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Abstract

Human beings are driven to explore distant new worlds as we seek to better under-

stand our place in the Universe. Because of the inherent dangers of human space-

flight, we often send robots as surrogate explorers, controlled from millions of miles

away by teams of capable rover drivers here on Earth. As technology continues to

advance, scientists and engineers aspire to build low-cost, durable, fully autonomous

rovers to succeed today’s tele-operated extraplanetary explorers.

Here we aim to advance this goal by designing and programming robots that

can successfully navigate unknown and variable environments. We present a swarm

robotics system that mimics the foraging behaviors of seed-harvester ants, employing

evolutionary computation and machine learning to mitigate the adverse effects of

unreliable information, variable environments, congestion bottlenecks, and sparse

resources. We describe a central-place foraging algorithm (CPFA) whose parameters

are evolved by a genetic algorithm (GA) to maximize foraging performance under

different experimental conditions.
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We find that foraging for resources in heterogeneous clusters requires more com-

plex communication, memory, and environmental sensing than strategies evolved in

previous work. Additionally, we observe sub-linear scaling in resources collected per

robot as swarm size increases, which we attribute to the “bottleneck” constraint im-

posed by central-place foraging. Finally, we augment our foraging robot swarm with

machine learning and statistical models, demonstrating that combining our exist-

ing biologically-inspired CPFA with a cluster exploitation algorithm produces more

efficient total resource collection compared to each algorithm acting alone.

While our system is designed to be a demonstration platform for swarm

robotics research, this work provides a foundation for designing and implementing

autonomous robot swarms that can function outside of the academic research

laboratory. The ability of robot swarms to tolerate sensor noise, adapt to vari-

able environments, distribute work across large teams, and identify and exploit

heterogeneously-distributed resources are all critical factors for successful remote

exploration missions on distant worlds.
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Chapter 1

Introduction to

Biologically-Inspired Foraging

Robot Swarms

An innate sense of curiosity drives humans to seek out the unknown, pushing back

the boundaries of our understanding as we risk our lives to cross vast expanses of

land, sea, air, and most recently, space. The inherent human desire for exploration

is perhaps best illustrated in a quote from Michael Collins, American astronaut and

Command Module Pilot for Apollo 11: “It’s human nature to stretch, to go, to see,

to understand. Exploration is not a choice, really; it’s an imperative.”

Human space exploration may be an imperative. But, as Michael Collins and his

spacefaring colleagues fundamentally understood, it is also extremely challenging,

highly dangerous, and increasingly expensive. To mitigate these difficulties, govern-

ment space agencies have designed and built robotic rovers that act as surrogate

explorers on the Moon and Mars, receiving instructions from human controllers on

Earth to conduct a variety of scientific experiments by analyzing air and soil samples

1



Chapter 1. Introduction to Biologically-Inspired Foraging Robot Swarms

with an array of instruments, including high-resolution cameras. Results of these

measurements are transmitted back to Earth for further study. These robots are

superb achievements of science and engineering, wholly eliminating the risk to hu-

man life while significantly expanding our capacity for extraplanetary observation.

However, these technological advancements and risk mitigations have done little to

curtail expenses: the total cost of the recent NASA Mars Science Laboratory mission,

which includes the Mars rover Curiosity, is approximately US$2.5 billion [6].

In addition to the substantial expense required to build, launch, land, and control

an extraplanetary rover, a lack of full autonomy in these remote exploration systems

means that a large team of scientists and engineers is required to direct a single

robot’s actions from Earth, approximately 140 million miles away [127]. Because

of the long communication time delays, as well as the relatively small Earth-Mars

communication window [138], the Mars Exploration Rover Opportunity required ap-

proximately 11 years to travel 26 miles (the length of a marathon) at an average

speed of 0.43 m/h. Furthermore, all of the previous robotic exploration missions

have used a monolithic robot design, meaning that all exploration functionality is

contained within a single rover. Although each rover is built with a limited amount

of computational and telecommunication redundancy, the majority of the onboard

components act as single points of failure: if a rover’s mobility system or power gen-

erator were to fail catastrophically, for example, there would be no “backup” robot

to take its place.

Here we consider foraging robot swarms as an alternative to the typical monolithic

rover design utilized for past extraplanetary exploration missions [27]. Robot swarms

emulate the collective behaviors of social animals such as ants, exhibiting robustness

to sensor noise, flexibility through a wide variety of tasks, and scalability for different

swarm sizes [17]. Such swarms, typically comprised of large numbers of relatively

cheap robots built from low-cost components with short-range sensors, avoid single
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points of failure and reduce overhead expenses. Most importantly, robots in the

swarm can function autonomously and without a centralized controller, although

each robot may also share information with its neighbors through local, peer-to-peer

communication [17].

In spite of the advantages of robot swarms over the traditional monolithic rover,

there are nonetheless several notable caveats that should be taken into consideration.

First, as a result of the economical construction costs, individual robots in these

swarms experience increased sensor error and a higher likelihood of hardware failure

compared to state-of-the-art monolithic robot systems. To make matters worse,

the environments envisioned in the literature for swarm robotics applications (e.g.

disaster zones [97] and ocean currents [64], as well as extraplanetary surfaces [121])

are generally variable, unknown, and stochastic in nature. To address this problem,

we pose the following question: How should researchers design, build, and program

robot swarms to perform large-scale real-world tasks efficiently and robustly?

In this work, we propose one possible solution to this problem: a central-place

foraging algorithm (CPFA) inspired by the seed collection behavior of harvester ants.

Our CPFA governs the behaviors of individual robots as members of a swarm. We

use a genetic algorithm (GA) to optimize the foraging performance of simulated

robots by evolving behavior transitions in a tailor-made agent-based model, then we

transfer the optimized transition parameters to physical robots. The chapters of this

manuscript contribute to solving this problem in five aspects:

Robustness. We mitigate hardware fragility by building a swarm of identical, re-

dundant, and interchangeable physical iAnt robots.

Error-tolerance. We reduce the effects of sensor noise by adapting robot foraging

strategies to the real-world error experienced by the physical robots.

Flexibility. We produce generality by evolving and evaluating our robot swarms in
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complex and variable environments with heterogeneously distributed resources.

Scalability. We observe an increase in the foraging performance of the swarm, but a

decrease in the performance of each individual robot, as the size of the swarm grows.

Thoroughness. We augment our swarm foraging system with a cluster prediction

and exploitation algorithm that produces efficient, complete resource collection.

Our approach has several advantages over other state-of-the-art swarm robotics

systems. We restrict ourselves to using only low-cost hardware components, provid-

ing a low barrier to entry for other researchers, developers, and users. We compen-

sate for imperfect sensing and hardware fragility by using an adaptive, stochastic,

biologically-inspired algorithm to control high-level robot behaviors. These simple,

parsimonious, modular behaviors provide the GA with a manageable fitness land-

scape, which ensures evolutionary convergence within a reasonably short time. In this

way, we design our robot swarm to take on the entire, integrated task of central-place

foraging in a concurrent fashion without requiring a modularized, component-level

analysis. The algorithm’s flexibility permits our simulated robots to adapt their be-

haviors in an effort to mitigate sensor error and maximize foraging performance in

unknown environments. Our agent-based simulation models the physical environ-

ment and hardware constraints of our iAnt robot platform. This parallel physical

and simulated approach facilitates the seamless transfer of evolved parameters from

simulation into real robots, as well as the ability to tune the simulation to improve

its representation of the robots over time. As a result of this iterative process, our

simulated robot agents and physical iAnt robots are less sensitive to the ubiquitous

reality gap that exists in the correspondence between simulated and physical robots.
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1.1 Related Work in Evolving Swarm Behaviors

Our GA evolves parameters to control the high-level behaviors we have observed and

modeled in ants. These parameters control the sensitivity threshold for triggering

behaviors, the likelihood of transitioning from one behavior to another, and the

length of time each behavior should last. Several previous projects have taken an

approach similar to our own, using learning and optimization techniques to tune

a fixed repertoire of higher-level swarm foraging behaviors, rather than lower-level

motor controllers or basic directional responses. Matarić [84, 85] used reinforcement

learning to train robots to switch between behaviors through positive and negative

reinforcement related to foraging success. Similar to Matarić [84], Balch [7] trained

robot teams to perform multiple foraging tasks simultaneously using Q-learning.

Labella et al [74] implemented adaptive swarm foraging, observing emergent division

of labor using only local information and asynchronous communication. Liu and

Winfield [79] used a genetic algorithm to tune a macroscopic probabilistic model

of adaptive collective foraging, optimizing division of labor and minimizing energy

use. Francesca et al [38] used a parameter optimization algorithm to automatically

construct probabilistic behavioral controllers for swarm aggregation and foraging

tasks. These previous studies have tested swarms on simple foraging tasks that

required no communication. Instead, we focus on more difficult foraging tasks in

which communication among robots increases collective foraging efficiency. Efficient

foraging in environments with more complex resource distributions necessitates more

complex foraging strategies. In our study, robots alter the environment by collecting

food and by laying pheromones, and those alterations affect future robot behavior.

Therefore, these foraging strategies cannot be practically represented by the finite

state machines often used in prior work [79, 38].
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1.2 Simulation Design and History

We use a two-dimensional agent-based model to simulate our foraging robot swarms.

Each agent in the simulation represents an idealized, non-physics-based robot that

explores a discrete, gridded environment by moving from cell to cell. We do not

explicitly model actuators or sensors; instead, movement and resource sensing are

locally restricted to the eight-cell Moore neighborhood surrounding each robot to

mimic the capabilities of the real iAnts. Each robot plans a path between its current

position (x, y) and its target (x̂, ŷ) (e.g. from the nest to a pheromone waypoint) by

selecting the Moore neighborhood cell that minimizes the distance between (x, y) and

(x̂, ŷ). All operations are performed synchronously via a global simulation clock, a

simple solution that is feasible because we do not model robot collisions. This parsi-

monious simulation facilitates the rapid testing of many different foraging strategies,

which is required to evolve appropriate solutions for varied and complex environ-

ments.

In Chapter 2, we used an established ant-foraging model written in C++ [77, 109]

as a proof-of-concept simulation of our ant-inspired robot swarms. In Chapter 3, this

predecessor simulator was entirely rewritten in Objective-C, the same programming

language used in the iPods onboard our iAnts. To improve the correspondence

between simulated and physical robots, we implemented a rotation delay (one second

per one-quarter of a radian), and adjusted the size of the grid (125×125 cells) and the

runtime of the simulation (7200 ticks) to match real iAnt velocity (16 cm/s) and the

resource detection window (8× 8 cm) during a 1 hour experiment in a 100m2 arena.

This tuning ensured that the simulated robots would explore their environment at

approximately the same speed as the real robots. We also measured positional error

and resource detection error in our real robots, then incorporated models of these

errors into our simulation. Positional error is modeled as a symmetric Gaussian, and

is applied when a simulated robot finds a resource, as well as when a robot leaves
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the nest using site fidelity or following a pheromone waypoint. Detection error is

modeled as a fixed probability, and is applied every time a simulated robot attempts

to detect a resource. Chapter 4 used a functionally similar version of the simulation

from Chapter 3, though many supplementary features and code refactorizations were

added. In particular, we incorporated additional tuning of the error models and

movement behavior based on comprehensive observations of the physical robots.

Finally, in Chapter 5, we added new methods to apply the expectation-maximization

algorithm onto sets of resource locations, then select the optimal number of clusters

for a given set based on Bayesian information criterion. The functionality of the

simulation in this chapter was otherwise identical to the previous chapters.

In general, this repeated, back-and-forth tuning process between the simulated

and real robots was especially valuable in producing a simulation that better repre-

sented the actions of our iAnt swarms. Because our simulated and real swarms follow

stochastic actions while they forage, it is difficult to conclude precisely how accurate

our simulation is at a given moment (i.e. at a specific code revision). Neverthe-

less, this work demonstrates several points of correspondence between the simulated

and real robots, particularly when foraging strategies are evolved in simulation and

evaluated in iAnt swarms, which support the efficacy of our iterative procedure for

generating efficient swarm foraging behavior.

1.3 Contributions and Organization

Our main contributions are divided into four chapters and summarized below. All

chapters are published (or in press) in peer-reviewed conference proceedings or jour-

nals.

Chapter 2. This chapter presents the predecessor to our ant-inspired foraging al-
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(a) (b) (c)

Figure 1.1: Three major revisions of our iAnt robot platform. (a) Version 1 had
a Surveyor SRV-1 chassis, Arduino Uno microcontroller, Ardumoto motor shield,
and WiFly communication shield. Sensors included a magnetometer, ultrasonic
rangefinder, GPS antenna, and RFID reader/writer. (b) Version 2 added an iPod
Touch to provide iAnts with a forward-facing camera to detect a central nest beacon
and downward-facing camera to detect QR tags. (c) Version 3 replaced the SRV-1
with a custom-designed laser-cut chassis, lower gear motors to increase torque, and
larger capacity batteries to minimize robot down time.

gorithm and simulated multi-agent swarm simulator1, as well as an alpha version

of our physical iAnt robot platform (Figure 1.1(a)). This section of the manuscript

chiefly presents a proof of concept for our swarm robotics system, meaning that the

results are improved upon and further analyzed in later chapters. We test the ability

of individual robots and teams of three robots to collect tags distributed in random

and clustered distributions in simulated and real environments. This work demon-

strates the feasibility of programming our robot teams for collective tasks such as

retrieval of dispersed resources, mapping, and environmental monitoring. This chap-

ter is published in Lecture Notes in Computer Science as a conference proceedings

of the 8th International Conference on Swarm Intelligence (ANTS 2012), Copyright

c©2012, Springer-Verlag Berlin Heidelberg [55].

Chapter 3. This chapter presents a codified version of the central-place foraging

1A proof-of-concept simulation based on Letendre and Moses’ agent-based ant foraging model [77]
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algorithm (CPFA2) that is easier to interpret, as well as the beta version of our iAnt

robot platform (Figure 1.1(b)), and an updated multi-agent simulation3 that more

accurately reflects physical reality. We use a genetic algorithm (GA) to optimize

behavior in a team of simulated robots, then transfer the evolved behaviors into

physical iAnt robots. We introduce positional and resource detection error models

into our simulation to characterize the empirically-measured sensor error in our phys-

ical robots. This work extends state-of-the-art biologically-inspired robotics, evolving

high-level behaviors that are robust to sensor error and meaningful for phenotypic

analysis. This chapter is published in Advances in Artificial Life as a conference

proceedings of the 12th European Conference on the Synthesis and Simulation of

Living Systems (ECAL 2013) [59].

Chapter 4. This chapter presents the final, definitive version of the CPFA4 and

the simulated5 and physical iAnt robot swarms (Figure 1.1(c)). We describe a

swarm robotics system that emulates ant behaviors which govern memory, com-

munication, and movement, as well as an evolutionary process that tailors those

behaviors into foraging strategies that maximize performance under varied and com-

plex conditions6. The system evolves appropriate solutions to different environmental

challenges. Analysis of the evolved behaviors reveals the importance of interactions

among behaviors, and of the interdependencies between behaviors and environments.

The effectiveness of interacting behaviors depends on the uncertainty of sensed infor-

mation, the resource distribution, and the swarm size. Such interactions could not be

manually specified, but are effectively evolved in simulation and transferred to phys-

ical robots. This work is the first to demonstrate high-level robot swarm behaviors

2See Table 3.1 for an itemized description of the genome used in this chapter
3The source code for the simulation used to produce results for this chapter is freely available online

at https://github.com/BCLab-UNM/iAnt-Sim/tree/722016d73e4968d07a305c2fcce8342e9dff08a9
4See Table 4.1 for an itemized description of the genome used in this chapter
5The source code for the simulation used to produce results for this chapter is freely available online

at https://github.com/BCLab-UNM/iAnt-Sim/tree/859d76b60c902ca1dcb8d3d18894440c5b99d226
6See Figure 4.2 for a visual description (flowchart) of the methodology
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that can be automatically tuned to produce efficient collective foraging strategies in

varied and complex environments. This chapter is published in the journal Swarm

Intelligence, Copyright c©2015, Springer Science+Business Media New York [58].

Chapter 5. This chapter presents a novel extension to the CPFA that mitigates the

diminishing returns encountered when simulated7 and physical iAnt robot swarms

(Figure 1.1(c)) are tasked with the complete collection of all resources from a pre-

defined search area. We describe our existing ant-inspired robot swarm foraging

system that searches for and collects resources from a variety of distributions, and

a new cluster prediction and exploitation algorithm that augments swarm foraging

by directing robots to residual resources. By characterizing the cumulative resource

collection time for a robot swarm foraging in a variety of clustered resource distribu-

tions, we can identify the relationship between the “clusteredness” of the distribution

and the change in the resource collection rate over time. This work demonstrates

the feasibility of efficient, complete resource collection using simple, range-limited

robot swarms programmed with ant-inspired foraging behaviors. This chapter is in

press as a conference proceedings of the 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) [54].

7The source code for the simulation used to produce results for this chapter is freely available online

at https://github.com/BCLab-UNM/iAnt-Sim/tree/89fbd9e7e6527dd0af2a1801367a34df50ec4c1f
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Chapter 2

Formica ex Machina: Ant Swarm

Foraging From Physical to Virtual

and Back Again

2.1 Abstract

Ants use individual memory and pheromone communication to forage efficiently.

We implement these strategies as distributed search algorithms in robotic swarms.

Swarms of simple robots are robust, scalable and capable of exploring for resources in

unmapped environments. We test the ability of individual robots and teams of three

robots to collect tags distributed in random and clustered distributions in simulated

and real environments. Teams of three real robots that forage based on individual

memory without communication collect RFID tags approximately twice as fast as

a single robot using the same strategy. Our simulation system mimics the foraging

behaviors of the robots and replicates our results. Simulated swarms of 30 and 100

robots collect tags 8 and 22 times faster than teams of three robots. This work
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demonstrates the feasibility of programming large robot teams for collective tasks

such as retrieval of dispersed resources, mapping, and environmental monitoring. It

also lays a foundation for evolving collective search algorithms in silico and then

implementing those algorithms in machina in robust and scalable robotic swarms.

2.2 Introduction

One goal of swarm robotics is to engineer groups of simple, low-cost robots that can

cooperate as a cohesive unit to accomplish collection and exploration tasks such as

mapping, monitoring, search and rescue, and foraging for resources in unmapped

environments [15, 21, 32]. Ideally, robotic swarms are capable of exploring unknown

environments without the benefit of prior knowledge to guide them. Individuals must

adapt to sensor error and motor drift, and the swarm must function given variation,

errors, and failures in individual robots.

Biology often provides inspiration for approaches to achieve these design goals [15,

29, 32, 90]. Biologically-inspired decentralized approaches have enhanced scalability

and robustness by removing single points of failure from communication bottlenecks

and rigid control structures. Such approaches have not yet reached the level of

emergent coordination observed in natural systems [119].

Our robots are designed to mimic colonies of seed harvester ants who forage using

a combination of individual memory and pheromone trails. Robots are equipped with

a sensor suite which mimics the real ants: time-based odometry approximates phys-

ical location analogous to the ants’ stride integration [141], and ultrasound ranging

measures distance to objects and corrects for drift similar to an ant’s landmark-based

navigation [61]. Pheromone-like communication of previously successful search loca-

tions is used to improve search performance. Robots search for radio-frequency iden-

tification (RFID) tags, and upon finding them, return to a central ‘nest.’ Robot loca-
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tions are transmitted over one-way wireless communication to a server for data log-

ging; occasional two-way communication allows virtual pheromones to direct robots

to previously found tag locations.

We program our robots with search algorithms derived from our previous work

that used an agent-based model (ABM) guided by genetic algorithms (GA) to repli-

cate foraging behaviors of seed harvester ants [109, 77]. We duplicate parameters

from the ant model in the robots. We modified the ABM to replicate the constraints

of the robot hardware, and to model the behavior and environment of the robots in

their search for RFID tags. This parallel physical and simulated implementation al-

lows us to compare results from analogous experiments in machina as implemented

in physical robots and in silico in the ABM (as in [31, 86]). In additional ABM

experiments we scale up the size of the swarm, the number of tags, and the size of

the area in which the simulated robots search.

