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Abstract 

This thesis presents an experimental study of the effects of ultrafast laser 

ablation on the mechanical properties of metal laminates followed by FEA 

simulation to elucidate future experimental potential. The metals investigated are 

copper, niobium, and copper/niobium accumulative roll bonded (ARB) laminates. 

The two laminate materials in this study have a nominal layer thickness of 1.8 

microns and 65 nanometers; the effects of the laser processing on the ARB 

materials are characterized in the rolling direction as well as the transverse 

direction as the material exhibits anisotropic properties.  The aforementioned 

materials are examined via scanning electron microscopy and energy dispersive 

spectroscopy techniques to obtain changes in layer restructuring and 

modification. The motivation of this study is to characterize the heat affected 

zone in the materials produced by ultrafast laser processing to determine 

whether ultrafast laser ablation is a viable method for creating artificial cracks for 

SEM in-situ mini cantilever fracture testing.  A parameter space is defined to 

attempt to capture an acceptable set of laser settings which both reduce the heat 

affected zone and create an etched geometry mimicking a crack into the sample 

to facilitate crack propagation in bend testing. Finally, simulation is performed 

using ANSYS to determine sample geometry constraints induced by both the 

laser-notched crack tip’s geometry and the limitations of the experimental 
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apparatus used for in-situ testing. Additionally, simulations will provide insight 

into the plastic behavior of the layered structure. 
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Chapter 1  
 

Introduction 
 

1.1 Lasers 

The term laser is an acronym for the light amplification by stimulated 

emission of radiation. The first operational laser was created in 1960 [1]; this set 

the foundation for the development of continuous wave and pulsed lasers which 

eventually led to the progression to fast and ultrafast lasers currently used in 

various scientific and commercial applications. The focus of this manuscript is on 

ultrafast laser interactions with metals, namely copper and niobium, with the goal 

of determining whether it is a viable method for ablating artificial crack tips for 

fracture testing. Ultrafast lasers are those in which the pulse duration is on the 

order of tens of femtoseconds to sub-picosecond. This regime presents the need 

for new governing equations to describe energy transport phenomena associated 

with light-matter interactions at such a short time scale. The extremely short 

pulse duration which can last for less than a millionth of a billionth of a second 

ablates matter in a mostly athermal manner. Attributed to this fact, is that the 

photon-matter interactions produce a minimalized heat affected zone during 

ablation as compared to continuous wave, microsecond, nanosecond, and 

picosecond pulsed lasers. This characteristic has opened the door to many 

micro- and nano-etching/ablation processes referred to as laser beam machining 

(LBM). 

In metals, which are the focus of this study, this ultrafast phenomenon 

occurs when the energy transferred to electrons is subsequently transferred to 

the lattice via electron-phonon coupling. This causes the atoms to pass quickly 

through the liquid phase directly to the gas phase before the energy can transfer 

to the lattice through diffusion, thereby minimizing heat propagation and its 
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effects on surrounding material. Once the energy is imparted to the electrons 

from the incident photons, energy transfer from the free electrons to the lattice is 

regulated by the electron-phonon coupling factor which is a material property that 

varies from metal to metal. 

 

1.2 Governing Equations 
 

1.2.1 Ultrafast laser-metal energy transport 

Although this is not a theoretical study of energy transport, it is necessary 

to understand the mathematical models describing short time-scale light matter 

interactions. In this section a brief overview of the evolution of light-matter, 

namely light-metal, interaction phenomena will be presented to elucidate the 

uniqueness of ultrafast laser-metal interactions. This uniqueness is with respect 

to energy transport in the femtosecond time regime. In addition, it highlights the 

challenge of precisely micromachining metal laminates consisting of non-uniform 

layers with constituent materials having vastly different material properties 

relevant to ultrafast energy transport mechanisms. 

 The principles governing laser-metal interactions have evolved from a 

simple model using the Fourier heat conduction as a foundation, in the case of 

continuous wave (CW) lasers, to more complex mathematically vigorous models. 

Continuous wave laser interaction with metals is described using the Fourier 

model of heat conduction also known as the parabolic one-step (POS) model [2, 

3].  

𝐶𝐶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝑘𝑘∇𝜕𝜕) + 𝑆𝑆  

where 𝜕𝜕 is the temperature, 𝜕𝜕 the time, 𝐶𝐶 the volumetric heat capacity, 𝑘𝑘 the 

thermal conductivity, and 𝑆𝑆 is the laser heating source term. This model makes 
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two key assumptions: energy transfer occurs instantaneously and that it is a 

diffusive process.  While this model has proven to be one of the best models in 

mathematical physics, it’s been shown via transient heat-conduction boundary-

value problems that temperatures vary initially then converge to nearly identical 

profiles after a time on the order-of-magnitude of the relaxation time of the 

material’s electrons [4]. In other words, a pulse of heat at one location in a 

medium causes an instantaneous change in temperature at some distant 

location, a physical impossibility. Thus, a more accurate model was required to 

account for finite speed propagation. 

It was proposed that heat transfer has a wave-type nature and propagates 

at a finite speed rather than a diffusive process occurring at infinite speed [4, 5].   

