
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

Spring 5-8-2018

Automatic Conversation Review for Intelligent
Virtual Assistants
Ian R. Beaver
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Beaver, Ian R.. "Automatic Conversation Review for Intelligent Virtual Assistants." (2018). https://digitalrepository.unm.edu/
cs_etds/93

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/93?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/93?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i



Automatic Conversation Review for
Intelligent Virtual Assistants

by

Ian Beaver

A.A.S., Columbia Basin College, 2001
B.S., Computer Science, Eastern Washington University, 2004

M.S., Computer Science, Eastern Washington University, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2018

ii



iii

Dedication

To Hillary and Devan. Without your continual support and sacrifice this work

would never have been completed.



iv

Acknowledgments

It has been said that no one accomplishes anything alone, but each accomplishment
is the result of years of knowledge and experience gathered from others. That is even
more evident in an accomplishment as large as a dissertation. While the body of this
work may be the result of my e↵orts, the ability to do the work is a product of my
family, co-workers, and so many teachers and advisers over the years. Here I would
like to highlight a few who greatly contributed to my success.

First, my parents, who gave me a love of learning from a young age, faith that
kept me from mental breakdowns through this endeavor, and taught me how to apply
myself to any task. Secondly, George Luger and Joe Dumoulin were instrumental
in encouraging (convincing?) me to return to graduate school and encouraging me
along the way. My advisor, Abdullah Mueen, who took on a student who’s field
of research was outside of his own and who had industry strings attached. Tracy
Malingo, Mike Wiseman, and all the folks at Next IT Corporation who supported
me in this endeavor while cutting me some slack at work so I could get my homework
done! Chuck Wooters gave me hours of detailed advise and feedback at conferences
and over email. Lance Williams, whose class probably removed several years from
my life, taught me to see linear algebra in an entirely new light. Paul De Palma was
an inspiration to me, having also moved across the country to obtain his PhD after
working in industry and academia many years. Finally, Cynthia Freeman contributed
to many aspects of this work. She su↵ered through countless hours of annotating
data, helped with setting up and running experiments, and could always be depended
upon for anything from minor revisions to complete re-writes mere hours before paper
deadlines.



v

Automatic Conversation Review for
Intelligent Virtual Assistants

by

Ian Beaver

A.A.S., Columbia Basin College, 2001

B.S., Computer Science, Eastern Washington University, 2004

M.S., Computer Science, Eastern Washington University, 2006

Ph.D., Computer Science, University of New Mexico, 2018

Abstract

When reviewing the performance of Intelligent Virtual Assistants (IVAs), it is desir-

able to prioritize conversations involving misunderstood human inputs. These con-

versations uncover error in natural language understanding and help prioritize and

expedite improvements to the IVA. As human reviewer time is valuable and manual

analysis is time consuming, prioritizing the conversations where misunderstanding

has likely occurred reduces costs and speeds improvement. A system for measuring

the posthoc risk of missed intent associated with a single human input is presented.

Numerous indicators of risk are explored and implemented. These indicators are

combined using various means and evaluated on real world data. In addition, the

ability for the system to adapt to di↵erent domains of language is explored. Finally,

the system performance in identifying errors in IVA understanding is compared to

that of human reviewers and multiple aspects of system deployment for commercial

use are discussed.
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Thesis Statement

Discovery of virtual assistant misunderstandings can be

automated, reducing the need for human review



2

Chapter 1

Introduction

An Intelligent Virtual Assistant (IVA) is “an engineered entity residing in software

that interfaces with humans in a human way. This technology incorporates ... modern

artificial intelligence projects to deliver full-fledged ‘virtual identities’ that converse

with users.” [2]

IVAs are commonly used for answering questions and task optimization as in the

case of Apple’s Siri, Microsoft’s Cortana, or Google Now. However, many companies

are deploying IVAs for e�cient problem resolution and cost cutting in call centers

and also as the first layer of technical and product support on websites [3]. At the

present time many di↵erent software companies (close to two hundred, by analysts’

estimates [4]) have created IVAs that reside on corporate web pages or otherwise

are embedded in advertising and selling e↵orts. Perhaps the largest gathering of

such agents today exists on the Facebook Messenger platform. Through recent APIs

provided by Facebook which made creating and deploying agents simple, the number

of live “messenger bots,” as they are known, has eclipsed 100,000 [5].

In these business domains, IVA accuracy and e�ciency directly impacts customer

experience and greatly reduces the company support costs. In one case study [6], a

Fortune 50 insurance company saw a 29% reduction in live-chat volume within five
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months of deploying an IVA on their website. Domino’s Pizza reported that product

order time was reduced by 50% when it was done through their IVA [7]. IVAs are so

e↵ective that analysts predict that human contact center agents will be completely

replaced by IVAs by 2026 [8, 9].

Already, the lines are blurring between virtual and human agents. Amtrak has

reported customer confusion on whether or not its IVA for transportation services

is a real person [7]. The continued adoption of IVAs is contributing to a growing

problem. How do we refine an IVA’s knowledge e↵ectively and e�ciently? As IVA

use as well as the number of tasks an IVA is expected to perform increases, there is

a corresponding jump in the number of human-computer interactions to be reviewed

for quality assurance. Therefore, discovering a means to expedite review and analysis

of these interactions is critical.

Without scalable and e�cient methods of automated conversation review, IVA

designers must rely on human reviewers to validate expected behavior of the IVAs.

As this is a manual and time consuming process, the reviewers are only able to view

a limited number of interactions. The result is also subjective since reviewers may

disagree on the user intention for any given turn in a conversation. In addition, as

the IVA improves, errors in communication become more di�cult to identify in a

random sample due to their dwindling numbers.

As picking the optimal user intention from the set of intentions known to the IVA

is a multi-class classification task, most implementations of IVAs can indicate some

means of confidence in the selected class. Therefore, one simple attempt to solve this

problem of scale may be to only surface conversations where the IVA confidence score

in a response is lower than some threshold. The assumption is that the confidence

metric will be higher for correct responses and lower confidence scores may indicate

a misunderstanding. Although low confidence selection may be more e↵ective than

a random sample, relying completely on live IVA-produced confidence metrics is

undesirable as its underlying model will have some unknown error, the discovery of
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which is the purpose of conversation review in the first place.

For example, it is possible the model can be confident in a response while being

incorrect. This is more likely to happen when there are multiple relevant responses

but one is more specific, and therefore preferred, than the others for the given ques-

tion. If one or more general responses had more robust or a larger volume of training

data the model may favor the general responses. Consider the case where there ex-

ists two related responses in the IVA such as: “We o↵er several DVR devices for

rent, but we do not sell any.” and: “To rent a DVR device, please choose from the

following options: ...”. Now suppose a user asks a question such as “I have your

DVR already, how do I get an HD one?”. In this case the former response may be

returned with higher confidence depending on variables such as how the confidence

metric is calculated and if the latter response had less than optimal training data.

However, the user already has a DVR and would presumably know the company

only rents them. They simply want to know the process to request a new one, which

would be correctly addressed by the latter response. This is a misunderstanding

that should be corrected but would not be discovered if the IVA was confident in its

response. This type of error scenario can also happen in ensemble approaches where

redundant errors in individual components may propagate, inflating the confidence

in an incorrect result [10].

Conversely, a model may not be confident but can still produce acceptable re-

sponses which would generate conversations for review where no error was observed.

A situation this commonly occurs is when there is a broad topic with many possible

responses and the user asks general questions about the topic. This large language

overlap creates confusion within the IVA as to which response to pick, thereby low-

ering its confidence. An example of this would be if the user asks a travel IVA “Tell

me about your baggage policies.” In this case any response about number of bags

allowed, size and weight of baggage, clarifying questions asking if they want the

policy for international or domestic travel, relevant links to baggage policies, and
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similar may all be considered acceptable by a reviewer. This type of error scenario

can also occur when only one response is appropriate but the IVA did not have ad-

equate training to clearly di↵erentiate it from other possible responses so it chooses

correctly but with low confidence.

A more general issue with using confidence metrics to select conversations is they

can be calculated numerous ways and depend greatly on the underlying implementa-

tion of the IVA. This leads to problems comparing the performance of heterogeneous

IVAs and even the same IVA over time if the confidence calculation or underlying

classifier implementations are modified. Instead, some external means of conver-

sation review allows a holistic analysis of IVAs that can be applied regardless of

implementation details or evolution of the IVA technologies. Chapter 11 compares

the performance of several IVA-agnostic selection methods in prioritizing conversa-

tions for review.

In the remainder of this work a solution to this problem is presented through the

creation of a system that can process all conversations to automatically and e�ciently

mark the interactions where the IVA is misunderstanding the user, a task which is

rapidly becoming insurmountable for human reviewers. Such a system can provide

cost savings to companies deploying IVAs by reducing the time human reviewers

spend looking at conversations where there is no misunderstandings present. It can

also enable a shorter refinement cycle because problems are surfaced quickly and

more reliably than a random sample or confidence metric based review. This leads

to a better user experience and faster adaptation of the knowledge base to changes

in the IVA’s environment.

We begin with a background of IVAs, covering their history, terminology, prop-

erties and typical architectures followed by an overview of their common refinement

processes. Chapter 3 covers the current literature on automatic misunderstanding

detection systems. Chapter 4 outlines an approach to design such a system for auto-

matic conversation review and gives an overview of the features of miscommunication
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in conversation we attempt to detect. Chapter 6 discusses the implementation de-

cisions made and their trade o↵s followed several chapters covering the means to

detect each individual feature of miscommunication. Next, the systems performance

is compared to humans in Chapter 11 and the following chapters conclude with a

discussion of findings and future works.
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Chapter 2

Background

The terms Intelligent Virtual Assistant and Intelligent Virtual Agent are sometimes

used interchangeably and, for the purposes of this work, they are considered equiva-

lent. While there may exist subtle di↵erences in definition relating to their scope of

knowledge and ability to perform complex tasks, both are referring to autonomous

agents designed to assist people in various tasks. A closely related class of such pro-

grams are known as chatterbots, chatbots, or even simply bots. Chatbots and IVAs fall

under an umbrella of Artificial Intelligence (AI) programs that simulate human con-

versational abilities known as dialog systems. For the purpose of this work, the main

component of interest common to all is a Natural Language Understanding (NLU)

unit which is responsible for translating user inputs into a semantic representation of

the user’s intention [11, 12, 13]. It is in this component that the breakdown of com-

munication will begin, assuming adequate Automatic Speech Recognition (ASR), if

such a component is used as an interface. The detection of ASR error and recovery

is well covered in literature [14, 15, 16, 17, 18] and outside the scope of this work.
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2.1 Chatbot or IVA

In literature, chatbots tend to refer to a general class of conversational agents de-

signed as a means to use natural language to communicate with computers through

voice or text interfaces [19]. IVAs are designed specifically to assist people in the com-

pletion of various tasks, much like a virtual secretary [20, 21]. Given their common

heritage there is much overlap between chatbots and IVAs in literature. The primary

di↵erence between them appears to lie in the purpose of the agent and the complex-

ity of its design. Perhaps the best means of classification is to determine which of

the two main branches of AI they fall under [22]. Those systems that merely try to

simulate conversation without any true reasoning or problem solving techniques fall

in the branch of “weak” AI and would be labeled a traditional chatbot [23]. Those

that attempt to apply methodologies to achieve reasoning in a way that allow them

to perceive their environment and perform the right and most e↵ective action would

fall in the branch of “strong” AI and would therefore be considered an intelligent

agent [22].

For example, agents embedded in devices such as Google Now, Amazon’s Alexa,

and Apple’s SIRI which are all designed as personal assistants for performing tasks

through a device are classified as IVAs [24, 25, 26]. Agents designed for assisting

humans in completing tasks on websites and applications, like Alaska Airline’s “Ask

Jenn”, are also referred to as IVAs [27]. All such agents must reason over information

from their environment and current context to decide how best to proceed in a

conversation, not merely choose a response to the current input as a true chatbot

would.

IVAs will contain some form of a dialog manager component, which manages

the state of the conversation and determines the dialog strategy [28]. Example

states could be greeting or confirmation. An example dialog strategy could be

determining how strongly to recommend a hotel based on how well it matches the
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users preferences [29]. In addition, IVAs often accept multiple means of interaction

other than voice or text such as a mobile application, touch screen events, webpage

events, e-mail, social media, monitoring calendars or proximity to sensors, or any

combination of such interactions [25, 20, 21, 26, 30]. IVAs are usually connected

to various back end systems such as databases or external applications that allows

them to access client data or perform actions on behalf of their users [25, 26]. An

example of this would be a travel assistant that would be connected to flight and

weather databases, reward program databases, and payment processing applications

so it could find and book flights on behalf of its users.

2.2 An Evolution of Dialog Systems

Dialog systems have progressively evolved over time as advancements were made in

computing systems, computational linguistics, and artificial intelligence. Following is

by no means a comprehensive history but a highlight of some of the major milestones

that have influenced the dialog systems that exist today.

The Turing Test In 1950, the father of modern computing, Alan Turing, sug-

gested that a software program could be called intelligent if a person who was in-

teracting with that program could not distinguish it from a another human. This

criteria for intelligent software has since been called the Turing Test [31, 32] and

contests are still held regularly to determine whether a software program can be

built that passes the test. Such programs have been employed in a wide variety of

applications over the course of the last 60 years [33].

ELIZA The first, and perhaps most notorious, chatterbot was ELIZA created by

Joseph Weizenbaum at MIT from 1964 to 1966 [34]. Weizenbaum developed ELIZA

to replicate the behavior of a psychotherapist, although of course ELIZA knew virtu-
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ally nothing of the real world, including psychotherapy! ELIZA worked by examining

a user’s typed comments for any of a list of keywords or phrases. If such a pattern

is found, a rule is applied which transforms the user’s input sentence into an ELISA

response. When no keyword or phrase was found, ELIZA responded with either a

generic answer or by repeating one of its earlier questions or comments. With these

techniques, Weizenbaum’s program was able to fool many people into believing that

they were actually talking to a real therapist.

SCHOLAR The PhD work of Jaime Carbonell, SCHOLAR was a research system

for computer-assisted instruction published in 1970 [35, 36]. While not primarily

an IVA, SCHOLAR introduced some important design concepts for modern IVAs.

The first was an organization of data into frames of information along with related

questions and their anticipated answers. This data was entered by teachers into

the system. A second important contribution was the capability of mixed initiative

dialog with users as it had knowledge of both questions and answers around topics.

In this context initiative refers to who has control of the conversation, and since both

the system and the users could take control by asking a question, the initiative could

change between them over the course of an interaction. In contrast, single initiative

or system initiative requires that the system ask the user a series of questions to

navigate a predefined dialog flow. Any deviation from the system prompt by the

user would either be ignored or misunderstood as a transfer to some other known

dialog state. While single initiative systems are easier to build, they are very limited

and do not have the ability to model real human conversation, which involves give

and take [28].

PARRY PARRY, created in the early 1970s by Kenneth Colby, has been described

as “ELIZA with attitude” [37]. PARRY attempted to capture the behavior of a

paranoid personality using a similar (although more advanced) approach than that



Chapter 2. Background 11

employed by Weizenbaum [33]. To test PARRY, a variation of the Turing Test was

used where a group of psychiatrists compared real patients with computers running

PARRY. Another group of psychiatrists were shown transcripts of the conversations.

The two groups were then asked to identify which of the “patients” were human

and which were computer programs. The professional psychiatrists were only able to

make the correct identification about half the time, a figure consistent with random

guessing [33, 38]. Weizenbaum dropped this line of research in part by the reactions

to ELIZA and the success of derivatives such as PARRY. He felt that people were too

easily convinced that such systems truly understood them and subsequently formed

attachments when they were merely performing clever programming techniques [34].

GUS The Genial Understander System (GUS) was created at the Xerox Palo Alto

Research center and published in 1977 [39]. GUS improved on the organization of

tasks from SCHOLAR into a well defined data structure called a frame. A frame

contained a set of slots to hold necessary information to complete the task. Each

slot defines the data type, such as an integer or a string, and is associated with a

question to ask in order to discover the slot value. When working on a task, GUS

attempts to fill as many values as it can from a user input. This allowed the user

to give more than one piece of information at a time, and the system would only

prompt for slots that had not yet been filled. This frame-driven dialog design is

still the basis of modern IVAs such as Apple’s SIRI [26]. GUS also implemented

some basic attempts at solving di�cult problems in NLU design such as interpreting

sentence fragments and anaphora resolution. An anaphora is the use of a word as a

substitute for previous ideas or terms in the conversation such as “that” in “What do

you mean by that?”. Inputs containing anaphora pose di�culties for dialog systems

as they must determine what the anaphora refers to before they can determine the

intent of the input. Similarly, a sentence fragment must be interpreted in the context

of the expected input. When given the fragment “on Friday” after asking the user

what day they want to return, GUS will translate it into the full sentence “I want
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to return on Friday” before proceeding with processing the input.

UNIX Consultant The Berkeley UNIX Consultant (UC) project was published

in 1988. It was the first to really focus on an IVA as a reasonable agent, as op-

posed to simply an intelligent interface through which information flows to and from

knowledge bases [40]. They designed UC such that it has goals of its own that may

supersede the user’s goals if it determines the system’s goal is more favorable than

that of the user. For example, if the user requests information on how to crash UNIX,

the UC will compare the user’s goal with its own goal of protecting the system. Based

on a detected conflict of the two goals it will decide in favor of the one it judges to

be the better outcome and deny the user the information requested. IVAs without

such reasoning ability will merely try to help the user in their goal regardless of any

negative consequences. The architecture presented was a general means to model a

human consultant’s own reasoning process in determining the best outcome in the

task at hand.

GALAXY and GALAXY-II The “hub-and-spoke” architecture that became

commonplace in dialog system design was first introduced in the SRI GALAXY

project published in 1994 [41]. It was later improved upon in the Massachusetts

Institute of Technology GALAXY-II architecture in 1998 [42]. An abstraction of

this architecture is shown in Figure 2.1 and discussed in greater detail in Section 2.3.

The architecture consisted of a central blackboard or “hub” through which all sepa-

rate components such as NLU and the dialog manager communicate. Messages were

passed between the components based on a token passing framework. Each compo-

nent is stateless in that the hub stores all of the conversation data for each active

user session. When a new token is generated by the hub any additional session data

needed by the target component is included. Therefore each component can work

on multiple user sessions simultaneously. This design allowed for extensibility and
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easier debugging and visualization of data flow through all stages of processing the

dialog.

ALICE Launched on November 23, 1995 by Richard Wallace, the Artificial Lin-

guistic Internet Computer Entity or ALICE introduced the Artificial Intelligence

Markup Language (AIML) [19]. AIML was an Extensible Markup Language (XML)

dialect for creating chatbots. ALICE AIML was provided free and Open Source as

a platform for others to contribute to its knowledge base and to create their own

custom chatbots. As of 2017, the ALICE AIML knowledge base contained approx-

imately 41,000 categories1 and Pandorabots2, a reseller of the technology, reported

deploying over 285,000 chatbots based on the platform. ALICE went on to win the

Loebner Prize, an annual competition to determine the most human-like computer

program, in 2000, 2001, and 2004 [43].

Ask Jeeves Founded in 1996, “Ask Jeeves” was developed to allow users to search

the Internet using (human language) sentences in addition to the standard key-word

approach common to search engines at that time. The original idea behind Jeeves,

named for a gentleman’s personal valet (from the writings of P. G. Wodehouse)3,

was to allow users to get answers to questions posed in everyday human language as

well as support for math, dictionary, and conversion questions for the World Wide

Web. A 2001 study of search engine user queries demonstrated that users were

increasingly searching for e-commerce information in question format as opposed to

listing keywords and the “Ask Jeeves” platform was encouraging the trend [44].

Cyberlover In the mid-2000s, the ELIZA and PARRY technologies were devel-

oped into systems which were observed on chatrooms and forum sites with malicious

1http://www.alicebot.org/downloads/sets.html
2https://www.pandorabots.com/
3http://en.wikipedia.org/wiki/Ask.com

http://www.alicebot.org/downloads/sets.html
https://www.pandorabots.com/
http://en.wikipedia.org/wiki/Ask.com
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intent. Chatbots, such as “Cyberlover”, appeared to be designed to flirt with other

users of the sites and then trick them into revealing personal information, lead them

to other malicious websites, or share files that contain malicious content [45, 46]. Such

behaviors were previously performed by humans and therefore not able to scale. By

deploying automated means to prey upon users, criminals could more quickly gather

personal information and spread malware. However, using chatbots to impersonate

people in chatrooms to gain information is not limited to criminal behavior. Govern-

ment agencies have also funded or deployed chatbots for the purposes of discovering

criminals in online settings through replicating the profile and behavior of a typical

victim [47, 48]. When another user begins to interact with the bot, it will begin

to build a profile of the user through conversation. If they appear a threat, it may

attempt to set up a physical meeting with the user so they can be apprehended.

Corporate IVAs More recently, the conversational abilities of such programs has

been employed to help their human users accomplish tasks or find information on

corporate websites and intranets. With the rise of the Internet and e-commerce, IVAs

were found to be particularly useful as virtual representatives of their employers [49].

They work 365 days a year 24 hours a day and do not get sick or take vacations

making them the ideal employee for customer service. Careful crafting of the persona

and interactions of the IVA can further a company’s brand across the prospective user

community. Furthermore, once this brand is established, it is consistent. In contrast

to human agents, who have bad days and can retaliate against ’di�cult’ customers

such as in the famous Comcast incidents [50], virtual agents can be programmed in

such a way as to always remain courteous in the face of hostility.

Tay Microsoft launched Tay on March 23, 2016 and it quickly became an example

of what happens when continuous machine learning is applied to a chatbot without

proper safeguards. Tay was designed to learn from conversation with other social me-
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dia users. Unfortunately, as a chatbot with no concept of reason or right and wrong

behavior, Tay quickly picked up socially unacceptable behaviors such as promoting

racism and genocide and was shut down in less than a day [51]. Tay became a poster

child of the downside of “weak” AI in that the bot did in fact learn, and was able

to maintain communication with humans, but was merely repeating what it learned

without any concept of what the words actually meant. Those in the AI community

highlighted the need for more robust reasoning ability and better anticipation of

what can go wrong when AI is deployed to the public [52].

Social Media Service Bots A current trend is in the deployment of chatter-

bots and IVAs on social media and instant messaging platforms for the purposes

of providing news, recommendations, weather reports, and virtual personal simu-

lation [5, 53, 54, 55]. While prolific, the majority of these bots are very targeted,

helping their users with a very narrow set of tasks such as checking sports scores

or tracking order status. These simplistic bots may only understand a dozen user

intentions, but they are successful in the fact that they re-use an existing and popu-

lar interface for human-to-human communication. For example, Slack is an popular

instant messaging and collaboration platform which, as of September 2017, sees 6

million daily users [56]. As many companies deploy Slack for internal communication,

the addition of a chatterbot to provide automated services, known as a Slackbot, can

leverage the fact that employees are already using Slack to communicate with each

other. Some very specific tasks such as scheduling meetings or providing Human

Resources data like holiday and vacation schedules can be programed into the Slack-

bot. It can then monitor the communication feed for questions it has been trained

to respond to such as “Is next Monday a holiday?”, and provide an answer just as if

it was another human user on the platform.
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Figure 2.1: An abstraction of common IVA architectures

2.3 Architecture of an IVA

We have presented an abbreviated history of dialog systems and several important

milestones in their development. Now we will turn our attention to the individual

components and architecture of typical IVAs.

Figure 2.14 shows common components of a modern IVA [13, 57, 58, 59]. These

components are linked together through a central hub or facilitator. Some compo-

nents may be optional such as Automatic Speech Recognition (ASR), as in the case of

direct text input to the IVA. The user interacts with the IVA through some interface

which begins the processing pipeline. Following some predefined set of dependencies,

the hub will pass the user input around within the IVA to each component where

transformations or annotations are applied, logical decisions are made, or prior sta-

4Image by Chuck Wooters, used with permission
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Figure 2.2: Data flow through an IVA with a voice interface

tistical knowledge is consulted, and each result is returned the hub. Once the path

through the system arrives at an output component, the response is returned to the

user.

For example, if the user connects to the IVA through a voice interface, the hub

will direct the raw audio stream to the ASR which translates it into text. The

text will then be returned to the hub which stores the text along with any other

ASR outputs such as a confidence score. The hub then consults its routing logic to

determine which system to send the session data to next, which would typically be

the NLU. As the NLU component requires text input, the hub sends the text output

from the ASR to the NLU along with any other input data it may require such as the

conversation history thus far. The hub then receives the output of the NLU, stores

it, and passes on what is needed to the next component. This process continues

until the final component is selected, in this case the Text To Speech (TTS) engine,

which will translate the response text from the Natural Language Generation (NLG)

component into an audio response to the user. At that point the IVAs turn in the

conversation is complete and the user can choose to respond or end the conversation.

This data flow is demonstrated in Figure 2.2. At each blue arrow in the figure,
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the output data will go to the hub to be recorded into the conversation state and the

input data will be sent on to the next component. The components on the right hand

side within the dashed line could be integrated directly into the dialog management

component or exist as separate systems. Simpler IVAs may not implement all of

them, while more complex systems may have additional specialized components. For

our purposes, we are specifically interested in automatically discovering and surfacing

errors in natural language understanding. Therefore, the following section goes into

detail of the NLU and its role in a dialog system.

2.4 Natural Language Understanding

Dialog systems can be implemented in a multitude of ways, but common to all is

a component for Natural Language Understanding (NLU) or the translation of user

inputs into a semantic representation [11, 12, 13]. Regardless of the means in which

the user is interacting with the IVA (keyboard, speech, gestures, etc.), the user input

is first converted into text or a numerical feature representation and fed into the

NLU for analysis. The NLU maps user inputs, or conversational turns, to a derived

semantic representation commonly known as the user intention or simply intent. In

the context of Natural Language Processing (NLP), intent is defined by Dumoulin as

“an interpretation of a statement or question that allows one to formulate the ’best’

response to the statement” [60].

The collection syntax, semantics, and grammar rules that defines how input lan-

guage maps to an intent within the NLU is referred to as a language model. The

NLU may perform pre-processing steps such as part-of-speech tagging, stemming,

and entity identification (such as proper names or dates) before feeding the text into

the language model. Each of these parsers may be trained through machine learning

methods or manually constructed by human experts. In very simplistic IVAs em-

ploying keyword-spotting, the NLU may only consist of a set regular expressions or
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other grammars which are matched against the input text.

Recently, breakthroughs in neural networks have led to successes in what is known

as end-to-end learning. End-to-end learning may attempt to combine several of the

components in the traditional dialog system such as the internals of the ASR [61, 62],

or the NLU and dialog manager [63]; or train both understanding and language

generation in one model by showing it inputs and responses between two humans

so that the model learns how to respond to similar inputs all on it’s own [64, 65].

Alternatively, these models can be shown source texts containing facts or information

and questions about the sources. The models learn to locate the relevant text in

the source to answer the given question [66, 67]. The assumption is that if you

feed it enough examples of inputs and expected outputs, the system will learn for

itself some internal approximation of these rules of syntax, semantics, and grammar.

The process essentially teaches a virtual agent how a statistical average human (in

respect to the training data) behaves without having to formalize those behaviors,

avoiding costly feature engineering. Both manually constructed symbolic models and

end-to-end models have the same goal, but the former approaches it with humans

observing and formalizing human behavior and the latter with algorithms observing

and approximating human behavior.

Regardless of these implementation details, to improve the language models

and for quality assurance, human-computer interactions need to be continuously

reviewed. Improvements include the addition of vocabulary and new rules or the re-

vision of existing rules that led to incorrect mappings within the language model. For

end-to-end or statistically-trained models, identification of incorrect understanding

can highlight confusion within the model and prioritize areas of further training.

Another important aspect of NLU design and evaluation is the consideration of

conversational context. IVAs are typically designed as dialog systems capable of

mixed-initiative dialogs. As mentioned in Section 2.2, initiative refers to who has

control of the conversation and therefore a mixed-initiative system allows the user
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Turn Customer Travel Agent Initiative Holder
1 Do you need to check any

bags for this flight?
Agent

2 Is there a fee for more
than one?

Customer

3 The first two bags are
free.

Customer

4 In that case I will check
two bags.

Agent

5 Great. I will add two
bags to your reservation.
Would you like to choose
your seats now?

Agent

Table 2.1: An example of change in initiative

or system to take over the lead in the conversation as needed to accomplish a task.

A fabricated conversation between a travel agent (human or virtual) and a customer

demonstrating this give and take is shown in Table 2.1. The conversation begins with

a question from the agent, thereby taking the initiative. The customer responds with

a question of their own in turn 2, which then transfers the control of the conversation

to the customer. The agent responds to the customer’s question in turn 3 and then

waits for the customer to continue the conversation as they still hold the initiative.

In turn 4, the customer answers the agent’s original question from turn 1, thereby

relinquishing control of the conversation back to the agent, who then proceeds with

completing the task of booking a ticket for the customer.

This ability to give and take in a conversation adds complexity for the NLU.

As the user can at any time respond to a question with a question of their own, the

language model must include not only the language of the expected response, but also

of any potential questions that could arise around the topic at hand. Whether the

language model is trained by statistics or manually constructed, failure to anticipate

possible user questions can lead to out-of-vocabulary words and failure to determine

correct intent when deployed.
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Furthermore, even the simple exchange shown in Table 2.1 demonstrates multi-

ple issues in determination of intent. The first issue appears in turn 2, where the

customer input is ambiguous if examined outside of the context of this conversation.

There is no indication to what object the fee applies to, it is implied by the question

the agent asked. To resolve these fragmented sentences, the IVA must keep track of

what it asked the user so that it can resolve the ambiguity using the current context

of the conversation. A preprocessing step may be to insert the subject reference

directly into the user input so that the NLU processes the input as “Is there a fee

for more than one bag?” [39].

The second issue appears in turn 4, where the customer states “In that case ...”

As mentioned in Section 2.2, that in this sentence is an example of anaphora. It is the

replacement of a word or idea from the current context of interaction with a single

word [68]. If this sentence was examined outside of the context of the conversation

it would be impossible to know what the word that referred to. To resolve this, the

NLU may employ some form of anaphora resolution which will link the word that to

the concept of free baggage which was introduced earlier [69].

With these replacements and linking of concepts, the NLU has a better chance

of understanding these inputs than if it were to try and process them purely by the

content of each input alone. Therefore, as it is important that IVAs take into ac-

count the current conversational context when determining user intention, an outside

observer who is reviewing conversations between an IVA and a human user must do

the same.

While mapping conversational turns to an intent is similar to labeling documents

with a class or category, turns are typically only one or two sentences long and, as

demonstrated above, their interpretations are dependent on the conversational con-

text they appear in. Furthermore, while text documents usually belong to multiple

classes and many reliable methods exist to detect them [70], determining multiple

intentions within a single turn is still a very hard problem due to the limited text
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size. An example of a turn with multiple intentions would be “Can you tell me why

I don’t get channel 24 anymore and when my next bill is due?” Either user intention

would initiate a di↵erent path in the conversation on the part of the agent to answer,

the first a potentially deeper conversational investigation into the date and circum-

stances of the channel disappearance, and the second a query into their account on

a back end system to find the bill due date. A single intent classifier at best would

only be able to respond to one of the two intentions and leave the user to repeat

the other if they still want to address it. At worst the additional language would

add noise to the determination of either intention and confuse the IVA leading to a

completely unrelated response.

Recent attempts to detect multiple intents in a single turn see a trade-o↵ in

accuracy with single intent detection [71]. Very recent work has seen some promising

results [18], however most current intent classification research in dialog systems still

assumes single intent detection [72, 73, 74]. This is in part due to the fact that

even humans have a hard time agreeing on the presence of more than one distinct

intention within a single text [75]. Therefore, in this work, we consider the IVAs

under review to be single intent classifiers.

2.5 Existing Refinement Processes

IVAs for customer service are typically deployed in a specific language domain such

as transportation, insurance, product support, or finance [76]. In many existing

processes, semi-experts in the domain are given a sample of recent conversations

collected from a live IVA for review. The semi-experts, or reviewers as they are

hereafter referred to, need only be familiar with any domain specific terminology,

for example insurance vocabulary, to be qualified to review conversations. This

poses di�culty in the utilization of crowd-sourced platforms such as Crowdflower5

5https://www.crowdflower.com

https://www.crowdflower.com
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or Amazon’s Mechanical Turk6 as there must be some selection process applied to

the workers to ensure they have proper knowledge of the domain and associated

terminology. One strategy o↵ered by many such platforms is to create a series of tests

that workers must pass before they are allowed access to the task. Another strategy

is to mix in conversations with known labels to the batch and score reviewers on

them. Those that do poorly on the known conversations are tossed out.

The sample to be reviewed can be selected in a variety of ways. If a particular

event is important to analyze, there may be flags set on a conversation by the live IVA

indicating the event occurred. An example of such events would be if a user escalated

the conversation to a di↵erent party or the conversation was abandoned before the

initiated task was complete. A sample for review can then be created by selecting all

conversations containing a flag of interest. These samples will obviously be biased

and may miss many other important failure scenarios, so for a more holistic view of

interactions a random sample can be used. Another selection strategy mentioned in

Chapter 1 is to review the interactions where the NLU and/or ASR confidence score is

lower than some predetermined threshold. In this case, reviewers rely on the system

itself to indicate where error lies. As previously discussed in detail in Chapter 1,

while low confidence is potentially more e↵ective than a random sample at finding

poor interactions, a major purpose of review is to discover error in the system. Any

existing error in confidence calculation can e↵ect the quality of the selection process.

It also creates a dependency on the underlying system implementation that makes

it di�cult to compare the performance of di↵erent IVAs, or, if the system design is

ever modified, the same IVA over time.

Once a sample is retrieved by one of the above-mentioned means they are manu-

ally graded in an e↵ort to find intents which need improvement. If a reviewer decides

that an intent was not appropriate given the user utterance, he or she may indicate

the intent the IVA should have selected. The reviewers may assign grades per turn

6https://www.mturk.com

https://www.mturk.com
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Figure 2.3: Typical language model refinement cycle

in any form, but a star rating system such as one-to-five stars is common [77].

The result of this review process is a set of conversations along with their grades

and any suggested intent replacements which are passed to the domain experts. Do-

main experts are typically linguists or computer scientists with training in NLP

and are responsible for the construction and modification of language models. Only

poorly graded conversations require in-depth analysis by domain experts to deter-

mine the necessary changes to the language models.

This process can be visualized as in Figure 2.3. The domain experts construct

and refine the language models which are deployed into the live virtual assistant.

These assistants, which are the IVAs, then interact with human users and generate

conversation logs which are then sampled for human review. The graded conver-

sations are then given to the domain experts to make necessary adjustments to the

language model. The faster this cycle completes, the more quickly the IVA can adapt

to changes in domain language, environmental events that cause transportation in-

terruptions, or product or website changes that require additional knowledge.
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It is important to note that this refinement cycle would look the same regardless

of the implementation details of the IVA. There are multiple approaches to intent

recognition within the NLU such as in [78, 79, 80, 64, 63]. Whether the language

models are created by statistical means (e.g. Support Vector Machines or Neural

Networks) or created manually (regular expressions and grammars), there is no dif-

ference in the conversation log format. Therefore, we may ignore the implementation

details of the IVA and focus on only conversational features. This makes the system

presented herein more general and applicable to all single intent IVAs regardless of

their complexity or implementation.
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Chapter 3

Related Work

Although related to other Human Computer Interface (HCI) technologies, there are

di↵erences that prevent existing HCI methods of automated review to apply to IVAs.

While IVAs are similar to general conversational agents (known as “chat bots” or

“chatterbots”), IVAs are goal-oriented. The primary purpose of an IVA is not to be

indistinguishable from a human (the Turing test) but to help users complete tasks

by providing relevant information. Therefore, regardless of user opinion, there exist

topics that an IVA is expected not to understand, and this is by design. Business

rules dictate what an IVA should and should not know, complicating review. For this

reason, surveys, star rating systems, and other measures of user satisfaction alone

cannot determine all the errors in language models [81]. However, user ratings are

still positively correlated with task completion and goal success [81], so we do not

discount them completely. Users may rate an IVA poorly simply because it did not

allow the user to violate business rules and not due to misunderstanding of the user

intention. For example, denying the transfer of a ticket to another party or a refund

for a product are common cases where users give poor ratings in retaliation despite

the IVA understanding their intentions correctly. The IVA is bound to the business

rules it was encoded with and, unlike human agents, will not bend those rules based
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on feeling sorry for the user or wanting to improve its feedback survey results for

personal gain.

IVAs share features with Spoken Dialog Systems (SDS), one of which is a conver-

sational interface that may accept speech input from a user. Methods introducing

confidence measures in language models used by the SDS typically rely on features

present in the acoustic models, word lattice density, etc. [82, 83, 84]. Auditory

and acoustic prosodic features are also used in other works to detect error in the

SDS [85, 86, 87, 88, 89]. Although there are similarities, IVAs di↵er from Spoken

Dialog Systems in that they support other forms of interactions. For many tex-

tual IVAs deployed on business websites, speech may not be the primary channel of

communication; it may not even be an available option.

Our topic is measuring posthoc risk of missed intent in a turn for the purpose

of language model development. As such, we are only concerned with the direct

input and output of NLU; Automatic Speech Recognition (ASR) error detection and

correction are considered outside the scope of this work. Speech may not be present

in some or even all the turns of a conversation. In addition, analysis is done o✏ine,

so no ASR features are available. Thus, the aforementioned approaches are not ap-

plicable for determining misunderstood turns. In addition, textual IVAs face various

user input formatting errors, an issue not present in SDS. Spelling errors, incor-

rect punctuation, abbreviations, bad grammar, unicode symbols, foreign languages,

emoticons, slang, and Short Message Service (SMS) language are commonplace, and

IVAs must be able to handle them.

