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Abstract

A Finite Element numerical method has been developed to simulate the fluid flow
over two dimensional and time dependent domains with rigid moving objects or
boundaries. This method falls under the general category of Arbitrary Lagrangian
Eulerian methods. In this method the global mesh is fixed and adaptations are made
locally in both space and time to describe interface movement. Therefore, the global
mesh is independent of interface movement, and the possibility of mesh entanglement

is eliminated.

During the simulations, very small elements or elements with very large aspect
ratios as compared with the elements of the fixed mesh may be generated to correctly
describe the position and shape of the interfaces, these elements are then combined
with the adjacent mesh elements which are much larger and used together in the
calculations. The question of how these large abrupt changes in the mesh affect the
accuracy of the calculations is examined through local truncation error analysis and

numerical experiments.
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The two-dimensional flow between two plates separating at a prescribed speed,
which admits an analytical solution, is used to verify and illustrate the results. It
is determined that the accuracy of the calculations is not adversely affected by the
large and abrupt changes in the size of the elements and that the convergence rate of
the method is of second order. The behavior of the local error next to the interfaces

is shown to be of the same order as in the rest of the computational domain.
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Chapter 1

Introduction

1.1 Motivation

The importance of Computational Fluid Dynamics (CFD) in engineering analysis
and design is no longer in question these days and has become a standard tool for
designers in all sorts of fields. When the models are based on finite element or
finite volume formulations, calculating in domains that are time dependent becomes
challenging due to the discrete nature of the methods which require a spatial dis-
cretization of a domain that changes shape with time. The practical difficulties are
not easy to overcome and can render the methodologies expensive and difficult to
use [1,2]. In many areas of technological importance, models based on the finite
element method (FEM) are preferred because of their flexibility and the ease with
which they can be applied to domains with irregular geometry [3]. This work is
motivated by the need to simulate the processes encountered in internal combustion
engines when the fluid inside a cylinder interacts with the motion of a piston. The
goal is to generate an accurate and robust procedure to calculate in domains with

continuously changing geometry and incorporate it in the KIVA internal combustion
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simulator developed at Los Alamos National Laboratory [4,5]. A variety of numerical
methods have been developed to address these and other similar types of simulations
over the years, and the literature in the subject is quite extensive, a few representa-
tive references [1,2,6-9] can give a good summary of the work done. In this work
only ALE formulations based on the FEM are considered, other methods will not be

discussed except when necessary for comparison with the present formulation.

FEM models based on the ALE formulation have relied heavily on adaptive mesh
methods to discretize the evolving spatial domain geometry. This can have practical
disadvantages because the continuous mesh deformation often leads to a state where
the mesh has severely degraded and it can no longer be used, which is known as
mesh entanglement. At this point a new mesh must be generated and the dependent
variables must be interpolated from the old mesh to the new one; this process can
lead to instability and loss of accuracy [10,11] and it extracts a significant cost to
the user. A certain amount of checks and measures can be introduced together
with criteria to have the code automatically make the decision to re-mesh, however
these are not always effective. In this work a local ALE-FEM method is considered
based on bilinear and trilinear isoparametric elements in two and three dimensions
respectively [12,13]. This method is very similar to the one introduced in [14] based
on triangular elements. It uses a fixed computational grid laid down over the totality
of the spatial domain considered over the entire simulation, denoted by Qz. The
moving interfaces are defined independently using sets of marker points that define
them, and are superimposed over the mesh. At each time step in the simulation,
in that portion of the region containing fluid where the velocity and pressure will
be calculated, the mesh is locally adapted to fit the interfaces independently of the
adaptation used in the previous time step. As a result, the method requires no
interpolation and the mesh can never become entangled, but as can be expected
different types of difficulties arise; however, these are implementation problems that

once resolved are no longer an issue and have been addressed in [12,13].
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1.2 Moving Boundaries in the Fluid Domain

In many engineering subjects, the numerical solution of moving boundary problems
in fluids is an important field of study. Though many different methods to deal with
their challenges have been introduced, this field of research is continually developing.
New numerical developments have made the simulations not only more accurate and
more applicable to a wider range of problems but also less computationally expensive
in some cases. According to all of these factors, developments of ALE (Arbitrary
Lagrangian Eulerian) methods used in research [15-18] have been boosted. The
ALE methods as a classification of FEA (Finite Element Analysis) formulations are
used to conquer the associated challenges of the analysis of the moving boundaries
problems. Two steps that are taken in these formulations. At each time step,
the beginning of the process is dealing with the moving boundaries motion in the
Lagrangian frame work. In the second step, the equations for the fluid domain are
solved in the Eulerian (stationary) framework using the geometry obtained form the
first step. These methods have been applied with moving mesh schemes in prior
research [19-22]. In these schemes, the mesh is attached to the moving boundary,
and the whole mesh is deformed during the simulation. According to the mesh
deformation, the mesh usually becomes dislocated past the point it could be used
in the simulation. At these situations, the simulating program must pause and re-
mesh, or by using a routine automate the process. These difficulties make moving
mesh schemes troublesome from a practical point of view. The newly developed ALE
method [12] eliminates these obstacles by calculating on a locally changing mesh, and

leaving the global mesh outside of this undeformed area.

As a result of the complexity of existing ALE methods based on adaptive meshing,
and the fact that the entire mesh changes with time, assessing their accuracy becomes
very difficult. Few attempts have been made to obtain accurate error measurements

and because the flow solvers are based on a projection formulation, the emphasis
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is placed on achieving second order time accurate convergence rates [9,11,23]. In
[24,25] the accuracy was assessed by comparison with experimental data and previous
numerical simulations. One advantage of the present method is that it can be readily
applied to assess both the temporal and spatial errors and formal convergence studies
can be performed using cases with known analytical solution. This work concentrates
in the spatial discretization error, the time integration method is first order and the
size of the time step is chosen so as to not reduce the order of the spatial convergence

rate.

The discussion centers on the two and three-dimensional cases. The incompress-
ible Navier-Stokes equations are solved in two dimensions using the basic pressure
correction projection formulation [26] which is first order in time, and using equal
order interpolation for velocity and pressure. In the next chapter, the ALE-FEM
method is described; in chapter 3 the local mesh adaptation method is presented;
in chapter 4 the results of the local error analysis are given; in chapter 5 the bench-
mark problem of flow on a fluid layer between two parallel plates separating at a
prescribed speed is introduced and in chapter 6 the numerical results are presented

and discussed.
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Background Information

2.1 Governing Equations

Assuming that body forces are zero, the Navier-Stokes equations for viscous in-
compressible flow are written in non-dimensional vector form along with continuity

equation as

ou 1 _,
E—FU-VU——VP—F%VU (2.1)
V-u=0 (2.2)

3 3
Where u = (uit+vj+wk) = 1uiei is the velocity;V = (Zi+ %j—k%k) = 231 a%iei
1= 1=

is the gradient operator, t is time, p is the pressure and Re = % is the Reynolds
number. U is a characteristic velocity, L is a characteristic length, v is the kinematic

viscosity of the fluid, 7 = 5 is reference time, and P = pU? is the reference pressure.
Equations 2.1 and 2.2 are defined over the domain [0, 7] x Q (¢) where T is a real
number, and € (¢) is a connected time dependent domain in R? with a sufficiently
smooth boundary T'(¢). At time to = 0, Q(tg) = 2 and the initial condition is

u(x,0) = up.
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2.2 ALE Formulation Domain

Understanding of the domain and associated conditions used to set up a problem

correctly is essential to develop the ALE Finite Element Scheme.

y ()]

Vi (1) 1151

Figure 2.1: Sketch of domain €2 with boundary I'. Marker set II; defines the moving
interface (piston) with a velocity equal to V; ()

The boundary I' consists of two types of conditions, Dirichlet and Neumann. The
Dirichlet boundary conditions specify a dependent variable value on that boundary,
I'p. As an example, a Dirichlet boundary condition may specify a velocity or pres-
sure value at the boundary (ug = u or py =p). On the other hand, the Neumann
boundary conditions specify gradients of a variable on the boundary, I'y. Like %
where % means the normal derivative of velocity u in the unit normal direction
vector to the boundary n. In Figure 2.1 the boundary I' is composed of the Dirich-
let boundary conditions I'p and the Neumann boundary conditions I'y. The marker
sets II; contains the marker points that define the moving object or boundary during
the calculations. The marker set has specified velocity Vi (t) in Figure 2.1. Though

marker sets do not necessarily have to have specified velocity such as the case of

falling spheres in a fluid [24].

The figure 2.1 can also be used to illustrate the ALE process. In the problem
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shown by figure 2.1, the marker II; is involved with the Lagrangian part of the
formulation. For instance, if there were equations that describe the motion of the
marker sets, these equations could be solved to find the updated velocity and location
of the marker sets. In the next step, the updated properties for the marker sets could
be applied as the known conditions for the Eulerian part of the calculation over the
rest of the domain €2; Therefore, the Eulerian equations could be solved by using the
calculated values from the Lagrangian step and the domain boundary conditions I'y

and ['p. These steps are repeated during each time step of an ALE simulation.

2.3 Discretization using the Weak Formulation

By using the domain €2, boundaries I', and marker sets I1;, the Navier-Stokes equa-
tions have to be discretized in a way to make them solvable by FEA. In order to do
this, the equation sets 2.1 and 2.2 must be contained in a connected domain 2 (t)
with sufficiently smooth boundaries T" (), where ¢ € [0,T]. Denoting 2 (t) = 2, at
each time ¢, the space H'(Q,) is defined as the space of functions defined in such
that the function and its first partial derivatives are square integrable in {2, and
the space L?(Q,), which is shown as L*(Q) = {f (2) | [, (f (#))*Q < oo} [27], is
defined as the space of functions defined in 2, that are square integrable in €2 ,.
Finally, let Sy, (t) = {x;,i = 1,n;/x; € Q(t)} be finite sets points that define inter-
faces/boundaries contained in the reference domain that move within the domain

with prescribed velocity vy.

The weighted residuals formulation of equation 2.1 is stated as follows. At a
prescribed time ¢ find a velocity field u(x,t) in H'(2;) among those functions u

that satisfy the Dirichlet boundary conditions, and a pressure field p(x, t) in L*(€2 ).

wo (V2u)dQ = [ w2240 — [ (Vw : Vu)dQ (2.3)
fye (@ = [l |

The weighted residuals formulation is stated as below by using the Gauss theorem,
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equation 2.3, for the viscous term

! w. Mar (2.4)

ou 1
/ﬂt{w-[at—i—(u~V)u+Vp —|—Re(VW.Vu)}dQ—Re Y

3

For all weighting functions, w = (w,i+ w,j + w.k) = > w;e;, in the space H* (2 ;)
i=1

that satisfy homogeneous Dirichlet boundary conditions in I'p, and a pressure field,

p(x,t), in Q(£2 ) that satisfies

/Q gV -udQl=0 (2.5)

for all functions ¢(x,t) in Q(2;). Where Q(Q;) = L*(Q,)/R, the space “L*(Q )

modulo constants” [26].

3 3
In equation 2.4, the dyadic notation Vw : Vu = > Y ng% has been used,
i=1j=1 7
and the expression g—g denotes the normal derivative of the components of u at the

boundary.

The ALE formulation requires that at each time step a mapping be defined be-
tween the current domain configuration and a fixed reference domain (that can be
for example the initial configuration 2y or the computational reference domain Q)
where the problem is solved. This and other theoretical aspects of the method are

very well analyzed in [11,26,28].

The computational algorithm is defined in two steps:

1. The Lagrangian step consists in updating the position of the interfaces Sy (t)
from time ¢t = t,, to time t = t,,,1 = t, + At according to the prescribed velocity
vy () of each interface. How this is done in this finite element algorithm is

explained in [12,13].

2. Solve the Navier-Stokes equations to find u(x,t,.1) and p(x,t,.1). This is

done using a first order in time projection method [29]. Let u"(x) = u(x,t,)
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be known. At time t = t,,; the velocity is decomposed as u"™' = u* + u’
where u* is an intermediate (viscous) velocity that does not satisfy continuity

and u’ is a correction (inviscid) that enforces continuity.

By using a forward difference to approximate the time derivative of the Navier-
Stokes equations, and treating convective terms explicitly, the discrete Navier-Stokes

equations 2.1 become

u"tl —un 1
— 4+ u-Vu" = -Vpl 4 — V! 2.6
At P Re (26)
Intermediate velocity u* is used to define the velocity at "%, u™*!, as
u't =u" 4 (u"t —u") (2.7)

With equation 2.7, the forward difference equation 2.6 can now be written as

* n

—u u"t — u* 1
n V n _ _v n—+1 _v2 n+1 28
A7 + A7 +u u Pt + o u (2.8)

u

Equation 2.8 represents a momentum equation with two distinct parts, viscous and

inviscid. The viscous part of the momentum equation is shown as

u*—u” 1
+u"-Vu" =+4+—

AL oY (2.9)

The remaining terms of equation 2.8 are

un+1 —u*

= —Vptt 2.10
At b (2.10)
The divergence of equation 2.10 is

V.ut! — V.u*
At

= V. (=Vp") (2.11)

Imposing the continuity equation for the (n + 1) step, V.u"™! = 0, the pressure can

be solved as

1
2pntl — —V.u* 2.12
V<p AtVu ( )
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1

The pressure p"*™! is found using the pressure Poisson equation 2.12. Applying the

equation 2.10 and the pressure p"*!, the velocity at time t"*! is
u"tt = ut — Atvp ! (2.13)

On the other hand, using the weak form, The intermediate velocity satisfies

ou* 1 Ju
/Qt{w-[at —l—(u-V)u}%—%VW.Vu}dQ— Ftw-a—ndf (2.14)

In the cases addressed here the line integral always vanishes, hence it will be
neglected in the rest of this paper. Also, in equation 2.14 the computation of the
time derivative term requires the application of the Reynolds transport theorem [30],
that is

ou* 0

[ wBao- 2 Qtw-udQ—/Ft(W~U)(Vk'n)dF (2.15)

If the interface velocity is known, as is the case here, the integral over the interface

vanishes and equation 2.14 becomes

0

= W-u*dQ—l—/ {W-(U-V)u+
at Q. Q.

éVW ; Vu} dQ=0 (2.16)
To simplify the expressions the fractional step formulation is written for the

x-component of velocity, u only, the equations for the other two components being
similar. Discretizing the time derivative using a first order backward Euler difference,

the intermediate velocity component u* is given by
/ {1111 u*—l—in Vu*}dQ/
Qtn+1 At b Re “ QO

The convective term is kept explicit, therefore the algorithm is subject to the CFL

n n 1 n
{wu(u -Vu —I—Atwuu }dQ (2.17)

tn

stability condition, ¢ < 1, where ¢ is the local Courant number.

