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Abstract

In a time when data is being constantly generated by phones, vehicles, sensor net-
works, social media, etc. detecting anomalies with in the data can be very crucial.
In cases where we know little prior knowledge about the data, it becomes difficult
to extract uncertainty about our results. In this thesis, we will propose a framework
in which we can extract uncertainty distributions from data-driven modeling prob-
lems. We will show some concrete examples of how to apply framework and provide

some insight into what the uncertainty distributions are telling us using High Density

Regions (HDRs).
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Chapter 1

Introduction

One of the fastest growing research areas in recent years is data science. With the
development of faster, cheaper computers, as well as cheaper memory storage devices,
data has never been as easy to come by. So easy that in some cases analysts cannot
keep up with the incoming data. By the time we finish analyzing, let alone verifying
one data set, a new one is coming through the door. With the pressure to finish all
of our analyses as quickly as possible we tend to over look the quality of our results.
Instead of doing in depth uncertainty analyses we go with the simple approach of

summary statistics, which can be very misleading.

Matejka and Fitzmaurice [42] made an argument that we cannot understand our
data with calculations alone; we need to visualize our results with graphs. They
came up with an example of multiple plots on a 2D plane that all can be described
with the same summary statistics, but they all look vastly different (as shown in
Fig. 1.1). With uncertainties we give a plus or minus value to our results creating a
uniform error window around each result; when in reality this window of error should
be a complex probability distribution around the result indicating where most likely

result is for the true answer.
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Figure 1.1: Multiple plots of points on a 2D plane all having the same summary
statistics, making the point that we cannot trust calculations alone [42].

One area of study that depends on uncertainty is data-driven modeling for time
series. This is an important area of study since its applications range from cleaning
noise out of data to detecting adversarial attacks on a computer network. In real
world applications knowing how certain our models are can be crucial to business

operations.

We believe that uniform error is not enough and that we should be visualizing the
probability distributions over the data. In this thesis we will provide a framework
to extract uncertainty distributions from data-driven modeling methods and how to
interpret the extracted distributions. This will be demonstrated using three differ-

ent problems; Seismic Onset Detection, Arctic Tipping Points, and Protein Folding
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Simulation Stability.

1.1 Thesis Statement

To better understand the confidence of our models, we need to interpret their un-
certainty. We accomplish this through the use of High Density Region analyses over
distributions of model outputs. In order to prove this thesis I propose a framework

to assess that:

1. Uncertainty Quantification can provide a more detailed metric of the model’s

performance compared to simple summary statistics.

2. The mode and shape of the uncertainty distribution are important for inter-

pretation.
(a) Modes indicate the most likely solution, as well as multiple solutions.

(b) Shape indicates a level of confidence in the solution.

1.2 My Contributions

The validity of my thesis will be proven by:

1. Presenting a framework that we can apply to any data-driven model for time

series to extract uncertainty distributions.

2. Offer insight about how to interpret the uncertainty distributions with High

Density Region analysis.

3. Applying the proposed methodology to multiple problems:
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(a) Seismic Signal Onset Detection
(b) Arctic Tipping Points

(c) Protein Folding Simulation Stability

1.3 List of Publications

1. Charlie Vollmer, Matt Peterson, David Stracuzzi, and Maximillian Chen;
Using Data-Driven Uncertainty Quantification to Support Decision Making;
Statistical Data Science 2017.

2. David J. Stracuzzi, Michael C. Darling, Maximillian G. Chen, and Matthew
G. Peterson; Data-Driven Uncertainty Quantification for Multi-Sensor Ana-

lytics; SPIE 2018

3. Maximillian Chen, Michael Darling, Charlie Vollmer, Matthew Peterson,
and David Stracuzzi; Using Uncertainty to Understand Machine Learning Mod-
els and Decisions, UQ-SciML 2018

4. Timothy J. Draelos, Matthew G. Peterson, Hunter A. Knox, Benjamin J.
Lawry, Kristin E. Phillips-Alonge, Abra E. Ziegler, Eric P. Chael, Christopher

J. Young, and Aleksandra Faust; Dynamic Tuning of Seismic Signal Detector
Trigger Levels for Local Networks; BSSA 2018

5. Matt Peterson, Hunter Knox, Eric Chael, Ben Lawry, Kristen Phillips-
Alogne, Aleksandra Faust, Christopher Young, Timothy Draelos; Self-Tuning
Seismic Sensors: Real-Time Trigger Level Adjustments; ICASSP 2017.
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1.4 Thesis Organization

e Chapter 2 is an summary of the background knowledge for this dissertation.

e Chapter 3 presents a framework to extract uncertainty from inverse problems

(such as machine learning models).

e Chapter 4 presents an example of how to quantify the uncertainty of detecting

the onset time of a seismic signal within the presence of background noise.

e Chapter 5 presents an example of how we can use UQ to predict tipping events

in the Arctic.

e Chapter 6 presents an example of how to determine if our protein folding

simulation is in a stable configuration while the simulation is happening.

e Chapter 7 summarizes our thoughts and conclusions.
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Related Work

Uncertainty quantification (UQ) is the process of determining the likelihood of a
result when the variables of the system are not completely defined. This kind of
analysis is often needed in physics simulations where it may be costly to do real world
experiments and we need to know how uncertain the results from the simulation are.
These uncertainties stem from three distinct types of error described by Le Maitre

[35]; model errors, numerical errors, and data errors.

Model errors are a result of the mathematical equations describing the model
not being able to completely capture all the aspects of the physical system. This
is largely due to the fact that the mathematical equations are simplified to fit the
problem space. There are even cases where parts of the physical system are com-
pletely ignored; these parts of the system usually have negligible contribution to the
calculations. All in all, the equations that form the model are an approximation for
the physical system which people deemed “good enough” through some validation

techniques, such as variance analysis or comparing to the physical system’s results.

Numerical errors are due to the resolution of the mathematical equations of the

model. These equations often call for discretization techniques and algorithms which
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makes the results an approximation of the true answer in the physical system. These
kinds of errors can be reduced by using a finer discretization; for example, fine grain
spatial meshes or using smaller time steps. This kind of error can also be reduced

by imposing a harder convergence criteria for the model.

Data errors come from using data that does not fully capture all the qualities
of the physical system. In a variety of cases there are limitations on how well the
data describes the real world scenarios. These constraints can be due to a lack of
experimental data available, weak boundary conditions, or the shear complexity of
the physical system. For example, the input parameters to the system might be a
coefficient of friction or a material strength, and the output of the system is the data
we expect to observe. If we do not have accurate values for our input parameter, our

observable output data will contain error.

