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by
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Abstract

We live in an era when political and commercial entities are increasingly engaging in
sophisticated cyber attacks to damage, disrupt, or censor information content and to conduct
mass surveillance. By compiling various patterns from user data over time, untrusted
parties could create an intimate picture of sensitive personal information such as political
and religious beliefs, health status, and so forth. In this dissertation, we study scalable and
robust distributed algorithms that guarantee user privacy when communicating with other
parties either to solely exchange information or to participate in multi-party computations.

We consider scalability and robustness requirements in three privacy-preserving areas:
secure multi-party computation (MPC), anonymous broadcast, and blocking-resistant Tor
bridge distribution. MPC is one of the most generic problems in fault-tolerant computation.
In MPC, a set of parties, each having a secret value (input), compute a common function
over their inputs, without revealing any information about their inputs other than what is
revealed by the output of the function. Usually, a certain fraction of the parties are controlled
by a malicious adversary who makes the parties deviate arbitrarily from the protocol.

In the past few years, several scalable solutions to MPC have been proposed. Un-
fortunately, most of these protocols are not practical due to reasons such as large hidden
factors in their communication/computation complexities, non-constructive proofs, and
load-balancing issues. Thus, system builders, when faced with a problem that falls under
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the rubric of MPC, are unable to make use of established algorithms with well-known the-
oretical guarantees. Instead, they are frequently required to design new ad-hoc heuristics.
In this dissertation, we address this problem by designing resource-efficient protocols for
MPC.

In particular, we propose decentralized algorithms for MPC that have communication
and latency costs that scale well with the number of parties and tolerate arbitrary faults from
a computationally-unbounded adversary who makes a large fraction of parties arbitrarily
deviate from the protocol. Our algorithms do not require any trusted party and are load-
balanced, meaning that each party handles a roughly equal amount of communication
and computation. Our algorithms are scalable since they require each party to send (and
compute) a polylogarithmic number of bits (and operations). We provide experimental
results to show that our protocols improve significantly over previous work. We also show
that using common cryptographic tools in our protocol onemight be able to achieve practical
results for multi-party computation.

Anonymity is an essential tool for achieving privacy; it enables individuals to communi-
cate with each other without being identified as the sender or the receiver of the information
being exchanged. An anonymity scheme not only can be used for anonymous communi-
cation, but also can be used as a black-box in many other privacy-preserving applications
such as location-based services, auctions, e-voting. We show that our MPC algorithms can
be effectively used to design a scalable anonymous broadcast protocol.

One challenging attack on anonymity systems is traffic-analysis, where a global ad-
versary maps messages to their senders and recipients by monitoring the traffic exchanged
between parties. Unfortunately, well-known anonymous services such as Tor [DMS04] and
Crowds [RR98] are not secure against this type of attack. Moreover, most schemes that
tolerate traffic analysis scale poorly with the network size, rendering them impractical for
large networks.

One technique for achieving tracking-resistant anonymity is to perform secure shuffling
among the participants. Shuffling a sequence of values is a fundamental tool for randomized
algorithms; applications include fault-tolerant algorithms, cryptography, and coding theory.
In this dissertation, we describe the problem of multi-party shuffling (MPS), where a group
of parties, each holding an input, want to agree on a random permutation of their inputs
while keeping the permutation secret. An MPS protocol not only is useful for anonymous
communication, but is also a useful primitive for achieving privacy and robustness in
electronic voting, private information retrieval, secure auctions, and general multi-party
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computation.
Our final approach for preserving user privacy in cyberspace is to improve Tor; one of

the most popular censorship circumvention systems in the world. Tor deploys circumven-
tion relay nodes run by volunteers outside the censored network to provide indirect access
to blocked websites. It also deploys a special type of relay nodes called bridges to pre-
vent censors from discovering and blocking all relay nodes. Unfortunately, recent studies
[Din11b, WL12, EFW+15] show that censors are able to enumerate bridges by colluding
with corrupt users inside the censorship network to discover and shut down bridges. We
describe a randomized bridge distribution algorithm, where all honest users are guaranteed
to connect to Tor in the presence of an adversary corrupting an unknown number of users.
Our simulations suggest that, with minimal resource costs, our algorithm can guarantee Tor
access for all honest users after a small (logarithmic) number of rounds.
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Chapter 1

Introduction

We live in an era when political and commercial entities are increasingly engaging in so-
phisticated cyber-attacks to damage, disrupt, or censor information content and to conduct
mass surveillance. User data collected by companies and state-sponsored agencies are con-
stantly mined for several purposes such as medical, financial, and advertising applications.
Additionally, distributed networks, such as the Internet, have become so large that they re-
quire highly scalable algorithms; algorithms that have asymptotically-small communication,
computation, and latency costs with respect to the network size.

Modern data sets are so large that organizations frequently outsource their analytics
activities to the cloud or highly-decentralized networks. Unfortunately, this creates sev-
eral privacy challenges because untrusted parties can abuse the data and extract sensitive
private information from customers. The data can be used by others (e.g., providers and
governments) for precise surveillance and hence, compromising user privacy. In this disser-
tation, we study provably-robust algorithms that can be used for efficient privacy-preserving
communications and computations in both cloud-based settings and multi-party settings.

1.1 Summary of Contributions

We study three areas of privacy-preserving algorithms: scalable multi-party computation,
anonymous broadcast, and Tor bridge distribution. In the following, we briefly introduce
each problem and state our contributions.

Scalable Multi-Party Computation. In secure multi-party computation (MPC), a group
of parties, each having a private value, collaborate with each other to compute a known
function over their inputs, without revealing these inputs to each other. Previous results
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CHAPTER 1. INTRODUCTION 2

show that any computable functionality can be computed securely using an MPC proto-
col [BGW88, Can00, CLOS02]. MPC generalizes many important problems in distributed
computing including classic problems such as auctions, threshold cryptography, voting, and
privacy-preserving data mining; and contemporary problems such as cloud computing and
computing over peer-to-peer networks.

Unfortunately, known MPC protocols are inefficient and scale poorly with the number of
parties. We are not aware of an MPC algorithm that has practical costs for large number
of parties. We believe this problem is of increasing importance with the growth of modern
networks. For example, how can peers in BitTorrent auction off resources without hiring an
auctioneer? How can we design a decentralized Twitter that enables provably anonymous
broadcast of messages? How can we perform data mining over data spread over large
numbers of machines?

In this dissertation, we describe scalable protocols for solving the MPC problem among a
large number of parties. We consider both the synchronous and the asynchronous commu-
nication models. In the synchronous setting, our protocol is secure against a static malicious
adversary corrupting less than a 1/3 fraction of the parties. In the asynchronous setting,
we allow the adversary to corrupt less than a 1/8 fraction of parties. For any deterministic
function that can be computed by an arithmetic circuit with m gates, both of our protocols
require each party to send a number of field elements and perform an amount of computation
that is Õ(m/n+

√
n). We also show that our protocols provide perfect and universally com-

posable security. We also provide simulation results showing that our protocol improves
significantly over previous work. For example, for one million parties, when compared to
the state of the art, our protocol reduces the communication and computation costs by at
least three orders of magnitude and slightly decreases the number of communication rounds.

Anonymous Broadcast. Anonymity is an essential tool for achieving privacy in today’s
world and enables individuals to communicate with each other without fear of surveillance.
The Internet, as the today’s most popular communication mechanism, is not as anonymous
as it might appear. Every message sent directly from a computer is tagged with an address
that allows the recipient to send a response. This address, perhaps combined with some
information from the service provider, can be used to identify the source. Communication
that happens over higher-level protocols, such as email, typically contains information that
allows a message to be tracked back to the sender.

One of the most important goals of this dissertation is to apply our efficient MPC algorithms
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to the problem of provably-secure and scalable anonymous broadcast, where a set of
parties want to anonymously send their messages to all parties. A protocol for anonymous
broadcast not only can be used for anonymous communication [Cha81], but also can be used
as a black-box in many other privacy-preserving applications such as private information
retrieval [CKGS98], secure auctions [FA00], and anonymous voting [Gro04].

In this dissertation, we design efficient algorithms for anonymous broadcast that resist
traffic-analysis attacks. Moreover, unlike the majority of previous work which rely on
centralized trusted servers, our algorithms are fully-decentralized and do not require any
trusted party. Our protocols tolerate up to n/3 statically-scheduled Byzantine parties that
are controlled by a computationally unbounded adversary. We provide simulation results
to show that our protocol improves significantly over previous work. We finally show that
using a common cryptographic tool in our protocol one can achieve practical results for
anonymous broadcast.

The problem of anonymous broadcast is tightly related to the more general problem of
secure multi-party shuffling (MPS), where multiple parties, each holding an input, want to
agree on a random permutation of their inputs while keeping the permutation secret. An
MPS protocol is important as a primitive inmany other privacy-preserving applications such
as location-based services, electronic voting, and secure auctions. Unfortunately, known
techniques for solvingMPS suffer from poor scalability, load-balancing issues, trusted party
assumptions, and/or weak security guarantees.

We customize our scalable MPC protocol to construct an unconditionally-secure protocol
for MPS that scales well with the number of parties and is load-balanced. As an application
of our algorithm, we study the problem of privacy preserving location-based services (LBS).
With rapid advances in mobile communication technologies, LBS are seamlessly and ubiq-
uitously integrating into our lives. Unfortunately, this creates several privacy challenges
because untrusted parties can abuse locational data and extract sensitive information about
customers. Using our MPS algorithm, we design a protocol for privacy-preserving LBS
that is highly scalable and fault-tolerant, and, unlike the majority of previous work, does
not require any trusted party.

Blocking-Resistant Tor Bridge Distribution. Another approach for preserving user pri-
vacy in the Internet is to use existing anonymity networks such as Tor [DMS04]. Tor is
a popular network that relays Internet traffic through a world-wide network of volunteer
nodes. Tor users can connect to the network and have their Internet data routed through the
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network before reaching any server, thus the servers are not able to distinguish between Tor
users or locate them. The relays are publicly-known and hence may be blocked by censor-
ship systems. To make blocking harder, Tor uses the notion of bridges [DM06]; volunteer
nodes across the globe that direct user traffic to the relays, but there is no complete public
list of them. An important challenge with the current bridge distribution mechanism of
Tor is that malicious users can still obtain information about a large number of bridges and
block them. This, unfortunately, has been and is preventing many users across the world
from connecting to Tor [DM06].

One of the most effective ways to prevent an adversary from taking over a large fraction of
the bridges is to use randomization. This is because the colluding adversary cannot predict
the behavior of the randomized process in distributing a set of bridges to the users, and thus
he cannot arrange his corrupt users in such a way that prevents some of the honest users
from connecting to Tor.

In this dissertation, we describe a randomized bridge distribution algorithm, where all
(honest) users are guaranteed to be able to connect to Tor in the presence of an adversary
corrupting an unknown number of users t < n, where n is the total number of users.
Our algorithm adaptively increases the number of bridges according to the behavior of the
adversary and requires Õ(t) bridges. We show that, using our algorithm, the number of
times a user fails to connect to Tor via bridges is bounded by O(log t) with high probability.

1.2 Notions of Security

In this section, we define various notions of security that describe the adversary’s corruption
abilities and, in turn, the set of assumptions required for our proofs of security to hold. In
terms of its computational power, an adversary can be categorized as one of the following
types:

• Computationally-bounded. An adversary who is capable of only polynomial-time
computation. A model with this type of adversary provides computational security.

• Computationally-unbounded. An adversary who has unknown (not necessarily
infinite) amounts of resources. Thus, any algorithm in this model cannot assume any
bound on the adversary’s computational powers and it must maintain its security with
any amount of computational power the adversary may have.
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In terms of corruption abilities, an adversary can be categorized as one of the following
types:

• Fail-stop (a.k.a., non-adversarial fault). The adversary can only cause the parties
to crash randomly.

• Passive (a.k.a., semi-honest or honest-but-curious). The adversary can read the
internal state of the corrupted players and their communication, trying to obtain some
information he is not entitled to. This is called eavesdropping. Passive model is the
weakest adversarial model.

• Active (a.k.a., malicious or Byzantine). The adversary can additionally make the
corrupted parties deviate from the protocol specification in order to falsify the outcome
of the protocol. Such This is the strongest adversarial model.

• Semi-malicious. The adversary follows the protocol execution (similar to a semi-
honest adversary), but can choose its random coins (and inputs) in any arbitrary
manner.

• Covert. The adversary can make the corrupted parties deviate arbitrarily from the
protocol specification, but only if this deviation cannot be detected [AL10]. Covert
model is similar to the malicious model except in that it assumes the adversary and
all its corrupted parties will be detected once at least one corrupted party is detected
so the adversary is limited to only covert (hidden) attacks. One disadvantage of
this model is that it cannot distinguish between fail-stop faults and non-participation
attacks (if possible).

In terms of when the set of corrupted parties are chosen, an adversary can be categorized
as one of the following types:

• Static. The adversary is restricted to choose its set of dishonest parties at the start of
the protocol and cannot change this set later on.

• Adaptive. The adversary can choose its set of dishonest parties at any moment during
the execution of the protocol.

With respect to the adversary’s computational power, the security provided by a secure
algorithm can be categorized as one of the following:

• Information-theoretic security (perfect security). An algorithm is perfectly-secure
if given a ciphertext, every message in the message space is exactly as likely to be the
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plaintext, i.e., the plaintext is independent of the ciphertext. This implies that even
a computationally-unbounded adversary cannot learn anything about the plaintext.
Such an algorithm is not vulnerable to future developments of quantum computing.

• Unconditional security. An algorithm is unconditionally-secure if it makes no
assumption about the resources (computing power, memory, etc) available to the
adversary. From an information-theoretic perspective, such a system is considered
information-theoretically secure (or perfectly-secure).

• Computational (cryptographic) security. The information-theoretic notion of se-
curity is sometimes too strong (and hence inefficient) to be useful in practice. Com-
putational security asks only that no polynomial-time adversary can tell which of the
messages that could potentially be plaintexts corresponding to a ciphertext is more
likely than the other to be the actual plaintext. In other words, the key space is big
enough to make brute-force attacks impossible for such an adversary.

A security proof model describes the required assumptions for the proof of security of a
secure algorithm to hold. The following are the most useful security proof models:

• Strongest security model. An algorithm is secure in the strongest model if it does
not make any assumption for its proof of security. In other words, it proves that given
whatever information and computational power an adversary desires, it is incapable
of breaking the scheme even in the slightest way.

• Standardmodel (a.k.a., plain model). An algorithm is secure in the standard model
if the only assumption it makes for its proof of security is the computational power
of the adversary (called the standard assumption).

• Random oracle model. A random oracle is an abstract black-box that generates truly
random numbers. An algorithm is secure in the random oracle model if it assumes
the existence of a random oracle for its proof of security.

• Common reference string (CRS) model. An algorithm is secure in the CRS model
if it assumes that all parties have access to a common random string taken from a
predetermined distribution.

• Public key infrastructure (PKI)model. An algorithm is secure in the PKImodel if it
assumes identities of all parties can be reliably verified using techniques of public-key
cryptography (PKC). In other words, an algorithm secure in the PKI model assumes
that the channels are already authenticated via PKC.