The pressure is obtained from the solution to the pressure Poisson equation (PPE)

/ Vq-Vp"dQ = ——/ qV -u*dQ (2.18)
Qy

10
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And the final corrected velocity is obtained from

/ w, u" T dQ = / w, (u* — At Vp")dQ (2.19)
Qt Qt

n+1 n+1

The same process is repeated to obtain the y- and z-components of velocity.

The final Galerkin discretization is done using a combination of bilinear isopara-
metric rectangles and linear triangles in two dimensions and trilinear isoparametric
hexahedra, linear pyramids and isoparametric prismatic triangular cylinders in three
dimensions. The resulting systems of equations have been solved using a direct sky-
line solver [31], and stabilization has been achieved by means of a Petrov Galerkin

formulation of the SUPG type [27].

11
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Local Mesh Adaptation

The mesh adaptation process has been fully described in [12,13]. Here we will
illustrate it briefly in two dimensions. Consider the situation depicted in Figure 3.1(a)

below, where a uniform mesh of 12 elements is intersected by a superimposed interface

5 \ 10 15 20 5 EA 15 20
4 g 14 1 " |

] L\91 14 19

Not Active !

- 5 12 18 3 gl\13 i
\ 3 18

Fluid |
i 12 17 5 7 “\ 17
""" T
5 1] 18 1 6 INNGIE

Figure 3.1: Mesh adaptation in a rectangular domain with moving interface

(a) Rectangular domain discretized using 12 rectangular elements with an interface
superimposed. The region to the left side of the interface is assumed to contain

fluid, the region to the right of the interface will not enter the flow calculation

12
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and is labeled “not active”.

(b) The mesh locally adapted to the interface on the fluid side. 4 irregular quadri-
lateral elements and 2 triangular elements have been generated. The flow calcu-
lation on the right hand side will involve only nodes 1-13 and 16. The rest will

be inactive.

The adapted mesh is shown in Figure 3.1(b), where the active elements on the fluid
side are shown with a full line, there are two types of active elements adjacent to
the interface; linear triangles and isoparametric bilinear elements, it is also possible
to use higher order elements. In Figure 3.1(b) nodes 1-8 and 11 are fluid, nodes 9,
10, 12, 13 and 16 are on the interface and therefore have a prescribed velocity and

nodes 14, 15 and 17-20 are inactive.

The adaptation is not unique, the position of the nodes in the interface can be
chosen to some extent, but the final meshes will be always similar. Elements that
do not contain any nodes in the fluid are not assembled, and nodes that are not
active are treated as having prescribed homogeneous Dirichlet boundary conditions.
Because the interface velocity is known, the degrees of freedom lie strictly on nodes

in the fixed mesh.

The adaptation is fully automatic, and keeps the total number of nodes constant
throughout the simulation. At each time step, the velocity is calculated in the
adapted mesh using only the mesh nodes that lie in the fluid. For the next time
step, the adaptation is discarded and a new one is performed. It should be stressed
that the active degrees of freedom are strictly on mesh nodes that do not change

position. The nodes that are moved all lie on the interface.

13
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Error Analysis

The questions of stability, convergence and (lack of) satisfaction of the consistency
condition in the present algorithm are not an issue, these have already been prop-
erly answered [11,26,28]. It is also well known that the convergence rate in the
finite element spatial approximation of second order parabolic equations using linear
triangles and bilinear quadrilaterals is of second order [32,33]; However, questions
have been raised about the local accuracy and the actual convergence rate of the
methodology used here to simulate the moving interfaces due to the interaction of
the mesh adaptation method and the numerical algorithm. The reason is that during
the calculation very small elements and elements with very large aspect ratios are
generated that are adjacent to the much larger elements of the fixed basic mesh.
This mixture of large and small elements is traditionally viewed as poor practice
that compromises the accuracy of the FEM calculations. In this chapter, the results
of a (admittedly limited) local truncation error analysis is presented to understand

the practical effect of this aspect of the method.

The approximation error has two main sources, one is the solution of the

convection-diffusion equation 2.9, and the second source of error is the solution of the

14
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pressure Poisson equation 2.12. The second equation involves the gradients of the
intermediate velocity calculated in equation 2.17 as the forcing term, therefore error

in the solution of equation 2.9 affects the accuracy of the solution to equation 2.12.

4.1 Error in the Convection-Diffusion Equation

First the local error in the approximation of the convection diffusion equation

¢

20
o7t Vo — DV =0 (4.1)

where D = ﬁ is considered. Bilinear quadrilateral elements are used on a non-

(iz1,yj+1) (i, Yj+1) (Ti1,Yje1)

ko 3 4

(i1, 95) (@i, yj), (Ti41,Yj)
4 3
8 1 2
k

1 2 Ti1,Yj-1) (i, yj-1) (Tiv1,Yj-1)

h hy ha

() (b)

Figure 4.1: (a) Nodal numbering in a bilinear element (b) Four elements assembly
around node (z;, ;) in an irregular rectangular mesh.

uniform mesh.
Figure 4.1(a) shows the nodal notation used for a single bilinear element and
figure 4.1(b) shows the notation in a general two-dimensional irregular rectangular

mesh.
¢ is transport quantity.

Assume that the convective velocity field u = (u,v)? is known and constant.

15
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The weak weighted residuals formulation of equation 4.1 gives

/m {W [% +(u- V)qb”} + D (Vw. v¢”+l)} dQ =0 (4.2)

Where w denotes the weighting functions.

The ¢ function is discretized over the space as:

o (x,y,t) ZN z,y,t) ¢; (t) (4.3)

Where N; are the shape functions over each element, and n is the number of nodes
in an element, in this two dimensional case n = 4. The weighting functions w; are
set to be equal to shape functions V;. the final form of the equation 4.2 is

4

Ay  rAx 8¢~
N; N;—Ldxdy
/0 /0 ]21 7ot

+/0Ay /OM (uNi '4 > + uN; Z ( WL)) dady w

Bvrae ON; aNJ n+1 ON; 8NJ n+1
+/0 /0 b xz(awd) )+0yz(8y¢ ) dedy =0
7j=1 7j=1

The shape functions according to figure 4.1(a) are

=(-3)0-1)

() ()

The next task is to calculate the stiffness matrix of an element. By calculating the

stiffness matrices the equation 4.4 can be written as

Sl + SZ + 5B + SHeIt 4+ St =0 (4.6)

16



Chapter 4. Error Analysis

Where S™™ are stiffness matrices calculated as

11 _ AzAy
Sij - 36

33 _ vAz
Sij - 12

55 __ Ax
Sij - D6Ay

The most commonly time integration algorithm normally referring to as the 6

method is used. It consists in approximating the time derivative by the backward

difference

I~ 1 n n
b= (o - o)

N =N

421 2]
421
2 4 2
12 4

— N N

ul
, S =t
.
1

44
2—
1 -2 ]
9 1
2 1
12 |

The parameter ¢ is then defined by

¢=0¢""+(1-0)¢"

in this analysis the relaxation parameter is § = 1, and the result is ¢ = ¢"*!.

The element equations written for an element using the notation in figure 4.1(a)

Ay
6Ax
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are used and Az = h and Ay = k are replaced

4 2 1 2 2 -2 -1 1
hk 2 4 2 1 +Dk -2 2 1 -1 +Dh
36At | 1 2 4 2 6h | —1 1 2 -2 6k

2 1 2 4 1 -1 -2 2

-2 2 1 -1 -2 -1 1 2
uk | -2 2 1 -1 vh | -1 —2 2 1 hk
121 -1 1 2 =2 121 -1 —2 2 1 36At

-1 1 2 =2 -2 -1 1 2

=N e N
N s N =

(4.9)

The detailed two dimensional truncation error analysis of convection-diffusion equa-

tion can be found in Appendix B.1. Assembling the element equation contributions

to node (z;,y;) results in the difference equation (DE)

DE = DEtime derivation 1 DEconvection + DEdiffusion

where

DEtime derivation =

+3§1At (A i2jon + 2 (A + ho) 57 + had
_36]€1At (hlqﬁ?*”*l +2(h+ho) 0751 + h2¢?+1j71)
(B ba) (o gt 4 d (b + ) " + 20
_% (2h1¢?_1j +4 (hy + ha) ¢} + 2h2¢?+1j)
+3£Z - (00 2 (b + ha) 9774 + hat
_% (h1¢:‘11j+1 +2(hy + hg) @71 + h2¢?+1j+1)
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DE onvection =
Uhl (2¢”+1 + O — Oy — 200 )
( P + 200500 = 2050 — Blhy)
Uk2 (‘b e 200, = 2000 — O1)
ulk2;1 (2071 + Oiaj1 — Olajr — 20 4))

and

DFEgif tusion =

o (017 — 017
o (01 — 015
+6%1 (h (&72); — oi4500)
o (i (01, — 6170

1+ 92 kl—i-k (n+1

+92 k‘l—i-k ( n+l
+92 h1—|—h ( n+l
+92 h1—|—h ( n+l

n+1
i—1j

n+1
i+1j

n+1
13 1

n+1
’Lj+1

)
)
)

+ ko (014
+ ko (77
+ hy (¢?Illj
+ ho (o157

i+1j

(4.12)

n+1

n+1 )
i—1j54+1
i+1j+1)

o)

n+1

i+1j+1)
)

(4.13

A local truncation error analysis can show the deviation between an exact differ-

ential equation and its finite difference representation at a point in space and time.

There are more information about truncation error analysis in appendix A.

All the terms in DE are expanded in Taylor series about ¢;’;
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¢n+1 :
DE — (hh + h2)4(k?1 + ko) y
(99 ¢ P\ | 06 | 99 )
at D(@*W) T Ty
920 920
T3 (e = h)ggy + (ke = kg 8t>

Po Po 11
=0 (35 = ) + 01~ (55~ uage) ) | 419

| 926 026

§(h2 hl)a 5t 3 (kQ_kl)a 8y>
2 2

%(kz - k‘l)gyd) (hz hi) = ¢ )

+O(h?, k?, hk, hAt, kAL, At)

0x 0y

All terms on the right hand side of equation 4.14 are evaluated at (x;, yj, t,+1). Re-

writing the first order term of the truncation error as

1 0 P %  0p 0 u ¢
(e (5~ 5~ 5+ vy ) ) e )

1 o6 o 6 b ¢ v 26
oy (mmg (G- 58 - 5 + oo +v3y) )+ e 5t

the leading terms on the left must vanish hence the changes in the mesh introduce a

spatial first order local error (FOE) equal to
1 62¢ n+1 aqu n+1
ror = (utm (52) " +et s (552). o

This is of the form of an anisotropic artificial diffusion similar to that arising in
stabilizing formulations of the upwind type, and is readily eliminated by the addition
of an artificial balancing diffusion in the intersected elements [27], which restores the

local second order accuracy in the approximation.
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In three dimensions, the first order truncation error terms in the Taylor expansion

are

(h1+ ha) (k1 + k2) (ls — 1y) <

DE = 2
% ((h2 — hy) % + (k2 — k1) aa;gt + (= 1) gjgt)
(ha = hn) (_ Ziﬁ - 8222 - 0i;i2)
3| o ny (52 2o )
oo (4.16)
+(ls — 1) (_ 93 9202 8x282>
+u (% (I = 1) % g tha—h) aizgz +5 =k ggz)

where [; and [y are the different mesh sizes in the z-direction. The same manipulations

as in two dimensions show that the local first order error introduced by the mesh

changes is
82¢ n+1
u (hg — hl) (—)
922 ) 11
1 02¢ n+1
F _ = _ -7 4.1
OE 6 +v (]{72 ]{?1) (ayz)ijk ( 7)
82¢ n+1
o (lo — 1) (_>
2= )| 559 "

Therefore the approximation to the convection-diffusion equation requires a cor-
rection to eliminate the artificial diffusion introduced by the changes in the mesh.

This is readily accomplished by means of any of the procedures already known to
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eliminate artificial numerical diffusion, and can be implemented in a variety of ways.
In particular this correction is similar to the stabilization of SUPG type required for
highly convective flows. However, in the present case the additional error is strictly
localized next to the interfaces and does not have the global effect of a stabilized
Petrov-Galerkin formulation. Moreover, so far numerical experiments have shown
that this error is small in the sense that it only increases the relative error at nodes
adjacent to the boundary by two or three percent, but this conclusion is based on a

limited number of measurements.

Like the two dimensional analysis, the detailed three dimensional truncation error

analysis for convection-diffusion equation can be found in Appendix B.2.

4.2 Error in the Pressure Poisson Equation

The second source of approximation error in need of analysis is the solution of the

pressure Poisson equation

~Vip=f (4.18)

where

f=——V-u' (4.19)

Detailed two dimensional truncation error analysis of Poisson equation can be found

in Appendix C.1.

In the two-dimensional case, using the notation of Figure 4.1(a) the element
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equations are

[ 2 2 -1 1] 2 1 -1 21\ [p ]
El-2 2 1 -1 nl 1 2 —2 -1 p2 |
6h| 1 1 9 —o| Ok| -1 2 9 1 ps |
1 -1 -2 2 2 -1 1 2 P
- - - ) e (4.20)
4212 [nh
hi | 2 4 2 1 fo
3611242/ f
(21 2 4] | fi]

and assembling the difference equation for node (z;,y;) yields

1
DE = 6h (k1 (pij—1 — pic1j—1) + 2 (k1 + k2) (pij — pi—1j) + k2 (Dij41 — Pic1j41))

1
+6_h2 (k1 (pij—1 — Dit1j—1) + 2 (k1 + k2) (pij — pis1;) + k2 (Pij41 — Pit1j+1))

1
6k;1 (h1 (P15 — Pi-1j-1) + 2 (ha 4+ h2) (Pi; — Pij—1) + P2 (Pit1j — Pit1-1))

1
6k2 (h1 (Pi—15 — Pi—1j+1) + 2 (ha 4+ h2) (Pij — Dij+1) + P2 (Pit1j — Pit1j41))

hy h
36 (k1 ficijo1 + kaficij41) + 3(23 (k1 fix1j—1 + kafiv1j4+1)
ki (hy+h hi (k1 + K ha (k1 + k
gl tha)y Itk k) =0
ko (h1 + hQ)fij+1 N (k1 + /{52) (h1 + hz)fz’j
18 9
(4.21)
The Taylor series expansion about p;; gives
DE — (h1 + h2)4(k1 + ko) y
o3 p
ko — k)| —=— — =—==—
Pp 0% 1 (k2 = ) < oy’ 8x28y> 499
o T\ oy 422
2 ! oy?  Oxdy?

ks = k) fy + (hs = )] + O(12, K, )
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Note that the leading first order term in the truncation error is equal to

0 0? 0?
NN

2
E O\ oz% Oy =0 (4.23)
s +(h _h>£ O Fp
2 Y ox or?  Oy?

Provided that the finite element discretization of the right hand side is fully consis-
tent; Therefore, this error vanishes and the method is locally second order accurate
regardless of abrupt changes in the mesh. However, if the formulation is not fully
consistent, such as the case reduced integration is used to evaluate the pressure

gradients in , then a first order error is introduced.