All of these types of errors contribute to the uncertainty of the final results.
Each of which can be reduced by imposing stricter conditions on the calculations
or though extensive research of the physical system. At the end of the day our
models are approximations of how the physical system works; and UQ can help us
characterize the errors in our model in the form of a likelihood, often portrayed as a

probability distribution.

2.1 Types of UQ Problems

There are two types of UQ problems, forward uncertainty propagation and inverse
UQ. The forward problem can be visualized as a simulation. We input the parameters

of the system into our model and we output the data,

Parameters — Model — Data.

While the inverse problem is the opposite. We have observed data as the input
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to our model and the output is a prediction of the parameters of the system,
Parameters < Model < Data.

The inverse problem can be visualized as a machine learning problem, such as clas-

sification prediction. This is discussed more in Chapter 3.

In regards to UQ, we know more about the forward problem and how to propa-
gate uncertainty, compared to the inverse problem [as in 36], and can provide great
insight into the errors produced by the model. Those same insights can be extracted
from the inverse problem, but there are some unresolved issues that arise. First of
which is the dimensionality costs. The computational costs increase rapidly with the
increased number of dimensions. Generating all of those samples and running all
of them through a model can be time consuming; on a positive note, the process is
embarrassingly parallel since running each sample through the model is independent
of each other. Another issue is identifiability. This is when multiple combinations of

the unknowns of the system can yield the same predictive result [discussed in 3].

Because of these issues UQ for the inverse problem is largely ignored in the
machine learning community. Instead of providing detailed uncertainties to validate
the performance of our machine learning models, we fall back on using accuracy and
precision. This can be problematic is cases where the test data is not labeled or there
is minimal amounts of data to test against. Chapter 3 will discuss the importance

of UQ for machine learning as well as its advantages in real world scenarios.

UQ for the inverse problem is still in its early stages of research. One of the
most common ways to extract uncertainty from inverse problems is with a Bayesian

approach. The basic idea revolves around Baye’s rule,
P(uly) oc P(ylu)P(u)

where w is the input/parameters to a model and y is the observable data. In words,
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the posterior P(u|y) is what we want to find out about unknown inputs u given the

data y, and that is proportional to the likelihood P(y|u) multiplied by the prior P(u).

The big issue with this method is that it is heavily dependent on knowing the
correct prior distribution for the given model, as raised by Inglesias and Stuart
26, 27]. For certain subject areas this prior distribution does not exist or is very hard
to get. In Chapter 3 we will discuss Bootstrapping which is a way that do not involve
directly using a prior distribution and instead focus a data-driven methodology. Most
importantly we will also discuss a way to interpret the posterior distributions for

decision making purposes in later chapters.

2.2 Anomaly Detection

Anomaly detection is the act of finding patterns within data that differs from nor-
mal behavior. These unique parts of the data are refereed to as anomalies, outliers,
discordant observations, exceptions, aberrations, surprises, peculiarities, or contam-

inants depending on the field of study [11].

Anomalies are important to data science because they could mean a variety of
different things; such as, noise in the data that should be removed or malicious
activity on a system, for example, cyber-attacks or credit card fraud. All of which
can be categorized into are three types of anomalies according to Chandola [11];

Point anomalies, Contextual Anomalies, and Collective Anomalies.

Point anomalies are most basic, or simplest form of anomaly. They are individual
instances of the data that are considered dissimilar to the rest of the data. An
example of this would be in credit card fraud. If the common transactions are less
than some value v and a new transaction ¢; comes along greater than v, we would

deem that a point anomaly.
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Contextual anomalies are very similar to point anomalies. The key difference is
that they have some context component associated with the data (typically temporal
[56, 65] or spatial [34, 58]). Continuing with the credit fraud example, lets say that
my common transactions are less than v, except in July when I go on vacation I spend
more than v. A new transaction ¢, arrives with a value greater than v occurring in
September. This transaction t, would be considered a temporal contextual anomaly

since I only spend more than v in July.

Collective anomalies are a group of related data instances that may not be anoma-
lous on an individual level, but when combined as a group they are considered anoma-
lous. Lets assume that some businessman travels between Los Angeles and New York
fairly often, so it would not be uncommon to see transactions from those two cities.
Now lets consider two transactions; t3 occurred in Los Angeles at 1:00pm and #4
occurred in New York at 1:05pm. These transactions alone are not unusual, but
together they are a collective anomaly since it is not possible for the businessman to
travel across the country in five minutes. Collective anomalies are commonly studied

in sequence data [14, 64], graph data [48], and spatial data [58].

Change Point Detection is determining when the pattern in a sequence changes;
which can be viewed as an instance of the collective anomaly problem. The groups
in this case are sequences of a stochastic process or time series. Examples of change
detection problems include edge detection [40], wavelet analysis [33, 47], and seis-
mology [54, 63]. A detailed example of extracting uncertainty from a seismic change

detection problem is discussed in Chapter 4.

2.3 How Others Interpret UQ

In a lot of cases, when statisticians talk about uncertainty they typically mean that

there models account for error or that they plotted error bars around their solution.

10
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In a paper done by Sebastian et al they create a machine learning model for auto-
mated text categorization [57]. They account for error in their models and when
they present their results it is done with simple error bars on a graph; a plus/minus
window around the mean. Brohand et al wrote a paper titled “Uncertainty estimates
in regional and global observed temperature changes: A new data set from 1850”
8], in this paper they show some results with uncertainty. They show that by in-
crementally adding in different sources of measurement errors which increases their
uncertainty, and is visualized by 95% confidence intervals around the mean. Bertozzi
et al have a paper titled “Uncertainty quantification in graph-based classification of
high dimensional data” [5] where they visualize their posterior distributions as his-
tograms and summarize them with a mean value of the distribution. In some of the
cases the distributions are bimodal and a simple mean will not capture what is fully

happening.

In my experience with uncertainty bases papers and conferences, most of the
people are statisticians who account for error in their models and display their results
with error bars. What I would like to see if a deeper dive into interpreting their
distributions because that is what is missing for decision making analysts. Their is
a gap between what the statisticians do and what analysts need. In Chapters 4, 5,
and 6 we will discuss specific decision making problems and how we can improve the
current approaches by interpreting the uncertainty distributions with High Density

Regions (brief background in Sec. 2.4) rather than with simple error bars.

2.4 High Density Regions

High Density Regions (HDRs) are a helpful tool when it comes to interpreting your
data, which is how what this dissertation is going to be focusing on. HDRs point

highlight a given range of your data distribution. In the case of a likelihood distri-

11
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Figure 2.1: Here is an example of how HDRs differ from other known methods; such
as mean plus/minus standard deviation and confidence intervals. HDRs can have
split ranges while the other methods can only have a single range. Multiple ranges
are important when the distribution contains multiple, distinct modes. Image from
Hyndman [25].

bution, it points out the areas of the distribution that contain the most likelihood.
The main goal behind HDRs is to find a set of ranges that contain a specific amount
of area under the curve using the smallest amount of volume [25]; in our case a curve

is a likelihood distribution.