Chapter 2

Scalable Multi-Party Computation

2.1 Introduction

In secure multi-party computation (MPC), a set of parties, each having a secret value, want
to compute a common function over their inputs, without revealing any information about
their inputs other than what is revealed by the output of the function. Recent years have seen
a renaissance in MPC, but unfortunately, the distributed computing community is in danger
of missing out. In particular, while new MPC algorithms boast dramatic improvements in
latency and communication costs, none of these algorithms offer significant improvements
in the highly distributed case, where the number of parties is large.

This is unfortunate, since MPC holds the promise of addressing many important prob-
lems in distributed computing. How can peers in BitTorrent auction off resources without
hiring an auctioneer? How can we design a decentralized Twitter that enables provably
anonymous broadcast of messages. How can we create deep learning algorithms over data
spread among large clusters of machines?

Most large-scale distributed systems are composed of nodes with limited resources. This
makes it of extreme importance to balance the protocol load across all parties involved.
Also, large networks tend to have weak admission control mechanisms which makes them
likely to contain malicious nodes. Thus, a key variant of the MPC problem that we consider
will be when a certain hidden fraction of the nodes are controlled by a malicious adversary.

2.1.1 Our Contribution

We describe general MPC protocols for computing arithmetic circuits. In terms of commu-
nication and computation costs per party, our protocols scale sublinearly with the number

7
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of parties and linearly with the size of the circuit. To achieve sublinear communication and
computation costs, our protocols critically rely on the notion of quorums. A quorum is a set
of O(log n) parties, where the number of corrupted parties in each quorum is guaranteed
not to exceed a certain fraction. We describe an efficient protocol for creating a sufficient
number of quorums in the asynchronous setting.

When a protocol is concurrently executed alongside other protocols (or with other
instances of the same protocol), one must ensure this composition preserves the security of
the protocol. We show that our protocols are secure under such concurrent compositions
by proving its security in the universal composability (UC) framework of Canetti [Can01].

2.1.2 Model

Consider n parties P1, ..., Pn in a fully-connected network with private and authenticated
channels. In our asynchronous protocol, we assume communication is via asynchronous
message passing, so that sentmessagesmay be arbitrarily and adversarially delayed. Latency
(or running time) of a protocol in this model is defined as the maximum length of any chain
of messages sent/received throughout the protocol (see [CD89, AW04]).

We assume a malicious adversary who controls an unknown subset of parties. We refer
to these parties as corrupted and to the remaining as honest. The honest parties always
follow our protocol, but the corrupted parties not only may share information with other
corrupted parties but also can deviate from the protocol in any arbitrary manner, e.g., by
sending invalid messages or remaining silent. We assume the adversary is static meaning
that it must select the set of corrupted parties at the start of the protocol. We assume that
the adversary is computationally-unbounded; thus, we make no cryptographic hardness
assumptions.

2.1.3 Related Work

Due to the large body of work, we do not attempt a comprehensive review of theMPC litera-
ture here, but rather focus on seminal work and, in particular, schemes that achieve sublinear
per-party communication costs. The MPC problem was first described by Yao [Yao82].
He described an algorithm for MPC with two parties in the presence of a semi-honest
adversary. Goldreich et al. [GMW87] propose the first MPC protocol that is secure against
a malicious adversary. This work along with [CDG88, GHY88] are all based on cryp-
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tographic hardness assumptions. These were later followed by several cryptographic im-
provements [BMR90, GRR98, CFGN96].

In a seminal work, Ben-Or et al. [BGW88] show that every function can be computed
with information-theoretic security in the presence of a semi-honest adversary controlling
less than half of the parties, and in the presence of a malicious adversary controlling less
than a third of the parties. They describe a protocol for securely evaluating an arithmetic
circuit that represents the function.

This work was later improved in terms of both communication and computation costs
in [CCD88, Bea91, GRR98]. Unfortunately, these methods all have poor communication
scalability. In particular, if there are n parties involved in the computation, and the function
f is represented by a circuit with m gates, then these algorithms require each party to send
a number of messages and perform a number of computations that is Ω(nm).

These were followed by several improvements to the cost of MPC, when m (i.e., the
circuit size) is much larger than n [DI06, DN07, DIK+08]. For example, the protocol of
Damgård et al. [DIK+08] incurs computation and communication costs that are Õ(m) plus
a polynomial in n. Unfortunately, the additive polynomial in these algorithms is large (at
least Ω(n6)) making them impractical for large n. One may argue that for large circuits the
circuit-dependent complexity dominates the polynomial complexity. However, we believe
there are many useful circuits such as the ones used in [MSZ15, HKI+12] which have
relatively small number of gates.

Dani et al. [DKMS12] introduced the notion of using quorums to decrease message
cost in MPC. In that paper, we described a synchronous protocol with bit complexity of
Õ(m/n +

√
n) per party that can tolerate a computationally unbounded adversary who

controls up to (1/3 − ε ) fraction of the parties for any fixed positive ε . As network size
scales, it becomes infeasible to require each party to communicate with all other parties.

Boyle et al. [BGT13] describe a synchronous MPC protocol for evaluating arithmetic
circuits. The protocol is computationally-secure against an adversary corrupting up to
(1/3 − ε) fraction of parties, for some fixed positive ε . Similar to [DKMS12], the protocol
of [BGT13] also uses quorums to achieve sublinear per-party communication cost. Inter-
estingly, the communication cost of this protocol is independent of circuit size. This is
achieved by evaluating the circuit over encrypted values using a fully-homomorphic encryp-
tion (FHE) scheme [Gen09]. Unfortunately, the protocol is not fully load-balanced as it
evaluates the circuit using only one quorum (called the supreme committee). The protocol
requires each party to send polylog(n) messages of size Õ(n) bits and requires polylog(n)
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rounds.
Chandran et al. [CCG+14] address two limitations of the protocol of [BGT13]: tol-

erating an adaptive adversary and achieving optimal resiliency (i.e., t < n/2 malicious
parties). They replace the common reference string assumption of [BGT13] with a different
setup assumption called symmetric-key infrastructure, where every pair of parties share
a uniformly-random key that is unknown to other parties. The authors also show how to
remove the SKI assumption at a cost of increasing the communication locality by O(

√
n).

Although this protocol provides small communication locality, the bandwidth cost seems
to be super-polynomial due to large message sizes.

Boyle et al. [BCP14] describe a scalable technique for secure computation of RAM
programs [GO96] in large networks by performing local communications in quorums of
parties. For securely evaluating a RAM program Π, their protocol incurs a total commu-
nication and computation of poly(n) + Õ(Time(Π)) while requiring Õ(|x | + Space(Π)/n)

memory per party, where Time(Π) and Space(Π) are time and space complexity of Π
respectively, and |x | denotes the input size.

In Table 2.1, we review recent MPC results that provide sublinear communication
locality. All of these results rely on some quorum building technique for creating a set of
quorums each with honest majority.

2.1.4 Proof of Security Techniques

The first step in proving the security of a cryptographic protocol is to define what secure
means. In this section, we describe two standard definitions of security commonly used for
proving security of multi-party protocols.

2.1.4.1 Simulation Paradigm

The simulation paradigm (a.k.a., the real/ideal model) is a security proof technique first
described by Goldreich et al. in [GMW87]. In this paradigm, the security of a protocol is
proven by comparing what an adversary can do in a real protocol execution to what it can
do in an ideal scenario (simulation), which is secure by definition. In the ideal scenario,
there is an incorruptible trusted party to whom the parties send their inputs. We refer to the
algorithm run by the trusted party in the ideal model as the functionality of the protocol. In
the real model, parties run the actual protocol that assumes no trusted party. We refer to a
run of the protocol in one of these models as the execution of the protocol in that model.
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Table 2.1: Recent MPC results with sublinear communication costs

Protocol Security Resiliency
Bound Async?

Assumes
Broadcast
Channel?

Total Message
Complexity

Total
Computation
Complexity

Latency Msg Size
Load-

Balanced?

[BGT13] Crypto (1/3 − ε )n No No Õ(n) Ω̃(n) +
Ω̃(κmd3)† Õ(1) O(n` ·

polylog(n))
No

[BCP14] Perfect (1/3 − ε )n No Yes poly(n) +
Õ

(
Time(Π)

) poly(n) +
Õ

(
Time(Π)

) Õ
(
Time(Π)

)
O(`) Yes

[CCG+14] Crypto‡ n/2 No No
O(n log1+ε n)

or
O(n
√
n log1+ε n)

Ω(n log1+ε n)
or

Ω(n
√
n log1+ε n)

O(logε ′ n)
Ω

(
loglog n n

)
or

Ω
(√

n
log n ) Yes

Our result
(sync)

Perfect (1/3 − ε )n No No Õ
(
m + n

√
n
)

Õ
(
m + n

√
n
) O

(
d +

polylog(n)
) O(`) Yes

Our result
(async)

Perfect (1/8 − ε )n Yes No Õ
(
m + n

√
n
)

Õ
(
m + n

√
n
) O

(
d +

polylog(n)
) O(`) Yes

Parameters: n is the number of parties; ` is the size of a field element; d is the depth of the circuit; κ is the
the security parameter; ε, ε ′ are the positive constants; Time(Π) is the worst-case running time of RAM
program Π.

Notes:
†The cost is calculated based on the FHE scheme of [BGV12].
‡Assumes a symmetric-key infrastructure. However, unlike the rest, this protocol is secure against an
adaptive adversary.

A protocol is secure if any adversary in the real model (where no trusted party exists)
can do no more harm than if it was involved in the ideal model [Gol00, Section 4.3]. To
prove this, an entity called a simulator is defined in the ideal model. The simulator is an
algorithm that simulates the interaction between each (possibly adversarial) party and the
trusted party (i.e., the functionality).

2.1.4.2 Universal Composability

When a protocol is executed several times possibly concurrently with other protocols, one
requires to ensure this composition preserves the security of the protocol. This is because
an adversary attacking several protocols that run concurrently can cause more harm than by
attacking a stand-alone execution, where only a single instance of one of the protocols is
executed (see [Gol04] Section 7.7.2). One way to ensure this is to show the security of the
protocol in the universal composability (UC) framework of Canetti [Can01]. A protocol
that is secure in the UC framework is called UC-secure.

A protocol P securely computes a functionality FP if for every adversary A in the real
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model, there exists an adversary S in the ideal model, such that the result of a real execution
of P withA is indistinguishable from the result of an ideal execution withS. The adversary
in the ideal model, S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. To prove
security under composition, the UC framework introduces an adversarial entity called the
environment, denoted by Z, who generates the inputs to all parties, reads all outputs,
and interacts with the adversary in an arbitrary way throughout the computation. The
environment also chooses inputs for the honest parties and gets their outputs when the
protocol is finished.

A protocol is said to UC-securely compute an ideal functionality if for any adversary
A that interacts with the protocol there exists a simulator S such that no environment Z
can tell whether it is interacting with a run of the protocol and A, or with a run of the
ideal model and S. Now, consider a protocol P that has calls to ` subprotocols P1, ...,P`

which are already proved to be UC-secure. To facilitate the security proof of P, we can
make use of the hybrid model, where the subprotocols are assumed to be ideally computed
by a trusted third-party. In other words, we replace each call to a subprotocol with a call
to its corresponding functionality. This hybrid model is usually called the (P1, ...,P`)-
hybrid model. We say P is UC-secure in the hybrid model if P in the hybrid model is
indistinguishable by the adversary from P in the ideal model. The modular composition
theorem [Can00] states that if P1, ...,P` are all UC-secure, and P is UC-secure in the hybrid
model, then P is UC-secure in the real model.

2.2 Perfectly-Secure MPC

Before describing our protocol, we define the standard tools and notation used in the
protocols of this section.

2.2.1 Preliminaries

Notation. We denote the set of integers {1, ..., n} by [n]. We say an event occurs with high
probability, if it occurs with probability at least 1 − 1/nc, for some c > 0 and sufficiently
large n. A protocol is called t-private if no coalition of t corrupted parties can learn anything
more than what is implied by their private inputs and the protocol output. A protocol is
called t-resilient if no set of t or less parties can influence the correctness of the outputs of
the remaining parties.



CHAPTER 2. SCALABLE MULTI-PARTY COMPUTATION 13

We also assume that all arithmetic operations in the circuit are carried out over a finite field
F. The size of F depends on the specific function to be computed and is always Ω(log n).
All of the messages transmitted by our protocol are logarithmic in F and n.

Let r be a value chosen uniformly at random from F and x̂ = x + r , for any x ∈ F. In this
case, we say x is masked with r and we refer to r and x̂ as the mask and the masked value
respectively.

Universal Composability Framework. When a protocol is executed several times possibly
concurrently with other protocols, one requires to ensure this composition preserves the
security of the protocol. This is because an adversary attacking several protocols that run
concurrently can cause more harm than by attacking a stand-alone execution, where only a
single instance of one of the protocols is executed.

One way to ensure this is to show the security of the protocol in the universal composability
(UC) framework of Canetti [Can01]. A protocol that is secure in the UC framework is
called UC-secure. We describe this framework in Section 2.2.3.

Verifiable Secret Sharing. An (n, t)-secret sharing scheme is a protocol in which a dealer
who holds a secret value shares it among n parties such that any set of t < n parties cannot
gain any information about the secret, but any set of at least t + 1 parties can reconstruct
it. An (n, t)-verifiable secret sharing (VSS) scheme is an (n, t)-secret sharing scheme with
the additional property that after the sharing stage, a dishonest dealer is either disqualified
or the honest parties can reconstruct the secret, even if shares sent by dishonest parties are
spurious. When we say a set of shares of a secret are valid, we mean the secret can be
uniquely reconstructed solely from the set of shares distributed among the parties.

In this paper, we use the (dn/3e − 1)-resilient VSS scheme of Ben-Or et al. [BGW88] for
the synchronous setting and the (dn/4e −1)-resilient VSS scheme of Ben-Or et al. [BCG93]
for the asynchronous setting. When run among n parties, both protocols incur poly(n)

communication cost and O(1) latency. We refer to the sharing stages of these protocols
as VSS-Share and AVSS-Share, and to their reconstruction stages as VSS-Reconst and
AVSS-Reconst, respectively.

Classic MPC. Our main protocols rely on the classic (dn/3e − 1)-resilient MPC protocol
of Ben-Or et al. [BGW88] for the synchronous setting and the classic (dn/4e − 1)-resilient
MPC protocol of Ben-Or et al. [BCG93] for the asynchronous setting. When run among
n parties to compute a circuit with d gates, both protocols send poly(n) bits and incur a
latency of O(d). We refer to the former protocol as CMPC and to the latter as ACMPC.
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In this paper, we use the above VSS and classic MPC protocols only among logarithmic-size
groups of parties and only for computing logarithmic-size circuits. Thus, the communication
overhead per invocation of these protocols will be polylog(n).

Byzantine Agreement. In the Byzantine agreement problem, each party is initially given
an input bit. All honest parties must agree on a bit which coincides with at least one of their
input bits.

When parties only have access to secure pairwise channels, a protocol is required to ensure
secure (reliable) broadcast. This guarantees all parties receive the same message even if the
broadcaster (dealer) is dishonest and sends different messages to different parties. Every
time a broadcast is required in our protocols, we use the Byzantine agreement algorithms of
Feldman and Micali [FM88]. We refer to their (dn/3e − 1)-resilient synchronous algorithm
as BA and to their (dn/4e − 1)-resilient asynchronous algorithm as ABA. When all parties
participating in a run of a broadcast protocol receive the same message, we say these
messages are consistent.