In three dimensions the leading term in the truncation error takes the form

=0 (<3355~ 5~ 379%)
| #0058 -~ 52~ aa)

=k (_8izgz a a(ZZgz B %) 2

—% <(h2 - hl)% + (k2 — kl)% + (b — zl)%) +O(h* K>, 1)

Re-writing equation 4.24 gives

=0 3 (- - T - T~ )

FOE = é + (ks — k1) a% (—G;ZZ’“ - G;ZZ’“ - G;ZZ’“ - fijk) =0 (4.25)
=) 7 (= - T - T )

and as expected the same results as in two dimensions are true in three dimensions.
Detailed analysis for Poisson equation three dimensional truncation error can be

found in appendix C.2.

24



Chapter 4. Error Analysis

The results presented in this chapter are easily confirmed through simple numeri-
cal examples and indicate that when very small elements or elements with very large
aspect ratios next to elements of a standard size are generated next to the moving
interfaces the accuracy of the calculations is not significantly affected. Errors in-
troduced in the solution of the convection diffusion equations are localized to the
immediate vicinity of the moving interface and can be corrected by existing tech-
niques which results in retaining full second order spatial accuracy in the solution
of the intermediate velocity; however, the effect of the correction has shown to have
only a marginal improvement in the accuracy. Consequently, the accuracy of the
calculations is either not affected by the appearance of very small elements or the
additional error introduced by the large ratio between the sizes of adjacent elements

is small.

In the implementation of the method, to avoid difficulties stemming from trun-
cation when the size of the intersection of an element turns out to be extremely
small, if the element area (in two dimensions) or the volume (in three dimensions)
turns out to be less than 0.1% of the size of the original intersected element the
small intersection is neglected. This precaution guarantees that the derivatives of
the shape functions do not differ by more than four orders of magnitude and prevents

truncation errors from becoming a problem.
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Benchmark Problem

To validate the method and the results above and gain further insight into the behav-
ior of the method consider two-dimensional flow of a fluid layer between two parallel
plates moving away from each other with time [34]. This flow admits an analytical
similarity solution when the velocity at which the plates move has the prescribed
form shown below. The domain is a rectangular region of size 2L long by 2h(t) high
where x = 0 and y = 0 are symmetry planes. The problem set up is depicted in
Figure 5.1. Note that using symmetry only a quarter of the domain may be used in

the calculations, that is 0 < x < L, 0 <y < h(t).

W
h(t) T v =wit)
FlLCiw —FLF'W
i =l tIE :

l v =-wit)

Figure 5.1: Schematic of flow between separating parallel planes.
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The maximum allowed separation to be reached between the upper plate and the
x-axis is showed by H, and the initial position of the plate is denoted by yo = h(0);

Therefore, the position , h (t), of the plate as a function of time is
h(t) = yo(1 — at)'/? (5.1)

and the velocity of the plate is given by

d(h(t)) —o
w(t) = = 5.2
( ) dt 2(1 _ O{t)l/2 ( )
and an analytical similarity solution exists [34] of the form
. . ax ,
* — %Yo
v (x,t) = ————5f 5.4
(st) = o= 0 (5.4)

where 7 is the stretched vertical coordinate n = %, 1" (n) is the derivative of f with

respect to n and

£ () =+ —sin () (55

’7T21/

The value of « is obtained from o = — o
0

fAuid.

where v is the kinematic viscosity of the

The solution for the pressure p is more involved [35] and is given by

p =PI [ o () e = ) ] () (56

where p is the fluid density.

In the purpose of this study, an artificial balancing diffusion introduced by change
in the mesh and equal to first order error in convection-diffusion equation is added
[27] in the intersected elements to a provided numerical simulation to restore the
local second order accuracy in the approximation. However, up to now numerical
experiments have shown that this error is small in the sense that it only increases
the relative error at nodes adjacent to the boundary by two or three percent, but

this conclusion is based on a limited number of measurements.
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Numerical Solution to the

Benchmark Problem

The problem discussed above is now used to assess the accuracy of the ALE-FEM
numerical model under consideration. The computational domain and boundary

conditions are shown in figure 6.1

Y
1

w=>0 yy =64 M(ﬁ=‘r‘-\"?ﬂ=“’(ﬂT u:u’:l:"\?;)
5/ =0 v=v(5.7)

Befoy=0.v=0 5 X

Figure 6.1: Domain and boundary conditions for the separating plates flow solved
over one quarter of the complete region

For the set of calculations that follows the density is set to p = 1 and the kinematic
viscosity is ¥ = 0.05. The maximum height is set as H = 1 and the width of one halve
of the region is set to L. = 5. Using H as the characteristic length and a characteristic
velocity U = 1 this results in a Reynolds number Re = 20. The initial position of

the upper boundary is chosen at yy = 0.4. The initial conditions and the boundary
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conditions for the velocity at x = 5 are taken from the analytical solutions 5.3 and 5.4

and the interface position and velocity are given in equations 5.1 and 5.2.

The results of numerical simulations using the parameters given above and three
uniform finite element meshes are reported here. The first mesh contains 50 x 10
bilinear elements with Ax = Ay = 0.1; the second mesh has 100 x 20 bilinear
elements and Az = Ay = 0.05; the third mesh has 200 x 40 bilinear elements
and Az = Ay = 0.025. Note that the meshes involve only rectangular elements,
therefore the analysis in chapter 4 applies directly to these simulations without any
kind of further approximation. For the first mesh the time step was chosen to be
At = 0.005, for the second mesh At = 0.00125 and for the third At = 0.0003125;
that is, the time step is divided by four every time the mesh is halved to account
for the fact that the time stepping scheme is only first order. Calculations were
performed for a total of 2 time units in each mesh, the top plate starts at yy = 0.4
and ends at h (2) = 0.8038. Figure 6.2 shows the flow and pressure fields at the end

of the simulation when ¢ = 2.

Figure 6.2: Flow and pressure fields for the benchmark problem at ¢ = 2

Establishment of a meaningful comparison between the analytical and numerical
solutions can be somewhat tricky. The objective here is to present a realistic picture
of the accuracy of the method without claiming that the conclusions are absolute
but that this is a viable method that exhibits appropriate accuracy and rate of

convergence. To this purpose several decisions were made in an attempt to present
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a clear picture of the behavior of the algorithm without becoming entangled in a
lengthy and overly detailed discussion. First the choice was made to calculate the
average relative error in the velocity magnitude and the pressure for all active nodes
located at x = 2.5, that is the vertical cross section located in the middle of the

domain. Hence, at each time step t, the average errors

P {(af—uz>2+<v:—vf>2]>2
() ( S () + (v7)] o
and
Z%meﬂ)é
EP(t,) = - - :
(&) ( S w0 (62)

are found. Here the star superscript denotes the analytical solution, the superscript a
denotes the approximate finite element solution and k is the number of nodes active

in the line x = 2.5 at time step t,,.

The error as a function of time for the three meshes is shown in figures 6.3 and 6.4

_ 0016 [

5 N

: -
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o 0.012 |-
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5 B

& 0.008 |-

= N

= 1

E 0.004 100 x 20

< - 200 x 40

0 ] 1 ] 1 ] | I 1 1 1 1 1 !
0 0.5 1 1.5 2
Time

Figure 6.3: Average relative error in the velocity magnitude

Figures 6.3 and 6.4 show that both the velocity magnitude and the pressure converge
as the size of the mesh spacing and time step decrease. The individual components of

the velocity show the same type of behavior. The pressure error shows an unexpected
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Average Relative Error

Figure 6.4: Average relative error in the pressure

behavior at the first time step, where the error is very large and decays very rapidly
towards its average value; it also exhibits a sharp decay followed by a jump when the
interface crosses to a new element in the vertical direction. It has not been possible
for us to fully explain this behavior, measures can be taken to reduce and almost
eliminate these perturbations, but these modifications complicate the model and
are probably not effective for more general cases. The presence of a programming
error cannot be ruled out; another possibility is that this problem offers a sort of
“worst case scenario” in which all the nodes lying on the interface cross to a new
element at the same time therefore compounding the error. However, the jumps in
the error are not significant and are rapidly reduced when the mesh size is reduced;
the reduction in the error when first adding a new row of elements is more puzzling
though. Because these are incompressible flow calculations, any small perturbation
in the mass conservation can produce a large change in the pressure, this could be

what is observed here.

To get an idea of the rate at which convergence takes place, the average of the
above values over a time interval is considered, to obtain one value for each mesh
that can be thought of as representative of the error in the simulation. This was

done over the whole time interval 0 < t < 2 so the effect of the ends of the time
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interval are included. The values for the error are given by (EV); = : f02 EV(t)dt
and (EP); = %fOQ EP(t)dt, j =1, 3 where j denotes each of the three meshes.

Figures 6.5 and 6.6 show the rates of convergence obtained for the velocity mag-
nitude and the pressure respectively, for the velocity the calculated convergence rate

is 2.05 and for the pressure 1.50.
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convergence
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Figure 6.5: Convergence rate for the velocity magnitude
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Figure 6.6: Convergence rate for the pressure

The actual calculated values for the errors (EV); and (E'P); are given in Table 1.
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h; (EV), (EP),
0.1 0.0140 0.0272

J
1
2 0.05 0.0029 0.0079
3 0.025 0.0008 0.0034

Table 6.1: Averaged error for expanding channel problem with uniform meshes

The above results with the criterion used here to measure the error show that the
finite element approximation to the velocity converges at a second order rate, and
that the average relative error in the approximation of the velocity is reasonably
small even for coarse meshes, as can be seen in figure 6.3 and table 6.1. Evidently,
if different kinds of averaging are chosen or if different time intervals are chosen to
average over, the results will be slightly different but always very similar. The same
conclusion is reached when different parameters are used in the example. Examina-
tion of the error at each node shows that the relative error in a velocity component
can be quite large depending on the location of the node and the magnitude of the
velocity component relative to the maximum magnitude of that component in the
whole domain; this can be the situation for the u component of velocity at nodes
next to the moving interface where the magnitude of this component is very small
compared to its maximum. However, this is not a deficiency of the present method
but a property of finite element approximations that produce an even distribution of
the error over the region [32]; the absolute error is relatively uniform and therefore
the relative error is large for values of the dependent variable that have a small abso-
lute magnitude. A simple example that illustrates this phenomenon is given by the
one dimensional equation 5;7‘5 = 1222, ¢(0) = 0, ¢ (1) = 1 which has the solution
¢* = z*. The finite element solution using 10 linear elements produces a relative
error of 900% at x = 0.1 where ¢* = 0.0001 and a relative error of 0.14% at = = 0.9
where ¢* = 0.6561; but the absolute error at both points is 0.03 and is the smallest

error at the nodes. As the mesh is refined, the solution converges at the expected
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second order rate, but the relative error at the first few nodes next to x = 0 remains
very large; in fact, using 20 linear elements in the same example yields an error of

1900% at = = 0.05.

The above discussion illustrates the difficulty in determining a criterion to assess
the error and the fact that measuring relative error may not be the best thing to do.
It underscores the need to examine the models from various different points of view

before reaching conclusions about their accuracy and general behavior.
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Conclusions

To assess the accuracy of ALE finite element CFD simulations in situations that
involve time dependent domains can be a complicated task, especially because the
methods usually used in these cases are based on adaptive meshes that continuously
change with time. A new approach has been developed that utilizes a fixed mesh, and
applied to a two-dimensional flow with moving boundaries for which an analytical
solution is available where the accuracy of the simulations can be measured directly.
At the same time local truncation error analyses have been performed to assess the
effect that local changes in the mesh size have in the numerical approximations,
especially when these changes generate adjacent elements that have a two or three
orders of magnitude difference in area or volume. The conclusion is that the accuracy
of this new ALE-FEM method is not adversely affected by the abrupt mesh changes

and that it has second order spatial rate of convergence.
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Appendix A

Truncation Error

A.1 Trncation Error

Local truncation error represents the difference between an exact differential equation
and its Finite Difference representation at a point in space and time. Local truncation

error provides a basis for comparing local accuracies of various difference schemes.

As an example, the local truncation error of a forward in time and central in space

approach to equation

ou  0?U
=T Al
ot 0x? 0 (A1)
with
D — u?HA; up Ui _(iu;;; Uiy —0 (A.2)
T

where u;; denotes the numerical approximation of exact value U at (z;,y;) is

N L =0 (A.3)
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Appendix A. Truncation Error

Using Taylor expansions, the expression for LTFE is

2 n 2 n 2 4 n
LTE:(@U_@_U) +g(a U) (aw) (8U)

ot a2 2 \ o2 ), 12 \ ozt ),
2 n 4 ' n ' (A4)
+(At) U B (Ax)" [0'U n
6 ot ), 360 \ 9z° /,
As U is the solution to the differential equation
ou  9*U\"
= ) = A.
( ot Ox? ) ; 0 (A.5)
the local truncation error is
At (PUN"  (Azx)® (9'U\"
LTE_?(atz)i_ 12 (8x4>i+m (46)

A.2 Taylor Expansions

The general Taylor expansions used in this study are given as:

Two dimensional expansions are

1
Piv1j+1 = Pij + (A:C((bij)x + Ay(¢ij)y> + 21 (AiﬂQ(@j)m + 28zAy(9ij),, + Ay2(¢ij)yy>

1
3 (Axg(ﬁbij)mx + 3ALPAY(04j) 4, + BATAY (¢55),,, + Ay3(¢zj)yyy> (A7)

+0 (Ax4, AP Ay, Ar?Ay?, AxAy?, Ay4)

and

1
Pim1j-1 = Pij — <A$(¢n)x + Ay(%)y) + o (Aaﬂ(%)m +2020y(¢yy),, + Ay2(¢ij)yy>
1
~ 35 <A$3(¢ij>xxl, + 3Aa:2Ay(¢ij)my + 3AxAy2(¢ij)xyy + Ayg(gbij)yyy) (A.8)

+0 (A:C4, AP Ay, Ar?Ay?, AxAy?, Ay4)
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Appendix A. Truncation Error

Three dimensional expansions are

and

Gi—1j—1k—1 = Pijk — <h1<¢ijk)x + k1(9ijr), + ll(¢ijk)z>

1 [ 7P (Pign) gy + 2hik1(Pijr) ,, + 20ili(dijr) .

