational complexity. Specially in the large networks the computational complexity

becomes really a great problem so if we can reduce our network to a smaller one based

on the topological symmetries that will reduce the computational complexity significantly.

In my current I tried to show the effect of topological symmetry in the outcomes of the

simulation of various dynamical models and eventually show a matching of results between

the full network and its quotient reduction.
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HIV virus Lilium

Figure 7.1: Symmetries in everyday life

7.1.1 Methodology

For the current study I have done the numerical simulations of various dynamical models

for several real and randomly generated networks using MATLAB. To identify the network

symmetries I adopted the computational graph theory and in this regard I used an open

source software named SAGE. Because sometimes for larger network it becomes quite

impossible to identify the underlying symmetries of the networks only my inspection. Since

for my study it is important to find the symmetries accurately I used this computer software.

All the dynamical models are simulated as per the description presented in section III.
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7.1.2 Results

Results are obtained from the numerical simulations using MATLAB. We also matched

our results with the iterative solution from the analysis of the dynamical models. From

the results we can see that the nodes playing equivalent topological role also producing

equivalent outcomes in the simulations of the dynamical scenarios. This is very significant

because from the results we can see that the symmetry dominating over the other topological

features like node degree. Based on these result we continued our study to the network

quotients and we have seen a close matching between the quotient and full network

simulation outcomes.

7.2 Future Research

My present study is limited to the undirected, unweighted networks but a number of real

network is directed as well as weighted. So my present research can be extended for the

directed and weighted networks. Besides, the future research scope from this study can be

• Perform physical experiments

• Study of approximate symmetry

• Finding appropriate scaling factor for quotient simulation

• Modification of the dynamic scenarios to incorporate the network quotients

7.3 Conclusion

In conclusion, my present research can introduce a new concept of analyzing the dynamical

models in complex networks. This is very important because a good percentage of the real
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networks have redundancy in terms of their topology. My current study emphasize on the

reduction of these redundancy in complex networks in the study of the dynamical models.
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