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Abstract

The main goal of radiation therapy is to deliver a lethal dose of radiation to the tar-

geted tumor while minimizing the radiation dose to the surrounding normal tissues

and critical organs. Modern cancer therapy has benefited enormously from computer

controlled treatment devices with increased precision and capability. However, this

increased sophistication also creates new challenges for treatment planning. As the

number of parameters in a treatment plan increases, the traditional computational

approaches are no longer adequate to fully exploit the potential of the latest treat-

ment devices. This is because at the heart of treatment planning is often a set of

substantially non-trivial constrained geometric optimization problems.

In this dissertation, we present a new optimization framework combining Parti-

cle Swarm Optimization (PSO) with deterministic optimization (e.g., least distance
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programming, non-negative least-square optimization, etc.). For our new PSO frame-

work, we moved away from the classical view of a particle representing a potential

solution of the optimization function; instead, we use the whole particle distribution

as the solution. We modeled tumors, critical organs and other tissues as geometric

volumes, whose surfaces have an associated potential function. The radiation source

is modeled as kinetic particles subject to the forces from the potential functions from

both the particles and the various geometric objects. The final configuration of the

swarm of particles including their trajectories is the treatment plan.

To demonstrate the potential of our new optimization paradigm, we have applied

it to Gamma Knife® radiosurgery and High-Dose Rate Brachytherapy (HDR) for

prostate cancer. Mathematically, Gamma Knife® radiosurgery is a ball-packing pro-

cess whose goal is to “pack” some spherical high dose volumes into a tumor volume,

while brachytherapy is to find the trajectories of some spherical high dose volumes.

Both problems are computationally intractable. Our new framework models the

spherical high dose volume as kinetic particles and simulates the “swarm” of these

particles through a potential field created based on medical constraints and prescrip-

tions. The resulting stable swarm, further refined by a deterministic optimization

algorithm (e.g., non-negative least squares and least distance programming), is the

final treatment plan.

In the medical field, the adoption of new technologies take several years (some-

times even decades) due to the long trials they undergo, their high complexity, the

lack of specific additional characteristics physicians demand or their high cost of in-

frastructure. As a consequence, Gamma Knife® radiosurgery and HDR brachyther-

apy treatment planning are mainly performed as manual processes by physicians,

despite the existence of algorithms that attempt to make them fully or partially

automatic. Our experiments with challenging simulated and real clinical data have

shown that our new framework significantly outperforms current clinical systems. In
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particular for Gamma Knife® radiosurgery, our algorithm is able to produce high

quality treatment plans that meet clinical standards. For HDR brachytherapy plan-

ning, our method can generate optimal (i.e., minimal and error tolerant) implant

trajectories, which is a feature that no known algorithm has attempted to solve.

Finally, we expect that due to the evidence shown in this dissertation, the sim-

plicity of implementing our framework, and the ease of understanding the concepts

of our approach, we will be able to widely impact the technologies currently being

used not only in Gamma Knife® radiosurgery and HDR brachytherapy, but also in

other radiation therapy modalities.
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reproduction, such as cancer cells.

Collimator is a device that usually consists of interleaved bars of a high density

material that is used to shape, trim and define the field size of a
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Chapter 1

Introduction

“The proof that the little prince existed is that he was charming, that he laughed,

and that he was looking for a sheep.

If anybody wants a sheep, that is a proof that he exists.”

—Antoine de Saint-Exupéry, The Little Prince.

Cancer is a wide spread disease that expresses itself through the errant growth of

abnormal cells. If the uncontrolled growth of these cells is not stopped, it can cause

death [12, 13]. As the worldwide cancer’s fatal trend increases, in 2015 alone, 589,430

deaths are expected due to cancer in America, which is almost 1,620 people per day

[13]. This along with the overall estimated cost of $216.6 billion USD for cancer

management [14] has led to an increased demand from the general public to develop

more effective tools and technologies for treating and curing the disease which include

radiation therapy, brachytherapy, particle therapy, and chemotherapy, among others.

With the rapid advancement of medical imaging, tumors are being diagnosed in early

stages when they are still local or regional. External beam therapy, radiosurgery and

1



Chapter 1. Introduction

brachytherapy are effective means to treat local-regional tumors [12, 15, 16, 17, 18,

19]. In this dissertation, we focus on two radiation therapy modalities: Gamma

Knife® Radiosurgery and High-Dose Rate Brachytherapy.

Radiation therapy is a modality of cancer treatment that uses ionizing radiation.

This type of ionizing radiation (e.g., high energy X-rays) damages the DNA and

causes cell death within the region being irradiated [4, 15, 9, 20, 21, 18, 22]. Hence,

the goal of radiation therapy is to deliver a radiation dose high enough to kill all

the targeted tumor cells while simultaneously minimizing the damage to surrounding

normal structures. The quality of a radiotherapy plan is usually judged by its dose

conformity and treatment time. The dose conformity describes how well the high

radiation dose region conforms to the targeted tumor and spares the surrounding

normal tissues, while treatment time describes how long treatment takes and the

efficiency of the treatment machines used. Any improvement in the dose conformity

in radiation therapy will likely improve tumor control and reduce the likelihood of

complications, and any improvement in treatment time will likely lower the treatment

cost and improve patient throughput and comfort.

Many types of ionizing radiation have been experimented through the history

of radiotherapy. These include high energy photons (e.g., γ-rays and high energy

X-rays), electrons, and charged particles heavier than electrons such as protons,

pions, alpha particles, carbon ions, and even antiprotons [15, 23, 12, 9, 18, 4]. In

terms of the energy deposited on matter along the path of this ionizing radiation,

they have different benefits and drawbacks. Figure 1.1 shows a depth-dose diagram

and compares the energy deposited (dose in relative dose units) in matter (water)

along the straight path (depth) followed by these ionizing radiations. The energy

deposited by carbon ions from radiation beams of 200 and 270 MeV is shown in red.

The energy deposited by a 60Co (cobalt-60) radiation source is shown in red, and the

energy deposited by photons of 25 MeV produced by a linear accelerator is shown in

2



Chapter 1. Introduction

Figure 1.1: Depth-dose diagram: Comparison high of energy photons vs. charged
particles energy beams [1]. Red: energy deposited by carbon ions from radiation
beams of 200 and 270 MeV. Green: energy deposited by a 60Co (cobalt-60) radia-
tion source. Black: energy deposited by photons of 25 MeV produced by a linear
accelerator. Dose units are relative and arbitrary.

black.

In order to provide dose conformity and efficient treatment time, radiotherapy

relies on specialized optimization algorithms, for instance simulated annealing, deter-

ministic optimization models such as linear programming, non-negative least squares,

linear programming, among others; genetic algorithms, neural networks, mixed inte-

ger linear programming, and graph algorithms, etc. Usually these algorithms try to

model all competing treatment goals and radiation source configurations as a unique

optimization problem. In this dissertation, we present a new optimization technique

that can be used for radiation therapy and radiosurgery. In particular, the algo-

rithm showcased in this dissertation combines the maturity and fast convergence of

deterministic optimization methods (e.g., non-negative least squares, least-distance

3
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programming, least squares optimization, etc.) with the flexibility of a stochastic

optimization method, i.e., particle swarm optimization (PSO).

In a nutshell, the classical PSO algorithm consists of an iterative algorithm that

uses the notion of individuals carrying potential solutions to the problem one is

trying to solve. A set of individuals comprise the swarm, and each individual, i.e., a

potential solution, in the swarm is represented by a multidimensional location vector

and a velocity vector. At each iteration, the location and the velocity vectors are

updated based on the current velocity and both the best location each individual has

explored and the global best location the swarm has explored. This process repeats

for a fixed number of iterations or until a desired minimum error is achieved or a

desired fitness level is achieved by one individual. Finally, the individual that has

visited the best location is the one carrying the optimal solution.

In our novel approach for radiation therapy planning, we do not use the classical

PSO modeling, where a particle or individual represents a potential solution of the

optimization problem; instead, the whole swarm is the solution we are looking for.

Tumors, critical organs, and other tissues are modeled as geometric volumes, whose

surfaces have an associated potential function. The radiation source is modeled as

kinetic particles subject to the forces from the potential functions from both the

particles and the various geometric objects. The final configuration of the swarm of

particles including their trajectories is the treatment plan. To demonstrate the effec-

tiveness of our model, we applied this new framework to two challenging radiation

therapy problems: Gamma Knife® radiosurgery inverse planning and high-dose rate

brachytherapy inverse planning for prostate cancer.

Gamma Knife®radiosurgery inverse planning: Radiosurgery is a radiation

therapy technique based on the principle that a single high dose of radiation delivered

precisely to a small area will arrest or kill the tumor. Hence, radiosurgeries usually

use a number of precisely aimed highly focused external beams of radiation to target
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a specific area [24]. Gamma Knife® radiosurgery uses the γ-ray radiations from

cobalt-60 (60Co) sources to eradicate tumors. The sources (typically about 200) are

arranged either in a torus or hemisphere (depending on the machine model), and

their emitted γ-rays are focused at a single point (called the iso-center or focus),

which creates a spherical high dose volume [25]. A Gamma Knife® procedure is

essentially a “ball-packing” process, where the goal is to pack the spherical high

dose volumes into a target tumor volume and create a radiation dose deposition that

conforms to the target tumor volume and spares the surrounding normal tissues and

structures. Even though there are some attempts to develop automatic planning

systems for Gamma Knife® the procedure is still planned by physicians manually

using a “trial-and-error” approach.

In our solution, the Gamma Knife® dose kernels are mapped to kinetic particles

inside the tumor with zero initial speed. After these particles stabilize, a non-negative

least squares algorithm is used to filter-out redundant radiation sources and efficiently

shape the final dose distribution. The prescribed dose is an input parameter provided

by the physician.

HDR brachytherapy inverse planning: Brachytherapy is a radiation ther-

apy modality in which the tumor is eradicated by placing small radioactive isotope

sources in short range of a tumor. We have applied our optimization technique to

the interstitial high-dose rate (HDR) brachytherapy treatment for prostate cancers,

which is the most common disease among men in the United States and the second

leading cause of death [26].

Generally speaking, HDR brachytherapy treatment involves the following key

steps. First, the physician inserts the interstitial catheters or implants (i.e., hollow

needles with bevel tips) inside the prostate under ultrasound guidance. After enough

needles (typically about 20) are placed, they are hooked up to an afterloader unit.

The afterloader (containing an iridium-192 (192Ir) source) then sends the radioactive
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source through the hollow needles one by one to deliver the radiation dose to the

target. A computer program, typically based on linear programming or simulated

annealing, is used to calculate the dwell-time of the source at each location along the

needles [27].

Not surprisingly, the biggest challenge for HDR brachytherapy for prostate cancer

is the needle placement. There are no computer algorithms to calculate the needle

positions. As a result, the needles are placed in real time and the physician tends

to use many more needles than necessary to ensure proper coverage of the entire

prostate. The drawbacks of using large number of needles are: (1) longer procedure

times, (2) longer patient recovery times, and (3) longer treatment times.

In our solution, we used nested particle swarming strategies to solve the HDR

inverse planning problem. First, kinetic particles with zero momentum are allowed

to stabilize in a cross-section of the tumor to establish the initial locations. Then,

an initial speed is assigned to each kinetic particle, which pushes these particles to

traverse the tumor along a desired direction. Finally, we map the path followed by

each particle to an implant trajectory and each discrete position in this path as a

potential position for a radioactive source. From these potential positions, the best

ones are selected through our filtering process that uses least distance programming.

The prescribed dose is an input parameter provided by the physician.

We have experimented our approach against a challenging simulated case of a

C-shaped tumor surrounding a critical spherical organ, which resembles brain tu-

mors usually treated with Gamma Knife® radiosurgery, and find that our method

produces high quality plans with respect to the clinical standard. In addition, we

show our experimental results with real patient data from prostate cancer cases.