+_
2!
+h? (Bign).y, + 2kil (Dige) . + 1P (Pin) . (A.9)
7 (D) pw + 3h127€1(¢ijk)my + 3h1 L (i) 1.
1
3 +3h1k512(¢ijk)xyy + 6h1k1l1(¢ijk)xyz + 3h1512(¢ijk)mz
+k13(¢z‘jk)yyy + 3k12l1(¢ijk)yyz + 3/€1l12(¢z‘jk)yzz + 13 (Bigi) ..
Pit1jt1k+1 = Dijk + <h2(¢ijk>x + ka(Pijr), + l2(¢z‘jk)z>
N 1 h22(¢z‘jk)m + 2h2k2(¢z‘jk)w + 2hala(Piji) .
2!
ko (Dign),, + 2hal2(Gijh),. + 12* (D). (A10)
ho® (Bisk) gaq + 3h2"ka(Bijh) gy + 302°1a(Dish) 4.
1
+§ +3h2k‘22(¢z’jk)xyy + 6h2k52l2(¢ijk)wyz + 3h2l22(¢z’jk)mz

+/<723(¢ijk)yyy + 3k22l2(¢z‘jk)yyz + 3k‘2l22(¢z‘jk)yzz +1o™ (g ) ..

These are general Taylor expansions. The rest of the Taylor expansions can be

calculated by using these equations and setting the proper value for Ax, AyorAz

depends on the problem.
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Appendix B

Convection-Diffusion Truncation

Error Analysis

B.1 2-D Domain

Assume that the convective velocity field u = (u,v)? is known and constant.

The weak weighted residuals formulation of equation 4.1 gives

/Qt {W ' B—f +(u- V)cb"} +D (VW.V¢n+1)} Q=0 (B.1)

Where w denotes the weighting functions.

The ¢ is discretized over the space as:
¢ (x,y,t) =Y Ni(x,y) ¢ (t) (B.2)
i=1

Where N; are the shape functions over each element, and n is the number of nodes

in an element, in this two dimensional case n = 4. The weighting functions w; are
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Appendix B. Convection-Diffusion Truncation Error Analysis

set to be equal to shape functions NN;. the final form of the equation B.1 is
Ay Az 4 ¢
/ / N; Z —d dzdy

4

e o, |, L fon,
+/0 /0 <UNIZ (3_:L’¢J> + UNijZI (8_y¢7)> dxdy (B.3)

y Az o4
/A /A ( S (8@N] ¢?“) N anZZ 5 (aNJ ¢n+1)> dndy — 0
j=1

7=1

Another representation of equation B.3 is
4 Ay Az 8
Z / % —dxdy
= /o 0 8
4 Ay Az ON.: 4 Ay aN
+u Z / ia—xjgb?d:cdy +o) / — gb"d:cdy
=1 Jo 0

/Ay /AIE aN 8N n+1d dy+DZ/Ay/Az aN aN]¢n+1d dy_o

(B.4)

The shape functions according to figure 4.1(a) are

(=050

V= () ()

The next task is to calculate the stiffness matrix of an element. By calculating the

stiffness matrices the equation B.4 can be written as:

Sl + SZ + 5B + SHeIt 4+ St =0 (B.6)
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Appendix B. Convection-Diffusion Truncation Error Analysis

Where S™™

11 _ AzAy
Sij - 36

33 _ vAz
Sij - 12

55 __ Ax
Sij - D6Ay

The most commonly time integration algorithm normally referring to as the 6

method is used. It consists in approximating the time derivative by the backward

difference

The transport quantity, ¢, is then defined by

in this analysis the relaxation parameter is = 1 and, as a result, ¢ = ¢" 1.

The element equation written for the first element using the notation in figure

I~ 1 n n
b= (o - o)

4

N =N

21 2]

121 g22 _ udy
242 ’ () 12
12 4

11 2]

—2 21 S4 _ p
2 92 1 N
11 2

1 -1 —2 |

9 —2 —1

92 2 1

-1 1 2 |

¢=0¢""+(1-0)¢"

Ay
6Ax
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are stiffness matrices calculated as

2
2
1
1
2

NN = =
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Appendix B. Convection-Diffusion Truncation Error Analysis

4.1 is

hik1
36At

uk1
12

for the

hok1
36At

uk1
12

h1ks
36At

uko

haka
36At

ukso
12

=N R N

N= N
=N RN

o= NN

== NN

== NN

== NN

N R N

Nk N

NN = =

N N = =

N N

=N =N

Dk
6ho

=N N =

=N N

=N N =

=N N

1 2
-1 Dhy 1
) 6k1 -1

2 —2

2 4

1 h1k1 2

1 36At | 1

2 2

1 2
-1 Dho 1
-2 6k1 | —1
2 -2

2 4

1 hoky | 2

1 36At | 1

2 2
1 2
-1 Dhy | 1
-2 6ka | —1
2 -2

2 4

1 4 hike | 2

1 36At | 1

2 2
1S
1 2
-1 Dho 1
-2 6ky | —1
2 —2

2 4

1 h2k2 2

1 36At | 1

2 2

47

N R N

=N RN

N R N

=N RN

[y

=N =N

-1

—

BN =N

—_

BN =N

-1

[y

=N =N

n+1
—2 (z)i—ljfl
n+1
-1 bij—1 _
1
1 i
n+1
2 bi1;
(B.9)
¢?flg71
'
ij—1
¢
7
i—1j
n+1
-2 ¢i]’—1
n—+1
-1 Pit1j—1 _
n+1
1 ¢i+1j
1
2 ot
(B.10)
71
n
i+15—1
n
i+15
o
n+1
-2 ¢’z‘71j
1
L et |
n+1 -
1 Pijt1
2 onth
-1 1
TS (B
n
i—1j
o
7
ij+1
n
i—154+1
1
_9 ¢Z+
n+1
-1 Piv1 | _
n+1
1 ¢i+1j+1
n+1
2 ¢ij+1
(B.12)
o,
T
i+15
D141
7
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Appendix B. Convection-Diffusion Truncation Error Analysis

Assembling the element equation contributions to node (x;,y;) results in the differ-

ence equation (DE)

S(fAt (P51 + 2 (ha + D) O3 + hats 1)
3?& (Mo jog + 2 (ha 4 o) &7y + hadilr 1)
% (2h1 0L + 4 (hy + ha) 7 + 2hag L)
—@%§QQMQM+MM+M>z+%m%»
g (i 20+ ) 67 + Rl
ko

s (MOrjin +2 (4 Do) 611 + hadiy )

(2¢zg+1 O i — D — 205 )
o (B.13)

- (O 11 + 2001 — 200 — @15 )
ul_/;? (D11 20015 — 207 1 — B 1i4)
P (2005 Gt — By — 200
6% (b (677 — O 0) + 2 (y + o) (03 = 674) + o (607 — 00L00))
% (y (61 — L ) + 2 (kr + ko) (677 — @7 + o (675 — 071 11))
b ( (1 = 908, 0) 2+ ha) (617 = 074 + s (00, — o181,))
(61~ 01%00) 20 ) 90 = 0228) + s (0~ 05 )

All the terms in DE are expanded in Taylor series about gb"“ For example:

1
Giv1j+1 = Gij + (AI(¢ij)x + Ay(gbij)y> + 5 (sz(@j)m n ZAmAy<¢ij)xy N Ay2(¢ij)yy>
1
T3 (Axg(gb“)wm + BAT DAY (6if) 1, + BATAY* (1)), + Ay3(¢z’j)yyy>

+0 (A:C4, AP Ay, Ar?Ay?, AxAy?, Ay4)
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Appendix B. Convection-Diffusion Truncation Error Analysis

and

1
Pim1j-1 = Gij — (Af’@(@j)x + Ay(¢ij)y> o (Aﬁ(ﬂsﬁ)w + 2828y (¢4 ) 4y, + AZUQ(%')yy)
1
o 5 (Aw3(¢1])xxx + 3Am2A:U(¢ZJ)xmy + 3A$Ay2(¢ij)xyy + Ay3(¢ij)yyy>

+0 (Ax4, AP Ay, Ar?Ay?, AxAy?, Ay4)

The diffusion terms, convection terms, and time derivative terms in equation B.13

are shown respectively on the following pages. First, the diffusion parts have been

shown in two parts about "“ are

Dk,

6hy
Dkg

+1 +1 4 gntl +1
¢;” 1t 2¢n ¢%+1 - ?—lj—f—l)

+1 +1 +1 +1
o — 2¢?+1j - ¢?+1j+1 + ¢Z‘+1)

n+1 1+¢n+1 _|_2¢n+1 2¢n_+1)

(2
~ (24]
Dh(
(0

z 15— i—1j
Dk
o (O3 — oy — 2001, + 207 =
—%wwn%wyl)m—%wjﬂm%wm
kohy , .. ko? kohy , .. ko®
N %(gbijﬂ)m_%((bijﬂ)xy"" 242(¢U+1)zz+%(¢ij+l)xy
k h kih
= (o), + <¢"“>m = (o), — <¢““>z
1 k h?, 1 hyky? " 1 ky? o
-D -3 23‘1 (¢ij+l)xm+§ 13'2 ( +1)my 5 ; ( 7'j+1)myy
1 kghg n 1 h2k2 n 1 k23 n
i 2 3! ( +1)mac:c 2 3! ( +1):L’xy+ 2 3l ( lj+1)a:yy
1k1h1 (62:+1) 1h1/f1 (67+1) 1k13( 1)
2 3 we 9 3l zey 2 31N ey
1 kihy?® , Lhoki? 1k®
2 13|2 (¢ —H)Ixx 2 23|1 ( +1)gpg¢y 2 31| (¢zj+1)myy

(B.14)
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and
% ( ?jllj + 2%’“ o 2%111 - ?flljﬂ)
o (207 01 — O — 20078)
+% (=M = 2051 + 200 + 97
+% (—20557 — O + oy +205T) =
), + e, - e, - S,
) % 450 %i(f%“)xy h2:2k<¢z;“>yy hl(jzm (B.15
05, + 5 G5, + = (95, - S (@),
DL (5 O+ 5 O Y 5yt
: :
) %Z{ (65,0, %%(aﬁ) % Z{ (65 0
2 3l (957 53_}@%“)”@/ ) zla! : (95") sy
R IELL [ NS LY
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Appendix B. Convection-Diffusion Truncation Error Analysis

The summation of diffusion terms is

n+1
i—1j+1

n+1
i+15+1

n+1
i+1j—

n+1
i+1j+1

%(kl( P o) T2 (R k) (07— o) + ke (07 -
% (k1 (67 = i) +2 (R + ko) (0757 — 1) + k2 (07 —
% (h (977 = 0i21521) + 2 (ha + ho) (07" = 07571) + ha (015 —
i (hn (07T, = 10) +2 (b ) (017" = 01 ) + B (01,
P o), + 22 o), - Ben), - 2 (ep™),
2o, + : " (o), - ; "o, + ; "o,
: ,
. %SM ’;h<2¢z+l>zy+%:k<l¢z;“>yy+ }ghgasz;“)my
gy Mgy 2 gy Mgy
(B e e e,
Pl gy B gy ’“14”2 (@), - S,
3
b %Zi < %% 45D %Z{ <
n ?hgl (‘b g+ )y ?2,3 (¢ ]+ )x:cy ?hg;ﬂ (¢?j+ ):cyy
2 ) 23 3 (O~ 55 (95,
Lk ey gy LBk gy
RS iy IR gy LR ey
| e s e,
it ey AR gy LB ey
Liiha ey, — 2B gy LR gy
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Appendix B. Convection-Diffusion Truncation Error Analysis

After some mathematical manipulations the diffusion terms are

% (k1 (670 = 01 o0) + 2 (ky + ko) (0771 = 071;) + ko (671 — 0101))
b (b (1 — 0L 0) +2 (b ) (01 = 025) + b (0051 — 0182,0))
b ( (O = 68, 0) 2+ ha) (6157 = 0174+ (015 — o181,))
+6%2 (hn (1Y = 05 10) + 2 (a4 ho) (7" = G15L) + ha (015 — i) = (BA1T)
— O ) (k) (B351) ) = (o ho) (I + Ko) (65),,
-5 f 7 () (ks 4 ) (= ) ((63),,, + (5.,
g O R (4 o) (e — ) ((657) 0+ (657),0,)

In the next step, all the terms in convection part of equation B.13 are expanded

in Taylor series about ”+1

Convection part =

ukg

? < i—1j + (b + ¢z]+l i— 1]+1 +

1
5 i— 1] (bz] +¢zy+l+ ¢z 1j+1

vhy
6
ks whs 1 §

? ¢zg + ¢7,+1] +35 ¢l+1j+1 ’Lj+1 + ? ¢ 2 Z+1j +5 ¢’L+1J+1 + (bijJrl (B].8)

wky (1 vhy (1 1
+?( §¢z 15— 1+ gbzg 1+¢ i— 19)—’_7( 5 i— 1] 1 ¢ 1+¢zg+ ¢z 1])

uky [ 1 vhs 1 i
-I—?l ( §¢U 1+ ¢2—|—1j 1+ ¢z+1g ) + 6 ( -1 7 5¥it1j-1 + ¢Z+1J qb”)
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Appendix B. Convection-Diffusion Truncation Error Analysis

the spatial Taylor expansion of equation B.18 about ¢}'; is

Convection part =

= (ky+ ko) (i + ho) (), + 7 (R + ko) (B + ha) (),
< (ko) () (= Do) (65), = 5 (R + ) (ke = o) (o + ) (6),,

(k1 + ko) (k2 — k1) (hy + ho) ( l]) i (kl + kz) (h1 + hg) (hy — hy) ( w) (B.19)

(l{?l + ]{?2) (h13 + h23) (¢Z)xxx + ﬂ (k?l + k'2 ) (hl + h2) (Qb )yyy

45 (1) (9,0 35 5 ) (0400 1)

ka4 k) (4 ho) (07), — ﬁ (k1* = ko®) (n® = ha®) (01),,,

u
12
U
4
u
_4 TxYy

T35 (

after some mathematical manipulations equation B.19 becomes

Convection part =

(y + ko) (i + ha) (w(oy), +0(65), )
(h1 — ha) —( ) e T (b1 = K2) %(%)yy)

k2) 5 (65),,, + (= o) 5 (63),,) (B.20)
(= haha 4+ h?) 2(05),.,, + (® = kiks + k%) (1), )
— (i = b + ?) 2 (6) )

>w (ko =) (= ) 3 (55),,,)

(k1 + k2) (hy + he)

(k1 4+ k2) (h1 + ho) | (k1 —

~~

(k1 + k2) (hy + he) )

<SS

(k1 + ko) (h1 + he) ( (k2 — k1) (b1 — h2)

—
-
&3
SN—"
i%

H>|HH>|>—‘4>|’—‘H>|F—‘H>|*—‘H>ID—‘

ol g o T

~—

(k1 + ka) (h1 + ho) (k12 — kiky + ko ) o;

S S

n+1

In this step, all the terms are expanded about ¢;" by using temporal Taylor

expansion

ae

¢Z - ¢n+1 At(¢%+1)t + 2 (¢%+1)tt +0 (Atg)
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The convection part about ng"Jrl i