2.2.2 Our Protocol

We assume that the parties have an arithmetic circuit C computing f ; the circuit consists of
m addition and multiplication gates. For convenience of presentation, we assume each gate
has in-degree and out-degree 2.1 For any two gates x and y in C, if the output of x is input
to y, we say that x is a child of y and that y is a parent of x. We assume the gates of C are
numbered 1, 2, . . . ,m, where the gate numbered 1 is the output (root) gate.

The high-level idea behind our protocols is to first create a sufficient number of quorums
and assign to each gate in the circuit one of these quorums. Then, for each party Pi holding
an input xi ∈ F, Pi secret-shares xi among all parties in the quorum associated with the i-th
input gate. We refer to such a quorum as an input quorum.

Next, the protocol evaluates the circuit gate-by-gate starting from input gates. Each gate
is jointly evaluated by parties of the quorum associated with this gate over the secret-shared
inputs provided by its children. In a similar way, the result of the gate is then used as the
input to the computation of the parent gate. Finally, the quorum associated with the root
gate, constructs the final result and sends it to all parties via a binary tree of quorums.

This high-level idea relies on solutions to the following main problems.
1Our protocol works, with minor modifications, for gates with arbitrary constant fan-in and fan-out.
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Quorum Building. Creating a sufficient number of quorums. King et al. [KLST11] de-
scribe a randomized protocol called Build-Quorums that achieves this goal with high prob-
ability.

Circuit Evaluation. Securely evaluating each gate over secret-shared inputs by the parties
inside a quorum. In Section 2.2.2.2, we describe a protocol called Circuit-Eval that achieves
this goal.

Share Renewal. Sending the result of one quorum to another without revealing any infor-
mation to any individual party or to any coalition of corrupted parties in both quorums. We
solve this as part of our gate evaluation protocol described in Section 2.2.2.2.

Protocol 2.1 is our main protocol. When we say a party VSS-shares (or secret-shares)
a value s in a quorum Q (or among a set of parties), we mean the party participates as the
dealer with input s in the protocol VSS-Share with all parties in Q (or in the set of parties).

Algorithm 2.1 Perfectly-Secure MPC

1. Quorum Building. All parties run Build-Quorums to agree on n good quorums Q1, ...,Qn.
The i-th gate of C is assigned to Q(i mod n), for all i ∈ [m].

2. Input Commitment. For all i ∈ [n], party Pi holding an input value xi ∈ F runs the following
steps concurrently:

a) Pick a uniformly random element ri ∈ F, set x̂ = xi + ri, and broadcast x̂ to Qi.

b) Run VSS-Share to secret-share ri in Qi.

3. Circuit Evaluation. All parties participate in a run of Circuit-Eval to securely evaluate C.

4. Output Reconstruction. For the output gate z, parties in Qz ,

a) Run VSS-Reconst to reconstruct rz from its shares.

b) Set the circuit output message: y ← ŷz − rz .

c) Send y to all parties in the Q2 and Q3.

5. Output Propagation. For every i ∈ {2, ..., n}, parties in Qi perform the following steps:

a) Receive y from the Q bi/2c .

b) Send y to all parties in Q2i and Q2i+1.

The protocol starts by running Build-Quorums to create n quorums Q1, ...,Qn. Then,
it assigns the gates of C to these quorums in the following way. The output gate of C is
assigned to Q1; then, every gate in C numbered i (other than the output gate) is assigned to
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CMPC
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QwQv

CMPC

Qw

Same quorumsSame quorums

Figure 2.1: The gate gadgets for gate u and its left and right children

Q(i mod n). For each gate u ∈ C, we let Qu denote the quorum associated with u, yu denote
the output of u, ru be a random element from F, and ŷv denote the masked output of u,
where ŷu = yu + ru.

2.2.2.1 Input Commitment

Let Qi be the quorum associated with party Pi who holds input xi. At the start of our
protocol, Pi samples a value ri uniformly at random from F, sets x̂ = xi + ri, and broadcasts
x̂ to all parties in Qi. Next, Pi runs VSS-Share to secret-share ri among all parties in Qi.

2.2.2.2 Circuit Evaluation

The main idea for reducing the amount of communication required in evaluating the circuit
is quorum-based gate evaluation. If each party participates in the computation of the
whole circuit, it must communicate with all other parties. Instead, in quorum-based gate
evaluation, each gate of the circuit is computed by a gate gadget. A gate gadget (see
Figure 2.1) consists of three quorums: two input quorums and one output quorum. Input
quorums are associated with the gate’s children which serve inputs to the gate. The output
quorum is associated with the gate itself and is responsible for creating a shared random
mask and maintaining the output of the quorum for later use in the circuit. As depicted in
Figure 2.1, these gate gadgets connect to form the entire circuit. In particular, for any gate
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(a) (b) (c)

CMPC

Qu

Qv Qw

Shares of  ru

CMPC

Qu

Qv Qw

Shares of ru

Qv Qw

Shares of  ru

yv + rv

Shares of  rv

yw + rw

Shares of  rw

yu + ru

Qu

Figure 2.2: Evaluation of gate u: (a) generating ru, (b) providing inputs to CMPC, (c)
receiving the masked outputs

u, the output quorum of u’s gate gadget is the input quorum of the gate gadget for all of u’s
parents.

The parties in each gate gadget run CMPC among themselves to compute the gate
operation. To ensure privacy is preserved, each gate gadget maintains the invariant that
the value computed by the gadget is the value that the corresponding gate in the original
circuit would compute, masked by a uniformly random element of the field. This random
element is not known to any individual party. Instead, shares of it are held by the members
of the output quorum. Thus, the output quorum can participate as an input quorum for the
evaluation of any parent gate and provide both the masked version of the inputs and shares
of the mask. The gate gadget computation is performed in the same way for all gates in the
circuit until the final output of the whole circuit is computed. After the input commitment
step, for each input gate u, parties in Qu know the masked input ŷu, and each has a share of
the mask ru.

The first step of the circuit evaluation is to generate shares of uniformly random field
elements for all gates. If a party is in a quorum at gate u, it generates shares of ru, a
uniformly random field element, by participating in the Gen-Rand protocol. These shares
are needed as inputs to the subsequent run of CMPC.

Next, parties form the gadget for each gate u to evaluate the functionality of the gate
using Circuit-Eval. Let v and w be the left and right children of u respectively. The gate
evaluation process is shown in Figure 2.2. The values yv and yw are the inputs to u, and yu
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Algorithm 2.2 Circuit-Eval

Goal. Given a circuit C, the protocol securely evaluates C.
For every gate u ∈ C with children v,w ∈ C, parties in Qu, Qv, and Qw perform the following steps
to compute the gate functionality:

1. Mask Generation. Parties in Qu run Gen-Rand to jointly generate a secret-shared random
value ru ∈ F.

2. MPC in Quorums. The following parties participate in a run of CMPC with their corre-
sponding inputs:

• Every party in Qu with his share of ru.

• Every party in Qv with his input(
ŷv, his share of rv

)
.

• Every party in Qw with his input(
ŷw, his share of rw

)
.

is the its output as it would be computed by a trusted party. Each party in Qu has a share of
the random element ru via Gen-Rand. Every party in Qv has the masked value yv + rv and
a share of rv (respectively for Qw).

As shown in Part (b) of Figure 2.2, all parties in the three quorums participate in a run
of CMPC, using their inputs, in order to compute ŷu = yu + ru. Part (c) of the figure shows
the output of the gate evaluation after participating in CMPC. Each party in Qu now learns
ŷu as well a share of ru. Therefore, parties in Qu now have the input required for performing
the computation of parents of u (if any). Note that both yu and ru remain unknown to any
individual.

The gate evaluation is performed for all gates in C starting from the bottom to the top.
The output of the quorum associated with the output gate in C is the output of the entire
algorithm. This quorum will unmask the output via the output reconstruction step. The last
step of the algorithm is to send this output to all parties. We do this via a complete binary
tree of quorums, rooted at the output quorum.

2.2.2.3 Implementing the Gate Circuit

For every gate u ∈ C, the Circuit-Eval protocol requires a circuit (as we denote by Cu) for
unmasking the masked inputs ŷv and ŷw, computing u’s functionality fu over the unmasked
inputs, and masking the output with the gate’s random value ru. This circuit is securely
evaluated using the CMPC protocol by the quorum associated with u.
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Algorithm 2.3 Gen-Rand

Goal. A set of parties P1, ..., PN in a quorum want to agree on a secret-shared value r chosen
uniformly at random from F.

1. For all i ∈ [N], party Pi chooses ρi ∈ F uniformly at random and VSS-shares it among all N
parties.

2. For every j ∈ [N], let N ′ be the number of shares Pj receives from the previous step, and
ρ1j, ..., ρN ′ j be these shares. Pj computes r j =

∑N ′

k=1 ρk j .

For unmasking an input,Cu requires a reconstruction circuit, which given a set of shares,
outputs the corresponding secret. Since dishonest parties may send spurious shares, the
circuit implements the error-correcting algorithm of Berlekamp and Welch [BW86] to fix
such corruptions. Then, the resulting shares are given to an interpolation circuit which
implements a simple polynomial interpolation. Figure 2.3 depicts the circuit for gate u.

We nowbriefly describe the error correcting algorithmofBerlekamp andWelch [BW86].
Let Fp denote a finite field of prime order p, and S = {(x1, y1) | xi, yi ∈ Fp}

η
i=1 be a set

of η points, where η − ε of them are on a polynomial y = P(x) of degree τ, and the
rest ε < (η − τ + 1)/2 points are erroneous. Given the set of points S, the goal is to
find the polynomial P(x). The algorithm proceeds as follows. Consider two polynomials
E(x) = e0 + e1x + ... + eεxε of degree ε, and Q(x) = q0 + q1x + ... + qk xk of degree
k ≤ ε + τ − 1 such that yiE(xi) = Q(xi) for all i ∈ [η]. This defines a system of η linear
equations with ε + k = η variables e0, ..., eε, q0, ..., qk that can be solved efficiently using
Gaussian elimination technique to get the coefficients of E(x) and Q(x). Finally, calculate
P(x) = Q(x)/E(x).

Since the Gaussian elimination algorithm over finite fields has O(n3) arithmetic com-
plexity [Far88], the corresponding circuit has at most O(n3) levels. Since the inter-
polation circuit consists of at most O(n2) arithmetic operations (using the Lagrange’s
method [Abr74]), the overall depth of the reconstruction circuit will be O(n3).

2.2.3 Security Proof

We first describe the UC framework in Section 2.2.3.1, and then give a sketch of our proof
in Section 3.4.4.2. We prove the UC-security of Protocol 2.1 in sections 2.2.3.3 to 2.2.3.5.
Finally, we calculate the resource costs of this protocol in Section 2.2.4.



CHAPTER 2. SCALABLE MULTI-PARTY COMPUTATION 20

Shares of 𝑟𝑢 

Reconstruction 

Circuit 

Reconstruction 

Circuit 

Shares of 𝑟𝑣 𝑦 𝑣 

− 

Reconstruction 

Circuit 

Shares of 𝑟𝑤 𝑦 𝑤 

− 

𝑓𝑢 

+ 

𝑦 𝑢 

Berlekamp-Welch 

Circuit 

Interpolation 

Circuit 

R
ec

o
n

st
ru

ct
io

n
 C

ir
cu

it
 

Shares of 𝑥 

𝑥 𝑦𝑣 𝑦𝑤 

𝑟𝑣 𝑟𝑤 

𝑟𝑢 𝑦𝑢 
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2.2.3.1 The UC Framework

The UC framework is based on the simulation paradigm [Gol00], where the protocol is
considered in two models: ideal and real. In the ideal model, the parties send their inputs to
a trusted party who computes the function and sends the outputs to the parties. We refer to
the algorithm run by the trusted party in the ideal model as the functionality of the protocol.
In the real model, parties run the actual protocol that assumes no trusted party. We refer to
a run of the protocol in one of these models as the execution of the protocol in that model.

A protocol P securely computes a functionality FP if for every adversary A in the real
model, there exists an adversary S in the ideal model, such that the result of a real execution
of P withA is indistinguishable from the result of an ideal execution withS. The adversary
in the ideal model, S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. To prove
security under composition, the UC framework introduces an adversarial entity called the
environment, denoted by Z, who generates the inputs to all parties, reads all outputs,
and interacts with the adversary in an arbitrary way throughout the computation. The
environment also chooses inputs for the honest parties and gets their outputs when the
protocol is finished.
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A protocol is said to UC-securely compute an ideal functionality if for any adversary
A that interacts with the protocol there exists a simulator S such that no environment Z
can tell whether it is interacting with a run of the protocol andA, or with a run of the ideal
model and S.

Now, consider a protocol P that has calls to ` subprotocols P1, ...,P` which are already
proved to be UC-secure. To facilitate the security proof of P, we can make use of the hybrid
model, where the subprotocols are assumed to be ideally computed by a trusted third-party.
In other words, we replace each call to a subprotocol with a call to its corresponding
functionality. This hybrid model is usually called the (P1, ...,P`)-hybrid model. We say
P is UC-secure in the hybrid model if P in the hybrid model is indistinguishable by the
adversary from P in the ideal model. The modular composition theorem [Can00] states
that if P1, ...,P` are all UC-secure, and P is UC-secure in the hybrid model, then P is
UC-secure in the real model.

2.2.3.2 Proof Sketch

Before proceeding to the proof, we remark that the error probability in Theorem 10 comes
entirely from the possibility that Build-Quorums or the threshold counting procedure may
fail to output correct results. All other components of our protocol are deterministic and
thus have no error probability. We also assume that, at the beginning of our MPC protocol,
the parties have already agreed on n good quorums, and the threshold counting procedure
is performed successfully.2

As in [Gol04], we refer to the security in the presence of a malicious adversary control-
ling t parties t-security. For every gate u ∈ C, let Iu denote the set of the corrupted parties
in the quorum associated with u. Also, let I denote the set of all corrupted parties, where
|I | < t.

Our goal is to prove the UC-security of Protocol 2.1. To do this, we must show two
steps. Step 1) is to show that each of our subprotocols are UC-secure. Step 2) is to show
that our protocol is UC-secure in the hybrid model. Once we show these two steps, then by
the modular composition theorem, we conclude that our protocol is UC-secure in the real
model.

In Lemma 5, we show Step 2, that the adversary can not distinguish the execution of the
hybrid model from the ideal model.

2For simplicity, we assume the primitive Build-Quorums is run only once, and it does not run concurrently
with other protocols.
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Table 2.2: Ideal functionalities
Functionality Implemented by

FBA Protocol BA
FVSS-Share Protocol VSS-Share

FVSS-Reconst Protocol VSS-Reconst
FCMPC Protocol CMPC

FGen-Rand Protocol Gen-Rand
FInput Input Commitment stage of Protocol 2.1

FCircuit-Eval Protocol Circuit-Eval
FOutput Output Reconstruction and Output

Propagation stages of Protocol 2.1

We next describe our approach to Step 1, which is more challenging. For this step,
we make use of a theorem that will help us show that our subprotocols are UC-secure.
Kushilevitz et al. [KLR10] showTheorem1. This theorem targets perfectly-secure protocols
that are shown secure using a straight-line black-box simulator. A black-box simulator is
a simulator that is given only oracle access to the adversary (see [Gol00] Section 4.5 for a
detailed definition). Such a simulator is straight-line if it interacts with the adversary in the
same way as real parties, meaning that it proceeds round by round without ever going back.

