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Abstract

In the era of new technologies, computer scientists deal with massive data of size

hundreds of terabytes. Smart cities, social networks, health care systems, large sensor

networks, etc. are constantly generating new data. It is non-trivial to extract knowledge

from big datasets because traditional data mining algorithms run impractically on such big

datasets. However, distributed systems have come to aid this problem while introducing

new challenges in designing scalable algorithms. The transition from traditional algo-

rithms to the ones that can be run on a distributed platform should be done carefully. Re-

searchers should design the modern distributed algorithms based on the problem domain.

The main goal of this dissertation is to demonstrate the importance of domain specific

knowledge in developing scalable knowledge discovery algorithms on distributed systems.

Data properties such as origin, type, context and size play important roles to achieve speed,

efficiency and scalability. In this dissertation, I describe three domain specific knowledge

discovery systems on three diverse domains: a distributed algorithm to extract patterns
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from log messages generated by computers, a distributed algorithm to find abnormal be-

havior in social media, and a scalable algorithm for matching patterns in streaming time

series data. I explain how to exploit the data properties in a distributed knowledge discov-

ery system to achieve scalability and speed. The algorithms achieve horizontal scalability

for any data size, and the systems are currently deployed at the University of New Mexico.
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Chapter 1

Introduction

Data mining researchers have to come up with new knowledge discovery algorithms be-

cause the size of the data that should be processed by computers is constantly increasing.

Smart cities, social networks, health care systems, large sensor networks, etc. are con-

stantly generating huge amount of data. For example, Facebook has to process 600 TB of

new data every day [15]. Twitter also receives 500 million tweets daily [21]. It is not a

trivial task to make traditional data mining algorithms scalable for these huge datasets. We

have to design the algorithms completely from scratch in many cases. In order to have a

distributed, fast and efficient knowledge discovery algorithm for a given huge dataset, we

should consider the specifications and the properties of that dataset. In other words, we

should exploit the natural properties of the dataset to make the algorithm efficient. For the

sake of clarity, let us discuss an examples.

Dynamic Time Warping (DTW) is a distance measure defined for two given time se-

ries and widely used in time series mining tasks like classification and clustering. The two

given time series are warped non-linearly in the time dimension to determine a measure of

their similarity independent of certain non-linear variations in the time dimension. DTW,

in its original formulation, is an expensive measure to calculate. It takes O(n2) to cal-
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culates the DTW distance for time series of length n. [58] introduces an exact method to

calculate the DTW distance for sparse binary time series which mostly contains zeros. The

authors have taken advantage of the time series sparsity and improved the time complexity

of DTW calculation to O(m2) where m is the number of non-zero values. Since m << n

for a sparse time series, this translates to a huge speed up. This method has also the same

amount of improvement in space complexity compared to the original DTW. In one ap-

plication, authors have shown that they could cluster 4,170 Twitter users based on their

temporal activities by using their method in 18 minutes. The same task takes 180 hours

by using the original DTW formulation. This means that they got the exact same results

557 times faster just by customizing the algorithm for the sparse binary time series. This

example clearly shows that we can exploit the properties of data (sparsity in this case), to

design more efficient data mining algorithms for specific data.

In this thesis, we will discuss scalable distributed knowledge discovery algorithms

for three different data types: computer log messages, social media, and streaming time

series. For each data type, we discuss the properties of the data, and how we can design an

efficient knowledge discovery algorithm based on those properties. All the problems we

are going to discuss have real world applications.

1.1 Pattern recognition for computer log messages

Modern engineering incorporates smart technologies in all aspects of our lives. Smart

technologies are generating terabytes of log messages every day to report their status. It

is crucial to analyze these log messages and present usable information (e.g. patterns) to

administrators, so that they can manage and monitor these technologies. Patterns mini-

mally represent large groups of log messages and enable the administrators to do further

analysis, such as anomaly detection and event prediction. Although patterns exist com-

monly in automated log messages, recognizing them in massive set of log messages from

heterogeneous sources without any prior information is a significant undertaking. We pro-
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pose a method, named LogMine, that extracts high quality patterns for a given set of log

messages. Our method is fast, memory efficient, accurate, and scalable. LogMine is im-

plemented in map-reduce framework for distributed platforms to process millions of log

messages in seconds. LogMine is a robust method that works for heterogeneous log mes-

sages generated in a wide variety of systems. Our method exploits algorithmic techniques

to minimize the computational overhead based on the fact that log messages are always

automatically generated. We evaluate the performance of LogMine on massive sets of log

messages generated in industrial applications. LogMine has successfully generated pat-

terns which are as good as the patterns generated by exact and unscalable method, while

achieving a 500× speedup. This work is published in CIKM 2016. We discuss the details

in Chapter 2.

1.2 Anomaly detection in social media

Social media sites (e.g. Twitter and Pinterest) allow users to change the name of their ac-

counts. A change in the account name results in a change in the URL of the user’s home-

page. We develop an algorithm that discovers a large number of social media accounts

performing synchronous and collaborative URL changes. We identify various types of

URL changes such as handover, exchange, serial handover and loop exchange. All such

behaviors are likely to be automated behavior and may indicate accounts either already

involved in malicious activities or being prepared to do so. We focus on URL handovers

where a URL is released by a user and claimed by another user.

In this work, we analyze URL changes and handovers in social media, and find in-

teresting association between handovers and temporal, textual and network behaviors of

users. We show several anomalous behaviors from suspicious users for each of these as-

sociations. We identify that URL handovers are instantaneous automated operations. We

further investigate to understand the benefits of URL handovers, and identify a strong asso-

ciation with misleading internal links and avoiding suspension mechanisms of the hosting
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sites. Our handover detection algorithm, which makes such analysis possible, is scalable

to process millions of posts (e.g. tweets, pins) and shared publicly online. This work is

published in SocInfo 2016, and we will discuss the details in Chapter 3.

1.3 Online pattern recognition for streaming time series

Matching a dictionary of patterns to a streaming time series is a primary component of

real-time monitoring systems such as earthquake monitoring, industrial process monitor-

ing and patient monitoring. Until now, the problem has been solved independently with

smart pruning strategies, efficient approximation and pattern indexing among many others.

With advanced sensing and storing capabilities, the complexity of the dictionary match-

ing problem is fast growing with larger dictionary size and faster data streams warranting

a distributed matching process robust enough for arbitrary complexity. In this work, we

develop and evaluate novel distribution strategies combining state-of-the-art algorithmic

optimization techniques with the Streaming Spark framework. Our distribution strategies

covers the entire problem space for uniformly sampled streams, and are arbitrarily scal-

able. We will discuss the details in Chapter 4.
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Chapter 2

Pattern recognition for computer log

messages

2.1 Introduction

The Internet of Things (IoT) enables advanced connectivity of computing and embedded

devices through internet infrastructure. Although computers and smartphones are the most

common devices in IoT, the number of “things” is expected to grow to 50 billion by 2020

[9]. IoT involves machine-to-machine communications (M2M), where it is important to

continuously monitor connected machines to detect any anomaly or bug, and resolve them

quickly to minimize the downtime. Logging is a commonly used mechanism to record

machines’ behaviors and various states for maintenance and troubleshooting. An accept-

able logging standard is yet to be developed for IoT, most commonly due to the enormous

varieties of “things” and their fast evolution over time. Thus, it is extremely challenging

to parse and analyze log messages from systems like IoT.

An automated log analyzer must have one component to recognize patterns from log

messages, and another component to match these patterns with the inflow of log messages
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1. 2015-07-09 10:22:12,235 INFO action=set root=“/”
2. 2015-07-09 12:32:46,806 INFO action=insert user=tom id=201923 record=abf343rf 
3. 2015-07-09 14:24:16,247 WARNING action=remove home=“/users/david”
4. 2015-07-09 20:09:11,909 INFO action=insert user=david id=455095 record=efrdf4w2
5. 2015-07-09 21:56:01,728 INFO action=set home=“/users”
6. 2015-07-09 22:11:56,434 WARNING action=delete user=tom id=201923 record=asepg9e
7. 2015-07-09 22:32:46,657 INFO action=insert user=david id=455095 record=3jnsg67
8. 2015-07-09 22:34:12,724 WARNING action=remove home=“/users/tom”

9. date time,number INFO action=insert user=david id=455095 record=XXX 
10. date time,number XXX action=XXX user=tom id=201923 record=XXX
11. date time,number INFO action=set XXX=XXX
12. date time,number WARNING action=remove home=XXX

13. date time,number XXX action=XXX user=XXX id=XXX record=XXX 
14. date time,number XXX action=XXX XXX=XXX

15. date time,number XXX action=XXX XXX=XXX XXX*=XXX* XXX*=XXX* 

8 3 1 5 2 6 4 7

12 11 10 9

1314

15

Figure 2.1: Extracting log patterns for a given set of logs. Hierarchy of patterns gives user
the flexibility to choose a level based on his needs.

to identify events and anomalies. Such a log message analyzer must have the following

desirable properties:

• No-supervision: The pattern recognizer needs to be working from the scratch with-

out any prior knowledge or human supervision. For a new log message format, the

pattern recognizer should not require an input from the administrator.

• Heterogeneity: There can be log messages generated from different applications

and systems. Each system may generate log messages in multiple formats. An

automated recognizer must find all formats of the log messages irrespective of their

origins.

• Efficiency: IoT-like systems generate millions of log messages every day. The log

processing should be done so efficiently that the processing rate is always faster than

the log generation rate.

• Scalability: Pattern recognizer must be able to process massive batches of log mes-

sages to maintain a current set of patterns without incurring CPU and memory bot-

tlenecks.

Many companies such as Splunk[17], Sumo Logic[18], Loggly[10], LogEntries[11],

etc. offer log analysis tools. Open source packages such as ElasticSearch[6], Graylog[8]
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and OSSIM[13] have also been developed to analyze logs. Most of these tools and pack-

ages use regular expressions (regex) to match with log messages. These tools assume that

the administrators know how to work with regex, and there are plenty of tools and libraries

that support regex. However, these tools do not have the desirable properties mentioned

earlier. By definition, these tools support only supervised matching. Human involvement

is clearly non-scalable for heterogeneous and continuously evolving log message formats

in systems such as IoT, and it is humanly impossible to parse the sheer number of log en-

tries generated in an hour, let alone days and weeks. On top of that, writing regex rules is

long, frustrating, error-prone, and regex rules may conflict with each other especially for

IoT-like systems. Even if a set of regex rules is written, the rate of processing log messages

can be slow due to overgeneralized regexes.

A recent work on automated pattern recognition has shown a methodology, called

HLAer, for automatically parsing heterogenous log messages [59]. Although HLAer is

unsupervised and robust to heterogeneity, it is not efficient and scalable because of massive

memory requirement and communication overhead in parallel implementation.

In this work, we present an end-to-end framework, LogMine, that addresses all of the

discussed problems with the existing tools and packages. LogMine is an unsupervised

framework that scans log messages only once and, therefore, can quickly process hun-

dreds of millions of log messages with a very small amount of memory. LogMine works

in iterative manner that generates a hierarchy of patterns (regexes), one level at every iter-

ation. The hierarchy provides flexibility to the users to select the right set of patterns that

satisfies their specific needs. We implement a map-reduce version of LogMine to deploy

in a massively parallel data processing system, and achieve an impressive 500× speedup

over a naive exact method.

We discuss related works in Section 2.1, and background in Section 2.2. We describe

our proposed method in Section 2.3. Section 2.4 and 2.5 discuss the experimental findings

and case studies on the related problems respectively. Finally, we conclude in Section 2.6.
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2.2 Related Work and Background

Authors of [83] have proposed a method to cluster the web logs without any need to

user-defined parameters. Their method is not scalable to large datasets because the time

complexity is O(n3) where n is the number of the logs. [35] introduces a method to

create the search index of a website based on the users’ search logs. [63] discusses a pre-

processing algorithm that extracts a set of fields such as IP, date, URL, etc. from a given

dataset of web logs. Authors of [36] have proposed a method to help website admins by

extracting useful information from users’ navigation logs.

In [29], the authors have clearly reasoned why map-reduce is the choice for log pro-

cessing rather than RDBMS. Authors have showed various join processing techniques

for log data in map-reduce framework. This work, along with [45], greatly inspired us

to attempt clustering on massive log data. In [79], the authors have described a log-

structured database system that is optimized towards write-heavy data such as logs. In

[43], the authors describe a unified logging infrastructure for heterogeneous applications.

Our framework is well suited to work on top of both of these infrastructures with minimal

modification.

In HPC (High Performance Computing), logs have been used to identify failures, and

troubleshoot the failures in large scale systems [60][51]. Such tools majorly focus on

categorizing archived log messages into sequence of failure events, and use the sequence

to identify root cause of a problem.

2.2.1 Motivating Examples

In Figure 2.1, we show examples of log patterns that our method generates. Our method

clusters the messages into coherent groups, and identifies the most specific log pattern to

represent each clusters. In Figure 2.1, the input log segment has four different clusters.

The messages within each cluster can be merged to produce the log patterns shown in red.
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Clusters
Fast 

Clustering

Set of N logs

Fast
Pattern 

Recognition 

Set of 
Patterns

Relax 
Conditions

Add One Level 
to the Hierarchy

Iteration

Hierarchy of 
Patterns

Figure 2.2: Creating hierarchy of patterns by using a fast clustering algorithm and a fast
pattern recognition algorithm.

These four patterns can again be clustered and merged to form two more general patterns

(in green). Same process can be repeated till we get to the root of the hierarchy which

contains the most general pattern. Note that, there are three basic types of fields in each

pattern: Fixed value, Variable and Wildcard. A fixed value field is matched just with

one unique value like www, httpd and INFO . A variable field is matched with any value

of a certain type such as number, IP address and date. Wildcards are matched with values

of all types.

Clearly the most generic pattern is a set of wildcards, and the most specific pattern is a

set of fixed attributes. None of these patterns are useful for the administrators. Our method

produces a hierarchy of patterns: specific patterns are children of general patterns. Such

hierarchy is useful for the system administrators to pick the right level of detail they want

to track in the log messages as opposed to write regular expression manually.

2.2.2 Pattern Recognition Framework

With the above motivation, we design a novel framework for LogMine as shown in the

Figure 2.2. LogMine takes a large batch of logs as input and clusters them very quickly
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with a restrictive constraints using the clustering module. A pattern is then generated

for each cluster by our pattern recognition module. The sets of patterns form the leaf

level of the pattern hierarchy. The method will continue to generate clusters with relaxed

constraints in subsequent iterations and merge the clusters to form more general patterns,

which will constitute a new parent level in the hierarchy. LogMine continues to iterate until

the most general pattern has been achieved and/or the hierarchy of patterns is completely

formed.

The framework meets all the criteria of a good log analytics tool. It is an unsupervised

framework that does not assume any input from the administrator. The framework pro-

duces a hierarchy of patterns which is interpretable to the administrator. The framework

does not assume any property in sources of the log messages. The recognizer can work on

daily or hourly batches if the following challenges can be tackled.

2.2.3 Challenges

This framework for log pattern recognition is unsupervised and suitable for heterogeneous

logs. However, the scalability of the framework depends on the two major parts of the

framework: log clustering and pattern recognition. Standard clustering and recognition

methods do not scale well, and it is non-trivial to design scalable versions of the clustering

and recognition modules for massive sets of log messages. Since the two modules work in

a closed loop, we must speedup both of them to scale the framework for large datasets.

To quantify the significance of the challenge, let us imagine an average website that

receives about 2 million visitors a day (much less compared to 500 million tweets a day in

Twitter, or 3 billion searches a day in Google). Even if we assume that each visit results in

only one log message, 2 million log messages per day is a reasonable number. Clustering

such a large number of log messages in only one iteration is extremely time consuming.

A standard DBSCAN [82] algorithm takes about two days to process a dataset of this size

with state-of-the-art optimization techniques [4]. Similar amount of time would be needed
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by k-means algorithm although no one would know the best value for the parameter k.

Clearly, the framework cannot work on daily batches using standard clustering algorithms

and, therefore, we need an optimized clustering algorithm developed for log analysis.

A similar argument can be made for the recognition module where a standard multiple

sequence alignment operation on a reasonable sized cluster may need more than a day to

recognize the patterns.