Many approaches to online detection of SDS errors use a large collection of fea-

tures collected from the ASR, prosody, dialog manager, discourse history, and the

NLU [90, 91]. However, not only do these strategies rely on acoustic features and

prosodic features, they also depend on features only found in the conversational state

of the live IVA. There is an abundance of literature focused on finding ASR errors

or SDS miscommunication errors propagated by the ASR; there is surprisingly little
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literature that focuses on the detection of understanding errors in isolation.

As for IVA specific work, a frame-based intention recognition confidence method

is proposed for correction of online misunderstanding [92]. This work is narrowly

focused on tasks within intent recognition which are modelled as frames or slot-value

pairs. These tasks generally require gathering multiple pieces of information from the

user necessary to perform an action such as booking a flight or transferring money

between di↵erent accounts [93]. The authors use discourse-related features combined

with speech recognition features to train confidence models. These models are used to

determine if a specific slot value is correct or incorrect which will suppress or trigger

a clarifying question, respectively, by the IVA. The authors also only consider slots

that have already been filled, ignoring error scenarios where a slot value, although

present in the utterance, was not detected. As the authors’ system does not consider

the general task of determining missed user intention, requires speech recognition

features, and who’s purpose is to modify the IVA’s responses live, it has little in

common with the system presented in this work.

In [94], conversations from a SDS that provides train timetable information are

collected and conversational cues are examined to determine if the user turn was mis-

understood. Although this work involved data from a SDS, no acoustic features were

used in their methods. The authors assume Clark’s principle of least collaborative

e↵ort [95, 96]; both the user and system want the dialog to be finished as e�ciently

as possible and with success. Certain combinations of cues are found to have the best

predictive potential for discovering the presence or absence of problematic conver-

sations. Cues include turn length, marked or unmarked word order (topicalization

or extraposition), confirmation, the presence or absence of an answer, corrections or

repetitions, and new information. The highest precision is achieved with a combi-

nation of correction and repetition cues on a small set of 120 dialogs; users tend to

repeat their requests and correct the system in its interpretation of these requests

when there are communication problems. However, this method assumes that all in-
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teractions are frame-based tasks and uses knowledge of the live dialog state specific

to that SDS. This constrains the usefulness of their findings in an o✏ine setting and

when no assumptions of the underlying language model are desired. In addition, the

work relied on a very small corpus in a single language domain. Still, the accuracy

of specific combined cues in finding misunderstanding (96.7%) gives hope that an ef-

fective error detection system using only text-based methods is possible. Therefore,

the cues that are broadly applicable, such as repetition and corrective language, are

incorporated into the system presented herein.

The QART system presented in [97] monitors live customer service dialogs and

provides supervisors with visualizations and summaries of ongoing chats. It employed

features in the categories of customer behavior (emotion and sentiment), conversa-

tional characteristics (deviation from typical structure, number of turns, average

delays), and organizational compliance (greeted customer, used customer name, as-

surance, etc.). When compared against human reviewers on an annotated set of 188

real-world dialogs, the system greatly outperformed the humans in the categories of

organizational compliance and conversational characteristics. It was less accurate in

emotion detection and nearly identical in sentiment detection.

The QART system does not attempt to detect misunderstanding or user inten-

tion and is monitoring human-to-human chats. However, measuring the change in

sentiment and emotion in the detection of problematic chats, as well as measuring

a conversation’s adherence to a typical structure for a given task, prove useful for

indicating misunderstanding and have been implemented in the system presented in

this work.

Perhaps the most similar work to the system we constructed is [81] where one

of the authors’ goals was to predict intent classification quality of an IVA using nu-

merous ASR, dialog, and tactile features. 60 users were asked to complete three

categories of tasks using the IVA: device control, web search, and chat. After each

task, the users were given a survey to rate their satisfaction with the IVA, the qual-
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ity of speech recognition, and the quality of intent understanding. The authors then

combined statistical analysis and classification methods to determine user satisfac-

tion, ASR quality, and intent classification quality in each category of task.

Authors in [81] compared sequences of user actions to request and response

features in discovering each class of error. It was determined that action sequences

were not as accurate in the prediction of intent classification accuracy. Even the

request and response features were only able to produce 0.59 average F1 score for

chat tasks. Features they found to be correlated to intent classification errors, such

as turn similarity and repeated responses, have been incorporated into our system

as indications of missed intent. However, there is much room for improvement. For

example, the system in [81] does not provide any guidance as to where a turn should

have been mapped. Also, the authors rely on the users themselves to determine

the intent classification accuracy which can be biased by the IVA response. In their

study, the user only sees the final response and not the direct output of the NLU (the

intention label). Poor response wording can appear to the user as a missed intent

when, in reality, the NLU component understood correctly but the NLG component

was to blame for the communication error (see Section 4.3 for discussion).

None of the systems above are an attempt to automate error discovery isolated

to the NLU language model and are designed to handle the scale of data generated

by customer service centers of multiple large corporations. However, as noted, many

features and methods used by these related systems are useful in the construction

of our system. They are included in the risk indicators defined in Section 4.4. The

following chapter investigates the structure of human communication and its subse-

quent review, and derives the approach taken to automate such a review process.
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Chapter 4

Approach

We begin to design a system for conversation review by first construing what human

communication is and how communication can take place through conversation. By

analyzing the structures and rules at play in conversation we can proceed to compiling

characteristics of mis-communication within conversation and means to detect them.

4.1 Communication through Conversation

Research in the sociological and psychological foundations of communication, includ-

ing that of Grice [98], has suggested maxims that support e↵ective human communi-

cation. A set of cooperative principles underlies how people interact with each other.

As Grice says “Make your contribution such as it is required, at the stage at which

it occurs, by the accepted purpose or direction of the talk exchange in which you

are engaged.” To support cooperative and e↵ective communication Grice proposes a

number of maxims, including:

• The requirement for Quality - Do not say what you cannot support with evi-

dence or know to be false.
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• The maxim of Quantity - Say only what is necessary to convey the required

information and no further superfluous information.

• The maxim of Relevance - Preserve during a conversation the concepts, the

context, and on the line of reasoning of a conversation.

• The maxim of Manner - Avoid obscure and ambiguous expressions; be brief,

focused, and keep to the point of the conversation.

Although these maxims were first described more than forty years ago, they re-

main especially relevant to the designers of modern conversational interfaces. Within

the context of IVAs, humans are generally not trying to be misunderstood while talk-

ing to them. A human user will have a purpose in initiating communication with

an IVA, and that purpose will drive the conversation. Following Grice’s maxims of

quantity and manner, a user should make their contribution to the conversation as

clear and concise as needed to allow the other party to understand. This notion is

commonly known as the principle of least e↵ort [95, 96]; the underlying assumption

is that both the user and system want the dialog to be finished as e�ciently as

possible and with success.

However, in practice communicants can fall short of these ideals. Clark details

three problems with this principal in [95]:

• Time pressure - Speakers do not always take the time and e↵ort needed to

produce a perfect utterance. They may introduce pauses and inject filler as

in “You know that actor <pause> what’s his name <pause> oh yeah, Tom

Hanks?”. Specifically in terms of keyboard input, humans take grammatical

shortcuts and abbreviate to save time and e↵ort at the cost of clarity, as in

“brb k?” in place of “I will be right back, okay?”.

• Errors - Speakers make mistakes and amend their phrases partway through as
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they think better of how they want to word their turn. An example, “Do you

have a room this Fri- Thursday?”.

• Ignorance - Speakers realize they do not know enough about what they are

trying to communicate to formulate a proper utterance. They may inject words

such as “you know”, “like”, or “I think” to signal their uncertainty [99, 100].

They may use a question mark at the end of a statement as a try marker [101]

to signal to the other party they are unsure of their performance. They can

also end their utterance with a request for confirmation such as “... (do you)

know what I mean?”.

In the light of these imperfections with human communication, Clark modifies the

principal of least e↵ort to the principle of least collaborative e↵ort, which is defined as

“In conversation, the participants try to minimize their collaborative e↵ort - the work

that both do from the initation of each contribution to its mutual acceptance” [95, 96].

This collaboration requires that the other party pick up on such cues from the speaker

and correct errors from time pressure or ignorance to demonstrate that understanding

on the part of the listener has occurred. However, when subjected to empirical tests

on a joint task corpus, this collaborative e↵ect was not proven [102]. Instead, the

participants appeared to work out when to spend less e↵ort by risk-taking where

communication problems have not occurred, and decrease risk-taking where problems

have occurred. The risk-taking takes the form of grammatical shortcuts, anaphora,

and abbreviations which decreases the e↵ort by the speaker, but can also decrease the

clarity to the listener. This risk-e↵ort trade-o↵, the authors theorize, better explains

the observed behaviors of participants in conversation. They name this individual

e↵ort-minimizing behavior as the principal of least individual e↵ort[102].
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4.1.1 Context in Communication

In order to achieve human emulation in Grice’s maxim of relevance, the IVA must

answer every interaction according to the current conversational context. It seems

very commonsense to say that when two humans interact they each know the con-

text of their current discussion. This context might be current government deficit

spending, quality of education in their local school system, or the probable outcome

of a current athletic event. Such shared context in conversation may be referred to as

common ground [103]. Acknowledgement and support of this common ground with

users is critical for agent interaction to ensure that the conversation stays on course.

For example, if a user booking a trip to Chicago were to question the weather in

Chicago, the virtual agent must interpret their request within the common ground

of the trip the user is currently booking. The IVA may signal that common ground

is still held with a reply like:

“The weather in Chicago will be mild and overcast on <day user will arrive>.”

By referencing the date of the user’s arrival in the response, the IVA is signaling

that it is understanding the question within the context of the trip. This is called

an implicit verification strategy [94]. The alternative, explicit verification, would be

to ask the user:

“Are you asking about the weather on <day user will arrive>?”

The explicit method requires another pair of turns to verify that the user and the

agent are both talking about the weather in Chicago on the same date. Regardless

of which method is used, some means of verification is needed to reassure the user

that the IVA still understands the conversational context.

The notions of both context and intent are important in intelligent human con-

versation. While the common ground between participants in a conversation must

be quickly established for the conversation to progress, it must also be continuously
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maintained by both parties. This continuous updating of common ground between

the participants during discourse is referred to as grounding, and is well explored by

Clark [96]. In the discussion of the previous paragraph, suppose the user’s intent is

to purchase a vacation. In the context of purchasing a ticket to a specific location,

he/she wonders what the weather in Chicago might be. Thus the virtual agent must

maintain an agenda for user intentionality (purchasing a vacation package) as well as

updating an organized set of contexts (ticket purchase to luggage allowances to over-

sized baggage costs, discuss weather information, and then back to ticket purchase)

as the conversation progresses.

Finally, we must acknowledge the issue of context slippages. It is possible that

the user goes to an IVA for the solution of a novel problem. The initial task may

appear to be well known, for example changing a flight, but the context in which

this task is occurring is unknown to the agent. For example, with the 2010 Icelandic

volcano interference in airline travel, user queries were to create new travel routes

avoiding the disruptions of the volcano. Another example would be to schedule a new

flight pattern that was not a↵ected by a current summer storm curtailing tra�c in a

particular hub city. Altering flight schedules when contexts are constantly changing

across time demands the IVA be able to pursue the users intent within the fluidity

of normal changing circumstances.

4.1.2 Misunderstanding in Conversation

To summarize, automating natural language understanding to successfully operate

under the framework of least individual e↵ort, context, common ground, context

slippages, time pressure, speech and spelling errors, and ignorance is a challenge to

say the least. Even humans can experience errors in communication when conversing

with other humans. When these errors in understanding occur and become appar-

ent to the participants, humans employ various means to correct them so that the
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conversation can continue [94, 104]. Some common corrections may be for speakers

to repeat or rephrase their previous statement or question, or to disconfirm or cor-

rect listeners understanding such as “No, not Fargo.” or “I said Chicago not Fargo.”

If mis-understanding cannot be resolved between the participants, the conversation

may be escalated to another party to resolve the communication issue or abandoned

altogether.

Even if a misunderstanding can be recovered from and the conversation completes

successfully, discovering the cause of the misunderstanding can lead to improvements

in the IVA, and therefore user experience, and more intelligent error resolution strate-

gies [105]. For example, in the following conversation, several communication errors

on the part of the IVA are apparent.

User: I can not set up my mothers email from my home computer. I

am an authorized user for her account.

Agent: Would you like to create a new Email address or set up your

existing Email address with an email program such as Outlook, Apple

Mail, etc...?

User: yes

Agent: What else can I help you with?

User: can not set up email

Agent: I have found more than one answer to your question. Please

select the link below that interests you.

User: Set Up Email

Agent: Would you like to create a new Email address or set up your

existing Email address with an email program such as Outlook, Apple

Mail, etc...?

User: set up email with an email program

Agent: To set up your Email with an Email Program select your Email

Program below.

User: Outlook and Outlook Express
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Agent: To send and receive Email with your new address you’ll need

to enter some basic information into your Email program. On the page

I have opened for you click the link for the Outlook program you are

using for specific setup instructions.

In this conversation, the IVA initially can not tell if user is trying to set up and

existing email or create a new one. When the user replies with “yes”, the IVA does

not understand what the user is referring to and replies with a generic o↵er to be

of further assistance. This leads the user to repeat their original query but in a

much clarified form, lacking the backstory and justification present in the original

query. The IVA is still unsure of the best response so it asks the user to clarify the

task, which leads it back to its original response. At this point the user very clearly

repeats their original query but with the specifics the IVA needs to understand the

task. From there on the conversation progresses again with the IVA walking the user

through the steps needed to set up and existing email account using the Outlook

mail application.

The detection of such misunderstandings can lead to improvements in the IVA’s

NLU component, and therefore improvements in its communicative abilities and the

user experience. In the following sections we discuss the discovery of specific indica-

tions of miscommunication and how they are combined into a system for automatic

conversation review.

4.2 Conversation Review

Having established the structure and means of conversation, we now turn our at-

tention to the review process and how the automation of that process can be ac-

complished. Recall from Section 2.5 there is a sampling method applied to the

conversation logs to select data for review by humans. After the review is com-
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pleted, the results are given to the domain experts to make the necessary changes

in the language model to improve the IVA’s understanding ability. This refinement

cycle, visualized in Figure 2.3, can be continuous or periodic but it must be done for

quality assurance and to adapt the IVA to changes in language and its environment.

In order to automate, or at least supplement, the work of the reviewers we must

first understand what process a human reviewer follows to determine if a particular

user turn was misunderstood by the IVA or not. This study began with multiple

interviews conducted with 15 seasoned reviewers of IVA dialogs in various domains.

In the interviews, the following questions were asked of each reviewer:

1. How do you determine if a turn was misunderstood?

2. What features of the turn do you look for in making that determination?

3. How do you incorporate the conversational context into your decision?

4. What patterns of miscommunication do you commonly see?

5. How do you discover if there is a “better” intent in the IVA knowledge base or

not for a given turn?

The results of these surveys were compiled along with a literature review of in-

dications of miscommunication to solidify concrete features to detect. As reviewing

a conversation and deciding if the user was misunderstood at any turn is a subjec-

tive task, we looked for common patterns in reasoning that could be formalized into

classification tasks. Next, each feature was considered in isolation as a possible indi-

cation of miscommunication, hereafter referred to as a risk indicator. For each turn

in each conversation under review, the proposed system will annotate the value of

each risk indicator. This allows one to measure the utility of di↵erent conversational

features in discovering IVA misunderstandings. Some risk indicators will have a

stronger correlation to missed intent than others; thus, these indicators are weighed.
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Conversation Turn A Present B Present C Present Risk Score
1 1 0 1 0 0.5
1 2 1 0 0 0.2
1 3 1 1 1 0.8
2 1 1 1 0 0.7
2 2 0 1 1 0.6
2 3 0 0 0 0.0

Table 4.2: An example of a simple risk score calculation using three risk indicators.
Feature A has the weight of 0.2, B the weight 0.5, and C the weight 0.1.

A risk ranking system is created by aggregating these weighed risk indications into

a single score similar to the methods used for database similarity search [106] and

web search rankings [107, 108, 109]. This risk score, derived from all risk indicators

present in the turn, can then be taken as the risk of missed intent for a single turn in

a conversation under review. The system uses this per-turn risk score to determine if

the appropriate intent was selected and also provide guidance to the domain experts.

For example, suppose we had three risk indicators: A, B, and C, and trained

three binary classifiers (one for each indicator) that returned 1 if they were present

in the given turn. Then suppose we assigned weights to each indicator based on prior

correlation to missed intent. We could start with a very simple aggregation scheme

that takes the weighted sum of the risk indicators present as the risk score. Table 4.2

demonstrates the calculation of the risk score for each of three turns in two di↵erent

conversations by a weighted sum. If human reviewers only had time to look at two

turns in this example, we would show them turn 3 of conversation 1 first, followed by

turn 1 of conversation 2. By this risk ordering, we use their limited time to inspect

the turns most likely to be misunderstood.

For training of the system, we would release the complete conversations, instead

of just the top risky turns, to reviewers who would judge whether or not each turn

was misunderstood. Using the human labels, we could go back and adjust the weights

of each risk indicator or modify the aggregation scheme to maximize the risk score
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Figure 4.1: The main components of the CRS

for those turns labeled by reviewers as misunderstood.

The specific risk indicators are introduced in section 4.4 and the implementation

details of methods to detect each one are covered in Chapter 6. Several means of

aggregating these risk indicators are compared in Chapter 11. This ranking and

analysis system will be hereafter referred to as the Chat Review System (CRS). The

following CRS design and evaluation using a subset of proposed risk indicators was

published in [110].

4.3 The Chat Review System

The CRS is designed with three primary functions, visualized in Figure 4.1. The

first is detecting features of missed intent and aggregating these features into a risk

score, which is the primary focus of this work. This functionality is implemented in

the risk analysis engine.
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The web application provides interfaces for two primary types of users. The first

type of users are the semi-experts, or human reviewers. Their work flow involves

logging into a project (a collection of conversations from a live IVA) and reviewing

turns that have been prioritized for them by the CRS. The second type of users are

the domain experts who create projects (linked to a live IVA) and select a time range

over which to do analysis. In practice, this time range may be the last week or month,

but commonly it is the period of time since the last language model deployment to

the live IVA. Once they have defined a project and a time range for review, the CRS

prioritizes the conversations and turns within that range by risk score. The reviewers

then look at the most risky turns for the number they have been assigned to review.

They read the turn in the context of the conversation and vote on whether or not

they agree with the intent label chosen by the NLU in the live IVA. If a reviewer does

not feel they have enough information or domain knowledge to decide, they may also

vote ”unsure”.

It is important to note here that by design the reviewers do not see the IVA’s

response text for the given user turn. They only see the user turn and the selected

intent in context of the conversation as shown in Table 4.3. This is to decouple errors

in the intent recognition phase from errors in the response generation phase. Recall

from Section 2.3 that response generation is performed in the Natural Language

Generation (NLG) component after the user intent has been selected by the Natural

Language Understanding (NLU) component. Therefore, reviewers can be misled by

poor response selection or wording into thinking that the IVA misunderstood the

user, when, in fact, it understood correctly but did not respond appropriately. This

decoupling is very important to narrow down where errors are introduced in the

IVA’s ability to communicate. In large IVAs it is possible that the NLU and NLG

are maintained by di↵erent people or altogether di↵erent departments or roles. With

commercial IVAs, response text may have to go through an approval process and even

a legal review to ensure that the information the IVA is giving the user is accurate
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User Turn Intent Hit Correct Intent Conversation # Entry #
My TV is not working I
need to have it fixed.

TV Support TV Support 26789 1

My TV will not start I
want to talk with support
sta↵

Contact Information
Deflection

Live Chat 26789 2

I cannot get my tv to work TV Support TV Support 26789 3
How can I get a person
to help me get the TV
started?

TV Services Live Chat 26789 4

How can I speak with a
support sta↵ to get my TV
to work?

TV Support Live Chat 26789 5

There are no links showing
my problem what now?

Do Not Understand Virtual Assistant
Not Helpful

26789 6

Table 4.3: A conversation with missed intents in turns 2, 4, 5, and 6.

and legal. Therefore, it is critical that errors in the NLU be separated from errors

in the NLG so that the appropriate corrections can be identified.

When the voting is complete, domain experts are presented with the voting results

and system recommendations as detailed later in section 5.1.3. Using these results

they can make the necessary changes to the language model, deploy a new version

to the live IVA, and repeat the review cycle once more conversations are gathered.

4.4 Indications of Missed Intent

Table 4.3 displays a conversation with a live IVA in the telecommunications domain.

Although the IVA selected correct intents in Entry 1 and 3, the user was not satisfied

and continued to restate his or her issue. This can occur when the response text is

poorly worded or incomplete, pointing to an error in the NLG component that should

be investigated. It could also indicate the user is not stating his or her true intent

with enough detail to get a satisfactory response.

An “I Don’t Know” (IDK) occurs when the language model does not find an

intent that satisfies the user query with a high enough confidence. The IVA may

respond with something like “I’m sorry I don’t understand you. Please revise your



Chapter 4. Approach 43

question.” Such an intent is occurred in Entry 6 of Table 4.3. Either the correct

intent does not exist in the IVA’s knowledge base or it does exist and the mapping

to that intent is faulty. However, with the former, sometimes an IDK is appropriate.

For example, the user could ask something o↵-topic such as what the IVA’s favorite

sports team is. Utterances triggering acceptable IDK responses are classified as out-

of-domain and out-of-application-scope utterances in [105, 111]. Therefore not every

IDK response is a missed intent. IDKs must be weighed and combined with other

indications of risk into an overall risk score for the turns they occur in.

In order to generate the risk of missed intent for each turn-intent pair, the CRS

incorporates indicators of risk listed in the following section. Additional indicators

not listed here may be explored in future work. The implementation of means to

detect each feature is described at length in Chapter 6.

4.4.1 Conversation Level Features

The following features apply risk equally across all turns within the single conver-

sation where they are present. These features are used to detect miscommunication

over the course of the conversation and elevate the risk score for turns in conversa-

tions where miscommunication was likely to have occurred.

idk in conv If a conversation contains one or more IDK responses, this

may indicate that the user is talking about some subject

the IVA has no knowledge of.
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multi in conv The same intent is hit multiple times within the conver-

sation (not necessarily successively). This is an indication

of risk within a customer service conversation because it

is unlikely the user would want to see the same response

more than once. Examples of this include Entries 1, 3, and

5 of Table 4.3.

seq in conv If the same intent responds successively in a conversation

they are considered to be sequential hits. This usually in-

dicates that the response to the first input did not satisfy

the user; he or she is rewording the question to get a dif-

ferent response. If the system has the initiative, this may

mean that the system is repeating a prompt, a common

indication of miscommunication [104].

tie in conv The responding class for one or more turns in the conver-

sations had a nearly identical score as one or more di↵erent

class(es). This indicates confusion in the model around the

input language for the tying classes. If a conversation con-

tains such ties it may surface subject matter that is not

well defined or the IVA needs additional training in.
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conv rating In some cases, users are asked for feedback on how helpful

the IVA was for their session. This feedback can be used

as a measure of risk. Feedback is not entirely reliable,

however, as the user can give negative feedback if the IVA

did not allow the user to do something he or she wanted.

For example, business rules may not allow transferring a

ticket to a di↵erent passenger and when a user attempts

to do so the IVA will not let them. In retribution the user

grades the conversation poorly, but this should not reflect

negatively on the conversational ability of the IVA. The

user may also say the IVA was unhelpful when the NLU

was indeed working correctly, but the response text was

poorly worded.

conv should esc Whether or not there was explicit user request for an es-

calation in the conversation, an algorithm (see Chapter 7)

has determined that the conversation should have been es-

calated due to IVA failures to complete the task at hand.

sent change The user began the conversation with positive or neutral

sentiment, but by the end of the conversation their senti-

ment was negative. This may be caused by either the IVA

preventing them from completing a task due to business

rules, or due to IVA misunderstanding.
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4.4.2 Turn Level Features

The following features only apply risk to a single turn. However, they may still use

features of the conversational context in their determination.

triggers idk If the response to this turn is an IDK, this may indicate

that the user is talking about a subject the IVA does not

have knowledge of.

user rating In some cases, users are asked for feedback on individual

IVA responses. This feedback can be used as a measure of

risk. Feedback is not entirely reliable, however, as the user

can give negative feedback if the IVA informs the user that

he or she is not allowed to do something as explained in

conv rating. The user may also say the IVA was unhelp-

ful when the NLU was indeed working correctly, but the

response text was poorly worded.

backstory Users may give backstory on their task that is unnecessary

for determining the correct intent. The presence of this

language can add confusion in the NLU and result in a

missed intent [75]. This is more prevalent when users do

not realize they are conversing with an IVA. For example, a

user may tell the IVA that he or she needs to fly to Boston

for a son’s graduation party. The fact that the user has

a son and is attending his graduation party is irrelevant

to the task. The additional language can interfere with

determining the user’s primary task of booking a flight.

See Chapter 8 for a full discussion.
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precedes corr There is presence of user error correction language, such as

”no, ..”, “I said ..”, “.. not what I ..” [112, 113].

abandonment The user left the conversation immediately after the IVA

asked them a question. This indicates that the IVA did not

have all the information it needed to complete the task,

but the user abandonment indicates it was likely trying to

accomplish the wrong task.

multi intent As we assume the IVA under review does not support mul-

tiple intents within a single turn, if multiple intents were

indeed present it can add confusion to the NLU. Using a

method such as [18] we can detect if multiple intents are

present and add risk if so.

triggers seq Occurs when the turn hits the same intent as the previous

turn. This usually indicates that the previous response did

not satisfy the user, so he or she is rewording the question

to get a di↵erent response but failed to do so.

triggers impasse When the same intent is returned more than two times in

a row, the IVA will trigger an impasse. The impasse intent

may cause the IVA to respond with something like “I think

you are asking for more information than I have. Please

contact customer service for more information.”



Chapter 4. Approach 48

precedes esc An escalation occurs when a user requests an alternative

channel for the completion of a task [114]. As this may be

due to IVA failures, risk is assigned to the turn preceding

the escalation request. Entries 2, 4, and 5 of Table 4.3 are

examples of escalation requests.

precedes unhelpful The input directly preceded a turn stating the unhelpful-

ness of the IVA. This is a common reaction when the user

is frustrated at the inability to make progress in their task.

precedes profanity The input directly preceded an interaction containing pro-

fanity. In a customer service domain, profanity is usually

a sign of user frustration or irritation.

precedes neg If a turn contains negative sentiment, this may be due to

the user’s reaction to the previous IVA response. There-

fore, risk is assigned to the preceding user turn.

restated If a turn is very similar to one or more following turns,

risk is assigned to it as this may indicate the user was

dissatisfied with the response and rewords the question.

Similarity is defined as a rephrasing of the same question

or statement; it may not have triggered the same intent in

the IVA [113].
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precedes idk It has been observed that IDKs may follow misunderstood

turns, as in line 5 of Table 4.3. This IDK can happen

when the user reacts in surprise or frustration (“What??”)

or changes the subject to complaining about the IVA due

to the misunderstanding (“This is the dumbest thing I have

ever used!”).

external clf An external classifier disagrees with the intent selected by

the NLU. See section 4.4.3 for detailed explanation.

pni origin An external classifier mapped this turn to a di↵erent in-

tent with high confidence. See section 5.1.2 for detailed

explanation.

triggers tie The responding class had a nearly identical score as one

or more di↵erent class(es). This indicates confusion in the

model around the input language.

unknown words The user turn contains words that are Out of Vocabulary

(OoV) for the underlying language model. This may indi-

cate that the user is talking about some subject the IVA

does not have knowledge of.

should esc point There was no explicit user request for an escalation in the

conversation, but an algorithm (see Section 7.8.3) has de-

termined that the conversation should have escalated at

this point in the conversation.
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response class This user turn follows a combination of IVA response media

known to lead to higher incidence of dissatisfaction on the

part of the user. This indicator decreases the risk of missed

intent on the current user turn as any indicators of missed

intent on the current turn may actually be due to the user

misunderstanding the IVA. See Section 9.8 for detail.

response complexity This user turn follows a IVA response text complexity fea-

ture known to lead to higher incidence of dissatisfaction

on the part of the user. This indicator decreases the risk

of missed intent on the current user turn as any indicators

of missed intent on the current turn may actually be due

to the user misunderstanding the IVA. See Section 9.8 for

detail.

4.4.3 External Classifiers

As mentioned in the previous section, the external clf and pni origin risk indica-

tors use external classifiers in their determination. In this section we will discuss the

training and application of these classifiers.

Recall from Section 2.4 that the language model within the NLU is a multi-class

classifier that takes in some textual representation of the user input and outputs a

class label which represents the user intent. It may be implemented as a statistical

model, neural network, a symbolic model, even as simple as a set of prioritized regular

expressions. These specifics define the NLU’s implementation.
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If the NLU is implemented as some machine learned model, then there must exist

a set of labeled training data originally used to construct the deployed language

model. If it is a symbolic model of some kind, there will be some set of regression

texts used when constructing and testing the quality of the patterns or grammars.

In either case, there will be an existing means to collect labeled data for the intent

classes known to the language model.

To determine if error is inherent in the NLU’s specific implementation, the CRS

builds one or more additional intent classification models, which are trained on the

same data used to build the live IVA’s language model. Given the intent classifiers in

the NLU and the CRS have seen the same training samples, any disagreement in the

highest ranked intent between a CRS classifier and the NLU is an indicator of risk.

The CRS runs each user turn through each of its classifiers and compares the highest

ranked intent to the intent originally selected by the IVA’s language model. Any

supervised learning method that supports multi-class classification may be employed

for this comparison provided it is di↵erent from the one used within the NLU. If

they were trained using the same method, there would never be any disagreement

between the CRS and NLU, assuming the same training data and hyper parameter

settings.

For example, if the live IVA uses a Maximum Entropy model (MaxEnt) in its NLU

implementation, the CRS may train a Support Vector Machine (SVM) and a Decision

Tree (DT) on the same data the original MaxEnt model was trained on. The CRS

then feeds a user turn through both the SVM and DT and compares the outputs and

confidence to the original output of the MaxEnt from the live IVA. If the SVM selects

a di↵erent intent from MaxEnt as the “correct” intent with reasonable confidence,

the CRS will assign risk to that turn, labeled as external clf. If, however, the DT

agrees with the MaxEnt, no external clf risk will be assigned from the DT. In other

words, every comparative classification method used is treated as an independent risk

indicator. Over time the CRS learns which comparative classification methods are
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less accurate by using human reviewer feedback, and will assign their disagreement

smaller weight. Historically accurate methods will carry higher weight over time.

4.4.4 Combining Features into a Risk Score

Once the CRS has annotated each turn with all applicable risk indicators, the risk

score for a particular turn is calculated as follows. Let T be the set consisting

of all user turns analyzed by the CRS. Every turn t 2 T is assigned a list Nt of

risk indicators. A risk indicator is an element of Nt if and only if the indicator is

determined to be present in that turn by the CRS. Note that the same risk indicator

may be present multiple times in Nt as determined by the CRS.

Every instance n of a risk indicator in the list Nt will be assigned a weight

0  wn  1 and applied to the turn-intent pair. Weights are initialized to 0.5 and

tuned over time as described in section 5.2.1. The risk score for turn t, known as zt,

is defined as the sum of these weights:

zt =
|Nt|X

n=1

wn (4.1)

Consider the following example. Say a turn t was restated two times in the con-

versation, contained backstory, and was immediately followed by a turn containing

negative sentiment. Turn t would have the following list of indicators:

Nt = [restated, restated, backstory, precedes neg]

Assume that after tuning, we derived the following weights for the risk indicators

involved:

restated 0.8

backstory 0.6

precedes neg 0.2

Our risk score for turn t would be: zt = 0.8 + 0.8 + 0.6 + 0.2 = 2.4.
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Risk indicators may appear more than once; there is no upper bound for zt. In

order to fairly compare the risk scores between di↵erent turn-response pairs, the

risk scores are normalized across T as follows. Let MaxScore be the maximum zt

observed in T . The normalized turn risk score is defined by:

z0t =
zt

MaxScore
(4.2)

z0t can be considered a turn’s measure of risk relative to the riskiest turn in the

dataset. Continuing the example from above, if zt = 2.4 and the MaxScore of T

was 24, the final risk score for that turn would be z0t = 2.4 ÷ 24 = 0.1. Henceforth,

the risk score assigned to a turn will be normalized.

This risk analysis process and a subset of the features presented in Section 4.4 was

prototyped and its performance at surfacing missed intents was evaluated in [110].

This completes the risk analysis process within the CRS. Next, we discuss the

application of the CRS to the review cycle, and cover the use of the risk scores in

the voter and analysis interfaces.
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Chapter 5

Application

At this point we have covered the individual risk indicators and how they are com-

bined into a singular score, z0t, representing a turn’s risk of missed intent relative to

the riskiest turn in the conversation logs. We now cover the application of the CRS

to a live IVA environment to improve human productivity within the conversation

review cycle.

5.1 Augmenting the Existing Refinement Cycle

The CRS initially augments the review cycle by preprocessing the entire chat history

from an IVA and prioritizing turns and conversations for the reviewers. It ranks

turns by z0t, the normalized risk of missed intent defined in equation 4.2. In this

configuration the CRS makes no decisions on its own, it is functioning as a ranking

engine for turns to be reviewed while collecting human decisions from the reviewers

used to tune the weights of each risk indicator.

When first deploying the CRS or introducing a new language domain, the risk

indicator weights may require tuning. While some risk indicators may carry similar
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Figure 5.1: Augmented Language Model Refinement Cycle

weight regardless of language domain, others, such as external clf, may vary widely

between domains. Therefore, tuning is performed on the weights using labels from the

human reviewers. The CRS can be initially incorporated into the existing refinement

cycle as shown in Figure 5.1. Compare this process to the initial process shown in

Figure 2.3.

5.1.1 Voting in place of grading

In place of grading, reviewers vote on if a given turn was assigned to the optimal

intent. Empirical results have shown that decision time increases with the size of the

choice set [115]. Therefore, this minor change provides a cognitive speed-up as the

review task is reduced to agreeing or disagreeing with the classification, instead of

placing it on a scale of quality.

A voting interface is implemented as part of the CRS. To mitigate the subjective

nature of review, every turn is shown to a minimum of three reviewers. The majority
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Figure 5.2: CRS Voting Interface

vote is then calculated and used as the truth value on the recommendations made

to the domain experts.

The voting interface shows reviewers the turn and the intent selected by the live

IVA and presents them with Yes, No, and Unsure buttons. The reviewer clicks on

the button that reflects his or her opinion on whether the selected intent was correct

given the user utterance. If the reviewers cannot decide, either because the user

utterance is ambiguous or because they don’t feel they understand the true purpose

of the intent, they can vote Unsure. To further optimize the interface, keyboard

shortcuts can be defined for the three options.
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A screen shot of this interface is shown in figure 5.2. In the left-hand column

the intent the reviewer is currently voting on is displayed along with additional

information to give some insight into its purpose. The label of the intent is displayed

at the top, followed by a text description of its purpose, which is maintained by the

domain experts. If the reviewers do not fully understand the purpose of an intent,

they can submit questions to the domain experts by clicking on the comment bubble

below the description text. The experts can then update the description to clarify

the purpose of the intent so that voting is accurate.

Next, a set of sample questions that have been previously human-validated to

belong to this intent are displayed. This is to give the reviewer some intuition on the

type of language captured by the current intent. Following this list is a list of related

intents to help the reviewer decide if a more suitable intent exists in the language

model. Finally controls to navigate through the intents to be reviewed and, at the

bottom, metrics on how many turns have been completed by the current reviewer

and all reviewers combined on the displayed intent are shown.

On the right-hand side the user turn is shown followed by voting buttons. Under-

neath the voting buttons, the entire conversation with the current turn highlighted

is displayed to give the reviewer the conversational context needed to determine if

the responding intent was appropriate.

Reviewers are presented with the riskiest (highest z0t value) turns first. After

review, only interactions exposing problems in the language model are given to the

domain experts for analysis. Therefore, any amount of time spent on reviewing

turns that were correctly classified by the IVA is a waste of human e↵ort. In the

design phase, we theorized that having reviewers vote on the top N riskiest turns

instead of a random selection of size N makes their work more e�cient as what

they are reviewing will more likely contain a NLU error. We tested this hypothesis

in a prototype version of the CRS and found that it did in fact greatly reduce the

number of correctly classified inputs that humans saw during review. The results
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of this experiment was published in [110]. This hypothesis is further validated in

the body of this work through our experiments on multiple language domains in

Chapter 11.

Notice that nowhere does the actual response text from the IVA appear. This

is to intentionally separate the evaluation of the natural language understanding

(NLU) component from that of the natural language generation (NLG) component.

As previously discussed in Section 4.3, poor response wording can be mistaken for

a problem with the NLU, when in fact the problem was in the NLG. Recall that

in this work we are primarily interested in the evaluation and improvement of the

language model, therefore this isolation is necessary. Once it has been established

that the NLU is performing acceptably, the NLG can be evaluated separately which

is outside of the scope of the CRS.

5.1.2 Suggesting an Alternative Intent

The comparative classifiers described in 4.4.3 provide a second important function.

As outlined in Section 2.5, human reviewers or domain experts need to suggest alter-

native intents when disagreeing with the IVA. These alternatives are then analyzed

by the domain experts in combination with the intent chosen by the IVA to determine

why the language model mapped the user turn there instead of the correct intent.

When they discover the cause of the error, they can repair the language model and

deploy it to the IVA.

This alternative intent selection process on top of the review process is time

consuming for humans. When disagreement with the IVA is found, humans must

search through the set of existing intents and decide which intent the turn should have

matched. As a means to automate the selection process, the comparative classifiers

themselves can provide these alternatives, which are then validated by the reviewers

through the voting interface. In this manner, the search process for an alternative
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Figure 5.3: The process of generating an alternative intent, known as a Potential
New Intent (PNI), and its validation

intent is automated, and humans are only required to vote on if they agree with the

alternative choice. If the comparative classifier was proven to be trustworthy through

empirical testing (see Section 11.2), this voting step could also be eliminated and the

domain experts would receive the alternative directly.