Theorem 1 ([KLR10]). Every protocol that is perfectly-secure in the stand-alone model
and has a straight-line black-box simulator is UC-secure.

We first define the ideal functionalities shown in Table 3.2 that correspond to the
subprotocols used in Protocol 2.1. We then prove that Protocol 2.1 is t-secure in the (FBA,
FVSS-Share, FVSS-Reconst, FCMPC, FGen-Rand, FInput, FCircuit-Eval, FOutput)-hybrid model. Finally,
we use Theorem 1 to infer the UC-security of Protocol 2.1.

In order to prove the t-security of Protocol 2.1 in the hybrid model, we first show that all
of our subprotocols are UC-secure. Similar to the above approach, we first prove t-security
of every subprotocol in its corresponding hybrid model using a straight-line black-box
simulator, and then use Theorem 1 to infer its UC-security.

To prove the t-security of a protocol Π, we describe a simulator SΠ that simulates the
real protocol execution by running a copy of Π in the ideal model. For each call to a secure
subprotocol π, the simulator calls the corresponding ideal functionality Fπ. A view of a
corrupted party from execution of a protocol is defined as the set of all messages it receives
during the execution of that protocol. At every stage of the simulation process, SΠ adds
the messages received by every corrupted party in that stage to its view of the simulation.
This is achieved by running a copy of Π for each corrupted party with its actual input as
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well as by running a copy of Π for each honest party with a dummy input.3 The view of the
adversary is then defined as the combined view of all corrupted parties.

2.2.3.3 Security of Input Commitment

The ideal functionality FInput creates a set S containing the index of the parties whose inputs
have been accepted by the protocol to be used for the computation. If a party’s input is not
in S, then the functionality sets this input to the default value. Next, the functionality sends
each masked input x̂i to quorum Qi and secret-shares the mask ri in Qi. In Lemma 1, we
show the Input Commitment stage in Protocol 2.1 correctly implements this functionality.
Thus, the parties in Qi eventually either have received consistent VSS-shares of xi and have
agreed on x̂i = xi + ri as well as on i being in S or they have agreed that i < S and have set
these values to the predefined value and rv and all its shares to 0. We say that a quorum has
come to agreement on X if all honest parties in the quorum agree on X .

Lemma 1. The Input Commitment stage of Protocol 2.1 is UC-secure.

Proof. First, we show that corrupted parties cannot do anything but choose their input as
they wish; thus, the Input Commitment stage correctly computes FInput. Moreover, there
exists a set S such that for every i ∈ [n], the following statements hold:

1. All parties in Qi eventually agree whether i ∈ S or not.

2. At least n − t input quorums agree that their corresponding party’s index is in S.

3. All parties in Qi agree that party i ∈ S if and only if they collectively hold enough
shares to reconstruct Pi’s input. If all parties in Qi agree that i ∈ S, then party Pi’s
input will be used in the computation. Otherwise, the default value will be used
instead.

Weprove the t-security of the InputCommitment stage in the (FVSS-Share, FVSS-Reconst,FCMPC)-
hybrid model which is similar to the Input Commitment stage of Protocol 2.1 except that
every call to its subprotocols is replaced with a call to their corresponding functionality.
We define the corresponding simulator SInput in Protocol 2.4.

Let V1 denote the view of the adversary from the hybrid execution, and V2 be its view
from the simulation. Since our simulator is straight-line and black-box, it follows from
Theorem 1 that the Input Commitment stage is UC-secure. �

3SΠ learns neither the actual inputs nor the actual outputs of the honest parties.
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Algorithm 2.4 SInput
For every i ∈ [n], party Pi holds an input xi ∈ F. Associated with this input, we consider a quorum
Qi. Let Ii denote the set of corrupted parties in Qi, and let I denote the set of all corrupted parties
among P1, ..., Pn.

Inputs. {ri }i∈[n], and { x̂i }i∈[n] from parties in I (set of all corrupted parties).

Simulation:

1. For every i ∈ [n], if Pi ∈ I, send xi + ri to all parties in Qi, and run FVSS-Share to secret-share
ri in Qi.

2. If Pi < I,

a) Choose ri and xi uniformly at random from F and x̂i ← xi + ri.

b) Send x̂i to all parties in Qi.

c) Run FVSS-Share to secret-share ri in Qi.

d) For every party in Ii, add his share of ri and x̂i to his view.

2.2.3.4 Security of Circuit Evaluation

We first prove the security of Gen-Rand. The ideal functionality FGen-Rand is given in
Protocol 3.4. At least 7n/8 of the inputs ρ1, ..., ρN are sent by honest parties and thus
are chosen uniformly and independently at random from F. Hence, r =

∑N
i=1 ρi is also a

uniform and independent random element of F. This is because the sum of elements of F is
uniformly random if at least one of them is uniformly random.

Algorithm 2.5 FGen-Rand
Goal. For a gate u ∈ C, generate a random value r ∈ F and VSS-share it among parties P1, ..., PN

in the quorum associated with u.

Functionality:
1. Receive inputs ρ1, ..., ρN ∈ F from P1, ..., PN respectively. For every i ∈ [N], if Pi does not

send an input, then define ρi = 0.

2. Calculate r =
∑N

i=1 ρi and invoke FVSS-Share to send a share ri of r to Pi.

Lemma 2. The protocol Gen-Rand is UC-secure.

Proof. We prove the t-security of Gen-Rand in the FVSS-Share-hybrid model which is similar
to Protocol 3.3 except that every call to VSS-Share is replaced with a call to the ideal
functionality FVSS-Share. The corresponding simulator SGen-Rand is given in Protocol 3.5.

The views of the corrupted parties in the hybrid execution and the simulation are indis-
tinguishable because the only difference between the two views is that SGen-Rand generates
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Algorithm 2.6 SGen-Rand
Inputs. For a gate u ∈ C, the inputs {ρ j }Pj ∈Iu of the corrupted parties P1, ..., PN in the quorum
associated with u.

Simulation:

1. For every Pi ∈ (Qu − Iu) (i.e., for every honest party Pi), call FVSS-Share with dummy input
0. Let si1, ..., s

i
N denote the outputs.

2. For every Pj ∈ Iu,

a) Run FVSS-Share with input ρ j . Let ρj1, ..., ρ
j
N denote the outputs. For every k ∈ [N], add

ρkj to the view of Pj .

b) Compute r j =
∑N

k=1 ρ
k
j and add r j to the view of Pj .

the shares from dummy input 0 instead of actual inputs. Since FVSS-Share generates uniform
and independent random shares from any input, the two views are identically distributed.
Since our simulator is straight-line and black-box, Gen-Rand is UC-secure. �

We now proceed to the security proof of Circuit-Eval. The ideal functionality FCircuit-Eval

is given in Protocol 2.7.

Algorithm 2.7 FCircuit-Eval
Goal. For each gate u ∈ C with children v,w ∈ C, 3N parties P1, ..., P3N provide inputs to the
functionality to allow it evaluate the functionality of u denoted by fu.

Functionality:
1. For every i ∈ [N], receive ρi from Pi, ŷv and r (i)

v from Pi+N , and ŷw and r (i)
w from Pi+2N

respectively.

2. Run FGen-Rand with inputs ρ1, ..., ρN to generate r (1)
u , ..., r (N )

u .

3. Run FCMPC to locally compute the following functionality:

a) ru ← FVSS-Reconst over r (1)
u , ..., r (N )

u .

b) rv ← FVSS-Reconst over r (1)
v , ..., r (N )

v .

c) rw ← FVSS-Reconst over r (1)
w , ..., r (N )

w .

d) y1 ← ŷv − rv

e) y2 ← ŷw − rw

f) ŷu ← fu (y1, y2) + ru

Lemma 3. The protocol Circuit-Eval is UC-secure.
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Proof. We first show that for each gate u ∈ C, FCircuit-Eval correctly computes ŷu = yu + ru.
Based on FInput and FGen-Rand, for each gate u ∈ C, the inputs of the honest parties in Qu

are enough to reconstruct ru. If u is an input gate not included in the computation from the
Input Commitment stage, then ru and its shares are 0. Thus, all three values of ru, rv, and
rw can be correctly reconstructed by the functionality since FVSS-Reconst can tolerate up to a
1/4 fraction of the inputs being invalid.

We prove ŷu = yu + ru by induction on the height of u, where yu is the correct output
of the gate u. The base case is correct because based on the correctness of FInput, for each
input gate v′, we have ŷv′ = yv′ + rv′ and rv′ can correctly be reconstructed from the inputs
received from honest parties in Qv′. Suppose that for all gates u′ whose height is less
than the height of u, the functionality can compute ŷu′ = yu′ + ru′ and ru′. This induction
hypothesis is valid for v and w.

We now describe the induction step. In the computation of u, the functionality runs
FCMPC. We now argue based on the definition of the function computed by FCMPC that
the output of FCMPC is ŷu = ru + yu. By the induction hypothesis, the functionality can
reconstruct correct rv and rw and consequently it can correctly find yv and yw even if a 1/3
fraction of the inputs are missing. It is because the majority of the parties in Qv and Qw hold
correct values of ŷv and ŷw. Thus, the functionality can correctly compute fu(yv, yw) + ru.

We now prove the t-security ofCircuit-Eval in the (FGen-Rand,FCMPC)-hybrid model which
is similar to Protocol 2.2 except that every call to CMPC and Gen-Rand is replaced with a
call to FCMPC and FGen-Rand respectively. The corresponding simulator SCircuit-Eval is given
in Protocol 2.8.

Algorithm 2.8 SCircuit-Eval
For every gate u ∈ C with children v,w ∈ C, consider three groups of parties Qu,Qv, and Qw , each
of whom have N parties. In each group, up to N/8 parties are corrupted.
Inputs. {ρi }Pi ∈Iu, {r

(i)
u }Pi ∈(Iv∪Iw ), and ŷv and ŷw from parties in Iv ∪ Iw .

Simulation:

1. Run FGen-Rand with the following inputs: ρi for every Pi ∈ Iu and a dummy input for every
party in Qu − Iu. Let {r (i)

u }Pi ∈Qu denote the outputs. For every Pi ∈ Iu, add r (i)
u to the view

of Pi.

2. Let Q4 = Qu ∪ Qv ∪ Qw and I4 = Iu ∪ Iv ∪ Iw . Run FCMPC to compute the functionality
defined in Line 3 of FCircuit-Eval with the following inputs: the input of every party in I4 as
described in FCircuit-Eval, and a dummy input for every party in Q4 − I4. Let ŷu denote the
output. For every party in I4, add ŷu to the view of the party.
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We now show that the views of the corrupted parties in the hybrid execution and the
simulation are indistinguishable. After the evaluation of u, the following information will
be added to the view of every corrupted party Pi ∈ I4: ŷu and {r ( j)

u }Pj∈Iu . Recall that ŷu

is the output of FCMPC during the computation of u which is equal to yu + ru, and ru is a
uniformly random element of F based on FGen-Rand, independent of all other randomness in
the algorithm.

First, if a corrupted party Pi is not in any of the quorums associated with u, v, and w,
then no additional information will be added to its view during the computation of u; thus,
its view will be identically distributed in the hybrid execution and the simulation.

Second, a corrupted party Pi ∈ I4 may add a share ru as well as shares of the individual
random elements whose sum is ru to its view in the computation of FGen-Rand. Also, it adds
yu + ru to its view. However, Pi cannot learn any additional information about the shares of
ru (and thus about ru) based on FCMPC and FGen-Rand. In other words, the parties in I4 are
unable to directly determine ru, since the only relevant inputs are the shares of ru, and they
do not have enough of those since they have fewer than half of them.

These parties also do not have enough shares of shares of ru to reconstruct it. However,
they add to their view shares of each of the other shares of ru multiple times: once during
the input stage of FCMPC in which u is involved, and once during the computation of the
parent of u. Each time, they do not get enough shares of shares ru to reconstruct any shares
of ru. But, can they combine the shares of shares from different runs for the same secret to
gain some information? Since fresh and independent randomness was used by the dealers
creating these shares on each run, the shares from each run are independent of the other
runs, and so they do not collectively give any more information than each of the runs give
separately. Since each run does not give the parties in I4 enough shares to reconstruct
anything, it follows that they do not learn any information about ru.

Second, parties in I4 add shares of shares for rv and rw to their views. However, with
a similar argument as ru, they cannot reconstruct rv and rw as well even if these parties
participate in one or more of the instances of FCMPC which involve v or w: the computation
of v or w themselves or the computations of u as their parents.

Moreover, ŷu is also a random element in the field since ru is uniformly random and
ŷu = yu + ru. Thus, ŷu holds no information about yu, and the corrupted parties cannot
learn any information about yu except what is implicit in his input and the circuit output.
This means that the corrupted parties cannot distinguish if they are participating in a run of
the hybrid model or the simulation. Finally, since SCircuit-Eval is straight-line and black-box,
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Circuit-Eval is UC-secure. �

2.2.3.5 Security of Output Stages

The ideal functionality for the Output Reconstruction and the Output Propagation stages of
Protocol 2.1 are given in Protocol 2.9.

Algorithm 2.9 FOutput
Goal. The functionality guarantees the output is reconstructed correctly and it is learned by all
honest parties.

Functionality:
1. Run FVSS-Reconst to reconstruct the output.

2. Send the output to all the parties.

Lemma 4. The Output Reconstruction and Output Propagation stages of Protocol 2.1 are
UC-secure.

Proof. We first show that the two stages correctly compute FOutput. Let z be the output gate
of C. By Lemma 3, all parties in the output quorum Qz eventually agree on yz + rz and hold
shares of rz. In the Output Reconstruction stage, these parties run the VSS-Reconst. Since
at least a 1/3 fraction of them are honest, they correctly reconstruct rz. Since all honest
parties in Qz know yz + rz and subtract from it the reconstructed rz, they all eventually learn
yz. Thus, all parties in Qz eventually learn yz.

We now show by induction that all honest parties eventually learn yz. Since Q1 is
assigned to the output gate, it provides a base case. For i > 1, consider the parties in Qi,
and for all j < i assume the correct output is learned by all parties in Q j . During the Output
Propagation stage, the parties in Qi receive putative values for the output from the parties
at Qbi/2c . Since Qbi/2c is good, and by induction hypothesis all honest parties in it have
learned the correct output, it follows that all honest parties in quorum Qbi/2c send the same
message which is the correct output.

We now prove the t-security of the output stages in the FVSS-Reconst-hybrid model. The
corresponding simulatorSOutput is given in Protocol 2.10. The views of the corrupted parties
in the hybrid execution and the simulation are indistinguishable since the only message that
is added to the view of the adversary is the output. Based on the security definition of MPC,
the adversary is allowed to learn the output. �

We now show that our main protocol is UC-secure.
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Algorithm 2.10 SOutput
Inputs. For the output gate z and the corresponding quorum Qz , the inputs of the simulator are
{r (i)

z }Pi ∈Iz , and ŷz from parties in Iz .

Simulation:

1. Run FVSS-Reconst with inputs {r (i)
z }Pi ∈Iz and dummy inputs for honest parties. Add the output

to the view of parties in Iz .