One of the main benefits of using HDRs is that it does not have any assumptions
about the shape of the distribution. In Fig. 2.1 we see how HDRs can handle a
bimodal distribution better than mean plus/minus a standard deviation, as well as
confidence intervals. The other methods work great when there is only a single mode,
but will be less meaningful when there are multiple modes. In later chapters we will
show how we use HDRs to interpret our data. For more information on how to

calculate and graph HDRs check out Hyndman [25].

12
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Proposed Method

In most real world applications the results are typically in the form of a single
answer plus or minus a uniform error; this is an oversimplified version of uncertainty
quantification (UQ). True UQ involves a probability distribution for its answer. In
this dissertation we provide a framework in which we can extract the uncertainty from
modeling based methods and provide a way to interpret the results. This process
of extracting uncertainties and interpreting will offer great insight and details about

what our models are really telling us.

Fig. 3.1 shows how machine learning problems fit within the inverse UQ problem.
At each step in the pipeline there are error distributions that can be evaluated and
later combined into a single distribution. In this thesis we will focus on perturbing
the indirect observations in order to capture the measurement errors and model form

uncertainties.

Extracting data error uncertainties from modeling problems are difficult in real
world scenarios. In some cases we have very few examples of real world data to build
our models; with so little examples we cannot rely on past knowledge to characterize

the uncertainty. Because of this reason we will use a Monte Carlo or bootstrapping

13
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Figure 3.1: Flow chart of the inverse uncertainty quantification problem [18].

method to generate samples by perturbing the input data (discussed in further detail

in Section 3.1) in order to alleviate the reliance on prior knowledge.

The essence of the framework is to create many generated samples based off of
the original data, run them all through the model to get varying results, and then
save them all into a distribution to show the likelihood of all the results. Fig. 3.2

shows a quick overview of the flow of the problem.

14
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Figure 3.2: The general framework for extracting the data error uncertainty distri-
bution from modeling problems.

3.1 How is it Done

In order to produce a probability distribution of our results we need our framework
to run many samples over the domain of our problem space, typically on the order
of 1,000 or 10,000. This is typically achieved using one of two methods, Monte Carlo

(MC) or Bootstrapping, each having its own unique take on how to generate samples.

When the domain of our system follows a known distribution we can use a Monte
Carlo method [31, 43] (specifically MC not and not MCMC) where we randomly
draw samples from the known probability distribution until we obtained our desired
number of samples. These kinds of sampling methods are used in a wide variety
of fields; such as, physical sciences [24, 29] [39], climate change [61], computational
biology [44, 49], and artificial intelligence [9, 13] to name a few.

If we do not know the probability distribution of our domain, then we use a Boot-
strapping method [20, 21] which is a statistical method that uses random sampling
with replacement. In the most general form we are given a single sample of size N.
We then take that original sample and sample from that N times with replacement;

this is often referred to as a ‘bootstrap sample.” We would repeat this process until

15



Chapter 3. Proposed Method

we have generated the desired number of samples. Other more complex versions
include Bayesian Bootstrap [55], Smooth Bootstrap [15], Parametric Bootstrap [37],

and non-Parametric Bootstrap [59].

Both Monte Carlo and Bootstrapping follow the same pipeline to create a prob-
ability distribution for its result; draw/generate a new sample, run it through your
model, save the result, and repeat until satisfied. The advantage to Bootstrapping

is that you do not need to fully understand the domain of the system.

3.2 What do the Distributions Tell Us?

Once we have the distributions from our uncertainty extraction we can gleam some
insight as to where the true answer lies. The most likely locations of our answer are
the modes, or peaks, of the probability distributions. Fig. 3.3 shows three examples

of what we might see.

(a) tight (b) wide (c) multiple

Figure 3.3: Plots of three different kinds of probability distributions.

Fig. 3.3a is a very tight distribution which indicates there is one very likely point
for our answer. Fig. 3.3b is a wide distribution which means that the method/model
we used was unable to find an answer confidently. Fig. 3.3c has two distinct modes

which indicates that are two likely answers occurring in this data. So not only can
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uncertainty distributions tell us what the answer might be, but also if there are

multiple likely answers.

We can use High Density Regions (HDRs) to help us with this process of identi-
fying the characteristics of of our distributions. Using metrics like mean and stand
deviation can help us with determining whether our distribution is tight or wide,
but it assumes a normal distribution. We want to allow multiple modes, various
skewness, and different kurtosis values; and HDRs can handle all of these situation.
HDRs does not have any assumptions about the shape of the distribution, all they
care about is where does most of the area lie under the curve. With the information
given by the HDRs we can determine the most likely results with minimal assump-
tions about the shape of the distribution. Knowing the most likely results helps with
the decision making process. We will discuss specific ways of using the HDR results

in later chapters.
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Chapter 4

UQ for Seismic Onset Detection

Precisely determining a change point is no easy task, especially when is comes to
detecting seismic signals of interest. A seismic station records all kinds of ground
based noise ranging from the general background hum of the earth to cars driving on
a nearby road, all of which hide our signal of interest (which may be an earthquake
or a man-made event such as a mining explosion). By using data-driven Uncertainty
Quantification we can get a more accurate reading of where the true change point

may occur in difficult situations when the signal may be buried with in the noise.

Currently human analysts are the gold standard for detecting seismic signals even
though there are known errors and biases with humans. Depending on the analyst’s
experience level and the standard practices within their organization, some analysts
pick earlier than others. Zeiler [66] conducted a study where they gave multiple
analysts, varying in experience and organizations, the same set of waveforms and
asked them to determine the onset time for each waveform. They found both vari-
ance in onset determinations among analysts, and variance within a single analysts’

predictions when given the same waveform at different times.

The goal of this chapter is to demonstrate a way to automate the generation of
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the uncertainty in the seismic signal onset so that we can provide better detail to
the analysts during the verification phase, and so that we can improve downstream
analyses; such as determining location and event type. In the remainder of the
chapter, we will provide some further background on picking arrival times for seismic
signals. Then we will discuss our proposed method for extracting uncertainty. After
that, we will demonstrate our method on an example from the SPEAR dataset that
was collected by Zeiler [66]. Finally we will conclude with a discussion of the work

and our future work.

4.1 Background

Seismic stations record movement through the earth at the location of the station. A
typical station consists of three channels corresponding to different axes of movement;
a vertical axis, an east-west axis, and a north-south axis. All of these channels have
different time series data represented as a waveform. The goal of an analyst, or
automated method, is to determine when a signal of interest occurs on a given

waveform.