For example, if a comparative classifier selects with high confidence intent B as

the correct intent for a turn that originally hit intent A in the live IVA, the CRS will

generate the (turn, B) pair for the reviewers to vote on in addition to the original

(turn, A). Classifier-generated suggestions are referred to as Potential New Intents

(PNIs). The voting outcome of a PNI is compared to that of the original intent,

and, if reviewers agree, is used to recommend an action to the domain experts. If

voters agree with (turn, B) but not the original (turn, A), the CRS will recommend

that domain experts make the changes needed to the language model so that the

turn maps instead to B. If voters disagree with the PNI, then it is discarded from
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the suggestions but still may be used as additional training data to correct the

classifier(s) suggesting it. If the reviewers happen to agree on both (turn, B) and

(turn, A) these conflicts are raised to the domain experts as confusion around the

purpose of the intents A and B. They can then clarify the definitions of A and B then

re-release the conflicting turns for voting. This example is visualized in Figure 5.3.

PNIs are used as an additional indicator of missed intent. If a turn was assigned

to a di↵erent intent through a PNI, the pni origin risk indicator is assigned to

the original turn-intent pair from the IVA. Following the previous example, if a

large number of turns originally mapped to intent A are tagged with a pni origin

indicator, meaning comparative classifiers selected intents other than A with high

confidence, this suggests that within the language model intent A is consuming more

language than it should and needs investigation. If, on the other hand, intent B

has a large number of PNIs assigned to it, the intent may be rejecting appropriate

language or is redundant and also needs investigation. Each PNI will be given the

risk indicator external clf in addition to the others generated by the original turn.

5.1.3 Recommended Actions

After the risk analysis and voting processes are complete, the CRS provides voting

data and additional recommendations to the domain experts to facilitate language

model development. To optimize domain experts’ time, the CRS uses the reviewer

voting outcomes to determine a recommended action per turn, shown in Table 5.1.

These actions help the domain experts quickly determine what to do with the voting

results for a particular turn.

Suppose a turn had three reviewers vote on it. One voter agreed with the intent,

one disagreed, and one was unsure. In this scenario, since there was no consensus be-

tween the reviewers the CRS will recommend that the domain expert conduct further

analysis on the intent to make the final determination if the intent was appropriate,
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Circumstance Recommended Action
A turn-to-intent map is voted
to be correct

None. Note that these can be optionally
hidden from the domain experts as they
require no action.

A turn-to-intent map is voted
to be incorrect

Fix the mapping to prevent the turn from
reaching the associated intent.

The reviewer majority votes
Not Sure

Determine if the intent was appropriate
for the turn or if a new intent should be
created.

There is no reviewer consen-
sus

Determine if the intent was appropriate
for the turn or if a new intent should be
created.

A PNI is voted to belong to
the suggested intent

Fix the mapping to allow the turn to reach
the suggested intent.

Table 5.1: Voting outcomes and recommended actions

or determine if the intent description in the voting interface needs clarification, or if

an entirely new intent should be created to address a new language topic.

As a further example, suppose a turn is classified as intent A in the IVA, and the

CRS generated PNI (turn, B) which was voted on to be the correct intent as shown

in Figure 5.3. In this scenario, the CRS will recommended that the domain expert

investigate the language model to determine the cause of intent A being selected

over intent B. These recommendations are given to speed the original refinement

process in Figure 2.3 where domain experts must look over all of the graded chats

and determine for themselves what action, if any, is needed in each case.

The set of turns, associated voting outcomes, and recommended actions are first

grouped by responding intent and then ordered by the evidence of error per intent.

The evidence of error may be the percentage of risky turns assigned to the intent

out of the total number of risky turns present in the conversation logs. They can

be further normalized by the frequency of response within the conversation logs to

prioritize work based on the impact it will have on the live IVA. A screen shot of

this prioritization from the analysis interface in the CRS is shown in Figure 5.4. By
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Figure 5.4: Prioritizing language model repair work by graphing the ratio of risky to
non-risky inputs per intent in the live IVA. The red bar is the count of risky inputs
assigned to that intent. The grey bar is the count of non-risky inputs.

looking at this chart, domain experts can quickly determine which intents have a

greater impact on user experience by their popularity. If two intents have a similar

ratio of risky to non-risky inputs, the intent with the higher response frequency would

be prioritized for repair as its malfunction will have a larger impact on overall user

experience.

These results presented to the domain experts are referred to as the voted order in

Figure 5.1. By this prioritized ordering, the domain experts can focus their attention

to the intents with the greatest need of correction first.

In addition, through recommended actions provided by the CRS, the domain

experts can make more informed decision than in the existing process of Figure 2.3.

Hiding the turns with correct mappings (see Table 5.1, row 1) means the domain

experts have less data to look through which saves valuable time.

Figure 5.5 shows a screen shot from another analysis view within the CRS. This

view allows the experts to quickly analyze the voting results and voter consensus. The

filters at the top provide the ability to explore the results from many angles such as
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Figure 5.5: Analysis interface within the CRS

per intent, per voter, date range, recommended action, etc. In the left hand column

the original user turn text is displayed. In the next column is the intent that the

reviewers evaluated the text against. The “Input Type” column shows whether the

intent evaluated was from the live IVA or a PNI from within the CRS. The “Voting

Results” column provides a visual indicator of the voting outcome and inter-reviewer

agreement. The final column on the right hand side is the CRS recommended action

from table 5.1. Notice that in the third row from the bottom the Action column reads

“Analyze: Conflicting Outcome”. This category means that voters agreed with both

the original intent and an intent suggested by a classifier (a PNI). Filtering this table

by that action type will quickly surface all examples where such a conflict occurred.

From this view the domain experts can quickly find areas of the language model

that need attention and export the text data with risk indicators and voting results

to use in down stream processing tasks needed to make the necessary changes in the

language model.
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5.2 Automating the Existing Refinement Cycle

The CRS can be positioned to reduce or remove the dependence on the human

reviewers in the refinement process. As conversations are reviewed, the weights for

the di↵erent risk indicators are continually tuned to reflect their correlation to vote

outcome. In addition to adjusting the risk indicator weights, the CRS continuously

trains a voting classifier model using the output of the risk indicators as a feature

vector. This model predicts the human majority vote for a given user turn.

For example, if voters agreed that turn t belongs to the intent assigned by the

IVA, the outcome is 1. If they disagree, the outcome is 0. Then for each turn with

a voter consensus we can add a row to a feature matrix M , with a column for each

risk indicator and a final column for the outcome.

M =

0

BBBBB@

backstory multi intent restated outcome

t1 0 0 1 · · · 1

t2 1 1 0 · · · 0
...

...
...

...
. . .

...

tn 0 0 0 · · · 1

1

CCCCCA

This feature matrix M is then passed to a classifier training function to produce

a binary classification model. When a new turn is under review, the risk indicators

present are represented as a feature vector and fed to the voting classifier to predict

the majority vote of Yes or No. As humans continue to vote, M is increased and

the voting model is retrained. In Section 11.5, several classification methods are

compared to human performance in predicting the majority vote.

Using this prediction model, the CRS can vote on each turn-intent pair alongside

or in place of the human reviewers as shown in figure 5.6. In this configuration the

domain experts are given votes and recommended actions as in figure 5.1, but the

votes now originate from the CRS instead of human reviewers. The human reviewers

can at any time provide reinforcement by voting, which adds training samples to M ,
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Figure 5.6: Automated Language Model Refinement Cycle

to ensure the CRS is continuing to preform optimally. Nothing in the design of

the CRS will prevent the refinement process from being reverted to figure 5.1 if

the system is performing sub-optimally. As the CRS will always vote on all of the

conversations as if it were a human voter, the domain experts can choose to accept

its vote or to release a subset of the data to human reviewers for any intent.

5.2.1 Active Learning

Recall that the continuous training of classifiers within the CRS is performed using

the human votes as the labels for training samples. Also recall from Section 5.1.1

that the human reviewers are presented with turns for review ranked by their risk

score. This risk score is the weighted combination of individual risk indicators, and

the weights are tuned by the human voting. Therefore, the learner itself has a role

in selecting its own training data from a pool of unlabeled samples. This iterative

supervised learning cycle where the learner selects its own training data is known as
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Figure 5.7: The pool-based active learning cycle

active learning.

The active learning hypothesis states that a system will perform better with less

training if it is allowed to select the data it learns from [116]. In this framework the

learner requests labels for selected instances it chooses based on some query strategy.

Labels are given to the selected instances by an oracle, or group of human reviewers

in the case of the CRS, which are simply added back into the training data for the

learner. The learner is retrained using the additional samples completing the active

learning cycle. This cycle continues as the learner is always free to choose additional

training samples from the unlabeled set, if needed.

There are several sampling strategies for active learning, but as the set of con-

versations to be reviewed is static at the time of risk analysis, the CRS employs a

pool-based sampling strategy. In pool-based sampling the entire set of unlabeled

instances are first evaluated and ranked, and the set of training samples are then

selected based on the ranking [117]. In the case of the CRS, the per instance evalua-

tion is the determination of risk indicators per turn in combination with the output

of the comparative and voting classifiers.



Chapter 5. Application 67

Figure 5.8: Flow of human-reviewed turns

Once turns are selected for human review and voted on, the results are used by

the system in two primary ways, as shown in figure 5.8. First, turns with a majority

vote are used to adjust the weight of individual risk indicators for the risk evaluation

phase. Initially, risk indicators all have equal weight. High risk turns that were

voted as not misunderstood will reduce weights for the present risk indicators. High

risk turns that were, in fact, misunderstood increase the weight of the risk indicators

present in that turn. Over time, these adjustments expose the indicators with the

highest correlation to misunderstood turns. The implementation and results of this

iterative weighting are discussed later in Chapter 11.

Secondly, turns with a majority vote are added as training samples for the classi-

fier used for system voting previously described in Section 5.2. The updated classifier

will then be used to provide voting data and recommended actions on the remaining

inputs not voted on by human reviewers, as well as be used in the selection of turns

to be voted on in combination with the risk score.

It is important to remember that the CRS presents the voting results and rec-
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ommendations to the domain experts in the same format and interface regardless if

the voter was human or machine. Therefore, the domain experts can continuously

choose the source of their analysis data based on current system performance in a

particular language domain or human reviewer availability.

We have now completed our discussion of how the CRS is applied to the conversa-

tion review cycle, and the di↵erent ways it provides insight to the domain experts. In

the next chapter we cover the implementation details of the CRS and the motivations

behind its architecture decisions.
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Chapter 6

Implementation

In this chapter, we discuss the system architecture of the Chat Review System (CRS)

and the motivations behind the design decisions. The CRS is designed as a web ap-

plication for several reasons. The first is that it deals with large volumes of data

that is di�cult to store on a single desktop. The second is that the risk analysis

component is an extensible collection of algorithms which, if designed as a native

desktop application, would require substantial processing power. Web applications

are particularly well suited to transparently o✏oad distributed processing and man-

age large volumes of simultaneous users [118]. A third and important factor was

that, as a web application, voting can be performed by anyone with an Internet con-

nection. If domain experts wish to leverage a crowd source platform such as Amazon

Mechanical Turk1 or Crowdflower2 to hire reviewers, they can simply provide remote

workers with a URL to the application and allow them access to the specific data to

be reviewed. This keeps the data within the CRS and prevents unauthorized access

through local storage on devices outside of the control of the domain experts.

1https://www.mturk.com
2https://www.crowdflower.com

https://www.mturk.com
https://www.crowdflower.com
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6.1 Components of the CRS

Given the web application architecture, the CRS is designed scalable system com-

prised of four primary components. The first is the web sever which serves a standard

HTML5/CSS3/JavaScript user interface. The interface is divided into two primary

views, one for domain experts to select data for review and to analyze the voting re-

sults, and the other for reviewers to vote on selected turns. This application interface

is implemented using the Django3 web framework.

The second component is where data intensive, periodic, or long running tasks

are executed. This could be tasks such as generating a spreadsheet export of voting

results, recalculating voter performance metrics, or optimizing the risk indicator

weights. These tasks are managed by a Celery4 process pool which decouples it from

the web service layer so that it does not introduce latency due to resource contention.

The bulk of the data processing in the risk analysis process is submitted to a

Grid Engine5 High Performance Computing (HPC) cluster. Similar HPC engines

such as SLURM6, HTCondor7, or TORQUE8 can be used interchangeably for this

component. As conversation logs are imported into the CRS from the live IVA,

they are partitioned into jobs across the HPC cluster which annotates them with

any present risk indicators and performs various classification tasks such as applying

the comparative classifiers and voting classifier. HPC clusters are designed to scale

horizontally and provide a central interface to run arbitrary, mixed-platform jobs

across entire organizations or companies[119]. For this reason they are a good choice

to deploy applications that require a mixed workload as their scheduling engine can

make the best use of the currently available resources in the cluster to ensure that

3https://www.djangoproject.com
4http://docs.celeryq.org
5http://www.univa.com
6https://slurm.schedmd.com/
7http://htcondor.org
8http://www.adaptivecomputing.com/products/open-source/torque

https://www.djangoproject.com
http://docs.celeryq.org
http://www.univa.com
https://slurm.schedmd.com/
http://htcondor.org
http://www.adaptivecomputing.com/products/open-source/torque
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Figure 6.1: The four primary components of the CRS

the jobs have the memory and processors needed to complete their work.

The final component in the CRS is the central storage engine. As it is pooling

a potentially large number of conversation logs while also meeting the read and

write demands of a HPC cluster, the storage engine choice was perhaps the most

crucial of the four components. For our implementation of the CRS we evaluated

several databases before finally settling on MongoDB9. This was not only for its

ability to handle our preliminary performance tests well, but it enjoys a large support

community due to its popularity10.

All of the components interact with the central MongoDB cluster as needed.

MongoDB has a built in MapReduce [120] engine that is leveraged in addition to

the HPC cluster for distributed data processing. All four of the major components

are designed for horizontal scaling and can be scaled independently of the others

where needed. This flexible architecture allows the CRS to handle a large volume

and velocity of conversations for risk analysis.

9https://www.mongodb.com
10MongoDB was ranked #1 in NoSQL database engines and the #5 database overall on

https://db-engines.com/en/ranking at the time of this writing.

https://www.mongodb.com
https://db-engines.com/en/ranking
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6.2 Scalability

As previously mentioned, a major consideration in the CRS design was scaling to the

volume and velocity of generated conversations. The CRS is designed as a shared

platform to concurrently analyze multiple IVAs and their associated conversation

logs. Aggregating this continuously growing log data requires its storage and queries

to scale horizontally. A single IVA may generate tens of thousands of conversations

a day in a large corporation [121, 122]. MongoDB was chosen as the storage engine

due to its MapReduce framework and horizontal scaling [123]. MongoDB has also

been shown to handle aggregating large volume chat data and subsequent querying

well [124, 125].

The analysis of every risk indicator is embarrassingly parallel due to the indepen-

dence of every conversation. Therefore, every analysis process can be written as an

independent job for a compute cluster. The conversation logs can then be partitioned

across the cluster, and every job can be run in parallel on a subset of conversations.

This allows the analysis stage to easily scale, and every task can write its results

directly into MongoDB as the data store can also scale horizontally to the required

write load. This saves costly post-processing data migrations.

For every iteration of the active learning cycle, voting outcomes are fed back into

the CRS to recalculate the risk indicator weights and retrain the classifiers described

in Section 5.2. The classifiers included as indicators of risk from Section 4.4.3 are

trained on all turn-response pairs that have been voted to be correct and use turn

features to predict an intent. The voting classifier described in Section 5.2 is trained

on the feature vector of risk indicator outputs and predicts if a turn-response pair is

correct or not.

This continual retraining is crucial because the frequency and importance of risk

indicators will change as the system and IVAs under review mature. Training classi-

fier models o↵ of millions of inputs can be very time-consuming and resource inten-
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Purpose Virtual Count CPU Memory Disk

Web server Yes 1 8 cores of E5-2680v2 @
2.80GHz

64GB 50GB SSD

App server Yes 1 8 cores of E5-2680v2 @
2.80GHz

64GB 500GB SSD

MongoDB
(Primary)

Yes 1 8 cores of E5-2680v2 @
2.80GHz

64GB 200GB SSD

MongoDB
(Secondary)

Yes 1 8 cores of E5-2680v2 @
2.80GHz

32GB 200GB SSD

HPC Node No 6 40 cores of E5-2680v2 @
2.80GHz

384GB 300GB 15K SAS

Table 6.1: Scaling test hardware configuration

sive. Therefore, these tasks can be done as batch jobs that occur during periods of

low system activity.

6.2.1 Scaling Tests

The ability for the system architecture to scale was tested in two ways: the time

complexity of the risk analysis process and the reduction in risk analysis time for a

fixed input size by increasing the cluster size. Time complexity estimates the ability

for a fixed system to handle increasing conversation log sizes while increasing the

cluster size measures the system’s ability to scale horizontally. For both tests the

same configuration of the CRS was used. The physical configuration of the environ-

ment was a combination of Virtual Machines running in a VMWare 5.5 cluster, and

physical servers for the HPC cluster. The specifications of each server is given in

Table 6.1. The software configuration of the primary components in the CRS for all

of the tests conducted is given in Table 6.2.
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Purpose Software Version

Operating System Ubuntu Server 16.04LTS
Web server Nginx 1.4.6-1ubuntu3.8
App server uWSGI 1.9.17.1-5build5
Worker Pool Celery 4.1.0
Database MongoDB 3.4.10
HPC Engine Open Grid Engine GE2011.11p1

Table 6.2: Scaling test software configuration

Name # of Turns # of Conversations Avg User Turns per Conversation

50k 49,999 10,336 4.837
100k 100,008 20,575 4.860
200k 199,998 41,770 4.788
400k 400,001 84,917 4.711
800k 800,003 170,880 4.682
1.6M 1,600,008 346,408 4.619

Table 6.3: Scaling test data set statistics

Measuring Time Complexity

To estimate the time complexity of the entire risk analysis process, we measure how

the analysis time increases as conversation log size increases. The test data originated

from one month of conversation logs from a live IVA in the telecommunications do-

main. This particular IVA handles customer support issues on the website of a large

telecommunications corporation. The logs were partitioned into increasing subsets

of size 50,000, 100,000, 200,000, 400,000, 800,000, and 1,600,000 turn-response pairs.

Full test data statistics are given in Table 6.3. Beginning with the smallest, each set

was fed into the CRS and the total wall clock time was measured to complete the

risk analysis and apply the voting classifier to all turns. Then the entire system was

restarted to clear out any caches. After restarting, the next largest set was fed into

the system and the wall clock time was recorded.

In Figure 6.2, we see that it takes roughly 48 minutes to complete analysis on
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Figure 6.2: Scaling test results on increasing conversation log sizes

50, 000 turn-response pairs. This volume of data is approximately a single days worth

of customer interactions for this particular IVA. By 1.6 million turn-response pairs,

the CRS takes roughly 225 minutes, or 3.75 hours to complete its analysis. This

volume is exactly one month worth of customer interactions from the live telecom-

munications IVA.

In Figure 6.3, we look at the per-turn processing time as the conversation logs

grow. The 50k dataset averages around 0.055 second per turn, which improves to

0.01 second per turn by the 1.6M dataset. The cause of this decrease is that the

total wall clock analysis time includes the time required to extract features for and

train the agreement classifiers before applying them to the conversations in the risk

analysis process. For smaller data sets, this training time has a large impact on

total analysis time. But, as the size of the data set grows, this training time is a

smaller component of the total analysis time and therefore the average time per turn

decreases.

Assuming the agreement classifiers were retrained once per day and the same

hardware configuration as the testing environment is used, a single instance of the
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Figure 6.3: Average analysis time per turn

CRS would appear capable of handling the real-time processing demands of around 30

IVAs with similar volumes of conversation logs (1,440 minutes per day ÷ 48 minutes

to process 24 hours worth of logs). If the agreement classifiers were retrained less

often the average time per turn would decrease, which would allow a single instance

of the CRS to handle more concurrent IVA logs. However, longer times between

retraining may have an e↵ect on agreement classifier accuracy if the IVA language

model is changing rapidly.

A comparison of the time per turn processing rate to standard growth rates is

shown in Figure 6.4. Big Oh notation is commonly used to characterize algorithms

according to how their running time grows as their input size grows, ignoring the

multiplicative constants [126]. From the comparison we can see that the risk analysis

process is running much faster than linear time (O(n)) for the measured input sizes.

The time complexity behavior appears to mirror O(
p
n) most closely. If this behavior

were to continue, assuming no memory or disk limitations were reached, the hardware

configuration of the CRS used for these tests could process over 8.6 million turn-

response pairs in a 24 hour period.
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Figure 6.4: Scaling test results compared to standard measures of growth

Measuring Horizontal Scaling

To measure the architectures ability to scale out given a fixed input size, we measure

the e↵ect of adding nodes to the HPC cluster. During the risk analysis phase, the

majority of the processing is done as distributed jobs on the HPC cluster (training

the agreement classifiers, identifying the indicators of risk in Section 4.4, voting on

each tun, et cetera). Therefore, this component will have the largest e↵ect on the

ability for the architecture to scale.

In this test we start with a single HPC compute node enabled. We feed the 400k

dataset through and measure the total wall clock time to complete the risk analysis

and apply the voting classifier to all turns. Then the entire system was restarted to

clear out any caches. After restarting, and additional HPC compute node is added

to the cluster and the test is repeated. The compute nodes are homogeneous and

their specifications are given in Table 6.1.

In Figure 6.5, we see the results of this scaling test. With a single compute

node, the risk analysis process takes 320 minutes, or roughly 5.5 hours to complete.
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Figure 6.5: The performance impact of increasing the HPC cluster size

Recall that the 400k dataset was used, which contains roughly 8 days worth of

conversations from the live IVA. Processing 8 days worth of logs at one time only

trains the classifiers once, so the training time has less of an impact on average

processing time per turn. If the classifiers were only retrained once in the 8 day

time period, even with a single HPC node the CRS could easily maintain real-time

performance on 30+ similar volume IVAs concurrently (8 days of data ÷ 5.5 hours

to process).

By adding a second node, the processing time drops 46% to 172 minutes or 2.9

hours. Doubling the CPU core count in the cluster from 40 to 80 creates a 46%

speed increase. Doubling from 80 to 160 sees a 22% increase, while doubling from

120 to 240 CPU core count adds a 15% increase. As further nodes are added the

speedup per node diminishes, most likely due to the fact that the increased load on

the database servers and network hinders the clusters ability to maintain the per

turn processing times of smaller cluster sizes.

Figure 6.5 clearly shows that performance increases as much as 76% are possible

by simply adding hardware to the system. Further gains may be possible by scaling
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out the MongoDB cluster and improving the network capacity between the systems.

As each component can scale horizontally as needed and O(
p
n) growth behavior is

observed, the architecture proves capable of handling the data volume demands of

commercial deployment.

Now that we have covered the architecture and scaling performance of the CRS, in

the following chapters we turn our attention to the implementation and performance

of detection methods for the individual indicators of risk.



80

Chapter 7

Escalation: Detection and

Prediction

In this chapter we discuss the detection, categorization, and prediction of escalation

requests. We define an escalation request as a dialog act where the user explicitly

asks to resolve their issue with a di↵erent party than they are currently conversing

with, in our case the IVA. These dialog acts are very important indicators of risk as

they can surface conversations where the user is frustrated with the performance of

the IVA.

Recall from Section 4.4 there are two categories of risk indicators: conversation

level and turn level. One turn level risk indicator is precedes esc. This indicator

is assigned to turns that are immediately followed by an escalation request. In order

to determine the presence of this indicator, explicit escalations requests must first

be detected. In the following sections we develop an algorithm that is e↵ective in

detecting user escalation language and context. Furthermore, we demonstrate the

algorithm’s e↵ectiveness using real world chat data. This work originally appeared

in [114].
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7.1 Related Work

Strategies for deciding if or when to escalate exist but typically involve telephone

conversations and depend on either the duration of the call or a tree-based dialog

structure. Lemon and Pietquin use a classifier to determine if a customer’s issue

is resolved [127], and a fixed point is chosen at some time in the call for this de-

termination. The duration of the interaction after this point as well as the cost of

call parameters are vital in arbitrating whether a human agent is needed. Similar

techniques can be found in [128, 129, 130] where classifiers are used to determine

if a call is problematic and when an escalation is necessary. Another technique,

[127, 131], considers conversations in a tree-based dialog structure. Nodes that have

low automation potential have a higher chance of escalation. The call flow is pruned

by identifying nodes with low automation potential and eliminating any further flow

path following such nodes.

Since our system does not use a dialog tree structure, the latter approaches

are not directly applicable. However, a similar feature such as conversation paths,

which is the sequence of responding intents in a conversation, was examined for its

possible relationship with escalation frequency. Conversation paths were extracted

from the evaluation dataset described in the following section, and an 80-20 split

was done to create training and testing sets. A Naive Bayes classifier from TextBlob,

a Python library for processing textual data [132], was trained on the conversation

paths. Accuracy achieved on positive escalation turns was extremely low (29%) on

test data.

Former methods use conversation duration as a feature; so, we consider duration’s

relationship to observed escalation frequency in live chat data. However, with a

Pearson correlation coe�cient of .269 (calculated using the Scipy stats module also

on the evaluation dataset described in the following section), duration alone is a poor

predictor of escalation. In addition, duration versus escalation frequency does not
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take into account confounding factors such as user typing speed or multi-tasking.

Alternative to duration, one might consider the number of turns in the conversation

before escalation. For this, we obtained a Pearson correlation coe�cient of .26. Such

turn based strategies also do not appear fruitful in detecting escalations.

Although related, these existing methods aim to detect if or when to escalate

which is di↵erent from our task. Our task is not to predict escalation but to detect

explicit escalation requests made by the user. More specifically, we wish to detect

when the user has explicitly requested an escalation after first attempting to use the

agent. No existing literature could be found on this specific topic. It is clear that

in the context of our live chat system, which is turn and not time dependent and

also has no tree structure, such traditional escalation strategies are not applicable.

Nevertheless, a novel method for detecting a user’s request for escalation is necessary

since the discovery of conversations where the agent has failed will lead to improve-

ments in the language model. Automatic collection of this data will also generate

corpora for investigating more generic methods for proactive escalation than those

reviewed.

7.2 Experiment Setup

For the purposes of our live chat system, we consider escalation requests to be in one

of three classes. The first class (I) consists of those users who immediately request

to speak to a di↵erent party; they do not want to use the automated system. For

example:

Agent: Hello, how can I help you today?

User: can you transfer me to reservations?

The second class (II) of escalations occur after the virtual agent directs the user

to contact a di↵erent department or service, and, in response, either the user asks to
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be transferred there or requests contact information. An example of this would be:

Agent: To change the name on your ticket, please

call reservations.

User: can you transfer me to reservations?

The final class (III) are those conversations where a virtual agent attempted to

resolve an issue for the user, failed to do so, and the user requested an alternative

party. For LM improvement, we are not interested in classes I or II since they

do not reflect a failure in the conversational ability of the virtual agent. Within our

virtual agents, there exists intents to capture various escalation requests and transfer

users. However, there are shortcomings in relying only on these intents to surface

conversations for review. In our analysis, we observed that escalation requests occur

in as many as 16% of conversations. However, the vast majority of them fall into the

first two classes, meaning there is no error in the LM to be investigated. Also, we are

trying to discover error in the LM itself, so we do not want to rely on it to provide

us with instances where it failed. Instead, we develop a stand-alone means to detect

only Class III requests for human review and data collection of failed conversations.

We have deployed virtual agents in various domains, but a significant number of

them reside in travel-related industries. Therefore, we experiment in this domain as

we have access to a large amount of similar data across numerous deployments.

For training, we constructed a set of 15, 338 turns containing 1, 703 manually

tagged escalation requests. Due to the expense of humans tagging nearly 45K total

turns for train, test, and evaluation, the data was divided equally among the review-

ers and combined instead of a more robust multiple review and kappa or majority

calculated. The turns were selected from chat histories of US and non-US trans-

portation customer service agents to form a general travel domain corpus. To train

a robust binary classifier, we chose a large number of positive examples as escalation

language is very broad. The training data contains only the user input and its binary

escalation value. We make no distinction in the escalation class for training as the
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user language is generally the same; it is the context they occur in that di↵erenti-

ates the classes. We develop an e↵ective algorithm to determine the context given a

binary classifier that can detect the language.

For development and evaluation, we use raw live chat data collected over a 24-

hour period from an airline virtual agent that retains conversation features such as

time stamps, conversation ID, responding intent, and response text. These were

tagged by the same process, but only Class III escalations were labeled since the

ability to discover this type of escalation is what we measure. A small dev-test

set was reserved for sanity testing and optimization of vectorization and classifier

parameters. It consists of 226 conversations containing 920 turns, of which 29 were

Class III escalation requests. The evaluation set is 7, 967 conversations containing

28, 336 turns, of which 333 are Class III escalations. Although only 1-3% of turns

in live chats contain a Class III escalation, our virtual agents currently see around

500K inputs daily, and this number is increasing steadily. Thus, we estimate 5, 000

to 15, 000 conversations contain Class III escalations, not an insignificant amount

and worthy of investigation.

7.3 Training an Escalation Classifier

We originally theorized that there were enough di↵erences in the language used for

each of the three escalation classes that a multi-class classification approach would

be e↵ective. Experimentation revealed that the confusion between the classes was

so high that a multi-class approach would not work. Many cases exist where the

user inputs are identical but belong in di↵erent classes making it impossible for a

turn based classifier alone to succeed. An example of this was seen in the previous

section, where both user inputs were ”can you transfer me to reservations?” but

did not belong to the same class. Thus, we turn our e↵orts towards distinguishing

the class by conversational context given a binary classifier that can determine the
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presence of an escalation.

Class III Escalation Turns Non-Escalation Turns

Method Precision Recall Precision Recall

0 Baseline Regular Expression 0.29 0.23 0.99 0.99

1 Hashing Vectorizer 0.4 0.83 1.0 0.99

2 TF Vectorizer 0.42 0.96 1.0 0.98

3 TF-IDF Vectorizer 0.38 0.98 1.0 0.98

4 POS Tags + TF-IDF Vectorizer 0.4 0.99 1.0 0.98

5 Filter Class I: single turns 0.54 0.99 1.0 0.98

6 Filter Class I: 1..n positives 0.73 0.99 1.0 0.99

7 Filter Class I: initial greetings 0.74 0.99 1.0 0.99

8 Filter Class II 0.9 0.99 1.0 1.0

Table 7.1: Algorithm performance in discovery of Class III escalations in live chats

Our first objective is to create a binary classifier that can accurately detect esca-

lation language. As our problem involves text classification, we use a Support Vector

Classifier (SVC) with a linear kernel which has been shown to perform well at this

task [133, 134, 135]. After every change to the vectorizer and classifier pipeline, we

optimize the parameters against the dev-test set and measure performance against

the evaluation set. The results of these iterations are shown in Table 7.3, Methods

1 through 4. Our utility function for optimization maximizes recall on escalation

requests. To collect conversations for LM improvement, we err on the side of false

positives rather than false negatives. As the evaluation set only tags Class III esca-

lations, we expect the precision to be very low initially as the classifier will consider

all three classes of escalations positive. In the following sections, we incorporate this

classifier into an algorithm to separate the positive matches into the three classes.
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7.3.1 Baseline for Experiments

As there exists no other escalation detection systems to compare our results against,

we create a reasonable first order system to compare to. We take the top 25 most

frequent words in the positive training turns and create a Regular Expression (RE) to

capture common phrases they appear in. We then run this RE against the evaluation

set (Table 7.3, Method 0) as the baseline to compare our system against. Increased

accuracy is possible by combining multiple REs from in-depth analysis, but due to

the time consuming nature of constructing manual models, we present the following

RE as a reasonable baseline.

ˆ.+( t ( a lk | r a n s f e r ) | phone | c ( a l l | ontact ) | speak |
need ) .+( customer (\ s +)?( s ( e r v i c e | upport ) ) | ( a\ s+)?

rep ( r e s e n t a t i v e ) ? | someone\ s ? e l s e | ( a | the | your )\ s+

manager | a\ s+(( l i v e | r e a l )\ s +)?(human(\ s ? being ) ? |
person ) | r e s e r v a t i o n s | number).+

For our classifier, we initially use SciKit-Learn’s HashingVectorizer and Lin-

earSVC to construct a pipeline [136]. The SVC is trained with the default parameters,

and we use a grid search against the dev-test set to find optimal parameter values.

These parameters and their function are described in [137] and disscussed at length

in [138]. The optimal parameters found were C=2.1, penalty=l2, loss=squared hinge

(Table 7.3, Method 1).

7.3.2 Methods for Classifier Improvement

This classifier only produces 83% recall, so we focus on feature improvement (Ta-

ble 7.3, Methods 2-4). A basic first step is to incorporate raw term frequency for term

weighting and N-grams to include context. Changing to SciKit-Lean’s TfidfVector-

izer, we optimize both the SVC parameters and the lower and upper range boundary

of n-words. The additional optimal parameters were C=1.7, ngram range=(1,3)

(Table 7.3, Method 2).



Chapter 7. Escalation: Detection and Prediction 87

To further isolate language specific to escalations, we turn on Inverse Docu-

ment Frequency (IDF) to scale down the impact of words that are less informative

[139, 140]. The additional optimal parameters were C= 2.5, ngram range= (1, 4)

(Table 7.3, Method 3).

Including Part Of Speech (POS) tags can benefit SVC for text categorization

[141]. So, we add POS tagging as a preprocessing step. Using the Natural Lan-

guage ToolKit (NLTK) PerceptronTagger [142], we add the POS tag to each word in

the input text and discard all punctuation before feeding the text into the pipeline

(Table 7.3, Method 4).

7.3.3 Rejected Methods

We also considered the following methods and determined that they did not signifi-

cantly increase performance over Method 4.

Automatic Spelling Correction

Using the TextBlob correct method [132], which replaces words with the highest

probability of known words with edit distance 1-2 from the given word, we observed

a minor increase in false negatives and a 0.5% decrease in false positives. The gains

were not high enough to justify the additional complexity, but it remains an interest-

ing possibility. There are much better means of automatic spelling correction that

take into account context [143, 144] and applying them is subject to future research.

Stemming

Using the NLTK English SnowballStemmer [145], we stem the words after generating

the POS tag and replace the original word with its stem. In agreement with the
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conclusions of [146], stemming introduced ambiguity in the SVC that led to a loss of

performance. We observed a negligible increase in false negatives and a 10% increase

in false positives.

Stopword Filtering

Using the NLTK English stopword list, we filter all stopwords before the POS tagging.

Also in agreement with [146], we found that the removal of stopwords was unnecessary

for SVC accuracy. Stopword removal resulted in a minor increase in false negatives

and a 12% increase in false positives.

Sentiment Analysis

Using the NLTK NaiveBayesAnalyzer [147], which is trained on the Movie Reviews

corpora, we add turn sentiment polarity and subjectivity as two additional feature

columns to the feature vector produced by TfidfVectorizer. By adding them to the

feature vector, we allow the SVC to discover if any correlation is present. This

resulted in no change to false negatives and a negligible increase in false positives.

As there exists better methods for sentiment classification ([148], for example) and

these scores can be integrated in other ways, we will revisit sentiment analysis in

future work. We did observe, however, that despite users feeling frustrated while the

agent is misunderstanding them, many of them still politely request an escalation.

This makes it di�cult to rely on sentiment polarity as a feature of an escalation

request.
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7.4 Algorithm for Escalation Categorization

Using the escalation classifier in Table 7.3, Method 4, we now focus on precision by

designing an algorithm that can separate the positive matches into the three classes

(Methods 5-8). We begin with filtering Class I escalations, where the user has no

intention of using the agent; they simply request contact information or immediate

transfer.

If the initial turn is an escalation, three directions can be taken on the next turn:

the conversation ends, the user is not satisfied with the response and rewords his

or her question or asks for additional clarification, or the user decides to attempt

to resolve their issue with the agent and states their concern. To eliminate the first

case, we ignore all conversations with only a single turn. This results in a 43.2%

drop in false positives as seen in (Table 7.3, Method 5).

We handle the second case by feeding the remaining turns through the SVC. We

ignore every sequential positive match until either a negative match occurs or the

conversation ends. We can then remove all conversations containing only escalation

language, and if the user decides to use the agent after all, we consider any escalation

occurring after the user identifies their issue as a Class III. This results in a further

32.4% drop in false positives (Table 7.3, Method 6).

In reviewing the evaluation data, we noticed conversations where the first turn

consisted solely of a greeting (“hows it going?”, “Good morning.”). These add noise

to the above mentioned Class I detection and should be ignored. To remove them, a

separate binary SVC is trained on a dataset created for this purpose. As all of our

virtual agents have a Hello intent for responding to greeting language, we gathered

226 unique user inputs from across several US domestic and international deploy-

ments that were assigned to this intent. International and US domestic greetings

are mixed to make the classifier more robust. We then added 59, 960 turns assigned

to other intents from the various deployments as negative examples. This classifier
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achieved 0.986 precision and 0.89 recall on the first turn of the 7, 967 conversations

in the evaluation set. Using this classifier to ignore greetings in the fist turn further

reduced the false positives by 2% (Table 7.3, Method 7). This proved to be a minor

improvement, however, and can be considered an edge case.

Next, we focus on filtering Class II escalations. With each turn, we have the

responding intent and the response text. Therefore, if a turn is positive for escalation,

we ignore it if the previous intent was in a set of escalation intents. This ignore set

was created by reviewing all agent responses and collecting intents responding with

instructions to escalate the issue. Leveraging this conversational context removes

73% of the remaining false positives (Table 7.3, Method 8).