2. For every i ∈ {2, ..., n}, parties in Qi perform the following steps:

a) Receive y from Q bi/2c and add it to the view of every parties in I bi/2c .

b) Send y to all parties in Q2i and Q2i+1.

Lemma 5. Protocol 2.1 is UC-secure.

Proof. Canetti [Can95] proves the t-security of VSS-Share, VSS-Reconst, and CMPC
using straight-line black-box simulators. So, based on Theorem 1, these protocols are UC-
secure. Moreover, Lindell et al. [LLR06] show that any Byzantine agreement protocol in
the standard model (such as the protocol of [CR93]) is UC-secure. Hence, the Byzantine
agreement of [FM88] is also UC-secure.

Protocol 2.1 is t-secure since in lemmas 1, 3, and 4 we showed that all stages of the
Protocol 2.1 are t-secure. Based on Theorem 1, since we have proved the t-security of
Protocol 2.1 using a straight-line black-box simulator, the protocol is also UC-secure. �

2.2.4 Cost Analysis

We now analyze the resource costs of Protocol 2.1.

Lemma 6. During the Input stage, each quorum sends at most O(log n) messages.

Proof. For the input stage, each quorum is mapped to at most one of the input gates and
hence one of the nodes in the count tree. Since each quorum has log n parties, an additional
polylog(n) messages are sent by each quorum during VSS-Share and VSS-Reconst to check
whether the input is correctly secret-shared. �

Lemma 7. If all honest parties follow Protocol 2.1, then with high probability, each party
sends at most Õ(m/n +

√
n) messages.

Proof. By Theorem 4, we need to send Õ(
√

n) messages per party to build the quorums.
Subsequently, each party must send messages for each quorum in which it is a member.
Recall that each party is in Θ(log n) quorums.
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By Lemma 6, each quorum sends Õ(log(n)) messages during Input stage. Recall that
each quorum is mapped to Θ

(m+n
n

)
nodes of C. A quorum runs Gen-Rand and the gate

evaluation step of Circuit-Eval once per node it is mapped to in C. Since each gate has
in-degree two and out-degree at most two, a quorum runs CMPC at most three times for
every node it is mapped to in C. Also, at most polylog(n) messages are sent per party per
instance of CMPC, Gen-Rand, and gate evaluation. Finally, each quorum sends O(log n)

messages in the dissemination of the output. Thus, each quorum sends polylog(n) messages
per node it represents. It follows that each party sends Õ(m/n +

√
n) messages. �

Lemma 8. If all honest parties follow Protocol 2.1, with high probability, the total latency
is O(d polylog(n)) where d is depth of the circuit the protocol computes.

Proof. Based on Theorem 4, the latency for creating quorums is polylog(n) which implies
that the Input Commitment stage also has polylog(n) latency.

In the computation of the circuit, to evaluate the gate g in the upper level of the circuit,
first its input gates in lower level of the circuit must be evaluated. This implies that the
evaluation of the circuit is level by level and the latency for evaluating the circuit is O(d)

times the latency of CMPC over log n parties. �

2.2.5 An Efficient Technique for Share Renewal

In our MPC protocol, we solved the share renewal problem by masking the result in the
current quorum and unmasking it in next quorum. However, we believe simple constructions
of this method can be expensive in terms of communication and computation costs because
it relies on the existence of an unmasking circuit securely evaluated by parties in the first
quorum. Such a circuit must implement an error-correcting technique which requires many
multiplication gates. Boyle et al. [BGT13] overcome this problemby sending their encrypted
inputs to only one quorumwhich does all of the computation using FHE. Unfortunately, this
results in large computation and communication costs for parties in that quorum. In this
section, we design a simple and efficient method for share renewal by relaxing the resiliency
requirement from t < n/3 to t < n/6.

For simplicity of our presentation, we let N denote the number of parties in each
quorum. In linear secret sharing, to secret-share a value, the dealer picks a random
polynomial φ(x) =

∑t
i=0 φi xi of degree t such that φ(0) = s, and sends each party Pi

a share si = φ(i). We represent each secret-shared value s by 〈s〉 = (s1, ..., sn) meaning that
each party Pi holds a share si generated by the VSS scheme during its sharing phase. Using



CHAPTER 2. SCALABLE MULTI-PARTY COMPUTATION 31

the natural component-wise addition of representations, we define 〈a〉 + 〈b〉 = 〈a + b〉. For
multiplication, we define 〈a〉 · 〈b〉 = Multiply(〈a〉, 〈b〉), where Multiply is a protocol defined
later in this section. The gate evaluation algorithm of our MPC protocol is modified in such
a way that for every addition over two shared values 〈a〉 and 〈b〉 performed above, parties
computes 〈c〉 = 〈a〉+〈b〉. For every multiplication, they run 〈c〉 = Multiply(〈a〉, 〈b〉). Parties
run protocol RenewShares described later in this section over 〈y〉 and 〈y′〉 to re-share them
in the quorum associated with the parent gate.

The high-level idea is to first generate a random polynomial that passes through the
origin, and then add it to the polynomial that corresponds to the shared secret. The
result is a new polynomial that represents the same secret but has coefficients that are
chosen randomly and completely independent of the coefficients of the original polynomial.
Combined with the VSS scheme of Katz et al. [KKK08] in a group of n parties with t < n/3
dishonest parties, this protocol has one round of communication and requires each party to
send O(n) field elements.

This idea was first proposed by Ben-Or et al. [BGW88]. The solution provided
in [BGW88] requires a zero-knowledge proof, where each party is asked to prove dis-
tribution of shares over a polynomial with zero free-coefficient. Unfortunately, such a proof
is either round-expensive (as in [BGW88]) or requires a weaker adversarial model for the
problem to be solved efficiently (e.g., see [HJKY95]). On the other hand, by relaxing the
resiliency bound by only one less dishonest party, we can generate a random polynomial
that passes through the origin without requiring the zero-knowledge step.

Let φ(x) be the original polynomial. The idea is to first generate a random polynomial
ρ(x) of degree deg(φ) − 1, and then compute a new polynomial φ0(x) = x · ρ(x) that is
of degree deg(φ) and passes through the origin. Finally, the fresh polynomial is computed
from φ(x) + φ0(x). The polynomial ρ(x) can be simply generated by asking parties to
agree on a secret-shared uniform random value (using the protocol Gen-Rand described
in [ZMS14]) over a random polynomial of degree deg(φ) − 1. Figure 2.4 depicts this idea
for the special case of d = 1.

Theorem 1. Let Q and Q′ be two quorums of size N , where Q holds a shared value
〈s〉 = (s1, ..., sN ) over a polynomial φ of degree d = N/3. There exists a protocol that
can generate a new shared value 〈s′〉 = (s′1, ..., s

′
N ) in Q′ such that s′ = s. The protocol is

secure against a computationally-unbounded Byzantine adversary corrupting less than a
1/6 fraction of the parties in each quorum.

The secure multiplication protocol (denoted by Multiply) is based on a well-known
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Figure 2.4: Share renewal technique [ZMS14]

technique proposed by Beaver [Bea91]. The technique generates a shared multiplication
triple (〈u〉, 〈v〉, 〈w〉) such thatw = u·v. The triple is then used to convert multiplications over
shared values to additions. The only difference betweenMultiply and Beaver’s multiplication
method is that Beaver generates shared random elements u and v on polynomials of degree
d and multiplies them to get a polynomial of degree 2d for w. Then, a degree reduction
algorithm is run to reduce the degree from 2d to d. Instead, we choose polynomials of
degree d/2 for u and v to get a polynomial of degree d for w. In our protocol, since we
require less of 1/6 fraction of the parties be dishonest in each quorum, we can do this
without revealing any information to the adversary. We note that the first step of Multiply
is independent of the inputs and thus, can be performed in an offline phase to generate a
sufficient number of multiplication triples.

Algorithm 2.11 Multiply
Usage. Initially, parties hold two shared values 〈a〉 and 〈b〉 that are on a polynomial of
degree d = N/3. The protocol computes a shared value 〈c〉 such that c = a · b.

Multiply(〈a〉, 〈b〉) :
1. Parties run Gen-Rand to generate two shared random values 〈u〉 = (u1, ..., uN ) and
〈v〉 = (v1, ..., vN ) both on polynomials of degree d/2. Then, each party Pi computes
wi = vi · ui.

2. Each party Pi computes εi = ai + ui and δi = bi + vi and runs Reconst(εi) and
Reconst(δi) to learn ε and δ. Party Pi computes ci = wi + δai + εbi − εδ.

Clearly, ε and δ can be safely revealed to all parties so that each party can compute εδ
locally. The only difference between Multiply and Beaver’s multiplication method is that
Beaver generates shared random elements u and v on polynomials of degree d andmultiplies
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Figure 2.5: Share renewal technique

them to get a polynomial of degree 2d for w. Then, a degree reduction algorithm is run to
reduce the degree from 2d to d. Instead, we choose polynomials of degree d/2 for u and
v to get a polynomial of degree d for w. In our protocol, since we require less than N/6
of parties be dishonest in each quorum, we can do this without revealing any information
to the adversary. We note that the first step of Multiply is independent of the inputs and
thus, can be performed in an offline phase to generate a sufficient number of multiplication
triples.

Algorithm 2.12 Renew-Shares
Usage. Let Q be the quorum associated with gate G in the circuit, and Q′ be the quorum
associated with a parent of G. Initially, parties in Q hold a sharing 〈s〉 = (s1, ..., sN ) of a
secret s ∈ Zp over a random polynomial φ(x) of degree d = N/3. Using this protocol,
parties in Q jointly generate a fresh sharing of s in Q′.

RenewShares(〈s〉,Q′):
For all i ∈ [N],

1. Party Pi ∈ Q runs Gen-Rand to jointly generate a sharing 〈r〉 = (r1, ..., rN ) of a
uniform random value r ∈ Zp over a polynomial ρ(x) of degree d − 1.

2. Pi ∈ Q computes s′i = si + i · ri, and sends s′i to party Pi ∈ Q′.

2.2.5.1 Security Proof

Definition 1. [t-secrecy] A sharing defined over a polynomial φ is said to have t-secrecy if
1. it is t-private meaning that no set of at most t parties can compute φ(0), and
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2. it is t-resilient meaning that no set of t or less parties can prevent the other n − t

remaining parties from correctly reconstructing φ(0).

Proposition 1. The Shamir’s secret sharing scheme [Sha79] has the following properties:
1. A sharing defined over a polynomial φ of degree d has d-secrecy if the adversary

knows less than d points on φ.

2. Let φ1 and φ2 be independent randompolynomials of degree d1 and d2 that correspond
to sharings with d1-secrecy and d2-secrecy respectively. φ3 = φ1+φ2 is a polynomial
of degree d3 = max(d1, d2) that corresponds to a sharing with d3-secrecy.

3. Let φ1 and φ2 be polynomials of degree d that correspond to two sharings both with
d-secrecy. φ3 = φ1 · φ2 is a polynomial of degree 2d that corresponds to a sharing
with d-secrecy.

Proof. The first property can be easily observed from Definition 1 because in order to
uniquely reconstruct a polynomial of degree d, at least d + 1 points are required. Since
the adversary knows less than d points on φ, and all elements of Zp are equally likely to
be the missing point(s), the adversary cannot uniquely reconstruct the polynomial and thus,
he learns nothing about the secret. The second property is correct due to the linearity of
Shamir’s secret sharing scheme. Without loss of generality, let d1 ≤ d2. Intuitively, if we
assume that the sharing defined by φ3 does not have d2-secrecy. Then, parties compute
φ2 = φ3 − φ1. Thus, they can find φ2(0) (or similarly, prevent others from learning φ2(0)).
This contradicts with the fact that φ2 corresponds to a sharing with d2-secrecy. For a
complete proof, we refer the reader to Claim 3.4 of [AL11]. The third property is correct
because considering an arbitrary party Pi holding two shares ai and bi on polynomials φ1

and φ2 respectively, Pi learns nothing from ai · bi other than what is revealed from ai and bi

since Pi computes it with no interaction with other parties. So, the resulting shared value
also has d-secrecy. �

Corollary 1. If a shared value has d-secrecy, then it also has d′-secrecy, where d′ < d.

The correctness of Multiply is already shown by Beaver in [Bea91]. The security of
Multiply directly follows from Proposition 1 described above and Lemma 1 proved below.

Lemma 1. Let 〈a〉 and 〈b〉 be two secret-shared values both with N/3-secrecy and 〈c〉 =
Multiply(〈a〉, 〈b〉). The sharing 〈c〉 has N/3-secrecy.
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Proof. In the first step of Multiply, algorithm Gen-Rand creates two shared values 〈u〉 =
(u1, ..., uN ) and 〈v〉 = (v1, ..., vN ) that correspond to degree N/6 polynomials. Lemma 1
proves that 〈u〉 and 〈v〉 both have N/6-secrecy. For each party Pi, based on Lemma 1,
wi = ui ·vi defines a new sharing that is on a polynomial of degree N/3 and has N/6-secrecy.
Moreover, 〈a〉 and 〈b〉 both are on polynomials of degree N/3 and have N/3-secrecy. Thus,
based on Lemma 1, ci = wi+δai+εbi−εδ defines a new sharing 〈c〉 that is on a polynomial
of degree N/3 and has N/3-secrecy. �

We first prove the correctness of Renew-Shares. Figure 2.5 shows a sketch of the proof.
From the correctness of Gen-Rand, ri ∈ Zp is a share of a global random value r ∈ Zp. Let
φo(x) = x · ρ(x). Clearly, deg(φo) = deg(ρ) + 1 = d. Now, define φ′(x) = φ(x) + φo(x).
Since φ(0) = s and φo(0) = 0, we have φ′(0) = s. Hence, each party Pi can locally
compute a new share of s denoted by s′i from s′i = si + i · ri, where s′i = φ

′(i), si = φ(i), and
i · ri = φo(i). We now prove the security of Renew-Shares.

Lemma 2. Let φ1 and φ2 be two polynomials. φ2(x) = x · φ1(x) if and only if φ2(0) = 0.

Proof. If φ2(x) = x · φ1(x), then φ2(0) = 0. Assuming d = deg(φ2), we write φ2(x) =

a0 + a1x + ... + ad xd . If φ2(0) = 0, then a0 = 0 and there exists a polynomial φ1(x) =

a1 + ... + ad xd−1 such that φ2(x) = x · φ1(x). �

Lemma 3. Let 〈s〉 and 〈s′〉 be two shared values defined over random polynomials φ1 and
φ2 respectively, where φ2(x) = x · φ1(x). If 〈s〉 has t-secrecy, then 〈s′〉 also has t-secrecy.

Proof. Let d1 and d2 be the degrees of φ1 and φ2 respectively. Clearly, d2 = d1 + 1. Let
St be a set of at most t ≤ d1 points on φ1 the adversary learns via a coalition of at most t

malicious parties. By Lemma 2, the only information the adversary learns about φ2 is a set
of at most t+1 points St ∪

{
(0, 0)

}
on φ2. Since t+1 ≤ d2, by Proposition 1 and Corollary 1,

〈s′〉 has t-secrecy. �

Theorem 2. Let Q and Q′ be two quorums of size N , where Q holds a shared value
〈s〉 = (s1, ..., sN ) over a polynomial φ of degree d = N/3. The protocol Renew-Shares
generates a new shared value 〈s′〉 = (s′1, ..., s

′
N ) in Q′ such that s′ = s. The protocol is

secure against a Byzantine adversary corrupting T < N/6 parties in each quorum.