The product of this approach was the hyperbolic one step (HOS) model, also 

known as the relaxation model, for heat transfer, which included the addition of a 

heat-flux relaxation term, 𝜏𝜏,  to the Fourier heat conduction model.  

𝐶𝐶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −∇ ∙ 𝑸𝑸 + 𝑆𝑆  

𝜏𝜏
𝜕𝜕𝑸𝑸
𝜕𝜕𝜕𝜕

+ 𝑘𝑘∇𝜕𝜕 + 𝑸𝑸 = 0 

where 𝑸𝑸 is the heat flux through the metal and 𝜏𝜏 is the relaxation time for free 

electrons in a metal. The relaxation time,  𝜏𝜏, is a characteristic time for the 

average of a distribution of electrons in a solid to achieve equilibrium after an 

external disturbance has been removed [6]. It was shown that this model was not 

a valid extension of the parabolic one step model at very short timescales when 

the pulse duration is much greater than the thermalization time of the material [7, 

2]. Furthermore, it has been demonstrated mathematically that a negative 

temperature field occurs under particular conditions in violation of the second law 

of thermodynamics [8]. 

 Next, it was proposed that energy transfer from photons to internal energy 

or lattice vibration is not instantaneous. Rather, it occurs through a two-step 

3 



energy-deposition process [9]. First, radiant energy is transferred to the free 

electrons in the metal. Second, the energy imparted on the electrons transfers to 

the metal lattice or phonons with the rate of transfer mediated by an electron-

phonon coupling factor. The parabolic two-step model (PTS) that emerged from 

this approach is treated with the assumption that the electron temperature and 

lattice temperature can be characterized by 𝜕𝜕𝑒𝑒 and 𝜕𝜕𝑙𝑙, respectively.  

𝐶𝐶𝑒𝑒(𝜕𝜕𝑒𝑒)
𝜕𝜕𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝑘𝑘∇𝜕𝜕𝑒𝑒) − 𝐺𝐺(𝜕𝜕𝑒𝑒 − 𝜕𝜕𝑙𝑙) + 𝑆𝑆 

𝐶𝐶𝑙𝑙(𝜕𝜕𝑙𝑙)
𝜕𝜕𝜕𝜕𝑙𝑙
𝜕𝜕𝜕𝜕

= 𝐺𝐺(𝜕𝜕𝑒𝑒 − 𝜕𝜕𝑙𝑙) 

where the subscripts 𝑒𝑒 and 𝑙𝑙 represent the properties of the electrons and lattice, 

respectively. 𝑆𝑆 Remains a laser source term, and 𝐺𝐺 is the electron-phonon 

coupling term, which indicates how rapidly energy is transferred from the 

electrons to the lattice and can be expressed as: 

𝐺𝐺 =
𝜋𝜋2𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒𝑢𝑢𝑠𝑠2

6𝜕𝜕𝑐𝑐(𝜕𝜕𝑒𝑒)𝜕𝜕𝑒𝑒
 

where 𝑚𝑚𝑒𝑒, 𝑛𝑛𝑒𝑒, 𝑢𝑢𝑠𝑠,𝜕𝜕𝑐𝑐, and 𝜕𝜕𝑒𝑒 are the electron mass, electron number density, 

speed of sound, electron mean free time between collisions at temperature 𝜕𝜕𝑒𝑒, 

and the electron temperature, respectively [10].  

 

Property Copper Niobium 

Thermal Conductivity, 𝑘𝑘, (W/ m-K) 386.01 51.93 

Electron-Phonon Coupling Factor, 𝐺𝐺, (1016 W/m3-K) 4.8 ± 0.7 387 ± 36 

Table 1.1: Thermal Conductivity,𝒌𝒌, and Electron-phonon coupling factor, 𝑮𝑮, 
of Cu and Nb [11] 

 

 The drawback of the PTS model are that a particular solution for the 

femtosecond time regime can only be readily formulated for intensities that are 
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linear functions of time and that it was not rigorously derived from the Boltzman 

transport equations for electrons as performed by Qiu et al. [9, 12, 2]. 

Additionally, energy transport is predicted to propagate at an infinite speed 

contrary to observations [13]. The electron temperature in the post-hundred 

femtosecond to sub-picosecond time range was validated by comparing 

equilibrium thermodynamics with the measured electron distribution function [14, 

15]. The flaws become an issue only when the pulse duration is less than a few 

hundred femtoseconds; shorter than this and the electron temperature is only 

approximate. This model applies to the current study, as the pulse width is 

approximately 780 fs.  

 In the case of pulses with a duration of less than a few hundred 

femtoseconds, the hyperbolic two-step model as derived by Qiu and Tien is the 

appropriate mathematical description of energy transport [2]. The final 

formulation describing photon-metal energy transport is the dual hyperbolic two-

step model, which varies from the standard PTS by accounting for energy 

transport in both the electrons and lattice rather than by the electrons alone. 

There will be no further elaboration on these models as they are not applicable to 

the current study due to the relatively long pulse width of the laser and the 

material properties of copper and niobium. 