Our method is able to determine optimal and reliable implant trajectories using a

minimal number of implants while meeting the prescription. It also allows flexible

configuration in order to obtain plans with different levels of dose homogeneity. To
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the best of our knowledge, there are no known algorithms that can minimize the

number of implants and optimize implant trajectories. The current commercial sys-

tem can only calculate dwell times once the implants are in place. Hence, we expect

the most important impact of our work will be to significantly improve HDR sys-

tems by providing the following key aspects: (1) optimal implant trajectories with

minimum number of implants; (2) real-time imaging to guide physicians for implant

placement; and, (3) real-time assessment for manual errors while placing needles.

The rest of this document is organized in the following manner: chapter 2 includes

the background information needed to better understand this document, i.e., basic

concepts and detailed information about radiation energies and radiation therapy

modalities, treatment planning systems and their components, and mathematical

optimization. Chapter 3 details our novel optimization technique. Then, chapters

4 and 5 show how our optimization technique was applied to Gamma Knife® ra-

diosurgery and high-dose rate brachytherapy for prostate cancer, respectively. In

each chapter, we provide details of each phase in our optimization and discuss the

results obtained. Finally, chapter 6 includes our conclusions and lightens the path

for future research.
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Background

“Only the children know what they’re looking for,” said the little prince.

“They spend their time on a rag doll and it becomes very important, and if it’s

taken away from them, they cry...”

—Antoine de Saint-Exupéry, The Little Prince.

2.1 Radiation Therapy

Radiological physics is the science that studies ionizing radiation and its interaction

with matter. The field began in the 1890s immediately following the discovery of X-

rays by Wilhelm Röntgen [28], radioactivity by Henri Becquerel [29], and radium by

the Curies [30]. The therapeutic use of radiation started as early as the discovery of

X-rays and radium, whereX-rays were used to treat a patient with breast cancer [15].

It can be argued that both external-beam radiation therapy as well as brachytherapy

started as early as the first applications of radiation in the medical field [31, 32].

The most important types of ionizing radiation for therapeutic usage are photons

(e.g., γ-rays and X-rays), electrons, hadrons (e.g., protons, alpha particles, carbon
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ions, etc.), and neutrons [23, 33, 2, 34]. In this disseration, we focus on two γ-

ray based radiation therapy modalities: Gamma Knife® radiosurgery (using γ-rays

from the radioactive decay of 60Co), and HDR Brachytherapy (using γ-rays from the

radioactive decay of 192Ir).

Photons deposit energy along their path through matter in such a way that higher

doses are deposited at short distances (e.g., the highest dose is deposited at 1.5 cm in

water). Figure 2.1 shows this behavior in a depth-dose diagram in water for different

types of photons and energies: 25 MeV, 10 MeV, 4 MeV, 1.33 MeV (i.e., 60Co),

and 511 keV (i.e., 3.0 mm Cu, copper, Half Value Layer) [23, 15, 2, 35]. Depth-

dose diagrams in water are especially useful in the context of radiation therapy since

we can assume that similar dose deposition will take place in soft tissues, which are

usually the composition of tumors and nearby organs. The photon energies produced

by 60Co sources are 1.17 and 1.33 MeV, and by 192Ir sources are mainly 0.296, 0.309,

0.317, and 0.468 MeV [32].

Figure 2.1: Photon beams - depth-dose diagram [2]. Dose deposition along the
photon path in water are shown for photon energies of 25 MeV, 10 MeV, 4 MeV,
1.33 MeV (i.e., 60Co), and 511 keV (i.e., 3.0 mm Cu Half Value Layer).
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2.1.1 Dose

One of the most important concepts in radiological physics is absorbed dose (or

simply dose). Generally speaking, the absorbed dose D is the amount of energy

deposited by the incident radiation in a medium per unit mass. The mathematical

definition of dose is

D =
dE

dm
, (2.1)

where dE is the differential of energy deposited in a mass differential dm. The SI

unit for absorbed energy is
[
J/kg
]

or gray [Gy][2]. In radiation therapy, the unit

centigray ([cGy]), which equals to 0.01 Gy, is also commonly used.

2.1.2 Gamma Knife® radiosurgery

Radiosurgery is a radiation therapy modality originally developed by Professor Lars

Leskell of the Karolinska Institute in Sweden in the 1950s. It is a minimally inva-

sive technique aiming to perform surgery-like radiation treatment by delivering an

extremely high dose of radiation precisely to a selected area or region [24].

One radiosurgery modality is the Gamma Knife® radiosurgery. Each year, about

sixty thousand patients receive this treatment from over hundreds of Gamma Knife®

centers worldwide [36, 37]. In Gamma Knife® radiosurgery, γ-rays from the radioac-

tive decay of 60Co are used to eradicate tumors. The 60Co sources, which range from

30 to 200, are arranged either in a torus or hemisphere (depending on the machine

model). The γ-rays emitted from these sources are collimated and focused at a single

point called the iso-center or focus. Figures 2.2, 2.3, and 2.4 show the dose distri-

butions and dose iso-contours of the spherical dose kernels generated at the focus of

10



Chapter 2. Background

a Gamma Knife® unit (for radii 4, 8, and 16mm respectively) when all collimators

are open [4, 36, 38, 25].

20 40 60 80 100 120

20

40

60

80

100

120

Gamma Knife - 4mm - Dose Kernel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gamma Knife - 4mm - Dose Kernel Contour

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.2: Top: Elekta Gamma Knife® 4mm dose kernel. Bottom: Elekta Gamma
Knife® 4mm dose kernel contours. Grid resolution is 0.5 x 0.5 mm2. The kernel
has been normalized to the highest dose from the 16mm dose kernel.

11



Chapter 2. Background

20 40 60 80 100 120

20

40

60

80

100

120

Gamma Knife - 8mm - Dose Kernel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gamma Knife - 8mm - Dose Kernel Contour

20 40 60 80 100 120

20

40

60

80

100

120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.3: Top: Elekta Gamma Knife® 8mm dose kernel. Bottom: Elekta Gamma
Knife® 8mm dose kernel contours. Grid resolution is 0.5 x 0.5 mm2. The kernel
has been normalized to the highest dose from the 16mm dose kernel.
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Figure 2.4: Top: Elekta Gamma Knife® 16mm dose kernel. Bottom: Elekta
Gamma Knife® 16mm dose kernel contours. Grid resolution is 0.5 x 0.5 mm2.
The kernel has been normalized to its highest dose value.
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Figures 2.5, 2.6, and 2.7 show an Elekta Gamma Knife® machine. Figure 2.5

shows the schematic of this machine. During treatment, the patient lies on a re-

tractable table (patient’s support). The patient’s head is fixed to a helmet (depend-

ing on the version of the machine the helmet may not be present). The upper and

lower doors open and the table carries the patient focusing the region to be treated

into the focus or isocenter where a high dose radiation is delivered. Figure 2.6 shows

the treatment room with the treatment chamber closed. Figure 2.7 shows a pa-

tient attached to the helmet immobilizer lying on the retractable table entering the

treatment chamber.

Figure 2.5: Elekta Gamma Knife® Schematic - the patient lies on the patient’s
support with his/her immobilized head in the helmet, then the patient is moved
inside the chamber where treatment takes place [4].
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Figure 2.6: Elekta Gamma Knife® machine [3].

Figure 2.7: Elekta Gamma Knife® - patient support and collimator helmet [3].
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A Gamma Knife® procedure is essentially a “ball-packing” process, where the

goal is to pack the spherical high dose volumes into a target tumor volume and create

a radiation dose deposition that conforms to the target tumor volume and spares the

surrounding normal tissues and structures. Even though there are some attempts to

develop automatic planning systems for Gamma Knife® radiosurgery planning, for

instance, the one developed by D. M. Shepard from the University of Maryland School

of Medicine [39] which is an algorithm for finding optimal beam configurations, the

procedure is still planned by physicians manually using a “trial-and-error” approach

guided by a computer system.

The current Elekta treatment planning system, Gammaplan® 10, performs

Gamma Knife® radiosurgery planning as a two-step process. First, the target is

preprocessed through a packing algorithm that allows the use of templates, i.e., the

result of a precomputed collimator set-up of its radioactive sources, also known as

kernels, to fill in the tumor. This algorithm focuses on the geometry of this template

up to an iso-dose line of tolerance. Usually, plans that target 50% of the iso-dose

line target dose to the tumor are accepted clinically. In other words, 50% of the

prescribed dose has to cover the tumor [39]. After filling is done, a stochastic opti-

mization algorithm (simulated annealing) is run such that the position and weight of

each template is optimized according to the prescribed dose provided by physicians

[40].

In this work, we follow the two-step process commonly used for Gamma Knife®

radiosurgery treatment planning systems and use pre-computed dose kernels (see

figures 2.2, 2.3 and 2.4). These pre-computed dose kernels are calculated in water,

i.e., a homogeneous medium. Figure 2.2 shows a heat-map of the center cross-section

on top and its iso-dose contour on the bottom for the 4 [mm] dose kernel. Figures 2.3

and 2.4 do the same for 8 and 16 [mm] dose kernels, respectively. The shown kernels

are normalized with respect to the highest dose from the 16 [mm] dose kernel.
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2.1.3 Brachytherapy

Brachytherapy is the application of ionizing radiation from small radio isotope

sources at short range to a tumor. There are three ways to apply this treatment:

surface mold, interstitial treatment, and intracavity or intraluminal treatment. In

Surface mold, an applicator is used to mold the surface to be treated and sources

are fixed to it. This technique is used to treat superficial tumors such as ocular

melanoma. In Interstitial treatment, sources are implanted either directly to tissues

or through catheters that are previously inserted into the target. Last, in Intracav-

ity treatment, applicator devices carrying radiation sources are inserted into body

cavities [31, 4, 10].

Historically, radium and radon sources were used in brachytherapy treatment

until the 1950s when artificially produced nuclides such as cesium-134 (137Cs), 192Ir,

60Co, gold-198 (198Au), and iodine-125 (125I) became available [31, 41, 9]. Brachyther-

apy sources can be placed either permanently using radionuclides with short half-life

(e.g., 198Au and palladium-103 (103Pd)) that stay in the tissue until their activity

decays, or temporarily using sources of a higher activity (e.g., 192Ir and 137Cs) that

are removed after the prescribed dose is delivered [31, 10]. Brachytherapy treatment

can also be characterized by the energies used, i.e., low dose rate (LDR) brachyther-

apy energies range from 0.4 to 2
[
Gy/h

]
. Medium dose rate (MDR) brachytherapy

energies range from 2 to 12
[
Gy/h

]
. Finally, high-dose rate (HDR) brachytherapy

energies exceed 12
[
Gy/h

]
[31, 42].

In this study, we focus on interstitial high-dose rate (HDR) brachytherapy treat-

ment using temporary implants and remote-controlled after-loading systems, which

is one of the popular treatment modalities of prostate cancer [43, 44]. Prostate

cancer is the most common disease among men in the United States aside from non-

melanoma skin cancer and it is the second leading cause of death behind lung cancer.
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This year alone, about 220,800 new cases will be diagnosed and about 27,540 men

will die due to this illness [26, 13].

HDR brachytherapy treatment typically takes place in three phases: catheter

placement, imaging and contouring, and dose delivery. Imaging usually comes from

computer tomographies (CTs) or ultrasounds. The patient is prepared for surgery

where the physician is responsible for placing the interstitial catheters (catheter place-

ment) inside the prostate, guided by a grid applicator fixed to the patient and ultra-

sound imaging. Once enough catheters have been placed, a computer tomography

(CT) image is taken (imaging) to accurately account for the location of the catheters,

and contouring is made by the physician aided by computer systems. Finally, dose

delivery takes place following the instructions generated in the treatment planning

system used. These instructions describe how the after-loading mechanism should

place the radiation sources into each interstitial catheter.

Dose Calculation for brachytherapy radiation sources

The calculation of dose distributions for common radiation source implants is

done following The American Association of Physicists in Medicine (AAPM) Task

Group No. 43 recommendations, which provides an analytical dosimetry formalism

to perform both 2D (cylindrically symmetric line source approximation) and 1D

(point source approximation) dose calculations [5, 45, 46, 47, 48, 49, 32].