Proof. Let ρ(x) be the polynomial associated with 〈r〉 = (r1, ..., rN ) generated in the first
step of Renew-Shares. Since φ has degree d = N/3, based onCorollary 1, 〈s〉 has d-secrecy.
Since deg(ρ) = deg(φ) − 1 = d − 1, the sharing 〈r〉 has (d − 1)-secrecy. By Corollary 1,
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x · ρ(x) defines a new sharing with (d − 1)-secrecy. Finally, by Proposition 1, the protocol
computes a new sharing 〈s′〉 = (s′1, ..., s

′
N ) with (d − 1)-secrecy, where s′i = si + i · ri. Based

on the correctness of Renew-Shares shown proved before, s′ = s. Since T < N/6 parties
are dishonest in Q and Q′, via a coalition of at most 2T < N/3 dishonest parties in Q

and Q′, the adversary can learn up to 2T shares of 〈s〉. Moreover, since 〈s〉 and 〈s′〉 both
have (N/3 − 1)-secrecy, the last step of the protocol reveals nothing about s. Based on the
correctness and secrecy of Gen-Rand invoked in the first step of Renew-Shares, r and its
shares are uniformly random and independent from any other random value generated in the
protocol. For all i ∈ [N], since ri is independent of si, we conclude that s′i is independent
of si. �

We now prove the secrecy of our modified circuit evaluation step by induction. The
adversary cannot obtain any information about the inputs and outputs during the computation
of each gate of the circuit. Let Q, and Q′ be two quorums involved in the computation
of a gate, where Q provides an input to the gate, and Q′ computes the gate. Consider a
party P. Let S be the set of all shares P receives during the protocol. We consider two
cases. First, if P < (Q ∪ Q′), then elements of S are independent of the shares Q sends to
Q′. Moreover, elements of S are independent of the output of Q′ since Q′ also re-shares its
output(s). Hence, S reveals nothing about the inputs and outputs of the gate.

Second, if P ∈ (Q ∪Q′), then the inductive invariant is that the collection of all shares
held by dishonest parties in Q and Q′ does not give the adversary any information about the
inputs and the outputs. As the base case, it is clear that the invariant is valid for input gates.
The induction step is as follows. The adversary can obtain at most 2(N/6) = N/3 shares
of any shared value during the computation step; N/6 from dishonest parties in Q and N/6
from dishonest parties in Q′. By the secrecy of the VSS scheme, at least N/3+ 1 shares are
required for reconstructing the secret. By the secrecy of RenewShares and Multiply, when
at most N/3 of the shares are revealed, the secrecy of the computation step is proved using
universal computability of multi-party protocols.

2.3 Computationally-Secure MPC

In this section, we present our cryptographic protocol for general MPC. Before describing
our protocol, we define standard tools and notation used in the protocol.
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2.3.1 Preliminaries

Notation. An event occurs with high probability, if it occurs with probability at least
1 − 1/nc, for any c > 0 and all sufficiently large n. A function ε : N → R+ is said to
be negligible if ε (k) < 1/kc, for any c > 0 and all sufficiently large k. A problem with
solution S is computationally intractable with respect to the security parameter κ, if for
every adversary A given information I, the probability Pr[A(I) = S] = ε (κ). We denote
the set of integers {1, ..., n} by [n]. Let Zp denote the additive group of integers modulo
a prime p, Zp[x] denote all integer polynomials4 in variable x modulo p, and Z∗p denote
the multiplicative group of integers modulo p. Throughout this chapter, we assume g is a
generator of the multiplicative group G of prime order p.

2.3.1.1 Computationally-Secure VSS

In our protocol, we use the cryptographic VSS scheme of Kate et al. [KZG10] called
eVSS (stands for efficient VSS), which is based on Shamir’s scheme [Sha79] and pro-
poses a commitment scheme that is computationally-hiding under the Discrete Logarithm
(DL) assumption and computationally-binding under the t-Strong Diffie-Hellman (t-SDH)
assumption. Since eVSS generates commitments over elliptic curve groups, it requires
smaller message sizes than other DL-based VSS scheme such as [GRR98].

Definition 2. [DL Assumption] Given g, gx ∈ G, computing x is computationally in-
tractable.

Definition 3. [t-SDH Assumption] Let a ∈ Z∗p. Given g, ga, g(a2), ..., g(at ) ∈ G, finding
c ∈ Zp and g1/(a+c) is computationally intractable.

Definition 4. [t-polyDH Assumption] Let a ∈ Z∗p. Given g, ga, g(a2), ..., g(at ) ∈ G, finding
φ(x) ∈ Zp[x] and gφ(a) is computationally intractable.

Boneh and Boyen [BB04] and Kate et al. [KZG10] show that solving t-SDH and t-polyDH
problems with t < O( 3

√
p) each requires Ω(

√
p/t) in expected time.

Theorem 3. [KZG10] There exists a synchronous linear (n, t)-VSS scheme for t < n/2 that
is secure against a computationally-bounded static adversary under the DL, t-SDH, and
t-polyDH assumptions. In worst case, the protocol requires two broadcasts and four rounds
of communication.

4i.e., polynomials with integer coefficients.
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The eVSS scheme consists of a setup algorithm denoted by VSetup that generates an
algebraic structure and a public-private key pair required for the protocol. VSetup can be
either run by a trusted party or a distributed authority [KZG10].

2.3.1.2 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme allows to perform non-interactive secure
computation, which is very useful in designing communication efficient MPC protocols.
Gentry [Gen09] proposed the first FHE scheme, which is based on the hardness of lattice
problems and is very computationally intensive. Although in the past few years the efficiency
of FHE schemes has been improved by several orders of magnitude [vDGHV10, BGV12,
GHS12a], current FHE schemes are still far from being used in practice.

The impracticality of current FHE schemes is primarily due to noise management
techniques (like bootstrapping) that are used to deal with a noise term in ciphertexts that
increases slightly with homomorphic addition and exponentially with homomorphic mul-
tiplication. On the other hand, if the circuit has a sufficiently small multiplicative depth,
then it is possible to use the current FHE schemes in practice without using the expensive
noise management techniques. Such a scheme is sometimes called somewhat homomorphic
encryption (SHE), which requires significantly less amount of computation than an FHE
with noise management.

Similar to Damgard et al. [DPSZ12], we use SHE in a setup phase to generate multi-
plication triples that can be used later to perform secure multiplication in constant number
of rounds. In this technique, SHE is only used to evaluate circuits of depth one and only
in the setup phase. We use the fast FHE scheme of Brakerski-Gentry-Vaikuntanathan
(BGV) [BGV12] that is based on ring learning with error (R-LWE) assumption and pro-
vides an effective approach for controlling the noise level of ciphertexts. LWE [Reg05]
is a post-quantum lattice problem that asks to recover a secret given a sequence of ap-
proximate random linear equations on the secret. R-LWE is a special case of LWE with
practical key sizes and yet strong hardness guarantees [LPR10]. In order to make homo-
morphic computations of BGV faster, we use the ciphertext packing technique of Smart and
Vercauteren [SV11] and the optimizations of Gentry et al. [GHS12b].

Theorem 4. [BGV12] There exists a fully homomorphic encryption public key cryptosystem
E (D) = (Gen, Enc, Dec, Eval) secure under the R-LWE assumption and against a semi-
honest adversary such that E (D) is homomorphic for all circuits of depth at most D, and all
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algorithms of the scheme have computation complexity polynomial in the depth and size of
the circuit and the security parameter5.

In the case of a malicious adversary, a threshold FHE (TFHE) scheme is required, where
is replaced with a protocol TGen for agreeing on a common public key as well as a sharing
of the secret key and Dec is replaced with a threshold decryption protocol TDec. In this
chapter, we use the TFHE scheme of Asharov et al. [AJLA+12] that is based on the FHE
construction of BGV.

Theorem 5. [AJLA+12] There exists a threshold fully homomorphic encryption public
key cryptosystem T E (D) = (TGen, Enc, TDec, Eval) secure under the R-LWE assumption
and against a static malicious adversary corrupting t ≤ n parties such that T E (D) is
homomorphic for all circuits of depth ≤ D.

2.3.2 Our Protocol

Let f be a deterministic function computed by an arithmetic circuit C of depth d and depth
|C |. Let G1, ...,G |C | denoted the gates of C, where instead of only + or ×, each gate G` ∈ C

for ` ∈ [|C |] can compute an arithmetic circuit CG` that has at most two inputs and at most
two outputs6. In C, every gate with indegree zero is called an input gate, and every gate
with outdegree zero is called an output gate. Let G1, ...,Gn be the input gates. Consider n

parties P1, P2, ..., Pn with inputs x1, ..., xn ∈ Zp, who want to jointly evaluate C over their
inputs. Let denote the number of gates in C. Our main algorithm proceeds as follows.

5Such a scheme is also called a leveled FHE scheme with d be the maximum number of levels in the
circuit.

6An arithmetic circuit is a directed acyclic graph, where every node with indegree zero is called an input
gate and every other gate is labeled by either + (called a addition gate) or × (called a multiplication gate).
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Algorithm 2.13 Computationally-Secure MPC

1. Setup:

a) Quorum Building: Parties run the quorum building algorithm to agree on n
quorums Q1, ...,Qn. For all ` ∈ [|C |], gate G` is assigned to Q(` mod n).

For all i ∈ [N] and j ∈ [n], party Pi ∈ Q j performs the following:
(b) Key Generation: Pi runs algorithms TGen and VSetup.
c) Triple Generation: Pi runs InitTriple to jointly create a sufficient number of

multiplication triples (ui, vi,wi).

2. Input Commitment: For all i ∈ [n], party Pi secret shares its input in Qi associated
with input gate Gi.

3. Circuit Evaluation: The circuit C is evaluated level-by-level starting from the input
gates. For each gate G in C, the associated quorum QG computes CG in the following
way. Let 〈α〉 = (α1, ..., αN ) and 〈β〉 = (β1, ..., βN ) be the sharings associated with
the inputs of G. For each gate g in CG, and each party Pi ∈ QG,

a) if g is an addition gate, then Pi computes γi = αi + βi,
b) if g is a multiplication gate, then Pi runs γi = Multiply(αi, βi),
c) if g is the output gate of CG with output value γi , then Pi runs

RenewShares(γi,QG′) for the quorum associated with G′, which is the cor-
responding parent of G.

4. Output Propagation: Each party in each quorum associated with an output gate
runs z = Reconst(γi), and then runs Output(z).

In the rest of this section, we define various algorithms used in Algorithm 2.13. Due to
space limitations, we only give the proof of some of the algorithms in this section. The rest
of the proofs can be found in Section 2.3.3.

2.3.2.1 Setup Phase

In our protocol, each gate G of the circuit is assigned a quorum that is in charge of
computing the function associated with G. Consider a quorum Q of N = O(log n) parties
P1, P2, ..., PN with inputs α1, ..., αN ∈ Zp respectively, who want to jointly compute a
circuit CG corresponding to a gate G of C, while ensuring no parties learn anything about
the inputs other than what is revealed from the output of the circuit. Throughout this section,
we assume all parties belong to Q unless otherwise stated. Also, we use the notation Ca

to denote an encryption of a plaintext a ∈ Zp ciphered by the encryption algorithm of
Theorem 5, meaning that Ca = Enc(a).
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As described in Algorithm 2.13, inputs of G are securely shared inQ using VSS scheme,
and the gate is evaluated over these secret-shared inputs. If G is an addition gate, then each
party simply computes a share of the output by adding the input shares. However, if G is
a multiplication gate, then the product of input shares is not necessarily a valid share of
the product. We address this by generating a set of multiplication triples for each quorum
using FHE in the setup phase similar to [DPSZ12]. As a result of this procedure, each party
Pi ∈ Q holds a sufficient number of multiplication triples (ui, vi,wi), where ui and vi are
shares of uniform random values u, v ∈ Zp , and wi is a share of w = u · v. These shares
are all computed using TFHE such that no party learns anything about u , v , and w beyond
their own shares. Algorithm InitTriple implements the triple generation functionality.

Algorithm 2.14 InitTriple
Usage. Each party Pi jointly computes a triple (ui, vi,wi), where 〈u〉 = (u1, ..., uN ), 〈v〉 =
〈v1, ..., vN〉, and 〈w〉 = (w1, ...,wN ), where u, v ∈ Zp are chosen uniformly at random,
w = u · v.

InitTriple():
1. For all i ∈ [N], party Pi chooses values ai, bi ∈ Zp uniformly at random, and

broadcasts the pair (Enc(ai),Enc(bi)).

2. Let {(Ca j, Cbj )}
N
j=1 be the set of pairs Pi receives from the previous step7. Pi computes

Cu =

N∑
j=1
Ca j, Cv =

N∑
j=1
Cbj, and Cw = Cu · Cv .

Parties runs CipherShare(Cu), CipherShare(Cv), and CipherShare(Cw) to generate
three sharings 〈Cu〉, 〈Cv〉, and 〈Cw〉.

3. For all i ∈ [N], party Pi runs ui = DecPrivate(Cui ), vi = DecPrivate(Cvi ), and
wi = DecPrivate(Cwi ).

7Throughout this section, if the party receives less than N messages, it assumes a default value (in this
case 0) for unreceived messages. Clearly, the party always receives at least 2t messages from honest parties.



CHAPTER 2. SCALABLE MULTI-PARTY COMPUTATION 42

Algorithm 2.15 CipherShare
Usage. Initially, all parties in Q hold a common ciphertext Cu. Using the algorithm, parties
jointly convert Cu into a sharing 〈Cu〉 = (Cu1, ..., CuN ), where ui is a VSS share of u ∈ Zp.

CipherShare(Cu):
For all i ∈ [N],

1. Party Pi runs Gen-Rand to jointly generate a sharing 〈r〉 = (r1, ..., rN ) of a uniform
random value r ∈ Zp over a polynomial of degree N/3 − 1.

2. Pi computes Cui = Cu + Enc(i · ri). The party sends its share Cui to all parties in Q
via one-to-one communication.

3. Let Cu1, ..., CuN be the messages Pi receives from the previous step. Pi runs the
Welch-Berlekamp algorithm to recover the correct polynomial φ′(x) of degree N/3.
For all j ∈ [N], if φ′( j) , Cu j , then Pi concludes that Pj is dishonest, and ignores its
share Cu j .

We now prove the correctness of CipherShare. From the correctness of Gen-Rand, ri is a
share of a global random value r ∈ Zp. Let φ1(x) ∈ Zp[x] be a random polynomial of degree
N/3− 1 such that ri = φ1(i). Using φ1(x), we define a new polynomial φ2(x) ∈ Zp[x] such
that φ2(x) = x ·φ1(x). Clearly, φ2(x) has degree N/3 and passes through the origin. Finally,
we use φ2(x) to define a new polynomial φ3(x) ∈ Zp[x] such that φ3(x) = w + φ2(x). It is
clear that φ3(x) passes through the point (0,w), and for all i ∈ [N], wi = φ3(i) is a valid
VSS share of w. Thus, using the homomorphic properties of Enc,

Enc(w) + Enc(i) · Enc(ui) = Enc(w + i · ui) = Enc(w + φ1(i)) = Enc(wi).

The third step is correct because the Welch-Berlekamp algorithm can be represented as an
arithmetic circuit and thus, can be computed over cipher inputs using the homomorphic
properties of the TFHE scheme.