 

Figure 1.1: Interrelationship between laser heating models [2] 
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The above schematic depicts the selection process for the appropriate 

heating models for light-metal interactions depending on three characteristic 

times. The thermalization time, electron relaxation time, and heating time, th, 

which is the laser pulse duration [2]. For the laser used for this thesis, the pulse 

duration was measured using autocorrelation and found to have a temporal width 

of approximately 780 fs at full-width half max assuming a temporally Gaussian 

intensity profile (see Appendix 1).  Adhering to the flow of the schematic, 

copper’s heat transfer is governed by the parabolic two-step model due to long 

thermalization time and short electron relaxation time. On the other hand, 

niobium’s heat transfer mechanism is governed by the traditional Fourier 

conduction model as its thermalization and relaxation are both much shorter than 

the pulse duration; at least one and order and two orders of magnitude, 

respectively. Taking this discrepancy into account, the lowest possible laser 

fluence is used to minimize the heat affected zone while exploiting the incubation 

effect, which is discussed in section 1.2.3, to further reduce the necessary 

fluence required for material ablation. 

     

Property Copper Niobium 

Thermalization tc (fs) 600 50 

Electron Relaxation τ (fs) 30 4 

Table 1.2: Thermalization and Electron Relaxation times of copper and 
niobium at room temperature [12] 

 

1.2.2 Gaussian Beam Intensity Profile 

The laser used in this experiment is a Raydiance Smart Light with a 

spatially Gaussian intensity profile described by 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼0𝑒𝑒
�− 2(𝑥𝑥−𝑥𝑥𝑜𝑜)2

𝜔𝜔𝑥𝑥
2  – 2(𝑦𝑦−𝑦𝑦0)2

𝜔𝜔𝑦𝑦
2 �

 

6 



where 𝐼𝐼(𝑥𝑥,𝑦𝑦) denotes beam intensity at some location relative to the central axis 

of the beam where the maximum intensity is located at 𝐼𝐼0(𝑥𝑥0,𝑦𝑦0) along the axis of 

beam propagation. Furthermore, 𝜔𝜔𝑥𝑥 and  𝜔𝜔𝑦𝑦 are the 1
𝑒𝑒2

 half-widths in the x and y 

directions, respectively [16]. The spot size of the focused laser beam is 

characterized by 𝜔𝜔𝑥𝑥 and  𝜔𝜔𝑦𝑦 in which a certain amount of the beam’s Gaussian 

profile is captured. There are multiple accepted criteria for defining a Gaussian 

spot size [17]. In this study, the 1
𝑒𝑒2

 criterion is used to measure the spot size to 

calculate and compare with previous studies the laser irradiation fluence on the 

sample to remain near the damage threshold of the material and, thereby, reduce 

the heat affected region and collateral damage. 

 The knife edge method was used to measure the effective spot size in 

order to dial in the desired energy per pulse. This method requires scanning a 

razor blade across the beam at the machining plane and recording the measured 

power. The data is then differentiated with respect to position using the algorithm 

described by [18] 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑥𝑥

=
1
2
�
𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖+1 −  𝑥𝑥𝑖𝑖

+  
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

� 

This series of measurements and calculations were performed in both the x- and 

y-directions to calculate the Gaussian spots sizes to determine whether any 

substantial astigmatism existed in beam profile. The data for this process can be 

found in the appendix. The results from this show that the values of 𝜔𝜔𝑥𝑥 and 𝜔𝜔𝑦𝑦 

are 2.25 um and 3 um, respectively. 

 

1.2.3 Incubation Effect 

The single shot ablation threshold of a metal is the energy per area 

(fluence) at which material removal is initiated. This single shot threshold fluence 

is a function of the materials thermal and dynamical properties [19]. The 
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threshold fluence, however, decreases as more pulses are applied to the same 

location. This phenomenon is known as the incubation effect wherein the 

materials threshold fluence lowers as a function of applied pulses. Although 

current research has proposed several different contributions to the incubation 

effect, a comprehensive mechanism has not yet been established [20]. Currently, 

proposed contributors to the incubation effect are heat accumulation at high laser 

pulse repetition rates, plastic deformation accumulations due to induced thermal 

stress fields, increased energy absorption due to surface roughening, and 

decreased energy penetration depth [21, 22, 23, 24].  

Mathematically the incubation effect can be represented using a power 

law as given by  

𝜙𝜙𝑡𝑡ℎ(𝑁𝑁) = 𝜙𝜙𝑡𝑡ℎ(1)𝑁𝑁𝑆𝑆−1 

where 𝜙𝜙𝑡𝑡ℎ(𝑁𝑁), 𝜙𝜙𝑡𝑡ℎ(1), 𝑁𝑁, and 𝑆𝑆 are the threshold fluence for 𝑁𝑁 pulses, one pulse, 

the number of pulses 𝑁𝑁, and the incubation coefficient 𝑆𝑆, Respectively [25]. 