The change point from noise to signal in seismology is often referred to as the
first arrival time or detection onset time. Determining first arrivals is done through
a combination of automated methods and human analysts. There is a first pass with
an automated method to locate possible first arrivals over the entire data set. Then
an analyst goes through all the candidate detections to verify and refine the onset
times, as well as find missed detections. These data sets can be quite large having
thousands of detections over multiple days and numerous stations. The precision of
these first arrival times is incredibly important to downstream analyses. For long
distance events such as earthquakes, changing the detection time by 0.1 seconds can

move the estimated location by tens of kilometers, which in turn can impact the
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event’s type classification and other characteristics [53].

The most common automated method is Short-Term Average over Long-Term
Average (STA/LTA). STA/LTA calculates takes the average energy of a short window
length (such as 1 sec) and the average energy of a much longer trailing window (such
as 60 secs), and computes the ratio. If the ratio of the short window to the longer
window is greater than some specified threshold, that point is declared a possible
onset time. These windows slide across the entire dataset determining possible onset

times (see Rodriquez [54] for more details).

Automated detections are further refined by using autoregressive models and a
fitting metric, such as Akaike Information Criterion (AIC; described in [1]). Two
separate models, M; and M, are used for the noise and signal portions of the
window respectively, as shown in Figure 4.1; and are typically pre-built based on
past physics knowledge. AIC is then used to optimize the onset time as the point at
which the two models meet. Several variations on this procedure are described by
Kamigaichi [32]. Importantly, the uncertainty of the onset time is typically described

only by a confidence interval calculated as a function of the signal-to-noise ratio.

In the approach described in the rest of this chapter we will show that we can
extract uncertainty distributions for the estimated arrival time using a parametric
bootstrap approach as well as build our model on the fly, instead of assuming a one
size fits all scenario for the model. With these improvements we can show in greater

detail of where the first arrival time may occur.

4.2 Method

The input for the method assumes we are given a window of a zero-meaned, filtered

seismic waveform that contains noise followed by a signal where an initial guess for

20



Chapter 4. UQ for Seismic Onset Detection

40 Noise-Signal Onset Search Window

Raw Seismic Data
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Figure 4.1: Sliding window for refining the estimated arrival time. M is the model
used for the noise, My is the model used for the signal, and k is the change point
from M; to Ms. We slide k through the search space to find the best fit for M,
and M.

the onset detection, given by a STA/LTA picker (see Sec. 4.1 for more details), is
centered in the middle of the window. This allows the algorithm to assume that
the left half of the window contains mostly noise and the right half contains mostly
signal; which is important when fitting the Autoregressive (AR) model [45] in later
steps. In other experiments we attempted fitting both the noise and the signal halves,

but fitting the signal on the fly was unreliable [12].

The first step is to pre-process the data for the algorithm. For this method this
means squaring the waveform, which is a benefit for a couple of reasons. The first
reason is that it moves the data from the raw-waveform space into the amplitude-
over-time space. One of the biggest indicators of an incoming signal is the change
in amplitude, as seen in Fig. 4.3. Typically the noise level is small compared to the

signal. The second reason for squaring the data is to amplify the signal-to-noise ratio
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Figure 4.2: Flow chart for creating probability distributions for seismic onset detec-
tions.

(SNR) so that smaller signals stand out more against the background noise levels.

The rest of this section will explain the necessary steps to create a probability

distribution for the pick uncertainty.

4.2.1 Fitting the Noise Model

The overall goal is to determine when the signal begins, or in other words, when
does the noise stop. This method focuses on fitting an AR model to the noise and
determining at which point in time does the noise model stop fitting the data. Unlike
the method described in Sec. 4.1, we focus only on fitting a noise model and ignore
creating a model for the signal. This is partly due to the fact that the signal fitting
process is unreliable as well as redundant to the information that can be extracted

from the noise.

The first step is to fit the AR model to the noise data. Since one of our assump-
tions is that the left half of the window is contains primarily noise, we can fit our
AR model for the noise to the left half of the window, as seen in Fig. 4.4. Since all

waveforms are slightly different we loops over multiple lag lengths for the AR model
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Prepocessing of Waveform
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Figure 4.3: The graph on the left is the the zero-meaned waveform with a 0.8-20.0
Hz bandpass filter. The graph on the right is the squared version of the same filtered
waveform.

for the noise and determine which is the best fit using Akaike Information Criterion

(AIC) [1].

Calculating AIC

AIC is a metric to determine how well a model fits a set of data. The two major
factors for influencing an AIC score are the number of free parameters, k, being fit

in the model and the log-likelihood, [lh, of the model fitting the data, as seen below.

AIC = 2k — 2(1lh) (4.1)
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Fit Window for AR Noise Model

STAO1 1.5-3.0

100000

—— Squared
80000
60000

1
40000
|

20000 -

Lag Buffer Data to Fit

0 20 40 60 80 100 120 140
timesteps

Figure 4.4: Data to fit an AR model to capture the statistical properties of the noise.

The log-likelihood for an AR model is calculated as follows,

nxin(2ro?) 1 &

N el S )2
llh = 5 207 2 (T; — ;) (4.2)

2

where ¢° is the error from the model, z; is i-th data point, and z; is the i-th data

point from the AR model.

4.2.2 Calculating AIC Curves

Once we have and AR noise model fitted to the data, we can now create an AIC Score
Curve to help us determine at which point the waveform starts to become dominated
by an incoming seismic signal. In order to do this we take a sliding window across
the entire waveform to determine how well our AR noise model fits the data in the

window. This process is demonstrated in Fig. 4.5. The lowest score indicates where
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AIC Moving Scoring Window
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Figure 4.5: For each point ¢ we calculate the AIC score of the AR noise model to the
data in the Score Window which is the same length as the lag required for the AR
noise model.

the model fits the data the best; in other words, at which point the data is for sure
noise, but this is not what we are looking for. We want to know where it stops being

noise, and this is why we need a picking metric to determine the best solution.

4.2.3 Picking Metric

We cannot use the AIC curves alone. They only show at which points the AR noise
model fits the best and worst, not where the signal starts. In order to solve this
problem we implemented our own Picking Metric that takes into account sudden
changes in the slope of the AIC curve as well as our knowledge that the initial onset

is more likely to happen earlier than later.
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Picking Metric Curve
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Figure 4.6: On the left is the result of the moving AIC score window, and on the
right is the picking metric curve. The dots on each curve indicate the best score for
the given curve (i.e. the lowest point on the curve). Note that the best point of the
picking metric curve occurs at the same timestep as the sudden change in slope of
the noise model fit.