2.3 Background

Swarm robotics: Like ant colonies and other complex biological systems, robotic

swarms have potential to utilize efficient, robust, distributed approaches to physical

tasks. Effective algorithms for swarm robotics must extend beyond simulation to

intelligently deal with the complexities of navigating in real environments [31, 86,

89]. Our approach balances the benefit of centralized information exchange with

the scalability of decentralized autonomous search [9, 91, 105]. We use evolutionary

algorithms to determine the parameters of individual behavior that result in effective

collective action, as in [33, 109, 100, 126].

Biological ants: Our algorithms are largely inspired by foraging in Pogono-

myrmex desert seed-harvester ants [35]. These foragers typically leave their colony’s

single nest, travel in a relatively straight line to some location on their territory, and
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then switch to a correlated random walk to search for seeds.

When a forager finds a seed, it brings it directly back to the nest. Foragers often

return to the location where they previously found a seed in a process called site

fidelity [12, 35, 93], which reduces future search times. It is unclear exactly how

often these ants lay and follow pheromone trails [47, 61, 95], but our recent work

indicates occasional laying of pheromone trails to dense piles of food may be an

effective component of these ants’ foraging strategies [109, 77].

Models: We used GAs to find the optimal balance of site fidelity and pheromone

communication in simulated ant colonies [77]. We simulated ant foraging using a set

of ABMs of foragers on a grid, with parameters that specify how ants travel from the

nest, search, and use site fidelity and pheromone communication. These parameters

are optimized by a GA to maximize seed intake rate. Previous simulations show

that ants increase foraging rates with rare pheromone use (< 10% of foraging trips),

particularly in the clustered distribution where the intake rate doubles with the

addition of pheromone [77].

The ant foraging ABM was modified to model our swarm robots and our exper-

imental setup. The simulation provides both a theoretical benchmark and a basic

architecture for using GAs to optimize simulated robots within the constraints im-

posed by the physical hardware. All in machina experiments have been duplicated

in silico.

14



Chapter 2. Ant Swarm Foraging From Physical to Virtual and Back Again

2.4 Methods

2.4.1 Hardware

Our robots use an Arduino microcontroller with a compass, ultrasound, wireless card,

and RFID reader. These allow the robots to localize at a central ‘nest,’ measure

distance (object 100 cm away: mean error = 2.7 cm, σ = 2.24), and calculate

odometry (round trip of 10 m: mean error = 21 cm, σ = 6.6). Robots avoid collisions

by rotating clockwise until the object has been cleared.

2.4.2 Search Algorithm

The search behavior used by the robots to locate RFID tags is shown in Fig. 2.1.

1. Set Search Location: Robots begin at the nest in the center and randomly

select an initial search site location, encoded as a distance d and heading h.

2. Travel to Search Site (yellow path) Traveling robots go straight to the search

location while avoiding collisions with other robots, correcting for motor drift,

and communicating events to the server for later analysis.

3. Search for Tag (blue path): The robot moves in a correlated random walk

with direction θ at time t drawn from a normal distribution centered around

direction θt−1 and standard deviation SD = ω + γ/tδs. ω determines the degree

of turning during an uninformed search. In a search informed by memory or

communication, γ/tδs determines an initial additional degree of turning which

decreases over time spent searching. This mimics ants’ tight turns in an initially

small area that expand to explore a larger area over time [109].

15



Chapter 2. Ant Swarm Foraging From Physical to Virtual and Back Again

Figure 2.1: A robot begins its search at a globally shared central nest site (center
circle) and sets a search location. The robot then travels to the search site

(yellow line). Upon reaching the search location, the robot searches for tags (blue
line) until tags (red squares) are found. After searching, the robot travels to the

nest (purple line).

4. Travel to Nest (pink path): The robot returns to the known nest location. In

pheromone experiments, the tag location (d, h) is reported to the server if C ¿

1, where C is the count of other tags detected in the 8-cell neighborhood of the

collected tag in the simulation or discovered in one 360◦ rotation of the real

robot.

5. Set Next Search Location: On subsequent trips, d and h are determined by

either returning to the previously found tag location if C > 0, otherwise d and

h are communicated from the pheromone list on the server.

2.4.3 Experimental Design

Each experimental trial on a concrete surface runs for a maximum of one hour. A

cylinder marks the center ‘nest’ to which the robots return once they have located

a tag. This center point is used for localization and error correction by the robots’

ultrasonic sensors. All robots involved in a trial are initially placed near the cylin-

der. We program each robot to stay within a 3 m radius ‘virtual fence’. In every

experiment, 32 RFID tags are arranged in one of three different patterns: random,
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clustered, or power law (Fig. 2.2). Experiments are replicated under identical con-

ditions for individual robots and for groups of three bots.

Robot locations are continually transmitted over one-way WiFi communication to

a central server and logged for analysis. When a tag is found, its unique identification

number is transmitted back to the server, providing us with a detailed record of tag

discovery. Tags can only be read once, simulating seed retrieval. The central server

also acts as a coordinator for virtual pheromone trails using two-way communication.

Locations deemed important enough to require a pheromone value (i.e. those with

two or more tags discovered by the robot) are added to a list data structure with

a pheromone value of 1. Each location’s associated pheromone value pi is decayed

exponentially over time by the server: pt+1 = pt ∗ .995η, where η is the number of

seconds between time t and t + 1. When a location’s pheromone value has dropped

below a threshold of 0.001, it is removed from the list. As each robot returns to the

nest, the server selects a location from the list (if available) and transmits it to the

robot.

Our simulations replicate the physical dimensions of the robots, their speed while

traveling and searching, and the area over which they can detect an RFID tag, with

spatial dimensions that reflect the distribution of tags in the 3 m area. Like the real

robots, simulated robots avoid collisions by turning to the right to move past other

robots, and search for a simulated hour.

We also simulated the behavior of the robots in a much larger area in which tags

are distributed in the same density but in such large numbers that even large swarms

of robots collect only a fraction of the available tags. We simulated 1, 3, 30, and 100

robots to observe the scaling properties of the system.
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(a) Random (b) Clustered (c) Power law

Figure 2.2: 32 RFID tags scattered in a ring between 50 cm and 200 cm in (a) the
uniform random distribution. The clustered distribution (b) has four piles of eight
tags placed at 90◦ intervals at 50, 100, 150, and 200 cm in relation to the central
nest. The power law distribution (c) uses piles of varying size and number: one large
pile of eight tags at 125 cm, two medium piles of four tags at 75 and 175 cm, four
small piles of two tags at 50, 100, 150, and 200 cm, and eight randomly placed tags.

2.5 Results

We analyze the rates at which robots retrieve tags from each distribution, individually

or in teams of three, in real robots and in simulation. Unless otherwise noted, results

for each experimental treatment are averaged over five robot experiments and twenty

simulations. Error bars indicate one standard deviation.

Time to collect 32 tags is shown in Fig. 2.3. In robots and in simulation, three

robots collect tags faster than one robot, however, the speedup varies over the course

of the experiments (i.e., the red and blue lines are not parallel). When we average

time to collect n tags, where n varies between 1 and the maximum number of tags

collected, we find that 3 robots collect tags approximately twice as fast as 1 robot.

Figure 2.4 shows the the rate of tag collection per minute of experiment time for

physical and simulated robots. Each bar denotes the collection rate over a particular

tag distribution. We were not able to distinguish a significant effect of tag distri-
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Figure 2.3: Time for 1 and 3 robots, real and simulated, to collect tags arranged
in (a) random and (b) power law distributions using only site fidelity, and (c) for 3
robots on a power law distribution using pheromones and site fidelity.

bution on tag collection rate by the robots (General Linear Model [GLM]: p > 0.1;

n = 18); but we did find a significant effect of distribution on tag collection rate using

the larger sample size in simulation (GLM: p < 0.001; n = 120). In the simulations,

the fastest tag collection was in the clustered distribution, followed by power law and

then random distributions.

2.6 Discussion

We used ABMs and GAs to translate foraging behaviors of seed harvesting ants

into algorithms for teams of RFID tag–seeking robots. We tested two algorithms:

one in which robots rely on individual memory of locations of previously found tags

(mimicking site fidelity), and one in which robots share tag locations as waypoints

(mimicking pheromones) via a server that acts as the robots’ nest.

Three robots find tags approximately twice as fast as 1 robot when using site fi-

delity. Site fidelity is an effective foraging strategy in ants and robots. It is extremely

simple and easily encoded into very simple devices, including devices much simpler

than the robots we used here. The approach is also highly parallelizable because it
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Figure 2.4: Rate of tag discovery per minute of experiment time for 1 and 3 (a)
physical and (b) simulated robots in the 3 m area using only site fidelity, as well
as (c) 1, 3, 30, and 100 simulated robots collecting tags in a large world with site
fidelity and pheromones.

requires no communication among robots or the server.

Our approach, similar to [31], lays a foundation to explore the interplay between

simulation and experiments with real robots. Simulated and real experiments with

1 and 3 robots using site fidelity show similar foraging rates (Fig. 2.3(a),(b) and

Fig. 2.4(a),(b)), although simulated robots are slightly faster. This results from real

robots having more difficulty with avoiding each other, physical hardware limitations,

imperfect localization, and the possibility that real robots confuse each other with

the nest.

Simulated foraging is highly scalable whether using site fidelity alone, or site

fidelity augmented with pheromones when multiple tags are found in the same loca-

tion. When we scale up to 100 robots in unbounded environments with many tags,

teams of 100 robots collect resources 66 times faster than a single robot (Fig. 2.4(c)).

This 34% decline in per-robot efficiency results from increased travel distance–an un-

avoidable consequence of central place foraging [72].

We implemented pheromone communication in real robots by having robots re-

port found tag locations to a central server. Mimicking a strategy that was effective
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in our ant simulations, robots communicated a location as a waypoint to the server

if the robot saw at least 2 additional tags in the vicinity. The server implements

a simple pheromone algorithm and reports those locations to other robots. When

we add this pheromone-like behavior to our robots, we observe robots clearing large

clusters of tags faster; however, pheromones decreased the average tag collection rate

in real robots relative to tag collection using only site fidelity. We attribute the lack

of success primarily to error propagation: pheromones decrease performance when

robots get lost and communicate incorrect locations to other robots, similar to [5].

Our results suggest that the approach of combining individual memory with com-

munication at a central nest can transform simple robots into effective swarms that

are scalable and robust to the loss or malfunction of a few individuals. Results of

our 3 robot experiments include several instances in which one robot became lost or

malfunctioned, but the other two robots continued their task. Such systems could be

used for search and rescue, searching for resources or obstacles, and even biomedical

applications using nano-robots.

Our next steps are to use a GA to optimize parameters that maximize efficiency

and/or robustness in the robot ABM, and then import those parameters into the

robots. For example, currently the robots report a pheromone to the server if there

are 2 or more additional tags in the local neighborhood of the last tag found. We

will use the GA to optimize the decision to lay pheromone and follow pheromone

trails vs. returning to the last site food was found, optimizing the balance between

shared and private information. Preliminary analysis suggests that the GA can

evolve a pheromone-laying rule that significantly improves foraging over our current

implementation. We will also extend analysis to different distributions, and will

increase scalability by mimicking features of large ant colonies such as the use of

mobile nests and of multiple nests.
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Chapter 3

Evolving Error Tolerance in

Biologically-Inspired iAnt Robots

3.1 Abstract

Evolutionary algorithms can adapt the behavior of individuals to maximize the fitness

of cooperative multi-agent teams. We use a genetic algorithm (GA) to optimize

behavior in a team of simulated robots that mimic foraging ants, then transfer the

evolved behaviors into physical iAnt robots. We introduce positional and resource

detection error models into our simulation to characterize the empirically-measured

sensor error in our physical robots. Physical and simulated robots that live in a world

with error and use parameters adapted specifically for an error-prone world perform

better than robots in the same error-prone world using parameters adapted for an

error-free world. Additionally, teams of robots in error-adapted simulations collect

resources at the same rate as the physical robots. Our approach extends state-of-

the-art biologically-inspired robotics, evolving high-level behaviors that are robust

to sensor error and meaningful for phenotypic analysis. This work demonstrates the
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utility of employing evolutionary methods to optimize the performance of distributed

robot teams in unknown environments.

3.2 Introduction

Multi-agent simulations have been used to evolve behaviors which are then trans-

ferred into physical robots [99, 120]. Simulations rapidly generate multiple viable

solutions, allowing researchers to test many possible scenarios and make informed

decisions about which physical experiments to run. Such simulations should focus

on physical fidelity by replicating the environment, hardware constraints, and sensor

error of the real robots [19].

A particularly challenging class of problems for multi-robot systems is central-

place foraging [83, 104]. For this task, robots are programmed to search an area for

resources and aggregate these resources at a central location. Foraging is considered a

canonical task for distributed robotics: foraging can be instantiated into a number of

real-world applications such as hazardous waste clean-up [106], land mine detection

and removal [42, 71], search and rescue [70], and extraplanetary exploration [27,

129]. For applications where the physical environment may vary over time and the

distribution of resources is most likely unknown, evolutionary approaches allow robot

teams to adapt their behavior to each particular scenario.

Our robots use a central-place foraging algorithm (CPFA) based on the foraging

behavior of ants [55, 56]. The CPFA is parameterized by a GA in a multi-agent

simulation which emulates the physical robot experiments. Our simulation evolves

parameters in a parsimonious model of biological ant behavior, and our iAnt robots

use these parameters to forage for resources in an experimental area. We investigate

the effects of sensor error on physical and simulated robot performance. We demon-

strate the utility of this approach by measuring the number of resources that robots
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collect using parameters adapted and not adapted to error.

3.2.1 Previous Work

We conducted manipulative field studies on three species of Pogonomyrmex desert

seed-harvester ants [35]. Colonies were baited with dyed seeds distributed in a variety

of pile sizes around each ant nest. We calculated foraging rates for each distribution

and found that ants collected seeds faster when seeds were more clustered. Computer

simulations used genetic algorithms to find individual ant behavioral parameters

that maximized the seed collection rate of the colony. Simulated ants foraging with

those parameters mimicked the increase of seed collection rate with the amount

of clustering in the seed distribution when ant agents were able to remember and

communicate seed locations [109].

We also observed how individual parameters and overall fitness change with dif-

ferent distributions of resources and different numbers of simulated agents performing

a central-place foraging task [77]. Parameters evolved for specific types of resource

distributions were swapped and then fitness was measured for the new distribution;

for example, parameters optimized for a clustered distribution were tested on random

distributions of resources. Simulated agents incurred as much as a 50% decrease in

fitness when using parameters on a distribution different from the one for which they

were optimized.

We then modified our multi-agent central-place foraging simulation to model

the physical environment and hardware constraints of our iAnt robot platform [55].

We adapted our existing GA to evolve parameters for our iAnt robots. The evolved

parameters were then transferred into the physical robots. Simulated teams collected

three to four times as many resources as the real robot teams. We hypothesized that

this discrepancy resulted from a reality gap between the error-free simulated world
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and the sensor error experienced by the physical robots.

Most recently, we incorporated a probabilistic error model into our multi-agent

iAnt simulator in a workshop paper [56]. In this preliminary study, we added varying

amounts of noise to agents’ physical positions and their ability to detect resources,

and analyzed the response of the genetic algorithm by observing individual behav-

ioral parameters. We saw that increased positional error reduced resource collection,

and induced the GA to select for a lower likelihood of returning to locations where

resources were previously found. Increased detection error also reduced resource col-

lection, as well as influencing the GA to select behaviors that searched local areas

more thoroughly when only a few resources were detected. These behaviors indicated

that the GA was able to evolve parameters appropriate to the sensor error used in

the simulation.

We build on this prior work by a) simplifying the CPFA which improves perfor-

mance and makes it easier to interpret why parameters are evolved to different values

in different experiments; b) updating the iAnt simulator to more accurately reflect

physical reality; c) testing the CPFA on new resource distributions; and d) imple-

menting error-adapted parameters in experiments in physical robots.

3.2.2 Background

Research in evolutionary robotics (ER) primarily focuses on using evolutionary meth-

ods to develop controllers for autonomous robots. Controllers can be evolved in simu-

lation and subsequently transferred into physical robots [99, 120], or evolved directly

in real robots through embodied evolution [133]. Following principles outlined by

[18], work in ER has focused on bridging the reality gap between simulated and real

robots to improve the performance of evolved controllers in the physical world [67].

Neural networks have been used in combination with evolutionary methods to evolve
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controllers for simulated robot agents with random sensor noise; controllers were sub-

sequently transferred to real robots with varying degrees of success [101, 88, 66].

State-of-the-art robotic simulators such as Stage [131] and ARGoS [112] can be

used to model large robot teams with realistic, complex physical kinematics, but they

do not incorporate any learning or evolutionary methods that allow simulated agents

to adapt to unknown environments. Neither simulator includes sensor noise in its

standard implementation, however [111] recently modified ARGoS to incorporate an

actuator noise model, generating performance matching results from positional error

observed in real robots.

Previous work on multi-robot group foraging tasks used reinforcement learning

to train robots on higher-level behaviors, rather than lower-level motor controllers or

basic directional responses [84, 85]. Robots learned when to switch between behaviors

in a fixed repertoire set through positive and negative reinforcement related to their

foraging success. We follow this high-level learning approach in the design of our

CPFA.

Our approach (see Figure 3.1) differs from previous approaches in that we do not

attempt to evolve basic primitive behaviors from the ground up. Instead, we model

existing biological ant behaviors that have evolved naturally over millions of years.

We use a genetic algorithm to parameterize these behaviors in our simulated agents,

then we transfer those behaviors into physical robots. Evolved parameters control

the sensitivity threshold for triggering behaviors, the likelihood of transitioning from

one behavior to another, and the length of time each behavior should last.

We extend the state of the art in evolutionary and biologically-inspired robotics

by i) evolving high-level behaviors that are ii) robust to real-world sensor error and

iii) meaningful for phenotype-level analysis.
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Figure 3.1: Our approach leverages studies on biological ants, multi-agent simulations
guided by genetic algorithms, and our physical iAnt robot platform.

3.3 Methods

We present our simulated model of ant behavior, detailed pseudocode and diagrams

explaining our simplified CPFA, probabilistic models of physical sensor error in the

iAnt robot platform and implemented in our multi-agent system, and the design of

our simulated and physical experiments.

3.3.1 Ant Behavior Model

Pogonomyrmex seed-harvester ants follow a central-place foraging strategy to aggre-

gate food at their colony’s single nest. These foragers typically leave their nest, travel

in a relatively straight line to some location on their territory, and then switch to a

correlated random walk to search for seeds. A foraging ant who has located a seed

brings it directly back to the nest. Foragers often return to a location where they

have previously found a seed in a process called site fidelity [93, 12, 35]. Our recent

work indicates that combining site fidelity with occasional laying of pheromone trails
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to dense piles of food may be an effective component of these ants’ foraging strategies

[109, 77].

We incorporate key behaviors observed in our previous field studies on desert

seed-harvester ants [35] into our multi-agent simulation and physical iAnt robots. We

model probabilistic actions and state transitions using eight evolvable parameters,

detailed in Table 3.1. These are simplifications of our earlier CPFA algorithm [55].

Modifications have been made since our most recent work in an effort to increase

parsimony [56], such as removing the parameter for probabilistically abandoning a

pheromone waypoint:

• State transitions: Robots switch between two behaviors:

– Traveling: In the absence of information, a robot at the nest will select

a random direction and begin traveling. At each step of traveling, robots

have a probability ps of transitioning to search behavior.

– Searching: At each step of searching, robots who have not found a re-

source have a probability pt of returning to the nest.

• Correlated random walk: Robots explore regions using a random walk

with a fixed step size and a direction θt ∼ N (θt−1, σ) at time t. The standard

deviation σ determines how correlated the direction of the next step is with

the direction of the previous step. σ depends on whether an agent has prior

information through the use of site fidelity or pheromones:

– Uninformed search: If an agent has not used site fidelity or pheromones,

then σ = ω.