 

1.3 Goals of Study 

The motivation of this study is to create a high aspect ratio ablated trench 

with a sharp leading edge to simulate a crack into a metal laminate to facilitate 

mechanical testing for fracture characterization. Benefits of ultrafast laser 

machining are that it is readily accessible, ablates features quickly, and affords 

the ability to be selective about crack placement. Focused ion beam (FIB) has 

been used along with the currently used ultrafast laser in another study for 

artificial notching, but said study investigated the fracture toughness along the 

constituent materials’ interface [25]. The unique aspects of the laser machining, 

in this case, is that the laser processing is perpendicular to the direction of the 

layers and that the layer thicknesses reported are an average where single layer 

thickness has been seen to be as large as 10um in the case of the nominally 

1.8um layered sample. This layer non-uniformity amplifies the difference in 
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material properties on the ablation dynamics. The tradeoff between FIB and laser 

notching is that FIB has a much higher spatial resolution at the expense of 

processing time. A 25um deep notches can be micro machined across a 250um 

length in a few minutes whereas similar notches via FIB took up to 8 hours [26]. 

Also, FIB tends to modify samples through ion implantation which could prove 

consequential in small scale testing [27]. 

The final portion of this research will provide a modeling aspect using 

ANSYS to investigate the plastic zone ahead of a crack during deformation to 

show whether linear elastic fracture mechanics applies to future mechanical 

testing and what geometric constraints must be met to facilitate future 

experiments determined by equipment capabilities and sample fabrication 

limitations. 
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Chapter 2  
 

Laser Parameterization 
 

2.1 Experimental Setup 

This experiment uses a Raydiance Smart Lite ultrafast laser with a 

fundamental wavelength of 1552nm and pulse width of 833fs. The laser is 

frequency doubled so that the wavelength is 776nm using a Beta Barium Borate 

(BBO) crystal. Due to this modification of the beam, the pulse width is measured 

as described above using autocorrelation and found to have a pulse width of 

780fs after frequency doubling. The ability to attenuate the laser beam is 

achieved via a Polarizing Beam Splitting Cube (PBSC) in series with Half-Wave 

Plate (HWP). The beam is turned to follow a path that strikes the samples being 

studied in normal incidence. The beam is focused through an M Plan Apo NIR 

20X focusing objective with laser focusing achieved by adjusting the Z height of 

the focusing objective relative to the sample surface via a Newport MFA-CC 

miniature linear stage. A dielectric mirror allows for simultaneously imaging with a 

CCD camera while laser ablation is taking place.  Once the sample is in focus 

beneath the laser, its translation in the X and Y plane is controlled by Newport 

XMS 180 and XMS 50 ultra-precision linear motor stages, respectively. A beam 

sampler is used to monitor power throughput after the attenuating region. In this 

experiment, the repetition of the laser was set to 2kHz to avoid heat 

accumulation. 
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Figure 2.1: Raydiance Laser Micro-Machining Diagram 

 

2.2 Sample Compendium 

The samples tested are annealed copper, niobium, and copper/niobium 

micro- and nano- laminates created through an accumulative roll-bonding (ARB) 

process in which the materials undergo Severe Plastic Deformation (SPD). The 

initial Nb and Cu materials used to manufacture these samples are reactor grade 

Nb (99.97%, ATI Wah Chang) and oxide-free high conductivity Cu (99.99% pure, 

Southern Copper and Supply). The ARB process for the laminate material in this 

study starts with a copper clad first-rolling where a full niobium sheet is 

sandwiched between two half sheets of copper and put through a rolling mill. 

Further details regarding sample preparation and treatments can be found in 

reference [28]. Samples investigated here are pure Cu, Nb, 1.8um nominally 

layered Cu/Nb, and 60nm nominally layered Cu/Nb. Both the 1.8um and 60nm 

ARB laminate materials will be examined in both the rolling and transverse 

directions relative to the rolling process. 
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Figure 2.2: Accumalive roll bonded copper/niobium laminate sample 
orientation relative to laser processing 

 

 Before laser processing, all of the samples’ top and side surfaces 

received polishing via Allied High Tech diamond lapping films. The resulting 

surface roughness reported in the following table are measured with a Bruker 

DektakXT stylus profilometer. The values are for the top surfaces which are the 

focus of the laser processing. The roughness increases from lowest value of pure 

materials to the largest layered laminates; this is inferred to be attributed to the 

polishing rates of the constituent materials differing from each other, which is 

amplified as the layers become thicker.  

 Cu NB 60nm RD 60nm TD 1.8um RD 1.8um TD 

RMS (nm) 39.50 43.99 72.56 55.11 289.45 325.26 

Average (nm) 49.78 34.99 63.20 67.40 356.60 294.72 

Table 2.1 Top surface roughness measurements for samples after 
polishing and prior to laser processing 

 

12 



2.3 Laser Processing Parameter Space & Results 

The single shot ablation threshold fluence of copper has been shown to be 

three times as high as that of niobium while their incubation coefficients are 

nearly identical [21]. With this in mind, the first set of experiments set out to 

utilize incubation at an exceptionally large number of overlapping pulses while 

remaining at just above the lowest reported ablation threshold of copper which is 

nearly coincident with previous experiment’s threshold fluence of 0.02 µJ/cm2. 

The ablation threshold of copper has been reported to fall between 0.018 µJ/cm2 

to 1.4 µJ/cm2 depending on the ablation regime, the initial surface conditions 

concerning roughness and reflectivity, and the wavelength of the laser used [29]. 