Combing our AIC curve from Sec. 4.2.2, as well as equations 4.4 and 4.5, we can

calculate our picking metric for each point i in our search window as follows,
PickMetric; = AIC; x W; x (MAX_SLOPE — Slope;). (4.3)

The point with the lowest PickMetric score is the best pick.

Slope of AIC

Using a pure AIC score can be misleading, as shown in Fig. 4.6. It picks where the
AR model fits the noise the best, which is deep within the noise part of the waveform
and not at the transition point from noise to signal. On the other hand, the AIC
score starts getting increasingly bad as it enters the signal part of the waveform. In
the AIC score curve this is indicated by a sudden change in slope, which is calculated

as shown below.
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Slope; — AIC; —SAIC’i_s B AICHSS_ AIC; (4.4)

where s is the number of timesteps back in which we calculate the slope.

Logistic Weight Curve

Since we are focusing on the first arrival we weight earlier picks as better. Occasion-
ally a sudden change in slope occurs later in the waveform, which could indicate a
secondary phase of the signal. We are only interested in the start of the signal and
thus we use a logistic weight curve to amplify the score of earlier timesteps and lower

the scores of later ones.

The weight curve is a typical logistic curve as follows:

1

W; = 1+ e2/0%(i—0)

(4.5)

where § = search_window_size/2.

4.2.4 Generating the Distribution

Creating the distribution is done by sampling the data multiple times and running
the picking metric on all of the samples. For each sample we have a best pick based
off of the picking metric which can all be aggregated into a probability distribution

over time of where the true pick occurs.

The process used for sampling the data is a Gaussian blur like technique. We
take fifty percent of the data points and adjust their amplitude by a random draw
from a Gaussian distribution defined by the points neighbors. In other words, copy

the data and add noise to half of the data points.
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Analyst Picks vs Automated Picks
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Figure 4.7: (a) Shows the original unfiltered waveform from STA12. (b) The top
distribution in red is generated from the picks made by 16 analysts and shows HDRs:
66%, 33%, and 05%. The graph on the bottom shows the condensed results from the
automated method for varying bandpass filters in green with the same HDR values.
A more detailed view of the results can be seen in Fig. 4.9.

4.3 Results

To evaluate the quality of our automated picks, we compared the output of our
methods to picks made by human analysts using the data collected by Zeiler and
Velasco [66]. Note that in the seismic domain, the complexity of the earths subsurface
and its impact on wave propagation makes providing ground truth for real events
almost impossible. Synthetic waveform generation is also a challenge as it requires
highly detailed models, extensive computation, and still may not accurately reflect

real-world conditions.

The dataset includes 26 waveforms sampled at 40 Hz, each having 5 to 18 an-
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alysts with varying degrees of seismic background knowledge pick the arrivals of
seismic events. We applied multiple ranges of bandpass filters that an expert analyst
provided for us. For each filtered waveform, we created search windows spanning
3.5 seconds (or 140 samples) centered around the first arrival, as determined by an
STA/LTA. The search window length was chosen to fully encompass P-phase of the
seismic signal as well as enough time to fully characterize the background noise; in

the case of this dataset we found that was a length of 3.5 seconds works well.

In Fig. 4.7 we show the results from our automated method for the vertical
channel on station 12 (STA12). Fig. 4.7a shows the original unfiltered waveform.
In Fig. 4.7b we have a comparison of the analysts pick distribution and a set of
condensed automated pick distributions for varying waveforms. These automated
pick distributions were generated with a thousand iterations (we chose 1000 iterations
in order to run the method in under 1 minute on a laptop). An import note about
this figure is that the majority of bandpass filters agree with the analysts, especially
ranges 3.0-6.0 Hz and 4.0-8.0 Hz; we do not have any knowledge of what filter bands

the analysts used.

In Fig. 4.9 we show a more detailed view of the automated distribution results,
as well as examples of the picking metric and a comparison to a normal distribution
for the results. Each row is the result of a specific bandpass filter from a set of filters
bands given to us by an expert analyst. The left column is has three things: the
filtered waveform in gray, the pre-processed waveform in black, and the results from
our automated method represented as a likelihood distribution in green. A detailed
explanation of how the curves were calculated is explained in Sec. 4.2.4. The main
take-away from this are the shaded regions of the distribution. These shaded region
represent High Density Regions (HDRs)[25] of 66%, 33%, and 05%. The regions
highlight where the most likely pick is.

In the middle column there are two curves: the AIC noise model fit in blue and
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the picking metric in green. For both of these curves the lowest value indicates
the best score which is marked with a circle. How these curves were calculated is

described in Sec. 4.2.2 and Sec. 4.2.3.

In the right column we show what the result distribution would look like if we as-
sumed our results were normally distributed; in practice, seismic signals are reported
as an arrival time and a standard deviation. If we compare these distributions to
their counterparts in the left column we notice two import things. Firstly, the HDR
regions in the left column are much tighter; one prime example is the 6.0-12.0 Hz
bandpass row. A tighter HDR region indicates a higher level of confidence in the
results, as well as a smaller search window to find the true onset time. Secondly,
the left column offers more detail about the results, specifically if there are multiple

modes; an example of this is bandpass row 1.5-3.0 Hz.

We also directly compared to how much better the HDR analysis does compared
to just using a mean and standard deviation. We used the 66% HDR ranges from the
analyst distributions as ground truth. We then calculated the range of values using
the mean+stddev from our automated distribution as well as the range of values for
66% HDR of the same distribution. In Fig. 4.3 we have the results of the overlaps.
Fig. 4.8a shows the percent of the ranges that are fully within our ground truth
ranges; the top shows the HDR overlap and the bottom shows the mean+stddev
overlap. The overlaps look fairly similar from this point of view, but if we take the
difference in overlap on a per waveform basis we see that the HDR analysis performs

better.

In Fig. 4.8b we show the difference in overlap on a per waveform basis. Positive
values indicate that he HDR analysis had more overlap with the analysts than the
mean+stddev. In the figure we see that the majority of the results are positive, which

means our HDR analysis does a better job than a straight mean+stddev analysis.
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“Mean+Standard Deviation.” had more overlap with the analysts.

4.4 Conclusion

In this chapter we illustrated a viable way to automate uncertainty for change point
detection of a seismic signal onset time. This added information can greatly improve
analyst pick consistency and refinement speed by showing statistical evidence of
where the true onset time may occur. We also demonstrated a way to interpret
this added information by using HDRs, as well as the advantages over assuming the
results are normally distributed. In the future we would like to be able to identify
multiple phases of the signal, automate the bandpass filtering portion, as well as

propagate the uncertainty to downstream analyses.