2.3 Fast Log-Pattern Mining

The key intuition behind our log mining approach is that logs are automatically generated

messages unlike sentences from a story book. There are some specific lines in an appli-

cation source code that produce the logs, therefore, all log messages from the same appli-

cation are generated by a finite set of formats. Standard clustering and merging methods

do not consider any dependency among the objects in the dataset. In logs, the dependency

among the messages is natural, and as we show in this work, the dependency is useful to

speedup the clustering and the merging process.

2.3.1 Tokenization and Type Detection

We assume all the logs are stored in a text file and each line contains a log message. We

do a simple pre-processing on each log. We tokenize every log message by using white-

space separation. We then detect a set of pre-defined types such as date, time, IP and

number, and replace the real value of each field with the name of the field. For instance,

we replace 2015-07-09 with date, or 192.168.10.15 with IP. This set of pre-defined types

can be configured by the user based on his interest in the content over the type of a field.

Figure 2.3 shows an example of tokenization and type replacements in a log message.

Tokenization and type detection is embedded in the clustering algorithm without adding

any overhead due to the one-pass nature of the clustering algorithm described in the next
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2014  - 07  - 09  20  :  32  INFO  http  recommended  =  12523  actual  =  14235

2014  - 07  - 12  05  :  21  INFO  https  source  =  192  .  168  .  32  .  10   

2014-07-09   20:32   INFO   http   recommended=12523   actual=14235

2014-07-12   05:21   INFO   https source=192.168.32.10   

Tokenize

Type Detection

date  time  INFO  http  recommended  =  number  actual  =  number

date  time  INFO  https  source  =  IP   

Figure 2.3: Two examples of how pre-processing works on the input log messages.

section. Although this step is not mandatory, we use it to make the similarity between two

logs meaningful. If no type detection is done, two logs generated by the same pattern can

have a low similarity, just because they have different values for the same field. Therefore,

we may end up generating huge number of unnecessary patterns if we do not tokenize.

2.3.2 Fast and Memory Efficient Clustering

Our clustering algorithm is simply a one-pass version of the friends-of-friend clustering

for the log messages. Our algorithm exploits several optimization techniques to improve

the clustering performance.

Distance Function: We first define the distance between two log messages by the fol-

lowing equations:

Dist(P,Q) = 1−
Min(len(P ),len(Q))∑

i=1

Score(Pi, Qi)

Max(len(P ), len(Q))
(2.1)
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Score(x, y) =

 k1 if x=y

0 otherwise
(2.2)

Pi is the ith field of log P , and len(P ) is the number of fields of log P . k1 is a tunable

parameters. We set k1 = 1 in our default log distance function, but this parameter can be

changed to put more or less weight on the matched fields in two log messages.

Since we want to cluster patterns in the subsequent iterations of our framework, we

also need a distance function for patterns. The distance between two patterns is defined

very similarly as the distance between two log messages, just with a new score function.

Score(x, y) =


k1 if x=y and both are fixed value

k2 if x=y and both are variable

0 otherwise

(2.3)

We again set k1 = k2 = 1 in our default pattern distance function. Our distance

function is non-negative, symmetric, reflexive, and it satisfies the triangular inequality.

Therefore, it is a metric. Log messages generated by the same format have a very small

distance (zero in most cases), and log messages generated by different formats have larger

distances. This is a desirable property for fast and memory-efficient log clustering algo-

rithm. In the high dimensional space, the log messages form completely separated and

highly dense regions. Therefore, finding the clusters using the above distance function is

a straightforward task.

Finding Clusters: In this section, we explain how to find the dense clusters out of

the input logs in a sequential fashion. The same approach will also be used when we

create the hierarchy of log patterns by several iterations of clustering. First, we define

an internal parameter named MaxDist, which represents the maximum distance between

any log entry/message in a cluster and the cluster representative. Therefore, the maximum
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distance between any two logs in a cluster is 2×MaxDist. We start from the first log

message and process all the log messages one by one until we reach the last message.

Each cluster has a representative log message, which is also the first member of the cluster.

For any new log message, we insert the message in one of the existing clusters only if the

distance between the log and the representative is less than the MaxDist. Otherwise, when

the message is not similar to any representative, we create a new cluster and put the log

message as the representative of that new cluster.

The above process can be implemented in a very small memory footprint. We need to

keep just one representative log for each cluster in the memory, and output the subsequent

log messages without saving in the memory. This allows our algorithm to process massive

number of logs with a small amount of memory. In fact, the memory usage of our clus-

tering algorithm is O(number of clusters). Ignoring large number of log messages when

deciding about cluster membership and using only one representative log message do not

reduce the quality of the clusters. The major reason is that all the log messages in any

given cluster are almost identical because they are most likely generated by the same code

segment of the same application. Therefore, the above one-pass clustering algorithm with

a very small MaxDist in the beginning can generate highly dense (i.e., consistent) clusters

of log messages, where keeping one representative message is both sufficient and efficient.

We finally have a set of dense clusters with one representative each. As mentioned

before, this algorithm is also used to cluster and merge patterns. In case of clustering the

patterns, unlike the above approach, we keep all the patterns in each cluster because we

will use them in the pattern recognition component. In most systems, the set of patterns

generated after the first iteration fits in the memory. The speed and efficiency of this

algorithms comes from the fact that the number of dense clusters does not scale with the

number of log messages, because it is not possible for an application to generate huge

number of unique patterns. In other words, finding a million unique patterns is impossible

even in a dataset of hundreds of millions of log messages.

The one-pass clustering algorithm has a strong dependency on the order of the mes-
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sages, which is typically the temporal order. The pathological worst case happens when

one message from every pattern in every cluster appears very early in the log, and all of

the remaining messages will have to be compared with all of the unique representatives. In

practice, log messages from the same application show temporal co-location which makes

them more favorable for the clustering algorithm.

Early Abandoning Technique: Early abandoning is a useful technique to speedup sim-

ilarity search under Euclidean distance. Some of the initial mentions of early abandoning

were in [38][23]. It has been extensively used later by many researchers for problems such

as time series motif discovery [55], and similarity search under dynamic time warping

(DTW) [61]. We adopt the technique for log analytics.

When comparing a new log message with a cluster representative, if the distance is

smaller than MaxDist, we can add the new log to that cluster. Since the distance between

two logs is calculated in one scan of the logs by summing up only non-negative numbers,

early abandoning techniques can be applied. As we compare two logs field by field, we

may discover that the accumulated distance has already exceeded the threshold, MaxDist,

even though many of the fields are yet to be compared. In this case, we don’t need to

continue calculating the distance completely, because we are certain that these two logs

are not in MaxDist radius of each other. Since the number of fields in a log can be large,

this technique helps us skip a significant amount of calculation, especially when MaxDist

is small.

Scaling via Map-Reduce Implementation: We mentioned earlier that the memory usage

of our one-pass clustering algorithm is O(number of clusters). The one-pass clustering

algorithm is very amenable to parallel execution via map-reduce approach. For each log

in our dataset, we create a key-value pair. The key is a fixed number (in our case 1), and the

value is a singleton list containing the given log. We also add the length based index to the

value of each tuple. In the reduce function, we can merge every pair of lists. Specifically,

we always keep the bigger list as the base list, and update this base list by adding all
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elements of the smaller list to it (if needed). This makes the merging process faster. While

adding the elements of the smaller list to the base set, we add only the elements which do

not have any similar representative in the base set. If a very close representative already

exists in the base list, we ignore the log. We also update the length based index of the base

list meanwhile. Finally, the base list will be the result of the merging of two given lists.

The pseudo code of the reduce function can be found in Algorithm 1.

Algorithm 1 Reduce

Input: Two tuples A = (1, List1), B = (1, List2)

Output: A tuple

if size(List1) >= size(List2) then

Base list← List1

Small list← List2

else if size(List1) < size(List2) then

Base list← List2

Small list← List1

for i = 1, . . . , size(Small list) do

Found = False

for j = 1, . . . , size(Base list) do

if d(Small list(i), Base list(j)) ≤MaxDist then

Found = True

break

if ¬ Found then

Append Small list(i) in the Base list

return (1,Base list)

Since we use the same key for all the logs, we will get one tuple as the final output

which contains all the log representative (dense clusters). As we need to create a key-

value tuple for each log, the memory usage of the map-reduce implementation is no longer

O(number of dense clusters), in fact it is O(number of log entries). This is not a problem
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because each worker in map-reduce platform loads a chunk of the logs. Even if a chunk

of the data does not fit in memory, new map-reduce frameworks like Spark[86] can handle

that with a small overhead. We compare the running time of both sequential and parallel

implementations in Section 2.4.

2.3.3 Log Pattern Recognition

After we cluster the logs, we need to find a pattern for each cluster. Since we keep one

representative for each dense cluster in the first round, the representative itself is the pat-

tern of its cluster, but in the subsequent rounds, after we cluster the patterns, we need an

algorithm that can generate one pattern for a set of logs/patterns in a cluster. We start with

the pattern generation process for a pair of patterns and then generalize to a set of patterns.

Pattern Generation from Pairs: Irrespective of the pattern recognition algorithm, we

always need to merge two logs at some point in the algorithm. Therefore, we shortly

discuss our Merge algorithm here. Given two logs to be merged, we first need to find their

best alignment. The best alignment of two logs is the one that generates the minimum

number of wildcards and variables after merging. In the alignment process, some gaps

may be inserted between the fields of each log. The alignment algorithm ensures that

the length of two logs are equal after inserting the gaps. Once we have two logs with

the same length, we process them field by field and generate the output. An example is

shown in Figure 2.4. Note that the align step introduces gaps in the second message. The

field detection step requires a straightforward scan of the two logs. A detailed pseudocode

can be found in Algorithm 2. There are different algorithms for aligning two sequences.

We use Smith-Waterman algorithm which can align two sequences of length l1 and l2 in

O(l1.l2) time steps [71]. Therefore, the time complexity of our Merge function is also

O(l1.l2). We use the same score function as in [59] for the Smith-Waterman algorithm.

Sequential Pattern Generation: To generate the pattern for a set of patterns, we start
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Algorithm 2 Merge

Input: Two logs (Loga, Logb)

Output: A merged log

Log
′
a, Log

′

b ← Align(Loga, Logb)

for i , i = 2, 3, . . . , |Log′
a| do

x← Fieldi(Log
′
a) and y ← Fieldi(Log

′

b)

if x = y then

Fieldi(Lognew)← x

else if Type(x) = Type(y) then

Fieldi(Lognew)← V ariableType(x)

else

Fieldi(Lognew)← Wildcard

return Lognew

from the first log message, merge it with the second log, then merge the result with the

third log and we go on until we get to the last one. Clearly, the success of this approach

largely depends on the ordering of the patterns in the set. However, as described before,

the logs inside each of the dense clusters are almost identical. This is why, in practice,

the merge ordering does not associate with the quality of the final pattern. In other words,

we will get the same results if we do the merging in reverse or any arbitrary order. If

the logs to be merged are not similar, sequential merging may end up producing a pattern

2014-07-09   20:32   INFO   http   recommended=12523   actual=14235   source=192.168.25.23   

2014-07-12   05:21   INFO   https  actual=289   source=192.168.32.10   

2014-07-09   20:32   INFO   http   recommended=12523       actual=14235      source=192.168.25.23   

2014-07-12   05:21   INFO   https          GAP      GAP GAP actual=289          source=192.168.32.10   

date time INFO string XXX XXX XXX actual=number source=IP

Align

Field Detection

Figure 2.4: An example of how Algorithm 2 works.
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with many wildcards which is not desirable. There exists techniques to find the optimal

merge ordering for a set of patterns. We provide detailed experiments in the Section 2.4 to

empirically show that sequential merging does not lose quality.

Scaling via Map-Reduce Implementation: As discussed before, the order of merging

the logs in a cluster to create the final pattern has no effect on the output. Such sequential

pattern generation can be parallelize very easily. An efficient way to implement sequential

merging is using map-reduce framework. This framework can be useful whenever the

order of the operation does not matter, and that is true for our case. Since the pattern

recognition is done after clustering the logs, we know the exact cluster for each log. In

the map function, we create a key-value pair for each log. The key is the cluster number

of the log and the value is the log itself. The map-reduce framework will reduce all the

key-value pairs with the same key. In the reduce function, two logs from the same cluster

are merged. The final output of the reduce phase is one pattern for each cluster which is

exactly what we want. If we ignore the map-reduce framework overhead, in a full parallel

running of this algorithm on m machines, its time complexity is O( n
m
.l2), where n is the

number of the logs, and l is the average number of fields in each log.

2.3.4 Hierarchy of Patterns

In Sections 2.3.2 and 2.3.3, we explain how to find dense clusters of logs, and how to find

one pattern that covers all the log messages in each cluster. These two modules constitute

an iteration in our pattern recognition framework. We also motivate that one set of patterns

generated in one of the iterations can be too specific or general, and may not satisfy the

administrator. In contrast, a hierarchy of patterns can provide an holistic view of the log

messages, and the administrator can pick a level with the right specificity in the hierarchy

to monitor for anomalies.

In order to create the hierarchy, we use both clustering and pattern recognition algo-
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rithms iteratively as shown in Figure 2.2, and produce the hierarchy in bottom-up manner.

In the first iteration, we run the clustering algorithm with a very small MaxDist on the

given set of logs. This is our most restrictive clustering condition. The output of the

clustering is a (possibly large) set of dense clusters each of which has a representative log.

The representative log is trivially assigned as the pattern for a dense cluster without calling

the pattern recognition module. We treat these patterns as the leaves (lowest level) of the

pattern hierarchy. To generate the other levels of the hierarchy, we increase the MaxDist

parameter of the clustering algorithm by a factor of α (MaxDistnew = αMaxDistold)

and run the clustering algorithm on the generated patterns. In other words, we run a more

relaxed version of the clustering algorithm on the patterns which will produce new clusters.

We then run the pattern recognition module on all the patterns that are clustered together

to find more general patterns. These set of new patterns will be added to the hierarchy as

a new level. In each iteration of this method, a new level is added to the hierarchy. As we

go higher in the hierarchy, we add less number of patterns, which are more general than

the patterns in the lower levels. This structure gives us the flexibility to choose whatever

level of the hierarchy as the desired set of patterns.

Hybrid Pattern Recognition: When we explain our sequential pattern recognition, we

assume that the logs/patterns inside a cluster are very close together. In order to generate

the hierarchy of patterns, we start from the leaf level which has the most specific patterns,

and the clusters are also dense. As we go up in the hierarchy and merge patterns, the

clusters become less dense. Since the MaxDist parameter has been relaxed, we allow pat-

terns with larger distances to group together. This creates a chance of being incorrect at

the higher levels of the hierarchy if we use the sequential pattern recognition algorithm.

Fortunately, the number of patterns inside each cluster at the higher levels of the hierar-

chy is much less than the lower levels, and we can use a selective merge order, instead

of the sequential order, found by the classic UPGMA (Unweighted Pair Group Method

with Arithmetic Mean) method. UPGMA, which is simply the hierarchical clustering with

average linkage [72], is optimal when the clusters are spherical in shape in the high di-
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mensional space, and we conjecture that this is asymptotically true for log patterns when

clusters contain large number of messages.

Our final pattern recognition algorithm is a hybrid of UPGMA, the sequential recogni-

tion and the map-reduce implementation. Algorithm 3 shows how We pick the best choice

for each cluster of logs. th1 and th2 are the thresholds for density and the number of

patterns in a cluster respectively.

Algorithm 3 HybridPatternRecognition

Input: A cluster of logs (Logs)

Output: A pattern

if density(Logs) ≤ th1 then

pattern← UPGMA(Logs)

else

if Size(Logs) ≤ th2 then

pattern← SequentialPatternGeneration(Logs)

else

pattern←MapReducePatternGeneration(Logs)

return pattern

Cost of a Level: Given a hierarchy of patterns for a set of logs, the user may be interested

in a level with specific properties. Some users may prefer to get the minimum number of

patterns while the others may be interested to get very specific patterns and not care about

the number of patterns. There are many different criteria one can say a level is satisfying

or not. We introduce an intuitive cost function to pick the best descriptive level of the

hierarchy. We also propose a cost function that suits our datasets. This cost function can

easily serve as a general template to calculate the cost of a level of the hierarchy.

Cost =
# of clusters∑

i=1

Sizei × (a1WCi + a2V ari + a3FVi) (2.4)
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Figure 2.5: Pattern selection illustration with a1 = 1, a2 = 0, and a3 = 0 in the cost
function.

where Sizei is the number of logs in cluster i and WCi, V ari and FVi are the number

of wildcards, variable fields and fixed value fields in the pattern of cluster i respectively.

a1, a2 and a3 are tunable parameters that can be set in such a way that satisfies user’s

requirements.