In this study, we focus our attention on the 2D cylindrically symmetric line source

approximation. The source is assumed to be a line segment of length L, and the dose

deposited (dose rate) in the 2D plane can be calculated using

Ḋ (r, θ) = SK · Λ ·
GL (r, θ)

GL (r0, θ0)
· gL (r) · F (r, θ) , (2.2)

where r denotes the distance in [cm] from the center of the source to the point of
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interest, and r0 is a reference distance specified to be 1 [cm]. θ is the polar angle

at the point of interest Ḋ (r, θ) relative to the source longitudinal axis Z. The angle

θ0 is π/2 and is a reference angle that defines the source transverse plane. Figure

2.8 shows the schematic of the coordinate system used for brachytherapy dosimetry

calculations.

Figure 2.8: Coordinate system used for brachytherapy dosimetry calculations [5].
In red, the implant is shown as a line of length L. The dose rate at any position,
Ḋ (r, θ), is calculated with respect to the angles θ1 and θ2 and the dose rate at a
known position Ḋ (r0, θ0) which is perpendicular to the implant’s axis.

Air-kerma strength is defined by

SK = K̇δ (d) d2, (2.3)

as the air-kerma rate, K̇δ (d), due to photons of energy greater than δ in vacuum at

distance d. It has unit 1 U = 1 µGy ·m2/h.
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Dose-rate constant is the dose rate in water at a distance of 1 [cm] on the transverse

axis of a unit air-kerma strength source. The following equation,

Λ =
Ḋ (r0, θ0)

SK
, (2.4)

is the mathematical expression for dose-rate constant.

Geometry function is defined by

GL (r, θ) =

 β
Lr sin θ

if θ 6= 0◦, β = θ2 − θ1,(
r2 − L2/4

)−1
if θ = 0◦,

(2.5)

for a line-source approximation. The purpose of this function is to improve accuracy

from interpolated data obtained from discrete points.

Radial dose function is defined by

gX(r) =
Ḋ (r, θ0)

Ḋ (r0, θ0)

GX (r0, θ0)

GX (r, θ0)
. (2.6)

It accounts for the effects of photon absorption and scatter in the medium along the

transverse axis of the source. Table 2.1 shows the data used for the MicroSelectron-

HDR 192Ir source (mHDR-v2r) dose calculation.
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r, [cm] gX(r)
0.1 1.004
0.2 1
0.3 1.001
0.5 1
1 1

1.5 1.003
2 1.007

2.5 1.008
3 1.008
4 1.004
5 0.995
6 0.981
7 0.964
8 0.94
9 0.913
10 0.882
11 0.844
12 0.799
13 0.747
14 0.681

Table 2.1: Radial dose function, gX(r), for Nucletron® HDR 192Ir source.

2D anisotropy function is defined by

F (r, θ) =
Ḋ (r, θ0)

Ḋ (r0, θ0)

GL (r, θ0)

GL (r, θ)
. (2.7)

It describes the variation in dose as a function of the polar angle relative to the

transverse plane.

Air-kerma strength, dose-rate constant, radial dose function, and 2D anisotropy

function can be looked up in tables or in the description of the source/implant to

be used. Tables 2.2 and 2.3 show the tabulated data for 2D anisotropy function,
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F (r, θ), for the Nucletron® HDR 192Ir source (mHDR-v2r). For all r or θ values

within range and not tabulated, linear or bilinear interpolation is used. For values

outside the range, nearest neighbor extrapolation is recommended [32].

aaaaaaaaaaaaa

θ
in degrees

r
[cm] 0.25 0.5 1 2 3 5

0 0.729 0.667 0.631 0.645 0.66 0.696
1 0.73 0.662 0.631 0.645 0.661 0.701
2 0.729 0.662 0.632 0.652 0.67 0.709
3 0.73 0.663 0.64 0.662 0.679 0.718
4 0.731 0.664 0.65 0.673 0.69 0.726
5 0.733 0.671 0.661 0.684 0.7 0.735
6 0.735 0.68 0.674 0.696 0.711 0.743
7 0.734 0.691 0.687 0.708 0.723 0.753
8 0.739 0.702 0.7 0.72 0.734 0.763
10 0.756 0.727 0.727 0.745 0.758 0.782
12 0.777 0.751 0.753 0.769 0.781 0.804
14 0.802 0.775 0.778 0.791 0.802 0.822
16 0.82 0.797 0.8 0.812 0.822 0.84
20 0.856 0.836 0.839 0.846 0.854 0.872
24 0.885 0.868 0.869 0.874 0.877 0.888
30 0.92 0.904 0.902 0.907 0.906 0.911
36 0.938 0.93 0.929 0.931 0.934 0.933
42 0.957 0.949 0.949 0.955 0.956 0.954
48 0.967 0.963 0.965 0.965 0.969 0.965
58 0.982 0.982 0.982 0.982 0.983 0.978
73 0.994 0.997 0.997 0.998 0.996 0.985
88 0.997 1.001 1 1 1 1.001
90 1 1 1 1 1 1

Table 2.2: 2D anisotropy function, F (r, θ), for Nucletron® HDR 192Ir source.

MicroSelectron-HDR 192Ir source (mHDR-v2r)

In our work, we used the microSelectron-HDR 192Ir source (mHDR-v2r) which is built

by Nucletron® B.V. in The Netherlands. This radiation source is used worldwide
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aaaaaaaaaaaaa

θ
in degrees

r
[cm] 0.25 0.5 1 2 3 5

103 0.995 0.995 1.001 0.999 1 0.995
118 0.987 0.987 0.987 0.989 0.989 0.983
128 0.974 0.972 0.976 0.976 0.98 0.979
133 0.969 0.961 0.966 0.965 0.973 0.973
138 0.957 0.949 0.952 0.952 0.959 0.96
143 0.942 0.933 0.935 0.935 0.944 0.941
148 0.924 0.912 0.914 0.915 0.924 0.926
153 0.899 0.886 0.887 0.889 0.899 0.905
158 0.873 0.85 0.85 0.856 0.863 0.87
165 0.806 0.779 0.778 0.791 0.801 0.816
169 - 0.725 0.723 0.741 0.754 0.785
170 - 0.71 0.707 0.727 0.742 0.774
172 - 0.678 0.675 0.697 0.714 0.748
173 - 0.662 0.657 0.682 0.7 0.733
174 - 0.642 0.64 0.667 0.686 0.72
175 - 0.623 0.624 0.652 0.672 0.707
176 - 0.605 0.608 0.637 0.658 0.695
177 - 0.606 0.594 0.624 0.645 0.686
178 - 0.608 0.586 0.612 0.634 0.675
179 - 0.609 0.585 0.604 0.624 0.665
180 - 0.609 0.585 0.603 0.622 0.662

Table 2.3: 2D anisotropy function, F (r, θ), for Nucletron® HDR 192Ir source (cont.).

[45, 6] and has 3.5 [mm] of active length, and its dose-rate constant is Λ = (1.109±

0.012)
[
cGy h−1 U−1

]
. The active source is encapsulated and attached to a stainless

steel retractable cable of 0.7 [mm] of diameter. Figure 2.9 shows the design of the

source, and figure 2.10 shows the final dose distribution calculated using The AAPM

Task Group 43 2D formalism.
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Figure 2.9: Nucletron® HDR 192Ir model mHDR-v2r. The active radiation source
is shown in gray, the encapsulation is shown as a dashed surface, and the retractable
cable and its support are shown in dashed green and black respectively. All mea-
surements are in mm. The drawing is not to scale [6].
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Figure 2.10: Nucletron® HDR 192Ir model mHDR-v2r dose distribution cross-
section iso-contour from 1% to 100% every 1%. Dose calculation was performed
using The AAPM Task Group 43 2D formalism in a grid of 2 x 2 mm2 resolution.
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2.2 Treatment Planning

Modern radiation therapy treatment planning typically involves the following set of

steps: patient imaging, target definition (i.e., structure contouring), dose prescrip-

tion, beam configuration optimization, plan generation, and quality assurance [50].

Imaging is performed by taking computer tomography scans (CT scans), mag-

netic resonance imaging (MRI), positron emission tomography (PET), ultrasound or

combinations of these depending on the type of cancer. CT scan is the most widely

used imaging modality and can provide anatomical information of the patient (see

figure 2.11). Once these images are obtained, physicians contour the tumor and

organs at risk (OARs) as well as prescribe the desired dose to treat the tumor.

Figure 2.11: Lateral cut (CT scan) of a human head.

Modern radiation therapy relies on computer based optimization algorithms and

software to generate the beam configuration for delivering the prescribed treatment.

Generally speaking, a treatment planning system includes the following functionali-

ties in order to provide an optimal treatment:
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• Patient Representation: the computational model of a patient is repre-

sented as a three dimensional voxel array with resolution inherited from the

type of imaging used (e.g., 1mm × 1mm × 1mm). While contouring is per-

formed, each voxel is associated with a particular structure which allows the

identification of tumor voxels (target) versus organ-at-risk voxels.

• Ideal Dose Distribution: Aided by the prescription obtained from the physi-

cians, a desired dose distribution is generated. A desired dose distribution usu-

ally consists of a maximum and minimum dose tolerance per structure. There

are many ways to represent this ideal dose distribution. For this study, we

shall assume the ideal dose distribution as two three-dimensional array of dose

values corresponding to a maximum and minimum tolerance per structure’s

voxel.

• Preparation for Dose Calculation: The goal of treatment planning is to

select a subset of beam configurations (e.g., beam energies, locations, angles,

size, etc.) from a set of candidate beam configurations that can meet the

ideal or prescribed dose distribution. Beam configurations are usually selected

using randomized sampling or by applying other optimization algorithms. Once

beam configurations are selected, the dose contribution from each candidate

beam configuration is calculated before beam-on time optimization. This fact

imposes a constraint on the cardinality of the candidate beam configurations

set, since it is a process bounded by the amount of memory RAM available in

the system.

• Optimization Problem: The conceptual optimization problem in radiation

therapy can be stated as

minimize
t

∥∥∥∥∥∥
∑
j

Ḋjtj −D∗
∥∥∥∥∥∥
1

subject to tj ≥ 0, (2.8)
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or

minimize
t

∥∥∥∥∥∥
∑
j

Ḋjtj −D∗
∥∥∥∥∥∥
2

2

subject to tj ≥ 0, (2.9)

where D∗ is the ideal dose distribution or prescribed dose. Ḋj is the dose rate

contributed by the j−th candidate beam, and tj is the weighting or beam-on

time for the j−th beam. The constraint tj ≥ 0 reflects that the beam-on time

must be non-negative. Thus the goal of the optimization is to find the beam-on

times tj so that the created dose distribution
∑

j Ḋj × tj is as close to D∗ as

possible. Many metrics can be used to model the “closeness” (L1 and L2 norms

are shown in equations 2.8 and 2.9, respectively), for example the non-negative

least square problem [51] as shown in equation 2.9. The L1 norm is defined by

‖x‖1 =
n∑

m=1

|xm|, (2.10)

and the L2 norm, also know as the Euclidean distance, by

‖x‖2 =

√√√√ n∑
m=1

|xm|2. (2.11)

In certain situations, there may be an additional constraint, such as the total

beam-on time,
∑

j tj, must be below a certain threshold, t0,
∑

j tj ≤ t0. The

new optimization problem is a constrained least square problem [51].

• Plan generation: after optimization is over, the optimal result is processed in

order to generate a set of instructions compatible with the radiation modality

and technology used.

After a plan has been generated, physicians and medical physicists work together

reviewing the plan. Then, they perform machine calibration and plan testing as part

of quality assurance.
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2.3 Optimization

Optimization is a fundamental tool in science, and it can be defined as the system-

atic process to achieve a pre-specified purpose. Generally speaking, the purpose is

related to two states: maximize a benefit or minimize an effort. In exact sciences,

optimization is highly coupled with mathematical models that describe a problem in

terms of input or unknown variables and output or desired results. This functional

representation allows for the construction of theoretical and numerical methods that

explore the search space of possible solutions to find the unknown variables efficiently

[52, 53, 54].