The techniques used in this chapter have been around in the statistics community
for a long time, but they are not used in the hands of analysts who have to make
crucial decisions. There is a gap between statistics and real world analysts which
results in doing simple summary statistics and making assumptions about the data.

As data scientists we need to show how these techniques can be used and explain
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how to interpret the results, which is what this chapter shows.
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Figure 4.9: Each row represents the results for a specific bandpass; from top to
bottom we have 0.8-20.0 Hz, 1.5-3.0 Hz, 2.0-5.0 Hz, 3.0-6.0 Hz, 4.0-8.0 Hz, 6.0-12.0
Hz, and 8.0-16.0 Hz. The Left column shows the distribution results in green with
varying sized HDRs, the original filtered waveform in gray, and preprocessed input
in black. The Middle column shows the AIC model fit for the noise in blue and the
picking metric in green (lower scores are better). The Right column shows what the
distribution results would look like if we assumed they were normally distributed
instead of no assumptions of the shape (like the leftmost column).
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UQ for Arctic Tipping Points

The Arctic systems are a vital part of our Earth climate system, and in recent his-
tory is has started to change rapidly. According to the Arctic Report Card 2017 [28],
“Arctic shows no signs of returning to the reliably frozen region it was a decade ago.”
The changes in the Arctic can cause various changes globally. The shutdown of At-
lantic thermohaline circulation (THC) [51] can cause regional cooling and significant
weather impacts in the northern hemisphere, which in turn can lead to food scarcity.
The Greenland ice sheet melting [68] would increase sea level and alter ocean cur-
rents, which would lead to risks of flooding to coastal infrastructures. The loss of
sea ice [41] would change mid-latitude weather causing damage from weather events
(such as hurricanes). The permafrost thawing [16] would release a significant amount
of greenhouse gases into the atmosphere leading to more thawing of the permafrost,
as well as climate change-based instability. We need better prediction models than
we have currently. Arctic changes are happening faster than current models have

predicted, and there is evidence that the models are biased towards stability [19].

Data from ice core samples has shown instability patterns before known as

Dansgaard-Oeschger (D-O) events [7, 22] (see Sec. 5.1 for more details). These are
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events where the temperature in the Arctic rapidly increased over a short period of
time. These events are characterized as tipping points because they result in a large
change in the system’s state due to a positive feedback loop in the internal dynamics

accelerating state change [17].

In the rest of this chapter we will show how we can determine the likelihood that
a time series is entering a tipping before the event happens using a combination of
Autoregressive (AR) models [45] and High Density Regions (HDRs) [25]. We will
demonstrate this method by detecting D-O events in paleo-temperature data from
ice core samples taken from the Greenland ice sheet. This problem is a type of change
point analysis where we can only see past data points, unlike the seismic problem

seen in Chapter 4 where we had access to all the data points.

5.1 Background

The data used for this experiment was ice core samples taken from the Greenland ice
sheet, specifically site GISP2 (see Fig. 5.1 for a satellite image of the site location).
These samples can give us an approximation of the temperature of Greenland’s past
up to 140,000 years ago at 30 year resolution. This approximation is calculated
by calculating the density of oxygen isotopes (§'%0) present in the ice which is
proportional to the temperature at that time the ice froze [23]. The most interesting
part of the data is that it captures D-O events. A D-O event is characterized by
a rapid warming of the Greenland ice sheet over 30-40 years, followed by a cooling
period of a couple hundred years. One example occurred about 11,500 years ago, the
temperature rise for the Greenland ice sheet was 8 °C over a 40 year period, where
usually it is a 5 °C change over 30-40 years [2]. These events are significant because
they can change the North Atlantic Ocean circulation [7], which can influence climate

on a global scale [10].
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Imagery @2018 NASA  TerraMetrics

Figure 5.1: Satellite image of the location of where the GISP2 ice core samples were
taken. Spatial coordinates N: 73.0 S: 72.0 E: -37.0 W: -38.0. Image was taken from
Google Earth.

5.2 Method

The goal of this method is determine the likelihood that a tipping event is about to
occur. In order to do this we fit an AR model to period of time that we know does
not contain a tipping point. Once we have our fitted AR model, for each time point
t; we project the next time point, ¢;;;, many times (we used 3,000 projections for
our experiments) using our fitted AR model. These projections can be aggregated

together to form a likelihood distribution over the next possible values in the time
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Comparing Real Value to Distribution
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Figure 5.2: Shown above we have an example of how we calculate which HDR time
point t;,q falls into. The blue distribution is the likelihood over possible values for
time point ¢, 1. The solid, vertical, black line at x = —57 represents the actual value
for time point ¢, and the horizontal, dashed, black line at y = 0.011 represents the
cutoff point to calculate the HDR. In this case the shaded area represents the HDR
of 70.14%.

series.

Now that we have our distribution of possible values for time step ¢;.1, we can
compare the actual value for ¢;,,; to our calculated distribution using HDRs. HDRs
inform us of smallest intervals that contain a specific percentage of area in the dis-
tribution. In Fig. 5.2, we show an example of how we compare the real value to our
distribution and retrieve the HDR value. In the example we now that time point
Y (t;+1) = —57. This gives us HDR intervals of [(—79,70), (=57, —25)] which corre-
sponds to 70.14% of the distribution. Zero percent indicates a very good match and

one hundred percent indicates a very bad match.
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GISP2 Data Set and D-O Events

1 2 3456 7 84 109 - 13

_30 -

approx. temp (C)

_55 -

T T T T T
—50000 —40000 —30000 —20000 —10000 0
years before present

Figure 5.3: A plot of the GISP2 data set (black line) with an overlay of the 13 D-O
events present within this data set (red, vertical lines).

Once we have the HDR percentage we calculate our likelihood score of our time
series entering a tipping point. This is done by multiplying our HDR percentage
with the difference in slope between ¢; 1 to t; and t; to t;,1, like so,

§ Y(t;) = Y (tim1)] B Y (ti1) — Y (t:)|
b —ti1 tiy1 — '

Tipping_Score(ti 1) = HDR(t;11) (5.1)

The closer to zero, the less likely the time series is entering a tipping event at time

point £;,1.

5.3 Results

Using the process described in Sec. 5.2 we attempted to see if we could detect that
our ice core time series data from GISP2 is entering a D-O event before the D-O
event actually happened. Our GISP2 data set goes back 50,000 years at a 50 year

resolution and contains 13 D-O events (see Fig. 5.3).
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Detecting D-O Events Prior to Happening
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(a) Results for the 1st D-O event. (b) Results for the 12th D-O event.