Two ablation regimes have been shown to exist for copper exposed to sub-

picosecond laser pulses [30]. These regimes display a sharp contrast between 

ablation rates of material and their ranges become apparent when plotted 

logarithmically. In the gentle, or optical skin depth regime, material is removed at 

a slower rate. In the hard, or effective heat penetration regime, material is 

ablated at a greater rate. In the case of copper, the gentle regime is at fluences 

less than 0.5 µJ/cm2 while the hard regime occurs at fluences greater than 0.7 

µJ/cm2. In between these two regimes is a transitional region that is not well 

defined. This two regime phenomena is pulse-width independent but exists only 

for sub-picosecond pulses. There exist large amounts of research regarding 

copper/ultrafast laser interactions due to its wide use. Niobium, however, has not 

received nearly as much attention in this respect, so the majority of the decision 

making process in this study are directed by the data and studies performed on 

copper. 

 

2.3.1 Low-Fluence Incubation Reliant 

Based on prior experiments performed with the Raydiance laser on these 

particular samples it’s been shown that surface modification of copper can be 
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seen at fluences as low as 0.02 µJ/cm2. This fluence is achieved via beam 

attenuation and coincides with previously reported threshold fluence. Also, no 

change in surface texture is observed with further attenuation. 

 

 This low fluence was chosen initially with the idea that incubation would 

increase material ablation rates at moderate to tremendous amounts of 

overlapping pulses, thus ablating both the copper and niobium layers with 

minimal energy. All samples had the same array of features machined. Seven 

features are machined into each sample with sufficient spacing, approximately 

50ums, to isolate each feature. The seven cuts are straight lines machined onto 

the sample’s top surface leading off of one edge so that the effects on the 

layered structure can be examined from a cross-sectional point of view. These 

cuts vary only by the amount of overlapping pulses, which are controlled by the 

stages’ translational velocity. The overlapping pulses in this set of experiments 

were chosen as 100, 400, 1K, 4K, 10K, 20k, and 50k. At this fluence, SEM 

micrographs show that material is not ablated efficiently. At the lowest amount of 

overlapping pulses (OLP), only a very shallow trench is created. At the largest 

number of applied pulses, 50k, the material is melted and re-solidified in the 

channel. This trend reveals that as the number of applied pulses is increased, 

material is not effectively ablated. Rather, as the number of pulses increases, 

only the depth of the heat affected zone increases. 

Figure 2.3: Single Shot Feature on Cu at 0.02 µJ/cm2 
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The following micrographs are focused on the top corner of the samples. 

The orientation of the micrographs is meant to capture both the relative ablation 

morphology along the top surface as well as the accompanying effect on the 

layered structure. Polishing of the top and side surfaces resulted in a corner 

radius where the two meet. This radiused corner is present on all samples and 

more pronounced on some samples than others. Additionally, it should be noted 

that since the layers are not perfectly distributed, both copper and niobium bands 

can be seen on the top surface of the sample. The micrographs are 50/50 mixes 

of secondary electrons and back-scattered electrons to expose both 

topographical and elemental variations. 

 

Figure 2.4: SEM Secondary Electron / Backscatter Electron micrographs of 
(a) 100 OLP on 1.8 um RD, (b) 50k OLP on 1.8 um RD, (c) 100 OLP on 60 nm 
RD, (d) 50k OLP on 60 nm RD 
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2.3.2 Moderate-Fluence Incubation Reliant 

The next iteration involves increasing the energy while remaining within 

the gentle ablation regime. The fluence chosen is 0.5 µJ/cm2 while repeating the 

above sets of tests cuts to take advantage of the incubation effect. The effects 

can be seen below. As the number of applied pulses is increased, a larger heat 

affected zone begins to develop in both the 1.8um and 60nm layered material. 

This trend noticeably declines as fewer pulses are applied. Furthermore, as 

applied pulses increases, material is not efficiently ejected from the trench, rather 

it redeposits.  

 

Figure 2.5: SEM Secondary Electron / Backscatter Electron micrographs of 
(a) 100 OLP on 1.8 um RD, (b) 50k OLP on 1.8 um RD, (c) 100 OLP on 60 nm 
RD, (d) 50k OLP on 60 nm RD 
 

 The following figure contains an SEM micrograph of the region of a 1.8um 

layered sample, which is processed at 0.5 µJ/cm2 and 100 overlapping pulses. 

Since the trend of intermixing increases as the number of pulses increases, this 
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sample was examined via energy dispersive spectroscopy to evaluate the 

disruption of the layered structure. The circled region in micrograph (a) is the 

focus of the EDS scan performed in (c). This region shows that that the copper 

and niobium layers again become discrete. 
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(a) 

(b) 

(c) 

Figure 2.6: 1.8 um nominally layered Cu/Nb ARB laminate processed 
with 50k OLP shown in (a) SEM micrograph encompassing area of 
interest as inspected by (b) EDS results of scan along path indicated 
by white line and (c) EDS of laser machined tip highlighted with a blue 
circle in figure (a). 
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In the case of 100 overlapped pulses, a shallow trench was observed with 

no discernable intermixing or heat affects ahead of the laser processed zone, 

again, verified quantitatively via EDS and qualitatively via back scattered electron 

micrographs for the 1.8um layered material. Also, the ablated material is ejected 

from the channel rather than redepositing as was the result as the amount of 

applied pulses increased. 