The classical mathematical optimization problem can be stated as

minimize or maximize
x

f(x) ∀x ∈ X, (2.12)

where given a function f(x) : x ∈ X 7→ Y; the goal is to find an x∗ ∈ X such

that: ∀x ∈ X, f(x∗) ≤ f(x) when minimizing or f(x∗) ≥ f(x) when maximizing.

f(x) is called the objective function, x is referred to as the decision variable or

unknown variable. The general mathematical optimization function described (see

equation 2.12) is also known as an unconstrained optimization problem since no

restrictions are imposed on the domain of f , X. Hence, if a restriction is imposed on

X, for instance, x ≥ 0, then the problem is categorized as a constrained optimization

problem. Consider the following equation

minimize
x

f(x)

subject to cj(x) ≤ 0, j = 1, . . . ,m,

cj(x) = 0, j = m+ 1, . . . ,m+ k,

(2.13)
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It shows the general form for a constrained optimization problem. The restrictions

cj(x) correspond to a set of constraints as a function of x [55].

Optimization algorithms are classified according to different aspects of their for-

mulation, for instance, according to the nature of their objective function, they can

be linear, non-linear, quadratic, convex, concave, differentiable, non differentiable,

etc. According to the domain of the decision variables, they can be continuous or

discrete. In addition, they can be classified according to the method of operation

into two groups: deterministic and probabilistic algorithms.

Deterministic algorithms are used when there exists a clear understanding of

the characteristics of the possible solutions and their utility for a given problem.

When there is not a clear understanding of a possible solution and its utility or the

search space has high dimensionality, these algorithms may not succeed in finding

a solution. Then, probabilistic algorithms are used [56, 55, 57]. Probabilistic or

stochastic algorithms are those that sample the space of possible solutions for a

given problem and through heuristics iteratively improve the solution.

In our work, we use a combination of both optimization classes. First we use a

probabilistic algorithm: particle swarm optimization; and then, once we have lowered

the complexity of the search space, we use deterministic algorithms: least-distance

programming, non-negative least squares, least squares, etc. to refine our result.

2.3.1 Deterministic Optimization

Deterministic optimization algorithms refer to those algorithms that at a certain

step of their execution have at most one way to proceed; if there is not one, then the

algorithm terminates [56]. We detail non-negative least squares and least-distance

programming because they are suitable for the type of optimization problems we

discuss in this dissertation.
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Non-negative least squares (NNLS)

Non-negative least squares is a constrained optimization algorithm. It is formulated

as

minimize
x

‖Ax− b‖2

subject to x ≥ 0,
(2.14)

where A is a m × n matrix and both x and b are n × 1 vectors [51]. The goal is to

find a vector x such that Ax gets as close as possible to b, minimizing their squared

difference. There are several numerical methods that solve a non-negative least

squares problem, for instance the one implemented in Matlab® , which is based on

the QR-factorization of matrix A and is an implementation of the method proposed

by Charles L. Lawson and Richard J. Hanson in their book “Solving Least Squares”

[51].

Least-distance programming

Least-distance programming is a constrained optimization algorithm. It is formulated

as

minimize
x

‖x‖

subject to Cx ≥ d,
(2.15)

where x is a n × 1 vector, C is a n ×m matrix, and d is a n × 1 vector [51]. The

goal is to find the smallest (in length, with respect to the norm being used) vector

x such that the linear constraints are met. The algorithm proposed on Lawson’s

and Hanson’s book (please refer to [51] for more details) consists of solving a related
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NNLS problem. Consider

minimize ‖Eu− f‖2 subject tou ≥ 0, (2.16)

where E =

 CT

dT

 is (n+ 1)×m matrix and consists of an augmented matrix with

the transposed values from C and d, and f = [0, · · · , 0, 1]T is a (n+1)×1 augmented

vector with the initial n elements zero and the n+ 1 element 1. Now, consider

r = Eu∗ − f, (2.17)

where u∗ is the optimal solution of 2.16. Then, the optimal solution to 2.15 is

computed as follows: if ‖r‖ = 0 computation is completed with no solution, otherwise

x∗, the optimal solution for the initial problem, is updated with the values from r,

x∗j =
−rj
rn+1

. Notice that r is a (n+ 1) vector.

2.3.2 Probabilistic Optimization

Probabilistic or stochastic optimization algorithms perform a guided search through

the solution space, testing the “fitness” of each candidate solution from an initial

random population [55]. These algorithms usually follow a common procedure as

shown in table 2.4, where the fitness of each individual of the population is evaluated,

and then a new population is created, using heuristics, based on one individual or

many individuals with the highest fitness. In particular, particle swarm optimization

follows this pattern and is studied in more detail in the following section.
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Data: Initial Population, P0, Maximum time, Tmax.

Result: Pt.

Set t← 0;
repeat

Evaluate Pt ;
Set t← t+ 1;
Update Pt using Pt−1;

until A fitness condition is met on Pt or t exceeds Tmax;
Return Pt;

Table 2.4: Classical Probabilistic Optimization Algorithm. Given both an initial
population and a maximum iteration time, the algorithm updates the next population
based on the characteristic of the given problem to solve. Once a certain fitness
condition is met, the current population is returned.

Particle Swarm Optimization

Particle swarm optimization (PSO) is an stochastic optimization algorithm and is

considered a modern method for solving complex problems. It was first proposed

by Eberhart and Kennedy in 1995 in the context of solving continuous nonlin-

ear functions. Eberthart and Kennedy’s PSO algorithm was the result of realiz-

ing that the behavior of social behavior simulators (bird flocking, fish schooling,

and swarming theory in general), where subjects have a location, speed or accel-

eration, and interactions among them, could serve as an optimization algorithm

[58, 53, 59, 54, 7, 60, 61, 62, 63, 64, 65, 66].

In a nutshell, PSO consists on a iterative algorithm where each individual in the

swarm is represented by a multidimensional vector of its location (i.e., a potential

solution of the optimization problem), associated with a velocity vector that will

determine its next position. This velocity vector is updated based on the current

velocity and both the best location the individual and the global best location the

32



Chapter 2. Background

swarm has explored. This process repeats until a fixed number of iterations or until

a desired minimum error is achieved [58, 53, 59, 54, 7, 60, 61, 62, 63, 64, 67, 65, 66].

Since the initial formulation of PSO, the variations and applications of PSO have

exploded exponentially demonstrating the vast potential of applications that this

method possesses. Figure 2.12 shows the number of journal papers related to the

words “particle swarm” published from 2000 to 2008 in Elsevier, Springer and IEEE

[7].

Figure 2.12: Number of journal papers with the term “particle swarm” in their titles,
published by Elsevier, Springer, and IEEE, during the years 2000-2008 [7].

Algorithm

Formally, the classical particle swarm optimization is formulated as follows:

• Let A ⊂ Rn be the search space, and fi = f(xi) : xi ∈ A → f(xi) ∈ Y ⊆ R

be available for all xi.
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• Let S be the swarm of N particles (potential solutions) be defined as S =

{x1, x2, . . . , xN}.

• Let xi = (xi1, xi2, . . . , xin)T ∈ A, i = 1, 2, . . . , N .

• Let each xi be associated to a vi, such that vi = (vi1, vi2, . . . , vin)T , i =

1, 2, . . . , N .

• Let t denote the iteration counter, hence the position and velocity of the ith

particle at iteration t is xi(t) and vi(t), respectively.

• Let P be the set that stores the current best positions of particles, i.e. P =

{p1, p2, . . . , pN} which contains best positions pi = (pi1, pi2, . . . , pin)T ∈ A,

i = 1, 2, . . . , N . Each pi(t) is defined as pi(t) = arg min
t

fi(t).

• Let g be the index of the best position with the lowest function value in P at

iteration t, i.e. pg(t) = arg min
i

fi(pi(t)).

As shown in the pseudo-code in table 2.5, each particle’s location and velocity

get updated at iteration t+ 1 by

vij(t+ 1) = vij(t) + α1 · ϕ1 · (pij(t)− xij(t)) + α2 · ϕ2 · (pgj(t)− xij(t)), (2.18)

and

xij(t+ 1) = xij(t) + vij(t+ 1), i = 1, 2, . . . , N. j = 1, 2, . . . , n. (2.19)

The parameters ϕ1 and ϕ2 are random variables uniformly distributed in the interval

[0, 1]. α1 and α2 were initially considered to have the same value, α = α1 = α2, but

latter they were divided and now, they are known as the cognitive and the social
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parameters, respectively. The new best positions at iteration t + 1 are updated

following the update rule

pi(t+ 1) =

 xi(t+ 1), if f(xi(t+ 1)) ≤ f(pi(t))

pi(t), otherwise.
(2.20)

Data: Number of particles, N ; swarm, S, best positions, P .

Result: Pg.

Set t← 0;
Initialize S and set P ≡ S;
Evaluate S and P , and define index g of the best position;
while termination criterion not met do

Update S using equations 2.18 and 2.19;
Evaluate S;
Update P and redefine index g;
Set t← t+ 1;

end
Return Pg;

Table 2.5: Classical PSO Pseudocode [7]. Given a initial particle swarm, a new
swarm configuration is calculated based on both the best location visited by each
particle and the best global location visited by the swarm. Once a certain fitness or
termination criterion is achieved the fittest particle is the solution.

Variations

In order to control that a particle does not step outside A, i.e., the solution search

space, one simple variation proposed is to clamp the particle at its boundary. Hence,
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if A is restricted by rectangular boundaries, A = [a1, b1]× [a2, b2]× · · · × [an, bn],

xij(t+ 1) =

 ai, if xij(t+ 1) < aj,

bj, if xij(t+ 1) > bj, i = 1, 2, . . . , N. j = 1, 2, . . . , n,
(2.21)

controls that particles stay within the desired search space.

Since its conception, the classical PSO algorithm has been refined in order to

improve convergence, as well as its search capabilities. Due to the great deal of

applications found in this topic, we focus on the historically general enhancements

of the algorithm that have lead to the modern general PSO algorithm used in most

applications today [64, 54, 7, 61].

It is important to mention that there are several variations of the algorithm

that specialize on the way particles interact, e.g., charged swarms [66], and multi-

swarms [65]; and, others, on the computational performance to solve large scale data

problems using parallel and graphics processing units (GPU) [68, 69]. Latter in

next chapter, we will discuss an interesting physical formulation made by Mikki and

Kishk, when they argue about the close relationship between the state of physical

systems and PSO [53].

Swarm Explosion: After the first formulation of the PSO algorithm, researches real-

ized that as the number of iterations increased, t ← t + 1, velocity magnitude kept

increasing, resulting in swarm divergence. The solution to this problem included

adding a threshold verification to the velocity, after its evaluation (please refer to

equation 2.18 in pseudo-code in table 2.5). The verification statement is perform by

|vij(t+ 1)| ≤ vmax, i = 1, 2, . . . , N. j = 1, 2, . . . , n, (2.22)
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and

vij(t+ 1) =

 vmax, if vij(t+ 1) > vmax,

−vmax, if vij(t+ 1) < −vmax.
(2.23)

Depending on the problem being solved, one can choose from using a unique maxi-

mum velocity,

vmax =
min
i
bi − ai
k

, (2.24)

or individual maximum velocities per particle,

vmax,i =
bi − ai
k

i = 1, 2, . . . , n. (2.25)

The parameter k is commonly chosen to be 2.

Inertia Weight: PSO algorithm showed additional convergence problems while ex-

ploring promising solutions which led to a key observation, “refined search in promis-

ing regions requires strong attraction of the particles towards them, and small po-

sition changes to control particles from escaping their close vicinity” [7]. For this

purpose, a new parameter was introduced, w, or inertia weight. Equation 2.18 is

replaced by

vij(t+ 1) = w(t) · vij(t) +α1 ·ϕ1 · (pij(t)−xij(t)) +α2 ·ϕ2 · (pgj(t)−xij(t)). (2.26)

The inertia

w(t) = wup − (wup − wlow) · t

Tmax
(2.27)
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is generally decreased as the algorithm approaches the maximum number of itera-

tions, Tmax. wup and wlow are upper and lower bounds of w.