Figure 5.4: The green vertical line represents the actual D-O event for this time
window. The small, black dots on the left most side of each window are the points
that were used fitting the AR model. Each colored dot represents a likelihood score
that a tipping event is about to occur; red being very likely and blue being very
unlikely. The black vertical lines are the predicted next points that are used for
calculating the likelihood score; the darker parts of the line indicate more points
predicted at that point. In both examples there are distinct red dots before the D-O
event occurs, as well as some light blue/red indicators three or more points before
the event.

For each of the D-O events we fit our AR model with a maximum lag of eight to
a stable period of time before the D-O event, around 15 data points before the D-O
event. Then for each point after the stable period we projected the next data point
3,000 times (after 1,000 the results don’t change much) to create a probability dis-
tribution and compared the real next point to the distribution to create a likelihood

score of whether we are about to enter a tipping point or not, as described in 5.2.

In Fig. 5.4 there are two examples of the results. The vertical green line in these

figures shows where the D-O event occurs. The red and blue dots represent how
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likely the time series is about to enter a tipping event; red indicates very likely and
blue indicates very unlikely. In both cases we see that there is a dark red dot right
before the D-O event. In addition to right before the event, we also see that there
are some lightly colored red dots three or more points before the D-O event. Of the
thirteen D-O events that we have, 11 out of the 13 contained non-blue point 24 data
points before the D-O event. This implies we are able to detect early with some

confidence.

Another important note is the difference of complexity between the two time
series. Fig. 5.4b is a much more traditional D-O event where the temperature steadily
increases at a rapid rate. On the other hand, Fig. 5.4a has a more sinusoidal shape
where there is a potential false positive. Our process is able to identify the potential

false positive as not likely and still be able to detect the true event.

5.4 Conclusion

In this chapter we demonstrated that it is possible to detect a tipping event, specif-
ically a D-O event, before it happens using a combination of AR modeling for pro-
jections and HDRs to interpret likelihood of a tipping event. This is import because
if we can detect the tipping event before it happens, there is a chance that we can
reverse the process and stay in a stable zone. Future work for this project includes
converting the method into a sliding window environment and processing the en-
tire data set. This is challenging since it is not clear when to fit, or refit, the AR
model. Another improvement for this project is to be able to handle multiple time
series from different sources; for example, having ice core samples from multiple sites
around Greenland. This addition would help in the reduction of false events since

true events would have to correlate across multiple sources.
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Chapter 6

UQ for Protein Folding Simulation
Stability

Proteins are a sequence of amino acid building blocks that are vital to maintaining
life in biological systems. According to Liu et al. [38], “One of the greatest challenges
in molecular biology today is that of determining how the sequence of a protein — the
exact ordering of amino acids it is composed of — specifies its structure and function.”
To determine how a protein might fold a simulation is run, but it is very expensive
to output the simulation at every time step since there are so many data points. A
typical work around is to output the state of the simulation once every n time steps.
The issue with this approach is that in between the n time steps the protein may
have folded into a stable structure and then unfolded due to a change of energy in

the system, hence missing the part we care about.

In the rest of this chapter we will give some background on protein folding simu-
lations. Then we will discuss a way to determine when the simulation is in a stable
state using High Density Regions (HDRs) [25]. Finally we show some results from a

handful of simulations.
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6.1 Background

Protein folding simulations search for trajectories leading to conformations close
to the native (folded) protein structure originating from an unfolded conformation.
During the folding process, the protein changes its conformations into what are called

meta-stable and transition stages [4].

In a metastable stage, consecutive protein conformations keep a similar structure
and display only small variations. In a transition stage, consecutive protein confor-
mations change from one meta-stable stage to another and exhibit large structural
variations. In order to identify these stages, it is important to identify when one or
multiple trajectories eventually converge to the same conformation. Work has been
done to understand intra-trajectory and inter-trajectory convergence. These stud-
ies [6, 50, 62, 67] explore multiple folding trajectory spaces in parallel and determine

what conformations are more likely to be stable.

Computational trajectory analysis usually performs a large scale comparison of
trajectory frames, constructing a centralized dissimilarity matrix using all the tra-
jectory data, reducing the dimensionality of the matrix, and then clustering the low
dimensional matrix. The centralized nature of the algorithms in Best el al. [6] and
Phillips et al. [50] makes their analysis inefficient when dealing with large proteins
and long trajectories. Other work in [62] analyzes simple statistical data of long
trajectories at a very large scale. Our previous work [30, 67] deals with this issue
in a local to global fashion, rendering the parallel analysis very efficient for large

datasets and is suitable for in-situ analysis.

We used 31 simulated protein folding trajectories from MoDEL, the Molecular
Dynamics Extended Library [46]. MoDEL is a large library of molecular dynam-
ics trajectories of representative protein structures. Trajectories of all monomeric

soluble structures have been studied by means of state-of-the-art atomistic molec-
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ular dynamics simulations in near-physiological conditions. Trajectories used for
our analysis range from 2,000 to 20,000 time steps (i.e, number of data points M)
and from 58 to 747 residues (i.e., number of dimensions N). Table 6.1 shows their
characteristics.

Table 6.1: Characteristics of 31 MoDEL Trajectories

Characteristic Mean Stdev Min Max
Number of residues 193.06 145.29 58 747
Simulation time (ps) | 9,779.03 | 3,425.85 | 2,000 | 20,000

6.1.1 Trajectory analysis

We perform the protein folding trajectory analysis as if it was a clustering problem.
Simulations can be performed in parallel, with different nodes taking care of different
segments of a trajectory, or, more accurately, different trajectories given particular
starting conditions. As simulations progress, in-situ analysis is necessary to de-
termine what conformational spaces have been analyzed and whether the current
conformation is stable or transitional. To perform this analysis in parallel, we char-
acterize each conformation (i.e., a specific conformation associated with a trajectory
frame) by its collection of secondary structures given the Ramachandran plot [52].
That is, every residue was characterized by the torsion angle phi, ¢, (angle between
the C-N-CA-C atoms) versus the torsion angle psi, ¥, (angle between the N-CA-C-N
atoms), and omega w (usually restricted to be 180 deg for the typical trans case or
0 deg for the rare cis case). Based on the constraints of the torsion angles (¢, ¥, and
w) as described by the Ramachandran, we can associate each amino acid residue in
the protein with one of six types of secondary structures: a-helix, S-strand, Polypro-
line PII-helix, 7/-turn, 7-turn, and cis-peptide bonds. As a protein folds and unfolds
over time, its residues may participate in very different types of secondary struc-

tures, but if conformations are revisited over time, they should cluster together. We
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hypothesize that by clustering secondary structures, multiple fine grained clusters
associated with specific secondary structure transformations will arise over time. Se-
quences of fine grained clusters will form a cluster fingerprint. This fingerprint can

be used to identify stable phases and to differentiate conformational search spaces.