 

2.3.3 Moderate-Fluence Modified-Incubation 

The final set of parameters chosen involves utilizing the incubation effect 

at the moderate fluence. However, overlapping pulses, which constitute the 

incubation, effect are applied by scanning the sample back and forth, so the laser 

(a

(b) 

(a) 

Figure 2.7: 1.8 um nominally layered Cu/Nb ARB laminate processed with 
100 OLP. Shown in (a) SEM micrograph encompassing area of interest as 
inspected by (b) EDS results of scan performed along white line. 
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irradiates the same region during multiple successive passes. During the second 

experiment set, it’s shown that the heat affected zone decreased as the number 

of overlapping pulses decreased. This reduction led to the decision of choosing 

10, 50, and 100 overlapping pulses while performing 1, 5, 10, and 20 consecutive 

passes for each number of overlapping pulses at different locations on the 

sample. The laser focus was not changed with respect to the sample during 

successive laser scans. Additionally, a gas nozzle was attached to the focusing 

objective to assist debris removal by directing a stream of compressed gas 

directly onto the processing region. Nitrogen was chosen as the purge gas to 

reduce oxidation during laser processing. The resulting trend indicates that, as 

expected, the depth increases as successive passes increase. The deepest 

channel is machined with 100 overlapping pulses and 20 successive passes. The 

micrograph below shows the progression of channel depth for 100 overlapping 

pulses for 1, 5, 10, and 20 successive passes.  
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Initially, the laser machined channels appear to be backfilled with ablated 

material, but following a 10-minute wash in a sonic bath in which the samples are 

submerged in ethanol the debris evacuated the trenches. This is the case for all 

channels made in the manner described in this section. Material redeposited 

from the methods described in 1.2.1 and 1.2.2 was verified to have remained in 

the machined features post-sonication. 

 

Figure 2.8: SEM micrographs of 1.8um rolled direction Cu/Nb laminate 
processed with 100 overlapping pulses at (a) 1 pass, (b) 5 passes, (c) 10 
passes, and (d) 20 passes 
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Figure 2.9: SEM micrograph of 1.8um rolled direction Cu/Nb laminate 
processed with 100 OLP at 20 successive passes (a) pre sonic bath and (b) 
post sonic bath. 

 

Cut depth measurements are taken using Scandium XT post processing 

software and plotted for the pure annealed copper and niobium as well as the 

1.8um and 60nm laminate materials in both the transverse and rolling directions. 

The resulting channel depths are presented for all materials in the following 

figure. One notable observation is that at lower number of passes there is a 

higher discrepancy in cut depth whereas the depths converge to much more 

consistent depths as the number of successive passes increases. This is 

particularly apparent in the case of 100 overlapping pulses where the channel 

depth at 20 passes falls between 18-19 microns. The results show that channel 

depth increases as a function of both increasing overlapping pulses and number 

of successive passes.  

Finally, EDS scans show a reduction in the amount of oxygen present 

between samples processed via methods two and three. This is attributed to the 

uses of nitrogen as a purge gas. The scans in the following figure are performed 

along the vertical white line.  
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Figure 2.10: EDS results of (a) Method 2 ARB 1.8um ARB Cu/Nb 
laminate processed with 50k OLP and (b) : EDS results of (a) Method 
3 ARB 1.8um Cu/Nb laminate processed with 100 OLP and 20 passes 
using nitrogen as a purge gas 

(a

(b
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Figure 2.11: Depth measurements for each material for 10, 50, 100 
overlapping pulses and 1, 5, 10, and 20 successive passes 
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2.4 Discussion 

A systematic experimental approach to laser micromachining high aspect 

ratio trenches is performed in the preceding sections. Ultimately, channels with 

an aspect ratio of ~10:1 with a leading edge diameter of 1-2um are realized. The 

introduction of a gas-assisted modified-incubation technique is demonstrated to 

effectively machine artificial cracks in Cu/Nb ARB nano- and micro- laminates. 

The use of nitrogen as a processing gas reduced sample oxidation. Furthermore, 

using minimal energy and low laser pulse repetition rate, the heat effects are 

minimized. 

 There are a few interesting tendencies that should be considered. First, 

the leading edge of the successful laser machined trenches retains a consistent 

tip radius regardless of the cut depth. The trench only widens as successive 

passes are performed. Secondly, the depth of the trenches suggests an 

interesting trend. The depth of the channels cut into laminate materials, in the 

case of 100 overlapping pulses, very nearly matches the average cut depths of 

its constituents for the same number of passes. For instance, in the case of 100 

overlapping pulses and 10 consecutive passes, the cut depth in copper and 

niobium are approximately 10um and 19um, respectively. The cut depths for both 

the 60nm and 1.8um laminate materials under the same parameter space fall 

between 14-16um.    
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Chapter 3  

Simulation 

The purpose of the simulation in this study is twofold: (1) establish the 

geometric limitations of the pillars based on fabrication and the in-situ testing 

limitations and (2) approximate the layered structure to observe the plastic 

behavior in the layers with respect to crack tip width. In both cases, simplifying 

assumptions are made. It is assumed that the materials have isotropic elasticity. 