– Informed search: If an agent has arrived at a site by using site fidelity

or pheromones, then σ = ω + (4π − ω) ∗ e−λid∗t, where σ decays to ω as

time t increases.
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• Information: Previous ant studies have demonstrated the ability of ants to

count event frequencies in estimating nest size [81], travel distance [141], and

encounter rates with other ants [114]. In our simulation, when an agent finds a

resource, it stores a count c of additional resources in the 8-cell neighborhood

of the found resource. This count c represents an estimate of the density of

resources in the local region, and the agent uses c to decide when to use site

fidelity, lay a pheromone waypoint, or follow a pheromone waypoint:

– Site fidelity: A robot returns to a previously found resource location if

Fsf(c) > U(0, 1), where Fsf(x) = 1− e−λsf∗(x+1).

– Laying pheromone: A robot creates a pheromone waypoint for a pre-

viously found resource location if Flp(c) > U(0, 1), where Flp(x) = 1 −
e−λlp∗(x+1). New pheromone trails are initialized with a value of 1.

– Following pheromone: Upon returning to the nest, a robot follows a

pheromone waypoint to a previously found resource location if Ffp(c) >

U(0, 1), where Ffp(x) = 1 − e−λfp∗(9−x). Waypoints are selected with

probability proportional to their pheromone value.

– Pheromone decay: Pheromone waypoints decay exponentially over time

t as e−λpd∗t. Waypoints are removed from the simulation once their value

drops below a threshold of 0.001.

Four parameters that are of interest in our analysis are the informed search decay

rate (λid), the rate of using site fidelity (λsf), the rate of laying pheromone (λlp),

and the rate of following pheromone (λfp). Lower values of informed search decay

(λid) cause the robots to use a less correlated random walk, and thus a more random

and thorough local search, for a longer period of time when they have information

pertaining to a high density of resources at a particular location.

In both simulated and physical robots, we simulate pheromone trail use by main-
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Parameter Description Initialization Function

pt Probability of traveling U(0, 1)
ps Probability of searching U(0, 1)
ω Uninformed search correlation U(0, 4π)
λid Informed search decay exp(5)

λlp Rate of laying pheromone exp(1)

λfp Rate of following pheromone exp(1)
λsf Rate of site fidelity exp(1)

λpd Rate of pheromone decay exp(10)

Table 3.1: Set of 8 parameters evolved in simulation guided by genetic algorithms. At
the start of a simulated run, parameters in each colony are initialized using randomly
sampled values from their associated initialization function. The first 3 parameters
are initially sampled from a uniform distribution, and the last 5 from exponential
distributions within the stated bounds.

taining a list of waypoints. Pheromone strength of each waypoint evaporates over

time (λpd). Physical marking is not possible with real robots, and therefore our

simulated agents follow the same protocol.

3.3.2 Search Algorithm

CPFA pseudocode is shown in Algorithm 1. Note that probabilities of using site

fidelity (Fsf(c)), laying pheromone (Flp(c)), and following pheromone (Ffp(c)) are

generated using the equations discussed in the previous subsection. Figure 3.2(a)

shows a state diagram of the algorithm, and Figure 3.2(b) illustrates an example

of one possible cycle through the search behavior loop. An iAnt robot is shown in

Figure 3.2(c).
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Figure 3.2: (a) State diagram describing the flow of behavior for individual robots
during an experiment, (b) an example of a single cycle through this search behavior
loop, and (c) an iAnt robot with Velcro for attaching reflective markers (motion
capture was used for a previous experiment, but not for any of the observations in
this paper). The robot begins its search at a central nest site (double circle) and
sets a search location. The robot then travels to the search site (yellow line).
Upon reaching the search location, the robot searches for resources (blue line)
until a resource (black squares) is found. After sensing the local resource density,
the robot travels to the nest (red line).

3.3.3 Physical Sensor Error

Two sensing components are precise in simulation but error-prone in our physical

iAnt robot platform: positional measurement and resource detection. Our physical

robots use a combination of ultrasonic distance, magnetic compass headings, time-

based odometry, and an on-board forward-facing camera to estimate their position

within the experimental area. Resource detection is accomplished using a downward-

facing camera to read barcode-style QR tags.

We measured positional error in five physical robots while localizing to measure

the absolute position of a found resource, and while traveling to a location informed

by site fidelity or pheromones. We replicated each test 20 times per robot; means

and standard deviations for both types of positional error were calculated using 120

samples each. For robots localizing at a true position of (0 cm, 0 cm), we observed

32



Chapter 3. Evolving Error Tolerance in Biologically-Inspired iAnt Robots

a measured position of (−18 ± 79 cm,−15 ± 47 cm), whereas robots traveling to a

true position of (0 cm, 0 cm) had a measured position of (1.6± 45 cm, 64± 110 cm).

Positional error is modeled by perturbing the physical position of an agent from

(x, y) to (x′, y′), such that x′ ∼ N (x+ x̂, σx) and y′ ∼ N (y+ ŷ, σy). That is, (x
′, y′) is

sampled from a normal distribution with mean equal to the true position (x, y) offset

by (x̂, ŷ), and standard deviation (σx, σy). We impose this positional perturbation

twice: once when a robot finds a resource, and again when a robot leaves the nest

using site fidelity or following a pheromone waypoint to a known location.

We observed resource detection error for physical robots searching for resources,

and for robots searching for neighboring resources. Resource-searching robots at-

tempt to physically align with a QR tag, using small left and right rotations and

forward and backward movements to center the tag in their down-facing camera.

Robots searching for neighboring resources do not use this alignment strategy, but

instead simply rotate 360◦, scanning for a tag every 10◦ with their down-facing cam-

era. We replicated each test 20 times for three different robots; means for both types

of resource detection error were calculated using 60 samples each. We observed that

resource-searching robots detected 55% of tags and neighbor-searching robots de-

tected 43% of tags. Resource detection is modeled as a fixed probability dr = 0.55

for resource-searching robots, and dn = 0.43 for neighbor-searching robots.

3.3.4 Experimental Design

Each experimental physical trial on a 100 m2 concrete surface runs for 30 minutes. An

illuminated beacon marks the center ‘nest’ to which the robots return once they have

located a resource. This center point is used for localization and error correction by

the robots’ ultrasonic sensors, magnetic compass, and front-facing camera. All robots

involved in a trial are initially placed near the beacon. Robots are programmed to
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stay within a 5 m ‘virtual fence’ of the beacon. In every experiment, 256 QR tags

are arranged in 4 randomly placed clusters of 64 tags each.

Robot locations are continually transmitted over one-way WiFi communication

to a central server and logged for later analysis. When a tag is found, its unique

identification number is transmitted back to the server, providing us with a detailed

record of tag discovery. Tags can only be read once, simulating seed retrieval. The

central server also acts as a coordinator for pheromone waypoints using two-way

communication. As each robot returns to the nest, the server selects a location from

the list (if available) and transmits it to the robot.

Simulated teams of five robots search for resources on a 125 x 125 cellular grid.

The system architecture replicates the physical dimensions of our real robots, their

speed while traveling and searching, and the area over which they can detect re-

sources. The spatial dimensions of the grid reflect the distribution of resources over

a 100 m2 physical area, and agents search for a simulated half hour. 256 identical

resources are placed on the grid (each resource occupies a single grid cell) in one of

three distributions: random (each resource placed at a random location), clustered

(4 randomly placed clusters of 64 resources each), or power law (1 large cluster of 64,

4 medium clusters of 16, 16 small clusters of 4, and 64 randomly scattered). Each

individual pile is placed at a new random, non-overlapping location for each fitness

evaluation in an effort to avoid bias or convergence to a specific resource layout.

A population of 200 teams is evolved for 100 generations using recombination and

mutation. Each team’s parameter set is randomly initialized using uniform indepen-

dent samples from each parameter’s initialization function (see Table 3.1, column 3);

agents within a team use identical parameters throughout the simulation. Each team

forages for resources on its own grid, but the grids are identical. During each gen-

eration, all 200 teams undergo eight evaluations with different random placements

of tag clusters; fitness is evaluated as the sum total of resources collected by each
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Figure 3.3: Parameter values for rates of site fidelity (λsf), laying pheromone (λlp),
following pheromone (λfp), and informed random walk decay (λid) for random, clus-
tered, and power law distributed resources.

team in the eight runs of a generation. Two individual teams are chosen through

tournament selection and recombined through independent assortment: each param-

eter has a 10% chance of being selected from the second individual, otherwise it is

selected from the first individual. Once selected, each parameter has a 10% chance

of mutation.

We additionally conduct a series of parameter swapping experiments, in which

we transfer a parameter set evolved in a simulated error-free world to a simulated

world with error. We compare the performance for parameters adapted to error to

results using the original parameters not adapted to error. For these experiments,

we average the resources collected across multiple replicates. In this way, we can

determine the importance of including error in our model by testing whether it has a

significant effect on the evolved behavior of the physical and simulated robot teams.
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3.4 Results

We present results for teams of five physical and simulated robots searching for

resources in worlds with and without sensor error. Unless otherwise noted, results

for each experimental treatment are averaged over five physical replicates and ten

simulated replicates. Error bars indicate one standard deviation of the mean.

Figure 3.3 shows parameter values influencing robots’ use of information (λsf , λlp,

and λfp), as well as the informed walk decay rate (λid) for random, clustered, and

power law distributed resources. We observe similar values for all four parameters

for clustered and power law distributions: robots evolve a high rate of following

pheromones and a low rate of using site fidelity. Robots foraging on random distri-

butions evolve both a high rate of following pheromones and a high rate of using site

fidelity, but the effective probability of using either behavior are actually low because

of the dependencies between them (see Algorithm 1).
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Figure 3.4: Results for simulated foraging on a clustered resource distribution with
and without error. (a) Best and mean fitness curves. (b) Parameter values for rates of
site fidelity (λsf), laying pheromone (λlp), following pheromone (λfp), and informed
random walk decay (λid).
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Figure 3.4 shows fitness curves and parameter values adapted for simulated for-

aging for resources on a clustered distribution. Figure 3.4(a) plots best and mean

fitness over 100 generations for worlds with and without positional and resource

detection error modeled on our physical iAnt robots. We observe fitness stabilizing

after approximately 20 generations. Simulations with error converge to a fitness level

approximately 33% of the fitness achieved in simulations without error. Figure 3.4(b)

shows parameter values influencing robots’ use of information (λsf , λlp, and λfp), as

well as the informed walk decay rate (λid). Robots foraging in an error-free world

evolve a high rate of following pheromones (1.2) and a low rate of using site fidelity

(0.013), whereas robots in a world with error evolve a high rate of site fidelity (1.7)

and a low rate of following pheromones (0.0071). Additionally, in worlds with error,

robots are 2.4 times more likely to lay pheromones, and their informed random walk

decays 1.8 times faster than in an error-free world.

We analyze the performance of physical and simulated robots foraging in a world

with error using parameters adapted specifically for the error-prone world. We com-

pare the results to robots in a world with error using parameters adapted for an

error-free world. Figure 3.5 shows the effects of parameter swapping on resource

collection for physical and simulated robots (simulated results are averaged over

100 replicates). We observe an 80% improvement using the error-adapted param-

eters in physical robot teams, and a 16% improvement in simulated robot teams.

We were able to distinguish a significant effect of parameter swapping in physical

robots (t(8) = 5.1, p < 0.001) and in simulation (t(198) = 17, p < 0.001). Although

simulated robots collect more resources than physical robots when using non-error-

adapted parameters, we find that physical and simulated robots using error-adapted

parameters are not significantly different (t(103) = 0.16, p = 0.87).
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Figure 3.5: Results for physical and simulated robots foraging in a world with error
using parameters adapted for a world with error, and parameters adapted for an
error-free world. 80% more resources are collected using error-adapted parameters
in physical robot teams, and 16% more are collected in simulated teams. Robots
collected significantly more resources in both cases. Physical and simulated robots
using error-adapted parameters are not significantly different.

3.5 Discussion

Teams of physical and simulated robots used a central-place foraging algorithm

(CPFA) to search for resources with and without sensor error. A genetic algorithm

(GA) was used to evolve parameter sets which corresponded to robot team behav-

iors inspired by seed-harvester ants. We considered two types of error, positional

error and resource detection error, and we explored the effects of error on overall

resource collection and on individual evolved parameters. Error-adapted parameters

improved performance of physical and simulated robots in worlds with error. We

observed that teams of robots in error-adapted simulations collected resources at the

same rate as physical robots.

Both positional and detection errors have the potential to confound a robot’s

ability to properly use information to exploit resources clustered via site fidelity
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or pheromones. Large positional errors in the estimation of resource locations can

cause robots to perform informed random walks in regions without resources, thereby

wasting time in detailed searches of the wrong areas. Errors in detecting resources

can cause robots to underestimate the numbers of resources in a local area, so that

robots fail to take advantage of memory or communication to return or recruit other

agents to resource-rich locations.

Evolutionary algorithms have the potential to mitigate sensing errors by selecting

for parameters which perform optimally given imperfect conditions. For example,

robots experiencing errors in resource detection benefit from a lower threshold of

resource density detection for triggering creation of a pheromone waypoint. Robots

with positional errors perform better with a faster decaying informed random walk,

so that they quickly abandon detailed searches when there is a high probability that

resources are not in remembered or communicated locations.

Parameter values for simulated robots foraging on random, clustered, and power

law distributed resources (Fig. 3.3) illustrate the GA’s ability to evolve sets of

behaviors for each distribution. Parameters for clustered and power law distributions

are similar, demonstrating the ability of the GA to focus on exploiting clumped

resources when available. The lack of clustering in the random distribution induces

the GA to effectively disable site fidelity and pheromone following behaviors, thus

causing the adapted robot teams to concentrate on random exploration.

Fitness curves for simulations with and without error (Fig. 3.4(a)) demonstrate

the ability of the GA to reliably converge. Parameter values (Fig. 3.4(b)) demon-

strate the ability of the GA to evolve distinct sets of behaviors for an error-free world

compared to a world with error.

Results for parameters swapped from error-free worlds into worlds with error (Fig.

3.5) show that parameters adapted for imperfect worlds outperformed parameters
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adapted for perfect worlds. Teams of physical and simulated robots collected similar

numbers of resources, particularly when using parameters adapted for error. Thus,

evolutionary methods effectively adapt robot behavior to sensor error. These results

also mirror observations from our previous work in which genetic algorithms were

used to evolve optimal parameter sets for specific types of resource distributions.

The work presented here motivates estimation of real robot error, evolution of

parameters to fit with that error, and programming of those evolved parameters

into real robots. In future work, we will conduct additional physical and simulated

robot experiments using different numbers and distributions of resources, arena sizes,

numbers of robots, and modes of communication to test whether simulations and

physical experiments continue to correspond as closely as we have observed here.

3.6 Acknowledgments

This work was funded by NSF EF #1038682 and DARPA CRASH #P-1070-113237.

40



Chapter 3. Evolving Error Tolerance in Biologically-Inspired iAnt Robots

Algorithm 1 Biologically-Inspired CPFA

Disperse from nest to random location

while experiment running do

Conduct uninformed correlated random walk

if resource found then

Count number of resources c near current location lf

Return to nest with resource

if Flp(c) > U(0, 1) then
Create pheromone waypoint for lf

Pheromones followed by robots at nest

Pheromones decay over time

else

if Fsf (c) > U(0, 1) and Ffp(c) < U(0, 1) then
Return to lf

Conduct informed correlated random walk

else

Check for pheromone

if pheromone found and Ffp(c) > U(0, 1) and Fsf(c) < U(0, 1) then
Travel to pheromone location lp

Conduct informed correlated random walk

else

Choose new random location

end if

end if

end if

end if

end while
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Chapter 4

Beyond Pheromones: Evolving

Error-Tolerant, Flexible, and

Scalable Ant-Inspired Robot

Swarms

4.1 Abstract

For robot swarms to operate outside of the laboratory in complex real-world envi-

ronments, they require the kind of error tolerance, flexibility, and scalability seen

in living systems. While robot swarms are often designed to mimic some aspect of

the behavior of social insects or other organisms, no systems have yet addressed all

of these capabilities in a single framework. We describe a swarm robotics system

that emulates ant behaviors which govern memory, communication, and movement,

as well as an evolutionary process that tailors those behaviors into foraging strate-

gies that maximize performance under varied and complex conditions. The system
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evolves appropriate solutions to different environmental challenges. Solutions in-

clude: i) increased communication when sensed information is reliable and resources

to be collected are highly clustered, ii) less communication and more individual mem-

ory when cluster sizes are variable, and iii) greater dispersal with increasing swarm

size. Analysis of the evolved behaviors reveals the importance of interactions among

behaviors, and of the interdependencies between behaviors and environments. The

effectiveness of interacting behaviors depends on the uncertainty of sensed informa-

tion, the resource distribution, and the swarm size. Such interactions could not be

manually specified, but are effectively evolved in simulation and transferred to phys-

ical robots. This work is the first to demonstrate high-level robot swarm behaviors

that can be automatically tuned to produce efficient collective foraging strategies in

varied and complex environments.

4.2 Introduction

Robot swarms are appealing because they can be made from inexpensive components,

their decentralized design is well-suited to tasks that are distributed in space, and

they are potentially robust to communication errors that could render centralized

approaches useless. A key challenge in swarm engineering is specifying individual

behaviors that result in desired collective swarm performance without centralized

control [69, 140]; however, there is no consensus on design principles for producing

desired swarm performance from individual agent behaviors [17]. Moreover, the

vast majority of swarms currently exist either as virtual agents in simulations or

as physical robots in controlled laboratory conditions [139, 17] due to the difficulty

of designing robot swarms that can operate in natural environments. For example,

even mundane tasks such as garbage collection require operating in environments

far less predictable than swarms can currently navigate. Furthermore, inexpensive
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components in swarm robotics lead to increased sensor error and a higher likelihood

of hardware failure compared to state-of-the-art monolithic robot systems.

This calls for an integrated approach that addresses the challenge of designing

collective strategies for complex and variable environments [98, 53]. Pfeifer et al [110]

argue that biologically-inspired behaviors and physical embodiment of robots in an

ecological niche can lead to adaptive and robust robots. Here we describe such an

approach for robot swarm foraging, demonstrate its effectiveness, and analyze how

individual behaviors and environmental conditions interact in successful strategies.

This paper describes a robot swarm that forages for resources and transports them

to a central place. Foraging is an important problem in swarm robotics because it

generalizes to many real-world applications, such as collecting hazardous materials

and natural resources, search and rescue, and environmental monitoring [80, 107,

139, 17]. We test to what extent evolutionary methods can be used to generate

error-tolerant, flexible, and scalable foraging behaviors in simulation and in physical

experiments conducted with up to 6 iAnt robots. The iAnt is an inexpensive platform

(shown in Figure 4.1) capable of movement, memory, and communication, but with

substantial sensing and navigation error [59].

(a) (b)

Figure 4.1: (a) An iAnt robot. (b) A swarm of iAnt robots foraging for resources
around a central illuminated beacon.
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Our approach to developing foraging strategies emulates biological processes in

two ways. First, robot behaviors are specified by a central-place foraging algorithm

(CPFA) which mimics the foraging behaviors of seed-harvester ants. Second, we

use a genetic algorithm (GA) to tune CPFA parameters to optimize performance

in different conditions. The GA-tuned CPFA is an integrated strategy in which

movement, sensing, and communication are evolved and evaluated in an environment

with a particular amount of sensing and navigation error, a particular type of resource

distribution, and a particular swarm size. Our iAnt robots provide a platform to test

how well the GA can evolve behaviors that tolerate realistic sensing and navigation

error, and how much those errors affect foraging performance given different resource

distributions and swarm sizes.