If a user has no preference, we can set a1 = 1, a2 = 0, and a3 = 0 in the cost function,

and select the level having no wildcards with minimum number of patterns as the final set

of patterns. For example, in Figure 2.5 we find that Level 2 generates two patterns with no

wildcards, so we select these two patterns from Level 2 as the final set of patterns. In our

experiments, we assume that a user will not provide any preferences. A user can also pro-

vide preferences by specifying the maximum number of expected patterns. For example,

a user may want to generate at most 4 patterns. In this case, we select two patterns from

the Level 2 in Figure 2.5 because it will generate minimum number of wildcards while not

exceeding the user given maximum of 4 patterns.

2.4 Evaluation

We describe the baseline method that we compare LogMine against first. We then discuss

our datasets and provide detailed experimental results.
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2.4.1 HLAer: The Baseline

We pick the method HLAer [59] as a baseline algorithm, that is similar to our method in

being unsupervised and supporting heterogeneous logs. HLAer finds very good sets of pat-

terns, if not the optimal patterns, under reasonable assumptions. HLAer uses a highly accu-

rate and robust clustering algorithm, OPTICS (Ordering Points To Identify the Clustering

Structure), and the average linkage technique (UPGMA) instead of sequential merging for

pattern recognition. We describe these two modules next.

Clustering using OPTICS: OPTICS (Ordering Points To Identify the Clustering Struc-

ture) is a famous hierarchical density-based clustering algorithm [25] used in HLAer. In

OPTICS, a priority queue of the objects (e.g. using an indexed heap) is generated [82].

The priority queue can be used to cluster the objects at many different levels without re-

doing the bulk of the computation. OPTICS has two parameters: ε and MinPts. It ensures

that the final clusters have at least MinPts objects, and the maximum distance between any

two objects in a cluster is less than or equal to ε.

OPTICS is an expensive clustering algorithm for large datasets because it needs to cal-

culate the MinPts-nearest neighbors for each object, which requires O(n2) pair-wise dis-

tance calculations for n objects. Typical improvement strategies include parallel compu-

tation and indexing techniques. However, these techniques become invalid in the iterative

framework and for near-online batch processing. One may also think of pre-computing the

pairwise distances, which requires loading all the computed distances in memory inO(n2)

space for random accesses during clustering. Irrespective of non-scalability, OPTICS is

a good baseline to compare accuracy with. The algorithm can find clusters of arbitrary

shapes and densities in the high dimensional space. The algorithm is easy to reconfigure

without recalculating the pair-wise distances.

Log pattern recognition via UPGMA: Once the HLAer finds all the clusters, it needs

to find a pattern for each cluster that covers all the log entries in it. HLAer considers
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Table 2.1: A summary of all datasets.

Dataset # Logs # Fields Availability
D1 2,000 65 proprietary
D2 8,028 200 proprietary
D3 10,000,000 90 proprietary
D4 10,000 37 public
D5 10,000 45 public
D6 10,000 25 public

a log entry as a sequence of fields. It finds the best way to align multiple log entries

together based on a cost function. After alignment, the algorithm merges each field by

selecting a representative field to output. Unweighted Pair Group Method with Arithmetic

Mean (UPGMA) is one of the most commonly used multiple sequence alignment (MSA)

algorithms. It is a simple bottom-up hierarchical clustering algorithm [72] which can

produce a tree of input objects on the basis of their pairwise similarities. HLAer runs

UPGMA on the set of logs and finds the best order of merging the log entries. The Merge

function that HLAer uses is identical to the one in Section 2.3.3.

If there are n log entries with l fields (on average), the time complexity of running

UPGMA is O(n2l2) which takes 300 years for 10 million logs. However, UPGMA can be

used for smaller number of log entries, and generate valuable ground truth to evaluate the

performance of our pattern recognition algorithms.

2.4.2 Datasets

For evaluation, we use six different datasets as summarized in Table 2.1:

• D1 and D2 are small proprietary datasets.

• D3 is an industrial proprietary dataset of size 10,000,000 generated by an application

during 30 days. The size of D3 on disk is 10 GB.
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• D4 and D5 are random log entries from two traces which contain a day’s worth of

all HTTP requests to the EPA webserver located at Research Triangle Park, North

Carolina [7], and the San Diego Supercomputer Center in San Diego, California [16]

respectively.

• D6 is a synthetic dataset generated from 10 pre-defined log patterns. We fix the type

of each field in the patterns, and generate random values for that field. This dataset

is used as a ground truth to evaluate the accuracy of our method.

We set MaxDist = 0.01 and α = 1.3 in all the experiments unless otherwise stated.

Since HLAer takes ε and MinPts as the input parameters, an expert set them for each

dataset. As HLAer is a single CPU algorithm, for fair comparison, we run the sequential

version of our algorithm on a single machine for all experiments unless otherwise stated.

2.4.3 Accuracy

Since our algorithm is made up of two main components, we test the accuracy of each

component separately.

Accuracy of Clustering: We use the clusters generated by OPTICS as a baseline. We

define an agreement metric to calculate how close the output of our fast clustering algo-

rithm is to the output of OPTICS. Given a set of n log entries S = {l1, l2, . . . , ln}, we

run OPTICS to get the set of clusters X = {X1, X2, . . . , Xr} and we run our clustering

algorithm to get the set of clusters Y = {Y1, Y2, . . . , Ys}. The agreement score is a
b
, where

a is the number of pairs of logs in S that are in the same set in Y and in the same set in X ,

and b is the number of pairs of logs in S that are in the same set in Y . This metric takes

a value between 0 (the worst) and 1 (the best). Note that splitting a cluster of OPTICS

into multiple clusters does not harm us because it leads to more accurate patterns and we

can merge the sub-clusters in higher levels of the hierarchy. On the other hand, having a
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Figure 2.6: Comparison of running times of the sequential and the map-reduce clustering.
(right) Comparing the running time of LogMine with HLAer. The y-axis is in log scale.

cluster which has log entries from multiple OPTICS’s clusters can generate a meaningless

pattern.

As shown in Table 2.2, in all datasets except D2, we capture the OPTICS’s clusters.

The problem with D2 is that the log entries do not have a clear underlying structure. Logs

in D2 have many strings and commas, and they are very similar to each other. In addition,

OPTICS throws away 38% of the entries as outliers because they do not fall in a cluster

with at least MinPts entries. Therefore, a set of separable clusters may not exist in this
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dataset failing both LogMine and OPTICS.

Accuracy of Pattern Recognition: As discussed before, UPGMA finds the best order to

merge the log entries, and it produces the best possible pattern for a given cluster. We use

the results of UPGMA as a ground truth to evaluate the accuracy of our pattern recognition

algorithm. We cluster each dataset by both OPTICS and our clustering algorithm, and then

give each cluster to both UPGMA and our pattern recognition algorithm to produce one

pattern. We compare the patterns generated by the two algorithms, field by field. The

accuracy of a given pattern compared to the ground truth is simply the number of matched

fields over the number of all fields. The accuracy of pattern recognition for each dataset is

calculated as below.

Total Accuracy =
# of clusters∑

i=1

(Acci × Sizei) ÷
# of clusters∑

i=1

Sizei (2.5)

where Acci is the accuracy of pattern recognition on cluster i and Sizei is the number of

log entries in cluster i. As Table 2.2 shows we can get almost same patterns as UPGMA

except in D2. Since the quality of clustering on D2 is low, the logs inside each cluster are

not very similar, and the order of merging can change the structure of the final pattern. The

fact that our patterns for D2 are 73% similar to UPGMA patterns does not mean that ours

are not accurate, because the patterns generated by UPGMA are also low quality. All the

other results support the fact that the order of merging has no effect on the final pattern in

a cluster with similar logs.

2.4.4 Memory Usage

HLAer calculates all the logs pairwise distances and use them while running OPTICS.

This needs either O(n2) memory space or multiple disk accesses in case all the distances

are stored back in the disk for n logs. Conversely, LogMine is very memory efficient with

a space complexity of O(number of clusters) in sequential fashion. We run our sequential

implementation and measure the amount of memory used by both HLAer and LogMine.
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Table 2.2: The accuracy of pattern recognition and the agreement score for different
datasets. We do not report these measurements on D3 because HLAer cannot handle it.

Accuracy Agreement
Score

HLAer
Memory

(MB)

LogMine
Memory

(MB)
D1 100% 86% 32 2
D2 73% 48% 520 11
D4 96% 95% 801 15
D5 98% 100% 802 14
D6 100% 100% 795 13

Results are shown in Table 2.2.

2.4.5 Running Time

HLAer has maximum processing capacity of 10,000 log entries because of the quadratic

memory requirement. For the rest of the datasets, results are shown in Figure 2.6(right).

LogMine is up to 500× faster than HLAer. It takes 1,524 seconds for LogMine to cluster

the logs, and find all the patterns in dataset D3.

It is worth to mention that LogMine has an advantage over HLAer in terms of running

time of pattern recognition. Pattern recognition component of LogMine has a fixed running

time for datasets of the same size, because it just scans the data once no matter how many

cluster exists in the dataset. In contrast, HLAer depends on domain and data properties

2.4.6 Map-Reduce vs. Sequential

We discussed the way we find the dense clusters in Section 2.3.2 both in sequential and

map-reduce fashion. In this experiment we compare them. We generate synthetic data by

changing number of log entries (10 million default) and number of patterns (1500 default).

We change the number of map-reduce workers (8 default) to understand scalability. Each
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Figure 2.7: Sensitivity of the algorithm to the parameters MaxDist0 and α.

worker has 1 GB of memory and a single-core CPU.

As shown in Figure 2.6(left), the execution time of the map-reduce implementation

grows slowly compared to the growth of the sequential implementation. Map-reduce im-

plementation reaches up to 5× speed-up by using 8 workers compared to the sequential

implementation. Note that we have a fixed number of patterns in this experiment. Our

map-reduce implementation can handle millions of logs in few minutes, because the num-

ber of patterns does not grow at the same rate as the number of logs grows in real world

applications. Figure 2.6(second-left) shows that with increasing number of patterns, the
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growth in the execution time of both sequential and map-reduce implementation consis-

tently grows. In Figure 2.6(second-right), we show that doubling the number of workers

reduces the running time by 40%. The reason is that as we add more workers, the algo-

rithm needs to perform more merges (see Algorithm 1), and this adds more overhead to

the algorithm.

2.4.7 Parameter Sensitivity

We have two parameters in our algorithm, and both of them are used in the clustering

phase. The first one is the MaxDist0 which is the value we use to run the clustering

algorithm at the lowest level of the hierarchy. After we find the leaves, we relax the

clustering algorithm condition by increasing the MaxDist by a factor of α. We run an

experiment 10 times on a dataset of 10,000 log entries picked randomly from dataset D3,

and report the average of different measurements change by increasing MaxDist0(0.01

default) and α (1.3 default). Results are shown in Figure 2.7. We make the following

observations:

• As we increase MaxDist0 we find fewer number of leaves in shorter time. Since

the leaves are the basis of our hierarchy, we don’t want to lose many of them due to

a large MaxDist0. On the other hand, small MaxDist0 usually (not always) yields

to longer running time. Although the best value for MaxDist0 is to some extent

depends on the dataset, we recommend to set it to 0.01.

• As the MaxDist0 grows, we may end up extracting fewer number of patterns, but

the plot shows that the algorithm can capture almost the same set of patterns even if

we change MaxDist0 in a wide range [0.001,0.02]. Thus, our algorithm is not very

sensitive to this parameter in terms of the final set of patterns.

• Obviously if we pick smaller values for MaxDist0 and α, the final hierarchy will

have more levels and we have more options to choose a satisfactory level in the
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hierarchy. However, it takes longer to produce such a hierarchy.

• Number of patterns does not change drastically with changes in α. We vary this

parameter from 1.1 to 1.5 and the number of final patterns stays within the range

[966,1127]. We find α = 1.3 is the best performing value.

2.5 Case Study

We use LogMine to analyze logs collected from the OpenStack framework, which an open-

source platform for cloud computing [12]. We have collected logs from the execution of

nova-boot commands to demonstrate how LogMine can be used to build a log analytics

solution. LogMine enable us to reveal various insights on logs that helps us to quickly

diagnose the cause of failures.

Dataset: We have collected logs generated by 200 successful execution of the nova-boot

commands. This is our training dataset. Using LogMine we have found 28 patterns which

can correctly identify all training logs. These patterns serve as a basis for analyzing Open-

Stack logs. Next, we have collected logs from six failed executions (i.e., abnormal) of

nova-boot commands. This is our testing dataset.

Detecting New Logs: To identify the cause of a failure, we need to detect logs which

are not seen during the successful (i.e., normal) executions of the nova-boot commands.

We use the 28 patterns generated by LogMine to detect those unseen logs. If a log in the

testing dataset does not match with any of the 28 patterns, then we conclude that it is a

new log. Using LogMine we have correctly identify those new logs, and report them to the

system administrators for further analysis. Typically, administrators run adhoc keyword-

based search on these new logs using their domain knowledge. In this case, searching few

keywords, they have identified a subset of new logs, which help them to quickly localize

the cause of the failed executions.
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Detecting Logs with New Content: To analyze a failure, we are interested to find out

whether or not there is any content-wise anomaly among the failure logs. To this end, we

have structured 28 patterns generated by LogMine into various fields, and built a content-

profile map for each field using the training dataset. During testing, if an incoming log

matches with any of the 28 patterns, we identify its fields from the content. Now, if the

content of any field value is not present in our training content-profile map, then we report

corresponding log to the system administrators for detailed analysis. Using this content

analysis, they have correctly identified new contents in the testing logs, which help them

to diagnose failure scenarios quickly.

Detecting Logs with Abnormal Execution Sequence: The execution of OpenStack

could result abnormal log pattern sequence if any failure happens. Therefore, we can

detect system failure by discovery of anomalous log sequences. In order to achieve this

functionality, we built log sequence order for any pair of 28 patterns and modeled their

statistics such as the maximal elapse time, maximal concurrency of log pattern during

training stage. During testing, we detect if the incoming log violates any of the following

rules: log sequence reversal, exceeding the maximal elapse time or concurrency number,

or missing the matching log for the pair. System administrators find these violations very

useful to debug failures.

Detecting Log Rate Fluctuations: In order to analyze logs, it is helpful to find out

whether or not there is any fluctuation in the log rates compared to the normal working

scenarios. To detect fluctuations, we keep track of the range (i.e., minimum and maximum

counts) that we have observed in a fixed interval of the training dataset for all 28 patterns

generated by LogMine. During testing, if the matched logs count of any pattern falls out

its training range in an interval, we report corresponding time range and pattern informa-

tion to the system administrators for the further analysis, and they find it very useful to

diagnose failure scenarios.
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2.6 Conclusion

We have proposed an end-to-end framework, LogMine, to identify patterns in massive

heterogeneous logs. LogMine is the first such framework that is 1 unsupervised, 2

scalable and 3 robust to heterogeneity. LogMine can process millions of logs in a matter

of seconds on a distributed platform. It is a one-pass framework with very low memory

footprint, which is useful to scale the framework up to hundreds of millions of logs.
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Chapter 3

Anomaly detection in social media

3.1 Introduction

Social media sites, such as Twitter, Pinterest, Thumblr and Instagram allow people to

broadcast messages and content (URLs, images, videos) publicly to their followers. Many

of these sites allow users to change their homepage URLs by changing their account

names. Users may need to change their URLs for many reasons, such as marriage, re-

branding, business acquisition and closing, and so on. Such events are relatively rare for

any human or business user in social media sites. However, we observe abnormally high

URL change frequencies for a subset of Twitter users.

For example, we identify a user changing its URL 283 times in 78 days, equivalent to

roughly one change every six hours. Some of the URLs, released and claimed in the same

day, are shown in Figure 3.1. We identify an even more abnormal scenario where a URL,

twitter.com/MalumaOficiaI, belonged to ten users in three months. Each user

handed over the URL to another user collaboratively. In Figure 3.2, we show the sequence

of handovers where nodes are user accounts and an arrow represents the direction of a

handover. Such abnormal URL handovers are highly unlikely to be performed by a group
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Figure 3.1: A user (Twitter id: 2664619086) with ten URL changes on 7 November 2015.
Some URLs are used more than once (dotted connections), which form a loop of URLs.

of normal users, and most likely are generated by automated bots. As we see more such

examples in Twitter, we focus only on Twitter bots in this work. Our work is generalizable

to other social media sites with streaming data sources.