Neighborhood influence: One problem that the previous observation generated was

fast convergence, i.e., the algorithm was susceptible to the loss of particle diversity

due to the presence of local minima. This issue was an effect due to the influence

of the best global solution, pgj, known at iteration t. Hence, in order to reduce the

amount of knowledge about the global best solution, particles were only allowed to

share its best local solution within a neighbor topology. Equation 2.26 is rewritten

as

vij(t+ 1) = w(t) ·vij(t) +α1 ·ϕ1 · (pij(t)−xij(t)) +α2 ·ϕ2 · (pgij(t)−xij(t)). (2.28)

The neighborhood is defined as

NBi = {xi−r, xi−r+1, . . . , xi−1, xi, xi+1, . . . , xi+r−1, xi+r}, (2.29)

where {i − r, i − r + 1, . . . , i − 1, i, i + 1, . . . , i + r − 1, i + r} ⊆ {1, 2, . . . , N}. The

best known global position in the neighborhood of particle i is updated by

pgij = arg min
j s.t. xj ∈ NBi

f(pj). (2.30)

Standard PSO: In 2002, Clerc and Kennedy provided a solid theoretical background

to their variation of the algorithm, which has become the contemporary PSO stan-

dard [70]. Equation 2.26 is replaced by

vij(t+1) = χ ·
[
vij(t) + α1 · ϕ1 · (pij(t)− xij(t)) + α2 · ϕ2 · (pgj(t)− xij(t))

]
(2.31)
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and equation 2.28 is replaced by

vij(t+1) = χ·
[
·vij(t) + α1 · ϕ1 · (pij(t)− xij(t)) + α2 · ϕ2 · (pgij(t)− xij(t))

]
, (2.32)

for the global best PSO model, pgj(t), and the local best PSO model (neighborhood)

respectively. χ is known as the constriction coefficient and it is computed by

χ =
2∣∣∣2− φ−√φ2 − 4 · φ

∣∣∣ , where φ = α1 + α2 and φ > 4. (2.33)

It has been shown that convergence is improved for χ = 0.729 and α = α1 =

α2 = 2.05 [70].
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New optimization technique

“What makes the desert beautiful,’ said the little prince,‘ is that somewhere it

hides a well...”

—Antoine de Saint-Exupéry, The Little Prince.

3.1 New optimization technique

In this section, we introduce our novel optimization approach that applies some

general concepts from the PSO framework in radiation therapy planning. Particle

swarm optimization has been widely used in many different fields (e.g., evolving

artificial neural networks, training neural fuzzy networks, color image quantization,

computational biology, modeling biomechanical movement, etc.), although there is

very little evidence that it has been widely applied in the field of radiation therapy.

In fact, the only reference identified in our searches regarding PSO and radiation

therapy is the paper written by Yongjie Li et. al. titled: “Adaptive particle swarm

optimizer for beam angle selection in radiotherapy planning”. This paper focused on

Intensity-modulated radiation therapy (IMRT) and the ability of PSO to try several
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discrete sets of angle configurations to find the optimal set that provided a prescribed

dose using a reasonable computational time [71].

In addition, as we briefly mentioned in section 2.3.2, an important parallelism

between the PSO algorithm and physical systems made by Mikki and Kishk in their

book: “Particle Swarm Optimization: A Physics-Based Approach”. In this book,

the authors present a physical formalism for PSO by formulating the equations of

molecular dynamics assuming that particles interact following a certain potential

function. Although they mention several times that solving the system of second

order diferential equations is by itself a very hard problem, possibly with no closed

form solution, they argue that the importance of constructing physical methods can

aid to tune the parameters used in the PSO algorithm [53].

As a result, we use the idea that physical models can be used to guide an optimiza-

tion algorithm consisting of the interactions of a system of stationary and moving

particles, such that a desired behavior can be simulated in order to obtain an op-

timum maximum or minimum state. We introduce a novel algorithm inspired by

particle swarm optimization that evolves in time until mapping its state of minimum

energy to optimal radiation sources’ locations in radiotherapy and radiosurgery. We

distance ourselves from the classical PSO algorithm where a particle represents a

potential solution of the optimization function by using the whole swarm or particle

distribution as the solution.

We model tumors, critical organs and other tissues as geometric volumes, whose

surfaces have an associated potential function. The radiation source is modeled as

kinetic particles subject to the forces from the potential functions from both the

particles and the various geometric objects. The final configuration of the swarm

of particles including their trajectories is the treatment plan. The intuition and

motivation behind this potential model is to propagate the geometric characteristics

of the treatment case throughout all the system so that a charged particle in the
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interior of the tumor can be aware of near-by critical organs or other tissues. Consider

figure 3.1 that depicts the relative awareness of a set of kinetic particles when there

is not a critical structure versus when there is one. The tumor is depicted in yellow

and is covered by static charges. The critical structure is shown in blue, and it is also

covered with static charges. In the interior of the tumor, there are kinetic particles

that look for a minimum potential and stabilize. Notice that kinetic charges are

displaced to the left once a critical structure is placed on the right; that effect is due

to the awareness being influenced in the system due to the potential field associated

to the critical structure.

Tumor

Moving Particle

Static Particle

Critical Structure

Figure 3.1: Geometrical awareness: the potential field associated to the tumor keeps
kinetic particles in a lower potential inside the tumor (left schematic). In the pres-
ence of a charged critical structure to the right, kinetic particles find a lower po-
tential inside the tumor that is displaced in comparison to the previous setup (right
schematic).
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In order to demonstrate the effectiveness of this model, we applied this new

PSO framework to two challenging radiation therapy modalities: Gamma Knife®

radiosurgery inverse planning and solving for beam location, and high-dose rate

brachytherapy inverse planning for prostate cancer and solving for interstitial implant

trajectories.

For the general case, consider the scheme depicted in figure 3.2, where charged

particles are placed on the boundary of a container. These charged particles on the

boundary are static. Several kinetic particles with different potential functions are

placed inside the container with a positive charge. These kinetic particles move under

the influence of a potential field. The intuition is that particles will move to lower

the energy of the system and evenly spread out in the container. In the presence of

a positively charged circular structure placed next to the container, the interaction

induced by the particles on this structure pushes the kinetic charged particles further

away from it. When kinetic particles are given an initial velocity, particles traverse

the container in evenly spread trajectories.

We use these ideas to pack dose kernels for Gamma Knife® radiosurgery inverse

planning, i.e., kinetic particles are given initial velocity zero and left to stabilize in the

container, and to build interstitial implant trajectories in HDR prostate brachyther-

apy, i.e., kinetic particles are given an initial velocity in the direction used in current

clinical surgeries and allowed to traverse the tumor.
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Moving Particle

Static Particle

Critical Structure
Velocity
Trajectory

Tumor

Tumor
Figure 3.2: New optimization algorithm illustration: Static particles lie on the tu-
mor’s surface (in yellow) and the critical organ (in blue). Kinetic particles are placed
inside the tumor (big red circles). In the presence of an initial velocity (red arrow),
these particles move and produce evenly separated trajectories (dotted black lines).
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3.1.1 Algorithm

In section 2.2, we showed a set of common steps followed by any treatment planning

system. We use these steps here to formally define the general characteristics of our

algorithm.

Patient Representation:

Patient geometrical information is described using set notation:

• Let V be the set of all voxels in a CT or MRI scan of the patient.

• Let T be the set of tumor voxels, and Ci be the set of voxels for the ith critical

structure. (Usually, there are multiple critical structures involved). Note that

T and the Ci’s are pairwise disjoint.

• Let ∂T and ∂Ci denote the voxels on the surface of tumor and the critical

structures.

Ideal Dose Distribution:

The objective dose distribution

D∗ : V → [a, b] ∈ R (3.1)

is a function that maps all voxels in V into a real interval prescribed by the physician,

which corresponds to the minimum and maximum dose per voxel. For critical struc-

tures, the minimum dose is 0, while the maximum dose is determined by organ/tissue

specific radiation tolerance. For the tumor, the minimum dose is determined by tu-

mor control probability, and the gap between minimum and maximum dose, i.e.,

b− a, indicates the required dose uniformity.

Preparation for Dose Calculation:

We define a particle, pi, as an entity that has:
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• Location: #»xi = [xi, yi, zi],

• Velocity: #»vi = [vxi , vyi , vzi ],

• Type: static or kinetic, and

• A potential function.

Optimization:

Optimization is performed in two phases: PSO and deterministic optimization. For

PSO, we divide particles in two disjoint sets according to their type K or S, for

kinetic and static particles, respectively. The particle potential functions are created

from the corresponding radiation source dose distribution and the prescribed dose

distributions. For static particles, we pre-compute the static potential field, US. For

a kinetic particle, pi, we compute the total external force incident on it by

∑
j 6=i

# »

Fj = − #»∇
∑
j 6=i

Uj = m · #»ai, m stands for the mass of particle pi, (3.2)

i.e., the negative gradient of the total potential field of all particles. Notice that the

total external potential incident on a particle can also be expressed by

− #»∇Ui = − #»∇
(
UK−{pi} + US

)
. (3.3)

Then, we calculate each particle’s acceleration, #»ai, and update each particle’s velocity

#»vi(t) = #»vi(t− 1) + #»ai(t− 1) ·∆t (3.4)

and each particle’s position

#»xi(t) = #»xi(t− 1) +
#»vi(t) + #»vi(t− 1)

2
·∆t (3.5)
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in a given time step, ∆t.

This process is repeated until a maximum time, Tmax, is reached or a tolerance

error, ξ, is achieved. Once a steady location of particles is achieved, we map particle

positions to radiation sources’ positions in the treatment plan. In the deterministic

optimization phase, we use numerical techniques such as non-negative least squares,

least distance programming, etc., to further refine the plan produced by PSO. The

pseudo-code of our proposed algorithm is shown in table 3.1.

Data: Kinetic particle swarm, K; static particle pre-computed
potential, US.

Result: Kt.

Set t← 0;
Set Kt−1 ≡ Inf and Kt ≡ K;
while t < Tmax and metric (Kt−1, Kt) ≥ ξ do

For each pi ∈ Kt calculate
∑
i

#»

Fi using equation 3.2;

Update Kt−1 ← Kt;
Update Kt using the motion equations 3.4, and 3.5;
Set t← t+ 1;

end
Return Kt;

Table 3.1: Our PSO Algorithm: Given an initial kinetic particle swarm and a pre-
computed potential, each particle position gets updated according to the total exter-
nal forces. This process is repeated until a stable configuration of particles is reached
or a minimum error is achieved. The algorithm returns the final stable swarm.

3.2 Implementation

In this section, we present the main strategies used to implement our new optimiza-

tion technique. We chose Matlab® as our implementation environment. Matlab®

is a scientific environment widely used around the world by many research teams and
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provides a great deal of built-in functions as well as the ability to add third-party

libraries. We took advantage of the following Matlab® characteristics: the new

object oriented programming extensions added to its scripting language, the direct

integration with CERR (a computational environment for radiotherapy research)

[72], and the direct integration with CVX (Matlab® software for disciplined convex

programming) [73, 57].

CERR is an environment for radiotherapy research developed by Joseph O. Deasy

and his collaborators from the Memorial Sloan Kettering Cancer Center, and al-

though the project has been abandoned for a couple of years (no significant updates

since 2007), it still provides great tools for loading DICOM (Digital Imaging and

Communications in Medicine) files and contouring organs. Additionally, CERR still

has an active forum that can aid anyone with questions [74]. A DICOM file is the

international standard for medical images and related information (ISO 12052) [75].