Convection part =

| (-l 2,
= (ky + ko) (R + ho)
e o (470, ),
(hy — o) % <¢%+1 _ At(gb%“) . A2t <¢n+1> - )
_% (k1 4+ k2) (hy + h2) . 1 1 t 1 tt zx
RN
st e,
=7 (b1t k2) (b1 + ha) .
+ (h1 — h2) - <¢n+1 At <¢n+1)t <¢n+1> + )xy (B.21)
1 (h12 — hiha + h22) g( i ( ”+1)t AT <¢"+1> * >
+ (k1 + k2) (h1 + h2) ) 1 ! h
+ (k1 — kikg + k2 ) <¢"+ < ) (¢”+ >tt * m>yyy
1 (ko — k1) (h1 — ha) = (éf)nﬂ t<¢?j+1)t + ar (¢Z+1>tt * >
— (bt k2) (b1 + ha) v At Y
— (ha® = hyhy + ho?) o (%ﬂ — At (¢Z,+1)t +— <¢"+1)tt + >my
(k12 — keyko + k‘22) 16L<¢21]+1 — At (qsgﬁrl)t A; (ganrl)tt + )
J& (k1 + k2) (ha + h2) b

2
— (kg — k1) (h1 — hg) Z(w“ At<¢”+1) + A;(gz);”;“)tt + >
Yy

xT

Last part, all the terms of the time derivation part of equation B.13 are expanded

about ¢} ! by using spatial and temporal Taylor expansion (¢};"' — ¢/ is shown by

First spatial expansion:
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Time derivative part =

Yy

h1k2 ¢:L+11g - ? 1j Cbznfl — 95 Z—:}l — O ¢:L+11g+1 141
(2 +4 Al + 2 A +
h2k2 CbZH i ¢?j1lj 1 ¢?:11j+1 — Q141 23111 i1
2 2
( + N At +
hlkl n+11j 1 z 15—1 (rb%tll - 1] 1 ¢Z+1 Z ?+11] z 15
2 4
TN ( + NN
h2k1 ¢Z+11 1 ¢?-:—11j—1 — 011 @b?fll] — it ¢Z+1 — 93
2 4 —
TN ( + At + N
1 1
(9 A@] ( )hl(A¢m> 2,( ) ( Csz) 3 ( )hl (Aﬁbw)mx
hiko 1 1
S6AL + (3) k2(Adyj), + B (3) k2" (Adyy),, ta (3) k2’ (Adij),,,
1 1 1
+5( 2) hika(Agij),, +3 (3) hi*ka(A¢sj) yy, + 3 (=3) hika®(Ady),,,
1 1
(9) Agij + +(3) h2(A¢w) 21 (3) h22<A¢ij)m« + 3! (3) h23<A¢ij)mx
hoko 1 1
36AL + (3) k2(A¢y5), + a1 (3) k2*(A¢yy),, +t3 (3) k2’ (A¢ij),,,
1 1 1
top (2) heka(Adig),, + 57 (3 ) ha?ka(Adij) 4, + 51 ) haks?(Adi),,,
1 1
(9) Agij + (=3) hi(Agij), + BT (3) hi®*(Adyj),, + 3 (=3) 1 (A0ij)
hiks T 1 )
sen | (T3 R(AGy), + o B) k7 (Adi),, + 5 (=3) k™ (Adij),,,
1 1 1
+o7 (2) aki(Adyg),,, + 30 (=3) k1 (Adig) ., + 3 (—3) hak*(Agy;)
1 1
(9) Agij + (3) ho(Ady), + 2,( ) ha? (M), +3 (3) ho*(Adi5) .
hokyq 1 1
S6A7 +(=3) kl(A%‘)y ( ) k1*(Agyg),, 3,( 3) k1’ (Adij),,,
1 1 1

1
y (h1 + h2) (k1 + ka) Agyj +

(k1 + ko) (ha — ha) (ha + h1) (Adyj),

ANt 12At

+ﬁ (he + h1) (k1 + k2) (ke — k1) (Adij),,

—l—fm (k1 + k2) (he + hv) (h% — hihs + h%) (Agy). . + 361At (hQ h%) (k:% _
—i—ﬁ (he + hy) (k1 + k2) (k‘% — kiky + k’%) (A¢ij)yy +

95

(B.22)

k) (Ady),,
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Next, the temporal expansion of equation B.22 could be found by using

At] - At - (¢ij+1)t - 7(¢ij+1)tt (¢%J+l)ttt +0 (Atg)

Therefore the equation B.22 is rewritten as:

Time derivation part =

A At?
et ) ) (0070, = 5H00), 4 S0+ )

1—12 (ky + k) (hg — h) (ha + A1) ((qb;?“)t — %(qb?“)tt + %ﬁ(d)?“)m + )x
1—12 (B2 + ha) (k1 + ko) (kz — ki) ((d)?“)t - %(dﬁ“)tt + %tz(wﬂ)ttt + )y
14 (k1 + k2) (ha + ha) (h? — hahy + h3) ((Qs;l“)t - %(qﬁ?“)tt + %t?(qs;‘“)ttt + )
i4 (ha + 1) (k1 + ko) (K2 — kiks + K3) ((¢y+1)t — %(gﬁ?*l)tt + %t?(qb’;“)ttt + ...)yy
o 08 -12) (5 8) (7)), + S0 ™) ) =
“’ (B.23)
1 (h1 + ho) (k1 + ko) X

(07, = S0+ S 00— ()

g =m0 (00, = G+ T (07, = S 00 )

5 =) (07, = S0+ T )= S0 ).

g (02 = tume 1) (07), = 50,4 %ﬁ(eb?“)ttt ar ()

g =) = k) (072, = @7, + G0 - 5 (¢"+l)tm)my

L=k ) ((wl)t By, + A gy, - B8 (¢”“)tttt)yy ‘.

Now, by assembling diffusion, convection, and time derivative parts, equations
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Appendix B. Convection-Diffusion Truncation Error Analysis

B.17, B.21, and B.23 respectively, the DE about qb"“ i

DE — (hy + h2)(k?1 + kfz) y

1
0552
+% ((h h1)§2§t (ke = kl)fﬁt)
non () e (5250 o
u (%(hg hl)ff 30k~ k) (,fify)
35 o)
k+O(h k:Q,hk:,hAt,kAt,At) )

All terms on the right hand side of equation B.24 are evaluated at (z;,y;,tn+1)-

Re-writing the first order term of the truncation error as

1 o6 ¢ ¢ 0 0 u 9%

§<(k kl)f)y(&t o oy Yo ay))+6(h2_hl) 07
1 o6 9% 9% 0 ¢ v 9%

3 (<h2—’“>a (E—w—a—y?”a—x”a—y» Tl R g

the leading terms on the left must vanish hence the changes in the mesh introduce a

spatial first order local error (FOE) equal to
1 62¢ n+1 aqu n+1
FoP=5 ( ta=m (53, +e a0 (55),

This is of the form of an anisotropic artificial diffusion similar to that arising in

(B.25)

stabilizing formulations of the upwind type, and is readily eliminated by the addition
of an artificial balancing diffusion in the intersected elements [27], which restores the

local second order accuracy in the approximation.
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Appendix B. Convection-Diffusion Truncation Error Analysis
B.2 3-D Domain

Like two dimensional error analysis, assume that the convective velocity field

u = (u,v,w)” is known and constant.

The weak weighted residuals formulation of equation 4.1 gives

0
/ {w {a—f + (u- V)gb”} + D (Vw. w)"“)} =0 (B.26)
Q4
Where w denotes the weighting functions.

The ¢ function is discretized over the space as:
i=1

Where N; are the shape functions over each element, and n is the number of nodes
in an element, in this three dimensional case n = 8. The weighting functions w; are

set to be equal to shape functions NV;. the final form of the equation 4.2 is
Az Ay Az ¢
/ / / N; Z —d d:rdydz
uN; Z ( ! ¢”)

Az Ay Az .
+/ / / —i—vNiZ (—]qﬁ?) dxdydz
0 0 0 =1 Ay

Nj
Egb]) (B28>

ON;
—7 TP“) drdydz
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Another representation of equation B.28 is

Z/O /Ay/ N;N; ¢]dxdydz
+uz / / > / Ni—ng’-‘dxdydz
+UZ / / > / N " dadydz

Ay
-I—UJZ/ / / N%qb”dxdydz
0
Ay ON; ON;
LM A
By ON; ON;
+D / / / J¢n+1d dde
; 0 0 0 8y Ay

8 Az Ay Az N N
—I—DZ ON: 9 jqb"“dxdydz 0
0z
= /o 0 0

(B.29)

The shape functions according to figure 4.1(a) are

(=03 009

(B.30)
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Appendix B. Convection-Diffusion Truncation Error Analysis

The next task is to calculate the stiffness matrix of an element. By calculating the

stiffness matrices the equation B.29 can be written as:

Sy + S0 4+ SBen 4 S 4 5P 4 56t 4 Tgntl — 0 (B.31)

Where the individual S™™ are given by

(8 442422 1]
4824241 2
428 421 4 2
S'ljl:AxAyAz 2 4 4 81 2 2 4
' 6 42218 442
24124824
21424284
(1224244 8|
[ 44 22 292 1 1]
4 4 -2 2 -2 2 -1 1
2 2 4.4 -1 1 -2 2
g _ubyAz| =22 4 4 11 -2 2
Y 72 22 -1 1 —4 4 -2 2
2 2 -1 1 —4 4 -2 2
11 -2 2 -2 2 —4 4
11 -2 2 -2 2 4 4|
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4 2 4 2 -2 -1 21
9 424 —1 -2 1 2
4 2 42 -2 —1 21
g vATAz | 2 4 2 4 —1 -2 12
Y 72 —2 -1 2 1 —4 -2 4 2
1 212 -2 —4 2 4
9 1 21 -4 -2 4 2
| -1 =212 -2 —4 2 4|
[ 4 2 2 1422 1]
9 4 1 -2 2 41 2
9 1 4 -2 21 4 2
qu_whady | ~1 =2 -2 4 1224
Y 72 —4 -2 -2 -1 42 2 1
9 4 1 -2 241 2
9 1 4 -2 21 4 2
-1 2 2 41224
4 4 2 2 2 —2 1 —1]
4 4 —2 2 —2 2 -1 1
9 2 4 4 1 -1 2 -2
G pAAz | 2 2 4 4 11 -2 2

Y 36Ar | 9 _9 1 1 4 -4 2 -2
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4 2 2 1 -4 -2 -2 -1

2 4 1 2 -2 —4 -1 -2

2 1 4 2 -2 -1 —4 =2

Sﬁj@:DMAZ 1 2 2 4 -1 -2 -2 —4
' 36Ay | —4 —2 —2 —1

g _ pAsy 92 4 2 4 -1 -2 1 2
N 36A2 | 9 1 -2 -1 4 2 —4 -9

-1 -2 1 2 -2 -4 2 4

The most commonly time integration algorithm normally referring to as the 6
method is used. It consists in approximating the time derivative by the backward

difference

¢

12

1
~ (¢n+1 — ¢”) (B.32)
The transport quantity ¢ is then defined by

p=0¢""+(1—-0)¢" (B.33)

in this analysis the relaxation parameter is # = 1 and, as a result, ¢ = ¢
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Appendix B. Convection-Diffusion Truncation Error Analysis

The nodes and dimension for the elements using the notation in figure 4.1 are
first element

nodes

[¢i—1j—1k—1 GDij—1k—1 Pi1jk—1 PDiji—1 Pi—1j—1k Dij—1k Pi—1jk ¢ijk]
dimension

e

second element

nodes
[@jqkq Dit1j—1k—1 Pijk—1 Pitijk—1 Pij—1k Qitv1j—1k Pijk ¢i+1jk]
dimension

[h2 k zl}
third element
nodes
[¢z‘—1jkz—1 Gijk—1 Dic1j+1k—1 Pij+ik—1 Pi—1jk  Pijk  Pi—1j+1k ¢ij+1k]
dimension

e

fourth element

nodes

[¢ijk—1 Gir1jk—1 Pijrik—1 Pitij+1k—1 Pijk  Pitijk Pij+ik ¢i+1j+1k]

dimension
[ he ke |

fifth element

nodes

[Qbifljflk Qij—1k  Pi—ijk Pijk  Pimij—1k+1  Pij—1k+1  Pi—1jk+1 ¢ijk+1]
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Appendix B. Convection-Diffusion Truncation Error Analysis

dimension
[hl K 52}

sixth element

nodes

|:¢z'j—1k Git1j—1k  Pijk  Pitijk  Pij—ik+1  Pitlj—1k+1  Pijh+1 ¢z‘+1jk+1]
dimension

[ he bl |

seventh element

nodes

|:¢ifljk Gijk Pi—1j+1k  Pij+1k  Pi—ljk+1 Pijk+1  Pie1j+1k+1 ¢ij+1k+1]
dimension

[ ke o |

eighth element

nodes

|:¢ijk Git1jk  Pijik Pitlj+1k  Pijk+1  Pitijk+1  Pijtikt1 ¢i+1j+1k+1]

dimension
[ ho 0y |

Assembling the element equation contributions to node (x;,y;, 2;), using equa-
tion B.31, results in the difference equation (DE). Like two dimensional error analysis,
differential equation is made up of three different components diffusion, convection,

and time derivative.

Diffusion component of convection-diffusion equation has three parts as the dif-

fusion part of equation B.31 is made up of three matrices S;°,S;’, and S;. Using
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these matrices, nodes, and dimensions for different neighbor elements of ¢;;;, defines

the diffusion terms.