Any remaining escalations are considered members of Class III. The final algo-

rithm using both the classifier and set of intents to ignore is given in Figure 7.1.

7.5 Application of Escalation Detection

We make no assumptions on the underlying IVA implementation; therefore, our

algorithm can be applied to conversational data from both bounded and open-ended

systems regardless of channel. Our results demonstrate that by combining classifiers

with language features and narrowing our search to a specific class of escalations,

we can successfully detect failure-driven escalation with high accuracy on real world

data.

As previously mentioned, the risk indicator precedes esc is assigned to turns

that are immediately followed by an escalation request. Using the algorithm in Fig-

ure 7.1, the CRS detects explicit requests for escalation after the user first attempted

to converse with the IVA. It then labels the preceding turn in the conversation with

the precedes esc risk indicator.
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1 def LabelConv(conversation):
Data: A conversation as an ordered list of turns containing (input text,

responding intent)
Result: The conversation with labeled turns

2 if length(conversation) < 2 :
3 /* Filter single turns */

4 label turn as false;
5 return conversation;

6 skip = true;
7 for turn in conversation:
8 tagged text = POS tag(turn.user input);
9 feature vect = vectorizer(tagged text);

10 if hello clf.predict(feature vect) == 1:
11 /* ignore greetings */

12 label turn as false;
13 continue;

14 if esc clf.predict(feature vect) == 1:
15 if skip:
16 /* ignore 1..n Class I */

17 label turn as false;
18 continue;

19 if prev turn.intent in ignore intents:
20 /* ignore Class II */

21 label turn as false;

22 else:
23 /* Class III */

24 label turn as true;

25 else:
26 label turn as false;
27 skip = false;

28 return conversation;

Figure 7.1: Detect escalations and categorize

7.6 Escalation Prediction

Recall from Section 4.4 within the conversation level risk indicators there is the

conv should esc indicator. This indicator is applied to all turns in a conversa-

tion where the conversation should have escalated, regardless if the user explicitly

requested to escalate or not. It is important to note that escalations may be user
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or system-initiated depending on which party first determines that progress in com-

pleting a task is not being achieved. For the means to label the conv should esc

indicator and related should esc point turn-level indicator, we now focus on the

topic of system-initiated escalation and how to determine which conversations should

escalate. The following work originally appeared in [113].

IVAs can be configured to accept user interaction through channels such as voice

input, text input, or fully multi-modal interfaces that allow for any combination of

voice, text, clicking-on-controls, and web content. Many IVAs provide the means

to escalate a conversation to a human operator if necessary. Our task is to build

a means to recommend when an escalation should occur, regardless of the input

channel. Dialog systems contain a component for Natural Language Understanding

(NLU) which maps a textual representation to a representation of the meaning, or

intent, expressed by the user [149]. As the textual input to the NLU is the lowest

common denominator of the various interfaces supported by multi-modal IVAs, we

use this textual form for escalation recommendation. In this way, we ensure that

regardless of the channel employed by the user, the recommendation system can still

function.

In reviewing current literature on proactive escalation methods, we found no

method suitable for our application. All existing methods rely to some extent on

acoustic features generated by the Automatic Speech Recognition (ASR) component

or other features dependent on language model implementation. Such features may

not be present in a multi-modal IVA. Therefore, we set out to create a method with

no reliance on features specific to channel; only the input and output of the NLU are

consulted. We first evaluated several standard Machine Learning (ML) techniques

but were not satisfied with their performance. We developed an algorithm that not

only outperforms the ML approaches using textual features but also does not require

a large labeled training set for each language domain and is considerably more time

e�cient.
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We begin with a review of the literature involving the recommendation of esca-

lations. We discuss our data and the evaluation of several standard ML techniques.

However, we obtain even higher precision on an escalation criteria we develop. We

also detail how this algorithm is implemented. Finally, we discuss the results, ad-

dressing limitations and outlining future work.

7.7 Related Works

Similar research on recommending escalations typically involves Spoken Dialogue

Systems (SDS) such as AT&T’s How May I Help You (HMIHY) application [150].

These systems have access to a wide range of acoustic features that are used in

machine learning to identify problematic conversations and transfer a customer to a

human customer care representative before the conversation fails. In [151], a machine

learning program, RIPPER, achieved an accuracy of 72% in identifying problematic

dialogues after the very first exchange and 86.7% accuracy given the whole conver-

sation. However, over 50 features were available from spoken dialogues, of which

almost a quarter were acoustic and ASR features. Acoustic features were also used

in [152] where 55% accuracy was achieved on over 40,000 phone calls and [128] where

92.9% accuracy was achieved on 4,692 dialogues collected with the HMIHY system.

A slightly higher accuracy of 93% was obtained using JRip in [153], but this is for

o✏ine detection of miscommunication which consumes the completed conversation

whereas we are attempting online recommendation of escalation.

In [154], call duration was used as an indicator for when to escalate, and prob-

abilistic models were constructed to generate policies identifying the best point in

time to transfer callers to human operators. Although a useful feature for auditory

assistants, duration of a conversation is not applicable to textual assistants; some

customers may read or type more slowly than others, and pauses between turns

are common. To demonstrate this, we collected a set of 8k conversations with a
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text-based IVA that logged explicit user escalation requests in order to measure cor-

relation with duration. A correlation coe�cient of .269 (calculated using the Scipy

stats module) was obtained. Alternatively, one might consider the number of turns

in the conversation before escalation. For this, we obtained a correlation coe�cient

of .26; therefore, turn or duration based strategies alone do not appear fruitful in

predicting escalation.

Our strategy for recommending escalation is inspired by [94] where a SDS provides

train timetable information. Although their goal was to detect a single misunder-

stood turn and not necessarily recommend escalations, we find that the negative cues

used by these authors are helpful in the recommendation of escalation. The authors

assume the Principle of Minimal Collaborative E↵ort; both the user and system

want the dialogue to be finished as e�ciently as possible and with success. Cues

are examined and certain combinations of cues have the best predictive potential

for discovering the presence or absence of problematic conversations. Cues include

turn length, marked or unmarked word order (topicalization or extraposition), con-

firmation, the presence or absence of an answer, corrections or repetitions, and new

information. The highest precision is achieved with a combination of correction and

repetition cues on a small set of 120 dialogues; users tend to repeat their requests

and correct the system in its interpretation of these requests when there are commu-

nication problems. Our criteria for escalation recommendation is heavily influenced

by this work.

7.8 Methods

We collected 7,754 conversations (20,808 user turns) across two commercial multi-

modal IVAs deployed on corporate travel websites and mobile applications. The IVAs

help with booking and changing flights and answer various travel-related queries. The

conversations were manually tagged for whether or not they should have escalated
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by 2 reviewers, generating a Cohen’s  of .6. A third reviewer was used to break

ties in cases of disagreement, and the majority determined the final tag. In addition

to determining if a conversation should escalate, reviewers also notated the turn on

which an escalation should occur. The escalation point, if existent, was averaged

between the reviewers and rounded down to the nearest integer. Rounding down

favors the user as he or she will be escalated faster. Rounding up benefits the

company by saving money from delaying the use of human customer assistants. Of

the 7,754 conversations, 1,268 were marked for escalation by a majority. A random

80-20 split was used to create training and testing sets. The training set consisted

of 6,203 conversations of which 1,027 should escalate. The testing set consisted of

1,551 conversations of which 241 should escalate.

7.8.1 Preliminary Experiments

We initially experimented with several standard machine learning algorithms. As we

were not only interested in a model’s ability to determine if an escalation should

occur but also when, the models were trained and tested on a cumulative turn basis.

For example, if a conversation in the training set is four turns long and is tagged

for escalation on the final turn, the model will be trained on (turn1, 0), (turn1 +

turn2, 0), ..., (turn1 + ...+ turn4, 1).

As high accuracy was achieved using JRip in [153], we tried WEKA [155] JRip.

Preprocessing of conversations was done using WEKA String to Word Vector. Four-

teen rules were generated from the training set. A precision of .387 and recall of .051

was obtained on the test set for escalations. We also experimented with WEKA’s

Random Forest (RF) (with 100 trees), resulting in higher precision (.735) but equally

terrible recall (.036). WEKA’s SVM had better recall (.562) and precision (.317)

compared to JRip. Default parameters were used. We then trained a Convolutional



Chapter 7. Escalation: Detection and Prediction 96

Neural Network (CNN) inspired by [156] using Keras1. We used the same parameters

and CNN build in [157]. GenSim’s2 Word2Vec was used to preprocess data. Over

100 epochs on CNN-rand, we obtained .776 precision and .718 recall on escalations.

We also tried several Recurrent Neural Network (RNN) methods, but it appeared

there was not enough data to train a useful model.

7.8.2 Point of Escalation

If a model chooses to escalate a conversation earlier than the tagged turn, the model

is aligned with the customer as the customer will be escalated faster. If the model

escalates a conversation later than the tagged turn, the model is aligned with the

company. Alignments were calculated from conversations where the model and re-

viewer majority agreed that the conversation should escalate (even though the point

of escalation may di↵er). So either reviewer 1 and reviewer 2 both believe the con-

versation should escalate, or they disagree, but reviewer 3 believes the conversation

should escalate. In both cases, there are two reviewers that tag a 1 for the conversa-

tion. Suppose conversation Z has a majority vote to escalate, and the model chooses

to escalate Z also. Suppose reviewer A and reviewer B tag Z for escalation, forming

the majority. Let

X = model’s Predicted Turn� A’s tagged turn

Y = model’s Predicted Turn� B’s tagged turn

The alignment for a model on Z is the average of X and Y .

Thus, if an alignment is negative, the model prefers escalating early and favors

the customer. If the alignment is positive, the company is favored. The number

of conversations where the model and reviewer majority agreed that the conversa-

tion should escalate will be notated by agreemodel. All frequencies were normalized

1https://keras.io
2https://radimrehurek.com/gensim

https://keras.io
https://radimrehurek.com/gensim
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Figure 7.2: Alignments of CNN, SVM, and Algorithm 7.3

by their respective agreemodel. Figure 7.2 includes alignment charts for the CNN

(agreeCNN = 173) and SVM (agreeSVM = 130) discussed above. JRip and RF were

not included due to exceptionally poor recall.

CNN is more fair to both the customer and company whereas the SVM tends

to favor the customer and escalate earlier. Indeed the skew value (calculated using

SciPy) is .444 for the CNN and 6.96 for the SVM. A skew value greater than 0

indicates left skew whereas a skew value less than 0 represents right skew. A normally

distributed dataset should have close to 0 skew. The alignment of our escalation

algorithm (agreeEA = 156) is also shown in Figure 7.2 and will be discussed in the

following sections.

7.8.3 Escalation Algorithm Development

While the CNN model produced nearly acceptable results, the number of false pos-

itives was still too high for production use. In addition, the burden of collecting

and tagging su�cient data from each IVA in order to train a CNN for its language

domain was too great. For example, a model trained from insurance claims language
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User Turn Intent Hit
1 im trying to buy upgrade, cant find it Paid Upgrades
2 its not allowing me to buy an upgrade. Im already

checked in
Paid Upgrades

3 this virtual assistant is NO assistance IDK
4 I want to buy an upgrade for my flight today. Your

links are not allowing me to do it
Paid Upgrades

Table 7.2: A customer clarifying his or her request with repetition, ultimately ending
with frustration.

cannot be reused in product support, so a new model must be constructed. We

require an approach that can be reapplied to any IVA with a minimal amount of

language domain specific tuning.

Inspired by [94], which achieved good results on single turn misunderstanding

detection, albeit on a small test set, we construct a similar detection strategy for

escalation. Using only the set of 6,203 training conversations, we performed a manual

analysis to determine if there were common structures in the conversations or user

turns that would indicate persistent communication issues. If problems are detected,

the system should perform an escalation before the user explicitly asks for one. As

false positives would be very confusing to the users and expensive for the company,

we must be conservative in our approach by favoring precision over recall. The result

of this manual analysis is presented below in Figure 7.3 and is hereafter referred to

as the Escalation Algorithm (EA).

At the heart of the EA is the presence or absence of a clarify section. A clarify

section consists of an explanation of the problem, an optional reaction to the au-

tomated assistant’s response, and a restatement of the first explanation (lines 1-10

in Figure 7.3). Notice that a clarification is not considered an exact repeat of the

previous input (lines 3,8). Clarify sections occur frequently since many customers

initially do not know they are speaking to an automated assistant. Upon this realiza-

tion, customers tend to repeat and clarify their requests (Table 7.2). If the assistant
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is not providing an appropriate response to the user’s question, a customer typically

responds with correctional language (e.g. “No, that is not what I meant.”). If a

clarify section is found, we determine if it is followed by the presence of correctional

language, an explicit escalation request, remarks on the uselessness of the assistant,

or anger. Otherwise, we check if there are 3 or more user turns following the clarify

section that contain similar requests. If so, we choose to escalate the conversation

as, by this point, the automated assistant has returned an unsatisfactory response

at least 4 times.

For the same reason, if no clarify section is present, recommend escalation if there

are 4 or more similar requests, or if correctional language, explicit escalation requests,

remarks on the uselessness of the assistant, or anger are present in the conversation

after the first turn. We make these checks after the first turn to give the automated

assistant a chance to rectify the situation if the customer begins the conversation

frustrated or immediately requests to speak to a di↵erent party. Finally, we check if

the agent has returned the same response multiple times (lines 1,2,4 in Table 7.2),

or has responded with an I Don’t Know (IDK) multiple times. An IDK response

occurs when the IVA cannot determine with high confidence what the user means

and will reply with something like “I’m sorry I didn’t understand you, try rewording

your question” (line 3 in Table 7.2).

7.8.4 Implementation Details

To determine the presence of correctional language (lines 13 and 26 in Figure 7.3), a

set of 34 regular expressions was created from manual analysis of our training data3.

For example, to detect the correctional language in line 2 of Table 7.3, a pattern

such as “^you did( not|nt) answer (my|the) question.+” could be used. Each

user turn was case-normalized, and punctuation was stripped prior to correctional

3https://s3-us-west-2.amazonaws.com/anon-share/FLAIRS2017_correctional_

res.txt

https://s3-us-west-2.amazonaws.com/anon-share/FLAIRS2017_correctional_res.txt
https://s3-us-west-2.amazonaws.com/anon-share/FLAIRS2017_correctional_res.txt
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1 clarify = false;
2 sim = calcSimilarity(userTurns[0],userTurns[1]);
3 if sim 6= 1 and sim � simThresh:
4 clarify = true;
5 index = 2;

6 else:
7 sim = calcSimilarity(userTurns[0],userTurns[2]);
8 if sim 6= 1 and sim � simThresh:
9 clarify = true;

10 index = 3;

11 if clarify == true:
12 afterClarify = userTurns[index:];
13 if detectCorrectionLang(afterClarify):
14 return true;
15 if detectEscalationLang(afterClarify):
16 return true;
17 if minSent(afterClarify)  sentThresh:
18 return true;
19 sameReq = countSame(afterClarify,simThresh);
20 if sameReq � 3 :
21 return true;

22 else:
23 sameReq = countSame(userTurns,simThresh);
24 if sameReq � 4 :
25 return true;
26 if detectCorrectionLang(userTurns[1:]):
27 return true;
28 if detectEscalationLang(userTurns[1:]):
29 return true;
30 if minSent(userTurns[1:])  sentThresh:
31 return true;
32 if numRepeats(agentTurns) � rptThresh:
33 return true;
34 if numIDKs(agentTurns) � idkThresh:
35 return true;

36 return false;

Figure 7.3: Escalation Recommendation Algorithm

language determination.

For the determination of explicit escalation requests (lines 15,28), two methods
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User Turn Intent Hit
1 Hi -agent-, the seat map only shows rows D to F.

Where did A to C go?
Seating Chart

2 you did not answer my question. Rows A, B and
C are not visible on the website.

-agent-’s Misunderstanding

3 Seat A, B and C are not visible on the online seat-
ing chart.

Seating Chart

4 what is the telephone number to contact a human? Contact Phone Numbers

Table 7.3: A customer clarifies his or her request with repetition, corrects the auto-
mated assistant, and ends the conversation with an explicit request for escalation.

can be used. If the IVA understands escalation language, we can simply test if the

IVA detected this in any of the user turns so far. If not, a stand-alone classifier

for escalation language can be used. For our experiments, we implemented the

latter exactly as described in [114] so that we did not rely on any specific IVA

implementation.

Our algorithm makes use of thresholds for similarity and sentiment polarity, as

well as number of repeated answers and IDKs. These are tuned using grid search and

discussed in the following section. Polarity was measured using TextBlob’s sentiment

classifier, and a threshold is set for what constitutes an escalation (sentThresh in

Figure 7.3). Sentence similarity is used to determine the number of same requests

in a conversation or if a clarify section is present (lines 2,7,19,23). The similarity

threshold is tunable to the sensitivity of the method in use (called simThresh in

Figure 7.3).

Two methods for measuring similarity were compared: cosine similarity and Elas-

ticsearch. A simple implementation of cosine similarity, which ranges from 0 (least

similar) to 1 (identical), was used to measure surface similarity without consider-

ing semantics. We also experimented with Elasticsearch where every user turn was

stored in an index along with the conversation ID and the order it appeared in. To

measure the similarity between two turns, A and B, we queried the index using the
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text of A, the conversation ID of B, and the order ID of B. This results in a single

match, the turn B, along with a relevance score. We treated relevance as a measure

of similarity. The relevance score was calculated by the practical scoring function

within Lucene, the underlying engine used by Elasticsearch. A relevance score can

be 0 (no similarity) or any positive number. The greater the value, the more similar.

Score thresholds are very specific to the query structure, and data and must be opti-

mized appropriately. We did not observe a statistically significant di↵erence between

Elasticsearch and cosine similarity performance. As cosine similarity is both faster

and less complex, we choose it as the similarity function in our algorithm.

7.8.5 Determination of Optimal Conversation Features

In order to determine the optimal values for the four thresholds in Figure 7.3, we per-

form a grid search on the training dataset. We set the values of the thresholds to be

all combinations of the following: sentThresh 2 {�0.3,�0.4, . . . ,�1}, simThresh

2 {0.4, 0.5, . . . , 1}, rptThresh 2 {1, 2, . . . , 6}, and idkThresh 2 {1, 2, . . . , 6}. Run-

ning the EA against the 6, 203 conversations in the training set, we measure the

precision, recall, and F-1 score of each combination.

To determine the optimal values over the 2, 016 combinations we first rounded the

F-1 scores of the results to the nearest hundredth. As many combinations of precision

and recall can create similar F-1 scores, we simply selected the values with the highest

precision (.883) in the top F-1 score (.75). As previously stated, precision is by far

more important than recall as false positives are confusing to users and expensive for

the companies. False negatives, on the other hand, are less essential as they present

no di↵erence to the user experience with the addition of our system. The optimal

values selected were sentThresh = �0.7, simThresh = 0.4, rptThresh = 4, and

idkThresh = 4. These are the threshold values used to measure EA performance on

the test set in Table 7.4.
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Model PE RE F1E PNE RNE F1NE

EA .876 .647 .744 .938 .983 .960
CNN .776 .718 .746 .942 .957 .950
JRip .387 .051 .090 .834 .983 .902
SVM .317 .562 .405 .892 .750 .815
RF .735 .036 .069 .833 .997 .908

Table 7.4: Precision (P), recall (R), and the F1 score (F1) for all models. A subscript
of E indicates a metric for the escalation class whereas NE represents no escalation.

7.9 Results

Precision and recall for both classes (E and NE) are displayed for all models in

Table 7.4. Although CNN performance may increase if given more training data

than we collected, it is important to realize that our EA has two advantages over the

CNN. One, the EA needs considerably less training data for threshold tuning. To

discover this, we took random samples from the training data and used them to both

train a CNN and tune the EA thresholds. We then measured their performance on the

test set (Figure 7.4). The EA precision remains stable as the training set decreases

until more than 98% of training data is removed, whereas the CNN drops steadily

until around 9% where performance becomes unpredictable. This also demonstrates

that EA threshold tuning is not sensitive to overfitting. By 4% of training data (248

conversations), EA precision is still identical to that of 100% of training data! Two,

the EA requires less time for threshold tuning than CNN training time (Table 7.5).

Times were generated from training the CNN and tuning the EA on a server with 48

2.2GHz cores and 64 GB of RAM. A 4.5x average increase may not seem significant

until one considers that this step will be required for every IVA deployed, and periodic

retraining/retuning may be needed.

We included the alignment graph for the EA earlier in Figure 7.2. The EA

appears to be somewhat fair to both the customer and company, although with a

skew value of �1.52, there is a slight right skew, showing favor to the company.
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Figure 7.4: Precision and recall for CNN and EA on the test set given a random
sample of the training set.

7.10 Discussion and Future Work

Some limitations of our work and di↵erent methods to detect features were consid-

ered, and a few are worthy of discussion.

For sentiment polarity, a Naive Bayes classifier was trained using Twitter data

from [158]. Of the 5,513 manually tagged tweets available from [158], only 3,648

could still be accessed (due to deleted or banned accounts), and 80% were used

as training data. Accuracy on the remaining 20% was 72%. TextBlob’s sentiment

classifier was used in our study instead as it demonstrated better performance in our

system. However, TextBlob’s sentiment classifier is pre-trained on a movie reviews

corpus which may di↵er significantly from automated assistant chats. Alternative

data for training a sentiment classifier could be addressed in future work as well as

improved methods for sentiment analysis ( [148], for example).

In our algorithm, polarity is determined on a by-turn basis. It would be inter-

esting to split a turn into emotionally homogenous parts and assign a sequence of

emotions to a turn like in [97], as we have observed that many longer turns are
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% Training Data EA Time (s) CNN Time (s) Increase
1 11 70 6.36x
5 94 339 3.61x
10 139 619 4.45x
25 361 1, 466 4.06x
50 672 2, 881 4.23x
100 1, 375 6, 469 4.71x

Table 7.5: Time needed to either tune the thresholds for EA or train the CNN given
a percentage of the training set.

multipart with respect to sentiment. Also in [97], we could potentially add to our

algorithm by determining common conversational structure sequences for sessions

that do not escalate and detect deviations from this order.

There are limitations to using regular expressions (REs) to detect correctional

language; variation in word ordering or spelling is di�cult to account for. More so-

phisticated methods for this detection such as tagging data for correctional language

and training a classifier for this task could be addressed in future work. However,

the check for correctional language can be a considered a minor optimization. Care

was taken to only construct REs that did not include any IVA or domain specific

language to maximize re-usability. We disabled lines 13 and 26 in Figure 7.3 so that

the REs are not even used. We measured no loss of precision and only a 4% drop

in recall on the test set from this removal. As this is the only component of the EA

that may require manual analysis for a new language domain, it is important to note

it has a minor role.

Finally, both IVAs considered in this paper are in the domain of travel. We would

like to extend our study to include other language domains and then compare it to

our results.

Our algorithm features many strengths. As clearly displayed in Figure 7.4 and

Table 7.5, significantly less training data and time is needed to achieve precision and

recall comparable to that of standard machine learning techniques. We observed
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that reviewers tagged 5.1 conversations per minute on average. The EA may require

only a few hours of human time in tagging to tune for each IVA. The CNN method

may require over 20 times more tagged data and, therefore, carries a much higher

human cost. With significantly lower tuning time for the EA, it is conceivable that

humans could tag a number of conversations, re-tune the weights, and deploy them

within a single day if needed. Also, our system only relies on conversational structure

and text features which will be present in both speech and text based agents, and

multi-modal agents. Regardless of which channel the human is using, it must be in

text form by the time it reaches the NLU where our system would receive its input.

Even in simple IR tasks such as a request for a specific document, we observed users

restating their request if they were misunderstood and using correctional language.

Our results show that it is possible to achieve high precision (.876) in the recom-

mendation of escalations without access to acoustic features. Whereas the techniques

in [150, 128] are applicable to only systems that have access to acoustic features, our

methodology can apply to systems with and without such features. For such a sub-

jective task as determining when a conversation should escalate (recall we obtained a

Cohen’s  of .6), our escalation algorithm performs better than several standard ma-

chine learning techniques and requires considerably less data and time for parameter

tuning.

Many of the reviewed papers on alternative systems report only accuracy mea-

surements instead of precision and recall. As the accuracy in our system was 93.1%,

it is comparable to the accuracies reported in systems relying on acoustic features (55

to 93%). As our method only considers conversational structure and text features,

it is less restrictive and can even work in multi-modal environments where turns can

alternate between text and speech.
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7.11 Application of Escalation Prediction

Within the CRS we apply the Escalation Algorithm (EA) outlined in the previous sec-

tions to each conversation during risk analysis. For each turn in a conversation that

is marked for escalation by the EA, we assign the risk indicator conv should esc.

In addition, on the turn that the EA indicates escalation should occur, we assign the

risk indicator should esc point.

In addition to the escalation specific risk indicators, components of the EA are

used as risk indicators in isolation. Recall that the purpose of the EA is to predict

if a conversation should escalate and at which turn. It does not directly determine

which turns in a conversation are misunderstood. Therefore, we use some of the

features the EA uses to determine if a conversation should escalate to also determine

if a particular turn in the conversation was potentially misunderstood by the IVA.

The first of these additional risk indicators is precedes corr. In lines 13 and 26 of

the EA, it calls a function that consults a set of regular expressions to determine the

presence of correctional language. An example expression “^(.+)?not what i.+”

would match comments like “That’s not what I meant, I wanted . . . .” This same

function is used to apply the precedes corr risk indicator to any turn preceding

a match for correctional language. We would expect any instance of correctional

language to immediately follow a turn-response pair where the IVA misunderstood

the user’s intent.

Another feature the EA considers is the similarity between turns in the same

conversation. On lines 2 and 7 of the EA, it calls a function to calculate the cosine

similarity between two turns and considers turns with a small cosine distance to

be restatements of the same intention. For the CRS, we reuse this function except

we measure the similarity between a given turn and all following turns in the same

conversation. For each turn that is considered a restatement of the following turn

we apply the risk indicator restated to the current turn. Therefore, if the first turn



Chapter 7. Escalation: Detection and Prediction 108

is restated two times later on in the same conversation, the first turn will have two

counts of restated, the first restatement will have one count of restated, and the

second restatement will not have any as we have no further restatements to provide

evidence that the third instance of similar language was misunderstood.

The EA in combination with the failure-driven escalation detection algorithm

presented in Section 7.4 are used by the CRS to find conversations in which the

user is unable to complete their task using the IVA. These conversations are very

likely to contain turns that involve intents in need of repair in the IVAs language

model. Therefore, escalation detection and prediction are important parts of the risk

analysis process.
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Chapter 8

Relational Language

In this chapter, we explore another important factor in the identification of missed

intents, the inclusion of additional language within a turn that is unnecessary for the

determination of the user intention. The contents of this chapter previously appeared

in [75].

To better assist humans, IVA designers strive to support human-like interactions.

Take, for example, Amazon’s Alexa Prize competition where student developers at-

tempt to build IVAs that can carry on meaningful, coherent, and engaging conver-

sations for 20 minutes [159]. As IVAs become more human-like, we theorize that

users will increasingly use relational strategies (e.g. self-exposure and justification)

with IVAs similar to conversing with humans. There is a large body of work on

development of trust between humans engaged in virtual dialog [160, 161, 162, 163].

The focus of these works is on how relational strategies contribute to trust between

human speakers. From this literature, we predict the types of strategies humans may

employ with IVAs as they relate to them in an increasingly human manner.

In customer service and personal assistant domains, trust is necessary between the

human agent and customer. The customer’s issues must be viewed by the agent as

legitimate for proper attention to be given. Likewise, customers must trust that the
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agent is capable of assisting them and will not mistreat their information. Current

research shows that human-like virtual agents are associated with not only greater

user trust but also trust resilience when the agent makes mistakes [164]. To build

trust with the agent, customers may establish credibility through small talk, self-

exposure, and by providing justification of their requests [165].

In interactive question answering, such as dialogs with an IVA, understanding

user intent is essential for the success of the IVA [166]. The intent can be defined

as the interpretation of a user input that allows an agent to formulate the best

response. However, when relational strategies are applied to IVAs, the additional

language introduced is often unnecessary and can even obfuscate user intent. Such

language can lead to confusion in the IVA and a degradation of user experience in

the form of clarification questions and wrong information.

Example 1

I need a ticket to Boston this Saturday, my son is graduating!

In Example 1, the fact that the customer’s son is graduating is unnecessary for

determining the user’s intent to purchase a ticket. By including unnecessary back-

ground information, the IVA may incorrectly deduce that the customer is booking a

ticket for his or her son instead. Thus, the identification of relational segments is a

useful feature for an IVA; unfortunately, no corpus of annotated relational segments

exists to develop identification techniques [167].

This lack inspired us to create such a corpus1. Within this corpus, we needed to

not only identify the location of relational language but also label its type (Gratitude,

Greetings, etc.) so that automated methods to determine the relational strategy in

use can be explored.

If these strategies are practiced by users of IVAs, it is important to identify

1https://s3-us-west-2.amazonaws.com/nextit-public/rsics.html
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them; enabling IVAs to separate such language can help better clarify the users’

main intention. For IVAs to become more human-like, determining which segments

of a request are relational is necessary to allow these IVAs to both understand the

user intent correctly and to include empathetic or reciprocal relational strategies.

8.1 Related Work

The identification of relational strategies in a single conversational turn can be struc-

tured as a multi-intent detection problem. The user not only wants the task com-

pleted (the primary intent); they may also attempt to build credibility or some

common ground with the IVA (the secondary intent). Segments of text such as

justification or backstory can be annotated as secondary intent and ignored while

determining the primary intent. Once relational language is isolated, a separate clas-

sification can determine what relational strategies are in use and how to properly

respond.

Multi-intent detection within dialog systems is still an emerging field; in recent

work, only one intent is assumed to be present per turn [168]. A few methods exist

such as [71] which uses multi-label learning and [18] which employs a two-stage intent

detection strategy. However, [71] provided no explanation of how data was annotated

nor any mention of annotator agreement. In [18], multi-intent data was fabricated

by concatenating all combinations of single-intent sentences.

In the following sections, we discuss in detail how the data was collected, an-

notated, and merged to create highlighted sections. Another round of review was

then done on these highlighted sections to determine the class of language present

in these sections (e.g. Greeting, Gratitude, etc). We then measure and compare the

frequency of relational strategies when users present their requests to IVAs versus

humans. Finally, we conduct an experiment with three commercial IVAs, demon-
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strating that removal of relational strategies lowers confusion and leads to improved

responses.

8.2 Data Collection

Next IT - Verint designs and builds IVAs on behalf of other companies and orga-

nizations, typically for customer service automation. This unique position allows

access to a large number of IVA-human conversations that vary widely in scope and

language domain. We selected IVAs for data collection based on the volume of con-

versations engaged in, the scope of knowledge, and the diversity of the customer

base.

For diversity, we considered whether the target user base of the IVA was local,

regional, national, or international and mapped the locations of the users engaging

in conversations to visually verify. We only considered IVAs that had a national or

international target user base and did not appear to have a dominate regional clus-

tering to ensure that conversations were well distributed across users from di↵erent

regions. This was to control for relational styles that may di↵er between regions.

IVAs deployed in domains that were highly sensitive, such as human resource

management or health care, were not considered. As a result, human-computer

data was collected from three live customer service IVAs in the language domains of

airline, train travel, and telecommunications. Each agent met our criteria of a broad

knowledge base, su�cient conversation volume, and a very diverse user base.

The selected IVAs are implemented as mixed-initiative dialog systems, each un-

derstanding more than 1,000 unique user intentions. The IVAs have conversational

interfaces exposed through company websites and mobile applications. In addition,

the IVAs are multi-modal, accepting both speech and textual inputs, and also have

human-like qualities with simulated personalities and interests. A random sample of
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2,000 conversations was taken from each domain. The samples originate from con-

versation logs during November 2015 for telecommunications and train travel and

March 2013 for airline travel. There were 127,379 conversations available in the logs

for the airline IVA. The telecommunications and train travel logs contained 837,370

and 694,764 conversations, respectively. The first user turn containing the problem

statement was extracted. We focus on the initial turn as a user’s first impression of

an IVA is formed by its ability to respond accurately to his or her problem statement,

and these impressions persist once formed [169, 170]. Therefore, it is imperative that

any relational language present does not interfere with the IVA’s understanding of

the problem statement.

Finding a large mixed-initiative human-human customer service dataset for com-

parison with our human-computer dialogs proved di�cult. Despite mentions of suit-

able data in [171] and [172], the authors did not release their data. Inspecting the

human-human chat corpora among those surveyed by [167] revealed only one can-

didate: the Ubuntu Dialogue Corpus [173]. The corpus originates from an Internet

Relay Chat (IRC) channel where many users discuss issues relating to the Ubuntu

operating system. After a user posts a query on the channel, all following threads

between the querying user and each responding user are isolated to create two-way

task-specific dialogs. However, we want to study the initial problem statements to

compare their composition with those extracted from our data. In the Ubuntu cor-

pora, these are posed to a large unpaid audience in the hopes that someone will

respond. The observed relational language and behavior was, therefore, no di↵erent

than problem statements inspected in other IRC or forum datasets, and, for our

purposes, was no more fitting than any other forum or open IRC dataset.

In addition, we desire to not just measure relational language content but also feed

the problem statements into an IVA and measure the e↵ect of any relational language

on its understanding of the user intent. To do this, we needed requests that were

very similar to those already handled by one of the selected IVAs to have any hope
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of the user intent already existing in the agent’s knowledge base. Unsatisfied with

the Ubuntu dataset, we instead focused on publicly visible question and answering

data in domains similar to those of the selected IVAs.

Upon searching publicly visible chat rooms and forums in the domains of travel

and telecommunications support, we found the TripAdvisor.com airline forum to be

the closest in topic coverage. This forum includes discussions of airlines and polices,

flight pricing and comparisons, flight booking websites, airports, and general flying

tips and suggestions. We observed that the intentions of requests posted by users

were very similar to that of requests handled by our airline travel IVA. While a

forum setting is a di↵erent type of interaction than chatting with a customer service

representative (user behavior is expected to di↵er when the audience is not paid to

respond), it was the best fit that we could obtain for our study and subsequent release.

A random sample of 2,000 threads from the 62,736 present during August 2016 was

taken, and the initial post containing the problem statement was extracted. We use

request hereafter to refer to the complete text of an initial turn or post extracted as

described.

8.2.1 Annotation

From our four datasets of 2,000 requests each, we formed two equally-sized partitions

of 4,000 requests with 1,000 pulled from every dataset. Each partition was assigned

to four reviewers; thus, all 8,000 requests had exactly four independent annotations.

All eight reviewers were employees of Next IT - Verint who volunteered to do the

task in their personal time. As payment, each reviewer received a $150 gift card.

The reviewers were instructed to read each request and mark all text that ap-

peared to be additional to the user intention. The reviewers were given very de-

tailed instructions, shown in Appendix B, and were required to complete a tutorial

demonstrating di↵erent types of relational language use before working on the actual
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All Requests Multi-Intent Single Intent Unnecessary Avg. Length

TripAdvisor 2000 734 1266 94.1% 93.26
Telecom 2000 149 1851 77.3% 19.81
Airline 2000 157 1843 68.6% 21.64
Train 2000 201 1799 55.3% 20.07

Table 8.1: Dataset statistics. The Multi-Intent column represents the count of Re-
quests where one or more reviewers flagged it as containing more than one user in-
tention. The Unnecessary column represents the percentage of Single Intent requests
where one or more reviewers selected any text as being unnecessary in determining
user intent. Avg. Length is the number of words present in All Requests, on average.

dataset. As the data was to be publicly released, we ensured that the task was clear.

If more than one user intention was observed, the reviewer was instructed to flag

it for removal. This was a design decision to simplify the problem of determining

language necessary for identifying the user intention. Furthermore, as mentioned

in section 8.1, IVAs with the ability to respond to multiple intentions are not yet

commonplace. Although flagged requests were not used for further analysis, they

are included in the released data to enable future research. After discarding all

multi-intent requests, 6,759 requests remained. Per-dataset statistics are given in

Table 8.1.

A request from the TripAdvisor data is given in Example 2 below. A reviewer first

read over the request and determined that the user intent was to gather suggestions

on things to do during a long layover in Atlanta. The reviewer then selected all of

the text that they felt was not required to determine that intent. This unnecessary

text in Example 2 is shown in gray. Each of the four reviewers performed this task

independently, and we discuss in the next sections how we compare their agreement

and merged the annotations.
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Example 2

Original Request: Hi My daughter and I will have a 14 hour stopover from

20.20 on Sunday 7th August to 10.50 on Monday 8th August. Never been to

Atlanta before. Any suggestions? Seems a very long time to be doing nothing.

Thanks

Determine User Intent: Things to do during layover in Atlanta

Annotated Request: Hi My daughter and I will have a 14 hour stopover

from 20.20 on Sunday 7th August to 10.50 on Monday 8th August. Never

been to Atlanta before. Any suggestions? Seems a very long time to be doing

nothing. Thanks

Reviewers averaged 1 request per minute over 1,000 requests on TripAdvisor data

and 4 per minute over 3,000 requests from the three IVA datasets. We observed that

each of the eight reviewers required 29 hours on average to complete their 4,000

assigned requests.

8.3 Annotation Alignment

To compare the raw agreement of annotations between two reviewers, we use a

modification of alignment scores, a concept in speech recognition from hypothesis

alignment to a reference transcript [174]. We modify this procedure as insertions

and deletions do not occur. Reviewers mark sequences of text as being unnecessary

in determining user intention. When comparing annotations between two reviewers,

an error (ei) is considered to be any character position i in the text where this binary

determination does not match between them. The alignment score can be calculated

as:
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align =
n�

Pn
i=1 ei

n

where n is the total number of characters. Thus, align 2 [0, 1] where 1 is perfect

alignment. Reviewers may or may not include whitespace and punctuation on the

boundaries of their selections which can lead to variations in ei. Therefore, when two

selections overlap, we ignore such characters on the boundaries while determining ei.