This study builds on important previous work in which robot swarms mimic a

specific component of ant foraging behavior. For example, substantial attention has

been given to pheromone communication [108, 117, 24], and others have imitated

ant navigation mechanisms, cooperative carrying, clustering, and other isolated be-

haviors [21, 15, 116, 125, 11]. Rather than imitating a specific behavior for a specific

subtask, we evolve strategies that use different combinations of navigation, sensing,

and communication to accomplish a complete foraging task. This approach mimics

the way that ant foraging strategies evolve in nature. Ants do not decompose the

foraging problem into subtasks; rather, from a small set of behaviors, each species

of ant has evolved an integrated strategy tuned to its own particular environment.

We emulate not just the behaviors, but also the evolutionary process that combines

those behaviors into integrated strategies that are repeatedly tested in the real en-

vironments in which each species forages.

Our study is the first to evolve foraging behaviors that are effective in varied

and complex environments. Previous studies have developed or evolved foraging

behaviors for randomly distributed resources [7, 28, 80], while others have studied
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foraging from one or two infinite sources [60, 38]. However, previous studies have

not attempted to evolve strategies that are sufficiently flexible to perform well in

both of those environments, nor have they developed strategies that are effective at

collecting from more complex distributions. We show that foraging for resources in

heterogeneous clusters requires more complex communication, memory, and environ-

mental sensing than strategies evolved in previous work. This is important for robot

swarms operating outside of controlled laboratory environments because the features

of natural landscapes are heterogeneous, and the complex topology of natural land-

scapes has a profound impact on how animals search for resources [130, 68, 135].

In particular, the patchiness of environments and resources affects which foraging

behaviors are effective for seed-harvesting ants [25].

This work provides an automated process to adapt the high-level behaviors of

individual foragers to optimize collective foraging performance in complex environ-

ments with varied resource distributions. Experiments show the evolution of complex

strategies that are effective when resources are clustered heterogeneously, the auto-

matic adaptation of these strategies to different distributions, and the evolution of

a generalist strategy that is effective for a variety of resource distributions (even

when the distributions are not known a priori). We additionally evolve foraging

behaviors that are tolerant of real-world sensing and navigation error, and scalable

(in simulation) to large swarm sizes. The novelty of the approach is that it takes

into account interactions between the various behaviors that compose a foraging task

(e.g., exploration, exploitation by individuals, and recruitment), and interdependen-

cies between behaviors and the environmental context in which the behaviors evolve.

The utility of this approach is evident in two examples of how behaviors adapt and

interact: i) greater amounts of communication evolve in experiments with clustered

resource distributions, reliable sensors, and small swarms; and ii) given a variety of

pile sizes, robots evolve to exploit small piles using individual memory and to exploit

large piles using pheromone recruitment. More generally, we show that efficient and
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flexible strategies can emerge when simple behaviors evolve in response to complex

and variable environments.

In summary, this work makes three main contributions: i) we evolve a complete

foraging strategy composed of behaviors that interact with each other and that adapt

to the navigation and sensing errors of the robots, the environment, and the size of

the swarm; ii) we automatically tune foraging behaviors to be effective in varied

and complex environments; and iii) we analyze the evolved foraging strategies to

understand how effective strategies emerge from interactions between behaviors and

experimental conditions.

4.3 Related Work

This paper builds on a large body of related research in robot swarm foraging be-

haviors, ant foraging behaviors, and our own prior work developing the CPFA and

iAnt robot platform.

4.3.1 Automatic Design of Swarm Foraging Behaviors

The most common automatic design approach in swarm foraging is evolutionary

robotics (ER). Research in ER primarily focuses on using evolutionary methods

to develop controllers for autonomous robots [87, 100]. Previous work in ER has

evolved neural networks to control lower-level motor functions in simulated robot

agents; controllers were subsequently transferred to real robots with success on sev-

eral different tasks [8, 2, 113]. One drawback of this approach is that the evolved

neural controllers are a black box – it is often not clear why a particular controller

is good for a particular task. Additionally, task generalization is difficult because

evolved solutions are often overfit to specific design conditions [38]. Our approach
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mitigates these problems by tuning a simple set of behaviors inspired by foraging

ants. Because the behaviors are simple, the evolved parameters are relatively easy to

interpret. Additionally, because the GA fine-tunes predefined, high-level behaviors,

it avoids overfitting solutions to idiosyncratic features of either simulated or physical

conditions.

Our GA evolves parameters to control the high-level behaviors we have observed

and modeled in ants. These parameters control the sensitivity threshold for trig-

gering behaviors, the likelihood of transitioning from one behavior to another, and

the length of time each behavior should last. Several previous projects have taken

an approach similar to our own, using learning and optimization techniques to tune

a fixed repertoire of higher-level swarm foraging behaviors, rather than lower-level

motor controllers or basic directional responses. Matarić [84, 85] used reinforcement

learning to train robots to switch between behaviors through positive and negative

reinforcement related to foraging success. Similar to Matarić [84], Balch [7] trained

robot teams to perform multiple foraging tasks simultaneously using Q-learning with

a shaped reinforcement reward strategy. Labella et al [74] implemented adaptive

swarm foraging, observing emergent division of labor using only local information

and asynchronous communication. Liu and Winfield [79] used a genetic algorithm

to tune a macroscopic probabilistic model of adaptive collective foraging, optimizing

division of labor and minimizing energy use. Francesca et al [38] used a parameter op-

timization algorithm to automatically construct probabilistic behavioral controllers

for swarm aggregation and foraging tasks. These previous studies have tested swarms

on simple foraging tasks that required no communication. Instead, we focus on more

difficult foraging tasks in which communication among robots increases collective

foraging efficiency. Efficient foraging in environments with more complex resource

distributions necessitates more complex foraging strategies. In our study, robots

alter the environment by collecting food and by laying pheromones, and those alter-

ations affect future robot behavior. Therefore, these foraging strategies cannot be
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practically represented by the finite state machines often used in prior work [79, 38].

4.3.2 Foraging in Desert Harvester Ants

The CPFA mimics foraging behaviors used by desert seed-harvester ants. Desert har-

vester ants collect seeds that are scattered in space and remain available for long time

periods, but foraging under hot, dry conditions limits seed collection to short time

windows during which not all available resources can be collected [50]. We emulate

harvester ant foraging strategies which have evolved to collect many seeds quickly,

but not exhaustively collect all available seeds. Colonies must adapt their foraging

strategies to seasonal variations in environmental conditions and competition with

neighbors [1].

Foragers initially disperse from their central nest in a travel phase, followed by

a search phase [34] in which a correlated random walk is used to locate seeds [26].

Foragers then navigate home to a remembered nest location [61]. Seed-harvester

ants typically transport one seed at a time, often searching the surrounding area

and sometimes sampling other seeds in the neighborhood of the discovered seed [61].

Letendre and Moses [77] hypothesized that this behavior is used to estimate local

seed density.

Ants can sense direction using light polarization, remember landmarks [61], and,

even in the absence of visual cues, measure distance using odometry [142, 124]. These

mechanisms enable ants to navigate back to previously visited sites and return to

their nest [61], sometimes integrating visual cues to rapidly remember and straighten

their homebound paths [96].

It is frequently observed that an individual ant will remember the location of

a previously found seed and repeatedly return to that location [61, 26, 12]. This

behavior is called site fidelity. When foragers return to a site using site fidelity, they
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appear to alter their search behavior such that they initially search the local area

thoroughly, but eventually disperse to search more distant locations [35]. We model

this process using a biased random walk that is initially undirected and localized with

uncorrelated, tight turns [109, 77]. Over time, successive turning angles become more

correlated, causing the path to straighten.

Many ants also lay pheromone trails from their nest to food patches [51, 16,

20, 122, 65]. Foragers at the nest then follow these pheromone trails, which direct

the ants to high-quality food patches via the process of recruitment. Trails are

reinforced through positive feedback by other ants that follow trails with a probability

that increases as a function of the chemical strength of the trail. Recruitment by

pheromone trails is rare in seed harvesters except in response to very large and

concentrated seed piles [46, 49].

4.3.3 Foundations of the CPFA

In prior work, we observed and modeled ants foraging in natural environments [35],

parameterized those models using a GA that maximized seed collection rates for

different resource distributions [109, 77], and instantiated those foraging parameters

in robot swarms [55, 56, 59]. This process has led to the robot foraging algorithms

we describe here.

Flanagan et al [35] conducted manipulative field studies on three species of Pogon-

omyrmex desert seed-harvesters. In order to test behavioral responses to different

food distributions, colonies were baited with seeds clustered in a variety of pile sizes

around each ant nest. Ants collected seeds faster when seeds were more clustered.

An agent-based model (ABM) simulated observed foraging behaviors, and a GA was

used to find individual ant behavioral parameters that maximized the seed collection

rate of the colony. Simulated ants foraging with those parameters mimicked the in-
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crease of seed collection rate with the amount of clustering in the seed distribution

when ant agents were able to remember and communicate seed locations using site

fidelity and pheromones [109].

Letendre and Moses [77] tested the ABM and observed how model parameters

and foraging efficiency changed with different distributions of resources. Simulations

showed that both site fidelity and pheromone recruitment were effective ways to

collect clustered resources, with each behavior increasing foraging success on clus-

tered seed distributions by more than 10-fold, compared to a strategy which used no

memory or communication. Both site fidelity and pheromones were beneficial, but

less so, with less clustered seed distributions. Further, simulations demonstrated an

important synergy between site fidelity and pheromone recruitment: each behavior

became more effective in the presence of the other behavior [92].

Letendre and Moses [77] also showed that a GA could effectively fine-tune the

repertoire of ant foraging behaviors to different resource distributions. Parameters

evolved for specific types of resource distributions were swapped and fitness was

measured for the new distribution; for example, parameters evolved for a clustered

distribution were tested on random distributions of resources. Simulated agents

incurred as much as a 50% decrease in fitness when using parameters on a distribution

different from the one for which they were evolved.

The robot algorithms and experiments described in this paper are informed by

insights from these studies and simulations of ant foraging: i) the success of a foraging

strategy depends strongly on the spatial distribution of resources which are being

collected, and ii) memory (site fidelity) and communication (pheromones) are critical

components of foraging strategies when resources are clustered.

We simplified and formalized the behaviors from Letendre and Moses [77] into a

robot swarm foraging algorithm, the CPFA, in Hecker and Moses [56]. In this work,
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we showed that a GA, using a fitness function that included a model of iAnt sensing

and navigation errors, could evolve CPFA parameters to generate behaviors that

improved performance in physical iAnt robots. The CPFA is designed to provide a

straightforward way to interpret parameters evolved by the GA in order to assess

how movement patterns, memory, and communication change in response to different

sensor errors, resource distributions, and swarm sizes. The CPFA also reflects the fact

that our physical robots lack the ability to lay chemical pheromone trails. Instead,

pheromones are simulated in a list of pheromone-like waypoints (described below).

The work presented here is a comprehensive study of the GA, CPFA, and iAnt

platform. We extend our previous results by performing a systematic analysis of

i) error tolerance to adapt CPFA parameters to improve performance given errors

inherent to the iAnt robots, ii) flexibility to forage effectively for a variety of resource

distributions in the environment, and iii) scalability to increasing swarm size with

up to 6 physical robots and up to 768 simulated robots.

4.4 Methods

The design components of our system include the central-place foraging algorithm

(CPFA), the genetic algorithm (GA), the physical iAnt robots, the sensor error

model, and the experimental setup. The error tolerance, flexibility, and scalability of

our robot swarms are tested under different experimental conditions. The framework

for our approach is shown in Figure 4.2.

4.4.1 Central-Place Foraging Algorithm

The CPFA implements a subset of desert seed-harvester ant foraging behaviors (see

Subsection 4.3.2) as a series of states connected by directed edges with transition
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Figure 4.2: We use a GA to evolve a foraging strategy (CPFA parameter set) that
maximizes resource collection for specified classes of error model, environment, and
swarm size. We then evaluate the foraging strategy in multiple experiments with
simulated and physical robots and record how many resources were collected. We
repeat this for different error models, environments, and swarm sizes. We analyze

flexibility by evolving parameters for one condition and evaluating them in another.

probabilities (Figure 4.3). The CPFA acts as the high-level controller for our sim-

ulated and physical iAnt robots. Parameters governing the CPFA transitions are

listed in Table 4.1, and CPFA pseudocode is shown in Algorithm 2.

Each robot transitions through a series of states as it forages for resources:

• Set search location: The robot starts at a central nest and selects a dis-

persal direction, θ, initially from a uniform random distribution, U(0, 2π). In

subsequent trips, the robot may set its search location using site fidelity or

pheromone waypoints, as described below.
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Figure 4.3: (a) State diagram describing the flow of behavior for individual robots
during an experiment. (b) An example of a single cycle through this search behavior.
The robot begins its search at a central nest site (double circle) and sets a search

location. The robot then travels to the search site (solid line). Upon reaching
the search location, the robot searches for resources (dotted line) until a resource
(square) is found and collected. After sensing the local resource density, the robot
returns to the nest (dashed line).

• Travel to search site: The robot travels along the heading θ, continuing on

this path until it transitions to searching with probability ps.

• Search with uninformed walk: If the robot is not returning to a previously

found resource location via site fidelity or pheromones, it begins searching using

a correlated random walk with fixed step size and direction θt at time t, defined

Table 4.1: Set of 7 CPFA parameters evolved by the GA

Parameter Description Initialization Function

ps Probability of switching to searching U(0, 1)
pr Probability of returning to nest U(0, 1)
ω Uninformed search variation U(0, 4π)
λid Rate of informed search decay exp(5)
λsf Rate of site fidelity U(0, 20)
λlp Rate of laying pheromone U(0, 20)
λpd Rate of pheromone decay exp(10)
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by Equation 4.1:

θt = N (θt−1, σ) (4.1)

The standard deviation σ determines how correlated the direction of the next

step is with the direction of the previous step. Robots initially search for

resources using an uninformed correlated random walk, where σ is assigned a

fixed value in Equation 4.2:

σ ← ω (4.2)

If the robot discovers a resource, it will collect the resource by adding it to

a list of collected items, and transition to sensing the local resource density.

Robots that have not found a resource will give up searching and return to the

nest with probability pr.

• Search with informed walk: If the robot is informed about the location

of resources (via site fidelity or pheromones), it searches using an informed

correlated random walk, where the standard deviation σ is defined by Equation

4.3:

σ = ω + (4π − ω)e−λidt (4.3)

The standard deviation of the successive turning angles of the informed random

walk decays as a function of time t, producing an initially undirected and

localized search that becomes more correlated over time. This time decay

allows the robot to search locally where it expects to find a resource, but to
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straighten its path and disperse to another location if the resource is not found.

If the robot discovers a resource, it will collect the resource by adding it to a list

of collected items, and transition to sensing the local resource density. Robots

that have not found a resource will give up searching and return to the nest

with probability pr.

• Sense local resource density: When the robot locates and collects a re-

source, it records a count c of resources in the immediate neighborhood of the

found resource. This count c is an estimate of the density of resources in the

local region.

• Return to nest: After sensing the local resource density, the robot returns to

the nest. At the nest, the robot uses c to decide whether to use information by

i) returning to the resource neighborhood using site fidelity, or ii) following a

pheromone waypoint. The robot may also decide to communicate the resource

location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative

distribution function (CDF) as defined by Equation 4.4:

Pois(c, λ) = e−λ

⌊c⌋
∑

i=0

λi

i!
(4.4)

The Poisson distribution represents the probability of a given number of events oc-

curring within a fixed interval of time. We chose this formulation because of its

prevalence in previous ant studies, e.g., researchers have observed Poisson distribu-

tions in the dispersal of foragers [62], the density of queens [128], and the rate at

which foragers return to the nest [114].

In the CPFA, an event corresponds to finding an additional resource in the im-

mediate neighborhood of a found resource. Therefore, the distribution Pois(c, λ)
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describes the likelihood of finding at least c additional resources, as parameterized

by λ. The robot returns to a previously found resource location using site fidelity if

the Poisson CDF, given the count c of resources, exceeds a uniform random value:

Pois(c, λsf) > U(0, 1). Thus, if c is large, the robot is likely to return to the same

location using site fidelity on its next foraging trip. If c is small, it is likely not to

return, and instead follows a pheromone to another location if pheromone is avail-

able. If no pheromone is available, the robot will choose its next search location at

random. The robot makes a second independent decision based on the count c of

resources: it creates a pheromone waypoint for a previously found resource location

if Pois(c, λlp) > U(0, 1).

Upon creating a pheromone waypoint, a robot transmits the waypoint to a list

maintained by a central server. As each robot returns to the nest, the server selects a

waypoint from the list (if available) and transmits it to the robot. New waypoints are

initialized with a value of 1. The strength of the pheromone, γ, decays exponentially

over time t as defined by Equation 4.5:

γ = e−λpdt (4.5)

Waypoints are removed once their value drops below a threshold of 0.001. We use

the same pheromone-like waypoints in simulation to replicate the behavior of the

physical iAnts.

4.4.2 Genetic Algorithm

There are an uncountable number of foraging strategies that can be defined by the

real-valued CPFA parameter sets in Table 4.1 (even if the 7 parameters were limited

to single decimal point precision, there would be 710 possible strategies). We address

57



Chapter 4. Evolving Error-Tolerant, Flexible, and Scalable Ant-Inspired Swarms

this intractable problem by using a GA to generate foraging strategies that maximize

foraging efficiency for a particular error model, resource distribution, and swarm size.

The GA evaluates the fitness of each strategy by simulating robots that forage

using the CPFA parameter set associated with each strategy. Fitness is defined as

the foraging efficiency of the robot swarm: the total number of resources collected

by all robots in a fixed time period. Because the fitness function must be evalu-

ated many times, the simulation must run quickly. Thus, we use a parsimonious

simulation that uses a gridded, discrete world without explicitly modeling sensors

or collision detection. This simple fitness function also helps to mitigate condition-

specific idiosyncrasies and avoid overfitted solutions, a problem noted by Francesca

et al [38].

We evolve a population of 100 simulated robot swarms for 100 generations using

recombination and mutation. Each swarm’s foraging strategy is randomly initialized

using uniform independent samples from the initialization function for each param-

eter (Table 4.1). Five parameters are initially sampled from a uniform distribution,

U(a, b), and two from exponential distributions, exp(x), within the stated bounds.

Robots within a swarm use identical parameters throughout the hour-long simulated

foraging experiment. During each generation, all 100 swarms undergo 8 fitness eval-

uations, each with different random placements drawn from the specified resource

distribution.

At the end of each generation, the fitness of each swarm is evaluated as the sum

total of resources collected in the 8 runs of a generation. Deterministic tournament

selection with replacement (tournament size = 2) is used to select 99 candidate swarm

pairs. Each pair is recombined using uniform crossover and 10% Gaussian mutation

with fixed standard deviation (0.05) to produce a new swarm population. We use

elitism to copy the swarm with the highest fitness, unaltered, to the new population

– the resulting 100 swarms make up the next generation. After 100 generations, the
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evolutionary process typically converges on a set of similar foraging strategies; the

strategy with highest fitness at generation 100 is kept as the best foraging strategy.

We repeat the evolutionary process 10 times to generate 10 independently evolved

foraging strategies for each error model, resource distribution, and swarm size. We

then evaluate the foraging efficiency of each of those 10 strategies using 100 new

simulations, each of which uses the CPFA with specified parameters and a new

random placement of resources.

4.4.3 iAnt Robot Platform

iAnt robots are constructed from low-cost hardware and range-limited sensors. Our

iAnt robot design has been updated and enhanced over three major revisions to

improve experimental repeatability and to decrease the reality gap between simulated

and physical robot performance.