CVX is a convex optimization environment developed by Stephen Boyd and his

collaborators from Stanford University. CVX extends Matlab®’s scripting language

with syntax that allows the formulation of mathematical optimization problems us-

ing a more natural mathematical notation. In addition, CVX allows the use of Mat-

lab®’s optimization toolbox, CVX’s own built-in optimization solvers, and third

party solvers such as MOSEK and Gurobi [73].

In the following sections, we explain our treatment planning system (TPS) proto-

type accordingly to the common modules a TPS is expected to implement (see section

2.2 for more details): patient representation, ideal dose distribution, preparation for

dose calculation, optimization, and plan generation.
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3.2.1 Patient Representation

We define two classes, Anatomy and Structure (see figures 3.3 and 3.4), to handle

patient representation. An anatomy object has four attributes:

• structures: refers to a vector of the subtype structure and stores all the

different structures defined in the anatomy.

• resolution: refers to a vector that carries the resolution of each voxel in [cm]

of the anatomy7→data attribute.

• dimensions: refers to a vector that carries the [x, y, z]-dimensions of the

anatomy7→data attribute.

• data: refers to a three-dimensional voxel array carrying the correspondent

structure7→id on each voxel.

A structure object has seven attributes:

• id: refers to a numeric value that is a unique identifier number of a specific

structure.

• type: refers to a numeric value that is either 0 for air, 1 for tissue, 2 for a dose

targeted structure, and 3 for a critical structure.

• name: refers to a string that carries the name of the structure.

• prescriptionMax: refers to a numeric value that corresponds to the maximum

prescribed dose to that structure.

• prescriptionMin: refers to a numeric value that corresponds to the minimum

tolerance prescribed dose to that structure.
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• prescriptionWeightMax: refers to a numeric value that corresponds to the

relative importance of the maximum dose prescribed for that structure.

• prescriptionWeightMin: refers to a numeric value that corresponds to the

relative importance of the minimum dose prescribed for that structure.

Anatomy

structures :: Vector :: Structure

resolution :: Vector

dimensions :: Vector

data :: Volume

Figure 3.3: Anatomy class definition: an anatomy object has the following attributes:
structures, resolution, dimensions and data. In the figure, the entries follow this
structure: <Attribute name>:: <type>:: <subtype>.

Structure

id :: Number

type :: Number

name :: Character

prescriptionMax :: Number

prescriptionMin :: Number

prescriptionWeightMax :: Number

prescriptionWeightMin :: Number

Figure 3.4: Structure class definition: a structure object has the following attributes:
id, type, name, prescriptionMax, prescriptionMin, prescriptionWeightMax, and pre-
scriptionWeightMin. In the figure, the entries follow this structure: <Attribute
name>:: <type>:: <subtype>.

We support two ways to load an anatomy: CERR’s loaded DICOM file repre-

sentation or a specially formatted text file. In the first scenario, provided a DICOM
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file, we load it and use CERR for adding or editing contours. Once this represen-

tation is available in memory, we run our converter script and translate contours

to binary masks and later identify those structure masks with an identifier number.

Each structure is loaded providing a unique identifier and a type: 0 for air, 1 for

tissue, 2 for a dose targeted structure, and 3 for a critical structure. We inherit the

resolution and dimensions of the CT-scan from the DICOM file. In this process, we

eliminate the CT-scan image from our patient representation.

In the second scenario, we read an anatomy file which has a header specifying

the total number of structures followed by each structure definition (e.g., identifier,

type, name, and prescription information) and volumetric data written as 2D slices

from the anatomy dimensions.

3.2.2 Ideal Dose Distribution

The ideal dose distribution is calculated as two volumetric matrices, i.e., a three-

dimensional matrix, such that one matrix contains the prescribed dose value per

voxel for minimum prescribed dose (Structure7→prescriptionMin, see figure 3.4)

and the second contains the prescribed dose value per voxel for maximum prescribed

dose (Structure7→prescriptionMax, see figure 3.4). These matrices are converted

to a one-dimensional vector and use later in optimization.

3.2.3 Preparation for Dose Calculation

In our implementation, we can switch from performing real-time dose calculations

to using precomputed dose kernels. If kernels are to be used, we load kernels into a

vector of kernel objects (see figure 3.5). A kernel object has three attributes:

• resolution: refers to a vector that carries the resolution of each kernel voxel
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in [cm].

• centerCoordinates: refers to a vector that carries the coordinates of the

center of the kernel dose data.

• data: refers to a three-dimensional voxel array carrying the correspondent dose

rate information for the kernel.

Kernel

resolution :: Vector

centerCoordinates :: Vector

data :: Volume

Figure 3.5: Kernel class definition: a kernel object has the following attributes: res-
olution, centerCoordinates, and data. In the figure, the entries follow this structure:
<Attribute name>:: <type>:: <subtype>.

Due to memory constraints, before running any dose calculation or dose opti-

mization, the size of the previously calculated matrices are reduced. We calculated a

bounding box which contains all tumor voxels and preferably those voxels from the

most critical organs at risk. The margins of the bounding box can be configured by

the user depending on the amount of RAM available in the system.

The tolerance margin is an user input, that can be configured in the main script.

In this phase, kinetic particles are created and randomly placed inside the tumor T .

A particle object has four attributes (see figure 3.6):

• position: refers to a vector that carries the [x, y, z] values of the location of a

particle.

• velocity: refers to a vector that carries the [vx, vy, vz] values of the current

velocity of a particle.
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• type: refers to a numeric value 0 for a static particle and 1 for a kinetic particle.

• potentialFunction: refers to a kernel data object or a function representing

the potential of that particle.

Only kinetic particles are used in our calculations. The total potential field pro-

duced by static particles (US) is precomputed using the location of each voxel at

∂T and ∂C. In the event that a kernel’s resolution (Kernel7→resolution) mis-

matches that of the anatomy (Anatomy7→resolution), we either perform bilinear

interpolation or increase the resolution of the kernels to match that of the anatomy.

Particle

position :: Vector

velocity :: Vector

type :: Number

potentialFunction :: Kernel or :: Function

Figure 3.6: Particle class definition: a particle object has the following attributes:
position, velocity, type and potentialFunction. In the figure, the entries follow this
structure: <Attribute name>:: <type>:: <subtype>.

3.2.4 Optimization

Depending on the application, kinetic particles are initialized with an initial speed.

For the initial PSO phase, we loop over all kinetic particles one at a time. The

current particle is excluded from the current total potential field (U). We compute

the negative gradient of the potential field (−∇U) and update the position of the

current particle using the motion equations 3.2, 3.4, and 3.5. After updating all

particles, we compute the total distance variation of the whole particle distribution;

if it is less than a given threshold, the process stops, otherwise the process repeats.
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cvx begin
variable x(n) nonnegative;
variable s(m) nonnegative;
variable t(m) nonnegative;
minimize norm(x, 2) + ...

norm(lambda M*s,2) +...
norm(lambda m*t,2);

subject to
D*x - s <= ideal dose max;
D*x + t >= ideal dose min;

cvx end

Table 3.2: CVX syntax for deterministic optimization.

These previous calculations are performed in parallel taking advantage of Matlab®’s

parallel for-loop, parfor. In the event that particles’ trajectories are important, they

are stored in a trajectory matrix, and smoothed using a third-degree polynomial in

x and y coordinates, using the z coordinate as the characteristic parameter.

Finally, we use CVX syntax (see table 3.2) and formulate an optimization problem

to solve for dwell times (x) such that the final dose distribution (D*x) is within the

prescribed ideal dose (ideal_dose_min and ideal_dose_max). We tried different

solvers from those available in CVX, and picked MOSEK for its impressive running

times. For more details on the interior point method implemented by MOSEK please

refer to [76].

3.2.5 Plan Generation

In this phase, we filter out the dwell times that are negligible and compute a final dose

distribution. We generate a dose-volume histogram from the final dose distribution

and produce a plot. In addition, we generate plots for the final 3D distribution using
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our 3D distribution plotter script and save the final dose distribution, the dwell times

vector, and the kinetic particle vector. We stop after saving this file, since we are

not currently producing a final plan for a specific machine.

3.2.6 Other tools

• 3D Distribution plotter: this script receives an anatomy object, final dose

distribution three-dimensional matrix as parameters and draws the 3D surfaces

of each structure, and produces an iso-surface of the targeted dose. If particles

locations are provided, it shows the particles and their trajectories.

• Anatomy loader and Phantom generator: this script loads anatomy files

compatible to our anatomy file syntax. In addition, it can save an Anatomy

object into the same syntax.

• Dose-volume histogram plotter and verifier: this script calculates and

plots a DVH. In addition, provided the path of a previous DVH, it overlays

both DVHs plots for comparison.

• Kernel interpolator: this script has been used to perform dose kernel in-

terpolation in the event that the kernel object and the anatomy object have a

different resolution.

• Kernel loader: this script has been used load a precomputed kernel object

that has been stored as a text file under our own syntax.
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Gamma Knife® radiosurgery

“Well, I must endure the presence of a few caterpillars if I wish to become

acquainted with the butterflies.”

—Antoine de Saint-Exupéry, The Little Prince.

4.1 Overview

In section 2.1.2, we mentioned that current gamma knife® radiosurgery is performed

as a two-step process: tumor filling and optimization. For dose calculation, we use

precomputed dose kernels. We map Gamma Knife® dose kernels to a potential

function associated to each particle in the swarm and simulate the interaction among

them until our swarm reaches a stable configuration, i.e., the energy-stable state of

the system. Particles’ locations are then translated to dwell locations and then the

non-negative least squares algorithm is used to calculate the dwell time of each kernel

aiming to meet the dose prescription.
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4.2 Mapping

Patient Representation:

Let T and C be the set of tumor voxels and critical structure voxels, and ∂T and

∂C be their respective surface voxels.

Preparation for Dose Calculation:

For the initialization, we randomly place static particles on the surface ∂T and ∂C.

Each Gamma Knife® high dose kernel has a dose falloff which is a complemen-

tary error function, erfc(r), as shown in 4.1:

erfc(r) = 1− 2√
π

∫ r

0

e−t
2

dt. (4.1)

Since the calculation of the erfc(r) function is a time consuming task, instead

we use 1
r

as its surrogate in order to speed-up computations. Please refer to figure

4.1 where we show a comparison between the real dose falloff of the 4 [mm] Gamma

Knife® dose kernel versus a scaled 1
r

function.
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Figure 4.1: Gamma Knife® 4[mm] dose kernel lateral falloff versus the 1
r

function.
1
r

serves as a surrogate to the real dose falloff of Gamma Knife® dose kernels.
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We assign to each particle a 1
α·r potential function, where r is the distance from

the particle to a voxel, and α is a constant scaling factor directly proportional to the

dose kernel radio to be used in the simulation.

The intuition behind such an arrangement is that the kinetic particles, i.e. the

spherical high dose volumes, should not be too close to each other, and should not

be too close to the boundary or the critical structures.

Optimization:

The kinetic particles are initialized at random positions with zero initial velocities.

The quantity and potential functions associated to each particle are calculated from

an approximate solution obtained from the following constrained integer-linear prob-

lem

minimize
yi∈Z+

|a · y − b|

subject to ‖y‖1 ≤ n,

(4.2)

where a is a row vector containing the volume each kernel can cover with a high

density dose, y is a column vector representing the distinct kernel spot sizes to be

used, b is the cardinality of T , and n is the cardinality of K. The potentials US

and UK created by static and kinetic particles respectively are computed. In each

iteration, the locations of the kinetic particles are updated based on the forces from

the potential field until they converge. The PSO phase outputs the locations of each

spherical high dose volume. To complete a radiosurgery plan, we also need the dwell

or beam-on times for each location. Let Ḋj and tj be the dose rate and beam-on

times for each particle/spherical high dose volume, and D∗ be the optimal desired

dose distribution. We use non-negative least squares

min

∥∥∥∥∥∥
∑
j

Ḋjtj −D∗
∥∥∥∥∥∥
2

2

subject to tj ≥ 0 (4.3)

to calculate the optimal beam-on times.
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4.3 Results

We have applied our optimization algorithm to a challenging phantom study. The

phantom consists of a C-shaped 3D phantom surrounding a spherical critical struc-

ture (see figure 4.2). The prescription for this case targets 100 arbitrary dose units

to the tumor while delivering 0 arbitrary dose units to the critical organ. We found

that convergence is typically achieved within 20 to 40 iterations.