There have been dozens of papers on mining Twitter data [52][47] [74][28][62]. How-

ever, URL changes have not been studied with due diligence. An estimated 8.5% accounts

in Twitter are bot accounts [73]. Our work shows that bot accounts carry out automated

URL changes on a regular basis. URL changes waste resources on Twitter, create many

broken URLs, and mislead Twitter users to spam account pages. These negative conse-

quences motivate this work.

In this work, we investigate such abnormal URL changes and handovers to discover

why and how users make such changes. We develop a parallel algorithm using the map-

reduce framework to identify URL changes in streaming data. Our algorithm is incremen-

tal and scalable to support social media similar to Twitter in size and traffic. We create a set

of 231K URL changes in Twitter over a period of three months (10/15-01/16). We perform

temporal, textual, and graph-based analyses on this data and discover several interesting
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Figure 3.2: The URL paradisecameronwas handed over among four users nine times.
User 468 appears in the handover chain exactly every other time. The dashed lines con-
necting the same users show loops in this chain.

anomalies about URL changes. Our findings are summarized below.

• Both URL changes and URL handovers are atomic operations.

• URLs that are handed over are more frequently mentioned by other users.

• URL handovers are associated with changes in content after the handover.

• URL handovers can be temporally correlated.

• URL changes are done in an organized and collaborative way by large groups of

users.

The rest of this chapter is organized as follows. We begin with a background section

that provides examples of various types of URL changes and handovers. We describe our

algorithm to discover URL changes and handovers in Section 3. We provide association

analysis with temporal, textual and graph-based features in Section 4. We investigate why

and how frequent handovers are performed in Section 5. We discuss scalability experi-

ments in Section 6, related work in Section 7, and conclusion in Section 8.
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3.2 Background

We start with sufficient background information so readers are more familiar with URL

changes and handovers.

URL Changes: Imagine a Twitter user with the name tom hanks. The URL to the

profile page of this user would be twitter.com/tom hanks. If this user changes

the screen name to thanks, the URL of its profile page will change to twitter.com/

thanks. Such a change in the URL does not affect the social connections of tom hanks

in the Twitter network. All of the followers and followings of the account before and after

the change remain the same. However, the URL change invalidates the old URL, which

will no longer be accessible from other places on the Internet. URL changes also invalidate

all of the old mentions1 within Twitter, since mentions are the short form of URLs. In some

social media, such as Pinterest, the old URL still functions because the site automatically

redirects visitors to the new URL unless the old URL is taken by some other account.

URL Handovers: A URL handover consists of two URL changes, in which one user

releases a URL and another user claims that URL. Let us consider the example in Figure

3.3 to describe URL handovers in reality. A user (user1) changes its screen name (URL)

from Tom to John. The name Tom is then free on the network and can be claimed by any

other user. If another user (user2) claims the name Tom by releasing its previous name

Bill, a handover happens. We say the URL twitter.com/Tom has been handed over

from user1 to user2. Here the user1 is the from-account and the user2 is the to-account.

We also define the handover lag as the time duration between user1 releasing the URL

twitter.com/Tom and the user2 claiming it.

In sites like Pinterest, the old URLs are redirected to the new ones; therefore a single

user gains no direct benefit from handing over a URL. Conversely in Twitter, where redi-

1Twitter users can mention other users by using the ’@’ symbol which creates a link to
the profile page of the mentioned user. For example @thanks is a link to the address
twitter.com/thanks
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rection is not automatic, normal users often create new accounts to keep the old URLs.

These are handovers but are also a valid behavior. In such scenarios, one of the from or

the to accounts should be inactive (e.g. no tweeting) after the handover. The chance that a

handover happens randomly between two unconnected users is very low, and we identify

a suspicious handover if either of the following statements are true for a handover.

• Both of the from-account and to-accounts continue posting after the handover.

OR

• Both of the from-account and to-accounts have a history of activity before the han-

dover.

In the remainder of the work, we will refer to a suspicious handover as simply a han-

dover unless otherwise specified.
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Figure 3.3: User1 handed over the URL Tom to User2. The release time is t2 and the
claim time is t3, and the real handover lag is t3− t2. We calculate an upper bound, t4− t1,
for the handover lag based on the last tweet of User1 at t1 before the handover, and the
first tweet from User2 at t4 after the handover.

3.2.1 Data Collection

We use the Twitter streaming API to collect data and produce a set of suspicious handovers.

The Twitter streaming API caps the number of tweets sent to the client to a small fraction
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of the total volume of Tweets at any given moment [22]. We have never exceeded 48 Hz in

practice. Our data collection module receives the tweets which contain the timestamp of

the tweet, the URL, the user ID, the follower count, and some other information about the

author of the tweet. The Twitter API provides tweets that satisfy a given condition such

as matching a given keyword, being about a topic, being tweeted from a geo-location, or

being about a specific set of users. We consider each tweet as a singleton object with a

set of predefined features including timestamp, user ID, URL, geo-location, number of

followers, number of accounts the user is following, and tweet content. In order to detect

handovers, we consider three relevant features: the timestamp, the user ID, and the URL.

Although a user can change the URL of the account, the user ID is fixed for an account

throughout the lifetime of the account.

We use different keyword filters to collect tweets for a week. We sort users based

on their number of tweets and pick the top 40,000 as the seed for the rest of the data

collection from the Twitter streaming API. We make the data collection process parallel

on eight computers, each of which listens to 5,000 users continuously. This parallelization

maximizes the number of tweets that can be collected from the streaming source.

We have started collecting data from Twitter on 15 October 2015 and continued until

31 December 2015. We have collected 130 million tweets with 5.7 million unique users2

and 6 million unique URLs.

3.2.2 Complex Handovers

One URL change involves two URLs and one user account. One handover involves three

URLs and two user accounts (Figure 3.3). However, URL changes and handovers can

produce much more complex scenarios that are extremely unlikely to happen in a network

that is built for independent social entities. A few complex scenarios are given below.

2Although our data collection seed contained 40,000 users, in total we collected tweets from
5.7 million different users.
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• A user changes the URL multiple times and forms a chain of URLs. An example is

shown in Figure 3.1. Long chains are more frequent in Twitter than what is expected

in a network of independent users.

• Some chains of URLs create a loop when the user reclaims an old URL (i.e. A →

B → C → D → A).

• A URL can be handed over in a chain from user A to user B, and then from user B

to user C. This is a suspicious behavior because it shows that multiple accounts are

interested in having the same URL. It gets more suspicious if each of these accounts

own the URL for a short time.

• The handovers on a URL can also create a loop of users. A set of users can claim

and release a URL and form a loop, which indicates that they either have a signaling

mechanism to let each other know when the URL is free and ready to claim, or they

are controlled by the same entity (Figure 3.2).

Although a single URL change may not be an abnormal behavior, the chance of all of

the abnormal scenarios described above happening inadvertently is very low. We find

a multitude of evidence showing that users are performing such changes and handovers

automatically using computer programs.

3.3 Detecting URL Changes and Handovers

The phenomenon illustrated by Figure 3.1 clearly shows evidence of suspicious behavior

and motivates further examination. However, detecting URL changes and handovers is

non-trivial. We describe two approaches to detect URL changes and handovers: active and

data-driven. Although we describe our technique focusing on Twitter API, the methods

should work for any streaming API.
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3.3.1 Active Detection (Probing)

The high-level idea of active detection is to probe Twitter to check the status of an account.

We use the users/show function of the Twitter API which returns all the information

for a given user ID or a user screen name (URL). We start with a list of user IDs and

check their statuses in a round robin fashion. Whenever we see that the URL for a user

is different from what we have seen the last time, we take this as a URL change. Upon

detecting a change, we add the released URL to a URL-list that we track in order to see

if any of the URLs are reclaimed by some user. Once we identify that a URL has been

claimed, we detect a handover and register the lag between release and claim. We also add

the to-user to the user-list to start tracking future changes or handovers.

Active detection has some serious limitations. First, we do not have a list of suspicious

users to start the probing with. Second, Twitter provides very little bandwidth for such

status checks (users/show) for users and URLs. We can query Twitter at most 180

times every 15 minutes. This is a much lower rate compared to the Twitter streaming API,

which provides tweets at the rate up to 48Hz. If we start the probing with a set of less than

180 users, the probing technique allows us to observe a handover no later than 45 minutes

after claiming. However, these two limitations restrict us from identifying a large number

of handovers.

3.3.2 Data-driven Detection

Since we can just query Twitter to check statuses of users 180 times in each 15 minutes,

we take an alternative approach where we identify handovers using tweets. We collect a

massive set of tweets at the maximum bandwidth for 11 weeks, and are able to detect a

large number of URL handovers based on the analysis of these tweets.

Key Idea of the Detection Process: Since Twitter does not provide an event flag rep-

resenting a URL change, we devise an algorithm to identify handovers based on the last
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tweet from the from-account and the first tweet from the to-account before and after the

handover respectively. Figure 3.3 shows a toy example of handover detection using the

streaming data provided by Twitter. Note that the handover lag can be calculated as the

time between the last and the first tweets from the from-account and to-account, respec-

tively.

Although our calculated lag is always larger than the real lag, we observe a wide

range of lags in our dataset, including surprisingly short ones. For example, the URL

santacurIy was being used by an account with zero followers for 6 days. The account

then released the URL, and a more popular account with 5,000 followers took it over. The

calculated lag in this scenario is only 110 seconds. In other words, 4 consecutive events

happened just in 110 seconds: 1) The from-account tweets for the last time using a URL.

2) From-account releases the URL 3) The to-account claims the URL 4) The to-account

tweets with the new URL.

Computationally, handover detection is very similar to the group-by order-by queries

for relational databases. We require grouping the tweets from the same URL and sorting

the tweets for the same URL based in order of timestamps. We need to compare successive

pairs of tweets from the same URL to detect change in their user IDs. Each such change

in user ID corresponds to a handover. The process is further complicated by the scale of

the data. A single processor cannot manage millions of tweets in reasonable time, guiding

us to develop parallel solutions. We discuss our algorithms to solve the problem in this

section.

Our algorithm have detected a total of 13,831 URL handovers on 12,326 unique URLs

handed over by 21,257 users in the 78 days of data collection. We also detect 231,800

users who changed their URL at least once in this time period.

Handover Detection: A handover can be detected when a URL is associated with more

than one user accounts in a specific period of time. A naive approach to find handover is to

use a hash map on all the URLs where the key is the URL and the value is the set of all user
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IDs associated with that URL in any tweet. After grouping all of the tweets, we need to go

through all of the hash keys and values and find those URLs that are associated with more

than one user IDs. This naive approach is computationally expensive, as the intermediate

data needs to be read multiple times, and the naive algorithm does not exploit parallelism.

We retain the idea behind this naive approach and develop a completely parallel algorithm

to detect handovers in a map-reduce fashion. We want not only to detect the handovers but

also to know the time period each user account owned that URL in the past. This will help

us to analyze the impact of handovers on an account during the time the account owned

the URL.

Every map-reduce algorithm has two key components: a map function (mapper), and

a reduce function (reducer). There can be other useful functions such as filters in a map-

reduce framework. We discuss each of these components in this section. For clarity we

define the input and the output of our map-reduce framework. The input is a set of tweets

T = {tw1, tw2, . . . , twn} and the output is a set of URLs U = {url1, url2, . . . , urlm}

where:

• urli = {(user1, t1, t2), (user2, t3, t4), . . . , (userk, t2k−1, t2k)}

• k ≥ 2

• tj ≤ tj+1, ∀j 1 ≤ j ≤ 2k − 1.

Step1: Mapper The map function in our framework converts a tweet object to an object

that can be used by the reducers. It produces a set of key-value tuples where the key is the

URL of the tweet and the value is the user ID plus two timestamps. Initially both times-

tamps are equal to the tweet timestamp, but they will be converted to a start timestamp and

an end timestamp in the next steps, which reflect the period of time in which the URL was

associated with each account. In other words, initially:

mapper(tweeti) =< urli, {(useri, ti, ti)} >

Step2: Reducer The reduce function plays the key role in our map-reduce framework.
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The map-reduce framework guarantees that all objects with the same URL will be reduced

together and that they produce one last merged object. A merged object in our case is

< urli, {(usera, t1, t1), (userb, t2, t2), . . . , (userz, tk, tk)} >

where ti ≤ ti+1. The reducer function takes two key-value tuples as the input and produces

one merged tuple as the output. As mentioned earlier, the value part is made up of a set of

user IDs, each of which has a starting and an end time. The reducer function takes these

two lists and creates a sorted output based on the start times of each object3. Since all the

lists have just one element at the beginning of the reduce task, they are trivially sorted. As

the reducer combines them, the merged lists are also sorted. In other words, the input to

the reducer function is two sorted list of length m and n, and it just takes O(m+ n) steps

for the reducer to sort them by using the merge sort approach.

Step3: Mapping Values After the reducer produces a sorted list of user IDs with times-

tamps for each URL, we need to merge all the consecutive tweets with the same user ID

to create a shorter list for each URL where there is a start and an end time for each user

ID. For example, if the output of the reducer for a URL is

{(A, 1, 1), (A, 4, 4), (B, 7, 7), (B, 9, 9), (A, 15, 15), (A, 20, 20)}

then the output of running the map value function would be:

{(A, 1, 4), (B, 7, 9), (A, 15, 20)}

Step4: Filter We explained how we create the list of all users associated with the same

URL in our map-reduce framework. However, we are not interested in detecting URLs

that are only associated with one user ID. These are usually regular accounts and are not

of interest, but our map value function will output them too. To filter out these URLs from

the output of the map-reduce framework, we use a simple filter function. This function

checks the length of the list of the users after step 3 and outputs only the lists that have

3At this stage of the algorithm, the start time and the end time of the objects are still the same
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Algorithm 4 Reducer
Input: Two lists of sorted tweets with start and end times

Output: Sorted list of tweets based on their start timestamps

i1 ← 1

i2 ← 1

Lout = empty list

while i1 ≤ |L1| and i2 ≤ |L2| do

if L1[i1] ≤ L2[i2] then

Lout ← concat(Lout, L1[i1])

i1 ← i1 + 1

else

Lout ← concat(Lout, L2[i2])

i2 ← i2 + 1

while i1 ≤ |L1| do

Lout ← concat(Lout, L1[i1])

i1 ← i1 + 1

while i2 ≤ |L2| do

Lout ← concat(Lout, L2[i2])

i2 ← i2 + 1

return Lout

more than one user ID.

Incremental Handover Detection: The map-reduce framework we discussed in this sec-

tion is in batch mode. In other words, it gets a set of tweets as the input, and produces

the set of all handovers. While running the map-reduce framework, if we store the inter-

mediate data right before the filter function, we can use it to detect the handovers in the

future in an incremental fashion. For example, if we collect tweets in November, detect

all handovers from that month, and store the intermediate data on disk, once we have the
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Figure 3.4: The process of detecting URL handovers in the Twitter network. 2 URL
handovers are detected from 9 tweet objects in this example.

tweets from December we can use that intermediate data to find new handovers that have

occurred from the beginning of November to the end of December. This processing will be

faster than running batch mode on all of the November and December data. The reducer,

the map value function, and the filter of the incremental version are exactly the same as

before, but the mapper is faster due to using the map-reduce built-in functions to produce

key-value pairs from the intermediate data, and also because the data gets smaller after

step 3.

Limitations of Map-Reduce framework: We discussed how to find URL handovers by

listening to the Twitter API and using the map-reduce framework. Detecting a URL change

plays a key role in URL handover detection. We detect URL changes by looking at the

metadata provided by Twitter for each tweet object. We can detect a URL change if we re-

ceive at least two tweets with different URLs from that user. Therefore, if the user does not

have any tweet activity, or we do not receive tweets of the user due to an API limitation, we

may miss some of the handovers. In addition, we may not be able to calculate a tight upper

bound for URL handover for the same reasons. Although the probing technique addresses

the latter issue, we may still miss some handovers due to limited access to the Twitter data.
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Implementation using Spark: Apache Spark is a fast and general-purpose engine for

large-scale data processing. It was introduced in 2013 [87]. We implement all of our

map-reduce-based handover detection code using Java in Spark.

URL Change Detection: We have explained how to detect handovers in a given set of

tweets. The other item of interest is URL changes, i.e. when a user changes its URL in

Twitter. The same map-reduce framework can be used to detect URL changes for all users.