The current iAnt platform (see Figure 4.1) is supported by a custom-designed

laser-cut chassis, low-geared motors to provide high torque, and a 7.4V battery that

provides consistent power for 60 minutes. The iAnt uses an Arduino Uno micro-

controller, combined with an Ardumoto motor shield, to coordinate low-level move-

ment and process on-board sensor input. Sensors include a magnetometer and ul-

trasonic rangefinder, as well as an iPod Touch to provide iAnts with forward-facing

and downward-facing cameras, in addition to computational power. Robots use the

OpenCV computer vision library to process camera images. The forward-facing cam-

era is used to detect a central nest beacon, and the downward-facing camera is used

to detect QR matrix barcode tags. iAnt cost is approximately $500, with an assem-

bly time of approximately 2 hours. Detailed platform specifications and assembly

instructions are available online [94].
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4.4.4 Physical Sensor Error Model

Two sensing components are particularly error-prone in our iAnt robot platform:

positional measurement and resource detection. In prior work, we reduced the reality

gap between simulated and physical robots by measuring sensing and navigation

error, then integrating models of this error into our agent-based simulation [59]. In

this work, the goal is to understand ways in which behaviors evolve to mitigate the

effects of error on foraging performance.

We measured positional error in 6 physical robots while localizing to estimate the

location of a found resource, and while traveling to a location informed by site fidelity

or pheromones. We replicated each test 20 times for each of 6 robots, resulting in

120 measurements from which we calculated means and standard deviations for both

types of positional error. We performed a linear regression of the standard deviation

of positional error on the distance from the central beacon and observed that standard

deviation ς increased linearly with localization distance dl, ς = 0.12dl−16 cm (R2 =

0.58, p < 0.001), and travel distance dt, ς = 0.37dt + 0.02 cm (R2 = 0.54, p < 0.001).

We also observed resource detection error for physical robots searching for re-

sources, and for robots searching for neighboring resources. Resource-searching

robots attempt to physically align with a QR tag, using small left and right rotations

and forward and backward movements to center the tag in their downward-facing

camera. Robots searching for neighboring resources do not use this alignment strat-

egy, but instead simply rotate 360◦, scanning for a tag every 10◦ with their downward-

facing camera. We replicated each test 20 times for each of 3 robots; means for both

types of resource detection error were calculated using 60 samples each. We observed

that resource-searching robots detected 55% of tags and neighbor-searching robots

detected 43% of tags.
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(a) Clustered (b) Power law (c) Random

Figure 4.4: 256 resources are placed in one of three distributions: (a) the clustered
distribution has four piles of 64 resources. (b) The power law distribution uses piles
of varying size and number: one large pile of 64 resources, 4 medium piles of 16
resources, 16 small piles of 4 resources, and 64 randomly placed resources. (c) The
random distribution has each resource placed at a uniform random location.

4.4.5 Experimental Setup

• Physical: Each physical experiment runs for one hour on a 100 m2 indoor

concrete surface. Robots forage for 256 resources represented by 4 cm2 QR

matrix barcode tags. A cylindrical illuminated beacon with radius 8.9 cm

and height 33 cm marks the center nest to which the robots return once they

have located a resource. This center point is used for localization and error

correction by the robots’ ultrasonic sensors, magnetic compass, and forward-

facing camera. All robots involved in an experiment are initially placed near

the beacon. Robots are programmed to stay within a ‘virtual fence’ that is

a radius of 5 m from the beacon. In every experiment, QR tags representing

resources are arranged in one of three distributions (see Figure 4.4): clustered

(4 randomly placed clusters of 64 resources each), power law (1 large cluster of

64, 4 medium clusters of 16, 16 small clusters of 4, and 64 randomly scattered),

or random (each resource placed at a random location).

Robot locations are continually transmitted over one-way WiFi communication
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to a central server and logged for later analysis. Robots do not pick up physical

tags, but instead simulate this process by reading the tag’s QR code, reporting

the tag’s unique identification number to a server, and returning within a 50

cm radius of the beacon, providing a detailed record of tag discovery. Tags can

only be read once, simulating tag retrieval.

• Simulated: Swarms of simulated robot agents search for resources on a 125 x

125 cellular grid; each cell simulates an 8 x 8 cm square. The simulation archi-

tecture replicates the physical dimensions of our real robots, their speed while

traveling and searching, and the area over which they can detect resources. The

spatial dimensions of the grid reflect the distribution of resources over a 100 m2

physical area, and agents search for a simulated hour. Resources are placed on

the grid (each resource occupies a single grid cell) in one of three distributions:

clustered, power law, or random. We use the same resource distribution as in

the physical experiments, although physical and simulated resources are not in

the same locations. Instead, each individual pile is placed at a new random,

non-overlapping location for each fitness evaluation to avoid bias or conver-

gence to a specific resource layout. We use an error model to emulate physical

sensing and navigation errors in some simulations (see Subsection 4.4.4).

4.4.6 Performance Evaluation

Here we describe the methods and metrics used to empirically evaluate the error

tolerance, flexibility, and scalability of our iAnt robot swarms. We use these metrics

to measure the ability of the GA to tune CPFA parameters to maximize the foraging

efficiency of swarms under varying experimental conditions. We define efficiency as

the total number of resources collected within a fixed one hour experimental window.

In some cases we measure efficiency per swarm, and in others we measure efficiency

per robot. Efficiency per swarm serves as the GA fitness function when evolving
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populations of robot swarms in our agent-based simulation. We characterize error

tolerance, flexibility, and scalability by comparing E1 and E2, where E1 and E2 are

efficiency measurements under two different experimental conditions. In addition to

using performance metrics to measure efficiency changes, our analysis also reveals

evolutionary changes in parameters that lead to these changes in efficiency.

Error Tolerance

We measure how well simulated and physical robots mitigate the effects of the error

inherent to iAnts. In simulation, error tolerance is measured only in experiments

in which simulated robots forage using the model of iAnt sensor error described in

Subsection 4.4.4. For robots foraging with such error, error tolerance is defined as:

E2 − E1

E1
× 100% (4.6)

where E1 is the efficiency of a strategy evolved assuming no error, and E2 is the

efficiency of a strategy evolved in the presence of error. This set of experiments

demonstrates the ability of our system to increase foraging success given realistic

sensor error. Note that simulated robots foraging in the presence of error can never

outperform robots foraging without error, and that physical robots always forage in

the presence of the inherent iAnt robot error.

Flexibility

Flexibility is defined as:

E2

E1
× 100% (4.7)
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where E1 is the efficiency of the best strategy evolved for a given resource distribution,

and E2 is the efficiency of an alternative strategy evolved for a different resource

distribution but evaluated on the given resource distribution. A strategy that is

100% flexible is one that has been evolved for a different distribution but is equally

efficient on the target distribution. We measure flexibility the same way in physical

and simulated robots.

We measure flexibility by evolving swarms of 6 simulated robots foraging inde-

pendently on each of the three resource distributions (see Figure 4.4). When the

evolution is complete, we then evaluate each of the three evolved strategies on all

three distributions: the one for which they were evolved, as well as the other two

(see Figure 4.2). For example, a robot swarm is evolved to forage on power-law-

distributed resources, then the swarm is evaluated for efficiency on the power law

distribution, as well as the clustered and random distributions.

Scalability

Scalability is defined using Equation 4.7, where E1 is the efficiency of 1 robot, and

E2 is the efficiency per robot of a larger swarm. Note that E1 and E2 are defined per

robot for scalability, while E1 and E2 are defined per swarm for error tolerance and

flexibility. We measure scalability from 1 to 6 physical robots, and from 1 to 768

simulated robots.

We measure scalability by evolving swarms of 1, 3, and 6 simulated robots foraging

on a power law distribution in a world with error, using the experimental setup

described in Subsection 4.4.5. When the evolution is complete, we then evaluate

physical and simulated swarms of 1, 3, and 6 robots using the parameters evolved

specifically for each swarm size.

We can measure scalability more thoroughly in simulation, where we analyze 1
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to 768 simulated robots in a large simulation space: a 1323 x 1323 cellular grid,

replicating an approximate 11,000 m2 physical area. We evolve simulated swarms

foraging for 28,672 resources divided into groups: 1 cluster of 4096 resources, 4

clusters of 1024, 16 clusters of 256, 64 clusters of 64, 256 clusters of 16, 1024 clusters

of 4, and 4096 resources randomly scattered. We then evaluate each evolved foraging

strategy on the swarm size for which they were evolved. We additionally evaluate a

fixed set of parameters evolved for a swarm size of 6 (i.e. parameters are evolved for

a swarm size of 6, but evaluated in swarm sizes of 1 to 768) to test the flexibility of

a fixed strategy for different numbers of robots.

Finally, we test the effect on site fidelity and pheromones by evolving simulated

swarms using the large experimental setup described above, except with information

use disabled for all robots in the swarm. Because robots are not able to remember

or communicate resource locations, the CPFA parameters λid, λsf , λlp, and λpd no

longer affect robot behavior. This restricts the GA to evolving strategies that govern

only the movement patterns specified by the search and travel behaviors (pr, ps, and

ω). We compare the efficiency of such strategies to the efficiency of swarms using

the full CPFA to evaluate how much memory and communication improve foraging

performance for different swarm sizes.

4.5 Results

Results below compare parameters and foraging efficiency of the best evolved foraging

strategies, where efficiency is the total number of resources collected by a robot

swarm during an hour-long experiment. Results that compare parameters show

means and standard deviations of the 10 foraging strategies evolved in simulation;

error bars (when shown) indicate one standard deviation of the mean. Results that

compare foraging efficiency show the single best of those 10 strategies evaluated 100
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Figure 4.5: Best and mean fitness, measured as foraging efficiency (resources collected
per hour, per swarm) for simulated swarms foraging on (a) clustered, (b) power law,
and (c) random resource distributions with and without real-world sensor error.
Results are for 100 replicates.

times in simulation and 5 times in physical iAnt robots, for each error model, resource

distribution, and swarm size.

4.5.1 Error Tolerance

Figure 4.5 shows best and mean fitness curves for simulated robot swarms foraging

with and without sensor error on clustered, power law, and randomly distributed

resources. Robot swarms adapted for randomly distributed resources have the most

stable fitness function, followed by power-law-adapted and cluster-adapted swarms.

Fitness stabilizes for all three distributions after approximately 20 generations. Real-

world sensor error has the largest effect on power-law-adapted swarms, reducing mean

fitness by 44% by generation 100 (mean fitness without error = 170, mean fitness with

error = 96). Sensor error reduces mean fitness by 42% for cluster-adapted swarms

(without error = 190, with error = 110), and by 25% for random-adapted swarms

(without error = 160, with error = 120). Thus, not surprisingly, robots with error

are always less efficient than robots without error. In idealized simulations without
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Figure 4.6: Foraging efficiency (resources collected per hour, per swarm) using error-
adapted and non-error-adapted parameters for (a) 6 robots foraging in a simulation
that includes sensor error and (b) 6 physical robots. Asterisks indicate a statistically
significant difference (p < .001).

robot error, efficiency is higher for the more clustered distributions; but when the

model of iAnt error is included, efficiency is highest for randomly dispersed resources.

Figure 4.6 shows the efficiency of simulated and physical robot swarms foraging on

clustered, power law, and random resource distributions using error-adapted and non-

error-adapted parameters. The GA evolves error-adapted swarms that outperform

non-error-adapted swarms in worlds with error. The error-adapted strategies improve

efficiency on the clustered and power law distributions: error tolerance (Eq. 4.6) is

14% and 3.6% for simulated robots, and 14% and 6.5% for physical robots (Fig.

4.6). The effect of error-adapted parameters in simulated robots foraging on the

clustered distribution was significant (t(198) = 3.6, p < 0.001), and the effect for

simulated robots on the power law distribution was marginally significant (t(198) =

1.8, p = 0.07). Efficiency was not significantly different for simulated or physical

robots foraging on randomly distributed resources.
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Figure 4.7: For error-adapted and non-error-adapted swarms foraging on clustered
resources, (a) the probability of laying pheromone as a function of the count c of
resources in the neighborhood of the most recently found resource (Eq. 4.4: k ← c,
λ ← λlp), and (b) the pheromone waypoint decay rate (λpd). Asterisks indicate a
statistically significant difference (p < .001).

Figure 4.7 compares the probability of laying pheromone (Fig. 4.7(a)) and

the rate of pheromone decay (Fig. 4.7(b)) in error-adapted and non-error-adapted

swarms foraging for clustered resources. Error-adapted strategies are significantly

more likely to use pheromones than non-error-adapted strategies when 4 or fewer re-

sources are detected in the local neighborhood of a found resource (i.e. when c ≤ 4,

see Fig. 4.7(a)). We interpret the increase in pheromone use for small c as a result

of sensor error (only 43% of neighboring resources are actually detected by iAnts).

The evolved strategy compensates for the decreased detection rate by increasing the

probability of laying pheromone when c is small. In other words, given sensor er-

ror, a small number of detected tags indicates a larger number of actual tags in the

neighborhood, and the probability of laying pheromone reflects the probable number

of tags actually present.

68



Chapter 4. Evolving Error-Tolerant, Flexible, and Scalable Ant-Inspired Swarms

In error-adapted swarms, pheromone waypoints are evolved to decay 3.3 times

slower than in swarms evolved without sensor error (Fig. 4.7(b)). Slower pheromone

decay compensates for both positional and resource detection error. Robots foraging

in worlds with error are less likely to be able to return to a found resource location,

as well as being less likely to detect resources once they reach the location, therefore

they require additional time to effectively make use of pheromone waypoints.

Sensor error affects the quality of information available to the swarm. These

experiments show that including sensor error in the clustered simulations causes

the GA to select for pheromones that are laid under more conditions and that last

longer. This increased use of pheromones is unlikely to lead to overexploitation of

piles because robots will have error in following the pheromones and in detecting

resources. Thus, while pheromones can lead to overexploitation of found piles (and

too little exploration for new piles) in idealized simulations [77], overexploitation is

less of a problem for robots with error.

Figures 4.5–4.7 show that error has a strong detrimental effect on the efficiency of

swarms foraging for clustered resources. Swarms foraging on random distributions are

only affected by resource detection error; however, the efficiency of cluster-adapted

swarms is reduced by both positional and detection error. Generally speaking, dif-

ferent types of error affect different strategies in different ways [56]. In situations

where resources are clustered, as is often the case in the real world [135, 25, 136], it

is beneficial to adapt to the sensor error experienced by real robots.

4.5.2 Flexibility

Figure 4.8 shows the efficiency of simulated and physical robot swarms evolved on

one resource distribution (clustered, power law, or random), then evaluated on all

three distributions. All results are for 6 simulated or physical robots foraging with
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Figure 4.8: Foraging efficiency (resources collected per hour, per swarm) using pa-
rameters adapted to different resource distributions for (a) 6 robots foraging in a
simulation that includes sensor error and (b) 6 physical robots. Asterisks indicate a
statistically significant difference (p < .001).

error. As expected, robot swarms evolved for each of the three distributions perform

best when evaluated on that distribution. That is, cluster-adapted swarms perform

best on the clustered distribution, power-law-adapted swarms perform best on the

power law distribution, and random-adapted swarms perform best on the random

distribution. Strategy specialization is best illustrated in foraging experiments on

the clustered distribution: the cluster-adapted strategies are twice as efficient as the

random-adapted strategies.

Figure 4.8 demonstrates that the GA is able to evolve both specialist and gener-

alist strategies. If the resource distribution is known a priori, then the robot swarm

will be most efficient when using a specialist strategy adapted for that distribu-

tion. However, power-law- adapted strategies are sufficiently flexible (Eq. 4.7) to

function well on all three distributions. Simulated robot swarms using power-law-

adapted parameters are 82% as efficient as cluster-adapted swarms when evaluated
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on a clustered distribution, and 86% as efficient as random-adapted swarms when

evaluated on a random distribution. The power-law-adapted strategy is also the most

flexible strategy for physical robot swarms: power-law-adapted swarms are 93% as

efficient as cluster-adapted swarms on a clustered distribution, and 96% as efficient

as random-adapted swarms on a random distribution.

While Figure 4.8 demonstrates the expected result that specialist strategies are

most efficient, Figure 4.9 illustrates several ways in which strategies are specialized.

The four-panel figure shows the probability of exploiting information about resource

density in the local neighborhood of a found resource in worlds with error (top)

and worlds without error (bottom) by returning to the site via site fidelity (Fig.

4.9(a,c)) or laying pheromone (Fig. 4.9(b,d)). Error-adapted swarms evolved to

forage for clustered distributions show large and consistent differences from swarms

evolved for power law distributions: they are 3.5 times less likely to return to a site

via site fidelity with a single resource in the local neighborhood (Fig. 4.9(a)), and

7.8 times more likely to lay pheromone (Fig. 4.9(b)). Non-error-adapted swarms

evolved to forage for clustered distributions are equally likely to return to a site

via site fidelity with a single resource in the local neighborhood (Fig. 4.9(c)), but

twice as likely to lay pheromone (Fig. 4.9(d)), compared to swarms evolved for

power law distributions. In all cases, swarms evolved for random distributions have

a significantly lower probability of returning to a site via site fidelity or pheromones.

These results show differences in how each strategy is evolved to use information

for different resource distributions, and how these strategies adapt to error by chang-

ing how swarms communicate information. Cluster-adapted strategies make frequent

use of both memory (site fidelity) and communication (pheromones). Power-law-

adapted strategies are nearly equally likely to use memory as cluster-adapted strate-

gies (Fig. 4.9(a,c)), but they are less likely to use pheromones (Fig. 4.9(b,d)). In

contrast, swarms foraging on random distributions neither benefit from information,
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nor evolve to use it. This result also helps to explain why random-adapted swarms

with error experience a relatively small change in fitness (Fig. 4.5(c)): information is

irrelevant for random-adapted strategies, therefore error in information has no effect

on swarms using these strategies.

The differences among the strategies are most evident when the local resource

density estimate c is small: site fidelity and laying pheromones are both effectively

absent in random strategies, but they are important components of strategies for

clustered distributions. Additionally, it is particularly likely that c will be small in

the environment during evaluation when resources are distributed at random. Thus,

for clustered distributions, robots are both more likely to lay pheromones for any

given c, and more likely to detect large c in the environment, further increasing the

probability that pheromones will be laid. This illustrates that the likelihood of a

particular behavior being used depends both on the rules that have evolved and on

the environment in which it is evaluated.

This point is further illustrated by considering the response to encountering large

c: the random strategy evolves a non-zero probability of using site fidelity and laying

pheromones when nine resources are discovered. However, the probability of encoun-

tering a cluster with nine adjacent resources is vanishingly small in a random resource

distribution. Since that condition is never encountered, there is no selective pressure

on behaviors under that condition. Thus, the probability of laying pheromone in a

random-adapted strategy is effectively zero because the GA evolves zero probability

for the cases that are actually encountered.

When interpreting Figure 4.9, it is important to note tradeoffs and interactions

among behaviors. If a robot decides to return to a site via site fidelity, it necessarily

cannot follow pheromone (Alg. 2, lines 11–16). Thus, the decision to return to a site

via site fidelity preempts the decision to follow pheromones, such that the probability

of following pheromone is at most 1−Pois(c, λsf). However, a robot can both lay a
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pheromone to a site (Alg. 2, lines 8–9) and return to that site via site fidelity (Alg.

2, lines 11–13). Furthermore, a robot can return to its own previously discovered site

by following its own pheromone. This alternative method of returning to a previously

found resource by a robot following its own pheromone may in part explain the lower

values of Pois(c, λsf) for the error-adapted clustered strategy: Pois(c, λsf) may be

low because Pois(c, λlp) is high (Fig. 4.9(a,b)).

These strategies produced by the GA logically correspond with the resource distri-

bution for which they were evolved. All of the resources in the clustered distribution

are grouped into large piles, so finding a single resource is predictive of additional re-

sources nearby. Power-law-adapted swarms are more selective when deciding to share

a resource location because robots encounter both large piles and small piles, as well

as randomly scattered resources; thus, power-law-adapted swarms have evolved to

be more cautious when laying pheromones to avoid recruiting to low-quality resource

sites. The power-law-adapted strategies are also the most variable in their use of site

fidelity and pheromones, suggesting that many combinations of the two are effective

given a distribution with a variety of pile sizes.

4.5.3 Scalability

Figure 4.10 shows the efficiency per robot of simulated and physical swarms with 1,

3, and 6 robots foraging on a power law resource distribution in a world with error.