Figure 4.2: Phantom used for Gamma Knife® case study: C-shaped tumor is shown
in yellow. The critical organ is shown in blue.

We started our tests by using homogeneous kernel spot sizes; in particular, we

used the 4 [mm] dose kernel. Figure 4.3 shows the evolution of particles in time.
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Kinetic particles start at random locations inside the tumor and at each iteration they

evolve, spreading evenly throughout the volume through the dynamic interactions

among them and the potential field from the structure’s surfaces. Particles get

pushed in the opposite direction from the critical organ, which reflects the geometrical

awareness imposed onto them by the potential field associated with the critical organ.

Figure 4.3: Evolution: Particles (shown as red spheres) distribute evenly along the
tumor’s volume while avoiding those regions close to the critical organ. The 1st, 5th,
10th, and 15th iterations are shown.

After 25 iterations (see figure 4.4), the spherical high dose volumes have converged

to a steady location configuration. Now, the final swarm configuration is used as the 4

[mm] kernel centers and non-negative least squares is used to filter out those locations

that are either redundant or that do not contribute to meeting the prescription.
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Figure 4.4: Particles (shown as red spheres) distribute evenly along the tumor’s
volume while avoiding those regions close to the critical organ.

Figure 4.5 shows a 2D cross-section of the phantom’s final dose distribution after

NNLS (on top), and also shows the dose-volume-histogram of the final plan after

numerical optimization (bottom). In the DVH plots, the horizontal axis is the dose,

while the vertical axis is the percent volume. There is a DVH line for each structure

of interest, which describes the amount of dose delivered to a given percent volume.

The quality of our plan is comparable to the manually obtained clinical plans, which

aims to cover the target tumor volume with 50% of the maximum dose.
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Figure 4.5: Phantom center cross-section: final dose distribution is shown in yellow
(on top). Shown in blue are the tumor and critical organ contours. Gamma Knife®
final plan DVH using 4 [mm] dose kernels (bottom).
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We also tested our algorithm using heterogeneous kernel spot sizes. We obtained

from equation 4.2 the kernel spot sizes that approximately cover our C-shaped tumor

and use four 4 [mm] and fourteen 8 [mm] dose kernels. We run our simulation and

find that particles present a similar behavior as for the homogeneous case; nonethe-

less, bigger dose kernels do not necessarily occupy those locations with bigger vol-

umes, and smaller dose kernels do not necessarily fill the gaps between bigger dose

kernels nor get pushed towards the boundary to balance those regions missed by

bigger dose kernels. Figure 4.6 shows the final dose distribution as well as the final

plan DVH. It is worth mentioning, that since larger dose kernels are used, the plan

is less uniform, but still meets clinical goals.
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(on top). It corresponds to an heterogeneous use of dose kernels. Shown in blue
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[mm] and 8 [mm] dose kernels (bottom).
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High-dose rate (HDR)

brachytherapy

“It is the time you have wasted for your rose that makes your rose so important.”

—Antoine de Saint-Exupéry, The Little Prince.

5.1 Overview

In section 2.1.3, we mentioned that HDR brachytherapy is performed as a four-step

process: catheter or implant placement, image contouring, dwell time optimization,

and dose delivery. We map each kinetic particle to a radiation source and impose

a set of initial conditions, which include defining their starting positions and their

initial velocities in the direction of previous clinical implants. The key idea of this

simulation is to let the particles in the swarm to traverse the tumor and record

its particles’ trajectories. We map the trajectory of each particle as the implant

trajectory, and the final dose delivered is calculated using each particle position as

the center of a radiation source, further optimized using least-distance programming.
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5.2 Mapping

Patient Representation:

Let T and C be the set of tumor voxels (i.e., prostate) and critical structure voxels

(i.e., rectum, bladder, and urethra), and ∂T and ∂C be their respective surface

voxels.

Preparation for Dose Calculation:

We modeled each needle as the trajectory of a kinetic particle with the potential

function 1
r2

, where r is the distance to the particle. We have chosen this potential

function, 1
r2

, because it is a good surrogate of the dose fall-off rate of the 192Ir source

(please refer to The AAPM Task Group 43 point source dose calculation approxima-

tion [47, 48]). Figure 5.1 shows the lateral dose falloff of a HDR brachytherapy 192Ir

radiation source versus the 1
r2

function.
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how 1
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serves as a close approximation to the real dose falloff.

66



Chapter 5. High-dose rate (HDR) brachytherapy

Similarly to the Gamma Knife® case, we randomly place static particles on the

surface of the prostate and various critical structures such as the rectum, urethra,

and bladder. The potential function of the static particles is 1
r2

. The key to this PSO

simulation is the initial velocity of the kinetic particles. Clinically, the bevel needles

used have a curvature constraint and can bend up to a certain degree value.The

initial velocity of the kinetic particles ensures that the curvature constraint will not

be violated during the simulation. The total number of kinetic particles, i.e., the

number of needles, is specified by the user.

Optimization:

To determine the initial position of the kinetic particles, we run another PSO op-

timization by placing the kinetic particles randomly in a cross-section of the tumor

with zero velocity and constrained to move within that cross-section. Once the parti-

cles stabilize, they are given a velocity vector parallel to the principal needle direction

typically used in a clinical setting. After the trajectories converge, a third-degree

polynomial regression is applied to smooth the final particles’ trajectories, which

are the final needle positions. To calculate the dwell time, we use the following

formulation of a least-distance programming (LDP) problem

minimize ||x||22 + ‖Λmaxs‖22 + ‖Λmint‖22

subject to Dx− s ≤ bmax,

Dx+ t ≥ bmin.

(5.1)

The vectors bmin and bmax specify the minimum and maximum dose for each

voxel. The matrix D is the dose matrix of each discretized position along the needles.

Ideally, one would like to meet all the prescription constraints and achieve Dx ≥ bmin

and Dx ≤ bmax, while minimizing the total treatment time ||x||. However, this is

never feasible. To overcome this, slack variables s and t are added to the constraints

to ensure feasibility. The weighting variables Λmax and Λmin (both are diagonal
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square matrices) reflect the “importance” of the various constraints. The goal of the

objective function is to minimize the total treatment time while making sure that as

few as possible voxels are violating the prescription constraints.

5.3 Results

We focused on the following aspects of the algorithm:

1. Given a specified number of implants, can the algorithm find the optimal tra-

jectories to meet the clinical goals?

2. Can the algorithm reduce the number of implants?

3. We expect future implant procedures will be performed under the guidance of

such pre-calculated trajectories. If the pre-calculated implant trajectories are

not followed perfectly, is the impact negligible?

4. Can the algorithm obtain homogeneous dose plans? Would there be any trade-

offs involved in such plans?

Our experimental results reveal that the answers to all of the above questions are

affirmative.

We experimented with our PSO based optimization framework on previously

treated prostate cases. Figure 5.2 shows the anatomy of one such case. The target

prostate is shown in red. There are three main critical structures. The urethra is

shown in blue, the rectum is shown in yellow, and the bladder is shown in green. The

prescribed dose for the prostate requires that at least 98% of its volume be covered by

1050 [cGy], where 1 [cGy] = 0.01 [J/Kg] is the unit for radiation energy depositions.
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The maximum dose tolerance for the urethra is 1150 [cGy], for the rectum is 760

[cGy] and for the bladder is 1050 [cGy].

Figure 5.2: Prostate case. Red: prostate. Blue: urethra. Yellow: rectum. Green:
bladder. The goal is to cover the prostate with at least 98% of the prescribed dose,
1050 [cGy].

Figure 5.3 (top) shows the final position of the initial swarm, i.e. the white circles,

that move constrained to a 2D-plane, i.e., the area marked in red on the cross-section

of this case CT-scan. In this figure, the rectum contours are also shown in yellow,

the prostate contours in red, and the urethra in blue. Figure 5.3 (bottom) shows

the final needle positions computed by our optimization. Needles spread evenly and

tend to bend along the prostate’s boundary, avoiding the urethra and other critical
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organs.
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Figure 5.3: Top: Kinetic particles’ positions (in white) at a cross-section of the
prostate (red contour). The rectum is shown as a yellow contour and the urethra
as a blue area. Bottom: Prostate case final needle trajectories in black. Urethra,
rectum and bladder are shown in blue, yellow and green. The prostate is shown as
a grey shadow.
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Figure 5.4 shows the iso-dose surface of the targeted dose calculated by our least-

distance programming model. Figure 5.5 shows the dose-volume histogram (DVH)

comparisons between our plan and the previously used clinical plan. Recall that

the DVH describes the amount of dose delivered to a given percent volume. Take

the DVH line for the prostate in figure 5.5 as an example. It denotes that 98% of

the prostate receives at least the prescribed 1050 [cGy] of dose. As shown in figure

5.5, our plan achieves all the prescription goals and is comparable to the previously

used clinical plan. It is also worth pointing out that our plan is less uniform than the

clinical plan. Nonetheless, this could indicate that our plan is in fact superior because

these dose inhomogeneities are mainly localized inside the target, which could allow

higher cell damage and tumor control [22, 77], while meeting the radiation tolerance

constraints for all critical structures.

Figure 5.4: Final dose delivered (1050 [cGy] iso-dose surface) to this prostate case
by our algorithm (in red). The prostate is shown as a white shadow.
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Figure 5.5: (Prostate case DVH comparison. Dashed lines correspond to the clinical
plan. Solid lines correspond to our PSO algorithm.

In terms of the number of needles used, our plan is able to calculate different

needle setups (see DVH comparisons in figures 5.5, 5.6 (a), 5.6 (b), 5.6 (c), and 5.6

(d) for plans using 10, 12, 14, 16, and 17 needles respectively). Our algorithm has

been able to produce high quality plans for all these setups. All prescription goals

are achieved and are comparable to the previously used clinical plan. As a result of

using less implants, our plans suffer from dose nonuniformity at the target, which is

an expected side-effect. In addition, a higher implant density is able to lower dose

impact to the urethra, rectum and bladder. Finally, while the clinical plan for this

case used 17 needles, our plan has been able to produce high quality plans using 10

needles, which corresponds to a 41% reduction.
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Dose volume histogram - 16 interstitial implants
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Figure 5.6: (a) Dose volume histogram for 12 interstitial implants. (b) Dose volume
histogram for 14 interstitial implants. (c) Dose volume histogram for 16 interstitial
implants. (d) Dose volume histogram for 17 interstitial implants.

We expect future implant placement procedures will be performed under the

guidance of pre-calculated trajectories. In order to assess the applicability of our

generated plans, we randomly perturb the trajectories to mimic the manual implant

errors. We generate 30 random modified needle trajectories for 10 implants and

compute the final dose distribution using least distance programming. We calculate

the average and standard deviations for each bin at each dose volume histogram and
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show in figure 5.7 the error tolerance after these perturbations. As it can be seen,

these perturbations are negligible. The reason is that least-distance programming is

able to compensate for these errors.
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Dose volume histogram - Tolerance Analysis
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Bladder: PSO plan (avg +/- 2*σ )
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Figure 5.7: Error tolerance. Solid lines show the original plan, while dotted lines
show the 95% confidence interval (up to 2σ) of the plans after perturbation with σ =
2.2mm.