We just need to modify the way we create key-value pairs. In this case the key is the user

and the value is the associated URL with its timestamps. The final result we get for each

user would be in the following format:

< useri, {(url1, t1, t2), (url2, t3, t4), . . . , (urlk, t2k−1, t2k)} > which shows k − 1 URL

changes for this user.

3.4 Handover Analysis

In this section we analyze the handovers detected by our method to observe several suspi-

cious behaviors related to the the user’s temporal profile, tweet content, and the frequency

of URL changes. We also discuss how multiple users can be connected through handovers.

We finally analyze the handover lags to show that the handovers are automated.

3.4.1 Temporal Profile

We investigate questions related to the temporal profile of a user involved in a handover.

We extract hourly time series of every user in every handover for 78 days. As mentioned

in Section 3.2.1, each tweet object contains the timestamp of that tweet in millisecond

resolution, and the number of followers of the user at that time. We construct hourly
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activity time series of every user by aggregating the total number of activities the user

performs in each hour. Note that Twitter does not guarantee to provide all of the tweets of

a user; therefore we achieve a lower bound time series on user activity. As we shall see,

such partial data is enough to reveal abusive behaviors on Twitter.

Similarly, we create the follower time series of a user which shows the changes in the

popularity of that user. We receive follower information embedded in the tweets, yielding

some unevenly spaced measurements of the follower counts of a user. We interpolate the

in-between follower counts by the last received count with an assumption that follower

counts change very slowly (particularly for non-popular and old accounts).

Activity Association: We first consider the distribution of handovers over 11 weeks. We

only consider handovers that have less than a day of calculated lag. This ensures that the

real lag is at most 24 hours, a reasonable value. In Figure 3.5(top) we show the frequency

distribution of the hourly aggregates of handover counts over 1890 hours. We use the

method in [77] and identify three sharp peaks pointing to weekly, daily and 12-hourly

periodicity. Figure 3.5(bottom) shows an example activity sequence of a user with daily

and weekly periodicity.

We investigate if the handovers are related to a change in activity patterns. We check

if the average activity levels of a user in the 6-hour windows before and after a handover

are significantly different. 91% of the times the difference is less than 1 tweet an hour.

Therefore, we conclude there is no significant change in the activity level before and after

the handovers. However, exceptions are possible. Figure 3.5(bottom) shows an example

where the activity starts and stops with handovers.

Next, we consider the association between handovers and the activity level around

them. We calculate the average activity per hour of every from-account in the 6-hour win-

dow just before release the URL, and the same of every to-account in the 6-hour window

just after claiming the URL. We compare them with the average of activity-per-hour of the

user, calculated over the duration of data collection. We identify a significant difference
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Figure 3.5: An example of a user with daily periodicity and a strong association with
handover.

in activity level before and after release and claim. Quantitatively, 97.4% of the users are

more active than usual when performing handover (Figure 3.6).
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Figure 3.6: Comparing the normal activity of a user with its activity near the handovers.
97.4% of the users have higher activity-per-hour around handovers. Both x-axis and y-axis
are in log scale.

Cross-user Association: We further consider cross-user associations in temporal profiles
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Figure 3.7: Three accounts with almost identical activity profile and correlated handovers.
Handovers initiate change in activity patterns.

of handovers. We use standard time series motif discovery tools [53] to identify the most

frequent activity time series. Note that the expected similarity in activity time series be-

tween two users for 11 weeks is almost zero. Interestingly, We identify a motif of three

users who have almost identical activity patterns with an average correlation coefficient

of 0.96. Furthermore, the accounts perform URL handovers within the same hour in the

same manner (e.g. to-from-to). The motifs are shown in Figure 3.7. The URLs that were

handed over by these accounts are all related to celebrities such as MacMiller, Rihanna,

Drake, Megan Fox and Lil Wayne.

We consider the motif as a significant discovery because it reveals that offenders work

in correlation, possibly using the same codebase, and that they hand over at the same time

to swap or pass URLs that they do not want to lose. In the future, we will investigate how

to scale handover detection in real time so we can track the interest areas of the offenders

to take countermeasures.
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3.4.2 Content Profile

Users tweet about various topics. The topic of a tweet can be determined by analyzing the

keywords in it. We first remove all useless words like is, are, the, to, from, RT4, . . . , and

then process the tweet content. We use the content of the tweets to determine the similarity

between two tweets, and also two sets of tweets. We use the Jaccard similarity coefficient

[81] as our metric. If the set of keywords in tweet1 and tweet2 are T1 and T2 respectively,

the Jaccard similarity can be calculated by Equation 3.1.

Jaccard sim(tweet1, tweet2) =
|T1 ∩ T2|
|T1 ∪ T2|

(3.1)

The similarity between two sets of tweets X and Y can be defined as the average (avgsim)

similarity of all pairs of tweets in them.

Sim(X, Y ) = average(

|X|∑
i=1

|Y |∑
j=1

Jaccard sim(Xi, Yj)) (3.2)

We use this measure to calculate the similarity between two Twitter users, or between

two different periods of time (before and after the handover) for the same user to profile

content changes around handovers.

Content Association: We consider the content of tweets for a user before and after

the URL change5 to see if the content changes with the change in URL. Let T1 and T2

be the sets of tweets of a user from its first and second URL respectively. We calculate

the in-URL similarity as the weighted average of Sim(T1, T1) and Sim(T2, T2), and the

across-URL similarity as Sim(T1, T2). For example, Table 3.1 shows the tweets of a user

with two different URLs: zflexins and loveyorslf. The user tweeted 98 times with

4The word “RT” appears at the beginning of all retweets and has nothing to do with the content.
5We specifically are interested in URL changes that were part of a handover.
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Figure 3.8: The plot shows how the content of the tweets changes with URL changes.

the first URL about Justin Bieber, and 94 times with the second URL about Harry Styles.

These are two of the most popular celebrities in Twitter with millions of followers. There

is a clear change in the topic of the tweets after the URL change. The average in-URL

similarity for this user is 0.35 while the across-URL similarity is 0.03. It is humorous that

the content of the first tweet after URL change is: RIP zflexins. Both of these URLs

are now associated with some other accounts.

In order to check this hypothesis for other users, we select a random set of handover

users that have exactly two URLs associated with them in our dataset. We filter out the

users for which |T1| < 5 or |T2| < 5, and finally come up with 1,051 users. Figure

3.8 shows the comparison of in-URL with across-URL similarity for each of these users.

We have perfectly 100% of the users with higher in-URL similarity than the across-URL

similarity. It means that the overall topic of the tweets changes when a user changes its

URL, especially if that URL change is a part of URL handover.
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Table 3.1: The tweets from the same user with 2 URLs. The user change its URL from
zflexins to loveyorslf on 11 December 2015. All the tweets of the left column
are about Justin Bieber, and the ones in the right column are about Harry Styles (both are
famous singers). The average in-URL similarity is 0.35, while the across-URL similarity
is 0.03.

www.twitter.com/zflexins www.twitter.com/loveyorslf
RT @justinbieber:UK! Tonight on
@CapitalOfficial from 7pm ’Justin
Bieber’s Capital Album Party Replay’.
Hear the tracks from #Purpose

harry styles coisa mais linda gente!!!

RT @JBCrewdotcom: Another photo of
Justin Bieber with a fan at the M&G in
Tokyo, Japan yesterday. (December 4)
https://t.co/ofAYAjzP1M

harry s,tao precioso gente como vcs nao
gostam dele????????
https://t.co/o0x2DG38JI

RT @JBCrewdotcom: Another video of
Justin Bieber singing at a restaurant in
Japan today. (December 5)
https://t.co/jZqaMaezrO

vou tweetar video de harry stylesN

RT @favjarbara: interviewer: what do
you think about justin bieber’s
relationships?bp: hahaha he’s mine

harry w kendall eu to gRITANDO AQUI,
OPSSS https://t.co/MURzVWnc0Q

RT @NME: Justin Bieber announces UK
Arena tour dates for 2016
https://t.co/ECsRUqEPxk

@KendallJBrasil: 31/12- Mais fotos de
Kendall e Harry Styles em St. Barts,
Frana. https://t.co/CytM8Hixk

3.4.3 URL Change Analysis

In this experiment, we check if the frequency of URL changes (average number of URL

changes per day) of a user has any relation with the probability of that user being involved

in a URL handover, since we believe both a high number of URL changes and being in-

volved in a handover are suspicious behaviors. There are 231,800 users in our dataset

which changed their URL at least once during our data collection. Figure 3.9(left) shows

the percentage of these users for different frequencies of URL changing. The probabil-

ity of a user being involved in a handover given the frequency it has changed its URL is

shown in Figure 3.9(right). The higher the change frequency, the larger the probability

of performing handovers. The reason why we do not show users with more than 9 URL
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Figure 3.9: (left) Percentage of users (out of 231,800 users) based on the frequency of
changing URL. (right) The probability of a user doing a URL handover given the URL
change frequency. The probability reaches 1 for a user with frequency higher than 68
(almost one URL change every day).

change frequency on the left side is that they comprise less than 1% of our dataset. How-

ever, we can say almost all of this 1% have done a URL handover by looking at the right

hand side of the figure.

3.4.4 Connectivity Profile

In addition to temporal and textual profiling, and URL change analysis, we look at the

connectivity profiles of the users that perform handovers.

We create a bipartite graph where the left side is the set of all users and the right side

is the set of all URLs, and a link between a user ui and a URL vj exists if ui owned vj at

some point in our dataset, and the URL was used for a handover. A handover is defined as

a subgraph with three nodes and two edges in which two nodes from the left side (users)

have a link to the same node on the right side.

An example of this graph is shown in Figure 3.10. In this example, the URL V1 has
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been handed over by users U1 and U2. The URL V2 has also been handed over by users

U2 and U3. These two handovers together form a cluster of size 5 in which three users and

two URLs are connected. On the other hand, the user U4 has owned the URL V3 the whole

time which is a normal behavior.

We use the classic co-clustering approach to identify clusters in the user-URL bipar-

tite graph [34]. Any balanced cluster with more than three members points to organized

teamwork behavior between accounts. It is very unlikely that a large balanced cluster was

created in this bipartite graph by accident.

We find a cluster of size 2,273 (1,205 users + 1,068 URLs) which has 2,399 edges.

The average degree of each node in this cluster is 2.11. It is highly unlikely that such

a cluster is formed randomly, and thus this cluster supports our original hypothesis that

correlated and frequent handovers are signatures of automated accounts managed by the

same entity. If we had more data, we could have identified more handovers, and the cluster

could have been much larger. About 6% of the users that perform suspicious behavior are

in this particular cluster, proving our suspicion correct beyond a doubt.

If we consider all of the clusters with more than three members (non-trivial handover

clusters), they cover 31% of all users who have been involved in handovers. Although

any URL handover is a suspicious behavior, this provides us with additional evidence of

misbehavior from this 31%. We believe that the majority of the other 69% also belongs

to a non-trivial cluster, but we are not able to catch them due to lack of data. As we show

in the next section, social media sites are slow in suspending such offenders. We have

detected thousands of automated spammers, even without the complete dataset, and yet

Twitter has suspended only a forth of them in six weeks.

These users who are doing URL handovers usually change their URLs more than once.

Not all of their URLs are included in the discussed bipartite graph since we just add the

URLs which have been handed over. If we include all of the URLs of the users who

have done a handovers (even the URLs that have not been used in any handover so far)
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Figure 3.10: The bipartite graph that shows the connections between users and URLs. The
dashed nodes form a connected component of size 5. User U4 has not been involved in any
handovers.

in our graph and re-cluster, the biggest cluster would have 1,205 users and 6,040 URLs.

These newly added URLs are good candidates for our active probing technique since they

belonged to a suspicious user at some point in the past.

3.4.5 Lag Profile

To examine whether these handovers are organized from a central source, we perform an

analysis on handover time-lag. The real lag between releasing a URL and claiming it back

is not detectable from the publicly available tweets. Our active probing tool, which is not

scalable because of a capacity limit set by Twitter, estimates handover lag at most an hour

longer than the real lag. We can only probe 180 users and/or URLs every 15 minutes.

We start probing every day with a list of 100 users who we know have high numbers of

URL changes (based on our dataset). We have done this experiment for 8 consecutive

days and observed 210 handovers. Figure 3.11(left) shows the CDF of the percentage of

handovers for different lags. The sharp increases at minutes 15, 30, and 45 are the result of

the discontinuities in the probing algorithm caused by Twitter API limitations imposed on

our algorithm.The approximately linear CDF illustrates the remarkable fact that handovers

are instantaneous operations. We can verify this claim by simulating a set of instantaneous
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handovers spread uniformly over time and applying our probing algorithm to calculate an

estimated CDF. The estimated CDF is indeed a line and the slope of the line is very similar

to what we have observed.
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Figure 3.11: The distribution of handovers based on their lags. (left) The lags that are
calculated using our probing technique. (right) The lags that are calculated using the data-
driven approach. 50th percentiles are shown in both distributions.

This analysis formed the basis of our data-driven detection process. In the data-driven

detection process, we can only detect a handover if the pair of accounts tweet something

before and after the handover, and Twitter provides us the tweets. Under such stringent

condition, the lags we calculate are weak upper bounds of the real lags.

We show the CDF of the handover lags detected by the data-driven technique in Figure

3.11(right). Although the data-driven process detects larger lags compared to the real lag,

since we know from this analysis that the handovers are mostly instantaneous operations

performed by automated programs, we trust that the handovers detected using the data-

driven technique are highly suspicious. Also note that the lag for half of the handovers we

find is less than 14 days. For higher lags, the probability of decreases. In other words, if a

URL is not claimed after few days of releasing, it (probably) will not ever be claimed.
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Figure 3.12: This figure shows the number of URLs for a given handover lag and a given
number of handovers on that URL. The X axis is in log scale. As the number of handovers
on a URL increases, the average of handover lags on that URL hoes down drastically. We
can see many different lags for URLs that are handed over just once.

3.4.6 Handover Lag Distribution

Earlier we showed the cumulative distributions of handover lags. As the number of times

a URL is handed over between users increases, it gets more suspicious. We believe that

it is not possible that a URL gets handed over multiple times incidentally. The other sign

of a suspicious URL handover is having a short lag. In this experiment, we want to see if

there is any relation between these two parameters: the number of times a URL is handed

over and the average handover lag for all the handovers being done on that URL. We show

a heat map in Figure 3.12. The X axis is in log scale. As it is shown, all the URLs that

are handed over more than 7 times have an average lag of 1 hour or less, in some cases

even less than 10 minutes. For example, the URL in the top row was handed over 9 times,

and the average of all its 9 handover lags is 7 minutes. This clearly implies that this URL

is valuable for its owner(s), and thus handovers are done quickly on this URL so as not
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to lose it. On the other hand, some URLs that were handed over once or twice have an

average lag of several days. In these cases either the owner was not worried about losing

the URL or the calculated lag is much higher than the real lag due to lack of activity.

3.5 Why Handovers?

Such a magnitude of automated URL changes must have good reasons behind. In this sec-

tion, we discuss association of handovers with potential benefits such as obtaining human

followers and avoiding suspension, and thus attempt to answer the question why handovers

are so frequent?.

3.5.1 Mentions and External URLs

Although URL changes do not impact the internal connectivity among users (who fol-

lows whom), it has a direct impact on URLs linked from external web pages. It also

affects the links created by mentions within Twitter. For example, when user1 mentions

user2 as @DavidW (whose screen name is DavidW) in a tweet, Twitter creates the URL

twitter.com/DavidW and embeds it in the tweet content. If user2 hands over this

URL to user3, the mention DavidW would point to user3’s profile page. Thus, thousands

of mentions within Twitter are being abused by URL changes.

Our hypothesis is that the miscreants change URLs frequently to fool users in visiting

different pages every time they follow the same mention. The motivation is to increase the

chance of getting a human visitor or follower in the process.

To test this hypothesis, we use the Twitter Advanced Search page in which one can

search for the mentions of a certain screen name (i.e. URL). We count the number of

mentions a URL receives in the first fifteen pages of the search result. Figure 3.13 shows

the percentage of URLs based on the number of mentions for 1000 random URLs and 1000
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handover URLs. The URLs that have been handed over have a higher number of mentions

compared to random URLs. The average number of mentions for handover URLs is 80

compared to 22 for random URLs.