Not surprisingly, we observe that both simulated and physical swarms collect more

resources as swarm size increases, however larger swarms are less scalable (Eq. 4.7,

where E1 and E2 are defined per robot). In simulation, scalability to 3 robots is

89%, while scalability to 6 robots is 79% (Fig. 4.10(a)); in physical experiments,

scalability to 3 robots is 68%, while scalability to 6 robots is 56% (Fig. 4.10(b)).

The simulation accurately represents the efficiency of a single robot, but increas-
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ingly overestimates swarm efficiency as swarm size increases: 1 simulated robot is

1.1 times more efficient than 1 physical robot, while a simulated swarm of 3 robots

is 1.4 times more efficient than a physical swarm of 3, and a simulated swarm of

6 is 1.6 times more efficient than a physical swarm of 6. We hypothesize that this

increasing discrepancy is a result of inter-robot interference in the real world that is

not captured in the simulation.

Figure 4.11 shows how efficiency per robot changes as swarm size increases from 1

to 768 robots. As in Figure 4.10, there is an increase in overall swarm efficiency, but

a decrease in per-robot efficiency, as swarm size scales up. The solid line in Figure

4.11 shows how per-robot foraging efficiency scales when robots forage on a power

law distribution (without sensor error) and robots are able to adapt behaviors to

swarm size (slope on logged axes = −0.17, R2 = 0.96, p < 0.001). The scalability

(Eq. 4.7) for 768 robots using the full CPFA is 27%. We compare the efficiency of

subsets of the full CPFA at different swarm sizes to assess which behaviors contribute

most to scalability.

The other three lines in Figure 4.11 show how efficiency scales when swarms

are prevented from adapting the full CPFA to the environment in which they are

evaluated. The dashed line shows the efficiency of swarms that use a fixed set of

parameters evolved for a swarm size of 6 (i.e. parameters are evolved for a swarm

size of 6, but evaluated in swarm sizes of 1 to 768). Comparing the solid line to the

dashed line shows how adapting to swarm size improves efficiency. The difference

in efficiency (Fig. 4.11, solid vs. dashed) increases as swarm size increases. For

example, adapting to a swarm size of 24 improves overall swarm efficiency by 4.0%,

and adapting to a swarm size of 768 improves swarm efficiency by 51%.

The dash-dotted line shows the efficiency of swarms that adapt to swarm size but

are unable to use information (site fidelity and pheromones are disabled so that CPFA

parameters λid, λsf , λlp, and λpd have no effect on robot behavior). By comparing
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the efficiency of swarms with and without information (Fig. 4.11, solid vs. dash-

dotted), we observe that adapting to use information improves swarm efficiency by

an average of 46% across all swarm sizes.

Finally, the dotted line shows swarms that are restricted in both of the ways

described above: information use is disabled, and parameters are fixed to those

evolved for swarms of size 6. By comparing the dash-dotted line to the dotted line,

we can observe how the GA evolves the remaining parameters that govern robot

movement (pr, ps, and ω) in order to adapt to swarm size. The GA is able to adapt

movement to scale up more efficiently: adapting movement parameters to a swarm

size of 24 improves swarm efficiency by 6.8%, and adapting movement parameters to

a swarm size of 768 improves swarm efficiency by 59%. Thus, parameters governing

movement improve efficiency more than parameters governing information use (59%

vs. 46%, respectively, for swarms of 768).

The scaling exponents are remarkably similar for swarms under the 4 conditions

shown in Figure 4.11 (slopes ranging from -0.14 to -0.21): those that adapt to swarm

size, those with behaviors adapted only to a swarm of 6 robots, those that do not use

individual memory or pheromone communication, and those with behaviors adapted

to a swarm of 6 robots that do not use memory or communication. The cause of these

similar exponents is unclear. Central-place foraging produces diminishing returns

as swarm size increases because the central nest imposes a constraint on swarm

efficiency – robots in larger swarms have to travel farther to collect more resources.

However, it is not obvious why that should lead to similar scaling exponents for all

four cases. Other researchers have focused on inter-robot interference as the main

cause of sub-linear scaling [82, 76], but we observe sub-linear scaling even without

including collisions in the simulation.

Figures 4.12(a) and 4.12(b) show two ways in which the GA evolves different

strategies for different swarm sizes. Both parameters are drawn from the single best
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strategy evolved for each swarm size. Figure 4.12(a) shows that the variation in the

uninformed random walk (ω) declines with swarm size. Other movement parameters

are also correlated with swarm size: robots in larger swarms use the straight motion

of the travel behavior for a longer period of time (i.e. ps decreases; see Fig. A.1(a)),

and they are less likely to give up searching and return to the nest (i.e. pr decreases;

see Fig. A.1(b)). These three trends result in robots in large swarms using more

directed motion to disperse farther to cover a larger area and reduce crowding.

Figure 4.12(b) shows how the GA evolves the probability of laying pheromone

for different swarm sizes. The probability of laying pheromone decreases with swarm

size when two resources are found in the local neighborhood of a found resource (Eq.

4.4: k ← 2, λ ← λlp). This decreasing trend is observed for all numbers of neigh-

boring resources (this follows from Eq. 4.4). Additionally, pheromone waypoints

decay faster as swarm size increases (λpd) (Fig. A.1(d)). Small swarms may evolve

to lay pheromones more often because they deplete piles more slowly than larger

swarms. The preference for less pheromone laying and faster pheromone decay in

larger swarms may be advantageous to avoid the problem of overshoot in real ant

foraging [137], where pheromones can adversely affect foraging rates by recruiting

ants to previously depleted food sources.

The two remaining parameters evolved by the GA, the rate of site fidelity (λsf)

and the decay rate of the informed random walk (λid), show no significant correla-

tion with swarm size (Fig. A.1(f,g)). Figure A.2 shows the full distributions for the

parameters of all 10 strategies evolved by the GA in simulation. We see the same

trends in the median parameter values as we see in the best parameter values in

Figure A.1, but we also observe some outlier strategies that are substantially differ-

ent from the best performing strategies. For example, an asterisk in Figure A.2(c)

corresponds with an outlier strategy which performs at 37% of the efficiency of the

best strategy. This particular outlier evolved by converging on an unusually high
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rate of pheromone use coupled with ineffective spatial dispersal. Such premature

convergence on suboptimal strategies is common in evolutionary computation, but

because we repeat the evolutionary process multiple times (see Section 4.4.2), we can

evolve a rich variety of interactions among parameters and transfer only the most

effective parameter sets into physical robots.

4.6 Discussion

We have described a central-place foraging algorithm (CPFA) whose parameters are

evolved by a genetic algorithm (GA) to maximize foraging performance under differ-

ent experimental conditions. Experiments show that the system successfully evolves

parameters appropriate to a wide variety of conditions in simulation, and these lead

to successful foraging in iAnt robots. We show that foraging for heterogeneously dis-

tributed resources requires more complex strategies than foraging for the randomly

distributed resources that have been the focus of previous work. Strategies that

automatically tune memory and communication substantially increase performance:

Figure 4.8(a) shows that the more complex strategy doubles foraging efficiency for

clustered resources compared to a simpler strategy evolved for randomly distributed

resources. The same behaviors that allow flexible foraging for different resource dis-

tributions can also adapt to tolerate real-world sensing and navigation error (Fig.

4.6) and scale up to large swarm sizes (Fig. 4.11). This system contributes to solving

a key challenge in swarm robotics: it automatically selects individual behaviors that

result in desired collective swarm foraging performance under a variety of conditions.

The error tolerance, flexibility, and scalability of this system arise from interac-

tions among the set of behaviors specified in the CPFA, and dependencies between

those behaviors and features of the environment. These interactions allow a small set

of 7 parameters (Table 4.1) to generate a rich diversity of foraging strategies, each
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tuned to a particular amount of sensing and navigation error, a particular type of

resource distribution, and a particular swarm size. Post-hoc analysis of evolved pa-

rameters reveals that pheromone-like communication is one among many important

components of the evolved strategies, and interactions among multiple behaviors (i.e.,

memory, environmental sensing, and movement patterns) are important for generat-

ing flexible strategies. Further, the relative importance of pheromone communication

varies with sensing and navigation error, resource distribution, and swarm size.

Several examples illustrate how the parameters are automatically adapted to fea-

tures of specific foraging problems. The power-law-distributed resources are placed

in a range of pile sizes, so effective strategies balance the use of random exploration to

find scattered resources, individual memory to collect resources from small piles, and

recruitment to collect resources from large piles. This balance is altered when the

simulations include real-world sensing and navigation error. When error is included,

the power law strategy uses less pheromone laying and less site fidelity (Fig. 4.9(a,b).

vs. Fig. 4.9(c,d), light gray bars); thus, search automatically becomes more random

when information is less reliable due to error. In contrast, the cluster-adapted strat-

egy uses more pheromone communication when robots have error: pheromones are

laid more often and evaporate more slowly (Fig. 4.7), and robots reduce rates of site

fidelity in order to follow pheromones more (Fig. 4.9(a) vs. Fig. 4.9(c), white bars).

Sensing and navigation errors have the least effect on foraging performance when

resources are distributed at random (Fig. 4.5), and random-adapted strategies are

unaffected by error (Fig. 4.9, dark gray bars) because those strategies do not evolve

to use information.

Thus, introducing more complex resource distributions reveals effects of sensing

and navigation error that are not apparent in simpler foraging problems. Under-

standing how error affects foraging for heterogeneously distributed resources, and

having an automated way to adapt to those effects, are both important given that
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landscapes in the real world have complex resource distributions [130, 135], and that

robots in the real world have error. Additionally, real-world scenarios will have vari-

able numbers of robots to achieve different tasks. We demonstrate that systematic

changes in behaviors are adaptive in larger swarms. We find that power-law-adapted

robots in larger swarms evolve to disperse more (Fig. 4.12(a)) and communicate

less (Fig. 4.12(b)), and that parameters governing movement have a greater effect

on scaling performance than parameters governing communication (59% vs. 46%

improvement). Thus, the same parameters that adapt to improve performance for

different distributions and error cases can also be automatically tuned to improve

performance for variable swarm sizes.

Our approach differs from prior work in that we focus on finding combinations of

individual behaviors that result in collective foraging success. We make no attempt

to evolve low-level controllers, nor do we attempt to evolve new ways to remember,

communicate, or move. We focus the GA on identifying combinations of parameters

governing individual behaviors that maximize collective performance. This mirrors

the natural evolutionary process that has shaped the successful foraging strategies

of different ant species by tuning and combining a common set of existing behav-

iors. The results show significant performance improvements when parameters are

evaluated in the same context in which they are evolved. The success of the evolved

foraging strategies demonstrates that this approach is a practical method to gener-

ate effective foraging strategies from interactions among foraging behaviors and the

specified foraging environment.

Experiments with this swarm robotics system can also test existing biological hy-

potheses and generate new ones, a potentially important role for robotics as suggested

by Webb [134] and Garnier [43]. For example, the balance between communication

and memory may shift in ants in response to resource distribution. This could be

tested by comparing the typical distribution of resources foraged for by species that
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rarely use pheromones [46, 49] to the distribution foraged for by species that use

pheromones ubiquitously [3]. Our finding that individual robots in small swarms are

more likely to lay pheromones than those in large swarms (Fig. 4.12(b)) conflicts

with the hypothesis by Beckers et al [10] that communication increases with colony

size. One potential explanation is that large colonies tend to forage for more clus-

tered distributions, a factor not accounted for in our simulations in which all swarms

foraged on a power law distribution. Thus, the relationship between colony size and

pheromones may be driven by environmental differences in the niches of large and

small colonies. How communication among individuals depends on colony size and

resource distribution is worthy of further study in real ants, as well as in swarm

robotics. More generally, our system provides a way to test how memory, commu-

nication, and movement interact in different foraging conditions with experimental

control that is not possible with ants in natural environments.

4.7 Conclusions

This paper presents an ant-inspired swarm robotics system whose parameters are

specified by a GA. The GA automatically selects individual behaviors that result in

desired collective swarm foraging performance under a variety of conditions. This

work emphasizes the importance of incorporating environmental conditions into the

design process at the outset, rather than assuming idealized conditions and adapting

them to environmental realities afterwards. It is the interactions with features of the

specified foraging problem during the evolutionary process that generate complex

and flexible behaviors. Foraging strategies emerge from the interactions among rules

and dependencies in the foraging environment, including the amount of error in robot

sensing and navigation, the complexity of the resource distribution, and the size of

the swarm.
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Our work demonstrates one approach toward the common goal of developing

robot swarms that can function in the varied and complex conditions of the real

world. Of course, real environments are vastly more complex than the conditions we

have considered here. Future work should test whether and how a GA can adapt

the CPFA to more complex environments, additional sources of robot error, and

larger physical robot swarms. This work also provides a foundation for automatically

evolving behaviors that interact with environmental conditions to accomplish other

collective tasks, for incorporating other ant behaviors, and for adapting behavioral

rules in response to sensed environmental conditions in real time. By demonstrating

how a rich set of strategies can evolve from simple behaviors interacting with complex

environments, we suggest that biologically-inspired swarm robotics can benefit from

leveraging a larger set of biological behaviors to accomplish complex real-world tasks.
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Algorithm 2 Central-Place Foraging Algorithm

1: Disperse from nest to random location

2: while experiment running do

3: Conduct uninformed correlated random walk

4: if resource found then

5: Collect resource

6: Count number of resources c near current location lf

7: Return to nest with resource

8: if Pois(c, λlp) > U(0, 1) then

9: Lay pheromone to lf

10: end if

11: if Pois(c, λsf) > U(0, 1) then

12: Return to lf

13: Conduct informed correlated random walk

14: else if pheromone found then

15: Travel to pheromone location lp

16: Conduct informed correlated random walk

17: else

18: Choose new random location

19: end if

20: end if

21: end while
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Figure 4.9: For error-adapted swarms (top) and non-error-adapted swarms (bottom),
(a,c) the probability of returning to a site (Eq. 4.4: k ← c, λ ← λsf) and (b,d) the
probability of laying pheromone (Eq. 4.4: k ← c, λ ← λlp) given the number of
resources c in the neighborhood of a found resource.
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Figure 4.10: Foraging efficiency (resources collected per hour, per robot) of 1, 3, and
6 robots foraging on a power law distribution for (a) swarms in a simulation that
includes sensor error and (b) physical swarms. All results are statistically different
(p < 0.001).
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Figure 4.11: Foraging efficiency (resources collected per hour, per robot) in simulated
swarms of 1 to 768 robots foraging without sensor error. Data are shown on a log
scale, and linear regression lines are shown for log-transformed data. Per-robot
efficiency is shown for four cases: using the full CPFA parameter set adapted to
swarm size (slope = −0.17, R2 = 0.96), using the full CPFA with parameters fixed
to values evolved for a swarm size of 6 (slope = −0.19, R2 = 0.83), using parameters
adapted to swarm size without information (i.e. the CPFA without memory and
communication; slope = −0.14, R2 = 0.95), and using parameters fixed to values
evolved for a swarm size of 6 without information (slope = −0.21, R2 = 0.91). All
linear fits are statistically significant (p < 0.001).
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Figure 4.12: (a) Swarm size versus best evolved uninformed search variation (ω)
(slope = -0.035, R2 = 0.94, p < 0.001) (see Fig. A.2 for statistical distribution). (b)
Swarm size versus best evolved probability of laying pheromone when two resources
are found in the resource neighborhood (Eq. 4.4: k ← 2, λ ← λlp) (slope = -0.040,
R2 = 0.84, p < 0.001) (see Fig. A.2).
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Chapter 5

Exploiting Clusters for Complete

Resource Collection in

Biologically-Inspired Robot

Swarms

5.1 Abstract

The complete collection of resources from a predefined search area is a challenging

task for autonomous robot swarms. Because naturally-occurring resources are likely

to be distributed in clusters, foraging robot swarms can identify and exploit these

resource clusters to improve collection efficiency. We describe an ant-inspired robot

swarm foraging system that searches for and collects resources from a variety of dis-

tributions, and a cluster prediction and exploitation algorithm that augments swarm

foraging by directing robots to residual resources. By characterizing the cumulative

resource collection time for a robot swarm foraging in a variety of clustered resource
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distributions, we can identify the relationship between the “clusteredness” of the

distribution and the change in the resource collection rate over time. Experiments

show that collection efficiency is most significantly increased when robots switch

from ant-inspired foraging to focused exploitation of clusters after approximately

90% of resources have been collected. Not surprisingly, clustering algorithms are

most effective when resources are highly clustered in the environment. This work

demonstrates the feasibility of efficient, complete resource collection using simple,

range-limited robot swarms programmed with ant-inspired foraging behaviors.

5.2 Introduction

Robot swarms are appealing because they can be made from inexpensive components,

their decentralized design is well-suited to tasks that are distributed in space, and

they are potentially robust to communication errors that could render centralized

approaches useless. Central-place foraging is a canonical task for robot swarms, and

can be instantiated into a number of real-world resource collection tasks, including

hazardous waste clean-up [107], humanitarian demining [42, 71], and in-situ resource

utilization [27, 129]. Total, or complete, collection of all resources is a challenging

task, and one that may prove effectively intractable when robots are placed in com-

plex environments with unknown and variable resource distributions. Additionally,

naturally-occurring resource distributions are likely to be spatially heterogeneous

[135, 25, 136], with some large clusters of resources that are relatively rare and thus

difficult to find. However, foraging robot swarms that are able to identify and re-

member the locations of clusters can exploit them to improve complete collection

efficiency.

The central-place foraging algorithm (CPFA) emulates ant behaviors which gov-

ern memory, communication, and movement, as well as an evolutionary process that
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tailors those behaviors into foraging strategies that maximize error-tolerance, flexi-

bility, and scalability under varied and complex environmental conditions [58]. These

robot swarms use information to direct their search to clustered resources – individual

robots are more likely to remember or communicate the locations of resources that

are found in dense clusters. Swarms that are evolved for a particular environmen-

tal condition employ foraging strategies that integrate the movement patterns and

communication strategy appropriate for that condition. In prior work, the evolved

swarms foraged efficiently by maximizing resource collection during a 1 hour exper-

imental window, but resource intake rates tend to drop sharply when only a small,

sparsely distributed fraction of residual resources remain.

This work presents a novel extension to robot swarm foraging that mitigates

the diminishing returns encountered during the complete collection task. Simulated

robot swarms combine machine learning with statistical models to predict the loca-

tion, size, and number of clusters remaining in the residual distribution after some

fraction of resources have been collected. Swarms exploit clusters by switching from

foraging with the CPFA to searching the cluster locations predicted by the statistical

model. Robot swarms that predict and exploit resource cluster locations, particu-

larly those with few remaining resources, significantly reduce diminishing returns

when foraging in highly clustered distributions.

5.3 CPFA Background

The CPFA and its biological roots are described in detail in our previous work

[58]. Here we summarize the essential features that the current work builds upon.

The CPFA mimics foraging behaviors used by desert seed-harvester ants that have

adapted to forage under hot, dry conditions. We emulate harvester ant foraging

strategies, which have evolved to forage in short time windows during which not all
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Figure 5.1: Our approach leverages studies on biological ants, multi-agent simulations
guided by genetic algorithms, and our physical iAnt robot platform.

available resources can be collected [50]. Foragers initially disperse from their central

nest in a travel phase, followed by a search phase [34] in which a correlated random

walk is used to locate seeds [26]. Foragers then navigate home to a remembered nest

location [61]. Seed-harvester ants typically transport one seed at a time, sometimes

sampling other seeds in the neighborhood of the discovered seed [61] to estimate local

seed density [77]. Ants that detect high seed density are more likely to return to

previously found food patches using individual memory or pheromone recruitment.

When foragers return to a patch, they appear to alter their search behavior such

that they initially search the local area thoroughly, but eventually disperse to search

more distant locations [35].