Even though we understand that HDR brachytherapy plans inherently have inho-

mogeneous dose distributions, due to the nature of the radiation sources that deliver

a very high dose to those tissues close to the implants, we wanted to test how versatile

our optimization technique was by trying to obtain uniform dose distributions.
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Initially, we vary the weighting variables Λmax and Λmin to reflect the importance

of lower doses deposited inside the target. We observed that higher dose homogeneity

can be obtained, but with a slight change in the objective function of our least-

distance programming optimization, i.e.,

minimize λ
(
||x||22

)
+ (1− λ)

(
‖Λmaxs‖22 + ‖Λmint‖22

)
subject to Dx− s ≤ bmax,

Dx+ t ≥ bmin,

where 0 ≤ λ ≤ 1,

(5.2)

we noticed that better results are achieved. These results are displayed in figures 5.8

and 5.9.
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Figure 5.8: Dose Volume Histogram for a 10 interstitial implant plan using the
modified objective function compared to our initial calculated 10 interstitial implant
plan. Dotted lines correspond to our original plan. Solid lines correspond to our new
plan.
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Equation 5.2 is the result of realizing that the values in the terms, ‖Λmaxs‖22 +

‖Λmint‖22, were up to three-orders of magnitude bigger than those from ||x||22. The

convex combination λ (· · · ) + (1 − λ) (· · · ) allows control over these two unrelated

parts of our new objective function.

We notice in figures 5.8 and 5.9 that the use of higher implant density improves

homogeneity, but since our algorithm is able to generate implant trajectories that

bend intelligently along the prostate boundary, the critical organs rectum and bladder

always remain underdosed (with respect to the clinical plan), while the urethra suffers

a slight overdosage due to a better implant utilization inside the prostate.
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Figure 5.9: Dose Volume Histogram for a 17 interstitial implant plan using the
modified objective function compared to our initial calculated 17 interstitial implant
plan. Dotted lines correspond to our original plan. Solid lines correspond to our new
plan.
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Chapter 6

Outlook

“Here is my secret.

It is very simple: It is only with the heart that one can see rightly;

what is essential is invisible to the eye.”

—Antoine de Saint-Exupéry, The Little Prince.

6.1 Future Work

We have identified six projects: Gamma Knife® core integration, Gamma Knife®

non-spherical dose kernels integrations, fully automatic HDR brachytherapy planning

and treatment system, the application of our method to particle therapy treatment

planning, radiofrequency ablation, and cryotherapy. The first three are a direct

consequence of our results and aim to enhance the modalities discussed in this work;

the rest are research proposals for a new radiation therapy modality and two localized

cancer treatments.
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6.1.1 Gamma Knife® core integration

We expect to be able to use previous research agreements with Elekta in order

to combine our PSO based Gamma Knife® optimization to the Elekta Gamma

Knife® unit. This would grant us access to the kernel of their current treatment

planning system. This project will demand the following enhancements to our current

prototype:

• Full C++ implementation of our method.

• Calculation of static and kinetic potentials in parallel. The use of graphics

processing units (GPUs) is possible due to the great amount of matrix sum-

mations.

• Translation from euclidean coordinates to machine coordinates.

6.1.2 Gamma Knife® non-spherical dose kernels integra-

tion

We would like to extend the scope of the application of our method to the use of non-

spherical dose kernels for Gamma Knife® . We mentioned in section 2.1.2, that when

all the collimators of the several 60Co sources are open in the Elekta Gamma Knife®

machine, spherical high dose volumes can be generated. Nonetheless, the Elekta

Gamma Knife® machine can also produce different non-spherical dose kernels using

only some open collimators. In fact, the newer machine versions, e.g., the Leksell

Gamma Knife® Perfexion™, is divided into 8-sector locations and can produce 8-

sector beam-lets for 4, 8, and 16 [mm] kernels. Figure 6.1 shows the center cross-

section of these beam-lets for sectors 1, 2, 3, and 4 for the 8 [mm] kernel. Notice

that these kernels have an ellipsoidal shape.
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Figure 6.1: Center cross-sections of beam-lets for sectors 1, 2, 3, and 4 for the 8 [mm]
kernel. Values are normalized and units are arbitrary.

Our intention is to modify our current algorithm to use these beam-lets by re-

stricting the movement a particle with this type of potential function can make.

Sector information kernels are particular useful to ensure avoiding critical structures
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while delivering treatment to a patient. We suspect that restricting both particle

movement within a certain iso-potential margin and particle movement within a cer-

tain tumor partition/region (according to the closeness to the open collimators) will

generate clinically acceptable plans.

6.1.3 Fully automatic HDR brachytherapy planning and

treatment system

We mentioned that for HDR brachytherapy treatment, three phases take place:

catheter placing, treatment planning, and treatment delivery. From these phases,

catheter placing and treatment planning are heavily manual processes where the

surgeon is responsible to cover the tumor with “enough” catheters to achieve a good

conformal dose to it. Our intention is to combine the current research that tries to

move away from these manual processes, e.g., N. Hungr et al. in their paper “De-

sign of an ultrasound-guided robotic brachytherapy needle-insertion system” [44],

and our collaborators, J. Zhou et al. in their paper “Real-time catheter tracking

for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance de-

vice: A preliminary performance study” [43] with our algorithm to create the very

first fully automatic HDR brachytherapy planning system. Ideally, catheters would

be implanted by a robot following the trajectories calculated by our optimization

algorithm controlled by a real-time tracking system.

6.1.4 Particle therapy treatment planning

We showcased our optimization algorithm as a general optimization framework for

radiation therapy planning. In this project, our intention is to use our optimization

technique for particle therapy treatment planning. In this section, we discuss in a
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broader detail our initial insights of how to map our method to this new modality.

Particle therapy

The therapeutic use of heavier charged particles was first proposed by Robert Wil-

son, in his 1946 paper: “Radiological Use of Fast Protons”, where he described the

potential benefits of accelerated protons for human radiation therapy [50, 78]. His

principal argument was based on the depth-dose profile of a proton beam (see figure

6.3), which compared to that of photons exhibits a low entrance dose, a high dose

concentration at some depth (Bragg peak), and a steep dose fall-out after the peak.

X-rays or photon depth-dose profiles are characterized by a high entrance dose and

a long logarithmic decrease dose tail (see figure 6.2). Since Wilson’s early studies,

further research has provided better insights into the clinical benefits of charged

particles and their higher radiobiological effectiveness (RBE) compared to that of

photons [79, 80, 81, 82, 83] which has led to the construction of big infrastructures

to treat cancer patients.

Figure 6.2: Photon beams - depth-dose diagram [2]. Dose deposition along the
photon path in water are shown for photon energies of 25 MeV, 10 MeV, 4 MeV,
1.33 MeV (i.e., 60Co), and 511 keV (i.e., 3.0 mm Cu Half Value Layer)
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Figure 6.3: Proton beams - depth-dose diagram. Dose deposition along the path of
proton beams in water are shown for proton beam energies of 75, 85, 95, 105, 115,
and 125 MeV.

The current most advanced delivery techniques for particle therapy is active scan-

ning. In active scanning particle therapy, the target is first partitioned into layers so

that each layer can be reached using the same energy. For each layer, the beam spot

(ranging from a few millimeters in diameter to a few centimeters) scans through the

layer as shown in Figure 6.4) to deliver the prescribed dose.

Figure 6.4: Scanning beam therapy: circles represent a targeted tumor voxel, and
line connecting circles represents the scanning path used to “paint” the tumor.
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For readers interested in the treatment planning and dose calculations of particle

therapy, we refer them to the paper by Krämer et. al.: “Treatment planning for

heavy-ion radiotherapy: physical beam model and dose optimization” [84].

Mapping

Notice that the current delivery technique for particle therapy, active scanning (see

figure 6.4), can be seen as a bin-packing problem. Basically, a proton or heavy-ion

particle beam can be seen as a high-dose volume shot packed around the Bragg Peak.

Our initial idea is to keep the patient representation invariant from the previous

radiation therapy modalities. For preparation for fose calculation, we think that a

similar approach to the one used for Gamma Knife® radiosurgery would work to

pack shots up-to a iso-dose contour. Then for optimization, we can follow a similar

approach to the one used for Gamma Knife® but in addition, we plan to connect all

particles that lie on an iso-potential surface constrained by the possible treatment

angles in order to produce a continuous delivery plan that minimizes the energy

changes.

6.1.5 Radiofrequency ablation

Radiofrequency ablation is a medical procedure that can be used to treat localized

tumors. It consists on the use of the heat produced by a high frequency alternating

current that is delivered through a catheter-like mechanism to the tumor with the

intention to destroy (i.e., burn) it. Similarly to the Gamma Knife® application,

the heat produced by this mechanism is highly concentrated and can be applied at

different radii. The mapping of our algorithm would occur similarly as in the Gamma

Knife® provided that suitable access to all regions of the tumor is available.
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6.1.6 Cryotherapy

Cryotherapy ablation is a medical procedure that can be used to treat localized

tumors. It consists on the use of extreme cold produced by liquid nitrogen or argon

gas delivered to a tumor through a cryoprobe (i.e., a hollow catheter). Similarly to

the Gamma Knife® application, the extreme cold forms a ball of ice that freezes

nearby tumor cells killing them. The mapping of our algorithm would occur similarly

as in the Gamma Knife® provided that suitable access to all regions of the tumor

is available; otherwise, the mapping for HDR brachytherapy could produce suitable

trajectories for cryoprobes.

6.2 Summary and Conclusions

Modern radiation therapy heavily depends on both mathematical optimization and

computer models in order to find and calculate radiation source configurations that

deliver a uniform high dose to a tumor while protecting all healthy tissues around.

We worked on two world widely used modalities: Gamma Knife® radiosurgery

and High-Dose Rate brachytherapy for prostate cancer. We were originally intro-

duced to the current limitations in HDR brachytherapy for prostate cancer: manual

implant placement, inefficient implant trajectories and high number of implants used.

As a consequence, we developed optimization algorithms and techniques, which we

have shown to be general for those radiation therapy modalities that use high-dose

volumes to cover a tumor. As an example of the general characteristics of our algo-

rithms and techniques, we applied them to Gamma Knife® radiosurgery.

We implemented a general optimization method that can be used to find the

optimal locations of radiation sources in radiation therapy inverse planning using a

combination of Particle Swarm Optimization framework and deterministic optimiza-
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tion (non-negative least squares, least distance programming, etc.) in a constrained

geometrical environment. Our algorithm consists of placing a uniform potential func-

tion on the surface of tumors and critical organs so that kinetic charged particles

inside the tumor could be aware of their geometrical environment.

We observed that our inverse planning approach allows us to optimally find ra-

diation sources’ locations for Gamma Knife® radiosurgery. We use the Elekta

Gamma Knife® spherical dose kernels mapped to kinetic particles with a 1
r

poten-

tial function. The final configuration of the swarm of particles is further filtered

using non-negative squares. We noticed that for heterogeneous and homogeneous

kernel spot sizes, our algorithm returns high quality plans that are clinically accept-

able. Nonetheless, our method requires higher control statements to enhance the

quality of the heterogeneous kernel spot sizes results. We strongly believe that the

techniques suggested in section 6.1.2 will not only handle the use of non-spherical

kernels but also will handle heterogeneous kernel spot sizes increasing the current

plans quality.

HDR Brachytherapy for prostate cancer inverse planning is undoubtedly a very

challenging optimization problem. We use our general method to generate optimal

implant trajectories, reduce the number of implants used, and provide optimal con-

formal dose delivered to the prostate while minimizing the impact on the urethra,

rectum and bladder. To the best of our knowledge, we have implemented the first

inverse planning system for HDR brachytherapy for prostate cancer that provides

optimal implant trajectories for minimal number of implants (in fact, our algorithm

provides a natural path to select the best possible plan using any number of im-

plants within the prescribed dose constraints). In addition, we have proposed the

use of least-distance programming to find optimal conformal dose distribution to the

prostate while meeting all prescribed goals.

We compare the results of our simulations against the best clinical practices
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for both Gamma Knife® radiosurgery and HDR brachythreapy and we claim that

our optimization approach is able to achieve high-quality treatment plans which are

clinically superior to those from commercial clinical treatment planning systems.

We recognize the potential of our general optimization algorithm and expect in

the near future to incorporate it inside current clinical treatment planning systems

for Gamma Knife® radiosurgery and HDR brachytherapy.
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