Oz component of dif fusion terms =

n+1 n+1 n+1 n+1
koly _2¢i71jk71 + 2¢ijk71 - ¢i71j+1k71 + ¢z’j+1k71
36hy n+1 n+1 n+1 n+1
=407k T A0 — 20.7 0 + 20
n+1 n+1 n+1 n+1
+D koly 2 ijk—1 2¢z‘+1jk—1 + ¢z‘j+1k—1 — Yit1j+1k—1

36h2 n+1 n+1 n+1 n+1
+4¢z’jkz - 4¢i+1jk + 2¢ij+1k - 2¢i+1j+1k
_ n+1 n+1 . n+1 n+1
D kily ¢171j71k71 + ¢ij71k71 2¢ —1jk—1 + 2¢ijk71
36h1 n-+ n+1 n-+ n+1
_2¢ 1] 1T 2¢ijflk - 4¢ ljk ijk
n+1 n+1 n+1 n+1
kil ¢ij71k71 - ¢i+1j71k71 + 2¢ijk71 - 2¢i+1jk71
D 101
36h2 n+1 n+1 n+1 n+1 B.34
+2¢z‘j—1k - 2¢i+1j—1k + 4¢z’jk - 4¢z‘+1jk ( ’ )
n+1 n+1 n+1 n+1
Dkl =407 4G — 207y + 200 1k
36hy n+1 n+1 n+1 n+1
=20 k1 T 200001 — Ok T Dig ik
n+1l n+1 n+l n+1
Dkl 4075 — 40T + 200k — 20055
36ha 1o4mEL gl n+1 _ o+l
z'ijrl 'L+1jk+1 z‘j+1k+1 i+1j+1k+1
n-+ n+1 n-+ n+1
+Dlle —2¢; 1] 1wt 2¢ij71k —4¢; lgk ijk
36h1 n+1 n+1 n—+ n+1
T Yi—1j—1k+1 + ij—1k+1 2‘25 1]k+1 + 2¢z‘jk+1
n+1 n+1 n+1 n+1
LDl kilo 2¢z‘j—1k - 2¢z‘+1j—1k + 4¢z‘jk - 4¢z‘+1jk
36h2o

n+1 _an+l n+1l n+1
+¢ij—1k+1 ¢i+1j_1k+1 + 2¢ijk+1 2¢i+1jk’+1
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The second component of diffusion part of equation B.31 is

Oyy component of dif fusion terms =

n+1 n+1 n+1 n+1
haly [ =201 — 4051 — 1O 1 — 20 1k
36]{?2 n+1 n+1 n+1 n+1
+20; 75 4O + Ok T 200
n+1 n+41 n+1 n+1
L Dhl holy _4¢ijk71 - 2¢i+1jk71 - 2¢ij+1k71 - ¢i+1j+1k71
36k2
n+1 n+1 n+1 n+1
4O + 200 + 200 1k + Ok
n+1 n+1 n+1 n+1
n hily T ¥i-1j-1k—1 2¢ij71k71 - 2¢i71jk71 - 4¢ijk71
36k1
n+1 n+1 n—+1 n+1
+O; 1k T 20051k T 2077 T 4075,
n+1 n+1 n+1 n+1
L Dhl holy _2¢ij71k71 - ¢i+1j71k71 - 4¢ijk71 - 2¢i+1jk71
36k1
n+1 n+1 n+1 n+1 B.35
+2¢ij—1k + Ok T A0 + 200 ( )
n-+ n+1 n+1 n+1
L phle hyls 2¢ 1jk + 4¢ijk + ¢i—1j+1k + 2¢ij+1k
36k2
n+1 n+1 n+1 n+1
_2¢i—1jk+1 - 4¢ijk+1 - ¢i—1j+1k+1 - 2¢¢j+1k+1
n+1 n+1 n+1 n+1
4D hols 4¢zjk + 2¢i+1jk + 2¢z‘j+1k + ¢i+1j+1k
36k2 _4¢n+1 qbn-{-l n+1 . ¢n+1
ijk+1 = “%it1jk+1 T 2Yij+1k+1 i+1j+1k+1
n+1 n+1 n+1 n+1
—I—D hyls ¢i71j71k + 2@]’711@ + 2@713’1@ + 4¢¢jk
36k1 _n+1 -9 n+1 . 2¢n+1 . ¢n+1
i—1j—1k+1 ij—1k+1 i—1jk+1 ijk+1
n+1 n+1 n+1 n+1
| D hals hols 2@]'711@ + ¢i+1j—1k + 4¢ijk + 2¢i+1jk
36k12
n+1 n+1 n—+1 n+1
_2¢z‘j—1kz+1 - ¢i+1j—1k+1 - 4¢ijk+1 - 2¢z’+1jk+1

66



Appendix B. Convection-Diffusion Truncation Error Analysis

The last component of diffusion part is

., component of dif fusion terms =
¢ p
+1 +1 +1
hiks ¢?—1jk—1+2¢?jk—l ¢n 1j+1k—1 2¢Z’+1k—1

36[ n-+ n n—+ 7
! +2¢ 1]k + 4¢ij—il;1 - 2¢ 1j+1k - 4¢ij—:11k

n+1 n+1 n+1 n+1
+Dh2k2 2¢ijk—1 + ¢i+1jk—1 - 2¢ij+1k—1 T Yitlj+1k—1
3611
n+1 n+l n+l n+1
+4¢2]k + 2¢i+1jk 4¢ij+1k 2¢i+1j+1k
n-+1 n-+1 n+1 n+1
+Dh1k1 i—1j—1k—1 2¢ij—1k—1 + ¢i—1jk—1 + 2¢ijk—1
3611
o n+l . n+1 n+ n+1
Q(bifljflk 4¢ij71k + ng 1jk + 4¢z]k
n+1 n+1 n-+1 n+1
—{—Dthl _2¢ij—1k—1 T Yidlj—1k—1 + 2¢ijk—1 + ¢i+1jk—1
3611
. n+l n+1 n+1 n+1
4¢ijflk 2¢i+1j71k + 4¢zgk + 2¢i+1jk
n+1 n+1 n—+ n+1
+Dh1k2 2¢i—1jk + 4¢zgk - 2¢ lj—i-lk 4¢ij+1k
3612
n+1 n+l _ n+l . n+1
+¢i71jk+l + 2¢ijk+1 ¢iflj+1k+1 2¢’ij+1k+1
n+1 n+1 n+1 n+1
+ Dhake Adije + 205 — 405k — 20 141
3612
n+1 n+1 . n+1 _an+l
+2¢ijk+1 + ¢i+1jk+l 2¢ij+1k+l i+154+1k+1
n—+1 n+1 n—+ n+1
Dhlkl _2¢i—1j—1k - 4¢7,j 1k + 2¢ k + 4¢2jk
+ 3612
_ n+1 ¢n+1 +>2¢n+1
i—1j—1k+1 i 1k+1 141]k+1 igk+1
n+1 n+1 n+1 n+1
Dthl _4¢ij—1k - 2¢i+1j—1k + 4¢zgk + 2¢i+1jk
+ 3612

n+1 n+1 n+1 n+1
_2¢ijflk+1 - ¢i+1j,1k+1 + 2¢z‘jk+1 + ¢z’+1jk+1

(B.36)

In the next step, the convection terms are presented. As it is shown in equa-

tion B.31, the convection part has three components made up of three matrices

522 533 and 844

ij Mg o
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The first component is

¢ component of convection part =
koly [ =201 151+ 20061 + Oi1ji1k-1 — Pijr1k—1
72
=407 1k + 405, + 201500k — 200k

n n n n
koly [ —205k—1 + 207 161 + Pijrin—1 — Piv1jt16—1

u—
72 n n n n
=405 + 4071k + 200 1k — 208141k
kol =1k T Oijmip—1 T 207 k1 — 20051
=201 15 1k + 2051, T 4011 — 407,
kil =0 1k—1 + Piv1jo1k—1 T 2001 — 200 151
Uzg
—20%5 1+ 20051k + A0 — 40T (B.37)
kals —4¢7 1k +AGT + 200 1501k — 2001k
=207 1ik1 T 20001+ Oiaj i1kt — Pijrik
ool —4¢iy + 407 1k 200 1k — 208 141k
=201+ 207 1k T Pkt — Pir1jtik1
kil =207 1k T 200 1k +AG  — 400
=0tk T Ptk T 200 1k — 200k4
il =200 1 + 207 1o T 400 — 401k
+uy

=0l k1 T Pivtjotkt1 T 2001 — 200 151
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The second component of convection part of equation B.31 is

¢, component of convection part =

hily
v—

72

haly
+v7E5

hily
+v75

haly
+out

hilo
+v75

halo
+v75

hils
+v75

halo
+v=5

=& 1jk—1 — 20051 207 154101 T Piirk1
=201 — 407 4071k T 20011
=200 1 — Oivjre—1 T Piirie—1 T 200 1j11k1
=40l — 200 1k T 2001k T 40711k
=200 i ak—1 — Pijm1k—1 T O 1k T 2001
—4Q; 11k — 2051k + 2071 + 400
— O 1k-1 — 20 1j—1k-1 T 20051 O 1jr
=200 1k — A0 11k AT T 200 1k
=207 1, — 407 4071k T 20011
— O 1jk+1 — 205511 2011 T Dijr 1k
=405 — 207 10 + 205 1k + 4081k
—205k41 — Piyijrer1 T Pkt + 208150
=407 1 — 205 + 207 + 40
=207 1j-1p41 — Pij—1k41 T Pictjrr1 + 2005k
=200 1 — 40% 1o T 400k T 2001

~Pij—th+1 ~ 201 tkr1 T 205041 T e
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The final component of convection part is

¢, component of convection part =

wh1k2 _2¢?—1jk—1 - 4¢?jk—1 - 2¢?—1j+1k—1 - Z’—&-lk—l
72 n T n 3
+20; 155 + 405, + 207101k T Pk
N haoko _4¢?jk—1 - 2¢?+1jk—1 - ¢Z’+1k—1 - 2¢?+1j+1k—1
w
72

+4¢Z’k + 2¢?+1jk + ¢%+1k + 2¢?+1j+1k

n n n n
_2¢i—1j—1k—1 = Pij—1k—1 — 2¢z‘—1jk—1 - 4¢ijk—1

hik
+2¢7 15 1k + Ofak + 2011, T 405
e —o¢n 4, — 200
hok ij—1k—1 i+15—1k—1 ijk—1 i+1jk—1
+w '2721 n n n n
+&ii 1k T 201011k + 405 + 207 1k (B.39)
OB — A — 200 1 — B
hik i—1j J i—1j+1k ij+1k
+20; 1k01 T 40k T 20714 1k41 T ikt
AP, 2 — B — 260
hok ijk i+1j5k ij+1k i+1j+1k
405k 1 + 20 k1 T Pt T 201110
—2¢”7‘_1 - ¢7.L._ — 2¢”_ L 4¢"
hik i—1j—1k ij—1k i—1jk ijk
+w ;21 n n n n
+20; 15 1kt1 T Pijminr T 20 k1 + 401
SO — 2P, — AP, — 20T
hok ij—1k i+1j—1k ijk i+1jk
s

0 1k1 + 20815 1k 400 + 208100
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Finally, the time derivative component of differential equation is

Time derivative component of DE =

hiksly 205 1jk—1 + Abije—1 + Gi i1kt + 20ij 1101
216 +4¢i_ 11, + 8ijk + 20151k + Adijin

hokoly 4¢ijk—1 + 2¢i+1jk—1 + Qéij—&—lk—l + Qgi—i-lj—i—lk—l
210 +8¢5ijk + 4¢z‘+1jk + 4¢ij+1k + 2¢z‘+1j+1k

hikily Gim1j-1h-1 + 20ij1h-1 + 20i-1j5-1 + Adij1
216 +2¢i71j71k + 4¢ij71k + 4¢i71jk + 8¢ijk

hokily QQBij—lk—l + ¢5i+1j—1k—1 + 4@;’1@—1 + 2¢i+1jk—1
216 +4§Z.5ij—1k + 2Q.5i+1j—1k + 8¢5ijk + 4§Z.5i+1jk (B.40)
hykols Api1j1. + 8Pij + 205111k + Aij i1k

216 +2¢i71jk+1 + 4¢zjk+1 + (biflj+1k+1 + 2<15ij+1k+1

hoksly 8¢ujk + Abiriji + 4Pis1k + 200141k

216 FAPijhr1 + 20 1jk11 + 2054 1k41 + Pit1jsikin
hykyls 2hi_1j-1k + 4ij_1k + 4di 1k + Sbijn

216 +€5i—1j—1k+1 + QQ.Sij—lk-&—l + Qéi—ljk-&-l + 4<Z.5ijk+1

hokily 4¢5ij—1k + 2¢5¢+1j—1k + 8¢5¢jk + 4§Z.5i+1jk

216 +2¢ijflk+l + ¢i+1j71k+1 + 4@jk+1 + 2¢i+1jk+1

where ¢ = é (¢t — ")
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All the terms in DE are expanded in Taylor series about gbfjkl For example:

Gijrnr = s — (MGl + k(650), + b0y, )
1 ha? (i) + 201 k1 (Disi) 5, + 2P1 11 (Diji) .,
2 +h* (Bign).y, + 2kil (Dige) . + 1P (Pin) .
M (Dijh) e + 3011 (Bij) gy + 30111 (Digi) 1y
- +3h1k12(¢ijk)myy + 6h1 k1l (ijk) . + 3hl* (D) .

+k13(¢z‘jk)yyy + 3k12l1(¢ijk)yyz + 3/€1l12(¢ijk)yzz + 13 (Bigi) ..

and

Dit1j+1k+1 = Piji + <h2(¢ijk)x + k2(¢z‘jk)y + 12(¢ijk)z>

1 [ Do (k) + 2haka(Disk) 5, + 2hala(dish),,

25\ k2 (0i),, + 2hala(Bige) . + L2 (Die).
ho® (Dish) ppe + 32" ko (Bijh) 1y, + 3Dl (Pik) 4.
+3 +3hako® (Gij) ,y, + Ohokala(Pijh),,, + 3hals®(Dijk),..
2 (Bigh) y, + 3k la(Dijie) . + ol (Pigh).,., + 12 (Digi) ..

The diffusion terms, convection terms, and time derivation terms in equation B.31

are shown respectively on the following pages. First, the diffusion parts shown in

n+1

three parts about ¢’/ are
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Gz component of dif fusion terms =

gIs

1
_59

hokoyly + hokyly 4 hykoly + hokyly
thykyly + hokyly 4 hykoly + hokyly
hikyly — hakyly + hikyl, — Rk,
+hikyly — hakly + hikyly — h3kyl,
—h kil — hokil, + hok3l, + hokdl
—hykily — hokily + hyk3ly + hok3l,
haky I3 + hok I3 + hikyl} + hokyl}
—hiky 12 — hoky12 — hykyl? — hok,l?

the second component of diffusion part is

¢yy component of dif fusion terms =

gIs

1
_59

hikyly + hok L, + hykyl, + hokyl,
+hykyly + hokyly + hykyly 4 hoksyl,
hik 1, — b3k, + hikyl, — hik,l,
_hlk%ll - h2k%l1 + hlkgll + thgll
—h,k3ly — hokil, + hik3l, + hok3l,
Rk 3 + hoky 07 + hokol} + hokyld
—hy k)13 — hoky 15 — hykyly — okl

Final component of diffusion part is

73

(¢Zif)mx
( ;?zl)xxx

(5%

)mxy

( Zzl)xxz

(1),

(@55 ).y

(5%

)yyy

(955t),.,.