# mentions

P
e

rc
e

n
ta

g
e

 o
f 
U

R
L
 (

C
D

F
)

0 100 200 300

10

30

50

70

90

7112

Random URLs

Handover URLs

Figure 3.13: The percentage of URLs based on the number of mentions for random URLs
and handover URLs.

3.5.2 Suspension

Twitter suspends accounts that violate its rules [20]. We have detected URL changes and

handovers until 31 December 2015. In order to see whether or not doing the handover has

any impact on the suspension of the involved users, we check the status of all handover

users almost every week from 1 January 2016 to 8 February 8 2016. Each point in Figure

3.14 shows the percentage of the handover accounts being suspended by Twitter until that

day. The interesting point is that although these users had done many URL handovers in

our data collection period, just 0.6% of them were suspended by 1 January 2016. In Sec-

tion 3.4.4, we mentioned that we have additional strong evidence of 31% of the handover

users being suspicious, and still just 7% of these accounts are suspended by Twitter at the

time of writing, while We had found these suspicious users weeks earlier.
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Figure 3.14: Twitter suspension rate of handover users.

3.6 Experiments

We provide detailed experimental results on execution time, distributed speedup, and pa-

rameter sensitivity. We use 16 worker nodes each of which has 1 GB memory for running

the map-reduce code. All the other experiments are done on an Intel Corei7 machine run-

ning Ubuntu 14.04 with 32 GB of memory. We share the entire set of handovers in the

supporting page of this project [19]. The supporting page also contains presentation slides,

Excel sheets, and the source code to detect handovers.

3.6.1 Scalability

We present a map-reduce framework to detect all of the URL handovers and URL changes

in a set of tweets. In order to analyze the running time of our algorithm, we design three

experiments as follow:

Comparison with Naive approach

In order to calculate the speedup of our URL handover and URL change detection
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method, we implement a single core version of our method in Python. We use a hash map

to keep track of all the users and timestamps associated with each URL in our dataset. We

compare the running time of our map-reduce code with this naive implementation in Table

3.2. The input to both codes is a set of 130 million tweets. The numbers reported in Table

3.2 include pre-processing too. We use 16 worker nodes to run the map-reduce code for

this experiment.

Our Spark-based implementation is extremely fast compared to the naive implementa-

tion. Although we use a hash-map for URLs, there is no indexing mechanism to quickly

find the hash bucket for a certain URL. In other words, the naive algorithm grows quadrat-

ically on number of URLs we have. In contrast, the Spark framework smartly distributes

the data to virtually create an indexing structure on the URLs and thus, the algorithm

grows much more slowly in Spark [87]. Therefore an estimated speedup from the naive

implementation would be 162 for 16 workers. In practice, we achieve half of the estimated

gain due to constant overhead in distributing and merging computation.

Table 3.2: Running time of the data-driven algorithms to detect URL Handovers and
Changes.

Spark Implementation Single-core Speedup
Handovers 7.9 minutes 15.5 hours 120×
Changes 7.3 minutes 13 hours 106×

On Large Scale Data

Finding handovers requires a large scale group-by order-by on URLs. Although some

users change URLs very frequently, total number of URLs is much smaller than the num-

ber of tweets. Therefore, the detection process essentially scales linearly with respect to

the number of tweets. Figure 3.15 shows the linear trend that we obtain experimentally on

our dataset of 130 million tweets.

We check the effect of adding more computing workers on the running time. We

increase the number of workers from 1 to 16. As it is illustrated in Figure 3.15, doubling
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Figure 3.15: (left) How running time changes as we add more tweets. (right) How adding
more working nodes helps us to detect the handover faster. We get an almost linear
speedup by adding more nodes.

the number of workers almost halves the running time because the length of the list for each

URL is much smaller than the number of URLs. We claim that this decreasing trend will

not stop until we deploy as many workers as the number of unique URLs in our dataset,

since each worker can work independently on a URL in that case. We get 14X speedup by

using 16 worker nodes, which we consider to be a very effective implementation.

3.7 Related Work

URL changes and handovers have been actively performed by users in social media. To

the best of our knowledge, our work is one of the first ones to investigate the association

between these activities and abuse in social media. Authors of [50] has also been studying

other aspects of reusing screen names in a parallel research project. Research has been

done on other various aspects of abuse in social media including account hijacking [75],

trolling [30], faking [24] and trafficking fraudulent accounts [76]. All of these works pro-

vide an important perspective on how fraudsters, merchants and abusers are manipulating

social media for their own benefit. Our work considers URL handovers in the same man-
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ner. There are several works on bot and automated user account detection in social media

using data mining techniques. In [33], the authors have modeled the inter-arrival time be-

tween tweets to understand bot behavior. In [31] and [44], supervised techniques are used

to detect bots at registration time.

3.8 Conclusion

We develop methods to detect URL handovers between accounts in social media us-

ing publicly available data. We perform an in-depth analysis on the users who perform

URL changes and handovers and identify several interesting characteristics. Collaborative

abusers exploit this ability to change their URLs in social media to trick regular human

users into following spam accounts. Our data analysis discovers automated and collabo-

rative handovers in temporal and connectivity profiles of these users, and provides useful

insights into how the abusers are operating. In future work we will develop active preven-

tion based on these insights.
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Chapter 4

Distributed Pattern Matching over

Streaming Time Series

4.1 Introduction

Given a set of time series patterns, we consider the problem of matching the patterns to

the most recently observed samples (i.e. sliding window) of a streaming time series in

order to identify occurrences of the patterns. Matching previously observed and anno-

tated patterns over a streaming time series can rapidly identify critical events and provide

valuable lead time to manage disasters in diverse applications such as patient monitoring,

seismic activity monitoring and process monitoring. As simple the problem may appear,

recent developments in the data collection, distribution [1] and mining [89][84], and wide

adoption of real-time systems [46][85] have exposed the shortcomings of existing tech-

niques. Modern sensing and transmission systems enable streaming data collection at an

unprecedented rate; data mining techniques extract thousands of meaningful patterns, and

time critical applications demand rapid response. Existing techniques fail at each of these

advancements separately.
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Figure 4.1: A dictionary of five patterns and a stream moving from right to left. Streaming
pattern matching systems identifies any occurrence of any of the patterns in the stream.
Pattern C and E appear in the stream with significant correlation.

Existing methods on streaming pattern matching are developed as single CPU systems

that start that fall behind the stream, incrementally delay producing outputs, and eventu-

ally overflow allotted memory [64][61]. For example, a typical EEG headset produces

256Hz signals at 60 electrodes, creating a stream of 15,000 observations per second. If

we have a small dictionary of only one eight-second (2,048 samples) long pattern, sin-

gle CPU systems fail. Even if the systems worked, their unrealistic assumptions such as

no-normalization [64] and equal length patterns [48], would limit their applicability to

monitoring applications.

We develop a distributed pattern matching system, DisPatch, for streaming time series

data that is exact, scalable and guarantees to produce the outputs within a bounded de-

lay. In the scenario above, DisPatch can match a pattern with two workers and guarantees

detection within a second. DisPatch scales almost linearly to match more patterns with

more workers within a second. DisPatch performs overlapping windowing operations and

distributes the windows and the patterns to all available workers. The computation in each

worker is optimized with state-of-the-art techniques for pruning, abandoning and reusing

computation. DisPatch is flexible enough to work with various distance measures includ-

ing Euclidean distance, Pearson’s correlation coefficient, Manhattan distance and Dynamic

Time Warping (DTW) distance. DisPatch assumes no structure on the pattern dictionary,

which can have variable length patterns in any order.
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Our contribution in this work is summarized below:

• We develop one of the first distributed systems to match a dictionary of patterns to a

stream of time series.

• DisPatch guarantees exactness and bounded detection delay at the same time.

• Given enough resources, DisPatch comprehensively covers several independent di-

mensions: data rate, number of patterns, length of patterns, and maximum delay.

• DisPatch uses a novel distribution strategy to maximally utilize available compute

resources and adopts state-of-the-art optimization techniques for pruning, abandon-

ing, and reusing computation.

• We show novel applications of dictionary matching in critical monitoring tasks.

We discuss the background in Section 4.2 and the general framework in Section 4.3.

We explain our map-reduce implementation in Section 4.4. An optimized version of the

map-reduce framework is presented in Section 4.5. We describe the empirical evaluation

in Section 4.6, the applications in Section 4.7, and the related work in Section 4.8. Finally,

we conclude in Section 4.9.

4.2 Background and Definition

4.2.1 Problem Definition

We define a streaming time series, T , as a sequence of (ti, vi) pairs representing the times-

tamp (ti) and value (vi) of the ith observation. The timestamps are integers in any valid

time unit (e.g. milliseconds, minutes, etc.) The values are real numbers. We define the

maximum sampling frequency (i.e. data rate) of a stream as R. Our system assumes a

constant data rate at R, accommodating a non-uniform data rate up to R is discussed as a

future work in Section 4.9. In most application domains, the data rate is set by many other
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economic, environmental and operational constraints; therefore we assume no bound on

the data rate.

A subsequence of a streaming time series is a contiguous sequence of observations

(i.e. (t, v) pairs) over a period of time. The length of a subsequence is the number of

observations in a subsequence (assuming constant data rate). A pattern is a subsequence

of a specific length. A pattern dictionary is a set of patterns P = {p1, p2, . . . , pN} of

arbitrary lengths represented by |pi|. Here, N is the number of patterns in the dictionary,

and L is the length of the longest pattern in the dictionary (in seconds).

We define a matching function M(d(x, y), τd), where d(x, y) is a distance function and

τd is a threshold representing the maximum allowable distance to match two time series

x and y of any length. M = true only if d(x, y) < τd. An analogous definition of the

matching function, M(s(x, y), τs) can be produced with a similarity measure s(x, y) and

a minimum similarity threshold (τs). Our system supports multiple distance and similar-

ity measures such as correlation coefficient, Euclidean distance, Manhattan distance and

Dynamic Time Warping (DTW) distance.

Problem Definition: Given a streaming time series T = {(ti, vi)}, a set of patterns

P = {p1, p2, . . . , pn}, a matching function M(d(x, y), τd), and a maximum time delay

maxD, identify all subsequences in the stream matching to a pattern in the dictionary no

later than maxD seconds after the occurrences of the subsequences. DisPatch evaluates

the input parameters and the available resources and starts processing only if it can guar-

antee the exactness and the maximum delay, otherwise it halts at the beginning.

The above problem seeks an exact report of all matching subsequences. The need for ex-

actness has been relaxed to gain processing speed in the past [39]. However, our target

domains are critical enough to care about all matches, as opposed to 90% of the matches.

In addition, we can always gain speed using more resources in a distributed setting; sacri-

ficing exactness is no longer necessary for tractability.

The generic problem assumes one streaming time series. Ideally, for multiple indepen-
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dent streams, our proposed system can simply be replicated.
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Figure 4.2: An overview of the inputs, outputs, and how they are connected to our system.
Each source (stream) has its own dictionary of patterns.

4.2.2 Distributed Stream Processing Systems

We propose, DisPatch, a distributed method to solve the generic dictionary matching prob-

lem with delay guarantee.

Apache Kafka: In order to have a standard streaming protocol for our system, we

use Apache Kafka, which is a high-throughput distributed messaging system [1]. Kafka is

a publish-subscribe system which maintains a set of topics to which users subscribes to.

Data producers publish the messages to a topic, and a copy of the message is sent to all

data consumers who have subscribed to that topic. We create a topic per data stream, and

our method acts as the consumer of all topics. This makes it possible for different data

sources to publish their messages (data objects) to the Kafka server as producers, and our

method subscribes to all topics to receive and process data from different sources in the

same system. Our system linearly scales to multiple sources by just adding more hardware

resources for processing (See Figure 4.2).

The Kafka server combines multiple streams in one common stream in an arbitrary

order. Consider a stream of data objects (s, t, v) where s is the stream ID, t is the time,

and v is the value observed at that time. Assume we have two streams of data, one for the

temperature and one for the humidity of a station. The object (1,20,78) denotes the 78◦F

temperature at the station at time 20, and (2,22,0.8) denotes the 80% relative humidity at
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time 22. We may receive (2,22,0.8) before (1,20,78). We adopt this flexibility and do not

assume any specific order of data arrival.

Spark Streaming: Spark Streaming [3] is a system that supports running map-reduce

jobs on data streams. Spark Streaming is an extension of the core Spark API [2] that

enables scalable, high-throughput, fault-tolerant stream processing of live data streams.

Spark Streaming collects stream data into small batches and processes each batch in dis-

tributed manner. Batches can be as small as 1 second long to as large as multiple hours

long. Although we use Spark Streaming for implementing our method, any framework

which splits the data in to batches and can run map-reduce jobs on these batches can be

used to implement our methods.

4.3 General Framework

The dictionary matching problem has previously been solved on single-CPU without any

performance guarantee; this motivates us to consider two novel research goals:

• Scalability: The system should scale to a large number of combinations (if not all

combinations) of input parameters.

• Performance: The system should always (as opposed to on-average) produce out-

put within the given delay requirement.

We propose a distributed pattern matching system, called DisPatch, shown in Figure

4.2. The DisPatch framework inputs a multiplexed stream of data at an arbitrary rate and

a dictionary of patterns of arbitrary lengths, and outputs the occurrences of the patterns in

the stream. Each input data stream can have its own dictionary of patterns. The system

consists of three components:

• Windowing: DisPatch batches the streaming data using overlapping windows. Win-

dowing is a not a trivial task because of several free parameters including slide
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amount, overlap amount, and window size.

• Distribution: DisPatch distributes the workload across a set of workers. We use

map-reduce style distribution and implement an optimal distribution strategy.

• Computation: DisPatch uses single-CPU pattern matching algorithms with state-

of-the-art optimizations to prune off, abandon and/or reuse overlapping computa-

tion.

4.3.1 Windowing

The input to the DisPatch framework is a stream of time-value pairs: (t1, v1), (t2, v2),

(t3, v3), . . .. In order to break down the stream in small batches, we have to set two

parameters: the length of the window in seconds (ws) and the length of the overlap between

two consecutive windows in seconds (wo). We introduce a novel approach to specify these

two parameters such that our system can guarantee bounded delay and exactness with

optimum overhead. The two parameters are defined as below.

ws = wo +maxD (4.1)

wo = max(1, dLe) (4.2)

ws, wo, and maxD must be positive integers with a unit of second. dLe selects the nearest

larger second of L. In all of our application domains, a delay of one second is more than

sufficient, while smaller units of time can be easily attained for ultra fast data rate (e.g.

MHz) using more resources. State-of-the-art stream processing framework (e.g. Spark

Streaming) use the same windowing unit. Considering the way we define the windowing

parameters, one can easily derive the following relationship.

ws ≥ max(2, L) (4.3)

In other words, ws ≥ 2 and wo ≥ 1. Our system distributes and computes each window

independently and slides the window ws − wo = maxD second forward to create the next
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batch, and finish computation for current batch. The system guarantees bounded delay

assuming that we successfully scale the computation to finish within maxD seconds. If

DisPatch cannot finish the computation inws−wo, it alerts the user to provide more worker

nodes and/or relax the problem conditions. It halts otherwise.

The above windowing guarantees the exactness of the DisPatch framework. The over-

lapping segment ensures that we never miss a pattern on the border of two successive

windows because wo is longer than the longest pattern. Note that, for shorter wo, the sys-

tem may miss some of the occurrences of patterns having larger lengths (i.e. |pi| > wo)1.

wo
ws

window1(batch1)

window2(batch2)
window3(batch3)

partitions

Figure 4.3: The general framework of our system. Step 1: How we create batches out of
the streaming time series (red segments). Step 2: How We create partitions for each batch
(green segments). Two parameters ws (window size) and wo (window overlap size) are
also shown in the figure.

4.3.2 Distribution

After windowing the input stream, the data points that gather on the same window create

a batch. At this stage, we have a time series of size ws, and a set of patterns P to match

with. We need to slide each pattern in the set along the time series and check if it matches

with any subsequence by using the matching function M .