Figure 8.1 shows a fabricated example of alignment between two annotations. In

the first selection, the trailing whitespace and punctuation are ignored as they occur

within overlapping selections. Notice, however, that whitespace and punctuation

count in the last selections as there is no overlapping selection with the other reviewer;

therefore, there is no possibility of disagreement on the boundaries.

A: [Hi, ]I need a new credit card[, my old doesn’t work any more.] Can you help?
B: [Hi], I need a new credit card, my old doesn’t work any more.[ Can you help?]

n = 73
P73

i=1 ei = 45 alignAB = 73�45
73 = 0.384

Figure 8.1: Example alignment scoring between two fabricated annotations A and
B. Text between “[” and “]” was marked as unnecessary for intent determination.
Positions with an alignment error are underlined.

The alignment score was calculated for every request between all four annotations

and then averaged. For example, an alignment score was calculated for each request

between reviewer A and B, A and C, A and D. The same process was repeated

between reviewer B and C, B and D, then C and D. Finally, alignment scores

between all unique pairs of reviewers over all requests were averaged per dataset. The

distribution of average scores per dataset is shown in Figure 8.2 (a). It may appear,

at first, that two annotators could inflate the dataset alignment score by simply

making annotations infrequently. However, as each request had four annotators, the

average alignment score would actually be lower as those reviewers would have large
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error compared to the other two. The per dataset alignment averages can, in fact,

be higher if a dataset has a large number of requests where no reviewer selected any

text.

Therefore, it is interesting to remove the e↵ect of these cases and compare the

ability of reviewers to agree on the selection boundaries given they both agree that

selection is necessary. To measure this, we compute average alignment scores where

both reviewers agree that additional language is present, shown in Figure 8.2 (b).

Observe that although the Train dataset has the highest overall alignment in both

cases, it is lower when the reviewers both select text, indicating it has many cases

where no reviewers selected anything (which is in agreement with Table 8.1). In the

case of TripAdvisor, it appears that there are a significant number of requests where

one or more reviewers do not select text, but the others do, lowering the overall

alignment score in Figure 8.2 (a).

(a) Overall alignment scores (b) Alignment scores when reviewers agree
that additional language is present

Figure 8.2: The distribution of average alignment scores between all four annotations
per dataset is shown in (a). We compute average alignment scores where all reviewers
agree that additional language is present in (b).

Alignment based on word-level instead of character-level agreement was also con-

sidered. For each word, if the reviewer selected at least 50% of the word it was

considered to be marked. This resolves situations where a reviewer accidentally
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TripAdvisor Train Airline Telecom

 0.270 0.450 0.405 0.383

1 1192 995 1264 1431
2 1092 709 948 1154
3 863 458 644 795
4 534 205 292 410

Table 8.2: Reviewer agreement on if any text should be selected. For example, row
3 is the number of requests with selections by at least three reviewers.

missed the first or last few characters of a word in their selection. However, this may

introduce errors where two letter words have only one character selected. In this

case it is impossible to automatically decide if the reviewer meant to select the word

or not as always selecting such words will be susceptible to the same error. Besides

this ambiguous case, we felt it was safe to assume that words of longer length with

less than half of the word selected were not intended to be marked.

Selected words were then used in place of selected characters in calculating the

alignment scores between the reviewers in the same manner as Figure 8.1. We dis-

covered that the alignment scores were only 0.2% di↵erent on average across the

datasets than the character level alignment scores shown in Figure 8.2. This indi-

cates that reviewers are rarely selecting partial words, and any disagreement is over

which words to include in the selections. Therefore, in the released corpus and in

this article, we consider selections using absolute character position which retains

the reviewers’ original selection boundaries.

8.3.1 Agreement Between Reviewers

As it is di�cult to determine how often all reviewers agree additional language is

present from alignment scores alone, we measured reviewer agreement on the pres-
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ence of additional language and multiple user intentions. For additional language

presence, we calculated Fleiss’  over the annotations where the classes compared

were if a reviewer did or did not select text. As demonstrated in Table 8.2, regardless

of domain, this is a subjective task. While there is moderate agreement in the Train

and Airline sets, the TripAdvisor set, in particular, is lower in agreement which re-

inforces our previous observations in Figures 8.2 (a) and (b). Due to the sensitivity

of  measurements [175, 176], these values must be interpreted in light of the task.

Despite the lower values, we are only measuring presence or absence of unnecessary

language, and these two categories did not necessarily occur in equal frequencies.

Under these conditions, according to [177], a  between 0.2 and 0.45 may suggest

reviewer reliabilities between 80% to 90%, respectively. Therefore, despite the lower

values for , the individual reviewer annotations appear reliable and can be further

improved when merged based on agreement as discussed in the following section.

Example 3

R1: Our tv reception is horrible. is there an outage in my area?

R7: Our tv reception is horrible. is there an outage in my area?

We did observe situations where two reviewers disagree on the real intent of the

user, therefore, causing conflict in the selection of unnecessary text. While these were

rare, Example 3 demonstrates how even humans sometimes struggle with determining

the intention of written requests. Reviewer 1 appears to believe that the primary

intent of the user is to notify the agent about poor television reception, and the

query about the outage in the area is out of curiosity. However, reviewer 7 appears

to believe the primary intent is to discover if a cable outage is present in the area, and

the complaint about reception justifies the query. The e↵ects of these disagreements

on intent can be mitigated by merging the annotations based on the number of

reviewers who agreed on a selected character.

Next, we considered the reviewers’ determination of multiple intentions. A 
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TripAdvisor Train Airline Telecom

 0.415 0.374 0.434 0.386

1 734 201 157 149
2 480 85 69 56
3 275 50 38 32
4 71 8 15 11

Table 8.3: Reviewer agreement on multi-intent detection. For example, row 3 is
the number of requests flagged as containing multiple intentions by at least three
reviewers.

(a) Alignment between group 1 reviewers. (b) Alignment between group 2 reviewers.

Figure 8.3: Alignment scores between each reviewer and the other three members of
their group, averaged across the four datasets.

was calculated over how reviewers flagged requests containing more than one user

intention. As shown in Table 8.3, we see somewhat similar performance in this task

as in the previous selection task. This table demonstrates the di�culty of multi-

intent detection, even for humans. The domain does not seem to be a factor as 

is similar across datasets. It is apparent, however, that in the forum setting, users

are much more likely to insert multiple intentions in a single request than in a chat

setting.

How reviewers compare to the rest in their selections is another aspect to be
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considered. Figure 8.3 (a) compares how each reviewer agreed with the other 3 in

the first group. We can see that, overall, the mean is very close. However, reviewer

7, in particular, had more variation in his or her selections. Similarly, Figure 8.3

(b) compares how each reviewer agreed with the other 3 in the second group. In

the second group, we see slightly more disagreement, particularly with reviewer 6.

This could be because he did not interpret the user intention the same as others or

because the reviewer was more generous or conservative in selections compared to

the others in the group.

8.3.2 Merging Selections By Agreement

Figure 8.4: Mean number of words highlighted per request by dataset. Agreement
is the number of reviewers who marked the same word for removal, where 0 is the
original request length.

The four annotations per request were merged using the following strategy: for

every character position in the request, if at least a threshold of two annotations

contained that position, highlight it. To quantify the average reduction of request

size, we count the number of words highlighted for each level of reviewer agreement.

In Figure 8.4, we can see that as the agreement required increases, the size of the

highlight decreases significantly.
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8.4 Annotating Relational Content

To determine the use of relational strategies, a second round of manual analysis

was performed. An increase in agreement corresponds to a significant removal of

remaining annotations as can be seen in Figure 8.4. Therefore, in order to have

su�cient data for analysis given the sample size, an agreement of two is used. A

comparison of relational annotation using all agreement levels is left for future works.

Once merged, highlighted sections were analyzed by the authors to determine the

classes of language present. Each such section was evaluated and given one or more

of the following tags: Greeting, Backstory, Justification, Gratitude, Rant, Express

Emotion, Other. See Figure 8.7 for an overview of the entire process.

Greetings are a common relational strategy humans use to build rapport with

other humans and machines [178].

Backstory is a method of self-exposure that may be employed by the customer.

In Example 1 given in section 8.1, the customer included the fact that he or she is

attending a graduation as a means of self-exposure. This may be an attempt to build

common ground with the agent or it may indicate the importance of the trip and

motivate the agent to help the customer succeed.

Justification is used by the customer to argue why the agent should take some

action on the part of the customer. For instance, when trying to replace a defective

product, a customer may explain how the product failed to establish credibility that

the product was at fault.

Gratitude, like greetings, are used by humans to also build rapport with humans

and machines [178].

Ranting is a means of expressing dissatisfaction when a customer feels frustrated,

ignored, or misunderstood. In computer-mediated conversations, the non-verbal
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emotional cues present in face-to-face conversations are missing; thus, humans resort

to such negative strategies to convey their emotions [179]. For tagging purposes, we

define a Rant to encompass any excessive complaining or negative narrative.

Expressing emotions can be a means of showing displeasure when a customer

feels a conversation is not making adequate progress or in reaction to an unexpected

or disagreeable agent response. This can also indicate joking or other positive emo-

tional expression. The tag Express Emotion is used as a catch-all for any emotional

statement that is not covered by Rant. Examples would be: “i love that!”, “UGH!”,

“WHY???”.

The Other tag indicates that some or all of the section does not contain any

relational language. This is commonly a restatement of the primary intent or facts

that reviewers marked as unnecessary.

8.4.1 Analysis of Relational Tags

Figure 8.5: Incidence of relational language per dataset. An incidence of 0.5 means
the tag is present in 50% of all requests.

As shown in Figure 8.5, we see that backstory is more common in human-to-
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human forum posts. However, both Airline and Telecom IVAs also have a significant

amount of backstory. Although minimal, ranting and justification were present in

Telecom. The Train dataset appeared to contain the least amount of relational

language. It is di�cult to speculate why without deeper analysis of the user demo-

graphic, the presentation of the IVA on the website, and the IVA knowledge base.

Figure 8.6: Pearson coe�cients of tag correlation across datasets.

The correlation between tags is shown in Figure 8.6. When greetings are present,

it appears that there is a likelihood there will also be gratitude expressed which

agrees with the findings in [178] and [180]. Also interesting is the apparent corre-

lation between backstory and gratitude. Those that give background on themselves

and their situations appear more likely to thank the listener. Ranting appears to

be slightly negatively correlated with greetings, which is understandable assuming

frustrated individuals are not as interested in building rapport as they are venting

their frustrations.
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Figure 8.7: An overview of the review and merging process. In this example from
the TripAdvisor corpus, reviewers 2, 3, and 4 all agree on which text is unneces-
sary. Selections are merged to form highlighted text that is then removed from the
original text to create a cleaned request. A second round of annotation was done on
highlighted texts to determine the classes of language present. The colors of the text
correspond to the class present.

8.5 Experiments and Results

To measure the e↵ect on IVA performance and determine what level of reviewer

agreement is acceptable, we first constructed highlights for the 6,759 requests using

all four levels of reviewer agreement. Next, four cleaned requests were generated from

each original request by removing the highlighted portion for each level of agreement

resulting in 27,036 requests with various amounts of relational language removed.

Every unaltered request was fed through its originating IVA, and the intent confi-

dence score and response was recorded. We then fed each of the four cleaned requests
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Figure 8.8: Results of the A-B test on IVA response to original request versus cleaned
request. Black bars indicate 95% confidence intervals.

to the IVA and recorded the confidence and response. The TripAdvisor data was

fed through the Airline IVA as it provided the most similar domain. This was also

a test to see if lengthy human-to-human forum posts could be condensed and fed

into an existing IVA to generate acceptable responses. We observed an increase in

confidence in all domains with an average of 4.1%. The Telecom set, which had the

highest incidence of backstory outside of TripAdvisor, gained 5.8%.

In addition to intent confidence, we measured the e↵ect of relational language

removal on overall IVA understanding. An A-B test was conducted where four re-

viewers were shown the user’s original request along with the IVA response from the

original request and the IVA response from a cleaned request. They were asked to

determine which, if any, response they believed better addressed the request. If the

original IVA response was preferred, it was assigned the value -1. If the response

to the cleaned request was preferred, it was assigned the value 1. Finally, if nei-

ther response even remotely addressed the user’s request or if both responses were

comparable, it was given the value 0.

This A-B test was done only on responses that changed as a result of the cleaned
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request (3,588 IVA responses changed out of the 27,036 total responses). The result

of this analysis is shown in Figure 8.8. Note that the lower bound is -1, indicating

the original IVA response is preferred. If language is removed, the IVA response

to the cleaned request is more likely preferred as made evident by the significantly

positive skew. 95% confidence intervals are included, and although they may seem

large, this is expected; recall that a 0 was assigned if both IVA responses address the

user request comparably or neither did. In 10 of the 16 cases, the skew is towards

the cleaned response within the 95% confidence interval.

This is evidence that the current usage of unnecessary language has a measurable

negative e↵ect on live commercial IVAs. TripAdvisor is an interesting exception,

especially when the threshold is 4. However, this can be somewhat expected as it

is a human-to-human forum where user inputs are significantly longer, and primary

intent can be di�cult to identify even for a human.

Although, in general, the removal of language is preferred, how much removal?

This is another question addressed in Figure 8.8. The higher the threshold, the more

reviewers need to agree on the removal of the same segment of text. Thus, although

language may still be removed, less language is removed with a high threshold than if

the threshold was lower due to low kappa (see 8.3.1). In e↵ect, the higher thresholds

may remove less unneeded language but the language that is removed is more likely to

be actually unnecessary which appears to improve the IVA understanding. However,

using a threshold of 4 seems to have limited improvement over 3 due to the reviewer

disagreement.

Through the collection of this corpus and the annotation of relational segments,

we have shown that users of commercial IVAs are already applying relational strate-

gies to these IVAs. It is our prediction that these strategies will only increase as IVAs

become more ubiquitous and human-like. We have also shown that the removal of

unnecessary language during intent determination not only increases intent classifier

confidence but also improves response by reviewer standards.
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8.6 Application of Relational Language Detection

to Risk Analysis

As demonstrated in Section 8.5 above, the presence of relational language can add

confusion to single intent classifiers and therefore can be used as an indication of

possible missed intent. Detection of relational language can be structured as a multi-

intent detection problem, as described in Section 8.1. For our purposes, we are not

concerned with the exact location of the relational language within the text or the

classification of its type, we only want to detect its presence. Therefore, we follow

a simple partitioning strategy for multi-intent detection proposed by [18]. Using

the set of punctuation combined with a dictionary of common English conjunctions2

such as “and”, “but”, “because”, “so that”, et cetera; we split each turn on every

occurrence of punctuation or conjunction to form the set of all possible hypothesis

pairs H, demonstrated in Example 4 below.

Example 4

Original turn horig: My mother and I just returned from Florida and

they lost our bags. Who do we contact

Hypothesis pair 1: <My mother>, <I just returned from Florida and

they lost our bags. Who do we contact>

Hypothesis pair 2: <Mymother and I just returned from Florida>, <they

lost our bags. Who do we contact>

Hypothesis pair 3: <My mother and I just returned from Florida and

they lost our bags>, <Who do we contact>

In [18], the left and right segments, hl and hr, from every pair h 2 H are then fed

into the intent classifier independently and the confidence score of classification on

2Obtained from http://grammar.ccc.commnet.edu/Grammar/conjunctions.htm
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each is recorded. For the purpose of multi-intent detection, the authors determine if

two separate intents are present by comparing the scores for hl and hr to the score

for horig as shown in Equation 8.1.

min{score(hl), score(hr)}
score(horig)

> thresholdmulti�intent (8.1)

If Equation 8.1 holds, the authors conclude that there are two di↵erent intents

present in the original turn. For our application, if this equation holds using the

author’s value of thresholdmulti�intent = 1, we apply the risk indicator multi intent

to the original turn. As discussed in Section 4.4.2, we assume the IVA expects single

intents per turn, therefore the presence of more than one intent can cause confusion

in intent classification.

Furthermore, we can extend this idea of partitioning the original turn into seg-

ments and using the intent classifier’s confidence on each segment to detecting the

presence of unnecessary language. If we observe that either of the following equa-

tions hold we conclude that hl (in Eq. 8.2) or hr (Eq. 8.3) contains language that is

unknown to the intent classifier and is therefore out of the expected scope for intent

recognition.

[score(hl) < score(horig)⇥ s] ^ [score(hr) > score(horig)] (8.2)

[score(hl) > score(horig)] ^ [score(hr) < score(horig)⇥ s] (8.3)

If either equation is satisfied, using the arbitrary scaling factor s = 0.75, we apply

the risk indicator backstory to the original turn. These equations may indicate

the presence of unknown and potentially unnecessary language such as relational

language.
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Example 5

score(horig) = 0.65

Hypothesis pair 1: score(hl) = 0.01, score(hr) = 0.7

Hypothesis pair 2: score(hl) = 0.1, score(hr) = 0.9

Hypothesis pair 3: score(hl) = 0.4, score(hr) = 0.5

Continuing from the previous example, in Example 5 we see that either Hypothe-

sis pair 1 or 2 would trigger the backstory risk indicator to be applied to the original

turn, but none would trigger the multi intent risk indicator. Either segment “I just

returned from Florida and they lost our bags. Who do we contact” or “they lost our

bags. Who do we contact” contains less unnecessary information to determine the

user intent of <baggage claims contact info> than the original turn. Therefore, the

precedence of unnecessary language in the original turn can be used as an indicator

of potential missed intent.
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Chapter 9

Response Classes

Having covered indicators of missed intent that focus on the contents of user turns,

we now look at the structure of the IVA responses that may cause confusion on

the part of the user. When evaluating the performance of the Natural Language

Understanding (NLU) component using features derived from the human inputs, we

have to somehow control for the fact that the IVA did indeed understand, but the

human user did not comprehend the response. If we do not attempt to control for

this, we may see indication that user queries were not understood, such as repeating

the query or including correctional language, when in fact the failure to understand

was on the part of the user.

Human-IVA communication is a two party activity, and therefore both parties

must understand each other in order to achieve success [181]. We cannot assume

that human users will always achieve 100 percent perfect understanding of every

possible IVA response. In this chapter, we explore ways to determine if the IVA did

in fact understand, but did not present the response to the user in a way that was

easy for them to comprehend. If this is the case, our risk features based on human

user behavior can indicate the NLU is in error, when in fact it was the Natural

Language Generation (NLG) component that was the cause of miscommunication.
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The contents of this chapter to appear in [182] and are an extension of the work

appearing in [183].

9.1 Introduction

With the continuing rise of Intelligent Virtual Assistants (IVAs) [3] and analysts

predicting that human customer service agents will be altogether replaced by IVAs

in the near future [8], discovering means to optimize human-computer interactions

is necessary. As a company that builds IVAs primarily for customer service, we are

interested in cases where there is no apparent misunderstanding on the part of the

IVA, but the user continues to restate their query.

Restatements in conversation are problematic because they can break the prin-

ciple of least collaborative e↵ort : both the user and system want the dialogue to be

finished as e�ciently as possible and with success [95]. Restatements are a type of

error correction mechanism employed by users when they sense the conversation is

not progressing as it should [94, 104]. Even if the IVA understood the user’s query,

restatements may follow because the answer was not specific enough, the user did

not fully read or understand the response, or the response was presented in a format

that did not appeal to the user. In the latter case, as these IVAs are increasingly

multimodal [81, 184], we theorize that not only is the formulation of the response

important, but so is the media it is presented on.

For example, a user may prefer the IVA to answer their query directly in the

response text instead of displaying a web page with the answer contained in it. If

such a user were to ask an airline IVA the maximum carry-on dimensions, and in

response, the IVA displays a web page containing all of the airline’s baggage policies

instead of directly answering the query in text form, the user may restate the query

hoping for a more direct answer. Even though the IVA understood the user’s request
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and displayed the correct page containing the answer, the user restated because they

would prefer a direct answer from the IVA. This additional back and forth to resolve

a query can lead to user dissatisfaction in the IVA and increase the time required to

resolve customer support issues. Therefore, we are motivated to discover the causes

of such restatements so that we can design IVA responses in a way that minimizes

them.

As users have di↵erent preferences in communication, we concede that there is no

one “right” way to formulate a response. Following the above example, a di↵erent

user may actually prefer to see the web page with the entire carry-on policy as

it would provide more detailed information. In light of this, we resort to statistical

analysis to determine which features of a response are correlated to user restatements

so they can be taken under consideration when designing responses. Knowing which

features do and do not have an e↵ect on user restatement gives dialog designers the

tools to make more informed design choices.

In this article, we explore interactions with an IVA that communicates with cus-

tomers over embedded live chat on a large company website as well as the company’s

mobile application. In both cases, the IVA is exposed on multimodal interfaces that

use audio, text, images, User Interface (UI) controls, and web content as media.

After tagging numerous features in these interactions, we perform statistical analy-

sis to determine why the IVA response can appear acceptable to a reviewer (where

“acceptable” means a reviewer has deemed the IVA response to have answered the

user’s question) but still fail to satisfy the user. Our contribution is to provide de-

signers of multimodal IVAs guidance for intelligently selecting the media to present

information to the user and the linguistic features of response text to minimize in

order to reduce confusion.
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9.2 Related Works

In [185], the authors provide a comprehensive overview on the evaluation and usabil-

ity of spoken language dialogue systems (SLDS). The authors state that the inner

workings and evaluation of commercial SLDSs are typically kept secret, but note

that it is a well-known fact that a high rate of transaction success does not guaran-

tee happy users. Test subjects may judge di↵erently and more positively than real

users. Thus, in our work, we not only determine if an IVA’s response is acceptable

to reviewers, but also consider why a user may repeat his or her request multiple

times despite a reviewer’s positive judgement call.

[186, 187, 188] all conclude empirically that multiple input and output modalities

go well together for the user, but in our paper, we determine that it is not so simple;

combinations of media and textual linguistic complexity need to be simultaneously

considered for user satisfaction. This is also a very di�cult problem given that users

may score the same system very di↵erently; one user may prefer related topic links

over web content, but another may just prefer text.

Similar research involving the analysis of user behavior for the evaluation of

IVAs exists such as in [81] where sequences of user behavior patterns (commanding,

selecting, or confirming actions) are used to determine user satisfaction. However,

user repetition is not analyzed. In addition, although this work involves interactions

with intelligent assistants, the authors note that their approach works best on device

function tasks (making phone calls, checking calendar events, etc.) and the worst on

chat tasks.

Error spotting in conversation between IVAs and humans is well covered in [94,

104, 91, 105]. However, these works focus on the detection and recovery of errors

resulting from misunderstanding or non-understanding on the part of the IVA, not

the user. In addition, they do not take into account possible e↵ects of modality as all

IVAs involved were SLDSs, and therefore, communicating over a single media. [104],
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in particular, does highlight user-initiated error correction mechanisms and breaks

user restatement into four specific actions: user repeats command, user repeats info,

user rephrases info, and user rewords query. There is no discussion of the circum-

stances that these actions occur in as the data set consisted of only 40 dialogs, and

there were few occurrences of each type of restatement.

While restatements can be an indication of conversational error correction, they

may be motivated by ignorance on the part of the user to design a proper query [96].

A restatement as a result of a poor query would be the user trying to make his or

her question more specific. For example, the authors in [189] discuss the problem

of geolocation with Speak4it, a consumer-oriented application that uses multimodal

input and output to help users search for local business information. Typically, lo-

cal search systems assume the device’s location for queries when the location is not

explicitly stated by the user. The authors discover that users repeat queries and

add locations to overcome errors arising from this basic assumption. Some informa-

tion search systems also o↵er query suggestions, and this can be another source of

repetition. Query suggestions can help users execute searches when it is di�cult to

formulate a query, especially if the user does not not know what kind of vocabulary

to use [190]. The authors in [191] discovered that reformulation and system query

assistance accounted for almost 45 percent of query reformulation actions. Users

may make a series of small queries instead of one large one in the hopes of obtaining

the best search results [192]. Thus, one cannot assume that all user restatements are

automatically detrimental to the conversation.

To the best of our knowledge, ours is the only work involving the direct analysis

of combinations of response media and linguistic complexity on user restatement. As

mentioned previously, we consider why a user may repeat his or her request multiple

times despite a reviewer determining that the IVA has correctly answered the user’s

questions.
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9.3 Methods

Next IT - Verint designs and builds IVAs on behalf of other companies and orga-

nizations, typically for customer service automation. This unique position allows

access to a large number of IVA-human conversations that vary widely in scope and

language domain. During routine review of these conversations to improve IVA un-

derstanding, we frequently noticed that conversations would be flagged for review

due to user restatements within them, but upon further inspection, they were not

due to errors in IVA understanding. If the IVA correctly understands the user but

the query is immediately restated, we reasoned that the response presentation must

be somehow unacceptable to the user. To better understand why this phenomenon

was occurring, we conducted the following experiment to determine what features of

the IVA response can lead to these restatements.

9.3.1 IVA Selection

We reviewed our multimodal IVAs and selected a large international airline IVA for

our analysis. The IVA interacts with users on the airline’s website and mobile appli-

cation, providing general travel advice such as flight status information, baggage and

security rules, and even helps with the booking process. This particular assistant

was selected as user interactions are a good middle ground between an Information

Retrieval agent, as it must fetch flight status and travel documents, and a dialogue

system, as it contains several tasks such as collecting everything needed to book

a flight or transfer award miles between accounts. In addition, it is a very active

IVA with a diverse user base. On average, it responds to 4.6 user inputs per second

and engages in 115.5 unique conversations per minute with users located around the

world. It supports mixed-initiative conversational dialog and can recognize 1,230

unique user intentions, which, in the context of Natural Language Processing, are

interpretations of a user input or action that allows one to formulate the best re-
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sponse.

The input media supported by this agent are voice, text, UI elements, and web

page events. Voice service is provided by the speech application programming in-

terfaces available on the mobile device or browser; therefore, we have no access to

Automatic Speech Recognition (ASR) features or original audio. We are simply

given the resulting text translation. Example UI elements may be additional links

provided by the agent as suggestions of related topics or drop down selection boxes

used for tasks like indicating a country code. Web page events may be clicking on a

help icon next to text on a webpage which will launch the agent with a query asking

for more information on that topic or clicking navigation links to pages the agent is

designed to help with.

The output media include the agent response in both text and audio format using

Text To Speech (TTS), related topic links that, when clicked, will submit the topic

to the agent for additional information, and pushing web pages related to the current

topic to the user’s browser window or mobile application.

The determination of which combination of output media to present in response

to a user intention is up to the designers of the specific IVA. For the selected airline

IVA, dialog designers determine what other topics in the IVA knowledge base are

related to each intention and will manually associate links. They also determine

if the airline has web content available on the company website to be associated

with a given response. Other IVAs may do this automatically through Information

Retrieval methods. The combination of media for a given response can therefore be

predetermined by the dialog designers or automatically generated at run time. Even

in instances where content is automatically generated, dialog designers have a choice

of when to allow this additional content to be displayed and can therefore benefit

from this study.

From conversation logs associated with the IVA, we selected 14,000 user input
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and IVA response pairs contained in 2,998 conversations where the user had at least

two interactions with the IVA. The threshold of two was chosen as it is impossible

to restate a query in a conversation with only a single interaction. To protect the

identity of the human users by allowing time to pass before using data for research

these conversations were taken from a random 24 hour period in 2013.

The conversation logs contain the user input to the IVA and its media, the IVA

response text, related topic links displayed through the UI if any, and the URL to a

web page that would have been displayed to the user if one was associated with the

response. Although the IVA can respond with audio using TTS, the user is able to

mute the audio in both the web interface and mobile application; we do not know if

they have done so. Therefore, we exclude this medium of response from our analysis.

9.3.2 Data Annotation

Three rounds of tagging (see Tables 9.1, 9.2, and 9.5) were conducted on the data

to discover user restatements, classify IVA response media, and determine if restate-

ments were due to a clarification of task or not. Due to the size of the dataset and

the expense of manual review, the data was divided equally among three reviewers

for the first two rounds of tagging. To avoid bias, the chosen reviewers had never

used the specific IVA and were not familiar with its knowledge base. The reviewers

were given detailed instructions with examples and a general definition of the feature

they were tagging for that round.

Although any URLs to web content displayed to the user were known to us, we

selected conversations recorded three years prior to the analysis out of concern for

user privacy. There is no way to verify that the web page content available now is

identical to what users saw. Therefore, only the presence or absence of a URL is

included in our analysis.
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User Turn Features

In the first round of annotations (see Table 9.1), three reviewers were asked to iden-

tify if the turn appeared to be a restatement of some previous turn in the same

conversation. In [104], this was broken into four categories: repeating command,

repeating info, rephrasing info, and reword query. As the reviewers in that partic-

ular paper only tagged 40 conversations in this manner, and we have nearly 3, 000,

we collapsed these four categories into one. As noted in [104], this may occur mul-

tiple times within the same conversation, and every query may result in multiple

restatements until the user is satisfied or gives up. For our purposes, restatements

include verbatim repetitions as well as rephrasing of the same info or query pre-

viously given. Rephrasing can contain additional information (clarification) or less

information (generalization) as a previous turn. For example, turn 3 in Table 9.1 is

a clarification of turn 2, and therefore tagged as a restatement of turn 2.

Turn User Input Restatement?

1 How do I change my ticket? no
2 i want to upgrade my flight no
3 i want to upgrade my flight today and purchase yes
4 print baggage id no

Table 9.1: Round One of Annotation: Is the user turn a restatement of some previous
user turn in the same conversation?

Agent Response Features

For the next round, three reviewers tagged two features of each response by the IVA.

For every input-response pair, reviewers determined if the response was acceptable

given the user input. A reviewer tags a response as “acceptable” if they deem the

IVA response to have answered the user’s question. If not, the response was tagged

as a misunderstanding on the part of the IVA. For example, Table 9.2 shows a
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conversation where a reviewer has determined that all IVA responses except for the

last one are acceptable given the user’s inputs.

User Input IVA Response Acceptable? Class?

How do I change
my ticket?

If your flight has not departed and
you would like to change your reser-
vation, enter your confirmation num-
ber in the space provided at the bot-
tom of this Web page. See the links
below for more information.

yes C2c

i want to up-
grade my flight

See the upgrade priority section of
this Web page for information about
the order in which upgrades are
granted, or choose from the links be-
low for information on specific types
of upgrades.

yes C2c

i want to up-
grade my flight
today and pur-
chase

To upgrade to a premium cabin, you
can pay a fee on this Web page. For
more information about upgrading
on the day of departure, select the
link below.

yes C3

print baggage id In general, each traveler is allowed
two pieces of checked baggage, one
carry-on bag and one personal item
for both domestic and international
flights. For further information,
please select a link below.

no C2b

Table 9.2: Round Two of Annotation: Did the IVA’s response address the user’s
input? Based on the combination of output media (text, web content, links), what
is the IVA response media class?

Our tagging scheme corresponds to roughly 8 of the 13 evidence of misunder-

standing features defined by [104] and the five response-level errors defined in [193].

However, as the focus of our analysis is only on cases where the IVA appeared to

understand, we used a single tag for misunderstanding on the part of the IVA for

any reason. This also greatly reduced tagging time.



Chapter 9. Response Classes 142

The second response feature tagged for was the response media class. Recall in

Section 9.3.1 that there are three response media in use by the IVA: the primary

media of text and optional speech, related topic links, and web content URLs. These

can occur in any combination; therefore, we define seven classes of response based

on which combination of output media are referred to within it (see Table 9.3). If

there is just one medium, it belongs in the class of C1. Likewise, if there are two

media present, the class is C2 and C3 if three are present. We further divide these

three classes based on what specific media are used. Note that links di↵er from web

content; links, when clicked, will direct the user to additional information whereas

web content refers to pages that are automatically pushed into the user’s browser

window or mobile application.

The first class, C1a, corresponds to responses seen in a typical text or speech only

IVA. No links or web content are present. Next, we have class C1b where the agent

displays web content in the browser or mobile application. Although the agent may

also include a textual response, this response does not attempt to directly address

the user query. Instead, the response may be something along the lines of, “See the

following webpage for more information”. Whether or not an attempt is made to

“directly address” a user’s query is determined by reviewers. No links are present.

The final class involving just one medium is C1c which provides links and is similar

to C1b where a textual response may be included, but it does not attempt to directly

address the user query as determined by reviewers. The links provided give the user

an indication of similar or more specific knowledge the IVA has on the current topic

and allows the user to simply click on them instead of formulating clarifications or

new queries. This response class may be used by the IVA as a form of clarification of

the user’s task based on the closest matching intentions in its knowledge base. Once

clicked, the IVA will respond to the query associated with the link. No web content

is present.

For classes involving two media, C2a consists of response text that actually
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Text Web Content Links

C1a 3
C1b 3
C1c 3
C2a 3 3
C2b 3 3
C2c 3 3
C3 3 3 3

Table 9.3: There are seven classes of response based on which combination of output
media are referred to within it: addressing the user query in text and optional speech,
web content URLs, and related topic links.

attempts to directly address the user query along with web content containing addi-

tional information on the topic. No links are present. Next, C2b consists of response

text that attempts to directly address the user query along with related or alterna-

tive topic links. No web content is present. The last IVA response in Table 9.2 is

an example of this. The final class consisting of two media, C2c, consists solely of

links and web content; any response text present does not attempt to answer the

user query. The first two IVA responses in Table 9.2 are examples.

Figure 9.1: Example of a C3 response from an IVA which involves all three media

The last class (C3) contains all three media of information. The IVA provides
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a textual response attempting to address the user’s query, directs the user to web

content containing specifics, and suggests related or alternative queries all at once.

An example screenshot of a C3 response is shown in Figure 9.1. Example screenshots

of all response classes from various live IVAs on corporate web sites are given in

Section 9.6. The distribution of these response classes over all of the responses in

our sample is given in Table 9.4.

Total C1a C1b C1c C2a C2b C2c C3

Total 14,000 1,669 110 535 177 2,354 2,837 6,318

Table 9.4: Distribution of response classes over the 14,000 input-response pairs se-
lected in Section 9.3.1

Task Clarification

For the final round of tagging (see Table 9.5), two reviewers were given conversations

containing any restatements tagged in the first round. They were asked to determine

if each restatement was identical to the task of its original statement or a more specific

task. When the user inputs a request, the IVA responds. At this point three things

can happen: the user accepts the response and continues the conversation, the user

abandons the conversation, or the user restates their query or information. Not

all restatements indicate a failure in communication however. As covered in [96],

sometimes speakers are ignorant of the proper way to express their task or what

tasks are even possible. The IVA response can therefore clue them in on the di↵erence

between their requested task and their real task, and lead them to properly formulate

their request. In this case, although the restatement is still indicative of a user

error correction strategy, it is indicating an error in the user knowledge, not in

understanding the IVAs response.

Suppose the user asks “How do I change my seat?”, and the IVA responds with

instructions on how to modify a seat, but, in addition, includes a link called Same
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Turn User Input Restatement Clarifying?

1 How do I change my ticket? no -
2 i want to upgrade my flight no -
3 i want to upgrade my flight

today and purchase
yes yes

4 print baggage id no -

Table 9.5: Round Three of Annotation: Are the restatements that are present in a
user turn identical to the task of its original restatement or a more specific task? The
annotator must fill out the third column of the table for any turns that were marked
as restatements in round one. In turn 3, the user specifies that the upgrade is for a
flight that day, which is a more specific task than upgrading a flight in general.

Day Seat Changes. This link indicates to the the user that changing a seat on the

same day of departure is a di↵erent task than what he or she originally asked for.

The user might click on the link to get information on what was their real task all

along; the user was not aware of such a distinction when stating the initial query.

In this scenario, the restatement is not actually a negative user experience since the

IVA has informed the user on the di↵erence in task. This clarifying tag helps us

separate restatements due to responses that may actually be helpful to the user from

restatements where the user appears dissatisfied in the response. Note that with this

example, the clarifying restatement came from link suggestions, but users may also

infer they did not properly formulate their intended task by the IVA response text.

Figure 9.2 shows another example di↵erentiating clarifying from non-clarifying

restatements. In the first case, the user restates the same task with less descrip-

tive information (generalization). In the second case, the user restates their task

directly with little or no variation (repetition). In the final case, the user provides

additional information for their task, di↵erentiating it from the original general task

(clarification). While the task still involves gathering information about baggage, the

additional pertinent information allows the IVA to disregard other related tasks such

as baggage claim numbers or where to drop o↵ baggage. Without this additional

information, the IVA’s only recourse is to ask the user to clarify their task.
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Non-clarifying - Generalization:

User: How do I transfer miles from my husband who passed away in 2007?
User: how to transfer miles from my late husband

Non-clarifying - Repetition:

User: Need flight info
User: Need flight information.

Clarifying - Task Specialization:

User: Checked baggage
User: Checked baggage allowances and policies

Figure 9.2: Some restatements are identical to the task of its original statement
(non-clarifying) while other restatements narrow or clarify the task.

Reviewers only tagged restatements where the previous user turn was not mis-

understood, as determined by the previous round of annotation in Section 9.3.2.

Therefore, as the volume of data to be tagged was much lower than the total set of

turns, we were able to have both reviewers tag all of the data and analyze agreement.

For any restatement where the two reviewers disagreed, a third reviewer was used to

break the tie. Therefore, in all cases, two reviewers agreed on the tag. To determine

the reliability of the first two reviewers, we calculate the total reviewer disagreement

D.

For measures of disagreement between two di↵erent expressions of a set of cate-

gories, allocation and quantity disagreement have been proposed as a replacement to

a  measure [194], which, as a ratio, is highly sensitive to the number of categories

and the variability of their probabilities [177]. With only one binary category and an

expected variability in the probabilities over conversations due to human communi-

cation di↵erences, even a  as low as 0.4 can still indicate observer accuracy anywhere

from 80-95% [177]. For our task only involving two reviewers and one category, a

simple proportion correct measurement C is su�cient for understanding reviewer
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agreement [194]. But, for the sake of completeness, we also discuss allocation and

quantity disagreement and their implications.