(B.41)

(B.42)



Appendix B. Convection-Diffusion Truncation Error Analysis

¢.. component of dif fusion terms =

glo

Ly
2l

1
+§9

hokyly + hokyly + hykyly + hoksyl,
+h1k1l2 + h2k1l2 + h1k2l2 + h2k2l2
h%klll - h%klll + h%k@ll - hgk2l1
+h3k,ly — h3kly + h3kol, — hakyl,
—h k3l — hokil, + hi K31, + hok3l,
—h k21, — hokily + h k3l + hokal,
Bk 02 4 hok 2 + hikyl? + hokyl?
_hlkllg - h2kll§ - h1k2l§ - h2k2l§
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The summation of diffusion terms is

glo

Lo
2!

hokyly + hokyly 4 hykoly + hokyl,
Fhykyly + hokyly + hykyly + hoksyl,
hokyly 4 hokyly 4 hikoly + hokyl,
thykyly 4 hokyly + hykyly 4 hoksyl,
hokyly + hokyly 4 hokoly + hokyly
+hykyly 4 hokyly 4 hykyly 4 hoksyl,
Rikyly, — hak,ly + hikyly — haksl
+h3kyly — hakyly + hikyly — h3kyl,
—h kil — hokil, + hyk3l, + hokil,
—h k3l — hokily + hyk3ly + hok3l,
hiky B3+ hoky 03 + hykyl} + hokol3
—h k15 — hok13 — hykyls — hoks,l3
—h k3l — hok3l, + h k3l + hok3l,
—hykily — hokily + hyk3ly + hokil,
hoky BB+ hoky 03 + hykyl} + hokol3
—hy k2 — hoky 12 — hikyl2 — hok,l?
Rikyl, — hak,ly + hikyl, — hak,l,
+h3kyly — hakyly + hikyly — h3kyl,
hik,l, — hakly + hikyl, — hakyl,
+hikly — h3kly + hikyly, — h3kyly
hiky BB+ hoky 03 + hykyl} + hokol?
—h k15 — hok 13 — hykyls — hok,l3
—hy K21y — hok21, + hy k3l + hokil,
—h kily — hokily + hyk3ly + hokil,
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(@5)..,
(¢35,
(¢5)...
(@i

) TTrx

(55

)yyy
(¢§Lj—};1)zzz

(5%

)xxy

( ;yzl)xxz

(955 ) 1y

(¢%?Zl)xzz

(955t) .

G

)yzz
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Appendix B. Convection-Diffusion Truncation Error Analysis

After some mathematical manipulations the diffusion terms are

Dif fusion term =

1
3 (hy + hy) (ky + ky) (I +1y) X

—(¢5i1),, — (¢ Zzl)yy—( ik ).

D % (s = 1) (O5) s+ (05, + (5. ) ()
3 (ky = k) ( Zzl :m:y ZlJJ”gl)yz,/y_'—( Zlzl)zzl’)
T ) (05,0 + (0511, + (030,
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Appendix B. Convection-Diffusion Truncation Error Analysis

In the next step, all the terms in convection part of equation B.31 are expanded

n+1

in Taylor series about ¢; Tr

First part is

hykyly + hokyly + hykyly + hokyl,

+9 (95n),
+h1k1l2 + h2k1l2 + h1k2l2 + h2k2l2

(5t) oz

ﬁhh+@hhﬁ@h+h%%)
|
20\ =Rkl + B2yl — B2kl + h2kyl,

hi k21, + hokil, — hik3l, — hok3l,
+510 (558)..,
© O\ A K2y + hok?l, — h k3L, — k2L,

(55 ..

_hlkll% - thll% - hlkZZ% - h2k2l%
2 +h1k1l§ + h2k1l3 + h1k2l§ + h2k2l§

+h k35 4 hokils — hyk3l3 — hok3l3

Rk 3+ hoky 13+ hkold + hokyld

( %J/gl)zzz

+hy k13 4 hok 3 + hikols + okl

L [ ity B3k bkl 4 Bk (6)
a3 N RBk B3k + B3kl + 3kl (B.46)
2 .
7 . 1 . —hikil, + h3kTL + hik3l, — hak3l ( n )
1 ik ) oo
3! —h3kily + h3kily + hiksl, — haksl, o
Ly (PR - BE bk -k
+§ 27. 72 27. 72 27. 72 2L 12 (gbijk)m
—hikyl5 + hoky 5 — hikyly + hokyly
U Rl A Bk B KL 4+ BoRSL )
+§9 3 3 3 3 ( ijk)xyy
+hkily + hokily + hyksly + hoksly
1 [ =R K — hok313 4 hy k212 + hok2l n

7



Appendix B. Convection-Diffusion Truncation Error Analysis

After some mathematical calculations the first part can be rewritten as

Convection part one = = (hy + hy) (ky + ky) (I; +15) X

(@%5n),

1
5 (b= ) (903),,

1
5 (kg —Fy) ( Zk)my

ool =

3
1

+§ (lg - ll) ( ?Jk)xz
1

u

1

+6 (h2 — hl) (kg - kl) ( ij)xa:y
1
1 n

+6 (kf — kiky + k‘%) ( ijk)acyy
1

+§ (]{;1 — k‘2) (ll - ZZ) (¢Zk)zyz

1
—i—é (l% —lly + l%) ( Z’:l)rzz
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the second component of convection part is

Convection parttwo = < (hy + hy) (ky + ky) (I, +1,) x

(63,

1
+5 (hy = hy) ( Z‘Jigl)xy

ool =

3
1
+35 (ky — k1) (¢2§Zl)yy
1
+3 (= 0) (95,
1
+5 (h — hyhy + h3) (gs;;*,;l)my (B.48)
v
1

o (hy = hy) (ke — k) (035,

6
1

_|_§ (hl — h2) (ll - l2) ( Z—gl)a:yz
1 n

+6 (kj% — kle + k;) (¢ij_£1)yyy
1 n

+6 (kl — k2) (ll - l2> ( ij'J/gl)yyz
1

T (13 = by +15) (6541),..
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the last component of convection part is

Convection partthree = = (hy + hy) (ky + ko) (I + 1) X

(95).

1
+3 (= 1y) (97) .

1
8

1
‘f‘g (kQ - kl) ( ?jk)yz
1
1
5 (b = hyhy + h3) ($5e),,. B
w 1
_|_§ <h2 — h1> (kg - kl) ( :L]k):cyz
1
+6 (hl — hQ) (ll - 12) (¢Zk)xzz

o (B = ks + 83) (05),,.

—ky) (I — 1) ( Zk)yzz

(11 = lily +15) (D) ...

+

+
cnl»—*mli—cnlb—*
S
T

<

the summation of all three components of convection part is

1
Convection part = 3 (hy + hy) (ky + ko) (1 +1y) X

)
U(%k) +o(di), +w(dn),
v(

h—h k ijk) 2y ZJkI Eh_h Zkoc:c
i”( 0 (u(650),., +v(050),,, +w(oh),.) + f( AR .
+3 (y _kl)< (@5k) 4, + 0 (Dl58),,, +w(SE0), > g (k2 = k1) (9f5i),,,
b (= 1) (w(6),. +0(850),, + (@) L) + 5 (= 1) (6
+0 (h?, hl, I?)

n+1

In this step, all the terms are expanded about ¢}/ by using temporal Taylor
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expansion
n n+1 n+1
ijk — Pijk — At( ijk )t +

The convection part about ¢

AL,
(@), + 0 (&)
n+1 :

1
Convection part = = (hy + hy) (ky + ky) (I; +15) X

8

u(mv+w(mvy w(s

- ( n+1

3 U’f

At (o),

1

3

u(opt'),, +o(et),, +

| b ().,
—At

l_
+3(2

+0 (h?, hl, I?, AF?..))

+ v((ﬁZf)y

“f*ﬂ@@%ﬂm+vwmﬂw+w@%ﬁm)+§%—hwwﬁxz

1

3

1 n+1
3k~ k) (“ (451)..,

1

) (u(egt?), = oontt), + (o), ) + 2 0,

n—gl)

iJ »

rofon), rulept) )+ 5 -
v
6

<¢ZJ121) >+ (ko

m) (65).

ky) <¢Z—};1) -

n+1
w<¢”k )tz
n+1
+ v(d)ijk )txy +

w@%ﬁm)+§w—ﬁﬂ@%ﬂm
wo(o),,, 6

w<¢%—};l)tyz> - ( ) <¢Z—£1>tyy
W (d51)...

Last part, all the components of the time derivation part of equation B.31 are

n+1

expanded about ¢;;

n+1 n

by using spatial and temporal Taylor expansion ((bl.j — @i 18

shown by A¢;;). First spatial expansion:
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Time derivative part =

s (s =9 (), +90a0), ~9n 0).
b <27¢>ijk +0hy (i) + 0k (d) Ol (M))
Lt (=0 (), =90 ), =90 5) )
5 (st 0 6), =0k (), -0 6) )
+h;/;2612 (27% _oh, <¢ijk)x ok, ( %k)y o, <%>z) (B.52)
5 (b (b)), + 0 5)
i (20 ), =90 (), 9 6)
| hakaly <27(}5”k+9h2<¢”k) Ok, <¢Uk> oL, (%k) >

83

after rearranging the equation B.52 becomes

1
Time derivative part = 3 (hy + hy) (ky + ky) (I, + 1) X

(gbuk + ; (hy — hy) (¢”k> + % (ky = k) <¢wk>y - % (2= h) <¢Uk>z) (B.53)
4.

where ¢ 2 L ("t —¢") = 22 and
Db -0 AL AR
Pije = Atjk =&t At £ = (gbij?)t - 7( ijzl)tt + T((bijzl)ttt +0 (At3)
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The final form of equation B.53 is

1
Time derivative part = 3 (hy + hy) (ky + ko) (I + 1) x

(05, - 5 @), 0 (an))
+% (hy — hy) ((éf%l)t - %(gf)%l)tt o (At2)>m B.54
+% (ly—1,) ((@bi}il)t - %(‘%1)” o (M))z

Now, by assembling diffusion, convection, and time derivative parts, equations
B.45, B.51, and B.54 respectively, the three dimensional truncation error terms in

the Taylor expansion about qb"“ are

(giszs 62¢+62¢>+ W28 442 @+ o
BTN (S e
Sl (oo DS ™
g (5o ( 550 )
e 17 0

where [; and [, are the different mesh sizes in the z-direction. The same manipulations

as in two dimensions show that the local first order error introduced by the mesh
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changes is

B 82¢ n+17

{2 = ) (w)z‘j

1 82¢ n+1

FOE = - - °° B.
O 6 —+v (k?g kl) <ay2)” ( 56)

82¢ n+1

_+w (lg — ll) <ﬁ)” |

Therefore the approximation to the convection diffusion equation requires a cor-
rection to eliminate the artificial diffusion introduced by the changes in the mesh.
This is readily accomplished by means of any of the procedures already known to
eliminate artificial numerical diffusion, and can be implemented in a variety of ways.
In particular this correction is similar to the stabilization of SUPG type required for
highly convective flows. However, in the present case the additional error is strictly
localized next to the interfaces and does not have the global effect of a stabilized
Petrov-Galerkin formulation. Moreover, so far numerical experiments have shown
that this error is small in the sense that it only increases the relative error at nodes
adjacent to the boundary by two or three percent, but this conclusion is based on a

limited number of measurements.
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Appendix C

Poisson Equation Truncation Error

Analysis

C.1 2-D Domain

The Poisson’s Equation is
~Vip=f
where

]' *
f——EV-u

The weak weighted residuals formulation of equation 4.1 gives

/ (Vw.Vp—wf)dQ =0
Q

Where w denotes the weighting functions.

The p and f functions are discretized over the space as:

=1 i=1
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Appendix C. Poisson Equation Truncation Error Analysis

Where N; are the shape functions over each element, and n is the number of nodes
in an element, in this two dimensional case n = 4. The weighting functions w; are

set to be equal to shape functions NV;. the final form of the equation C.3 is

Ay rAe ON; ON; < [ ON;
[ ( (axpf)w—y;(a—w) ey
4

Ay Az
—/ / N ) N, fydady =0 (C5)
0 0 =

Another representation of equation C.5 is

LAY AT 9N, ON; Ay AT 9N, ON;
Z /0 /0 S O pjda:dy + Z/ / 9y dxdy
7j=1

4 Ay Az
- Z/ NiNjfidxdy =0 (C6)
. 0 0

The shape functions according to figure 4.1(a) are

= (-3)0-1)

V= () ()

The next task is to calculate the stiffness matrix of an element. By calculating the

stiffness matrices the equation C.6 can be written as:

Where M™™ are stiffness matrices calculated as

36



Appendix C. Poisson Equation Truncation Error Analysis

11 _ Ay
Mij ~ 6Az

33 _ AzAy
Mij - 36

N~ N

2
4
2
1

1
2
4
2

=N =N

The element equations are

first element

6hy

j

_ Az
6Ay

>
=
T
=
[\ —_ [\] =~

87

N s N

\)

[N

_ N =N

Pi—15-1
Pij—1
Dij

L Di-1j

Jij—1
i
fic1j

, and

ficij—1
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second element

k’l _2
6ho

third element

ky | -2
6h1

2 1 1 | [ 2 1
2 1 -1 L hs 1 2
1 2 -2 6k1 | —1 —2
-1 -2 2 | -2 -1
haky
36
2 1 1 | [ 2 1
2 1 -1 L 1 2
1 2 -2 6ky | —1 —2
-1 -2 2 | -2 -1
hy ko
36

38

O = N

O = N

_— N RN

N RN

N s N

N s N

_ N =N

L \C R N

Pij—1
Pit15-1
Pivj
Dij
Jij—1
fit1j—1

f i+1j

fij

Pi—1;
Pij
Pij+1
L Pi—1j5+1
fi—1j
i

fij+1

L fi71j+1 ]

(C.10)

(C.11)
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fourth element

2 -2 -1 1 2 1 -1 -2 i
| -2 2 1 -1 e | 1 2 —2 -1 Dis1

6ha | -1 1 2 —2 6ka | -1 —2 2 1 Pis1ji1

—_
|
—_
|
[\
[\]
|
[\)
|
—_
—_
[\

L Pij+1
fij

Jiv1

" (C.12)

Jit1j41

>
[\&)
o
(V)
N =N
NN s N
N s NN =
NN =N

fijr1

and assembling the difference equation for node (z;,y;) yields

k h
DE= > (- 2pi-1j + 2pij + pijr1 — Pi1j1) + —L (Pi-1j + 2pij — 2pij+1 — Pi-1j+1)

6h 6ks

k: ho

(2pi; — 2pit1; — Pit1j+1 + Dij+1) + —— (2pij + Dit1j — Pit1j+1 — 2Dij+1)
6h 6ko
]{Zl hl
+—— (=Ppic1j-1 + Pijo1 + 2pi — 2pi1j) + = (=Pic1jo1 — 2Dij—1 + 2Py + Dic1y)
6h, 6k,
y (C.13)

ho
6k (—2pij—1 — Dit1j—1 + Pit1; + 2pij)

haksy

36
hoky

36

+6h (Pij—1 — Pit1j—1 — 2Dit1; + 2pij) +

_haky
36
h1 ]{31

(2fz 1j + 4fzj + 2fz]+1 + fz 1j+1) (4f13 + 2fz+1j + fz+1]+1 + 2fzg+1)

(fz 15— 1+2f1] 1+4fz]+2fz 1]) <2f1] 1+fl+1j 1+2fl+1]+4flj)

All the terms in DE are expanded in Taylor series about ”H For example:

1
Pit1j+1 = Dij + <A$(Pz‘j) + Ay(pij) ) + 5 <A9€2(pz‘j)m + 2A2Ay(pij),, + A?JQ(pz‘j)yy>
3' (AJ; (pij) ypy + 3AZ? AY(Dij) oy + 3AzAy? (Dij) gy + Ay?’(pij)yyy)

+0 (A:C4, AP Ay, Ar?Ay?, AxAy?, Ay4)
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and

1
DPi—1j—1 = Pij — (Ax(pij)x + Ay(pij)y> + o (sz(pij)m 4 2A$Ay(pij)xy + A?JQ(pij)yy>
1
E]] <A$3(Pij)mx + 38T AY(Dig) 1y + 3ATAY (pig),,, + DY (Pij)yyy>

+0 (Am4, A3 Ay, AZ2AY?, AxAy?, Ay4)

The Taylor series expansion about p;; gives

(h1 + ho) (k1 + k2) "
4

DE =

(kQ—k1)< Fp  Pp )

Pp % 1 _8_y3 9220y
— Y~ A, — = C.14
(39[:2 0x? )+3 (e — ) Pp P ( )
2 ! oy?  O0xdy?
1
~3 (kg — k1) f, + (ha — h1) fo] + O(h?, k?, hk)
Note that the leading first order term in the truncation error is equal to
0 Ppi;  0?pyj
[ TRy <_ afi - (95; - f”’)
FOE = - ) ) =0 (C.15)
2 oy Ox? Oy Y

Provided that the finite element discretization of the right hand side is fully consis-
tent; Therefore, this error vanishes and the method is locally second order accurate
regardless of abrupt changes in the mesh. However, if the formulation is not fully
consistent, such as the case reduced integration is used to evaluate the pressure

gradients in , then a first order error is introduced.
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C.2 3-D Domain

The three dimensional Poisson’s Equation is

~Vp=f (C.16)
where

f=——V.u (C.17)

The weak weighted residuals formulation of equation 4.1 gives

/ (Vw.Vp —wf)dQ2 =0 (C.18)
Q

Where w denotes the weighting functions.