Algorithm 2.16 DecPrivate
Usage. Initially, all parties in Q hold a common ciphertext Cu. Using this algorithm, parties
in Q jointly decrypt Cu for a party Pj ∈ Q. Initially, each party Pi ∈ Q holds a share ski of
the joint secret key sk =

∑N
i=1 ski created by TGen during the setup phase of the protocol.

DecPrivate(Cu):
1. For all i ∈ [N], party Pi ∈ Q sends the pair (Cu,wi) to party Pj ∈ Q, where wi is

calculated using Cu and ski as in the first step of TDec (see algorithm TFHE.Dec
of [AJLA+12]).

2. Let {(C (1)
u ,w1), ..., (C (N )

u ,wN )} be the set of pairs party Pj ∈ Q receives from the
previous step. From {C (1)

u , ..., C (N )
u }, party Pj chooses the element with majority as

Cu, and computes the output using Cu and w1, ...,w` as in the second step of TDec
(algorithm TFHE.Dec in [AJLA+12]).
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Note on Reconstruction of Secret-Shared Values. In the malicious setting, it is possi-
ble that dishonest parties send spurious shares during secret reconstruction phase. In
eVSS [KZG10] (used in the cryptographic version of our protocol), this is solved by asking
all parties to broadcast a proof (called witness) during reconstruction to verify broadcast
shares. In our protocol, reconstruction is postponed to after circuit evaluation. Since the
witnesses are generated in the sharing phase at the beginning of the computation, and the
witnesses do not have necessary homomorphic properties, we cannot use them in our recon-
struction phase. Instead, we correct corruptions using a BCH decoding algorithm (e.g., the
algorithm of Berlekamp and Welch [BW86]) as in normal secret reconstruction [Bea91].
This technique is also used in the VSS of Katz et al. [KKK08].

2.3.3 Security Proof

2.3.3.1 Proof of InitTriple

First, we prove u and v are uniform randoms, and they are common among all parties. By
the correctness of the broadcast protocol, all honest parties receive the pairs {(Ca j, Cbj )}

N
j=1.

Let u =
∑N

j=1 a j and v =
∑N

j=1 b j . Since Cai and Cbi are homomorphic ciphertexts,∑N
j=1 Ca j = C

∑N
j=1 a j

= Cu and
∑N

j=1 Cbj = C
∑N

j=1 bj
= Cv. For all i ∈ [N], each honest party

Pi chooses ai and bi uniformly at random, so u and v are uniform randoms independent of
the ai’s and bi’s sent by all parties. The correctness of the rest of the algorithm is based
on the correctness of CipherShare and DecPrivate. Since DecPrivate is correct, the third
step of the algorithm reveals ui, vi, and wi only to Pi. The CipherShare algorithm requires
each party to calculate a random polynomial on encrypted values. Lemma 4 shows how
homomorphic properties of Enc can be applied to an eVSS sharing.

The first and second steps of the algorithm perform communications and computations
over encrypted values only so, they are secure based on the security of the encryption
scheme. The security of the third step follows by the security of DecPrivate. Finally,
although the adversary has access to up to T ≤ N/3 shares of each sharing 〈u〉, 〈v〉, and 〈w〉,
based on the security of eVSS scheme, it does not have enough information to reconstruct
u, v, and w, respectively. The communication cost of InitTriple can be computed based on
the cost of CipherShare and DecPrivate. Thus, it is equal to poly(N )polylog(N ). �

Lemma4. If 〈w〉 = (w1, ...,wN ) is a sharing ofw ∈ Zp, then 〈Enc(w)〉 = (Enc(w1), ...,Enc(wN)).

Proof. Let φ(x) be the polynomial corresponding to the sharing 〈w〉 = (w1, ...,wN ). This
means that φ(x) passes through the point (0,w), and φ(i) = wi. We define a new polynomial
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φ′(x) = Enc(φ(x)). Using the homomorphic properties of Enc, we have φ′(i) = Enc(wi),
thus φ′(0) = Enc(w). �

2.3.3.2 Proof of CipherShare

We have already proved the correctness in Section 2.3.2.1. Based on the security of
Gen-Rand, and the security of theorem 5, Cw and Cui , and computations on them are
secure. Moreover, we need to prove that the adversary cannot decrypt the ciphertexts. Let
φ1(x) ∈ Zp[x] be a random polynomial of degree τ − 1 such that ri = φ1(i). Using φ1(x),
we define a new polynomial φ2(x) ∈ Zp[x] such that φ2(x) = x.φ1(x). Clearly, φ2(x) has
degree τ, and passes through the origin. Finally, we use φ2(x) to define a new polynomial
φ3(x) ∈ Zp[x] such that φ3(x) = γ + φ2(x). It is clear that φ3(x) passes through the point
(0, γ). Using the additive homomorphic property of eVSS secret sharing, φ3(i) = γi+φ2(i).
Thus, for all i ∈ [N], γ′i = φ3(i) is a valid eVSS share of γ′ = γ.

Based on the correctness and security of Gen-Rand, the value r and its shares are
uniformly random and independent of any value in the protocol, and they generate a random
polynomial φ1(x) of degree N/3− 1. φ2(x) = x.φ1(x) is a new polynomial of degree N/3.
In this case at most N/3 of the shares of this new polynomial is revealed to the adversary
because dishonest parties can generate T shares in addition to the known fact that φ2(x)

passes through the origin. Thus, there is absolutely nothing the adversary can learn about
φ2(x). The same argument is valid for φ3(x). The communication cost of CipherShare
is equal to the communication cost of Gen-Rand plus N2 extra messages sent in step 2 of
the algorithm. The computation cost of CipherShare is equal to the computation cost of
Gen-Rand plus poly(N ) evaluations on encrypted data in step 3. Thus, the computation
cost of CipherShare is equal to Õ(κ + log p). �

2.3.3.3 Proofs of DecPrivate and Reconst

Based on the result of [AJLA+12], DecPrivate is correct and secure, its communication
cost is N , and its computation cost is Õ(κ). The correctness and security of Reconst
follows from the correctness of Lagrange interpolation and Welch-Berlekamp decoding
algorithm [BW86, MS81]. It is easy to see that the communication cost of Reconst is
O(N2), and the communication cost of Reconst is O(N4) based on Lemma 5.

Lemma 5. [Welch-Berlekamp] Given a set of n points S = {(x1, y1) | xi, yi ∈ Fp}
n
i=1

as input, the Welch-Berlekamp algorithm can be represented as an arithmetic circuit of
multiplicative depth poly(n) with computation cost of O(n3).
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2.3.3.4 Proof of Algorithm 2.13

In the following, we prove algorithm Algorithm 2.13 and our main theorem.

Setup. The correctness and security follows the proof of Theorems 4, 5, and 6, and the
InitTriple algorithm.

Input Commitment. The correctness and security follows the proof of eVSS in Qi. After
this phase, each Qi has a correct sharing of Pi’s input. This is the base case for our proof of
circuit evaluation phase.

Output Propagation. Once the computation phase of an output gate is finished, each party
Pi of the quorum associated with the gate holds a share γi of the output value 〈γ〉, where
i ∈ [N]. Since the number of honest parties in the quorum is N − T > N − N/6 + 1 =
5N/6 + 1 > 2N/3, honest parties have enough information to reconstruct the output value
via Reconst(γi) and propagate it via Output(z). The correctness and security of output
propagation follows from the proofs of Reconst(γi) and Output(z).

Costs. The communication and computation costs for the setup phase is equal to the cost of
the quorum formation algorithm of Theorem 4 (Õ(1) for each parties) plus the cost of TGen,
VSetup, and InitTriple that are executed for each of the n quorums by their N = O(log n)

parties. TGen communication cost is O(N2polylog(N )Dκ2), and its computation cost is
O(N3Dκ2), where D = poly(N ) is the multiplication depth of the circuit corresponding
to the Welch-Berlekamp algorithm. Assuming the CRS model, algorithm VSetup has no
communication cost, but the computation cost is O(N). Based on the costs of InitTriple,
the communication cost of the setup phase is Õ(nκ2), and its computation cost is Õ(nκ2),
assuming p = poly(n).

The communication cost the Input Commitment phase is equal to the communication cost of
running n different invocation of eVSS sharing. Therefore, the communication cost is equal
to O(n log2 n), and the communication cost is O(n log2 n). The communication cost for the
Circuit Computation phase is equal to the communication and computation cost of running
m different instantiation of Multiply and Renew-Shares, assuming each gate has constant
number of multiplication operations in its circuit. Hence, the communication complexity
is O(m log3 n), and the computation complexity is O(m log4 n). The communication cost
for the Output Propagation phase is equal to the communication and computation cost of
running different instantiation of Reconst and Output for each output gate. Thus, its com-
munication and computation costs are equal to O(n log2 n) for one output gate. Assuming
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one output gate and constant number of multiplication in each gate, the communication cost
for the online phase is equal toO(m log3 n), and the computation cost for online phase is
O(m log4(n)). �

2.4 Conclusion

We described scalable protocols for solving the secure multi-party computation (MPC)
problem among a large number of parties. We designed both a computationally unbounded
and a computationally bounded adversary. In the former setting, our protocol is secure
against a static malicious adversary corrupting less than a 1/3 fraction of the parties. In the
latter setting, we allow the adversary to corrupt less than a 1/6 fraction of parties. For any
deterministic function that can be computed by an arithmetic circuit with m gates, both of
our protocols require each party to send a number of field elements and perform an amount
of computation that is Õ(m/n +

√
n). We also show that our protocols provide perfect and

universally-composable security.



Chapter 3

Anonymous Broadcast

Anonymous communication allows individuals to communicate with each other without
fear of surveillance. An anonymity system attempts to conceal the relation between mes-
sages and their intended recipients, between messages and their actual senders, or both (full
anonymity). Although the study of anonymous communication technology is often moti-
vated by high-stakes use cases such as battlefield communication, espionage, or political
protest against authoritarian regimes, anonymity actually plays many well-accepted roles in
established democratic societies. For example, paying cash, voting, and opinion polling are
everyday examples of anonymous activity.

In this chapter, we study the problem of secure anonymous broadcast, where a set of n

parties want to anonymously send their messages to all parties. Anonymous broadcast is an
important tool for achieving privacy in several distributed applications such as anonymous
communication [Cha81], private information retrieval [CKGS98], secure auctions [FA00],
and MPC. One challenging attack on anonymity systems is traffic-analysis, where a global
adversary maps messages to their senders and recipients by monitoring the traffic exchanged
between parties. Such a powerful adversary was assumed to be unrealistic in the past
but it is believed to be realistic today especially if the service provider is controlled or
compromised by a state-level surveillance authority [FF14]. Unfortunately, well-known
anonymous services such as Crowds [RR98] and Tor [DMS04] are not secure against traffic
analysis attacks. Moreover, most schemes that tolerate traffic analysis scale poorly with the
network size, rendering them impractical for large networks.

We design a decentralized anonymous broadcast protocol that scales well with the
number of parties and is robust against an active adversary. One motivating application
for this protocol is a decentralized version of Twitter that enables provably-anonymous

47
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broadcast of messages.
Two widely-accepted architectures for providing general anonymity against an active

adversary are Mix Networks (Mix-Nets) and Dining Cryptographers Networks (DC-Nets),
both of which were originally proposed by Chaum [Cha81, Cha88]. Mix-Nets require semi-
trusted infrastructure nodes and are known to be vulnerable to traffic analysis and active
attacks [PW86]. DC-Nets [Cha88, GJ04, vABH03, WP90], on the other hand, provide
ABC protocols among a group of parties without requiring trusted parties. The core idea of
DC-Nets is that a protocol for multi-party computation can be used to perform sender and
receiver anonymous broadcast. For example, if party pi wants to broadcast a message mi

anonymously, then all other parties participate in a multi-party sum with input zero, while
party pi participates with input mi. All parties learn the sum, which is mi while all inputs
remain private. This ensures that no party can trace the output message mi to its input,
keeping pi anonymous.

Although DC-Nets are provably-secure against traffic analysis, they face several chal-
lenges. First, a reservation mechanism is required to schedule which party is broadcasting
without compromising the anonymity of the sender. Second, DC-Nets are susceptible to
collisions, which degrade throughput. A jamming adversary may even use collisions to
render the channel useless by continuously transmitting in every round. Third, typical
DC-Nets are not scalable given that the bit complexity required to anonymously broadcast
a single bit among n parties is Ω(n2).

State-of-the-art approaches that address some of these challenges include [CGWF13,
GJ04, vABH03]. The majority of these methods scale poorly with network size, rendering
them impractical for large networks. Recently, Zamani et al. [ZSMK13, KKSZ13] proposed
the first ABC protocol, where each party sends o(n) bits to broadcast a bit among n parties.
Their protocol uses multi-party computation to achieve full anonymity and logarithmic-size
groups of parties to achieve Õ(1) communication and computation costs. Unfortunately,
their protocol has polylogarithmic rounds of communication and is not practical due to large
logarithmic factors hidden in the complexity notation.

To the best of our knowledge, every sender and receiver anonymous broadcast protocol
that does not rely on a trusted party consists of at least three steps.

1. Input. Initially, each party holds a message. The party distributes its message or a
representation of it among all or a subset of parties. This step requires sending Ω(n)

messages.

2. Multi-Party Shuffling. All or a subset of parties participate in a multi-party protocol
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to obliviously generate a random permutation of the sequence of message they hold.

3. Output. All or a subset of parties holding a sequence of messages broadcast them to
all parties. This step requires sending Ω(n2) bits for delivering n shuffled bits.

Since much cannot be done to improve the cost of the output phase, we will mainly focus
on the multi-party shuffling step in this chapter. Multi-party shuffling can be used as
a black-box in multi-party computation problems. Boyle et al. [BGT13] use oblivious
shuffling to randomly choose inputs for a sublinear function evaluation, where a function
is evaluated over o(n) inputs chosen uniformly at random in the presence of an active
adversary. Laur et al. [LWZ11] and Goodrich et al. [GMOT12] describe how multi-party
shuffling can be used for implementing oblivious database operations and oblivious storage.

3.1 Related Work

Some protocols are built upon a relaxed notion of anonymity called k-anonymity [vABH03,
YF05, LBCZ+13], where the adversary is assumed to be unable to identify the actual
sender/receiver of a message from a set of k parties (called anonymity set). Even though
k-anonymity often increases efficiency significantly, choosing small k’s can result in se-
vere privacy problems. For example, attackers often have background knowledge and it
is shown that small anonymity sets are likely to leak privacy when attackers have such
knowledge [MKGV07]. For example, a person located in New Mexico is more likely to
search for a restaurant serving chili stew than a person in Vermont.

VonAhn et al. [vABH03] develop a cryptographic broadcast protocol based on DC-Nets
that is resistant to a static active adversary. A set of n parties with private inputs compute and
share the sum of their inputs without revealing any parties’ input. The authors introduce k-
anonymity, which means no polynomial-time adversary may distinguish the sender/receiver
of amessage from among k honest senders/receivers. To achieve k-anonymity, they partition
the set of parties into groups of size M = O(k) and execute a multi-party sum protocol
inside each group. The jamming detection mechanism is weak against an adversary who
may waste valuable resources by adaptively filling up to M channels. In the case where
n-anonymity is desired, the protocol requires O(n3) messages to be sent per anonymous
message and the total bit complexity is O(n4). The protocol has latency that is O(1) on
average when the number of broadcasts is large, but which can be O(n) in worst case for a
single broadcast.