1We have defined all the length parameters (L, wo, and ws) in second unit. We refer to these
parameter in the rest of the document either in seconds or in points interchangeably which would be
clear from the context. To convert a parameter from the second unit to the point unit, we multiply
it by R. Obviously, the reverse is done by dividing the length by R.
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To exploit distributed computing platform, we distribute the matching process across

many workers. Since each pattern in the dictionary is matched independently of the others,

it is reasonable to assign each worker a subset of the patterns (or exactly one pattern) to

match. The time series in a batch can be distributed as well. In the naive extreme, we can

distribute each distance or similarity calculation between a pattern and a subsequence of

identical length to an independent worker. On the smart extreme, we can distribute the

batch to minimal number of workers to exploit the overlap between successive distance

calculation. To ensure bounded delay the system must finish computation in maxD sec-

onds, and a sweetspot may lie somewhere in-between. We create overlapping partitions

of the batched time series and have each worker compare a partition with a subset of the

patterns (See Figure 4.3). The size and the number of partitions are dynamically selected

based on the problem complexity and the number of workers. We slide the partition win-

dow one point at a time for the default distribution strategy (Section 4.4). In the optimized

distribution strategy (Section 4.5), we either slide it multiple points or create one partition

per batch (no sliding).

4.3.3 Computation

Each worker receives a partition of the the time series and a subset of patterns. The worker

has to find all the subsequences of the times series that are matched with any of the patterns

and report them. In case the size of the partition and the size of the pattern is equal, the

worker just has one subsequence to check. The naive approach is to sequentially match

each pattern along the time series. The naive approach has a total computational cost of

O(wsL) for linear distance functions (e.g. Euclidean distance) and O(wsL
2) for quadratic

distance functions (e.g. DTW). Based on the distance function chosen by the user, we

optimize the way the worker is searching the patterns to make it faster. Since this part is

the bottleneck of the whole pipeline from the execution time perspective, making it faster

will speed up the whole system. Note that a new batch is ready to process every ws − wo

seconds. This means that all the calculations on a single batch should be done in ws−wo
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seconds or the system will fall behind the stream and can not guarantee the maximum

delay anymore.

4.4 DisPatch in Map-Reduce

Once the windowing is done, we need to have a distributed matching algorithm to find all

the matched subsequences. We now provide a map-reduce based algorithm for DisPatch

framework which covers Distribution and Computation steps discussed in Sections 4.3.2

and 4.3.3.

4.4.1 Map-Reduce Framework

Map Operation

For each unique pattern length in the dictionary, we create a sliding window of the same

size, slide the window along the time series, and send a set of key-value pairs to the reducer.

This set of key-value pairs can later be consumed by the reducers to create the partitions

for a given batch of data points. For any data point like (ti, vi) in the input stream, we

generate multiple key-value pairs each of them playing the role of that data point in a

different partition.

Figure 4.4 shows an example of how our map-reduce framework works. There are three

patterns, two of them have 4 points, and one of them has 5 points. We have to create all

possible subsequences of lengths 4 and 5 in our data batch. A data point like (5,0) is a

part of [1:5], [2:6], . . . , [5:9] subsequences of length 5, and a part of [2:5], [3:6], . . . , [5:8]

subsequences of length 4. Therefore, we create 9 key-value pairs shown in Figure 4.4 for

this data point. Note that although we have two patterns of length 4 in the dictionary, we

create subsequences of length 4 once. This reduces the amount of memory needed by the

workers.
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Algorithm 5 Map function in DisPatch

Input: A data point (t, v)

Output: A set of key-value pairs

S=empty set

Q=set of unique patterns’ lengths

for i = 1, . . . , |Q| do

l = Q[i]

for j = t− l, . . . , t do

tuple = ((j : j + l), [(t, v)])

S.append(tuple)

return S

In Algorithm 5, we generate a set of tuples ((j : j + l), [(t, v)]) for each data point

(t, v). j is the first index of the partition, and j + l is the last index. (j : j + l) is used as

the key for the reduce function. All data points with identical (j : j + l) values are sent to

the same reducer where they are sorted based on their indices, and later (not in this step)

compared against the patterns of length l in the dictionary.

Reduce Operation

Once all the key-value pairs are generated in the mapping step, the reducer puts together

and sorts all the key-value pairs based on the time index. The output of the reducer is

all the subsequences sorted and ready to be matched with the patterns in the dictionary.

Algorithms 5 and 6 shows how we create and distribute the partitions through mappers

and reducers. These two operations together form the Distribution step.

We use the merge sort to merge and sort the time-value pairs that are given to the

reduce function as the input. Note that the running time of Algorithm 6 is O(n+m) since

both input lists are already sorted.
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Algorithm 6 Reduce function in DisPatch
Input: Two sorted lists of key-value pairs A and B

Output: A constructed partition

let A = ((j : j + l), [(t11, v
1
1), . . . , (t1n, v

1
n)])

let B = ((j : j + l), [(t21, v
2
1), . . . , (t2m, v

2
m)])

S = Do a merge sort on the set of time-value pairs in A and B based on time

return S

Flat Map Operation

This is the Computation step where each worker’s job is to compare a subset of the pat-

terns in the dictionary (which have identical lengths) with a subsequence of exactly the

same size by using the matching function M . The pattern and the subsequence at this step

are of identical length because of the way we create the partitions. The worker gets a sub-

sequence of length l and compares that against all the patterns of length l in the dictionary

by using the matching function.

Algorithm 7 Flat map function in DisPatch
Input: Subsequence X, Dictionary P

Output: Matched patterns with X if any

S = ∅

for i = 1, . . . , |P | do

if |X| == |P [i]| then

if M(d(X,P [i]), τd) == True then

S.append(i)

return S
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Input Batch …
…

Figure 4.4: A tiny example that shows how the DisPatch framework works in map-reduce
fashion. We use coloring to show the correspondence between the patterns and the parti-
tions we generate in the Distribution step. In this example, the DisPatch framework has
found a match with patterns 3 starting from time 5. Note that this is the default Distribu-
tion and Computation strategy where we slide the partition window one point at a time. In
the optimized version of our system, we may slide the partition window multiple points,
and exploit the overlap between successive distance calculations.

4.4.2 Analysis of the map-reduce framework

The map function of the DisPatch framework (Algorithm 5) produces (wsNl) tuples where

N is the number of patterns in the dictionary and l is the average length of the patterns in

the dictionary in points. This number can get really big for real world applications. Since

all the computations on a batch need to be done in ws− wo seconds, the baseline method

may fall behind the stream if the mappers and reducers have to do lots of jobs. However,

based on the matching function chosen by the user, we can optimize the Distribution and

Computation steps in such a way that the system does a lot less computation. We will

discuss the optimization techniques in Section 4.5.

4.4.3 Supported Distance Measures

Our system supports different distance/similarity measures to be used in the matching

function. The user has the freedom to choose the measure based on his needs. He can

also define his own distance function. Since every measure may require its own optimiza-

tion techniques, we discuss each of them separately. We first explain how each distance
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Table 4.1: List of supported distance (or similarity) measures and the corresponding
matching functions.

Dist./Sim. Measure Matching Function
Correlation Coefficient Cor(x,y) ≥ τs

Euclidean Distance Euclidean(x,y) ≤ τd
Manhattan Distance Manhattan(x,y) ≤ τd

DTW Distance DTW(x,y) ≤ τd

measure can be calculated and its time complexity, and then we discuss the techniques to

optimize it. Given two time series P and Q of length n, we define 4 distance/similarity

measures that are supported in our system. See Table 4.1 for a list of supported matching

functions.

There is no specific range for any of these measures (except correlation coefficient). Since

the distance between the subsequence and the pattern can be higher for longer patterns, the

user would have to give a separate matching threshold for each pattern in the dictionary. To

provide more flexibility and consistency for the user, we normalize all the distance mea-

sures in the range [-1,1]. In this case, the user can provide one threshold for the matching

function, and we use that to find the matches regardless of the length of the patterns. We

will discuss the normalization process for each distance measure separately.

We have implemented 4 most popular distance/similarity measures for our system.

We explain two of them in this section (Manhattan and DTW) along with techniques we

use to speed them up. We explain the other two distance/similarity measures (Euclidean

distance and correlation coefficient) in Section 4.5 where we show how to exploit the

overlap between successive distance calculations to increase the processing capacity of

the system.

Manhattan Distance

Manhattan distance can be calculated by using Equation 4.4. The time complexity to

calculate this distance is O(n) where n is the length of the input time series. We define the
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matching function as Manhattan(x, y) ≤ τd.

Manhattan(P,Q) =
n∑

i=1

|Pi −Qi| (4.4)

To optimize the pattern matching process under Manhattan distance, we use the early

abandoning technique in the Computation step. Since Manhattan distance is a sum of

some non-negative numbers, the early abandoning technique is applicable. We basically

abandon the distance calculation whenever we pass the distance threshold provided by the

user.

DTW Distance

DisPatch allows matching patterns under an elastic distance measure such as Dynamic

Time Warping (DTW). Dynamic time warping allows signals to warp against one another.

Constrained DTW allows warping within a window ofw samples and is defined as follows.

DTW (x, y) = D(m,m)

D(i, j) = (xi − yj)2 +min


D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

D(0, 0) = 0

∀i>0,j>0D(i, 0) = D(0, j) =∞

∀|i−j|>wD(i, j) =∞

(4.5)

We normalize the DTW distance by the length of the warping path. This scales the DTW

distance in the range [-1,1].

Norm DTW (P,Q) =
DTW (P,Q)2

2× PL(P,Q)
− 1 (4.6)

Here PL(P,Q) is the warping path length of the solution in the dynamic programming

table of DTW. Given a time seriesX and a query Y , where |X| = n, |Y | = m, and n ≥ m,
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calculating the DTW distance between Y and all subsequences of X of length m takes

O(nm2). This is an order of magnitude more computation compared to the non-elastic

measures, requiring more workers to guarantee the same maxD.

There are dozens of papers that describe speeding up techniques for DTW based simi-

larity search. Lower bounding technique [41], early abandoning technique [61], hardware

acceleration technique [66], summarization technique [80], anticipatory pruning [26], etc.

We use the method in [41], called LB Keogh, to speed up the process of finding the

matches. For completeness, we describe LB Keogh here. LB Keogh generates two en-

velopes (U and L) of a candidate and compares them with the query to produce the lower

bound. LB Keogh takes linear time for computation and insignificant off-line preprocess-

ing for the envelopes. The formula to compute U , L and LB Keogh where w is the con-

straint window is given below.

∀iUi = max(x(i− w : i+ w))

∀iLi = min(x(i− w : i+ w))

LB Keogh =
n∑

i=1


(yi − Ui)

2 if yi > Ui

(yi − Li)
2 if yi < Li

0 otherwise

(4.7)

To optimize the pattern matching under DTW distance, we use LB Keogh in the Com-

putation step. The worker receives an equi-length subset of the patterns and a subsequence.

For each pattern, the worker calculates the LB Keogh in linear time. If the calculated

LB Keogh is larger than the maximum DTW distance (τd) specified in the matching func-

tion, we do not calculate the real DTW distance, since the real DTW distance is definitely

larger than the maximum allowed. Otherwise, we compute the expensive DTW matrix.
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Euclidean distance

Euclidean distance can be calculated by using Equation 4.8. The time complexity of cal-

culating the Euclidean distance is O(n). In this case, we define the matching functions

as Euclidean(x, y) ≤ τd. We describe how to exploit the overlap between successive

Euclidean distance calculations and optimize the framework for this distance measure in

Section 4.5.

Euclidean(P,Q) =

√√√√ n∑
i=1

(Pi −Qi)2 (4.8)

Correlation Coefficient

Pearson’s correlation is a measure of the linear dependence between two time series P and

Q, giving a value between +1 and -1 inclusive, where 1 is total positive correlation, 0 is

no correlation, and -1 is total negative correlation. We explain how to speed up matching

under correlation coefficient in Section 4.5.

Cor(P,Q) =

∑n
i=1(Pi − P̄ )(Qi − Q̄)√∑n

i=1(Pi − P̄ )2
√∑n

i=1(Qi − Q̄)2
(4.9)

4.5 Exploiting The Overlap

In Section 4.4, we discuss our map-reduce based framework. In this section we explain

how we can re-design the Distribution and Computation steps by exploiting the overlap

between successive distance calculations to increase the processing capacity of the system

tremendously. We explain and implement the Distribution and Computation strategies
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for Euclidean distance and correlation coefficient. We also explain how this idea can be

adopted for Manhattan distance and DTW as well.

4.5.1 Euclidean Distance

Given a time series X and a query Y , where |X| = n, |Y | = m, and n ≥ m, calculating

the Euclidean distance between Y and all X’s subsequences of length m takes O(nm). We

explain how this process can be done faster in this section.

Pattern matching under a non-elastic linear distance measure (e.g. correlation, Eu-

clidean distance, Manhattan distance) requires calculating the dot products between the

pattern and all subsequences of a given time series. DisPatch uses our recent proposed

algorithm, MASS (Mueen’s Algorithm for Similarity Search) [84] that finds all distances

between the query pattern and subsequences of the time series inO(n log n) operation. Al-

gorithm 8 and Figure 4.5 describe the convolution based process of calculating all sliding

dot products. Sliding dot products are sufficient to calculate the Euclidean distances with

or without z-normalization. Using MASS, we can calculate the Euclidean distance be-

tween Y and all X’s subsequences of length m in O(nlog(n)). We refer readers to MASS

website for the complete algorithm [57].

Algorithm 8 SlidingDotProducts

Input: A time series X, a pattern Y, |X| > |Y |

Output: All sliding dot products between Y and subsequences of X

n← length(X), m← length(Y )

Xa ← Append X with n zeros

Yr ← Reverse Y

Yra ← Append Yr with 2n−m zeros

Yraf ← FFT(Yra), Xrf ← FFT(Xr)

XY ← InverseFFT(Yraf ∗Xrf )

return XY
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Output

InputX1 0 Y2

Stream Partition Pattern

0 0 0 0 0 0 0 0 0X2 X3 X4 Y1

0 0 0 0 0 0 0 0 0 0Y2X1 Y2X2+Y1X1 Y1X4Y2X2+Y1X1 Y2X4+Y1X3

Figure 4.5: A toy example of convolution operation being used to calculate sliding dot
products for time series data. Note the reverse and append operation on X and Y in the
input. Fifteen dot products are calculated for every slide. The cells m (= 2) to n (= 4) from
left (green/bold arrows) contain valid products.

The way we specify ws guarantees that ws ≥ L. This means that even the longest

pattern in the dictionary fits in one batch. The main purpose of the Distribution step is

to distribute matching tasks to the workers to gain speed up. The default distribution

strategy creates all overlapping partitions for each pattern length in the dictionary so that

the partition and the patterns have identical lengths. Considering the improved distance

calculation method we discussed in this section (MASS), we create longer partitions (if

possible), and the workers in the Computation step check a subset of the pattern dictionary

against all subsequences in the partition. The partition size can be equal to ws in some

cases meaning that we create just one partition for a given batch. If N ≥ #workers, we

create one partition per batch and distribute the patterns between the workers. This gives

us the maximum speed. If N ≤ #workers, it means that we do not have enough patterns

to keep all the workers busy. Therefore, it is better to create more than one overlapping

partitions in each batch to utilize all the workers. Ideally, we want to create #workers
N

overlapping partitions. In order to not miss any pattern on the border of two partitions,

we make sure that the length of the overlap is no less than L. We basically use the same

idea as Section 4.3.1 to overlap the partitions. We set the overlap size to L. Therefore, the

length of each partition would be L+ (ws−L).N
#workers

. In this case, we send a subsequence of the
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batch and a pattern to a worker. This utilizes all the workers maximally and produces the

results as fast as possible.

Note that the new approach is much faster than the default Distribution and Computation

strategies, and it also requires less memory since it produces less key-value pairs in the

Map operation. The reason is that it always generates less number of partitions for a given

data batch and dictionary compared to the default strategy.

4.5.2 Correlation Coefficient

Pearson’s correlation coefficient and normalized Euclidean distance are related as below

[56].

corr(P,Q) = 1− d2(P̂ , Q̂)

2m
(4.10)

Here P̂ is the z-normalized form of P and m is the length of the two time series. The

time complexity to calculate the Pearson’s correlation is O(n). We define the matching

function as corr(x, y) ≥ τs. We can use the same optimization technique that we use for

Euclidean distance with a little tweak since these two measures are directly related by the

above equation.

4.5.3 Manhattan Distance

Manhattan distance is always larger than Euclidean distance because of the triangle in-

equality. We use this fact to calculate lower bound distance using the convolution based

technique described above. Subsequences for which the lower bounds are larger than the

given threshold (τd) do not require further validation by exact distance computation.

The goodness of this method depends on two factors: tightness of the lower bounds

that largely depends on data and the allowable overhead that corresponds to the computing

platform the system is running on.
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4.5.4 DTW Distance

Exploiting overlaps while matching a pattern against a long time series has been discussed

in the literature [64]. The method costs O(nm) time and space to match a pattern of

length m with a long time series of length n. However, the algorithm in [64] does not z-

normalize the subsequences before calculating the distances, which limits the applicability

of the method in most of our application domains.