The p and f functions are discretized over the space as:

(,y,2 ZN Ty, 2 (C.19)

(x,y,2 ZN T,Y, 2 (C.20)

Where N; are the shape functions over each element, and n is the number of nodes
in an element, in this two dimensional case n = 8. The weighting functions w; are

set to be equal to shape functions V;. the final form of the equation C.18 is

A ON; ON; o~ [ ON; ON; <~ [ ON,
/ / / ( j=1 ( ox pﬁ) + a_y; ( dy p]) + E; (a_p]> dxdydz
8

Az Ay Ax
—/ / / N; Y N fidwdydz = 0 (C-21)
0 0 0 =1
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Another representation of equation C.21 is

Az Ay Az
Z / / / ON; 8N dxdydz
Az Ay Az
/ / / ONi ON; dxdydz
dy
8 Az Ay Az
Z/ / / ON; aN - (C.22)
=1

Az Ay Az
- Z / / N;N; f;dzdy = 0
- J0 0 0

The shape functions according to figure 4.1(a) are

N5 D0
N B0-H0-)

D M0-5)

<z>< )0-3) .
-~

-~

-~

~

=) (-0 )
W) 0-D )
=3 () ()
Vo = (z) (%) (1)

The next task is to calculate the stiffness matrix of an element. By calculating the

Ve

stiffness matrices the equation C.22 can be written as:
Mipj + MiPp; + MPp; + M f; =0 (C.24)

In this formula, M™™ are stiffness matrices given as

92



Appendix C. Poisson Equation Truncation Error Analysis

-2

-4 4

—4

—2

—4
—4 4

—1
1

—2

—1

-2 2
-4 1

—2

4 =2
-2

2

4
2

4

2
—4

—1
-2

-2 -4

4
—2

—1

2
1

—1
-2

—2

, and

-1
-2
-2
—4

-2
-1
—4
-2

-2
—4
-1
-2

—4
-2
-2
-1

1
2
2
4

2

—2
—2
—4

—1
—4
—2

—4
—1
—2

—2
—2
—1
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44 _ _ hkl
Mij - 216

NN N R N R R
N BN RN 0
N B =N R 0N
I N L I~ SO )
N B~ B 0 O HONN

N 00 = N = RN
= 00 N e N e =N
O = = N NN NN =

The nodes and dimension for the elements using the notation in figure 4.1 are
first element

nodes

[¢i—1j—1k—1 Qij—1k—1 Picijk—1 Piji—1 Pi—1j—1k Pij—1k Pi-1jk Cbijk]

dimension
[hl K zl}

second element

nodes

[¢ij—11<;—1 Qit1j—1k=1 Pijk—1 PQitijk—1 Pij—1k PQitij—1k Pijk ¢i+1jk]

dimension
[hz K zl}

third element

nodes

[¢i—1jk—1 Qijk—1 Pictj+1k—1 Pij+ik—1 Pi—1jk  Pijk  Pi—1j+1k ¢ij+1k]

dimension

e
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fourth element
nodes
[@jkq Qit1jk—1  Pij+ik—1 Qittjrik—1 Pijk Pitijk  Pij+1k ¢i+1j+1k]
dimension
e
fifth element
nodes
[Qsifljflk Gij—1k  Pi—1jk  Dijk Pi—1j—1k+1  Pij—1k+1  Pi—1jk+1 ¢ijk+1]
dimension
[hl k 52}
sixth element
nodes
[Qsijflk Git1j—1k  Pijk  Pitijk  Pij—ik+1  Qitlj—1kt1l  Pijh+1 ¢i+1jk+1]
dimension
[hz K 52}
seventh element
nodes
[¢i71jk Oijk Pic1j+1k Pijrik Pimljk+1 Pijk+1  Pim1j+1k+1 ¢ij+1k+1]
dimension
s
eighth element

nodes

[¢ijk Git1jk Pijik Pitlj+1k  Pijk+1  Pitijk+1  Dijtikt1 ¢i+1j+1k+1]
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dimension
[hz Ky 52}

assembling the difference equation for node (z;,y;) yields

where
DEl =
ol (C.26)
360 (—2pi—1jk—1 + 2Pijk—1 — Pic1j41k—1 + Pija1k—1 — 4Dim1jk + 4Dijk — 2Di—1j+1k + 2Dij41k)
1
koly

+% (+2pijk—1 — 2Pis1jk—1 + Dij+1k—1 — Dit1j+1k—1 + 4Pijk — ADit1k + 2Pij41k — 2Dit1+1k)
2

kily
+_
36h
kily
+ﬁ (+Dij—1k—1 — Pit1j—1k—1 + 2Pije—1 — 2Dit1jk—1 + 2Pij—1k — 2Di+1j—1k + 4Pijk — ADit1jk)
2

ksly
36h
kolo
+36h2 (F4pijk — APiv1jk + 2Dij41k — 2Div1j41k T 2Dijh1 — 2Dit1jk41 + Pij+1k+1 — Pit1j4+1k+1)

k1ls

(=Pic1j—1k—1 + Pij—1k—1 — 2Di—1jk—1 + 2Pij—1 — 2Di—1j-1k + 2Dij—1k — 4Di—1jk + 4Dijk)

+

(—4pi—1jk + 4Piji — 2Pi— 11k T 2Pij+1k — 2Di—1jk+1 + 2Dijkr1 — Die1j41k+1 + Pij+1k+1)

+36h (=2pi—1j—1k + 2Dij—1k — 4Di-1jk + 4Dijk — Pictj—1k+1 + Pij—1k+1 — 2Di—1jk+1 + 2Dijh+1)
1
kqly
+36h (+20ij-1k — 2Piv1j—1k + 4Pijk — ADiv1jk + Dij—1k41 — Pit1j—1k+1 + 2Dijk1 — 2Pit1jk+1)
2
and
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DE2 =

i, (C.27)

+36_/<; (Pi—1jk—1 + 2Dije—1 — Pim1j+1k—1 — 2Pij+1k—-1 + 2Di—1jk + 4Dijk — 2Di— 141k — ADij41k)
2

haly
36k
hily

+36_l{: (=Pi-1j—1k—1 — 2Dij—1k—1 + Di—1jk—1 T 2Dije—1 — 2Di—1j-1k — 4Dij—1k + 2Di—1ji + 4Dijk)
1

+ (+2pijk—1 + Pit1jk—1 — 2Dijr1k—1 — Dit1j+1k—1 + 4Pijk + 2Dit16 — APij+1k — 2Dit1+1k)

hol
+362k1 (—2pij—1k—1 — Dit1j—1k—1 + 2Piji—1 + Dit1jk—1 — ADij—1k — 2Piv1j—1k + 4Dijk + 2Dit1jk)
1
hql
+3ék2 (F2pi—1jk + 4Pijk — 2Di—1j41k — 4Pijr1k + Picijk+1 + 2Pijk1 — Pie1j+1k4+1 — 2Dij+1k+1)
2

hol
+3(§k2 (+4pijk + 2Piv 15k — ADijr1k — 2Div1j41k + 2Dijrr1 + Ditijkr1 — 2Dij+1k+1 — Pit1j+1k+1)
2

hily

+36k:1 (—2pi—1j-1k — 4pij—1k + 2pi—1jk + 4Dijk — Di-1j-1kt1 — 2Dij—1kt1 T Pi1jkr1 T 2Dijkt1)
+?}>Lg/l€21 (=4pij—1k = 2Pir1j-16 + 4Piji + 2Div1jk — 2Dij— 161 — Pit1j—1h+1 + 2Dijha1 + Dit1jet1)
and
DEs =
hlgkg (C.28)
+ 361, (—2pi—1jk—1 — APijk—1 — Pi-1j+1k—1 — 2Pij+1k—1 + 2Di—1jk + 4Dijk + Di—1j+1k + 2Pij+1k)
—i—gg—ié (=4pijk—1 — 2Pit1jk—1 — 2Dij41k-1 — Dit1j+1k—1 + 4Dijk + 2Dit1jk + 2Dij+1k + Pit1j4+1k)
+%];11 (=Ppi-1j-1k-1 = 2Pij-1k-1 = 2Pi-1jk—1 — 4Pijh-1 + Pic1j-1k + 2Pij-1k + 2Di-1jk + Apii)
226];11 (=2pij—16-1 = Pit1j-1h—1 — ADijk—1 — 2Piy1je—1 + 2Dij—1k + Div1j—1k + 4Pik + 2Dit1jn)
+Zg;22 (F2pi—1jk + 4Piji + Di—1j 1k + 2Dij11k — 2Di-1jkt1 — Dijhs1 — Di-1jt1k+1 — 2Dij+1k+1)
hoks

‘l‘% (F4pijk + 2Piv 15k + 2Dij 41k + Di1jr1k — 4Dijer1 — 2Dit1jk+1 — 2Pij+1k+1 — Pit1j+1k+1)
hiky
+W (+Pi-1j—1k + 2Pij— 1k + 2Di—1jk + 4Pijk — Dic1j—1k41 — 2Dij—1k+1 — 2Di—1jk+1 — APijkt1)
2
hoky

+ﬁ (+2pij—1k + Piv1j—1k + 4Piji + 2Div1jk — 2Dij—1k41 — Pit1j—1k+1 — dDijkr1 — 2Pit1jk+1)
2
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finally

DE4 =
hikaly

216
haokaly

216
hikily

216
hakily

216
hikaly

216
_ hakaly

216
kil

216
_ hokal

216

n+1

All the terms in DE are expanded in Taylor series about ¢;’/". For example:

1
Pit1j+1 = Dij + <Ax(pij)x + Ay(pz’j)y) tg <A$2(Pz‘j)m + 28zAy(pij),, + Ayz(mj)yy)

1

+ a0 (Ax3(pij)zmm + 3Az? AY(Dij) 4y + 3A$Ay2(pij)myy + Ay?’(pij)yyy)

+0 (Aw4, A3 Ay, AZ?Ay?, AxAy?, Ay4)
and

1
Di-1j-1 = Pij — (Am(pz‘j)z + Ay(pij)y> + 20 (Aﬂ?Z(pz‘j)m + ZAQUAy(pij)xy + AyQ(pz‘j)yy>
1
a ? <A§L’3 (pij)xm” t 3A$2Ay(pij)xxy + 3AIAy2 (pij)xyy + Ay?; (pij)yyy>
+0 (A:LA’ Ax3Ay7 ASL’szz, AHTAyg, Ay4)
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(C.29)

(+2ficijw—1 + 4fijk—1 + ficrjrie—1 + 2fijo1e—1 + 4fizijn + 8fije + 2fic1j1ne + 4fijr1k)
(+4fije—1 + 2fir1jh—1 + 2fijr16-1 + fivrjrre—1 + 8fijn + Afixije + 4fij1n + 2fir141k)
(+fictjmib—1 + 2fij—1k—1 + 2ficijhe—1 + 4fije—1 + 2fi1j—1k + 4 fij—1e + 4fic1je + 8fijk)
(+2fij—1k-1 + firrjm1k—1 + 4fije—1 + 2fivrje—1 + 4 ij—1n + 2fiv1j—1k + 8 fiji + 4 fiv1jn)
(F4firje + 8 fije + 2 ficrjrin + 4fija1e + 2fictjrerr + 4fijrsr + fictjrirrr + 2 i 1041)
(+8fijk + 4 fivrje + 4fijrrr + 2firrjaie + 4fijrrr + 2firtinsr + 2 fijp1ne1 + firtjsiesn)
(+2fic1jm1e +4fijme + 4 ficije + 8fije + fimjmtes1 + 2fij—1ks1 + 2ficjkr1 + 4fijrt)

(F4fij—1e + 2 fixrj—1r + 8fijk + 4 five + 2fij—1h+1 + firrj—ier1 + 4fijrrr + 2fiv1je41)



Appendix C. Poisson Equation Truncation Error Analysis

The Taylor series expansion about p;; gives

DE — é (ky + ko) (I + L) (hy + ho) X
(= Pist)ae = Gisn)yy — Gt — (fie)
43 = 1) o (=) — (i), — (). — i)
3 0 = k0 3 (<), — (i, — (.. — )
43 (b= 1) 5 (~i)ae — Wit), — i) — (i)

Note that the leading first order term in the truncation error is equal to

0 82pz‘jk 82pz‘jk 82pz‘jk
(ho =) ox (_ ox2  8yr 022 fijk)
1 0 Ppiie Ppiin OPpiik
FOE = - . I gk L gk e
O 3 + (kQ kl) 8y ( 8,’])2 ayz 822 fl]k)
o ( Ppij  Ppigr  O%py
+ <l2 - l1) & <_ &E;k - ay;k - 822]k - fzjk)

(C.30)

=0 (C.31)

Provided that the finite element discretization of the right hand side is fully consis-

tent; Therefore, this error vanishes and the method is locally second order accurate

regardless of abrupt changes in the mesh. However, if the formulation is not fully

consistent, such as the case reduced integration is used to evaluate the pressure

gradients in , then a first order error is introduced.
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