Plastic behavior is treated as a bilinear isotropic hardening model having a 

constant tangent modulus, and hardening is treated as rate independent. The 

tangent modulus is estimated as the slope of the true stress-strain curve from the 

yield point to the ultimate tensile strength [31]. The layers are considered to be 

uniform and evenly distributed. The bulk Cu/Nb material properties are used in 

the simulation. The models are constructed in SOLIDWORKS and then 

transferred to ANSYS for 3-d simulation. The material properties and problem 

constraints are defined in ANSYS.  

 

3.1 Bulk Model 

 In this section, single-material models are investigated. The material 

defined in this model is meant to mimic the Cu/Nb 60nm laminate material based 

on the bulk properties of the material [32]. The material’s properties are taken 

from experimental data for the bulk Cu/Nb laminate material. Previous 

experiments on Cu/Nb ARB laminates have shown that as the layer thickness 

decreases, the strength of the material increases [32]. Also, for any particular 

layer thickness, the laminates show an increased strength in the transverse 

direction compared to the rolling direction. It is for this reason that the bulk model 

is based on the material properties of the 65nm layered material in the transverse 

direction. By simulating the most robust material, it ensures that the other 
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materials will also displace sufficiently when subject to the in-situ loading.  

Reference [32] is used to calculate the Young’s and Tangent modulus of the bulk 

material. The Poisson ratio is calculated by the rule of mixtures. A table of 

material properties used in the layered simulation is included in that section of 

the study. 

 The SEM in-situ indenter available at the Los Alamos National 

Laboratory’s Center for Integrated Nano Technology (LANL-CINT) has a 

maximum loading of 1N. The purpose of constructing a bulk model is to ensure 

that the loading capacity of the indenter is capable of deforming the pillars based 

on bulk properties. The mini-milling capability that will fabricate the pillars must 

also be taken into account. The achievable aspect ratio of pillars is 5:1 and the 

minimum cross-sectional dimensions are 50umx50um. Pillars with larger cross-

sectional dimensions are ideal as pushing the limits of resolution can be testing. 

For this reason, three pillars at different size scales are modeled and their 

displacements are determined under a 1N load for two different notch 

dimensions; this results in 3 total geometries for both a 1um and 2um wide notch. 

The relative geometry is shown in the following figure. 

 

Figure 3.1: Bulk Model Geometry 

The simulation is set up such that the beam is fixed at the face closest to 

the notch and the 1N load is applied along the edge denoted by P. B is chosen to 
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be 200um, 150um, and 100um. The experimental geometry and configuration 

are chosen based on previous cantilever experiments performed using the in-situ 

test equipment, which tested interfacial fracture behavior [26]. The notch is 

placed at B/2 away from the fixed end of the pillar.  

 

 

Figure 3.2. Bulk model deformation vs base dimension, B, for an applied 
load of 1N on 1um and 2um notched configurations. 

 

  Previous cantilever experiments performed at LANL-CINT characterizing 

Al/Zr interfacial bonding strength were loaded until a displacement equaling 70 

percent of its base dimension were reached [26]. Pursuant to this, a base pillar 

dimension of approximately 140um corresponds to a resultant deflection of 

100um or roughly 70 percent of the base value. The ramification is that pillars 

with dimensions of 140umx140umx700um, or less, should be fabricated for 

future tests to attain similar deflections to previous experiments. Another benefit 

is that it gives an upper limit, based on indenter capabilities, for sample 

fabrication. The model setup is validated through comparison of the analytical 

solution for a cantilever beam under loading and its associated deflection. The 
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percent error is approximately 1% for all bulk simulations as shown in appendix 

A3. 

Qualitatively, it can be seen that intensity of the equivalent plastic strain 

increases as the notch tip width decreases as should be expected. 

 

Figure 3.3 ANSYS simulation of plastic zone for bulk models with base 
length of 150um displaced by 1N load with a (a) 1um Notch and (b) 2um 
Notch. 

 

(a) 

(b) 
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3.2 Layered Model 

The laminate material with a nominal layer thickness of 1.8um is 

considered in this section. This layer selection is due to ANSYS simulation 

constraints. As each layer is treated as a separate part in ANSYS, each layer 

receives its own set of elements, which are, at most, as tall as each individual 

layer. This layer thinning leads to a substantial growth in the number of elements 

beyond the computational capacity of the current ANSYS license. Furthermore, 

even with a layer thickness of 1.8um, the node/element limit of 256k was 

frequently exceeded during mesh refinement; this implored the use of lower 

quality elements away from the crack tip, which is the area of interest. 

Figure 3.4. Layered Model Schematic 

 

A 60umx60umx300um layered structure is modeled. An assembly of 

copper and niobium band-parts are created in SOLIDWORKS then imported to 

ANSYS. The ANSYS attachment between parts is selected as bonded. A single 

beam geometry is modeled in this set of simulations while the notch width is 

simulated at 1um and 2um. Again, this was due to simulation constraints. As 

each layer is treated as a separate part in ANSYS, the amount of nodes and 
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elements needed to model larger cantilevers grew substantially. Nevertheless, 

the geometry modeled is possible to fabricate for testing. The simulation was run 

with two different configurations: Once with a notch width of 1um and once with a 

notch width of 2um. This was done to show the effects of crack geometry on the 

plastic zone in the layers as effected by the notch width.  