Allocation disagreement, A, is how far o↵ two expressions are from each other

spatially. We would expect allocation disagreement to be high if the bottom-left and

top-right cells in the 4⇥4 confusion matrix below were near equal. That would mean

one reviewer annotated a similar quantity of “Clarifying” as the other reviewer but

assigned the tags to di↵erent samples. Quantity disagreement, Q, is the di↵erence

in the two expressions due to the proportions in each category. We would expect the

quantity disagreement to be higher if the bottom-left and upper-right cells in the 4⇥4

confusion matrix below were unbalanced. With this inverse relationship between Q

and A, it makes sense that the total disagreement, D, between the reviewers is simply

the sum of the quantity and allocation disagreement as we see in Equation 9.1.

D = 1� C = Q+ A (9.1)

Given the following confusion matrix from the two initial reviewers, we can cal-

culate C, Q, A, and D.

Reviewer 1

Clarifying Non-Clarifying

Reviewer 2
Clarifying 484 656

Non-Clarifying 45 2328

The reviewer agreement, C, is the sum of the major diagonal of the confu-

sion matrix divided by the sum of the elements of the matrix. Therefore, C =

484+2328
484+656+45+2328 = 2812

3513 = 0.8. Using Equation 9.1, we can calculate the total dis-

agreement D = 1 � 0.8 = 0.2. Q is simply the proportion of restatements that

Reviewer 1 marked as “Clarifying” compared to the proportion of restatements that
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Reviewer 2 marked as “Clarifying”. See [194] for full equations and example calcu-

lations for the multiple category case. Therefore, Q = |484+45
3513 � 484+656

3513 | = 0.1739.

Using Equation 9.1, we find A = D �Q = 0.2� 0.1739 = 0.0261.

In summary, we can gather from the confusion matrix that there are nearly

five times as many Non-Clarifying restatements as there are Clarifying. Remember

that only the restatements where the previous user turn was not misunderstood were

tagged. This indicates that something in the IVA responses is not satisfying users. As

this was a subjective task, the reviewer agreement was good at 80%, and most of the

disagreement came from an imbalance in the quantity of categories not the location

of them. In other words, it is not the case that the two reviewers perceived a similar

number of Clarifying restatements but allocated them di↵erently. Instead, Reviewer

2 was more often tagging a restatement as Clarifying than Reviewer 1. Perhaps

this tendency was because Reviewer 2 was more likely to perceive the addition of

information in the restatement as a di↵erent task than Reviewer 1. Or perhaps one

of the reviewers had a better understanding of the airline domain and what tasks

are possible. At any rate, the 701 disagreements were tagged by a third reviewer

which broke the ties. With good agreement between the first two reviewers and

the enforcement of a majority decision, we are confident in the categorization of

restatements for our analysis.

9.3.3 Linguistic Complexity

In order to measure the e↵ect of response text complexity on restatements, we pass

the text through the L2 Syntactic Complexity Analyzer (L2SCA). This generates

14 di↵erent measures covering length of production units, amounts of coordination,

amounts of subordination, degree of phrasal sophistication and overall sentence com-

plexity [1]. Although the L1 Lexical Complexity Analyzer generates more complexity

indicators [195], it is also limited to text containing at least 50 words. As we are
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• MLS: mean length of sentence
• MLT: mean length of T-unit
• MLC: mean length of clause
• C/S: clauses per sentence
• VP/T: verb phrases per T-unit
• C/T: clauses per T-unit
• DC/C: dependent clauses per clause
• DC/T: dependent clauses per T-unit
• T/S: T-units per sentence
• CT/T: complex T-unit ratio
• CP/T: coordinate phrases per T-unit
• CP/C: coordinate phrases per clause
• CN/T: complex nominals per T-unit
• CN/C: complex nominals per clause

Figure 9.3: The linguistic features of complexity as defined in L2SCA [1].

dealing with microtexts that are typically shorter than 50 words and the L2SCA

does not have this limitation, we use it for measuring complexity.

Figure 9.3 lists the 14 measures of complexity returned by L2SCA. A T-unit is

the smallest word group that can be considered a grammatical sentence regardless of

punctuation. A clause is the smallest grammatical unit that can express a complete

proposition, or subject and predicate [196]. Clauses can be split into two categories,

main clauses which can stand alone in a sentence, and dependent clauses which re-

quire the presence of a main clause. A nominal is a word which is not grammatically

a noun but functions as one [197]. Therefore, a complex nominal is a group of words

that take the place of a noun such as “the man in the corner with a red hat” in place

of “him” or “Bill”. A verb phrase is a type of predicate composed of a verb and its

dependents and completes an idea about the subject in the sentence. A coordinate

phrase is a complex structure that links together two or more elements with a coor-

dinator such as “and”, “or”, “but”, or “then”. Further detail into grammatical form

and structures and how they are used in English can be found in [196].
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9.4 Results and Analysis

We first consider conditional probabilities and the co-occurrence of misunderstanding

and restatement. Next, we proceed with a Mann-Whitney U statistical test for

significance on the di↵erence between syntactical complexities of agent responses

depending on whether the next user turn is a restatement. We look at the response

media classes and their relationship to user restatements in a logistic regression model

while controlling for syntactical complexity. This experiment is repeated, but we

consider the relationship between response media classes and clarifying restatements.

The possibility of particular web pages causing more non-clarifying restatements is

also addressed. Sections 9.4.1 to 9.4.3 covers all restatements whereas Section 9.4.4

is narrowed to just clarifying restatements.

9.4.1 Co-occurrence Matrices and Conditional Probabilities

We begin with an analysis of the co-occurrence of user restatement (RE) with IVA

misunderstanding (M). A co-occurrence matrix is created on a conversational (Ta-

ble 9.6(a)) and turn (Table 9.6(b)) basis.

In Table 9.6(a), there are 639 conversations that contain at least one user turn

that was misunderstood by the agent and at least one user turn that was a restate-

ment of some previous user turn. The misunderstood turn is not necessarily the

restated turn; they just have to occur in the same conversation. Note that while

60% of the 2, 998 conversations contain at least one restatement, only 34% of those

conversations also contained misunderstanding on the part of the IVA.

It is also worth investigating the co-occurrence of these features on a turn-by-turn

basis. Since it is reasonable to believe that a user is likely to restate immediately

after an agent misunderstanding has occurred, we consider whether a turn was mis-

understood directly before a restatement.
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M (IVA) RE (User)

M (IVA) 1019 639
RE (User) 639 1812

PM (IVA) RE (User)

PM (IVA) 1408 566
RE (User) 566 4104

Table 9.6: Co-occurrence matrices of (a) IVA misunderstanding (M) and user re-
statement (RE) at the conversation level and (b) previous turn misunderstood by
the IVA (PM) and user restatement (RE) at the turn level.

In Table 9.6(b), there are 566 user turns where the previous turn was misunder-

stood (PM) by the agent and the current turn was a restatement of some previous

user turn. We then calculated how likely a turn directly before a restatement was

misunderstood (p(RE|PM)), but this only yielded a probability of .4. More surpris-

ing was how many turns were apparently not misunderstood by the agent, but the

user repeated his or her request anyway! Understanding the cause of this scenario

(RE ^ ¬PM) is the focus of this work. Although some of these restatements are a

clarification of the task as described in Section 9.3.2, most restatements are not, and,

therefore, may be related to the complexity of the agent response and the media in

which it is presented. While the former type of restatement is, in fact, good as the

IVA aids the user in uncovering their true task, the latter type is bad as it breaks

the principle of least collaborative e↵ort in conversations [181].

Taking into account the di↵erences in response class and restatement type, Ta-

ble 9.7 shows the distribution and occurrence of response media classes (Ci) in re-

lation to the next turn being a restatement (NR). We see the number of unique

responses observed per class overall (row 1) and the number of unique responses

observed when the next input is a restatement (row 2). Rows 3 and 4 give the distri-
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C1a C1b C1c C2a C2b C2c C3
1 Unique responses overall 49 38 28 43 55 126 311
2 Unique NR responses 23 15 20 19 40 88 212
3 Occurrence overall 1669 110 535 177 2354 2837 6318
4 Occurrence with NR 484 26 140 51 704 909 1790
5 p(NR ^GOOD|Ci) 0.026 0.027 0.090 0.074 0.069 0.075 0.040
6 p(NR ^BAD|Ci) 0.129 0.173 0.135 0.203 0.195 0.225 0.212

Table 9.7: Distribution of IVA responses by media in rows 1 through 4. Rows 5
and 6 show the probability of the next turn being a restatement that clarifies the
task (NR^GOOD) given the class Ci and the next turn being a restatement of the
identical task (NR ^ BAD) given the class Ci.

bution of all 14, 000 responses and the 4, 104 responses preceding a restatement over

the response classes. The final two rows give the probabilities of the next turn being

a restatement that clarifies the task (row 5) and the next turn being a restatement

of the identical task (row 6) for each response class.

Inspecting row 6, the classes using only a single medium of response (C1a,b,c)

have the lowest probabilities of being followed by a bad type of restatement, with

C1b (web content only) having a slightly higher probability than the other two.

Adding web content (C2a) to textual responses (C1a) and adding web content

(C2c) to topic links (C1c) appeared to increase the probability of bad restatements

more than adding topic links (C2b) to textual responses (C1a) and web content

(C1b). In addition, adding web content (C3) to the class already using text and

links (C2b) increased the probability slightly more than adding topic links (C3) to

the class already using text and web content (C2a). However, adding text (C3)

to the class already using topic links and web content (C2c) slightly decreased the

probability.

It is apparent from this table that the relationship between response class and

restatement type is a complicated one and warrants deeper study. In the remainder

of this section, we attempt to uncover the possible causes of bad restatements and

explain their associations to text complexity and media. Through this article, it is
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our hope that designers of IVA responses can use the information we glean to prevent

non-clarifying restatements attributable to presentation.

9.4.2 Complexity and the Mann-Whitney U Test

We first only considered turns where the previous turn was not a misunderstanding.

We then partitioned this dataset to user turns where their next turn is a restatement

(NR) and user turns where their next turn is not a restatement (¬ NR). A Mann-

Whitney U test was conducted to determine if NR tends to have stochastically

greater values than ¬ NR for each of the 14 features of complexity. As mentioned

in 9.3.3, the fourteen measures of syntactic complexity are discussed in detail in [1]

and are defined in Figure 9.3.

We also repeat this test on di↵erent media of agent response using the seven

classes described in 9.3.2. Complexity was calculated solely on agent response text

and not on text in web content and links as there is no way to verify that such content

available now is identical to what users saw as mentioned previously in Section 9.3.2.

The final row, the average number of words for an agent response (AW), is not

part of the 14 features but is included to give some intuition on the text content

di↵erences between classes.

For example, consider an agent response belonging to class C2b (text and links).

The complexity value for VP/T (number of verb phrases per T-unit) is likely to be

higher if the next turn is a restatement than if the next turn was not a restatement

(sixth column, last row of Table 9.8). But if we instead consider all classes (first

column, last row), VP/T has the reverse e↵ect. Note that a tie occurs for C1b (web

content only) under the complexity feature T/S (number of T-units per sentence).

See Section 9.5 for a discussion of the implications of these results.
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All C1a C1b C1c C2a C2b C2c C3

MLC F T ⇤⇤⇤ F T ⇤⇤⇤ T ⇤ T ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤

MLS T ⇤⇤⇤ T ⇤⇤⇤ F ⇤⇤ F F F ⇤⇤ T T ⇤

MLT F T ⇤⇤⇤ F ⇤⇤ F F F ⇤⇤⇤ F T ⇤⇤

C/S F ⇤⇤⇤ T F F ⇤⇤⇤ F ⇤⇤⇤ F T ⇤⇤⇤ T ⇤⇤⇤

C/T F F ⇤⇤ F F ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤ T ⇤⇤⇤

CT/T F ⇤⇤⇤ F ⇤ F F ⇤⇤⇤ T F ⇤⇤⇤ F ⇤⇤⇤ T ⇤⇤⇤

DC/C F ⇤⇤⇤ F ⇤⇤ F F ⇤⇤⇤ F ⇤ F ⇤⇤⇤ F ⇤⇤ T ⇤⇤⇤

DC/T T ⇤⇤⇤ F F F ⇤⇤⇤ T F ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤

CP/C F ⇤⇤⇤ F ⇤⇤ F ⇤ F ⇤⇤⇤ F F ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤

CP/T F ⇤⇤⇤ F ⇤⇤ F F ⇤⇤⇤ F F ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤

T/S F ⇤⇤⇤ F ⇤⇤⇤ TIE F ⇤ F F ⇤⇤⇤ T ⇤⇤ F ⇤⇤

CN/C F ⇤⇤⇤ T ⇤⇤⇤ F ⇤ T ⇤⇤⇤ F F ⇤⇤⇤ F ⇤⇤ T
CN/T T ⇤⇤⇤ T ⇤⇤⇤ F ⇤⇤⇤ F ⇤⇤⇤ F T F ⇤⇤⇤ T
VP/T F ⇤⇤⇤ T ⇤⇤⇤ T ⇤⇤ F ⇤⇤⇤ F ⇤ T ⇤⇤⇤ F F ⇤⇤⇤

AW 38.66 13.97 16.56 17.92 29.42 46.43 25.57 48.93

Table 9.8: Mann-Whitney U results comparing NR and ¬ NR using the 14 com-
plexity features in [1] for all data (All) and separate classes in Section 9.3.2. A value
of T indicates that the values in NR tend to be greater than the values in ¬ NR for
the complexity feature. TIE indicates there is an equal chance of restatement or no
restatement. Otherwise, the value is F . ⇤ : p  0.1, ⇤⇤ : p  0.05, and ⇤⇤⇤ : p  0.01.
The final row represents the average number of words for an agent response in that
class (AW).

9.4.3 Complexity and Logistic Regression

The previous analysis indicates that there are significant di↵erences in agent response

complexity between turns which lead to a restatement and turns that don’t on an in-

dividual class basis. Now we wish to consider the e↵ects of all response media classes

on the next turn being a restatement while controlling for syntactical complexity.

We fit a logistic regression model where the independent variables are the value of a

complexity feature and xi, where xi = 1 if the agent response belongs to media class

i (see Table 9.9). We only choose to use complexity features that are not entirely

composed of a row of F ’s (regardless of significance) in Table 9.8. Thus, CP/C and
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C1b C1c C2a C2b C2c C3

MLC �0.0090 0.0706 0.3634 0.2898 0.4211 0.2161
MLS �0.0710 0.0628 0.2803 0.2162 0.2820 0.1206
MLT 0.0241 0.0794 0.4110 0.3288 0.4542 0.2623
C/S 0.0478 0.1085 0.3888 0.3386 0.3866 0.2412
C/T �0.0209 0.0630 0.3627 0.2814 0.4178 0.2135
CT/T 0.0933 0.1187 0.3277 0.3770 0.3606 0.2159
DC/C 0.1392 0.1647 0.3182 0.4047 0.4449 0.1902
DC/T 0.1192 0.1587 0.3701 0.4025 0.4704 0.2405
T/S 0.0356 0.1103 0.4245 0.3227 0.1779 0.2436
CN/C �0.0900 0.0148 0.3037 0.2149 0.3749 0.1429
CN/T �0.0632 0.0536 0.3030 0.2497 0.3712 0.1574
VP/T 0.0966 0.1213 0.3857 0.3152 0.4834 0.2203

Table 9.9: Coe�cients for a logistic regression model where the dependent variable
is whether or not the next turn is a restatement. The independent variables are xi

which represents class membership for class i, and complexity is a control variable.
C1a is the base class; thus, it is not included in the table. Statistical signifiance
(95% CI) was present for all features.

CP/T are not included (coordinate phrases per clause and T-unit). The dependent

variable is whether or not the next turn is a restatement. So, for example, a restate-

ment is more likely for class C2c (web content and links) controlling for number of

verb phrases per T-unit (coe�cient of .4834) than for class C1b (web content only)

controlling for that same complexity feature (coe�cient of .0966). To ensure that our

predictors maintain independence, one class (C1a, text only) is not included in the

regression, and it serves as the base class [198]. We use a likelihood-ratio test [199]

to test for statistical significance. Significance was present for all features using a

95% confidence interval; response class has a significant e↵ect on restatement.
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9.4.4 Clarifying Restatement Analysis

We previously considered the e↵ects of all response media classes on the next turn

being a restatement while controlling for syntactical complexity. Recall that in Sec-

tion 9.3.2, reviewers were asked to determine if the restatement was, in reality, a more

specific task than the original statement. Considering only input-response pairs that

are not misunderstood and have restatements in the next turn, we fit a logistic re-

gression model where the independent variables are the value of a complexity feature

and xi, where xi = 1 if the agent response belongs to media class i (see Table 9.10).

Similar to Table 9.9, we did not include CP/C and CP/T, C1a serves as the base

class, and a likelihood-ratio test [199] was used to test for statistical significance.

Significance was present for all features using a 99% confidence interval. The depen-

dent variable is whether or not the restatement in the next turn is a clarification or

narrowing of scope (0 for no and 1 for yes). This table demonstrates to what extent

combinations of response media either tend to help the user narrow their task (posi-

tive coe�cients) or somehow dissatisfies the user (negative coe�cients) compared to

the IVA’s primary medium alone (C1a).

Column C1b in Table 9.10 is completely dominated by negative coe�cients.

Recall in Table 9.3 that class C1b consists of web content, no links, and does not

have an agent response that addresses the user request according to reviewers. These

negative coe�cients imply that directing users to web content may increase the

number of restatements that neither clarify nor narrow scope. In contrast, column

C1c (links only) has the highest positive values. These positive coe�cients imply

that providing related topic links may increase the number of clarifying restatements.

However, before drawing conclusions about C1b, we must determine if there are

particular web pages that cause more problems than others; this may unfairly skew

the results. We cannot conclude that web content is a problematic response media

in general as it could be the case that the content of these websites is the problem

and not the medium itself. Thus, we check if the content of particular web pages
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C1b C1c C2a C2b C2c C3

MLC �0.6725 0.9323 0.1318 �0.0533 0.2934 �0.5283
MLS �0.3091 1.2328 0.3972 0.3652 0.1736 �0.2756
MLT �0.1614 1.2218 0.7555 0.6918 0.6265 0.0854
C/S �0.2177 1.2229 0.6051 0.5824 0.5094 �0.0552
C/T �0.3898 1.0559 0.5539 0.4274 0.5388 �0.0608
CT/T �0.2973 1.1514 0.6269 0.5177 0.5679 �0.0545
DC/C �0.4319 1.0423 0.7120 0.4368 0.5005 �0.0024
DC/T �0.4575 1.0093 0.6492 0.3964 0.4784 �0.0371
T/S �0.0093 1.4311 0.8534 0.5979 �0.0584 0.1016
CN/C �0.5906 0.7859 0.2117 0.0446 0.2778 �0.4678
CN/T �0.2424 1.1315 0.4512 0.4828 0.3903 �0.2057
VP/T �0.5530 0.9115 0.6157 0.5623 0.3009 �0.0162

Table 9.10: Coe�cients for a logistic regression model where the dependent variable
is whether or not the restatement in the next turn is a clarification or narrowing of
scope. The independent variables are xi which represents class membership for class
i, and complexity is a control variable. C1a is the base class; thus, it is not included
in the table. Statistical signifiance (99% CI) was present for all features.

were dissatisfying by measuring the e↵ect of their URLs on restatements.

To check for possible biases due to web content displayed, we need a way to rank

the URLs that referred to the web content in terms of how problematic they were.

We perform this ranking determination using odds ratios (OR) [200]. The exposure

variable is the presence or absence of a particular URL. The outcome can be one of

two categories: there is either no restatement or a clarifying restatement in the next

turn which would indicate a non-problematic URL (or not obviously problematic),

or there is a non-clarifying restatement in the next turn which would indicate a

problematic URL. If the OR is greater than 1, then the exposure is associated with

higher odds of the first outcome. If the OR is less than 1, the exposure is associated

with lower odds of first outcome. Finally, if the OR equals 1, the exposure does not

a↵ect the outcome’s odds.
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We began with the set of all URLs the IVA could return in a response. Only

considering input-response pairs that were not misunderstood, we first filtered URLs

where either the number of non-clarifying restatements when the URL is present was

0 or the URL was present less than 5 times overall; 75 URLs remained.

Next, to determine the magnitude of e↵ect of URLs with very low ORs (problem-

atic URLs) on Table 9.10, we chose to remove any that were below an arbitrary cuto↵

of 0.5. If the logistic regression model used to create that table changes significantly

due to this removal, this indicates that the problematic URLs have great influence.

However, if the model does not change significantly, the problematic URLs do not

have great influence on our results.

Although we could have chosen a more “natural” cuto↵ of 1, URLs close to 1 are

not suspect of containing overtly unhelpful content as they have only a slight e↵ect

on the outcome. As the OR decreases from 1, the odds that the URL’s contents will

lead to a positive outcome diminish.

There were 13 URLs with ORs of less than 0.5 in the set of all URLs. To

measure the e↵ect of these suspect URLs on non-clarifying restatements, we removed

all input-response pairs containing them and redid our logistic regression model in

Table 9.10. Once again, if the model exhibits great change in behavior as a result of

this removal, this signifies that the problematic URLs have great influence. However,

the maximum change in any coe�cient in the logistic regression model was around

0.3, and most changes were less than 0.1. There were no significant changes in

positive or negative influence of any response class on non-clarifying restatements.

Thus, we have considered the possibility of particular web content causing more

non-clarifying restatements and determined its e↵ect to be minimal.
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9.5 Discussion

In Section 9.4.1, we investigated manually tagged features of agent misunderstanding

and user restatement. Restatements were far more likely when the previous turn was

not misunderstood. This indicates that wording and media selection of IVA response

may be just as important as agent understanding. Although correct understanding

is a necessary condition for correct response, an apparently correct response does not

ensure resolution; users appeared to restate their issue over six times more often when

there was no apparent misunderstanding on the part of the IVA than when there was

(see the user restatement column in Table 9.6(b)). Recall that the determination of

misunderstanding is based o↵ of the IVA response text which accounts for correct

natural language understanding as well as natural language generation. This greatly

justifies our work.

In the domain of customer service, neither the system nor users want to spend

more e↵ort than necessary on completing their tasks [94]. These restatements on the

part of the user are probably not exploratory, where the user probes the knowledge

boundaries of the IVA out of curiosity as is expected with chatterbot interactions.

Instead, this may indicate that the user’s query is not being answered e�ciently. This

could be due to poor wording of the response which we cannot completely control for.

Asking reviewers to tag responses that do not appear to answer the user’s question

has problems of its own; what is clear to a reviewer may not be clear to the original

user. However, the di↵erence between user restatement with and without prior IVA

misunderstanding is so great that this cannot be the only reason. To help explain

this di↵erence, we turn our attention to response complexity and media.
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9.5.1 Response Complexity

Considering Table 9.8, we can safely eliminate the two complexity features with a row

consisting only of F (coordinate phrases per clause and per T-unit) as they appear

to have no e↵ect on restatements regardless of the media used. This makes intuitive

sense given that coordinate phrases are a common part of speech, and, therefore,

English speakers are used to parsing them. For example, the sentence “I would like

to edit the auto check-in and have the confirmation emailed and print it from Kiosk

at airport.” has three coordinate phrases linked by “and”. It may feel “wordy” but

it is still easy enough to read and comprehend.

For the remaining features, a statistically significant T indicates that the inci-

dence of a high value for the complexity feature may a↵ect the user’s comprehension

and cause a restatement. Looking at each class individually, it does appear that some

classes are more sensitive to response complexity than others. C1a (text only), for

instance, has six significant positive features and five significant negative features,

using p  0.05. This implies that the designers of text-only responses need to pay at-

tention to the mean length of clauses, sentences, and T-units, the number of complex

nominals per clause and T-unit, and the number of verb phrases per T-unit (MLC,

MLS, MLT, CN/C, CN/T, and VP/T). Compare this to C2b (text and links)

where designers of responses only need to minimize the mean length of a clause and

number of verb phrases per T-unit. C1b (web content only) and C1c (links only)

appear to be insensitive to response complexity; only 1 T appears in C1b’s column

whereas 2 T are in C1c’s column. This is not entirely surprising given that the text

of both classes just directs the user to a di↵erent medium.

The complexity featuresMLC,MLS,CN/C, andCN/T (mean length of clause

and sentence, number of complex nominals per clause and T-unit) for class C3 (all

three media) have a negative impact on helpful responses leading to restatement.

Thus, designers of IVA responses will need to consider these features when all three
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forms of media are included. In addition, both Tables 9.10 and 9.8 indicate that

the mean length of clause is one that should be minimized in general; the most

negative coe�cients in Table 9.10 occur inMLC’s row, and there are three extremely

significant T in Table 9.8 for MLC’s row also. A similar trend is observed with mean

length of sentence and number of complex nominals per clause (MLS and CN/C)

but to a lesser degree.

Complex nominals in responses may be confusing to users because they can over-

complicate what was being asked for. Suppose a user asks what to transport human

ashes in, and the IVA responds with “Human remains must be sealed in a well-

marked small clear airtight box.” The complex nominal “well-marked small clear

airtight box” requires the reader to parse several attributes and retain them in mem-

ory before reaching the noun they are describing, and then refer back to them to

understand the requirements of the box. Consider instead the following rewording

that removes the complex nominal: “Human remains must be sealed in a box that

is small, clear, airtight, and well-marked.” In this response it is clear to the user

immediately that the ashes must go in a box and not a bag or other container, and

the following adjectives narrow down what type of a box is required. This is much

easier for a reader or listener to mentally parse and retain. Larger values of CN/C

and CN/T mean more of these complex nominals appear in one clause or T-unit, so

users must do the mental exercise of gathering attributes before knowing the subject

multiple times within the same clause leading to possible confusion.

Interestingly, the total length of response does not appear to be a factor. In row

AW (average number of words) of Table 9.8, we see that two classes with a text

response (C2a, b meaning text with web content and text with links, respectively)

have a large di↵erence in average response lengths, yet they have nearly identical

impact on restatement in general and acceptable restatements, in specific. However,

when we compare C2b and C3 (all three media) which have nearly identical average

response lengths, we see that C3 is slightly more likely to lead to a restatement, and,
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much more likely, any following restatement will be of a negative type. Practically,

sensitivity to MLC and MLS with no sensitivity to AW indicates that users appear

to favor text responses with shorter sentences and clauses regardless of the overall

length of the response.

At this point, we can work through an example demonstrating how a dialog de-

signer can reduce the complexity features to craft better responses. One of the more

complex IVA responses we found dealt with carry-on baggage dimensions. If a user

asked about measuring baggage they were presented with: “We measure the size

of bags using units of linear inches or linear centimeters. The linear dimensions

of a bag are found by adding the thickest or widest part of the length, width and

height together.” The distance between “adding” and “together” requires the reader

to retain everything in between before they discover what they are to add the in-

termediate parts to. By rephrasing the same information into a simpler form such

as “We measure the size of bags by adding together the thickest or widest part of

the length, width and height. Linear inches or centimeters may be used.” we reduce

MLS from 18 to 13.5, MLC from 36 to 27, CN/C from 6 to 3, and CN/T from 3

to 1.5 all while conveying the same information. It takes more mental e↵ort to store

and join attributes of nouns across long clauses and complex nominals, therefore

by minimizing those complexity features, the response text is easier to comprehend.

If dialog designers follow the same exercise when crafting response texts, they may

reduce understanding errors on the part of the users. The authors of LS2CA even

provide an online tool1 for comparing the complexity of two texts side by side.

9.5.2 Response Media

To further investigate the e↵ects of response media classes on the next turn being

a restatement, we compare the classes directly, controlling for complexity features.

1http://aihaiyang.com/software/l2sca

http://aihaiyang.com/software/l2sca
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In Table 9.9, we see that C1b (web content only) and C1c (links only) have small

coe�cients implying that the chance of restatement in the next turn is lower for C1b

and C1c. Interestingly, when two media (C2a, b, c) are considered instead of one,

the coe�cient markedly increases, but when all three media are included (C3), the

coe�cient drops. In addition, text with links (C2b) has slightly lower coe�cients

than text with web content (C2a) or links with web content (C2c).

Although our dependent variable is the presence of restatements in Table 9.9, not

all user restatements are necessarily negative. As mentioned in Section 9.3.2, if the

restatement is a clarifiation or a narrowing of scope of the user’s task, the previous

response may actually be helpful to a user. We want to be more precise in our analysis

and determine the e↵ect of response media class on unwanted restatements while also

controlling for complexity (Table 9.10). For example, although MLC (mean length

of clause) for class C3 (all three media) may only increase chances for restatement

somewhat (coe�cient of .2161 in Table 9.9), when restatement does occur, it tends

to be the unwanted kind (coe�cient of �.5283 in Table 9.10). Compare that to C2c

(web content and links) which appears to have the highest chance of restatement due

to the presence of relatively strong positive coe�cients in its column in Table 9.9.

However, when C2c’s restatements occur, they tend to be the clarifying kind (see

C2c’s column in Table 9.10).

The first column in Table 9.10, C1b (web content only), is completely dominated

with negative coe�cients; directing users to a web page without including any helpful

links or text addressing the user’s intent has a considerably higher chance of unwanted

restatements in the next turn compared to all other response classes. Compare that

to the case where only links are provided: C1c’s column consists of relatively strong

positive coe�cients. However, it is important to note that in these situations where

a link is provided and nothing else, the user has the option to either click on a link or

type text. Thus, some bias may be present due to path of least resistance, but as the

coe�cients are relatively high, providing links are more likely to help a user determine
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his or her true intention. For two media, C2a (text with web content) appears more

helpful than C2b (text with links) which, in turn, appears more helpful than C2c

(web content with links) based on logistic regression coe�cients. This analysis, for

the most part, agrees with the probabilities seen in Table 9.7.

To summarize, users are generally initiating contact with an IVA to help them

navigate and digest a large website or to perform a task. To respond with only web

content (C1b) is to reduce the IVA to a search engine displaying the top result. This

may cause frustration in users expecting a tailored response and lead to restatements.

Unless users specifically ask for a web page, they generally would expect the IVA to

perform more than just search functionality (particularly since large websites typi-

cally already have a search functionality). Dialog designers should craft a response

with only web content in cases where users have explicitly requested a web page. In

all other cases, designers should take care to address the users request or at the very

least provide alternative links (C2c).

9.6 Examples of IVA Response Classes

The following are examples of the seven response media combinations taken from

various publicly visible IVAs on commercial websites.
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Single Response Medium

Figure 9.4: Example of a C1a response using only the IVA’s primary medium

Figure 9.5: Example of a C1b response from an IVA. Notice that although the IVA
provides a response, it does not address the user query; instead, it directs the user
to the web content that the IVA pushed to their screen.

Figure 9.6: Example of a C1c response directing the user to choose from related or
clarifying topics
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Two Response Media

Figure 9.7: Example of a C2a response from an IVA. The response contains both
an answer from the IVA and web content for further information on the topic.

Figure 9.8: Example of a C2b response from an IVA containing both an answer and
related or clarifying topic links



Chapter 9. Response Classes 167

Figure 9.9: Example of a C2c response from an IVA. Notice that the IVA does not
directly answer the query but instead directs the user to web content it has pushed
to their screen as well as providing related topic links.

Three Response Media

Figure 9.10: Example of a C3 response from an IVA which involves all three media
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9.7 Conclusion

As we have shown in our discussion, when designing multimodal IVAs for customer

service, it is not as simple as avoiding long responses and displaying supplementary

web content to ensure user comprehension. Although providing web content may

be helpful, web content alone without related links or text addressing the user’s

intention may increase the number of non-clarifying user restatements. Web content

may be helpful for additional or detailed information on a topic, but users appear to

prefer the IVA to directly address their query.

While a designer might naively believe that including all three forms of media

may help a user resolve his or her issue, if the complexity features for MLC, MLS,

CN/C, or CN/T (mean length of clause and sentence, number of complex nominals

per clause and T-unit) are high, this may not be the case. Therefore, once the media

of response are chosen, it is necessary to perform complexity analysis on the response

text and minimize the use of features that correlate to non-clarifying restatements.

This process is demonstrated at the end of Section 9.5.1.

Designers should consider that users appear to favor text responses with shorter

sentences and clauses regardless of the overall length of the response and the other

media involved. To resolve ties between equally likely intentions, displaying topic

suggestions in the form of links is a good strategy. This type of response appeared

more helpful to users than showing them a web page related to their query and

instructing them to consult it.
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9.8 Application of Response Complexity to Risk

Analysis

This chapter has presented various response features with statistical correlations to

user restatements when there was no apparent misunderstanding on the part of the

IVA. As these features may cause confusion or dissatisfaction on the part of the user,

we want to take them into consideration when identifying risk of missed intent on

the part of the IVA.

9.8.1 Automated Response Classification

In order to identify class of a given IVA response, we train a classifier on the human

annotated data described in Section 9.3.2. This classifier is needed to determine

whether or not the IVA attempts to address the user query in its response text. This

determination is used to separate response classes C3 from C2c, C2b from C1c,

and C2a from C1b. In each case the only di↵erence between each pair of classes is

if the IVA attempts to answer the user in addition to other media or if the IVA just

refers them to the additional media. Refer to Table 9.3 for the specific distinction

between these classes.

Using the output of the L2 Syntactic Complexity Analyzer (L2SCA) [1] along

with several words we found empirically that appeared more frequently when the

IVA does not attempt to answer the query, we select the 10 features most positively

and negatively correlated to the response classes of C2a, C2b, and C3 (those classes

where the IVA answered the users query in the response text). The positively cor-

related features were: number of words, number of sentences, number of chunks,

number of T-units, number of verb phrases, number of coordinate phrases, and num-

ber of clauses. The negatively correlated features were: presence of word “page”,

presence of the word “information”, and presence of word “form”.
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Using these 10 features and the human labels for C2a, C2b, and C3 as positive

samples and C1b, C1c, and C2c as negative samples we constructed training data

for a Random Forest classifier. To train and select the best configuration of model

parameters, we performed a grid search over the model parameter values using 10-

fold cross validation (CV) to optimize on the CV average accuracy. The highest

CV accuracy of 84.2% was reached using 22 trees in the forest, information gain to

measure split quality, and 9 for the maximum depth of a tree. This classifier is then

used within an algorithm which takes in the IVA response text, any additional topic

links, and the URL of any web page content shown to users.

1 def LabelResponseClass(iva response):
Data: An IVA response tuple (text, topicLinks, URL)
Result: The class of IVA response

2 if topicLinks and URL:
3 /* It is a C2c or C3 */

4 if response clf.predict(text) == 1:
5 return C3;
6 else:
7 return C2c;

8 elif topicLinks:
9 /* It is a C1c or C2b */

10 if response clf.predict(text) == 1:
11 return C2b;
12 else:
13 return C1c;

14 elif URL:
15 /* It is a C1b or C2a */

16 if response clf.predict(text) == 1:
17 return C2a;
18 else:
19 return C1b;

20 else:
21 return C1a;

Figure 9.11: Categorize IVA response class

In Figure 9.11 the algorithm that determines the IVA response class is shown.

Using the presence of related topic links and a URL to web content along with the
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output of the binary response classifier previously described, this algorithm deter-

mines which of the seven classes a particular IVA response belongs to.

9.8.2 Response Class Risk Indicators

Recall that the purpose of IVA response analysis is to find any features that may

indicate it is the user not the IVA that is misunderstanding at a given point in a

conversation. Using the correlations in Table 9.10 we can see that IVA responses that

fall under class C1b (web content only) are more likely to lead to a non-clarifying

restatement than any other class. Therefore, we want to decrease the risk of missed

intent following an IVA response in class C1b, as it may actually be the presentation

and not the understanding at fault in the IVA. The purpose of the CRS is to evaluate

the Natural Language Understanding (NLU) component, in isolation. Thus, we must

separate errors in presentation from those in understanding. The CRS will apply the

indicator response class to any input following a response that has been classified

as C1b by the algorithm in Figure 9.11. Later, when combining indicators into a

singular risk score (see Section 4.4.4), this indicator carries negative weight.

The second indicator of user dissatisfaction in IVA responses is the complexity

of the IVA response text. From Table 9.10 above, we can see there are several

cases where higher values of a response complexity feature combined with a partic-

ular response class lead to non-clarifying restatements. For example, higher CN/C

(complex nominals per clause) with a C3 (all three media) response is negatively

associated with a clarifying restatement, but when the same complexity feature is

higher with a C1c response, it is positively associated. Therefore, these di↵erent

combinations of complexity and response class are considered.

Using Table 9.10, any cell where the coe�cient is less than �0.2 is used as an

indication that the combination of text complexity and response class can lead to

a non-clarifying restatement by the user. For each such combination, like (high
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CN/C, C3), the CRS applies the indicator response complexity. Similar to re-

sponse class, when combining indicators into a singular risk score this indicator

carries negative weight. In order to determine when a value for a particular com-

plexity feature is “high”, we calculate the quartiles for the values of each complexity

feature in the human labeled dataset described in Section 9.3.2. If the value for a

particular complexity feature is above the upper quartile boundary, we consider its

value “high”. Recall that the upper quartile boundary is the middle value between

the median and the highest observed value in the data set.

We have now covered the implementation details of the majority of risk indicators

outlined in Section 4.4. The next chapter describes how the remaining indicators are

detected in the risk analysis process. Following this is an evaluation of how the CRS

performs both in prioritizing conversations for review by risk, and voting in place of

human reviewers.
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Chapter 10

Remaining Indicators of Risk

In the last few chapters have discussed several of the more complex risk indicators

used by the CRS to determine if a user turn was likely misunderstood by the IVA.

In this chapter we cover the remaining indicators. Many of the following indicators

were used in a prototype of the CRS, published in [110].