A naive exact method to match patterns with z-normalization under DTW distance

requires O(nm2) time and O(n) space. The methods in [61] reduces the computation

time with pruning and early abandoning techniques while z-normalizing each subsequence

independently. To prioritize z-normalized matching, we resort to pruning and abandoning

DTW calculations in the workers (default Distribution strategy).

4.6 Empirical Evaluation

We use Apache Spark on a cluster with 16 workers for our experiments. Each worker has

a single core CPU with 4 GB of memory. They all run Ubuntu 14.04. In the Apache Kafka

server, we create a topic with 16 threads2 so that each worker can read the data from one

thread. There are 3 parameters for each experiment: data rate, dictionary size, and the

delay.

In order to be able to compare the performance of our system across different experi-

ments, we normalize the processing time of DisPatch. In each experiment, DisPatch has

maxD seconds to process ws seconds worth of input data. For example, if maxD = 6 and

ws = 10, we have 6 seconds to process 10 seconds worth of data. If DisPatch finishes

the job in less than 6 seconds, it can move to the next batch on time. Otherwise, it cannot

guarantee the 6 seconds maximum delay and will get behind the stream. In this case, if it

2The created topic has 16 partitions in Kafka server. We use the word thread instead of partition
so that the reader does not confuse Kafka partition with the partition we explain in our method.
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takes 4.8 seconds to finish the job for each batch, the normalized processing time that we

report is 4.8/6 = 0.8. Since this number is less than 1, DisPatch can finish processing the

batch before the next batch is ready.

In each experiment, we report the normalized processing time after running the experi-

ment for 30 minutes. This ensures that the reported number is representative and valid. As

long as the normalized processing time is not greater than 1, the system can process the

input stream in real time, otherwise it will get behind the input stream. The red dashed

line corresponding to normalized processing time of 1 can be found in all figures.

Although DisPatch is an exact system and it finds all the subsequences which satisfy the

matching function, we use [61] to find the ground truth to make sure that the system is

100% accurate. The maxD parameter can be any integer between 1 and dLeseconds.

We set maxD = 1 second in all experiments unless otherwise stated. We share the code

and the data of all experiments on the project page [14]. We use the default Distribution

strategy (Section 4.4) for DTW and Manhattan distances, and the optimized Distribution

strategy (Section 4.5) for Euclidean distance and correlation coefficient.

4.6.1 Datasets

We use three datasets to run extensive experiments on our system using different distance

measures and parameters. For all datasets, we either have the pattern dictionary or generate

the dictionary by getting help from the experts in that field. Although each dataset has an

original sampling frequency, we artificially replay the data to DisPatch at different rates

to test the whole system with different parameters. The pattern matching process and

the index of matched subsequences are independent of the sampling frequency. Higher

frequencies just put more pressure on the system since it has to process more data points

in one second.

Power Consumption Data This is the power consumption data collected from a dish-
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washer in a smart house. The data was originally recorded at 0.15 Hz from 09 Oct 2013

to 10 Jul 2015. There are 100 patterns in the dictionary ranging from 21 to 717 points in

length. The total length of all patterns is 8986 points.

EURO/USD Exchange Rate This dataset includes a month worth of EURO to USD

exchange rate in September 2016. The data is recorded at 10 Hz. The pattern dictionary

consists of 167 patterns ranging from 62 to 302 points in length having a total length of

35,070 points.

EEG Data This dataset consists of EEG3 recordings from a pediatric subject (patient

number 24 in [69]) with intractable seizures. Subject was monitored for several days

following withdrawal of anti-seizure medication in order to characterize his seizures and

assess his candidacy for surgical intervention. All signals were sampled at 256 samples

per second with 16-bit resolution. There are 16 seizure patterns in the dictionary ranging

from 4,353 to 18,177 points in length having a total length of 134,928 points all together.

This dataset is available at [5].
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Figure 4.6: The results from the power consumption data. We use 16 workers and set
maxD = 1 in all these experiments. As long as the points are below the red dashed line,
the DisPatch framework can handle the stream in real time. It would get behind the stream
for all the points above the dashed line.

3Electroencephalography (EEG) is an electrophysiological monitoring method to record elec-
trical activity of the brain.
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Figure 4.7: The results from the EURO/USD exchange rate data. We use 16 workers and
set maxD = 1 in all these experiments. As long as the points are below the red dashed
line, the DisPatch can handle the stream in real time. It would get behind the stream for
all the points above the dashed line.

4.6.2 Data Rate and Dictionary Size

We test our system on different datasets which have various dictionary properties and do-

main parameters. Table 4.2 shows the effect of each parameter on the complexity of the

dictionary matching problem. Figures 4.6 and 4.7 show the results. For each dataset, we

replay the data at various rates and use different numbers of patterns in the dictionary. As

long as the plots are under the dashed red line, the DisPatch framework can process the

stream. We have the same plot for correlation coefficient and Euclidean distance since the

underlying matching function for both of them is identical. These two measures can be

directly translated to each other. Since DTW is the most expensive distance measure, the

processing capacity of our system on DTW is less compared to other distance measures.

The Manhattan distance in many cases has the same normalized processing time as DTW

since we use the same Distribution strategy for both of them, and also the LB Keogh lower

bound for DTW distance is linear in time complexity. However, the DisPatch framework

performs much faster on correlation coefficient (and Euclidean distance) because we ex-

ploit overlap between successive distance calculations and optimize both Distribution and

Computation steps. For example, DisPatch can process 10 patterns on EURO/USD ex-

change rate data at 500 Hz under DTW distance while it can handle the same number of

patterns at 5000 Hz under Euclidean distance.
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Figure 4.8: A set of experiments on power consumption data. (left) Scalability of DisPatch
by adding more workers to the system. The minimum number of workers to not get behind
the input stream is 4 in this example. (middle) The effect of the delay parameter on the
processing time. Higher delays let DisPatch work under less pressure. Both number of
workers and delay (maxD) have the same effect for all distance measures. (right) The
comparison between the performance of DisPatch and the early abandoning technique to
find matches under Pearson’s correlation. DisPatch can process 20 patterns at 4000 Hz
while the early abandoning technique can do the same number of patterns at 1000 Hz.

Table 4.2: How each parameter is related to the complexity of the dictionary matching
problem.

Parameter Change Effect on Complexity
R ↑ ↑
L ↑ ↑

maxD ↑ ↓∑
length of patterns ↑ ↑

4.6.3 Speed up by Exploiting the Overlap

To have a fair comparison, we compare the performance of DisPatch on correlation coef-

ficient with the early abandoning technique on the same similarity measure. For the early

abandoning technique, we use the default Distribution and Computation strategies. Re-

sults are shown in Figure 4.9 and Figure 4.8 (right). The way we exploit overlaps (Section

4.5) and optimize the system makes it much faster. In case of power consumption data,

DisPatch can process 20 patterns at 4000 Hz while the early abandoning technique can just

handle the same number of patterns at 1000 Hz. For EEG data, DisPatch could process

data up to 14 times faster than the early abandoning technique.
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Figure 4.9: The comparison between performance of DisPatch and early abandoning tech-
nique on EEG data at 256 Hz. DisPatch is able to process data up to 14 times faster than
the early abandoning technique. DisPatch can process 30 patterns with 1 second delay in
real time. The total length of these 30 pattern is 522K points (34 minutes).

4.6.4 Scalability

In order to test the scalability of our system, we start from a cluster with 1 worker and

double the number of workers in every step. The results are shown in Figure 4.8 (left).

The processing time decreases between 40% and 46% in each step which is very close to

linear speedup. Adding more workers always adds some overhead to the system. Note that

the maximum speedup happens when the number of Spark workers are equal to number

of threads created for the topic in the Apache Kafka server. In that case, each worker

reads the data from one thread which would lead to maximum parallelism. We do not

recommend having more workers than Kafka threads since the workers would be locked

waiting for the data occasionally.

4.6.5 Delay Sensitivity

In this experiment we investigate the effect of maxD parameter on the performance of

DisPatch. As shown in Figure 4.8 (middle), as the user lets the system find the patterns

after higher delays, the processing time per second goes down. The reason is that DisPatch

has to process ws seconds worth of data each maxD seconds. Therefore, the load of the

system is ws

maxD
= 1 + wo

maxD
. As we increase maxD, the load decreases and the system
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can perform more efficiently.

Theoretically, the user can increase the delay with no limit and expect the system to work

more and more efficiently, but there are some limitations in practice. Firstly, if the user

picks a very large delay value, the system has to buffer more data for each window and

it may run out of memory. Secondly, since we use Apache Spark to implement Dis-

Patch, both ws and wo should be a multiple of the atomic batch unit4. To minimize the

load of the system, we set the size of this atomic batch unit to maxD which also means

that the wo should be a multiple of maxD. Considering that the load is 1 + wo
maxD

and

wo = max(1, dLe), we conclude that load of the system goes down as we increase maxD

and this trend stops once maxD reaches dLe. To sum up, maxD can be any integer be-

tween 1 and dLe. After that, there is no point having higher delays since we can not take

advantage of that due to practical limitations.

When using high data rate, we have to set maxD = 1 second because L gets smaller than

1 second, and as we mentioned before maxD should not be greater than dLe. The reason

that we do the delay experiment at 100 Hz is to be able to increase maxD and see the

performance of DisPatch. We would not be able to do that at high frequencies.

Since the scalability of DisPatch and the effect of delay on the performance are indepen-

dent of the distance measure and other parameters, we report the scalability and delay

results just for power consumption dataset. They would look similar for other datasets.

4.7 Applications

Matching a dictionary of patterns with a streaming time series enables novel monitoring,

with use cases in critical application domains including patient monitoring and power

usage monitoring. We show two unique use cases in this section.

4The word batch has a different meaning in Apache Spark compared to how we use it to explain
our method.
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4.7.1 Patient Monitoring

Numerous measurement devices exist that are used in various combinations to monitor

patients in hospitals. For example, EEG devices measure brain activity, Oximeters mea-

sure the level of Oxygen in blood and so on. Such devices can stream uniformly sampled

measurements, which can be analyzed to produce personalized dictionary of patterns and

subsequently be matched to identify recurrence of events. To elaborate, consider the EEG

recording of an epileptic patient in Figure 4.10 for 21 hours at 256 Hz. The patient had

several seizure during data collection. We replay the data at 256 Hz to demonstrate a

personalized monitoring scenario.

Dictionary 
Generation Matching

…

… …

Pattern 
Dictionary

Pattern 1 Pattern 2

Figure 4.10: EEG recording of an epileptic patient for 21 hours at 256 Hz. We create an
enhanced dictionary in an unsupervised fashion in the first 3.5 hours, and predict 10 out of
11 seizures well ahead of time in the remaining 18 hours. Red arrows show the index of
the matched patterns.

We use an online unsupervised motif discovery tool [54] to create a dictionary of five

repeating patterns by observing the first 200 minutes of the data (dictionary generation

step). All of the five patterns correspond to seizures and show a clear signature shape. We

enhance the dictionary by taking several prefixes so that we can detect the seizure as early

as possible. Next we channel the stream through DisPatch with the enhanced dictionary

and a minimum correlation coefficient of 0.6 as the matching function. The patient had

eleven more seizures, and our algorithm could detect almost all of them (10 out of 11)
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with up to twenty seconds of lead time. Thus, DisPatch along with the motif mining can

potentially enable highly specialized monitoring with no previously labeled data.
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Figure 4.11: Whole house power consumption data [49] in the top. We build a set of rules
using [70]. The antecedents of the rules form a dictionary, in this case a washer dictionary.
DisPatch matches the dictionary to the subsequent data to predict dryer usages.

4.7.2 Power Consumption Monitoring

Monitoring and predicting power consumption is an important objective for both power

companies and consumers. We demonstrate that DisPatch is useful in power consumption

monitoring. Controllers of most home appliances and power tools run very simple forms

of deterministic state machines which create signature patterns. In addition, home owners

often develop a usage pattern with identical daily/weekly frequency, duration and sequence

of appliance/tool usages. For example, a common usage pattern is that the dryer starts

very shortly after the washer stops. Unsupervised rule discovery algorithms [70] can find

such patterns in consumption history and create a set of rules followed by a dictionary of

antecedent patterns. Note, in Figure 4.11, the gap between the washer and dryer, and the

number of times an appliance is used are variable. We replay a stream of whole house

power consumption data from a smart home and successfully predict dryer usage based on
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washer usage with 65% precision.

4.8 Related Work

Time series similarity search [37] is the flipped version of pattern matching over streams.

Numerous algorithmic optimization techniques have been discussed in the literature as

part of time series similarity search that exploit indexing techniques for independent time

series objects [67][27][42][40][78]. Indexing techniques are efficient for offline and ran-

dom accesses, while completely unsuitable for streaming data. Other approaches include

single-scan technique to support arbitrary query length [61] and similarity search for un-

certain time series [65] among many others.

Matching a dictionary of patterns on a stream of data is studied in several contexts:

streaming classification [68], statistical monitoring [88], dictionary matching [48] and

monitoring under warping [64]. DisPatch is the first (to the best of our knowledge) to

solve the problem on distributed systems with horizontal scalability. Existing dictionary

matching algorithms [48] do not consider variable length patterns, DisPatch can match an

arbitrary number of patterns of arbitrary lengths. The authors of [88] use a similar window-

ing technique to ours to compute aggregated functions for the data streams. Unlike their

method, we adopt overlapping windows to guarantee exactness. Linear scan techniques to

match a query pattern exploit pruning and early abandoning techniques [61]. However,

DisPatch exploits overlaps between successive subsequences of a streaming time series.

Although we use Spark Streaming to implement DisPatch, other similar systems [32] can

also be used.
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4.9 Conclusion

We describe a distributed pattern matching system for streaming time series data. Our

system, DisPatch, is exact and, it scales to guarantee bounded delay. DisPatch has unique

windowing and distribution strategy to employ state-of-the-art optimization techniques.

DisPatch uses a convolution based approach to utilize overlapping subsequences. We show

two compelling application scenarios where DisPatch can potentially make significant dif-

ference. Our grand future goal is to augment DisPatch with online unsupervised mining

algorithms to develop a comprehensive distributed stream mining system. Handling a data

stream with variable data rate can also be done in the future.
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Chapter 5

Conclusion and Future Work

In this thesis, we described how to design and customize distributed data mining and

knowledge discovery algorithms by taking in to consideration the properties of the data.

We showed that traditional data mining algorithms are not sufficient for the new huge

datasets. We discussed challenges in designing distributed algorithms and how to tackle

them by designing data specific algorithms. The research presented in this thesis can be

continued in many directions. We showed 3 problems in different domains. Since each

domain that we discussed has its own properties and challenges, we discuss the future

work separately.

1. Pattern recognition for computer log messages: Pattern recognition is a crucial

component of log analysis tools. We presented an efficient and linearly scalable

system to extract patterns from log messages. One future direction in this field is

to find a clustering algorithm for log messages which is efficient and at the same

time robust to noise. Although we showed that the order of logs does not play an

important role in the quality of the clusters, there are corner cases in which we could

end up getting low quality clusters for log messages. Another future direction to

make our LogMine system better is to design an algorithm to dynamically adjust the

rate of relaxing the condition as we build the hierarchy of patterns.
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2. Anomaly detection in social media: The number of bots is constantly increasing in

social media sites like Twitter. We presented a distributed algorithm that could detect

URL handover in Twitter. Our work can be used to detect and suspend harmful bots

and make social media sites safer. A future direction for this work is to train a model

based on the URL handovers that have happened so far, and predict which account

and when is going to hand over a URL to another account. If predicted accurately,

we can claim the URL and stop the handover cycle. This will make the operational

cost higher for bot owners and reduce their harm.

3. Distributed Pattern Matching over Streaming Time Series: Matching a dictio-

nary of patterns against a streaming time series is a challenging task. We presented

an exact and distributed algorithm that can find all the matches and guarantee a

bounded delay. Our algorithm assumes a constant data rate of the input. A useful

direction for future work is to make our system work for variable rate streams. [58]

presents a method to calculate the DTW distance between two sparse time series

faster than O(n2). Another future work direction is to incorporate this method in to

DisPatch. One may also extend our work by letting the user pick a maximum delay

value longer than the longest pattern in the dictionary.
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