 The material properties for the layers of the copper and niobium are 

derived from reported bulk material properties [33, 34, 35, 36, 37]. The simulation 

constraint for both models is the same: the face nearest the notch receives a 

fixed boundary condition. Rather than applying a load in this case, a 

displacement is applied along the edge of the pillar denoted by D. The 

displacement was chosen based on prior cantilever experiments [26]. The 

displacement was set to approximately 70% of the base dimensions of the pillar 

which, in this case, is 42um in the vertical direction. The material properties used 

in the layered study are listed in the table below. 

 Young’s 

Modulus 

Poisson’s 

Ratio 

Yield 

Stress 

Tangent 

Modulus 

Copper 120 GPa 0.36 70 MPa 836.74 MPa 

Niobium 105 GPa 0.40 206 MPa 1.589 GPa 

Table 3.1 Material properties for multi-layered ANSYS simulations 

 

In both the 1um and 2um channels, notch termination occurs in the copper 

layer. Additionally, the ANSYS simulation indicates a larger magnitude of 

equivalent plastic strain propagating through the copper layer for the 1um notch. 

The length and equivalent plastic strain scales are equal in the following figure 

for direct comparison. By comparison, it can be seen that a narrower notch leads 

to an increased equivalent plastic strain along the notch surface. Furthermore, a 

reduction of notch width is accompanied by a reduction in the propagation of the 

equivalent plastic strain through the copper layer. 
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Figure 3.5 ANSYS equivalent plastic strain solution for 1.8um Cu/Nb model 
for (a) 1um and (b) 2um notch tip diameters. Larger equivalent plastic strain 
and crack tip termination occur in copper layer. 

   

 
 

 

(a) 

(b) 
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Chapter 4  

Conclusions and Future Work 

4.1 Conclusion 

 In this research, a systematic experimental method was applied to reveal 

a method of cutting high aspect ratio channels in copper and niobium 

accumulative roll bonded micro- and nano-laminates. The benefit of creating 

these channels, which act as artificial cracks, is that selective placement allows 

fracture behavior to be examined at desired locations such as interfaces and 

irregularities. Not only can this method of laser machining high aspect ratio 

channels be used for creating an artificial crack, but it also has applications for 

fabricating other 3d microstructures. Also, the method developed for laser 

machining these channels may potentially carry over to other metals pure and 

composites alike. The laminate fabrication, experiments, and material 

characterization were performed at Los Alamos National Laboratory at the 

Center for Integrated NanoTechnologies. 

 Moreover, the modeling performed in this study shed light on the 

deformation of stacked layers undergoing plastic deformation. However, the 

assumptions made do not necessarily capture the true physical phenomena 

underlying the complex Cu/Nb nano- and micro-systems. Disregarding 

anisotropy, the interfacial contributions to the materials behavior, and the 

instantaneous tangent modulus leaves room for improvement in the model. 

However, modeling the bulk material proves to be valuable in the fundamental 

design of experiments moving forward to ensure experimental success for in-situ 

testing. Modeling and simulation using SOLIDWORKS and ANSYS were 

performed at the University of New Mexico’s Mechanical Engineering 

Department. 
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4.2 Suggested Future Work 

The following items are suggested for future work: 

• Proceed with the in-situ mini cantilever experiments to characterize the 

fracture behavior of the ARB laminate material. 

• Increase the validity of the layered simulation results by removing simplifying 

assumptions. Incorporate the interfacial effects of the layered structure into 

the model and perform convergence studies. 

• Create a mathematical simulation of the energy transport across the layers as 

described by each material’s applicable energy transport model. 

• Perform a statistical analysis on cut results to determine repeatability as 

affected by layer thickness variance. 
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Appendix 

A1 Pulse Duration Measurement 
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A2. Laser Spot Size Measurements 

Knife Edge Power Measurements X-Direction 

 

Differentiated Knife Edge Data 
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Knife Edge Power Measurements Y-Direction 

 

Differentiated Knife Edge Data 
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A3. Bulk Model Simulation Validation 

 
1mm Long Pillar Theoretical Coarse 

Simulation 
Fine 

Simulation 
Directional Deflection (um) 12.5 12.633 12.623 

Element Size (um) - 20 9 

No. of Nodes - 23441 254352 
No. of Elements - 5000 59248 

Error - 1.06% 0.98% 
 

750um Long Pillar Theoretical Coarse 
Simulation 

Fine 
Simulation 

Directional Deflection (um) 16.66 16.843 16.834 

Element Size (um) - 13.6 6.8 

No. of Nodes - 36881 252096 
No. of Elements - 8064 58719 

Error - 1.05% 1.00% 
 

500um Long Pillar Theoretical Coarse 
Simulation 

Fine 
Simulation 

Directional Deflection (um) 25 25.265 25.252 

Element Size (um) - 9 4.5 

No. of Nodes - 36881 254352 
No. of Elements - 8064 59248 

Error - 1.06% 1.01% 
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