One indicator commonly used in call centers to evaluate customer service agent

performance is their call abandonment rate [201]. This metric is measured by how

often a customer hangs up or closes an online chat before completing their current

task. The rationale is that a customer would not go through the trouble of contacting

a support center, begin a task, and then quit partway through unless they were not

satisfied with their treatment by the customer service agent. Given this rationale,

we also use this metric to evaluate the IVA performance by looking for conversations

where the user abandoned the task as an indicator of missed intent.

There are two ways to determine that the user abandoned a task with an IVA. We

can either rely upon the IVA to tell us, or we can attempt to infer it from the IVAs

final response. The CRS supports either method but will prefer the IVA indicate an

abandonment occurred in the conversation log. Recall from Chapter 2 that IVAs are

implemented as dialog systems and therefore keep track of the current conversation
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state, and part of that state is the current task they are attempting to perform on

the part of the user. If an IVA is attempting to gather information from the user

to perform a task, and the conversation ends before enough information has been

acquired to perform the task, the IVA can flag the conversation as an abandonment

for reporting purposes.

If, however, a particular IVA under review does not perform this flagging, the

CRS attempts to detect abandonment using a simple heuristic. Using the text from

the final IVA response in the conversation, it first tests if the IVA posed a question

to the user, ignoring generic ending sentences such as “Is there anything else I can

help you with?” If so, it considers the conversation to have been abandoned as the

IVA was still trying to gather information from the user when it ended. In this

case the CRS applies the risk indicator abandonment to the last user turn in the

conversation.

If the conversation did not end on a question, it next checks if the grammatical

mood of the final IVA response was imperative. Imperative mood is typically used

for ordering or requesting the listener to do something [196]. Thus, the IVA using

imperative mood in its response indicates it is asking the user to do something.

If IVA response is not a question, the mood is imperative, and the response text

contains references to typing, input, giving, or telling, as determined by regular

expressions; the CRS applies the risk indicator abandonment to the last user turn

in the conversation. Responses that meet these conditions typically look something

like “Type the last four digits of your SSN below.” or “Please tell me the date of

your claim.” If a user abandons a conversation on a similar response, it may indicate

that the IVA was trying to perform the wrong task and the user left in frustration.
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10.1 Turn Content

Several remaining risk indicators are based on detecting particular content of the

user turn. For example, if a user requests something using vocabulary unknown to

the IVA, it may indicate the user is talking about a subject the IVA has not been

trained for. The use of such unknown words may cause a misunderstanding on the

part of the IVA as it drops the unknown words while performing intent classification.

For example, if an IVA exists on a telecommunications website and a user says

to it “Cheers, mate!”, thanking the IVA using common British slang, if “mate” is

not in its vocabulary it will ignore it and perform intent recognition solely on the

word “Cheers”. In the television domain this word is the name of a very popular

television show from the 1980s, and reruns of the show are still played at the time

of this writing. The IVA may misunderstand that the user is asking about the show

and respond with a page or reference to the current schedule or channel the show is

playing on.

As the CRS has access to the training data used to train the intent classifier, or

the grammars or patterns within the model itself if it is a symbolic model, it knows

the entire vocabulary of the IVA. When a user turn contains words that do not appear

in the IVA’s vocabulary, the CRS applies the risk indicator unknown words to that

turn.

Other content of interest is the use of profanity by the user. Profanity use by the

customer is treated as an indication of poor customer service in quality assurance

systems [202, 203]. While this may arise in response to business rules, such as not

allowing the customer to transfer a plane ticket to another persons name, it may

also be used as an expression of frustration in response to a perceived inability for

the service agent to understand the user’s request [203]. Therefore, the CRS detects

swearing and vulgarities through 3,900+ regular expressions periodically generated
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from several term lists on Wiktionary1. Words with common innocuous meanings

are removed. If a user turn matches such an expression, the risk indicator pre-

cedes profanity is applied to the preceding user turn in the conversation.

A related indicator is when a user comments on the unhelpfulness or futility of the

IVA. To detect this indicator the CRS leans on the originating IVA and the internal

agreement classifiers. If any of these intent classifiers maps the user turn to an intent

representing unhelpfulness, the CRS applies the risk indicator precedes unhelpful

to the preceding user turn in the conversation.

10.1.1 Sentiment

An important feature in analyzing customer satisfaction in reviews and feedback

is sentiment polarity [204, 205, 206]. The CRS considers sentiment in two ways.

The first is any user turn preceding a turn containing negative sentiment polarity

as determined by a sentiment classifier is assigned the risk indicator precedes neg.

Negative comments by the user may be in response to IVA misunderstanding and is

therefore considered as an indicator of risk.

The second way sentiment is used for risk analysis is by considering how sentiment

changes over the course of a conversation. If the user sentiment is positive or neutral

in the beginning, but by the end of the conversation has become negative, this is a

conversation level indication that misunderstanding may be present. To determine

the change in sentiment, the CRS performs a least squares one degree polynomial

fit over the sentiment polarity values from the user turns in a conversation. It then

measures the slope of this line to determine if sentiment is decreasing over the course

of the conversation. If the slope of the least squares line is negative, the CRS assigns

the risk indicator sent change to all of the turns in the conversation. Essentially,

1Specifically the derogatory, o↵ensive, and vulgarities lists on https://en.wiktionary.
org/wiki/Category:English_terms_by_usage

https://en.wiktionary.org/wiki/Category:English_terms_by_usage
https://en.wiktionary.org/wiki/Category:English_terms_by_usage
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the fact that sentiment is degrading over the course of the conversation can mean

that multiple communication problems have been encountered and therefore the IVAs

handling of the entire conversation is suspect.

To determine sentiment polarity, the CRS uses a sentiment classifier trained from

a combination of the IMDB movie review dataset from [207] and Twitter data from

the SemEval-2015 Task 11 dataset2. The user turns are converted to word embed-

dings using the Word2Vec [208] embeddings from the 3 million word Google News

dataset3. The resulting variable length list of word vectors from the user turn are

padded or truncated to length 350, then fed into a Recurrent Neural Network con-

sisting of an input layer followed by a single hidden 200-neuron Long Short-term

Memory (LSTM) layer [209]. This is followed by a dropout layer for regularization

and finally a dense output layer using a sigmoid function for polarity classification.

The performance of this network on a hold out test set of 10,000 mixed samples from

the two sources was 90% accuracy.

10.2 I Don’t Know (IDK) Response Risk Indica-

tors

A subcategory of risk indicators applies to what we call “I Don’t Know” (IDK)

responses. These occur when the language model does not find an intent that satisfies

the user input. An IDK intent may return a response such as “I’m sorry, I don’t

understand you. Please revise your question.”. An example of matching this intent

is seen at turn 6 in Table 10.1, which is repeated from Section 4.4 for convenience.

Therefore all user turns in that conversation would be tagged with idk in conv, turn

6 would be additionally tagged with triggers idk, and turn 5 with precedes idk.

2http://alt.qcri.org/semeval2015/task11
3https://code.google.com/archive/p/word2vec

http://alt.qcri.org/semeval2015/task11
https://code.google.com/archive/p/word2vec
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Chat Text Intent Hit Conversation ID Turn #
My TV is not working I need
to have it fixed.

TV Support 26789 1

My TV will not start I want
to talk with support sta↵

Contact Informa-
tion Deflection

26789 2

I cannot get my tv to work TV Support 26789 3
How can I get a person to help
me get the TV started?

TV Services 26789 4

How can I speak with a sup-
port sta↵ to get my TV to
work?

TV Support 26789 5

There are no links showing my
problem what now?

I Don’t Know 26789 6

Table 10.1: Conversation with Risky Inputs

A language model may also contain intents that are used as “intelligent” IDKs.

An example response to one of these may be: “I see that you are asking about liability

insurance, but I do not have detailed knowledge in that area.” These indicate to the

user that the IVA understood the topic of their request, but does not possess the

specific knowledge necessary to answer it fully.

Another type of IDK occurs when the same intent is hit more than two successive

times within a conversation. This is an impasse, since it is clear we cannot give

the user a satisfactory response. It may indicate that the language model mapping

associated to the intent involved is too broad and therefore the intent is being selected

when it should not be, or the IVA is missing domain knowledge. At the user turn

in a conversation where an impasse is reached, the CRS applies the risk indicator

triggers impasse.
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10.3 Repetition in Conversation as Risk Indica-

tors

A second subcategory applies to multiple hits, where the same intent was returned

multiple times within a conversation. This is an indication of risk within a customer

service conversation as it is unlikely the user would want to see a specific response

more than once. An example of this are turns 1, 3, and 5 in Table 10.1. All user

turns in this conversation would therefore be tagged with multi in conv.

If two hits are successive, we label the successive user turns with the indicator

triggers seq, indicating that they generated a sequential hit to the same intent.

This usually indicates that the response to the first input did not satisfy the user so

they are rewording their questions to get a di↵erent response. In addition, all turns

in the conversation would be labeled with seq in conv, indicating it is possible the

topic of the entire conversation is outside the IVA’s current knowledge.

10.4 External Ratings as Risk Indicators

A third category is derived from ratings given by the human users themselves. Typ-

ically, customer service interactions present surveys on user satisfaction after a con-

versation is complete. Popular rating methods include Customer Satisfaction Score

(CSAT), Net Promoter Score (NPS), and Customer E↵ort Score (CES) [210]. All

such methods give users a scale to rate their experience on such as one to five stars

or 0-10.

If these ratings are present, they can be used as an indicator of risk. If the

user reported he/she was unhappy with the conversation, it may indicate the intents

present within that conversation need improvement. The ratings are normalized

into a range 1-5 where 1 would represent a poor response and 5 would represent an
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excellent one. Each rating score is given its own risk indicator in order to weigh them

individually. For example, if the user from Table 10.1 gave their experience a 1 out

of 5 rating, the CRS would assign every turn in that conversation the risk indicator

conv rating 1. As discussed in Section 4.4, these ratings do not always indicate

misunderstanding occurred. The user may give negative feedback if business rules

prevent the user from doing something he or she wanted. The user may also say the

IVA was unhelpful when the NLU was indeed working correctly, but the response

text was poorly worded.

Some live chat and IVA implementations take this feedback a step further and

give the user the option of rating every response. In the chat window there may be

a response shown from the agent, followed by a drop down box or scale to click on

that allows the user to quickly rate the quality of that response. In the cases where

the IVA has this functionality, these can be used as an indicator of per-turn risk.

These ratings are also normalized into a range 1-5 where 1 would represent a poor

response and 5 would represent an excellent one. Like conversation ratings, each turn

rating score is given its own risk indicator in order to weigh them individually. For

example, if the user from Table 10.1 gave the first turn a 2 out of 5 rating, the CRS

would assign the first turn the risk indicator user rating 2. Similar to conversation

ratings, user ratings may not always reflect the understanding ability of the IVA so

it must be weighted along with other indicators present.

10.5 Tying Intents

The final category of risk indicators used are those that relate to two or more intents

tying during intent determination. Ties can occur in an intent classifier if two intent

share similar language, such as initial seat selection on a plane and changing an

existing seat selection. Both intents will share similar classification scores given a

user turn such as “I need help with my seat selection.” Such an input could mean
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the user has a seat and needs help modifying it, or it could mean the user does

not yet have a seat and needs help selecting one. When multiple intents share

similar classification scores, the CRS will assign the risk indicator triggers tie to

the user turn that generated the tie. In addition, the CRS will add the risk indicator

tie in conv to all turns in that conversation as the presence of ties may indicate

confusion in the language model around the topic of the conversation.
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Chapter 11

Evaluation

We have now covered how all of the indicators of the risk of missed intent are detected

and applied to both user turns and conversations under review. In this chapter, we

perform several evaluations on the performance of the CRS as a whole, and how it

compares to human reviewers.

11.1 Data

In order to evaluate the performance of the CRS on various tasks, we first con-

structed a gold standard corpus to use in experiments. As the CRS must work well

regardless of domain, we constructed three datasets, each from a di↵erent language

domain. Due to annotation budget, we limited our average user turns per dataset

for evaluation samples to 8,000.

All turns in a conversation need to be reviewed, however conversations have

varying numbers of turns and, with multi-modal IVAs, not all user turns consist of

natural language. For example, some user turns in a conversation may be events

such as user interface clicks or web page navigations which the IVA responds to.
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Dataset # Conversations Total
User
Turns

Natural Language
User Turns

Majority
Agreement

Train 2,030 13,930 7,270 6,331
Telecommunications 1,342 20,485 7,313 5,252
Airline 1,611 9,103 9,103 6,978
Average 1,661 14,506 7,895 6,187

Table 11.1: Dataset statistics for the evaluation data.

Therefore, collecting a truly random sample of conversations to meet the total turn

count but still balanced by dataset was somewhat challenging. Using the average

natural language turns per conversation we estimated the sample size per domain.

We then selected a random sample of full conversations, using the estimated sample

size per domain, from the conversation logs of a live virtual agent in each of three

domains.

All natural language turns were selected for voting and released to a group of 14

voters. Three votes per turn was required to control for subjectivity. Voters were all

Next IT - Verint employees who were trained on the CRS user interface and voting

process prior to actually voting. Employees were used for voting as the data contained

personally identifiable information, and therefore external annotation services that

provided Non-Disclosure Agreement coverage were not a↵ordable. After voting, the

average number of turns per dataset with a clear majority (agree or disagree with

the intent chosen by the live IVA) was 6, 187. If there was no clear majority, the

turn was not used as an evaluation sample.

As the human reviewers voted on the user turns, the system logged the time

required to review each turn and make a determination. The average overall time to

receive a user turn and place a vote was 11.12 seconds.

Evaluation dataset statistics are given in Table 11.1. Total User Turns involve all

forms of user input including clicking on controls and web page navigation events.
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Natural Language User Turns are only those that were processed by the Natural

Language Understanding (NLU) component for intent classification. As the CRS

is only interested in the discovery of error in the NLU, it is these user turns that

are evaluated by humans. Majority Agreement are the number of Natural Language

User Turns where a majority of the three voters agreed on the vote.

From these counts we can see that the Telecommunications IVA is very interac-

tive, less than half of user turns are actually in the form of natural language. This

IVA responds to many user activities besides typed or spoken input. In contrast, the

Airline IVA does not accept anything but typed or spoken input. The Train IVA

appears a good balance of the two interaction styles. The Train IVA had the highest

level of overall voter agreement, at 87%. The Airline had less at 76.7% followed by

the Telecommunications IVA with 71.8% agreement. Inspecting the conversations

and IVA knowledge bases, it appears this is due to the complexity of the IVA and

the number of intents understood. The Train IVA has 930 distinct intents in its

knowledge base, compared to 1,223 for the Airline IVA and 2,173 for the Telecom-

munications IVA. Not surprisingly, the increase in possible intents to select from

appears to decrease voter agreement on the correctness of an intent chosen by the

IVA.

11.2 Potential New Intent Suggestions

The first task evaluated was the suggestion of Potential New Intents (PNIs) by the

agreement classifiers. Recall from Section 5.1.2 human reviewers or domain experts

need to suggest alternative intents when disagreeing with the intent selected by the

IVA. Essentially, once an error in the language model is identified, it cannot be fully

corrected until the proper intent of the erroneous user turn is known. Then the

domain experts can adjust the language model to map the turn involved from the

former intent to the proper intent.
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The CRS attempts this behavior by using the same agreement classifiers used

to generate the external clf and pni origin risk indicators to predict the proper

intent when they confidently disagree with the IVA. Multiple agreement classifiers

are supported and any classification method can be used, assuming it is di↵erent than

that of the method used by the NLU. Review Sections 4.4.3 and 5.1.2 for further

background.

In the particular implementation of the CRS under evaluation, we used a sin-

gle agreement classifier as we had limited human voter resources for validating the

suggestions. As our problem involves text classification, we selected Scikit Learn’s1

Support Vector Classifier (SVC) with a linear kernel which has been shown to per-

form well at this task [133, 134, 135]. It implements a “one-vs-rest” multi-class

strategy. To generate a confidence metric, we used SciKit Learn’s decision function

method which returns the signed distance of a sample to the hyperplane. Using

this distance d, we calculate the probability P of class membership. We used the

following estimation method since datasets may have input counts in the millions

and calculations must be performed on each input:

P =
d

2
+ .5 (11.1)

As we need an estimation method that will perform at a consistent and e�cient

speed with a large number inputs, and we do not require a high degree of precision,

we used the estimation technique in (11.1) over other techniques such as Platt scaling

[211]. Platt scaling has been shown to be an expensive operation on large datasets

[212]. Note that if d does not satisfy

✏  d

2
+ .5  1� ✏ (11.2)

1http://scikit-learn.org

http://scikit-learn.org


Chapter 11. Evaluation 186

Figure 11.1: Voter agreement with CRS PNI suggestions

where ✏ = .0001 in our case, then P will take on the value ✏ or 1� ✏, whichever is

closer. We used Pi of the predicted intent i for a user turn as the confidence of the

SVC in i.

For each user turn where the agreement classifier disagreed with the IVA selected

intent, if Pi > 0.6 the CRS will construct a PNI with the original user turn and

the top intent i from the SVC. As the SVC is selecting between one thousand or

more intents, the threshold 0.6 was chosen arbitrarily as a probability high enough

to warrant consideration.

In Figure 11.1 the voter agreement with the PNI suggestions is shown. Human

agreement over all three datasets is 67.7%, with 4.4% unsure. The Telecom dataset

had the highest agreement at 70%, followed by Airline at 68%, and finally Train

at 64.1%. While this performance is not high enough to fully replace humans in

determining alternative intents, it does appear that the PNIs generated in each of

the domains are acceptable to use as suggestions to domain experts. Even if an

average of 32.3% suggestions are ultimately discarded by the domain experts, PNI
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generation prevents any human e↵ort to find alternative intents over 2/3 of the time.

Performance of di↵erent choices for probability thresholds and altogether di↵erent

classification methods is left for future works.

11.3 Tuning Risk Indicator Weights

Recall from Section 4.4.4 that each risk indicator can be assigned a weight. Weights

are initialized to 0.5 and can be tuned over time as voting data is added. The risk

score for turn t, known as zt, is defined as the sum of these weights:

zt =
|Nt|X

n=1

wn (11.3)

Since there is no upper bound to zt, it is further normalized by the highest value

of zt observed in the dataset, MaxScore:

z0t =
zt

MaxScore
(11.4)

In the following section, we evaluated how well the risk score z0t using equal weights

correlates to vote outcomes. Then we explored how the weights can be optimized

and measured the e↵ect of such optimizations.

11.3.1 Equal Weight Scores

In Figure 11.2, the distribution of risk scores using equal risk indicator weights based

on the majority vote is shown. Comparing the distributions between the datasets,

we see that risk score is correlated with the majority vote, but it tends to have a

bimodal shape. Either user turns have medium risk values or they have low risk
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values, there is very little in between. There is a long tail out to the riskiest user

turn in every case. The Airline set in particular appears to be the best fit of risk

score to voter outcome, whereas the Telecom set appears to be the worst fit. If one

were to predict the majority vote based only on the risk score, we would expect

the Airline and Train datasets to perform well and the Telecom dataset to perform

poorly due to the large overlap of scores between the two voting outcomes.
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(a) Airline

(b) Telecom

(c) Train

(d) Overall

Figure 11.2: Distribution of risk score by majority vote for each dataset using equal
risk indicator weights.



Chapter 11. Evaluation 190

11.3.2 Generating Weights by Odds Ratios

We tune the weights of the risk indicators by dataset, as some datasets may have

higher incidence of certain factors such as escalations or out of vocabulary words. To

tune the weights, we used the presence or absence of risk indicators on the user turns

with majority voting outcomes. First we ignored any risk indicators with less than

25 occurrences and set their weight to 0, as there are not enough samples to build

statistics from. We then used Odds Ratios on the remaining indicators to determine

which ones are correlated with a majority disagreement on the IVA-chosen intent.

Odds Ratios (ORs) are commonly used in many fields of social science and medical

research to compare the impact of risk factors on a selected outcome [213, 214]. The

odds ratio represents the odds that an outcome will occur given a particular exposure,

compared to the odds of the outcome occurring in the absence of that exposure [215].

As odds are determined from probabilities, another way to think of them is the ratio

of the probability of success and the probability of failure, given some probability p

of an outcome [216].

odds(success) =
p

(1� p)
(11.5)

odds(failure) =
(1� p)

p
(11.6)

OR =
odds(success)

odds(failure)
=

p2

1� 2p+ p2
(11.7)

From our voter evaluated datasets, odds ratios for every risk indicator were cal-

culated. Statistically insignificant risk indicators were eliminated using a 95% confi-

dence interval. Remaining indicators were then ranked by their ORs where a higher
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OR indicates a larger magnitude of e↵ect. For example, from (11.7), using success

to mean the majority disagreed with the IVA-chosen intent, an OR of 3 would indi-

cate that given the observance of a particular risk indicator the probability of success

(discovered a misunderstanding) is three times that of failure (no misunderstanding).

Finally, ORs were normalized between 0 and 1 to obtain weights for their respective

indicators.

To calculate ORs, dichotomized exposures must be delimited. An input chat was

risky if the majority of voters disagreed with the intent it was mapped to, otherwise

it was labeled as safe.

Risky Safe
 !

Risk Indicator a b

No Risk Indicator c d

ORRisky =
a/c

b/d
(11.8)

The value of the OR indicates the e↵ect the risk indicator has on the riskiness of

the chat: an OR � 1 signifies that the indicator positively a↵ects riskiness. If the

95% confidence interval of the OR includes 1, we deemed it a statistically insignificant

result. Intuitively, using (11.7) an OR of 1 means that the odds of success is equal

to the odds of failure, or p = 0.5. Therefore, a risk indicator with an OR of 1 is not

useful for prediction of missed intent. If using (11.8), the lower and upper bounds

for the 95% confidence interval can be calculated in the following manner [215] :

eln(OR)±1.96⇤
p

( 1a+
1
b+

1
c+

1
d ) (11.9)

If risk indicators are not independent, an adjusted OR can be calculated with

logistic regression [217, 216, 218]. As we expected some indicators may have slight
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dependence, for example tie in conv and triggers tie, we used the adjusted ORs

from the logistic regression coe�cients, as in [216]. To eliminate the e↵ect of any

risk indicators with high multicollinearity, we first calculated the Variance Inflation

Factor (VIF) for each risk indicator using the Python statsmodels package2. The VIF

is a means to determine if a variable has a significant impact on variance of the model,

and therefore should be removed. It is a ratio of the variance in a model with multiple

terms over the variance in a model with one term [219]. A VIF threshold greater

than between 5 and 10 is commonly used to indicate high multicollinearity [220, 221].

Thus, we ignored any indicators with a VIF greater than 5 by setting their weight to

0. Finally, we calculated an adjusted OR using logistic regression on the remaining

indicators with an intercept and taking the exponent of their coe�cients [218]. Any

indicators with 1 in the 95% confidence interval were set to 0. The normalized OR

is used as the weight for the rest.

Risk Indicator Airline

Count

Telecom

Count

Train

Count

Airline

OR

Telecom

OR

Train

OR

backstory 298 186 200 1.9±0.53 1.46±0.5 1.1±0.34

conv rating 1 0 0 0 - - -

conv rating 2 0 0 0 - - -

conv rating 3 0 0 0 - - -

conv rating 4 0 0 0 - - -

conv rating 5 0 0 0 - - -

conv should esc 167 186 182 1.9±0.95 0.6±0.29 0.88±0.5

end rating 1 0 0 0 - - -

end rating 2 0 0 0 - - -

end rating 3 0 0 0 - - -

end rating 4 0 0 0 - - -

end rating 5 0 0 0 - - -

2http://www.statsmodels.org/dev/generated/statsmodels.stats.outliers_

influence.variance_inflation_factor.html

http://www.statsmodels.org/dev/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html
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ends on

imperative

1 2 0 - - -

ends on q 3 7 5 - - -

external clf 2,055 3,185 2,481 12.9±2.6 4.6±1.1 15.4±3.0

idk in conv 141 133 202 1.8±0.97 1.53±0.8 2.47±1.5

multi in conv 365 220 324 VIF: 5.1 0.46±0.3 VIF: 6.2

multi intent 448 193 409 1.34±0.3 1.5±0.45 1.25±0.3

pni origin 783 1,714 900 1.75±0.3 1.5±0.28 1.0±0.17

precedes corr 4 5 2 - - -

precedes esc 35 19 16 0.6±0.48 - -

precedes idk 21 23 64 - - 1.38±0.8

precedes neg 196 206 187 1.39±0.7 1.4±0.59 1.2±0.52

precedes

profanity

0 0 0 - - -

precedes

unhelpful

0 0 0 - - -

response class 0 0 0 - - -

response

complexity

28 18 9 2.1±1.7 - -

restated 79 43 49 1.4±0.95 0.54±0.4 0.99±0.6

sent change 241 226 287 0.95±0.5 0.4±0.19 1.83±0.8

seq in conv 232 79 255 2.08±1.0 5.26±3.1 0.79±0.4

should esc

point

21 24 11 - - -

tie in conv 318 324 323 0.3±0.15 1.6±0.72 0.27±0.1

triggers idk 0 0 70 - - 1.49±0.8

triggers

impasse

0 0 7 - - -

triggers seq 55 15 62 0.67±0.5 - 0.38±0.2

triggers tie 1,258 1,031 1,153 0.7±0.14 1.2±0.24 1.2±0.2

unknown words 31 16 30 3.47±2.1 - 1.35±0.8
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Table 11.2: Risk indicator incidence per dataset. The ad-

justed OR and 95% confidence interval is given for each with

count > 25. Those with a confidence interval spanning 1 are

eliminated, as are those with a VIF > 5.

The counts of each risk indicator by dataset, and the adjusted ORs with 95%

confidence are given in Table 11.2. Note that many risk indicators were not present

or did not meet the 25 count minimum to be considered. When constructing these

datasets, we drew a random sample that did not consider any prior knowledge of risk

indicators. Therefore, we did not have enough data to draw any conclusions about the

e↵ectiveness of these under-represented indicators. In the future, as voters continue

to use the system, we can re-evaluate the predictive power of these indicators. Deeper

analysis of these OR scores is covered in Chapter 12.

In Figure 11.3, we see the new distribution of risk scores created using the

weighted indicators. Notice that when compared to those from the equal weights

in Figure 11.2, the two distributions of user turns are pushed further apart on the

risk scale. Unfortunately, comparing the overlap between Yes and No it does not

appear that the error is necessarily diminished any. We discuss this in detail and the

possible reasons for it later in Chapter 12.
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(a) Airline

(b) Telecom

(c) Train

(d) Overall

Figure 11.3: Distribution of risk score by majority vote for each dataset using OR-
tuned risk indicator weights. Compare these to Figure 11.2
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11.4 Performance in Augmenting the Existing Re-

finement Cycle

The first configuration of the CRS, introduced in Section 5.1, is to optimize the

reviewer’s time by prioritizing the user turns for review. The priority ordering is

the most likely to be misunderstood by the IVA. In addition, the CRS provides

suggestions for alternative intents to the domain experts, which was earlier evaluated

in Section 5.1. To evaluate the quality of the prioritization, we compared several

strategies using a common practice of selecting a random sample as the baseline.

We are interested in maximizing the number of turns the majority of voters will

disagree with the IVA-selected intent in a fixed sample size. This minimizes the

wasted time for human review on a sample of that size. Recall that every turn

reviewed that was not misunderstood is a waste of reviewer time as only misunder-

stood turns will be given to domain experts for analysis. Therefore, by maximizing

the number of misunderstood turns reviewers will see in a fixed sample size, we re-

duce wasted human e↵ort and, therefore, wasted money. Reduction of human labor

costs is a major motivation of this work. Recall that to generate a majority, three

votes per turn is desired. Thus, a company pays the cost per turn ⇥3 for every

reviewed turn that is not misunderstood, with no improvements to be made in the

IVA in return.

For a baseline, we choose a random sample from each evaluation dataset in sizes

100, 200, 300, and 400. We chose a limit of 400 as this is roughly 5% of the average

dataset size. Recall from Section 6.2.1 the Telecom IVA processes 50,000 user turns

per day, and the human reviewers averaged 11.12 seconds per turn (Section 11.1).

Reviewing a 5% sample from that IVA would require 2,500 turns to be reviewed

per day at 11.12 seconds per vote. This would require a full 8-hour working day to

complete, and thus a 5% sample size is the limit an average human reviewer could
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process in a day.

For each random sample size, we calculated the percentage of majority voter

disagreements with the IVA it contains. To avoid unintentional bias in the random

sample, we repeated this process 500 times per sample size per dataset and used the

average percentage of disagreement as the baseline.

The first test was a comparison of selection by overall risk score, z0t, using the

equal risk weights. We sorted the evaluation dataset by risk score, descending, and

selected the top N turns for each sample size. We then calculated the percentage of

disagreements per sample size.

Next, we compared the selection by overall risk score, z0t, using the OR tuned risk

weights. We sorted the evaluation dataset by OR tuned risk score, descending, and

selected the top N turns for each sample size. We then calculated the percentage of

disagreements per sample size.

Last, we compared the selection using the voting classifier, described in the next

section. We sorted the evaluation dataset by the voting classifier decision, and then

by the risk score. We used both the equal weight risk score and the OR tuned risk

score to compare their e↵ect in combination with the voting classifier. Finally, the

top N turns were selected for each sample size. We then calculated the percentage

of disagreements per sample size for the equal weight and OR tuned weight in com-

bination with the voting classifier label. The comparison of all 5 selection methods

by dataset is shown in Figure 11.4.

Inspecting the charts, we first focus on the random samples. Across all N , the

random sample does not change in error discovery performance by more than ±0.2%

per dataset. Therefore, it appears this number faithfully indicates the IVA under-

standing error per dataset, as determined by human reviewers. The Airline IVA

has a misunderstanding rate of 11.6% within the evaluation dataset. The Telecom

IVA is slightly worse at 14.35%, and the Train IVA is the worst performer at 17.4%
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Figure 11.4: Performance of various selection strategies at finding disagreements in a
fixed sample size N . The Y-axis is the % of user turns where the majority of voters
disagreed with the IVA-selected intent within the sample.

misunderstanding rate. If a human reviewer were to take a random sample of the

Airline IVA conversation logs for review, they would only find a misunderstanding in

about one out of every ten user turns reviewed. In addition, as the IVA performance

improves over time due to the review and language model correction cycle, we would

expect this discovery rate to decline.

Next, we focus on the selection using equal indicator weights. At N = 400, or
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a 5% selection size, the increase in reviewer productivity is 3.5x for Airline, 2x for

Telecom and 2.2x for Train. The combined risk indicators appear to be e↵ective in

finding misunderstandings.

The OR tuned risk weights are more complex. For most cases, they further

improve the error discovery rate. However, for the N = 100 case they do poorly for

the Train dataset, and they appear to degrade as N grows for the Telecom dataset.

There is also another issue to consider. Recall from Section 11.3.2 that the OR

weights are derived from coe�cients of a logistic regression over the three datasets.

Therefore, there will be a bias introduced in that the OR weights are used to rank

samples that were part of the OR tuning process. We must therefore consider these

scores to be a theoretical maximum performance on the part of OR-derived weights.

The poor performance on a small sample size in the Train dataset, and overall in

the Telecom dataset can be explained by looking at the risk score distribution graphs

in Figure 11.3. Notice that the Telecom dataset has a bimodal distribution for Yes,

and there is large overlap between the high risk score values of Yes and No. Thus, the

selection by top risk score will contain many errors in the Telecom dataset. For the

Train dataset, the mean and standard deviation is smaller for No than the Airline

dataset. Small values of N will therefore not retrieve as many misunderstandings as

they will for Airline. We do see the performance of the OR risk weights increase as

N increases, which would be expected from the distributions.

Introducing the voting classifier to help rank the user turns will only be as suc-

cessful as the voting classifier is accurate in a language domain. This is evidenced by

the performance of the voting classifier across the three datasets. As discussed in the

next section, the voting classifier does not perform as well on the Telecom dataset

as the others. For the voting classifier combined with the equal weight ordering, the

Airline and Train datasets enjoy a 5.7x to 7x and a 4x to 4.6x increase in reviewer

productivity over a random sample, while the Telecom dataset only sees a 1.1x to

2.3x increase.
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For the last combination of voting classifier and OR tuned weights, we once again

see a more complex story. The Telecom dataset appears to pick up the combined

error in the voting classifier and the risk distributions as N increases. By N = 400,

the random sample out performs this selection method. With the Train dataset, we

see the opposite e↵ect. For some values of N this approach nears 100% reviewer

productivity. We must be careful to point out that the scores for this method will

also be subject to the bias introduced by the OR tuning, and therefore should be

considered theoretical maximums. Further discussion of these results is continued in

Chapter 12.

11.5 Performance in Automating the Existing Re-

finement Cycle

The second configuration of the CRS, introduced in Section 5.2, is to vote in place

of the human reviewers. To select a voting classification method, we evaluated 9

di↵erent classification models using several metrics. We performed training and

evaluation using stratified 10-fold cross validation on subsets of each dataset, starting

from 10% of the total dataset and increasing by tenths until reaching the full set.

The increasing partitions were to simulate the growth of the training data as humans

continue to vote. We could then see how each model performed with increasing

training samples.

The voting classifiers were trained using the risk indicators as features and the

majority decision as the outcome. Repeating the example from Section 5.2 for clarity,

if voters agreed that turn t belongs to the intent assigned by the IVA, the outcome

is 1. If they disagree, the outcome is 0. Then for each turn with a voter consensus

we add a row to a feature matrix M , with a column for each risk indicator and a

final column for the outcome.
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M =

0

BBBBB@

backstory multi intent restated outcome

t1 0 0 1 · · · 1

t2 1 1 0 · · · 0
...

...
...

...
. . .

...

tn 0 0 0 · · · 1

1

CCCCCA

This feature matrix M is then passed to a classifier training function to produce

a binary classification model. When a new turn is under review, the risk indicators

present are represented as a feature vector and fed to the voting classifier to predict

the majority vote of Yes or No.

The classifiers were trained and evaluated on each dataset in isolation. It is clear

from Table 11.2 that risk indicators are dependent on the language domain, both in

frequency and in predictive power. Therefore the CRS maintains and continuously

trains an independent classifier for each IVA under review.

11.5.1 Comparison Metrics

Due to the multiple layers of random sampling used to create the datasets and

gather the votes, fairly comparing humans to each other and the voting classifier can

be di�cult. As the 14 human voters in Section 11.1 did not see all of the user turns

in a dataset, but were merely given a subset of turns ensuring each turn had three

votes each, we cannot calculate a recall, and therefore a F1 score, for the humans.

Furthermore, no two humans saw the exact same subset of the turns so that a pair of

voters could not always vote the same (always vote “Yes”, for example) and generate

an inaccurate majority on an entire subset. Equations for precision and recall for

the class A are as follows [222]:

precisionA =
trueposA

trueposA + falseposA
(11.10)
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recallA =
trueposA

trueposA + falsenegA
(11.11)

Recall, also known as sensitivity, is a measurement that quantifies the fraction of

positive samples in the total population that are successfully retrieved [223]. It is a

measure of completeness, or sensitivity, of a classifier. The trouble with recall arises

when each classifier (human reviewer) has a di↵erent total population to select from

(subset of turns reviewed). To calculate recall using all possible positive samples

(misunderstood turns) in the dataset is unfair as no human had the opportunity to

select them all. Because of this, recall scores would be both low and potentially

biased towards reviewers with higher numbers of positive samples in their subset as

they have more opportunity to reduce falsenegA.

Alternatively, to calculate recall using the count of positive samples in the subset

for a particular reviewer is also unfair as each subset may have very di↵erent counts of

positive samples, so a comparison of recall between two reviewers will have biases. In

this case, falsenegA will have less possibility of an e↵ect on those with low numbers

of positive samples in their subset than those with high numbers in their sample.

Therefore, to compare the human reviewers to each other and to the voting classifier

we considered only the class unweighted (micro) and class weighted (macro) precision.

The equations for both in the binary case are given [224]:

precisionmicro =
trueposA + trueposB

trueposA + trueposB + falseposA + falseposB
(11.12)

precisionmacro =
1

2
(

trueposA
trueposA + falseposA

+
trueposB

trueposB + falseposB
) (11.13)

The micro-averaged precision gives a sense of how many “correct” votes a re-

viewer made over the sample size they reviewed. Equal weight is given to each turn
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classification decision without regard to class imbalance [222, 224]. However, as the

two classes are very imbalanced (see Section 11.4) this can be misleading if viewed

alone. Consider the case of a function that always returns a “Yes” vote. In the

Airline dataset, which has only 11.6% misunderstood turns, such a function would

get a micro-averaged precision of 0.884. As each sample is weighted individually, the

micro-averaged precision becomes a measure of e↵ectiveness on the largest class as

the class imbalance grows [224]. In a binary classification, micro-averaged precision

reduces to the accuracy score.

In contrast, a macro-averaged precision for this function using (11.13) would be

1
2(0.884 + 0.0) = 0.442. It should be noted that some toolkits consider no samples

from a class as 100% correct on that class as division by 0 is undefined, and they

would instead report that function’s macro-precision as 0.942. As each class is now

weighted equally, the macro-averaged precision gives a sense of e↵ectiveness on small

classes [222]. Taking these two measurements together we can get a sense of a

classifiers (human or machine) performance overall and performance equally favoring

the under-represented class of misunderstandings. In addition, as precision does not

consider false negatives, which is di�cult to fairly define in di↵ering subsets, we can

more fairly compare the metrics between reviewers and the voting classifier.

11.5.2 Voting Classifier Selection Process

The classification methods chosen for comparison either performed well on vari-

ous datasets3, or are current standard machine learning methods applied to sparse-

feature binary classification tasks (Support Vector Machines [225], Multi-Layer Per-

ceptrons [226, 227], Random Forests [228], et cetera). The specific classification

3Such as http://scikit-learn.org/stable/auto_examples/classification/

plot_classifier_comparison.html

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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methods chosen and their configuration parameters4 are detailed in Table 11.3. A

Naive Bayes classifier was also considered, but did so poorly on the preliminary tests

it was discarded.