6.2 Method

After a trajectory is completed, we selected N distinct conformations (aka. stable
protein foldings of interest) sampled by using a power law distribution with respect to
the distance to the mean conformation. This setup is designed to find a set of diverse
representative conformations along the trajectory. For each of them, we compute the
root mean squared deviation with respect to each frame in the trajectory. Given a set
of root mean squared deviation time series, we preprocessed the data by converting
the distance measures into probabilities that a particular time step (i.e., frame) of

the trajectory is a given conformation.

Pr(l is stable at i|ll € L,dy,; € D;) = Nl/&, (6.1)

Zk:1 1/ dks,i
where L is the set of NV distinct conformations and D; is the set of distance measures
for each conformation at frame 7. We then create a probability distribution of stabil-
ity for each representative conformation, which for simplicity we denote as a label,
at time step ¢ using the previous 100 time steps. Using the probability distributions,
we calculate the center of the 70% High Density Region (HDR) for each label. This
generates a score of stability ranging from 0 to 1 for each label at time step ¢, where
1 indicates high label stability and 0 indicates low stability. To determine if frame ¢
is not stable we compare the two highest label stability scores as follows,
Spi — Sqi < w, not stable

Stability(sp,i, Sq,i, W) = : (6.2)
otherwise, p is stable
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where w is a predefined threshold, p,q € L, s;; is the stability score of label [ at

frame ¢, and label p has the higher stability score at frame 7.

Stability Points for Protein Folding Simulation
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Figure 6.1: Shown above are four different protein simulations. The nine time series
are the probabilities that a given class is stable, defined in Eq. 6.1, over time for the
nine possible classes. The solid lines at the top of each subfigure correspond to stable
class over that period of time, defined in Eq. 6.2. The y-axis shows the probability
of stability, and the x-axis is the time step.
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6.3 Results

Using the method described in Sec. 6.2 we ran our process on thirty different protein
folding simulations. In these simulations we wanted to know for each time step
whether the protein was in one of nine stable configurations, as well as whether it

was not stable. In Fig. 6.1 we show a subset of the results.

For each result we show nine time series of the stability scores at every time step
of the simulation. At the top of each subfigure we show which class is stable for that
given period of time; blank spots indicate that the time series is not stable at the
point in time. We compared these results to a Cross-Correlation matrix [60] that

was then clustered, as seen in Fig. 6.2.

In Fig. 6.3 we show two comparisons of the stability labels to the cross-correlation
clusters. The top rows are the stability labels and the bottom rows are the cross-
correlation clusters over time. The big takeaway here is that the stability labels and
the clustering labels transition at similar time frames, as well as the stability labels
are blank at the same time as when the clustering labels are switching a lot. In
Fig. 6.3a there was 81.4% agreement of when a label should or should not exist, and
the areas of disagreement can be attributed to the cross-correlation clusters trying
to label areas of transitioning conformations; there were a total of 9 stability labels
and 19 cross-correlation clusters. Fig. 6.3b had an agreement of 69.3% with the same

number of clusters and labels.

The major advantage with using our method is that it can be done during simula-
tion time while cross-correlation plus clustering is a post-process method that takes
a lot of compute time. Also, our methodology only labels conformations of interest

and ignores the transition periods between stable conformations.
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Cross-Correlation Matrix and Clustering Results
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Figure 6.2: This is the same protein as seen in Fig. 6.1b. The top is the cross
correlation matrix where each cell of the matrix represents how similar one frame of
the simulation is to another; yellow being very close and blue being far apart. The
bottom is the clustering label results over time.

6.4 Conclusion

In this chapter, we showed that it is possible to detect when a protein folding simu-
lation is in a stable configuration. This method can be done in real time given that
the root mean squared deviations time series can be produced in real time. We also
compared our methodology to a cross-correlation plus clustering methodology which
cannot be done in real time, and showed we can produce similar results as well as

ignore labeling areas of transition. Future work includes using a different model for
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Comparing to Cross-Correlation Clusters
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Figure 6.3: Two examples of how the cross-correlation clusters compare to the our
stability labels. The top rows are the stability labels and the bottom rows are the
cross-correlation clusters over time. Blank area represent no label.

stability, possibly using a combination of an Autoregressive model and High Density

Regions (similar to Chapter 5).
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Chapter 7

Discussion and Conclusion

In this paper we discussed the how to interpret our distribution results using High
Density Region analysis. In Chapter 4 we went through a seismic onset detection
problem where the output was a likelihood distribution over possible onset times.
We used HDRs to highlight the most likely time ranges for where an onset may
occur. This is import for analysts so that they can quickly see which areas of the
waveform are the most important to investigate in finer detail. In Chapter 5 we
presented an arctic tipping point problem where we wanted to know when our time
series started diverging from its current trajectory. This is important because a rapid
change in the time series is an indicator that we are about to enter a tipping event.
If we can detect it early enough there is a chance to stop the divergence. We used
a forward projection analysis in order to see where the next point should be and
then compared that distribution to the actual next point. Using an HDR analysis
we could see which HDR percentile the next point was in and used that to determine
how likely our time series was diverging into a tipping point. Lastly, in Chapter 6
we went through a protein folding simulation problem where we wanted to know
when the protein was in a stable conformation. Finding these stable conformations

is import to post-simulation analysis because it informs the analyst of how a specific
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protein will react. Given a set of distributions of how likely a timestep is in a specific
conformation we were able to use HDRs to interpret whether the protein was in a
stable conformation. This was done by using HDRs to determine if the mass of the
distribution was mostly above a specified threshold which is an indicator of stability.
All three of the problems presented in this dissertation are considered change point
detection problems. They all involved determining points in the time series where

the pattern changed.

These techniques have been used in the statistics community for a number of
years, but have been rarely utilized in this fashion by decision making analysts. We
mostly see point estimates with error bars, which glosses over the fine grain details
of the underlying uncertainty distribution; such as multiple modes or how tight the
distribution is. HDRs can provide this fine grain insight with minimal effort. Being
able to highlight the important features of the distribution can help improve decision

making capabilities.

Future work for this research includes applying it to other pattern recognition
and change point problems; such as trajectory analysis. We also want to explore
how we can combine our uncertainties from multiple sensors/modalities in an effort
to have an overall uncertainty for a given problem. Lastly we would like to improve
our visualization techniques for uncertainties when we have higher dimensional data.
Heat maps work well for 2-D and 3-D data sets, but tend to be overwhelming beyond
that. If we can better visualize and highlight the important areas of our results and
data, we can better utilize the tools from the statistics community in order to help

analyst make more confident decisions.
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