We instantiated ant foraging behaviors in an algorithm (the CPFA) that gov-

erns simulated and physical iAnt robot swarms [55, 56, 59, 57] (Fig. 5.1). We

demonstrated a close correspondence between the behaviors of simulated and physi-
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cal robots; consequently, in this paper, we conduct experiments only with simulated

robot swarms. Most recently, we demonstrated that the GA is able to evolve foraging

strategies that are tolerant of real-world sensing and navigation error, flexible for a

variety of resource distributions, and scalable to large swarm sizes [58]. The swarm

foraging system evolved appropriate solutions to different environmental challenges.

Solutions included: i) increased communication when sensed information was reliable

and resources to be collected were highly clustered, ii) less communication and more

individual memory when cluster sizes were variable, and iii) greater dispersal with

increasing swarm size. Analysis of the evolved behaviors reveals the importance of

interactions among behaviors, and of the interdependencies between behaviors and

environments. The effectiveness of interacting behaviors depends on the uncertainty

of sensed information, the resource distribution, and the swarm size.

Here we extend our previous results by i) characterizing the time for robot swarms

to completely collect all available resources from a range of resource distributions,

ii) predicting the location, size, and number of resource clusters in each distribution

from a partial list of resource locations, and iii) identifying the most effective point

in time to switch from ant-inspired foraging to exploitation of cluster locations.

5.4 Methods

5.4.1 Central-Place Foraging and Evolutionary Algorithms

The CPFA implements robot foraging behaviors as a series of states connected by

directed edges with transition probabilities (Fig. 5.2). Each robot begins its search

at a central nest site and sets a search location. Robots traveling to a random loca-

tion with no prior information search using an uniformed correlated random walk.

Robots traveling to a previously found resource location search using an informed
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Figure 5.2: The central-place foraging algorithm, or CPFA, describes the flow of
behavior for individual robots in the swarm during the foraging task (reprinted from
our prior work [58]).

random walk that is initially undirected and localized, then becomes more directed

and straighter over time. When a robot locates a resource, it first collects the re-

source, and then records a count of resources in the neighborhood of the found

resource. Robots use this count to decide whether to exploit information through

memory or communication. Robots who have not found a resource will probabilisti-

cally return to the nest.

We use a genetic algorithm (GA) to evolve a population of CPFA parameters

that maximizes the foraging efficiency of simulated robot swarms evaluated in an

agent-based model. These parameters control the sensitivity threshold for triggering

CPFA behaviors, the likelihood of transitioning from one behavior to another, and

the length of time each behavior should last.
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5.4.2 Predicting Optimal Clusters

Expectation-maximization (EM) is a procedure for finding the means µ and covari-

ance matrices Σ for the components of a Gaussian mixture model θ using maximum

likelihood estimation (MLE). We predict the most likely k-component mixture model

θ = (µ,Σ) by training EM on a given set of observed data x. The predicted values

for µ and Σ identify the locations and sizes of clusters in the observed data x

EM requires the number of mixture model components k to be determined a

priori, which presents a challenge when training on partially observed data with

an unknown number of clusters. We predict the optimal mixture model Opti-

malEM (Algorithm 3) for a set of discovered two-dimensional resource locations

x = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where N is the number of discovered resources.

For each model EM(x, k), where k > 0, we calculate the maximum likelihood L

and the number of free parameters f . We then calculate the Bayesian Information

Criteria (BIC) for the model as:

BIC = 2 log(L)− f log(N) (5.1)

The number of free parameters for a two-dimensional Gaussian mixture model is

defined as f = 4k − 1 [52]. The BIC evaluates the relative quality of the model by

rewarding for goodness of fit, which is predicted by the maximum likelihood L, but

penalizing for the complexity of the predicted model defined by the number of model

components k. Comparing BIC values for competing mixture models trained on a

shared set of input data is a common method for selecting the most representative

model and estimating the number of clusters [37].

The OptimalEM function calculates the finite difference ∇BIC(k) = BIC(k)−
BIC(k− 1) between the BIC values of trained EM models for an increasing number

93



Chapter 5. Exploiting Clusters for Complete Resource Collection in Robot Swarms

of clusters k. OptimalEM initializes k to 0, then increases k until ∇BIC(k) ≥ 0,

at which point the function returns the predicted mixture model EM(x, k − 1).

5.4.3 Exploiting Clusters

Robot swarms begin each experiment by foraging for resources using the CPFA (Fig.

5.2). After some fraction of resources N have been collected by the swarm, all

robots return to the nest and compile the locations of the N resources into a single

list x. Note that this compilation process requires a one-time communication cost

that scales linearly with the number of robots in the swarm. The list x containing

the (x, y) positions of the discovered resources is divided, according to the function

OptimalEM(x, N), into a k-component Gaussian mixture model θ with means

µ and diagonal covariance matrices Σ. Sampling each Gaussian component θi at

one standard deviation of the mean µi produces a two-dimensional ellipse. The

rectangular bounding box containing the ellipse is defined as a cluster region ci

Algorithm 3 Select Optimal Clustering

1: function OptimalEM(x, N)

2: k ← 0

3: BIC[0]← MAXFLT ⊲ Initialize to maximum float

4: do

5: k ← k + 1

6: EM [k]← EM(x, k) ⊲ Train EM

7: L← EM [k].L ⊲ Retrieve likelihood value

8: BIC[k]← BIC(L, k,N) ⊲ Calculate BIC

9: while BIC[k]− BIC[k − 1] < 0

10: return EM [k − 1]

11: end function
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Figure 5.3: The central-place cluster exploitation algorithm, or CPCEA, describes
the flow of behavior for robots after switching from foraging with the CPFA to
exploiting the clustered regions predicted by OptimalEM (Algorithm 3).

with width Σi,0,0, height Σi,1,1, and center µi. Individual robots are then randomly

assigned to search each of the clusters regions predicted by OptimalEM(x, N).

Each robot makes a behavioral switch from foraging using the CPFA to exploiting

the clustered regions defined by the mixture model θ. After this behavioral switch,

all robots follow the central-place cluster exploitation algorithm (CPCEA) shown in

Figure 5.3. A robot at the nest starts its search by first choosing a cluster region c

with random probability, then selecting an (x, y) point at random from within region

c as its search location. The robot travels to the search location and begins searching,

using an informed random walk to search locally where it expects to find a resource

(i.e. within the predicted cluster region), but to straighten its path and disperse to

another location if the resource is not found. Robots that have not found a resource

will probabilistically give up searching and return to the nest. If a robot locates and

collects a resource, it records a count of resources in the immediate neighborhood of

the found resource, then returns to the nest.
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Figure 5.4: Top: 256 resources are placed one of five different clustered distributions:
(a) 1×256 has 1 randomly placed pile of 256 resources, (b) 2×128 has 2 piles of 128
resources, (c) 4×64 has 4 piles of 64 resources, (d) 8×32 has 8 piles of 32 resources,
and (e) 16 × 16 has 16 piles of 16 resources. Bottom: (f)–(j) The residual resource
distribution after 224 resources have been collected.

5.4.4 Experimental Setup and Evaluation

Swarms of 6 simulated robot agents search for resources on a 125× 125 cellular grid;

each cell simulates an 8 × 8 cm square. The simulation architecture replicates the

physical dimensions of our real robots, their speed while traveling and searching, and

the area over which they can detect resources. The spatial dimensions of the grid

reflect the distribution of resources over a 100 m2 physical area. 256 resources are

placed on the grid (each resource occupies a single grid cell) in one of five clustered

distributions (see Fig. 5.4(a)–(e)): 1 × 256 (1 randomly placed cluster of 256 re-

sources, 2 × 128 (2 clusters of 128), 4 × 64 (4 clusters of 64), 8 × 32 (8 clusters of

32), and 16× 16 (16 clusters of 16).

Following the evolutionary methods introduced in our previous work [58], we use
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a GA to generate robot swarm foraging strategies, represented by CPFA parameter

sets, that maximize resource collection efficiency for each of the five distributions.

The GA evaluates the fitness of each strategy, where fitness is defined as the total

number of resources collected by a swarm foraging with the CPFA during a simu-

lated 1 hour time period. The evolution process requires 600,000 simulated hours to

generate a foraging strategy for each distribution.

A population of 100 simulated robot swarms evolve for 50 generations using

recombination and mutation. Each swarm’s strategy is randomly initialized, and

robots within a swarm use identical parameters throughout each hour-long experi-

ment. During each generation, all 100 swarms undergo 12 fitness evaluations, each

with a different random placement of clusters; Figure 5.4(a)–(e) shows representative

sample placements. Deterministic tournament selection with replacement (tourna-

ment size = 2) is used to select 99 candidate swarm pairs, then each pair is recombined

using uniform crossover and 10% Gaussian mutation with fixed standard deviation

(0.05). We use elitism to copy the swarm with the highest fitness, unaltered, to the

new population – the resulting 100 swarms make up the next generation. After 50

generations, the strategy with highest fitness is kept as the best foraging strategy.

We repeat the evolutionary process 10 times to generate 10 independently evolved

foraging strategies, then we evaluate the best of these 10 foraging strategies for each

distribution on the complete resource collection task, for robot swarms foraging with

and without the use of the OptimalEM function (Alg. 3) and the CPCEA (Fig.

5.3).

We define collection time as the amount of time required to collect some fraction

of resources from one of the five experimental distributions, and total collection time

as the total time required to collect all 256 resources. We define relative change in

efficiency as:
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∆Er =

∣

∣

∣

∣

T1 − T2

T2

∣

∣

∣

∣

× 100% (5.2)

where T1 is the total collection time for a robot swarm foraging only with the CPFA,

and T2 is the total collection time for a swarm that switches from the CPFA to the

CPCEA after some fraction of resources have been collected.

We also evaluate the accuracy of our cluster prediction algorithm by comparing

the number of clusters predicted by OptimalEM to the actual number of clusters

discovered by robot swarms. We define mean absolute error in cluster prediction

over n experimental replicates as:

εc =
1

n

n
∑

i=1

|ki − ci| (5.3)

where ki is the predicted number of clusters, and ci is the actual number of clusters,

for replicate i.

Finally, we measure the effect of switching from foraging with the CPFA to ex-

ploiting clusters after different numbers of resources have been collected: we test

how switching to cluster exploitation after collecting N resources affects ∆Er, where

N = 32i and i ∈ {1, 2, . . . , 7}. That is, we measure the total collection time for

robot swarms that switch to exploiting clusters after 32, 64, . . . , 224 resources have

been collected. In order to thoroughly explore the performance of ∆Er when only a

small fraction of resources remain, we also exhaustively test all integer values for N

between 225 and 256. We define the effect size of switching to exploiting clustering

as:

r =
z√
M

(5.4)
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according to Richler et al [41], where z is the z-score from the Mann-Whitney U

test comparing the total collection time for swarms foraging only with the CPFA

to the total collection time for swarms that switch from foraging with the CPFA to

exploiting clusters, and M is the total number of samples. We also define the degree

of dispersion in the total collection time for each swarm as:

d = mediani(|yi −medianj(yj)|) (5.5)

where d is the median absolute deviation for a data set y = {y1, y2, . . . , yM} contain-
ing M samples.

5.5 Results

Results below compare resource collection times and cluster prediction errors across

five resource distributions that vary in the number and size of clusters (Fig. 5.4(a)–

(e)). All experiments are replicated 1000 times; medians and quartiles represent the

distribution of resource collection times, means and standard deviations summarize

cluster prediction error (Eq. 5.3), and the Mann-Whitney U test measures the effect

of switching from the CPFA to the CPCEA.

Figure 5.5 shows the median cumulative collection time for robot swarms us-

ing only the CPFA to forage for each of the five clustered resource distributions.

Swarms foraging on the 1× 256 distribution collect 88% of the total resources in the

shortest amount of time (224 resources collected in approximately 6,600 timesteps).

Increasing the number of clusters (while simultaneously decreasing the resources per

cluster) produces a corresponding increase in collection time for the first 224 re-

sources: swarms foraging on the 16 × 16 distribution collect 88% of resources in
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Figure 5.5: Median cumulative collection time (in timesteps) for 1 to 256 resources
in each of five resource distributions.

approximately 13,000 timesteps, nearly twice the collection time required for the

1 × 256 distribution. In all five distributions, the time required to collect the first

224 resources (between 6,600 and 11,000 timesteps) is approximately half of the time

required to collect the last 32 resources (between 16,000 and 29,000 timesteps). In

other words, swarms foraging only with the CPFA spend between 63% and 75% of

their time collecting the last 12% of the total resources in each distribution.

Figure 5.6 shows the mean absolute error of the OptimalEM cluster prediction

algorithm (εc, Eq. 5.3) for each of the five resource distributions with an increasing

number of resources collected before switching to exploiting clusters. Prediction

error decreases monotonically with time for four of the five distributions; i.e., as

expected, predication error decreases when predictions are made after robot swarms

have sampled more of their environment. Error for the 16× 16 distribution initially
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Figure 5.6: Mean absolute error εc (Eq. 5.3) when predicting the number of clusters
in each of five resource distributions, with increasing numbers of resources collected
before switching to cluster exploitation.

increases, then decreases after 160 resources have been collected. We also observe

that prediction error is larger for large numbers of clusters.

Figure 5.7 shows the effect r (Eq. 5.4) for robot swarms that switch from for-

aging with the CPFA to exploiting clusters after collecting the indicated number of

resources (on the x-axis), compared to swarms that do not switch and forage using

only the CPFA (Eq. 5.4). A positive effect indicates that the swarms that switch

to exploiting clusters outperform the swarm that do not switch, while a negative

effect indicates the reverse. We observe that r generally increases as more resources

are collected before switching to cluster exploitation. That is, swarms that collect

more resources before clustering those resources, then exploiting the resulting clus-

ters, perform better than swarms that collect fewer resources before clustering and

exploiting. However, in four of the five distributions, change in effect size tends to

101



Chapter 5. Exploiting Clusters for Complete Resource Collection in Robot Swarms

64 128 192 256
Resources collected before clustering

−1.0

−0.5

0.0

0.5

1.0

E
ff

ec
t

o
f

cl
u
st

er
in

g

1 x 256
2 x 128
4 x 64
8 x 32
16 x 16

Figure 5.7: The effect r (Eq. 5.4) of clustering for robot swarms that switch from the
CPFA to the CPCEA after some fraction of resources have been collected, compared
to swarms that do not switch and forage only with the CPFA.

plateau after approximately 90% of resources have been collected. Swarms foraging

on the 16 × 16 distribution that switch to clustering never outperform CPFA-only

swarms, regardless of the number of resources collected before switching. Addition-

ally, the effect for a given number of resources collected before switching generally

decreases as the number of clusters increases. For example, swarms foraging on the

1×256 distribution that switch to exploiting clusters consistently outperform swarms

foraging using only the CPFA, whereas swarms that switch to exploiting clusters on

the 16× 16 distribution perform consistently worse than CPFA-only swarms. In all

five resources distributions, we observe the largest effects of exploiting clusters for

swarms that switch after at least 224 resources have been collected, indicating that

the majority of resources should be collected before switching to clustering.

Figure 5.8 shows the distribution of total collection times for robot swarms forag-
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Figure 5.8: Total collection time for robot swarms foraging without information using
a correlated random walk, for swarms foraging only with the CPFA, for swarms that
switch from the CPFA to the CPCEA after 224 resources have been collected, and
for idealized swarms with perfect information (all resource locations are known a
priori).

ing only with the CPFA, and for swarms that switch from foraging with the CPFA to

exploiting clusters after 224 resources have been collected. As a comparative bench-

mark, we also include the distribution of total collection times for swarms that forage

without information using a correlated random walk (robots do not use memory or

communication), and for idealized swarms that forage with perfect information (all

resource locations are known a priori, therefore search is not required). Swarms for-

aging with the CPFA on the 1 × 256 distribution are 5.7 times more efficient than

swarms that forage without information, and 82% less efficient than idealized swarms

with perfect information. Swarms that switch to exploiting clusters with the CPCEA

are 11 times more efficient than swarms that forage without information, and only

66% less efficient than swarms with perfect information. The advantage of foraging
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using either the CPFA or the CPCEA decreases as the number of clusters increases

and the distribution of resources become more random.

We observe that clustering and exploiting after 224 resources are collected reduces

the total collection time required for the CPFA on four of the five distributions,

increasing efficiency (∆Er, Eq. 5.2) by 92% for the 1 × 256 distribution (z = 26),

81% for 2 × 128 (z = 32), 52% for 4 × 64 (z = 27), and 6% for 8 × 32 (z = 5.8).

The increase in efficiency was statistically significant in all four cases (p < 0.001).

Additionally, the dispersion d (Eq. 5.5) of the total collection time decreases when

swarms switch to exploiting clusters in four of the five distributions. We observe

6.1 times less dispersion for the 1 × 256 distribution, 3.5 times less for 2 × 128, 2.4

times less for 4× 64, and 13% less for 8× 32. This result demonstrates how cluster

exploitation significantly reduces the variation in total collection time; for example,

CPFA-only swarms foraging on the 1× 256 distribution have a worse-case collection

time of 26 simulated hours, compared 3.3 hours for swarms that switch to cluster

exploitation.

5.6 Discussion

We have described a novel extension to our robot swarm central-place foraging algo-

rithm (CPFA) that mitigates the diminishing returns encountered during the com-

plete resource collection task. Experiments show collection efficiency is most signif-

icantly increased when robot swarms switch from ant-inspired foraging to directly

exploiting clusters after approximately 90% of resources have been collected. As ex-

pected, cluster exploitation is most effective when resources are highly clustered in

the environment.

The effect of clustering tends to level off after robot swarms collect more than

90% of resources, and eventually decreases to zero as all 256 resources are collected
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(Fig. 5.7). We attribute this result to the diminishing returns of cluster exploitation

relative to the performance of ant-inspired foraging: as expected, swarms that delay

the use of clustering until very few resources remain experience a less significant gain

from cluster exploitation. However, swarms actually perform better when they delay

cluster exploitation until approximately 90% of resources are collected. Until that

point, the CPFA is a more efficient foraging algorithm than cluster exploitation,

which demonstrates the value of ant-inspired foraging. In summary, the resource

location information gathered by foragers while collecting the first 90% of resources

is vital to cluster exploiters collecting the last 10% of resources. This calls for a more

thorough investigation of the interactions and interdependencies between exploration

and exploitation in foraging robot swarms.

Interestingly, accurate estimation of the number of clusters is not necessarily

predictive of efficient resource collection. For example, increasing and subsequently

decreasing prediction error with increasing numbers of resources for the 16× 16 dis-

tribution (Fig. 5.6) does not match the monotonically increasing effect of switching

for the same distribution (Fig. 5.7). This result is likely indicative of latent cluster

exploitation mechanisms that are not accounted for in the error measure εc (Eq.

5.3). Additionally, we hypothesize that decreasing neighborhood resource density

may help to explain the corresponding decrease in resource collection rate for CPFA-

only swarms (Fig. 5.5): sparsely distributed residual resources (Fig. 5.4(f)-(j)) tend

not to trigger memory or communication behaviors crucial to ant-inspired foraging.

Future work should implement mathematical models to formally specify the rela-

tionship between the number, size, and density of resource clusters, and the optimal

point for switching to cluster exploitation.

Our work demonstrates a novel approach for augmenting ant-inspired robot

swarm foraging with machine learning and statistical models. We show that com-

bining our existing, biologically-inspired CPFA with a cluster exploitation algorithm
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produces more efficient total resource collection compared to each algorithm acting

alone. More generally, the results of this study support the efficacy of augmenting

biologically-inspired methods with machine learning algorithms to generate new,

robust techniques supported by solid mathematical foundations.
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Concluding Remarks

As human beings, we are driven to explore distant new worlds as we seek to under-

stand the fundamental nature of the Universe, and to unravel the mysteries of our

own existence. Because of the inherent dangers of human spaceflight, modern ex-

traplanetary exploration missions often use telerobotic, partially autonomous rovers

in place of humans to investigate these remote worlds [138]. As the technology be-

hind these machines continues to advance, the conceptual ambitions of researchers

and scientists to design and build low-cost, durable, fully autonomous rovers are

being realized [27, 121, 127]. Emerging research in biologically-inspired robotics sug-

gests that swarms of inexpensive, robust, quintessentially autonomous robots are

destined to surpass today’s Mars rovers as the extraplanetary explorers of the future

[55, 59, 58, 54].