Name Method Parameters References

dt Decision
Tree

{criterion=’gini’, splitter=’best’,
max depth=None, min samples split=2,
min samples leaf=1}

[229]

rf Random
Forest

{estimators=15, criterion=’gini’,
max depth=None, min samples split=2,
min samples leaf=1}

[228]

svm Liner Sup-
port Vector

{penalty=’l2’, loss=’l2’, C=0.5} [225, 113]

ada AdaBoost {estimator=DecisionTree, n estimators=50,
learning rate=1.0, algorithm=’SAMME.R’}

[230, 228]

gauss Gaussian
Process

{kernel=’1.0 * RBF(1.0)’, opti-
mizer=’fmin l bfgs b’}

[231, 232]

knc3 K-Nearest
Neighbor

{n neighbors=3, weights=’uniform’} [233]

knc10 K-Nearest
Neighbor

{n neighbors=10, weights=’uniform’} [233]

nn1 Multi-Layer
Perceptron

{input neurons=12, input activation=’relu’,
hidden neurons=8 hidden activation=’relu’,
output activation=’sigmoid’, epochs=20,
batch size=32}

[226, 227]

nn2 Multi-Layer
Perceptron

{input neurons=64, input activation=’relu’,
dropout=0.2, hidden neurons=64 hid-
den activation=’relu’, dropout=0.2, out-
put activation=’sigmoid’, epochs=20,
batch size=32}

[226, 227]

Table 11.3: Details on classifiers under comparison for the voting classifier.

In Figure 11.5, the results of the evaluation using 10% of the data (a) and the

final step using 100% of the data (b) is shown. The intermediate steps were not

shown as there was surprising little change, outside of the macro precision, as the

4Documentation on parameter meanings and possible values is available at http://

scikit-learn.org/stable/modules/classes.html.

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
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training data increased. With additional data, the svm, knc3, knc10, nn1 and

nn2 models all saw a slight increase in precision, and most methods saw a decrease

in variance across the 10 folds. The tree-based methods (dt, rf, ada) along with

gauss performed nearly as well with 10% of the data as they did with 100% on the

Airline and Train datasets.
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(a) 10% dataset

(b) 100% dataset

Figure 11.5: Comparison of classification models on majority voter prediction task,
using 10-fold cross validation. The initial evaluation at 10% of the datasets and final
size of 100% are shown. 95% confidence interval is represented by black bars.
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The top three classification methods that appeared least sensitive to data volume

and had the highest combined precision across all three datasets were then selected for

a second round of comparison. These classifiers (rf, ada, gauss) were then retrained

on the 10% to 100% set sizes using a more rigorous 30-fold cross validation and the

training times were recorded. As the CRS is continually retraining these models as

human voting data is added, training time and scaling are important considerations,

classification performance being equal. The gauss classifier was by far the slowest

to train, averaging 12 minutes for 30-fold cross validation across the three datasets

for the 100% dataset size. Compare this to 8 seconds for ada and 2 seconds for rf

on the same data size.

The performance of the remaining classifiers in this round is shown in Figure 11.6.

The volume of data seems to have a minor e↵ect on the precision, but a more no-

ticeable e↵ect on the confidence interval.

(a) 10% dataset (b) 100% dataset

Figure 11.6: Comparison of the top three classification models on majority voter
prediction task, using 30-fold cross validation. The initial evaluation at 10% of the
datasets and final size of 100% are shown. 95% confidence interval is represented by
black bars.

Given the nearly identical performance of the three methods across all datasets,
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regardless of training data size, we chose the method with the fastest training time

(rf) as the final classification type to use for the voting classifier. As the CRS

maintains separate classifiers per dataset due to the di↵erence in risk indicators, we

next optimized the parameters for the rf classifier per dataset. Using a stratified

30-fold cross validation, we performed a grid search over the following parameter

values:

Parameter Possible Values

n estimators 15 through 30 in steps of size 2

criterion ’gini’, ’entropy’

max depth 5 through 12, None

The n estimators parameter sets the number of trees in the forest. The crite-

rion parameter is the function to measure the quality of a split, Gini impurity or the

information gain. The max depth is the maximum allowable depth of a tree. For

each combination of parameters, the macro precision was calculated and later was

used to select the best combination. The best parameters found per dataset were:

Dataset Best Parameters Precision (Micro) Precision (Macro)

Airline {n estimators=30,

criterion=’gini’,

max depth=10}

0.890 0.740

Telecom {n estimators=30,

criterion=’entropy’,

max depth=11}

0.858 0.587

Train {n estimators=17,

criterion=’gini’,

max depth=9}

0.831 0.742
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11.5.3 Voting Classifier Evaluation

Having selected a voting classifier, we compared its performance using the optimized

parameters on a stratified 30-fold cross validation of each dataset to the human

voters. For each voter, we calculated the micro and macro precision of their votes to

the majority vote.

Airline Dataset

The airline dataset was composed of 9, 103 user turns of which 6, 978 (76.65%) had

a majority voter agreement, and the originating IVA can recognize 1, 223 unique

intents. The human voter performance, along with the voting classifier average

performance over a 30-fold cross validation, is shown below.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter2 1.000000 1 voter2 1.000000

2 voter15 1.000000 2 voter15 1.000000

3 voter17 1.000000 3 voter17 1.000000

4 voter6 0.926611 4 voter9 0.958349

5 voter1 0.904731 5 voter1 0.952381

6 voter9 0.891965 6 voter6 0.947956

7 voter3 0.861885 7 voter3 0.942841

8 voter4 0.844408 8 voter4 0.941643

9 voter5 0.832290 9 voter7 0.933943

10 voter8 0.790549 10 voter8 0.917561

11 voter7 0.772389 11 CRS 0.889902

12 CRS 0.739638 12 voter12 0.878893

13 voter12 0.695378 13 voter11 0.866667

14 voter11 0.666667 14 voter5 0.836735

15 voter10 0.641716 15 voter10 0.790123

mean±95% 0.844899±0.239 mean±95% 0.926221±0.123

Telecom Dataset

The Telecom dataset was composed of 7, 313 user turns of which 5, 252 (71.82%) had

a majority voter agreement. It originated from the most complex IVA of the three.

The IVA recognizes 2, 173 unique intents and carries out complex user interactions

that take into account meta-data such as the users mobile device, if the user is

logged in or not, the location and account type the user has, et cetera. Without

understanding this meta-data and how it is used in intent classification, the CRS is

at somewhat of a disadvantage in selecting the proper intent as an outside observer.

Due to this IVA complexity, the scores are lower on this dataset than the other two.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter1 1.000000 1 voter1 1.000000

2 voter16 0.935140 2 voter10 0.980040

3 voter10 0.914609 3 voter6 0.952590

4 voter6 0.894821 4 voter2 0.943147

5 voter15 0.858721 5 voter13 0.936842

6 voter4 0.833291 6 voter16 0.923913

7 voter9 0.826032 7 voter3 0.911934

8 voter2 0.825104 8 voter4 0.898210

9 voter7 0.815603 9 voter15 0.895105

10 voter5 0.813492 10 voter5 0.887090

11 voter3 0.761177 11 voter7 0.871921

12 voter13 0.738506 12 CRS 0.857446

13 voter11 0.680040 13 voter9 0.803738

14 CRS 0.587383 14 voter12 0.788462

15 voter12 0.564286 15 voter11 0.696275

mean±95% 0.818630±0.243 mean±95% 0.892090±0.158

Train Dataset

The Train dataset was composed of 7, 270 user turns of which 6, 331 (87.1%) had a

majority voter agreement. The originating IVA can recognize 930 distinct intents,

making it the smallest language model of the three. Despite its smaller size, it

appeared to have more disagreement between the individual voters and the majority

vote, evidenced by the lower means and larger 95% confidence intervals.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter15 0.972222 1 voter6 0.973888

2 voter10 0.918452 2 voter10 0.951338

3 voter6 0.910626 3 voter15 0.950000

4 voter2 0.874898 4 voter4 0.933293

5 voter5 0.853439 5 voter5 0.931871

6 voter4 0.848875 6 voter7 0.931398

7 voter3 0.848343 7 voter8 0.920548

8 voter8 0.838889 8 voter3 0.909347

9 voter7 0.825955 9 voter14 0.909091

10 voter1 0.809436 10 voter11 0.856651

11 CRS 0.742357 11 voter2 0.854251

12 voter11 0.730333 12 voter1 0.836417

13 voter12 0.594160 13 CRS 0.831601

14 voter16 0.562500 14 voter12 0.630252

15 voter14 0.500000 15 voter16 0.222222

mean±95% 0.792009±0.276 mean±95% 0.843612±0.382

Overall Performance

Averaging the voter performance over the three datasets we can see how each of

the voters faired overall. Although all three datasets had 14 human voters, not all

of the voters were the same people. There were 17 unique voters overall, and their

labels are consistent across datasets (voter3 in the Train dataset is the same person

as voter3 in the Airline dataset).
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter17 1.000000 1 voter17 1.000000

2 voter15 0.943648 2 voter6 0.958145

3 voter6 0.910686 3 voter15 0.948368

4 voter1 0.904722 4 voter13 0.936842

5 voter2 0.900001 5 voter2 0.932466

6 voter9 0.858999 6 voter1 0.929599

7 voter4 0.842192 7 voter4 0.924382

8 voter5 0.833074 8 voter3 0.921374

9 voter10 0.824926 9 voter8 0.919054

10 voter3 0.823801 10 voter7 0.912421

11 voter8 0.814719 11 voter14 0.909091

12 voter7 0.804649 12 voter10 0.907167

13 voter16 0.748820 13 voter5 0.885232

14 voter13 0.738506 14 voter9 0.881044

15 voter11 0.692346 15 CRS 0.859649

16 CRS 0.689793 16 voter11 0.806531

17 voter12 0.617941 17 voter12 0.765869

18 voter14 0.500000 18 voter16 0.573068

mean±95% 0.809931±0.251 mean±95% 0.885464±0.252
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Chapter 12

Discussion

We begin our discussion with a review of the work presented thus far. The task at

hand is to review logs of conversation between Intelligent Virtual Assistants (IVAs)

and human users in order to find communication errors in the form of misunderstand-

ing on the part of the IVA. This task is currently reserved for human reviewers, who

are unable to scale to the volume and velocity of the logs for commercial IVA deploy-

ments. Therefore, sampling strategies are employed to create manageable subsets of

the conversations that can be handled by humans.

The work presented in this dissertation is the design and construction of a system

that can handle the scale of the logs (Section 6.2), provide an intelligent selection

strategy superior to current practices (Section 11.4), suggest relevant alternative

intents autonomously (Section 11.2), and even potentially altogether replace human

reviewers (Section 11.5). The system proposed to perform all of these tasks is named

the Chat Review System (CRS).

The motivations for the construction of the CRS are the cost of human labor,

the subjectivity of human language decisions, and the inability for a set of human

reviewers to find all of the di↵erent error scenarios present in the conversations logs

(such as misunderstanding an infrequent intent) as time and money do not permit
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reviewing all of the logs. Given the overarching task, motivations and goals of the

CRS, we now will consider each objective and how the CRS performs on it.

12.1 Load Tests and Ability To Scale

One of the primary needs is the ability to review all of the conversations from

a live IVA. It is impossible to predict all of the ways human users will attempt

to communicate with a natural language interface. Every person brings their own

style of communication, assumptions, biases, and problems. Given this, failures in

understanding have the potential to be present in any conversation with an IVA. If

the CRS is to be viable solution for a company that designs and builds IVAs, it must

support not just the log sizes of a single IVA, but of dozens.

In Section 6.2, various scaling tests are performed on a deployment of the CRS.

From the scale up tests, we see there is a linear relationship between the number

of turn-response pairs analyzed and the total processing time that closely follows a

O(
p
n) growth curve. If this were to continue, ignoring storage and memory limita-

tions of the test servers, that configuration could theoretically support a single IVA

which generates 8.6 million user-response pairs per 24 hours. Put in perspective, this

number is 8 times the number of calls the Los Angeles Police Department handled

in all of 20171.

Taking into account daily model training overhead per IVA, the CRS as tested

could support 31 concurrent IVAs. If models were only retrained once a week, we

would use 0.015 as the average number of seconds to process one turn (see Figure 6.3).

As the model training time has a large impact on total processing time, training

once a week would increase the capacity of the CRS to handle 115 concurrent IVAs

averaging 50,000 turn-response pairs per day. This number of concurrent IVAs by

1Source: https://catalog.data.gov/dataset/lapd-calls-for-service-2017

https://catalog.data.gov/dataset/lapd-calls-for-service-2017
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far surpasses the requirements of a single business, and, if for some reason it was

still unsatisfactory, more nodes can be added to the compute and database clusters

to increase performance (see Figure 6.5), or a second instance of the CRS could be

deployed to double the capacity.

These load tests demonstrate that the CRS, in the hardware configuration tested,

has the ability to meet the demands of commercial deployment. One instance could

easily handle all of the conversation logs from a single high-volume IVA, even using

only a single HPC cluster node.

12.2 Intelligent Selection Strategy

The next area of need is to provide an intelligent selection strategy superior to current

practices. If human reviewers are to be productive in their error discovery task, we

wish to prioritize the user turns they see to maximize the error discovery. As stated

in the introduction, every user turn reviewed by a human that does not contain any

misunderstanding on the part of the IVA is not useful to the domain experts to

improve the IVA. Therefore, the time spent on review was wasted e↵ort. To evaluate

possible selection strategies, several methods were used to select a fixed sample size

N of user turns for review in Section 11.4. The number of turns within each sample

that resulted in an IVA misunderstanding, as determined by a majority of voters,

was counted.

The baseline method was a random sample. To prevent any unintended bias,

the random sample was taken 500 times for each value of N and the percentage

of misunderstandings found were averaged. We would expect this averaged value

to converge to the error rate of the IVA within the dataset. In Figure 11.4 we

see the result of each selection strategy by dataset. There are a few issues that

are immediately apparent. The first is that the error rate of the IVAs are all low
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(< 18%) and therefore random selection will result in a lot of wasted reviewer time.

The second is that the selection strategies di↵er in e↵ectiveness by language domain.

In the Train dataset we do not see nearly the e↵ectiveness in the OR weighted

selection that is seen in the Airline dataset. In the Airline and Train datasets, the

voter-based selections are the highest performing.

In the Telecom dataset, the voter-based selection strategies are not e↵ective, due

to the lower performance of the voting classifier in this domain. Recall that this

was the most complex of the three IVAs considered. The Telecom IVA understands

2, 173 unique intents and allows the most complex user interactions along with ex-

tensive business logic that is used to determine correct intent based on many factors

of the current user. As the voting classifier performed the worst on this dataset,

the selection strategies using the classifier performed worse than the weight based

strategies alone. However, the weight based strategies were able to outperform a

random sample, even doubling its performance in the case of even weight selection.

12.2.1 Annotation Cost Recovery by Deploying the CRS

Looking at each sample selection method we can get a sense of the human produc-

tivity increase we could expect by employing the method over a random sample. To

quantify this productivity increase, we need estimates for cost of review per turn.

There are two ways a company can conduct reviews. The first is to use employees

to review the logs, the second would be to use an external annotation service.

HourlyCost =
Y earlySalary

52wks ⇤ 40hrs +Burden =
$39, 231

2, 080
+ $11.38 = $30.24 (12.1)

TurnsPerHour =
SecondsPerHour

TurnsPerSecond
=

60m ⇤ 60s
11.12

= 324 (12.2)
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CostPerTurnemployee =
HourlyCost

TurnsPerHour
=

$30.24

324
= $0.0933 (12.3)

To get an estimated cost per turn for an employee, we take the median salary

for a Customer Service Representative plus average labor burden and convert this

into hourly pay (12.1). We can then find how many turns per hour an average

human reviewer can vote on, using the statistic 11.12 seconds per turn measured in

Section 11.1. Finally, using (12.3) we can determine the average cost for a company to

employ someone with customer service training full time to review IVA conversation

logs. For the median salary, we pick a location with known high concentrations of

call centers [234] and find the median salary there2. For the labor burden, which is

the overhead an employer pays per employee such as payroll taxes and insurance, we

use the December 2017 average US benefits costs reported by the US department of

labor3. We arrive at a cost of $0.0933 per turn voted on.

To get a cost for an external annotation service, we use the costs reported by the

popular crowd-sourcing platform Amazon Mechanical Turk4. The pay per item of

work can be anything larger than $0.01; at the time of this writing, between $0.01 and

$0.10 per item appears common in listed jobs for annotation tasks such as labeling

images and classifying language. There is then the 20% fee per item Amazon charges

plus and additional 20% fee per item for batches of more than 10 items. Finally, as

this work requires meeting minimum qualifications for proper intent classification,

there is an additional $0.40 fee per item to use qualified workers. Using (12.4), the

total cost per turn to use the crowd-source platform Mechanical Turk is therefore

2Source: https://www.payscale.com/research/US/Job=Customer_Service_

Representative_(CSR)/Hourly_Rate/822cfecf/Dallas-TX
3Source: https://www.bls.gov/news.release/ecec.nr0.htm
4Source: https://requester.mturk.com/pricing

https://www.payscale.com/research/US/Job=Customer_Service_Representative_(CSR)/Hourly_Rate/822cfecf/Dallas-TX
https://www.payscale.com/research/US/Job=Customer_Service_Representative_(CSR)/Hourly_Rate/822cfecf/Dallas-TX
https://www.bls.gov/news.release/ecec.nr0.htm
https://requester.mturk.com/pricing
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between $0.414 and $0.54 depending on how much we pay the workers.

CostPerTurnMTurk = (PayPerTurn ⇤ 1.4) + $0.40 = [$0.414, $0.54] (12.4)

For a fair estimation, we must subtract and costs associated with running the

CRS analysis over the data. Using the Amazon Web Services (AWS) hosting cost

calculator5, we can estimate the hourly costs associated with the deployment con-

figuration given in Table 6.1, but only using one HPC node as that is more than

su�cient to support a single IVA. Given this configuration, the hourly hosting costs

for the CRS on AWS would be $2.67. Using the time per turn measured to process

one days worth of data, 0.055 seconds (see Figure 6.3), we can calculate the CRS

processing cost per turn:

CRSTurnsPerHour =
SecondsPerHour

SecondsPerTurn
=

(60m ⇤ 60s)
0.055s

= 65, 454.54 (12.5)

CostPerTurnCRS =
HourlyCost

CRSTurnsPerHour
=

$2.673

65, 454.54
= $0.000040837 (12.6)

Now that we have our costs for the employee reviewers, external reviewers, and

data processing, we can calculate the cost savings of deploying the CRS at this task.

As majority agreement is required to control for subjectivity, the human cost is

multiplied by 3. Referring to Figure 11.4 we can calculate the savings in lost human

productivity using method x in place of a random sample by the following equation:

CostDelta = (HumanCost ⇤ 3)� CostPerTurnCRS (12.7)

5Source: http://calculator.s3.amazonaws.com/index.html

http://calculator.s3.amazonaws.com/index.html
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Recovered = [((Errx � Errrandom) ⇤N) ⇤ CostDelta] (12.8)

Using equation (12.8), the various values of N , CostPerTurnemployee and bound-

aries of CostPerTurnMTurk as HumanCost, we populate the following table.

Dataset N Equal OR Voter+Equal Voter+OR HumanCost

0 Airline 100 $8.28 $12.19 $18.91 $17.79 $0.09

1 Airline 100 $36.72 $54.11 $83.92 $78.95 $0.41

2 Airline 100 $47.90 $70.58 $109.46 $102.98 $0.54

3 Telecom 100 $3.24 $4.92 $5.20 $5.20 $0.09

4 Telecom 100 $14.40 $21.85 $23.09 $23.09 $0.41

5 Telecom 100 $18.78 $28.50 $30.12 $30.12 $0.54

6 Train 100 $5.77 $-1.23 $16.40 $22.28 $0.09

7 Train 100 $25.60 $-5.44 $72.80 $98.88 $0.41

8 Train 100 $33.40 $-7.10 $94.96 $128.97 $0.54

9 Airline 200 $13.89 $22.57 $39.36 $42.16 $0.09

10 Airline 200 $61.65 $100.15 $174.67 $187.09 $0.41

11 Airline 200 $80.41 $130.63 $227.83 $244.03 $0.54

12 Telecom 200 $4.29 $5.97 $5.97 $1.21 $0.09

13 Telecom 200 $19.05 $26.50 $26.50 $5.39 $0.41

14 Telecom 200 $24.85 $34.57 $34.57 $7.03 $0.54

15 Train 200 $8.46 $9.58 $30.01 $45.12 $0.09

16 Train 200 $37.54 $42.51 $133.18 $200.24 $0.41

17 Train 200 $48.97 $55.45 $173.71 $261.19 $0.54

18 Airline 300 $22.17 $32.53 $53.80 $53.80 $0.09

19 Airline 300 $98.41 $144.36 $238.75 $238.75 $0.41

20 Airline 300 $128.36 $188.29 $311.41 $311.41 $0.54
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21 Telecom 300 $9.78 $7.82 $5.02 $-2.82 $0.09

22 Telecom 300 $43.39 $34.70 $22.28 $-12.50 $0.41

23 Telecom 300 $56.60 $45.26 $29.06 $-16.30 $0.54

24 Train 300 $17.37 $17.93 $52.92 $66.07 $0.09

25 Train 300 $77.11 $79.59 $234.83 $293.21 $0.41

26 Train 300 $100.57 $103.81 $306.31 $382.45 $0.54

27 Airline 400 $32.66 $47.21 $60.64 $60.36 $0.09

28 Airline 400 $144.93 $209.51 $269.13 $267.89 $0.41

29 Airline 400 $189.04 $273.28 $351.04 $349.42 $0.54

30 Telecom 400 $15.35 $10.04 $1.08 $-6.76 $0.09

31 Telecom 400 $68.14 $44.54 $4.80 $-29.98 $0.41

32 Telecom 400 $88.87 $58.09 $6.26 $-39.10 $0.54

33 Train 400 $23.51 $29.11 $59.62 $61.29 $0.09

34 Train 400 $104.35 $129.19 $264.56 $272.01 $0.41

35 Train 400 $136.11 $168.50 $345.08 $354.80 $0.54

Table 12.1: Annotation cost savings using various selec-

tion methods in the CRS over a random sample.

From this table it is immediately apparent that data annotation can become

expensive if volume is large enough, and if a company was to deploy an IVA and put

in place a continuous review and improvement cycle, it would be much cheaper to

hire full time employees with customer service experience at the median salary than

use an external data annotation service with quality control guarantees. If quality

control was not a concern, and the data could be publicly viewed such as on Twitter,

external data annotation could be cheaper if total cost was lower than $0.09 per item.

There were some instances where introducing a particular strategy would actually

cause a loss, particularly with the Telecom IVA and the voting classifier. Therefore,
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it would be necessary to evaluate the selection strategies per IVA under review as it

appears there is none that performs equally well across all datasets.

Consider that the largest N evaluated was 400, which was 5% of the average

dataset size. If a company were to deploy a customer service IVA handling similar

volume as the Telecom IVA, 1.6 million user turns per month, and they wished to

review 5% for quality control, they would be paying for 80,000 turns to be reviewed

every month.

First assume it was a very di�cult domain in which there are over 2,000 unique

intents and complex intent classification logic, as is the case with the Telecom IVA. If

the company was currently using Mechanical Turk and paying workers $0.10 per item

for the annotations, which costs the company $0.54 per item, they would be paying

$129,600 per month in annotation costs to get three votes per user turn. Using the

even weight selection strategy, who’s performance in Figure 11.4 is unbiased as no

prior training is performed, deploying the CRS would save such a company $17,774

per month (Table 12.1, row 32).

If instead, the IVA were similar to the Airline language domain and using the

same even weight strategy, deploying the CRS would save such a company $37,808

per month (Table 12.1, row 29). Using the Voter+Even Weight strategy would save

such a company $70,208 per month. That savings is over 54 % of their total monthly

annotation costs, and greatly justifies the introduction of the CRS.

It is di�cult to draw conclusions about the OR turned weights given they were

tuned on the data that was used for evaluation, making the performance closer to

the theoretical maximum. There does appear to be a theoretical improvement in

performance over the even weights, particularly with the Train IVA. Having more

samples where the under represented risk indicators are present may further increase

this improvement as well.
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12.3 Relevant Alternative Intents

The CRS performance on suggesting alternative intents was evaluated in Section 11.2.

If an IVA intent classification is deemed inaccurate by the human reviewers, a deter-

mination of where it should go must be made in order to fully correct the language

model error. The CRS attempts to automate this task by leveraging the output of

its agreement classifiers. If an agreement classifier disagrees with the IVA-selected

intent, and it has high confidence, the winning intent from the agreement classifier

is used as a suggested alternative intent.

To determine how useful this alternative suggestion is, humans were shown the

original user turn and agreement classifier selected intent to vote on as if it were

an IVA-selected intent. These alternatives are referred to as Potential New Intents

(PNIs), and to prevent bias human reviewers did not know the origin of the intent

they were voting on. The PNIs were mixed in to the IVA-selected intents under

review and presented in the same interface. To control for subjectivity a majority

was required to agree on the outcome.

Inspecting Figure 11.1, we see the results of the PNI voting per dataset. Overall,

the PNI suggestions were beneficial, with two out of every three having a majority

of reviewers agree with the suggested intent. Although the Telecom dataset was the

most di�cult for the voting classifier, the agreement classifier performed the best

there with 70% voter agreement. Consider that this agreement classifier is having

to pick an acceptable intent from a pool of 2, 172 alternatives, and does so 70% of

the time. It is possible that the introduction of additional alternative classifiers and

some agreement strategy between them could increase performance.

It is very di�cult to quantify the costs associated with choosing an alternative

intent as they will vary based on the complexity of the user turn and the knowledge of

the possible intents by the human. In some cases an alternative may be immediately

known to the human, in other cases they may have to search the knowledge base and



Chapter 12. Discussion 224

consider several closely related intents. Regardless, having the system suggest an

alternative will simply provide no cost saving in a worst case, as the human would

immediately disregard the suggestion every time and follow the normal process. But

for situations where an alternative is not immediately known to the human, the

suggestion will provide a time savings for them, which will translate into a cost

savings for the company.

Using the Telecom IVA as an example, in a random sample of 1,000 user turns,

144 will need alternative intents determined due to the 14.4% understanding error

observed in that IVA. If we were to arbitrarily guess that searching for an alternative

takes 2 minutes for a human to perform and make a decision, the process would

require 4.8 hours of human time, or $145.15 using the hourly rate of an employee

from the previous section. If the CRS could reduce the time required by 70%, only

1.44 hours would be needed, or $43.55. Like the conversation review costs, this

alternative intent finding task is a recurring cost, a 70% time savings will therefore

reduce the total monthly operating costs for a company deploying an IVA.

12.4 Human Voter Replacement

The final evaluation performed on the CRS was that of its potential to replace human

reviewers altogether. In Section 11.5.3, the performance of the CRS in identifying

missed intent compared to that of the human reviewers. There is a bias favoring

the humans here in that the gold standard was produced by the majority of human

reviewers. If a user turn already has two yes votes, and the third reviewer were to

vote yes as well, they have predicted the majority vote. If the third reviewer votes

no on that same user turn, they have failed to pick the majority vote. In both of

these instances the reviewer is performing the same task as the CRS and can be

fairly compared.
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The bias arises when a reviewer votes on a user turn where there is one agreement

and one disagreement vote. In this case the reviewer is forming the majority either

way they vote and will therefore never be penalized on these turns. This creates an

advantage for certain humans in cases of disagreement. Note that on that same user

turn, the human voter that the final voter disagreed with will still be penalized for

not predicting the majority vote.

In light of this, the human voter precision scores given in the tables in Sec-

tion 11.5.3 may be higher than a true outside observer predicting the human major-

ity vote as the CRS does. It is dangerous to try to correct for this by ignoring votes

that form majority however, as turns will not be scored for the humans choosing the

majority when only two agree, but will be scored against the one that didn’t. This

introduces a bias that gives more chances for penalty than reward. We also cannot

fairly only consider turns where all three reviewers agree, as the human performance

will always be 100 % precision and turns with some disagreement are potentially

harder cases we want to evaluate performance on.

Therefore, we leave the precision as is, noting that the bias exists and favors

the human voters. To measure the magnitude of possible bias, we count how often

humans vote to form the majority when there is an existing split vote, by dataset.

Project Majority Creating Votes

Airline 16.8%

Telecom 22.7%

Train 25.1%

The human performance numbers at predicting the majority can be considered

potentially inflated by a maximum of the above percentages. To properly prevent

this e↵ect, a second round of voting should be done over the same gold standard

where a di↵erent set of voters tries to predict the majority vote without influencing

it. Due to time and money constraints, this is left for future works.
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Recognizing the bias toward the humans, we can still look at the results of the

voting in Section 11.5.3 and consider that the CRS is able to outperform several

voters in each dataset. As prior experience looking at tables of precision involving

classifier comparisons in literature conditions us to expect the proposed system to

be in the top ranks, it can be discouraging to view these tables. But it is important

to remember that in each table, the competitor to the CRS is in fact an individual

human voter attempting to complete the task to the best of his or her abilities. The

humans have the benefit of native language understanding along with the ability

to read the full conversation for context around the current turn. The very fact

that the CRS is able to perform among their ranks is encouraging. Considering the

humans also enjoy some measure of precision increase by occasionally influencing the

majority, the CRS appears to perform well at this task. On all datasets for both

macro and micro precision, the CRS score is within the 95 % confidence interval of

the human voter scores.

The balance between the macro precision and micro precision is whether we are

interested in total task performance (micro) or performance considering each class

equally (macro). Due to much lower incidence of misunderstanding, as these IVAs

have misunderstanding rates from 11.6% to 17.4%, the di↵erence in micro precision

to macro precision for a given voter indicates how much better they perform on one

class than the other. As micro precision favors the larger class, this would be how

much better they perform on correct intents than misunderstood intents.

Looking at the Airline rankings, voter5 appears to have nearly equal macro and

micro precision. This would indicate they are performing equally well on the two

classes. Voters 2, 15, and 17 in that same dataset all have 100% macro and micro

precision, indicating they always agree with the majority for both classes. These

three voters do not have this same performance on the other datasets indicating that

they are likely all experts on this particular IVA, or at least understand its language

model very well. The CRS appears to be performing better on the correct class,
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but still bests three human voters in macro precision and falls well within the 95%

C.I. A domain expert for this IVA would have to decide if the CRS performance is

acceptable enough to warrant using its votes in place of humans. Remember that the

outcome of this whole process is consumed by the domain experts, who use the voting

data and suggested alternative intents to discover errors in the language model and

fix them. Therefore, some error in the voting process can still be corrected by the

domain experts as they have the ultimate say in what will and will not be changed

in the language model.

Moving to the Telecom dataset results in Section 11.5.3, we see the worst per-

forming language domain for the CRS. It appears harder for humans as well, since

the means for both micro and macro precision are lower than the Airline dataset.

Several voters manage to get higher macro precision than micro, indicating that

correct intent may be less obvious with this IVA. The CRS has its lowest macro

precision in this set, but still beating voter12, and staying within the 95 % C.I.

Finally, inspecting the Train dataset results in Section 11.5.3, we see the most

disagreement between the individual reviewers and the majority vote. This is evi-

denced by the lowest means and highest confidence intervals, and no voter was able

to reach 100% precision of either type. This disagreement may be due to many sim-

ilar intents that caused confusion, or possibly because no voters were familiar with

the Train IVA and its knowledge base. The CRS is better in this dataset, with less

di↵erence between the micro and macro precision than the other datasets, indicating

better performance on misunderstood turns. Its scores were much closer to the mean

scores in both metrics than the other datasets as well. A domain expert for this IVA

may be willing to accept the CRS votes in place of a human majority, especially in

light of the potentially inflated human scores and lower agreement.

The cost benefits of replacing the humans is very compelling, although at these

performance levels it may lead to more work on the part of the domain experts

to verify the CRS voting. Using the earlier example of a company currently using
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Mechanical Turk and paying workers $0.10 per item for the annotations, which costs

the company $0.54 per item, they would be paying $129,600 per month in annotation

costs to get three votes per user turn for 5% of the monthly volume. To replace the

human voters altogether and accept the CRS votes would only cost $3.27 for all

80,000 turns. In addition, the CRS could process the entire monthly volume of

1.6 million for only $65.34 in processing costs. Even if the performance does not

currently appear to match the best human reviewers, performance was near that of

the average reviewer. With a 40,000x reduction in annotation costs and ability to

provide annotations on 100% of the data, using the CRS in place of humans is well

worth a reduction in precision.

12.5 Future Work

As covered in the last section, a much larger dataset which contains su�cient vol-

ume of all of the risk indicators would be very informative. In addition to providing

missing predictive power of these indicators, large enough datasets would allow test-

ing and training partitioning where incidence of all of the indicators are balanced

between them. This would allow a true evaluation of the Odds Ratio-based selection

methods for increasing voter productivity.

To fairly compare the CRS to humans for predicting the majority, a second pass

of annotation would be required on the testing partition. This would require paying

a second group of reviewers that were not part of the first group to vote on all of

the data where a majority was already established. The CRS could then be fairly

compared to the performance of the second group, as their tasks would be identical.

Evaluating di↵erent agreement classifiers and ways to form majority decisions

such as the creation of Potential New Intents (PNIs) could provide improvement in

the area of selecting alternative intents. As the average performance of this task was
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67.7%, there is room for improvement.

The automation of even more tasks currently performed by humans (in the refine-

ment cycle) would be highly beneficial. When a PNI is generated, the system could

perform a detailed analysis on the language model to determine why the turn was

incorrectly mapped. Because the analysis would di↵er based on the implementation

of the language model, the format of the language model is vital. For example, less

detailed analysis is possible with a statistical language model. The CRS, however,

could generate additional training samples from the misunderstood turns using syn-

onyms and rephrasing techniques. These samples can be analyzed by the domain

experts to help them correct the model. The number of samples needed could be de-

termined by the margin of error present between the observed and suggested intent.

For example, with a Support Vector based model, the distances from the hyperplane

for the suggested intent may be used to indicate the number of additional training

samples needed.

For regular expression or grammar based models, a more detailed analysis is

possible. The CRS can easily trace the path of matching patterns that resulted in

the responding intent. The CRS can then determine what patterns were missing

from the appropriate intent that would have created a correct mapping.

For example, if the responding intent Baggage Claim Information had a greedy

pattern like the one below:

.+baggage\sclaim.+

this would cause a user utterance such as “The ticket counter agent that took

my baggage claimed it would arrive with me, but its not here!” to be mapped to the

Baggage Claim Information intent. Suppose the CRS suggests a more appropriate

intent: Missing Baggage. From there, the CRS can do one of two things. Given that

the CRS has access to all of the training and regression data used to construct the

language model (see Section 4.4.3), it could iteratively try to constrain the greedy
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pattern and rerun all of the regression data through this modified model to verify

it both fixed the misunderstood turn and did not break any existing behavior in

the Baggage Claim Information intent. Alternatively, the CRS could attempt to

generate a new pattern [235] or modify an existing one for the Missing Baggage

intent and do the same verification using the regression data. Once such a solution

is found, the CRS will present it to the domain experts, saving them further manual

analysis and verification time.

In order to add this correctional functionality for both statistical and pattern

based models, additional research and testing would be required.

An additional future task would be to integrate the CRS more closely with the

IVA, providing on-line evaluation of turn-response pairs. Using the live conversa-

tional context the CRS could evaluate the mapped intent before the IVA responds.

This way the dialog manager can take into account the risk score from the CRS in

determining the proper response. Communication between the IVA and the users

could be improved by this application by preventing misunderstandings before they

occur.
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Chapter 13

Summary

This work has covered the introduction of a Chat Review System (CRS) that can

optimize various stages of an Intelligent Virtual Assistant (IVA) review and refine-

ment cycle. Currently, costly and incomplete human annotation is required due to

the volume of conversations generated by commercial IVAs and the complexity of

evaluating natural language communication. The system architecture and its various

internal indicators of missed user intention are presented and evaluated in isolation

and combined within the CRS.

The CRS is evaluated at three primary tasks in the IVA refinement cycle: the

augmentation of the existing review process by maximizing the misunderstood user

turns within a fixed sample size for review; the automation of suggesting an alterna-

tive intent when disagreement arises; the automation of the existing review process

by replacing human reviewers. In addition, the system is shown capable of handling

the volume and velocity of conversations logs originating from large-scale commercial

IVAs.

The CRS demonstrates significant human productivity improvement when used

to prioritize samples for human review. It can generate human labor cost savings by

also automating the selection of alternative intents. The CRS is able to perform these
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tasks on large volumes of conversation logs using only a small number of commodity

machines, making it feasible for companies of any size to deploy.

While the performance of the CRS compared to human voters is not so impressive

that replacing humans altogether is an easy decision, the comparative performance is

hindered by possible bias in the human scores, as well as many of the risk indicators

the voting classifier uses as features had no samples in the evaluation data. Despite

these drawbacks, performance on some of the evaluation datasets was near that of

the average human reviewer, and the substantial cost savings and possible insights

gained from processing the entire set of conversations in place of a small sample

makes it a viable alternative to human reviewers.
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NLP Natural Language Processing. 18, 24

NLU Natural Language Understanding. 7, 11, 12, 17–21, 23, 25, 27, 30, 37, 41, 42,

45–47, 49–51, 57, 58, 92, 106, 132, 171, 180, 184, 185

PNI Potential New Intent. xiii, xvi, 59–61, 63, 186, 223, 229
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SDS Spoken Dialog Systems. 27–29, 93, 94

TTS Text To Speech. 17, 138, 139

VIF Variance Inflation Factor. xxi, 192–194

XML Extensible Markup Language. 13
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