With this contribution, we aim to advance the ambitious goal of designing and

programming robots that can successfully navigate unknown and variable environ-

ments, such as extraplanetary surfaces. Accordingly, Chapters 2 through 5 describe

in detail our swarm robotics system controlled by a central-place foraging algorithm

(CPFA) whose parameters are evolved by a genetic algorithm (GA) to maximize for-
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aging performance under different experimental conditions. This work demonstrates

how robot swarms built from inexpensive components can successfully operate out-

side of the typical robot laboratory setting, employing evolutionary computation and

machine learning to mitigate the adverse effects of unreliable information, variable

environments, congestion bottlenecks, and sparse resources.

In Chapter 2, we translated a GA-evolved agent-based model of seed-harvester

ants into a foraging algorithm for tag-seeking robot swarms. We investigated the

benefits of private and shared information by conducting one set of experiments

with swarms using individual memory (i.e. site fidelity), and a second set of exper-

iments with swarms using shared communication (i.e. pheromone-like waypoints).

We found that both memory and communication are advantageous behaviors for

swarms collecting resources from large clusters: sensing the local resource density

in the immediate neighborhood of a found resource is an effective mechanism for

guiding robots to densely-packed, resource-rich locations. However, shared commu-

nication was less beneficial than individual memory as a result of positional errors

that were propagated through the swarm, causing other robots to become lost and

thus waste valuable exploration time.

In Chapter 3, we introduced models of positional and resource detection error

into our robot swarm simulation to describe the empirically-measured sensor error

in our physical iAnt robots. Using this simulation, we evolved foraging behaviors for

simulated swarms in the presence these error models, then transferred these behaviors

into iAnt robots and evaluated their performance. When compared to iAnts foraging

using parameters evolved in a simulation without error, the error-adapted physical

swarms collected more resources, and their foraging performance was not statistically

different from error-adapted simulated swarms. Error-adapted swarms also employed

distinctly different foraging strategies from non-error-adapted swarms, including a

higher likelihood of using individual memory, and, for clustered distributions, a lower
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likelihood of using shared communication for a given local density of resources.

In Chapter 4, we presented a systematic analysis of our swarm robotics system,

specifically the system’s ability to tolerate error, to flexibly forage in different envi-

ronments, and to scale to large swarm sizes. We found that adapting to sensor error

is most valuable when resources are clustered: cluster-adapted swarms are highly

dependent on sensed information, and thus gain the most benefit from tuning their

information-dependent behaviors to match the inherently noisy iAnt sensors. Evolv-

ing to efficiently forage for heterogeneously-distributed resources produced strategies

that balanced the extent and thoroughness of search, using random exploration to

find scattered resources, individual memory to collect resources from small piles,

and recruitment to collect resources from large piles. We also found that power-

law-adapted robots in larger swarms evolved to disperse more and communicate

less, and that parameters governing movement had a greater effect on scaling per-

formance than parameters governing communication. The success of these evolved

foraging strategies demonstrated that our approach is a practical method to gener-

ate effective foraging strategies from interactions among foraging behaviors and the

specified foraging environment.

Finally, in Chapter 5, we augmented our swarm robotics approach with machine

learning and statistical models to improve collection efficiency for robots foraging on

sparse clusters of resources. These robots combined a modified central-place foraging

algorithm with a clustering procedure and a optimal model selection approach to

predict and exploit the locations of residual resources. Experiments showed collection

efficiency was most significantly increased when robot swarms switched from ant-

inspired foraging to directly exploiting clusters after approximately 90% of resources

had been collected. Not surprisingly, cluster exploitation was most effective when

resources were highly clustered in the environment.

Taken as a whole, this dissertation presents a comprehensive swarm robotics
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system, consisting of i) a set of high-level behaviors that constitute a foraging

strategy, ii) an agent-based model that implements each foraging strategy in

a simulated robot swarm, iii) a genetic algorithm that selects the most efficient

foraging strategy according to the performance of the simulation, and iv) a swarm

of physically-embodied iAnt robots that implement the most efficient strategy in

the real world. Although our system was designed to be a demonstration platform

for swarm robotics research, this work provides a foundation for designing and im-

plementing autonomous robot swarms that can function outside of the academic

research laboratory. The ability of robot swarms to tolerate sensor noise, adapt to

variable environments, distribute work across large teams, and identify and exploit

heterogeneously-distributed resources are all critical factors for successful remote

exploration missions on distant worlds.

6.1 Major Findings

In the course of our research on foraging robot swarms, we have uncovered several

key findings that are particularly novel, innovative, and/or unexpected. We highlight

those findings here.

First, we used a relatively simple GA to quickly evolve a small set of integrated

strategies that foraged efficiently in varied and complex environments. Previous

studies have developed or evolved foraging behaviors for randomly distributed re-

sources [7, 28, 80], while others have studied foraging from one or two infinite sources

[60, 38]. However, previous studies have not attempted to evolve strategies that are

sufficiently flexible to perform well in both of those environments, nor have they

developed strategies that are effective at collecting from more complex distributions.

We showed that foraging for resources in heterogeneous clusters requires more com-

plex communication, memory, and environmental sensing than strategies evolved in
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previous work.

As we tested these evolved foraging strategies for different robot swarm sizes,

we observed a sub-linear scaling relationship between the size of the swarm and

the resources collected per robot. Other researchers have focused on inter-robot

interference as the main cause of sub-linear scaling [82, 76], but we observe sub-

linear scaling even without including collisions in the simulation. We hypothesized

that the central-place foraging paradigm produces diminishing returns as swarm

size increases because the central nest imposes a “bottleneck” constraint on swarm

efficiency – robots in larger swarms have to travel farther to collect more resources.

This bottleneck could potentially be mitigated by increasing the number of nests

in proportion to the size of the swarm, a scaling technique inspired by the flexible

recruitment strategies of Argentine ants [36].

We also found that individual robots in smaller swarms were more likely to lay

pheromones than those in larger swarms, a result that conflicts with a previous pre-

diction that communication in ant colonies increases with colony size [10]. Contrary

to the field studies conducted in previous work, however, our experiments were pur-

posefully designed to fix all other known factors that could potentially influence

foraging rate: territory size, quantity and distribution of resources, as well as all

aspects of the individuals in the swarm. In reality, territory size is thought to scale

with ant colony size [63] and colony growth rate [48]; colonies with larger territories

naturally have access to more resources; and body size and ground speed vary widely

across ant species [35]. Future studies should therefore incorporate some or all of

these factors when considering the role of pheromones in swarm scalability.

Finally, we demonstrated the advantage of ant-inspired robot swarm foraging over

a mathematical optimization technique. We also demonstrated a synergy between

our ant-inspired foraging algorithm and a more traditional clustering algorithm [54].

Identifying and exploiting resources through machine learning and model selection
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was disadvantageous until approximately 90% of the resources had been collected

by the CPFA. However, the collection of these first 90% of resources was vital to

foragers that switched to exploiting the remaining 10% of the identified resource

clusters. In other words, our swarm foraging algorithm was essential to collecting

the majority of resources, but also benefited from cluster exploitation in order to

efficiently accomplish the complete collection task. These most recent findings sup-

port the efficacy of augmenting biologically-inspired methods with machine learning

algorithms to generate new, robust search behaviors that function efficiently in a

variety of environments.

6.2 Foraging Robot Swarms Within the Context

of Evolutionary Robotics

Evolutionary robotics (ER) is an automated design approach for generating sensing,

morphology, and control architectures for robots. ER is a integrated method of robot

design, meaning that the robot (or robot swarm) is evolved as a single, cohesive

unit, as oppose to traditional engineering approaches which generally follow the

reductionist methodology of designing each of the robot’s functions (e.g. mapping,

path planning, kinematics, etc.) in isolation. Following a recent ER review article

by Doncieux et al [30], we consider our work on foraging robot swarms as it relates

to the state of the art in evolutionary robotics.

We generated a diverse set of foraging strategies by evolving our robot swarms in

different environmental contexts. This approach mitigated premature convergence

by providing an analogue of the archive system used in novelty search [75]. In this

case, the diversity of the environments functioned as the novelty metric, driving the

search process in order to produce a variety of different, efficient foraging strategies.
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According to Doncieux et al, environment-driven evolution also provides selection

pressure that can promote the development of novel foraging strategies, a hypothesis

that is empirically supported by our findings in this manuscript. Although ER aims

to design robots with “as little prior knowledge as possible,” Doncieux et al also

mention that “drawing inspiration from nature can be helpful” [30]. In fact, our

work demonstrates that efficient and flexible foraging strategies can emerge from

simple, biologically-inspired behaviors evolved in response to varied and complex

environments.

6.3 The Exploration-Exploitation Tradeoff

The fundamental challenge for designing robot swarms that forage efficiently is decid-

ing how to balance the tradeoff between exploration and exploitation. Foraging ant

colonies, as well as any other species of foraging animal, face similar challenges. More

specifically, i) how much time should be spent searching for new, previously undis-

covered resources (exploration), vs. ii) how much time should be spent identifying,

localizing, and returning to areas known to have high resource density (exploita-

tion). The goal of determining the optimal tradeoff, commonly presented as the

multi-armed bandit problem [45], is computationally intractable and has been inves-

tigated in numerous studies across a wide variety of disciplines, including machine

learning [4], economics [73], and philosophy [23].

In our work, the genetic algorithm is able to appropriately balance exploration

and exploitation for different environments by tuning a small set of behavioral pa-

rameters. We hypothesize that the GA’s ability to select efficient foraging strategies

for each resource distribution stems from the fact that the evolutionary process is

able to indirectly sample the environment via the local resource density sensing pro-

cedure. That is, repeated environmental sampling by individual robots facilitates
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an intensive testing of the behaviors governing information decisions (i.e. individual

memory and shared communication), and the GA responds to the results of this

testing (in the form of foraging efficiency) by promoting the strategies that provide

the most effective explore-exploit tradeoff for a given environment. An alternative

approach might be to attempt to balance exploration and exploitation in a more

direct, straightforward manner, for example with a single real-valued parameter con-

trolling the probability of exploring vs. exploiting. However, the lack of input from

the environment would prevent such an approach from discerning the characteristics

of different environments, and thus it would be difficult for this approach to achieve

efficient foraging for a variety of resource distributions. Instead, our approach unifies

the effectiveness of our foraging robot swarms with the environment in which they

are evaluated, and therefore ensures that selection pressure from the environment

drives the evolution of efficient foraging behavior (see Section 6.2 for a more detailed

discussion of this phenomena).

6.4 Extensions to Foraging Robot Swarms

We have developed several innovative extensions that use our swarm robotics system

to study new interdisciplinary problems, and to further our goal of reaching a wide

range of researchers, developers, and students.

6.4.1 Alternative Search Strategies Inspired by the Immune

System

Cells in the immune system protect biological organisms by quickly detecting and re-

moving pathogens that may otherwise cause harm. As with colonies of seed-harvester

ants, these immune cells have evolved strategies that enable them to efficiently search
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for pathogens in a variety of environments. We previously characterized the move-

ment patterns of T cells in the lymph node as following a heavy-tailed, Lévy-like

distribution [39]. This Lévy walk-based search strategy is particularly efficient at

finding target objects that are clustered, but sparsely distributed in space [132].

We modified our swarm robotics system to incorporate this T cell-inspired Lévy

walk as an alternative search strategy, and compared the efficiency of heavy-tailed

movement to the correlated random walk used in the CPFA [39]. As in previous

experiments with the standard CPFA, we evolved the step length of the Lévy walk

for efficient search on different target distributions. We observed a small, but statis-

tically significant improvement in efficiency for simulated robot swarms using heavy-

tailed search, and we saw repeated convergence of the evolved step length to a value

consistent with the heavy-tailed, Lévy-like walk observed in T cells.

Another collaborative study focused on T cells and robots that visit some lo-

cations more frequently than others [40]. Results of this study showed similar dis-

tributions of step length for T cells and robots, which may be indicative of some

underlying mechanism that is inherent to efficient spatial search in both biological

and mechanical systems. These results also support the existence of a previously

hypothesized adaptive T cell response to environmental cues, such as dendritic cells

(DCs) carrying antigen indicative of a foreign pathogen.

6.4.2 Alternative Recruitment Strategies Inspired by Forag-

ing Ants

Chemical pheromones provide foraging ants with a stigmergic, mass recruitment

method that is highly scalable, fully decentralized, and generally tolerant of envi-

ronments with little or no volatility. Robot swarms that mimic ant pheromones,

on the other hand, are restricted to foraging in tightly controlled environments that
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require complex, monolithic infrastructure. For example, swarm researchers have

constructed elaborate stigmergic mechanisms using an always-on ink pen and white

paper flooring [123]; a tightly-coupled video camera, video projector, and vision pro-

cessing system [44]; and a phosphorescent-painted floor combined with ultraviolet

light emitters [86].

Ants also use simpler, more primitive recruitment strategies such as tandem run-

ning and group raids, which include a local recruitment display to stimulate nest

mates to return to high-quality food patches [22]. Robot swarms mimic these short-

range recruitment strategies using robot-to-robot physical connections [72], nearest-

neighbor local communication [118], and robot-chain path formation [102]. These

swarms employ relatively simple communication schemes that do not require global

coordination or preexisting infrastructure in order to collectively forage for resources

or aggregate in target areas.

We recently used our swarm robotics system to demonstrate that nest recruitment

strategies are at least as efficient as pheromone recruitment strategies for many envi-

ronments [78]. Nest recruitment is relatively simple to implement in robot swarms,

while pheromone recruitment requires robot- and environment-specific infrastructure.

Further, the foraging success of nest recruiters depends only on local, agent-to-agent

communication, while pheromone recruiters often depend on global coordination

with a single point of failure. The results of this study suggest that research in

swarm robotics should focus less on mimicking ant stigmergy, and more on designing

and evaluating new decentralized information-sharing protocols that are more scal-

able and easier to implement in natural environments as foraging strategies for real

robots.
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6.4.3 Furthering Swarm Robotics Research and Technology

Through Student Competition

Successful exploration of the Moon, Mars, and asteroids requires the location and

retrieval of local resources on extraplanetary surfaces. Technologies are needed to

find and collect materials such as ice (convertible into liquid water, hydrogen fuel

and oxygen to support human life) and rocks, minerals and construction materials

to build human shelters. In-situ resource utilization (ISRU) will be dramatically

improved by robotic swarms able to efficiently locate, identify and collect resources

over large and previously explored territory.

To that end, we have recently received funding from NASA’s Minority University

Research and Education Project (MUREP) to present an innovative swarm robotics

challenge that pushes the state of the art in swarm robotics. Our cooperative NASA

Swarmathon competition, which includes a three-year $1.8 million grant, will chal-

lenge 1,000 students at 50 minority-serving institutions across the country to further

advance swarm robotics by programming teams of robots (Fig. 6.1) to autonomously

search for and retrieve resources in unmapped environments. This technology has

the potential to revolutionize space exploration programs that collect valuable ma-

terials. These samples have the potential to unravel mysteries about the origins of

life.

6.5 Future Work

This work proposes and tests several fundamental hypotheses about foraging robot

swarms. Even so, swarm robotics is a nascent field with numerous, equally significant

research questions to pursue. Here we consider additional research directions to

extend our existing swarm analysis as future work.
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Figure 6.1: The Swarmie hardware platform developed through a UNM partnership
with NASA Kennedy Space Center’s (KSC) Swamp Works laboratory. The Swarmie
platform is an integrated system with adaptive software and a simulator that al-
lows rapid testing of new algorithms in software and rapid porting to hardware for
verification in physical experiments.

We considered error tolerance in our system as the swarm’s ability to mitigate

noisy sensor data (i.e. errors in positional and resource detection information), but

robots that function outside of the laboratory must also tolerate the loss of sensor

and/or actuator functionality, as well as the complete loss of individual robots in

the swarm. Following Bjerkenes and Winfield [14], future studies should consider

a systematic study of fault tolerance in our system to assess the effect of hardware

failure on foraging efficiency, as well as the ability of the GA to tune robot behaviors

in order to mitigate these failures. Because some foraging behaviors are dependent on

emergent properties (e.g. pheromone recruitment), we predict that experimentally

measuring the mean time before failure (MTBF) in our foraging robot swarms would

provide a quantitative benchmark to estimate our system’s k-out-of-N reliability, the
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approximate number of robots required to maintain emergent behavior [14]. This

reliability metric should also be applied to future scalability studies (our previous

scalability experiments did not implement hardware failure) in order to generate

more accurate models of foraging efficiency for large swarms.

We previously demonstrated that our foraging strategies could be evolved in real

time in swarms of 12 simulated robots using a distributed coevolutionary framework

[57] based on work by O’Dowd et al [103]. Unpublished experiments with support

vector machine (SVM) classifiers have also shown promise for accurate prediction of

resource distributions given a small sample of the local resource density. Based on

these empirical observations of the strong statistical correlation between resource dis-

tribution and local resource density, we have additionally proposed a lifelong learning

architecture based on Ruvolo and Eaton’s work [115] that could adapt robot swarm

foraging strategies in real time using a cloud-based storage system. In future work,

we plan to fully implement one or more of these real-time evolution system in our

physical robot swarm, which would enable our swarm to adapt its behavior to previ-

ously unknown environments without the need for offline simulation and parameter

transfer.

Finally, we plan to explore the feasibility of incorporating unmanned aerial vehi-

cles (UAVs) with integrated cameras into our foraging robot swarm [13]. This type

of heterogenous swarm would extend the visual sensing range of our existing system,

in addition to significantly increasing the speed of local sensing. The top cover of

our recently introduced Swarmie robot platform (Fig. 6.1) would provide the UAVs

with an ideal “home base” from which to take off and land, as well as a charging

station and long-distance transportation system. This heterogeneous swarm would

be particularly advantageous in very large environments where ground-based search

is inefficient, but local, short-range sensing is still required to complete the task as-

signed to the swarm. Ideal tasks for this type of swarm could include environmental
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monitoring of farms or ecological research stations, locating and collecting water-ice

on the Moon, or mining of raw materials from near-Earth asteroids.
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Figure A.1: The best evolved parameters for simulated swarms of 1 to 768 robots for-
aging without sensor error on a power law distribution. (a) Swarm size versus prob-
ability of switching to searching behavior (ps) (slope = -0.058, R2 = 0.30, p = 0.10),
(b) swarm size versus probability of switching to traveling behavior (pr) (slope =
-0.00075, R2 = 0.79, p < 0.001), (c) swarm size versus uninformed search correlation
(ω) (slope = -0.035, R2 = 0.94, p < 0.001), (d) swarm size versus rate of pheromone
decay (λpd, Eq. 4.5) (slope = 0.011, R2 = 0.73, p = 0.0016), (e) swarm size ver-
sus probability of laying pheromone (Eq. 4.4: k ← 2, λ ← λlp) (slope = -0.040,
R2 = 0.84, p < 0.001), (f) swarm size versus probability of returning to a site (Eq.
4.4: k ← 2, λ ← λsf) (NS, p = 0.27), and (g) swarm size versus decay rate of
informed search (λid, Eq. 4.3) (NS, p = 0.38).
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Figure A.2: Statistical distributions of parameters evolved for simulated swarms of 1
to 768 robots foraging without sensor error on a power law distribution. (a) Swarm
size versus probability of switching to searching behavior (ps), (b) swarm size versus
probability of switching to traveling behavior (pr), (c) swarm size versus uninformed
search correlation (ω), (d) swarm size versus rate of pheromone decay (λpd, Eq. 4.5),
(e) swarm size versus probability of laying pheromone (Eq. 4.4: k ← 2, λ← λlp), (f)
swarm size versus probability of returning to a site (Eq. 4.4: k ← 2, λ← λsf), and
(g) swarm size versus decay rate of informed search (λid, Eq. 4.3). Gray dots indicate
outliers beyond interquartile range; an asterisk represents an outlier at ω = 9.3.
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