Golle and Juels [GJ04] employ cryptographic proofs of correctness to solve the jamming
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problem in DC-Nets assuming a static Byzantine adversary. The protocol detects jamming
with high probability in O(1) rounds, requiring a total communication and computation
complexity of O(n2) bits. Their protocol assumes the existence of a reliable broadcast and
a centralized trusted authority for key management distribution.

The Xor-trees approach of [DO00] extends DC-Nets to achieve O(n) amortized bit
complexity, which is optimal. In this protocol, only a single user is allowed to send at
any one time in a Xor-tree. Hence, the protocol is subject to performance degradation due
to collisions as the number of users increases. The protocol assumes the existence of a
public-key infrastructure and a non-Byzantine polynomial-time adversary. The total bit
complexity of the protocol is O(n2t2) bits in worst case, where t is the number of dishonest
parties. The latency of the protocol is O(n) in worst case. However, a sender may broadcast
large payloads to amortize the costs. The amortized latency of the protocol is O(1).

The Verdict protocol of [CGWF13] (which is based on Dissent [CGF10]) has a client-
server architecture and uses verifiable DC-Nets, where participants use public-key cryptog-
raphy to construct ciphertext, and knowledge proofs to detect and exclude jamming parties
before disruption. The protocol assumes the existence of a few highly-available servers,
where at least one server is honest. All servers must be alive, however, for the protocol to
work. An interesting aspect of Verdict is that it is robust to a large fraction of Byzantine
parties (up to n−2). The paper demonstrates empirically that the system scales well with the
number of parties, when the number of servers is fixed. The Tarzan protocol of Freedman
and Morris [FM02] provides resistance against traffic analysis, but only against a passive
adversary.

The Aqua protocol of Le Blond et al. [LBCZ+13] provides k-anonymity with traffic-
analysis resistance against passive global attacks and active local attacks. The protocol
achieves anonymity in a way similar to Tor (onion routing) and achieves unobservability
through traffic obfuscating, which is to add artificial delay or artificial traffic (called chaff)
to the connection. Laur et al. [LWZ11] describe a multi-party shuffling protocol that can be
used for anonymizing a set of inputs. Although the communication and round complexity
of their protocol scales well with the number of inputs, they scale exponentially with the
number of parties and hence, the method cannot be used in our model, where n is relatively
large.

Goodrich [Goo11] proposes an efficient data-oblivious randomized shellsort algo-
rithm. Unfortunately, when implemented in a multi-party setting, this protocol requires
O(m) rounds of communication to sort m values and has communication complexity
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O(`2n2m log m), where ` is the message size. Zhang [Zha11] and Hamada et al. [HKI+12]
develop constant-round MPC sorting protocols that scale well with the number of inputs
but scale poorly with the number of parties.

State-of-the-art approaches that address some of these challenges include [CWF12,
GJ04, vABH03]. The majority of these methods are cryptographic in nature, and scale
poorly with network size, rendering them impractical for large networks. We are not aware
of any unconditionally-secure anonymous protocol that scales better than O(n2) bits per
anonymous bit delivered.

In this dissertation, we first address the scalability and jamming limitations of DC-Nets.
Our jamming-resistant protocol provides anonymity at a total bit complexity of Õ(n) per
anonymous message and a total latency of polylog(n). Our result is motivated by a vision of
creating peer-to-peer versions of microblogging services with large number of users such
as Twitter, but with provable anonymity guarantees. In Twitter, users can tolerate a higher
messaging latency when compared to interactive web browsing applications. Therefore,
trading-off latency for bandwidth cost and load-balancing is a promising goal for such
applications.

3.2 Preliminaries

In this section, we describe standard tools used throughout this section.

Sorting Networks. A sorting network is a network of comparators. Each comparator is a
gate with two input wires and two output wires. When two values enter a comparator, it
outputs the lower value on the top output wire, and the higher value on the bottom output
wire. Ajtai et al. [AKS83b] describe an asymptotically-optimal O(log n) depth sorting
network called AKS. Unfortunately, the AKS network is not practical due to large constants
hidden in the depth complexity. Leighton and Plaxton [LP90] propose a practical O(log n)-
depth probabilistic sorting network that sorts with very high probability meaning that it
sorts all but εn! of the n! possible input permutations, where ε = 1/22c

√
log n , for any constant

c > 0. While this circuit is sufficient for us to prove our main results, one can instead use
the O(log2 n)-depth sorting network of Batcher [Bat68] for sorting all n! permutations at
the expense of O(log2 n) protocol latency.

Secure Comparison. Given two linearly secret-shared values a, b ∈ Zp, Nishide and
Ohta [NO07] propose an efficient protocol for computing a sharing of ρ ∈ {0, 1} such
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Figure 3.1: Jamming-resistant circuit for n parties

that ρ = (a ≤ b). Their protocol has O(1) rounds and requires O(`) invocations of a secure
multiplication protocol, where ` is the bit-length of elements to be compared. We refer to
this protocol by Compare. We also describe a fast multiplication protocol to be used along
with the comparison protocol of [NO07] for implementing fast comparator gates.

3.3 Anonymous Broadcast via DC-Nets

In this section, we design a fully-anonymous and scalable anonymity system based on
DC-Nets. We prove the following theorem in this section.

Theorem 6. Assume there are n parties in a fully-connected network with private channels,
up to t < n/3 of which are controlled by an adversary, and each party has a constant-size
message to broadcast. If all honest parties follow the protocol of this section, then with high
probability,

1. Each honest party broadcasts its message to all other honest parties with probability
1/k, where k > 1 is a constant,

2. The communication is fully-anonymous,

3. Each party sends Õ(n) bits and performs Õ(n) computations,

4. The latency of the protocol is polylog(n).
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Assume n parties P1, ..., Pn, where for 1 ≤ i ≤ n, party Pi has a message mi to broadcast
to the network anonymously. Party Pi chooses a number l ∈ [1, r] uniformly at random and
forms a vector Xi = [xi j], where xil = mi and xi j = 0 (for all 1 ≤ j ≤ r and j , l). For some
constant k > 1, each of the r = kn positions in Xi is referred to as a slot. For simplicity, we
assume r is an integer power of two. The parties then run an MPC algorithm to compute a
function f (X1, X2, ..., Xn) such that every party learns the vector addition

∑n
i=1 Xi and none

of the parties can send more than one non-zero input. In the following, we explain the
circuit that computes function f .

Our Circuit Figure 3.3 shows the circuit, which consists of twomajor sub-circuits: JamDe-
tector that detects jamming inputs andAdder that computes the component-wise addition.
We now describe each part of the circuit in detail.

• Input gates. In Figure 3.3, gates labeled GI are called input gates and compute the
identity function GI (xi j ) = xi j . Input gates are necessary for ensuring consistency
among all inputs a party sends during the protocol execution.

• Jam detector. Each party is associated with exactly one JamDetector sub-circuit.
The sub-circuit has r inputs and r outputs: all outputs are set to zero if no jamming is
detected for the corresponding party otherwise all outputs are set to a non-zero value.
Figure 3.3 depicts a circuit for n = 2 and r = 4 showing the sub-circuit in detail. Each
JamDetector consists of three types of gates, which are defined in the following on
the field F:

G1(y) =



0, if y = 0
1 otherwise

G2(y1, y2) =




0, if y1 + y2 = 0

1, if y1 + y2 = 1

2 otherwise

G3(y) =



0, if y = 0, 1
−1 otherwise

Each JamDetector contains a perfect binary tree consisting of only G2 gates over r

leaf nodes, consisting of only G2 gates. This tree is connected from its root gate to an
inverted perfect binary tree of only G3 gates over r/2 leaf nodes, consisting of only
G3 gates.
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• Selector gates. Gates labeled GS in Figure 3.3 and Figure 3.3 are called selector
gates. Each of these gates acts like a selector function: if the first input (which is
an output of a JamDetector sub-circuit) is zero, it simply outputs the second input
otherwise it outputs zero. The selector gate is defined as follows:

GS (y1, y2) =



y2, if y1 = 0

0 otherwise

where y1 is the output of corresponding G3 and y2 is the output of corresponding
input gate.

• Adder. There is one Adder sub-circuit, which is a simple sum circuit and consists of
r perfect binary trees each of which has n leaf nodes. The j-th binary tree sums up the
outputs of all the j-th selector gates from all parties, which correspond to all the j-th
slots. In order to avoid sending incorrect data down the tree when a collision happens,
each sum gate in Adder simply outputs zero if both of its inputs are non-zero.
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Circuit Computation Using our MPC algorithm described in Chapter 2, the inputs of all
parties are sent up the circuit simultaneously. The JamDetector sub-circuit filters out any
jamming inputs and sends the rest of them up to Adder . The Adder sub-circuit computes
the sum of all non-jamming inputs and finally, the result is sent down to every party via the
output propagation algorithm described in Section 2. The MPC algorithm ensures that (1)
the output of the circuit is computed correctly and is reliably sent to all parties; and (2) no
party learns any information about the inputs or outputs of intermediate gates, except what
can be learned from their own input and the final output of the circuit.

3.3.1 Security Proof

In this section, we prove Theorem 6.

Lemma 6. Consider a JamDetector sub-circuit, r input gates (GI), and r selector gates
(GS) associated with party Pi (see Figure 3.3). During the computation of the circuit, at
most one of the selector gates, say G∗S, outputs a non-zero value. If Pi is honest, then G∗S is
chosen uniformly at random from the r selector gates.

Proof. Assume Pi has a message mi to broadcast. First, consider the case where Pi is
honest. Pi chooses an input gate uniformly at random and sends mi to that gate and sends 0
to all other input gates. Hence, at most one G1 gate outputs 1 and the rest output 0. Thus,
all G2 gates output 0 or 1, and consequently all G3 gates output 0. Finally, the output of
all Gs gates is the same as the output of the corresponding input gate. Hence, at most one
Gs gate, say G∗S, outputs a non-zero value. Obviously, G∗S is chosen uniformly at random
because the corresponding input gate is chosen uniformly at random. Now, consider the
case where Pi is dishonest and sends non-zero values to more than one of his input gates
(this corresponds to a jamming attack). In this case, more than one G1 outputs 1 and since
the sum is greater than one, all G3 gates output −1 and all Gs gates output 0. �

In our protocol, we explained that each party selects one of the r slots uniformly at
random. Even if all parties are honest (i.e., no jamming is occurring), collisions are always
possible meaning that one or more parties may choose the same slot for their non-zero
message. Unfortunately, there is no efficient non-interactive method that guarantees all
parties select distinct slots. Hence, for simplicity, we ensure that the number of slots is
large enough so that the probability of collision remains small. The following lemma gives
an upper-bound on the probability of collisions.
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Lemma 7. If r = kn, where r is the number of slots and k > 1 is a constant, then the
probability of collision for one party is less than 1/k.

Proof. By Lemma 6, we can ensure that each party sends his input to at most one slot, i.e.,
jamming has already been prevented. Let P be an arbitrary honest party. The probability
that another party chooses exactly the same slot that P chooses is 1/r . So, the probability
of collision for P is at most (n − 1)/r . Since r = kn, the probability of collision is at most
(n − 1)/kn < 1/k. As in [vABH03], in most cases we can set r = 2n, which makes the
probability of collision for a party less than 1/2. �

Lemma 8. Our protocol is fully-anonymous and it ensures that for each honest party Pi,
who sends message mi, all honest parties learn mi with probability 1 − 1/k.

Proof. The MPC protocol guarantees that the adversary only learns the set of outputs and
the corresponding slots besides his own input. The input slots were chosen independently
and uniformly at randomly by each party. As proved in Lemma 6, every m j sent by an honest
party Pj (1 ≤ j ≤ n) appears in at most one of the corresponding selector gates uniformly
at random and all other selector gates output 0. Since the Adder sub-circuit keeps the
ordering of slots, the output slots corresponding to honest parties are also chosen uniformly
at random and thus, give the adversary no extra information. Therefore, conditioned on all
information that the adversary can learn during the protocol, the probability that mi is sent
by any honest party Pj (1 ≤ j ≤ n) is 1/(n − t). This means that the communication is
sender-anonymous.

Our MPC protocol guarantees that all honest parties learn every output of the circuit
with high probability, one of which is mi. This shows that the communication is receiver-
anonymous and thus, the protocol is fully-anonymous. Moreover, based on Lemma 7, the
probability that it fails to deliver mi is less than 1/k. �

Lemma 9. The circuit has depth O(log n) and O(nr) gates, where r is the number of slots.

Proof. In the circuit of Figure 3.3, for each party a subtree of depth 2 log r + 3 consisting
of 5r − 2 gates is required ignoring the Adder circuit, which consists of r binary trees each
with n leaves. Each tree has depth log n + 1 and consists of 2n − 1 gates so the Adder
sub-circuit has (2n−1)r gates. Therefore, the total number of gates in a circuit for n parties
is 7nr − 2n − r and the circuit has depth 2 log r + log n + 4. �
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Lemma 10. If all honest parties follow our protocol, then with high probability, the protocol
sends Õ(n) bits and performs Õ(n) computations for sending one anonymous bit. The
latency of the protocol is polylog(n).

Proof. Our MPC protocol requires each party to send Õ( m
n ) bits and perform Õ( m

n ) com-
putations to compute any arbitrary function f , where m is the number of gates in the circuit
for computing f . However, unlike our MPC protocol that propagates only one message (the
result of computation) to every party at the output propagation phase, our protocol transmits
n messages at this phase. Therefore, it requires each party to send Õ( n2+m

n ) bits. From
Lemma 9, we have m = O(n2) gates so each party sends Õ(n) = Õ(n) bits for sending n

anonymous bits. Alternatively, the protocol sends Õ(n) bits for sending one anonymous bit.
With a similar argument, the protocol requires each party to perform Õ(n) computations.
Our MPC algorithm takesO(d) rounds to compute any arbitrary circuit with depth d, where
n is the number of parties. Lemma 9 shows that the circuit for n parties has depth O(log n),
since r = O(n). Therefore, the protocol takes polylog(n) rounds to send an anonymous
bit. �

3.4 Anonymous Broadcast via Multi-Party Shuffling

3.4.1 Introduction

Shuffling a sequence of values is a fundamental tool for randomized algorithms; applications
include fault-tolerant algorithms, cryptography, and coding theory. In secure multi-party
shuffling (MPS) problem, a group of parties each holding an input value want to randomly
permute their inputs while ensuring no party can map any of the outputs to any of the input
holders better than can be done with a uniform random guess. An MPS protocol is a useful
primitive for achieving privacy and robustness in many applications such as anonymous
communication [Cha81], location-based services [GG03], electronic voting [Nef01], secure
auctions [FA00], and general multi-party computation [BGT13].

Despite many applications of MPS, we are not aware of any technique that can be used
to achieve a scalable and secure MPS protocol. We believe this is of increasing importance
with the growth of modern networks. Moreover, most protocols lack load-balancing – a
crucial requirement for protocols running in large networks. With the rise of sophisticated
cyber-attacks, it is now essential to provide provable guarantees against strong adversaries.
Also, relying on trusted parties has become a major security issue in today’s world.
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In this section, we address these concerns by proposing a scalable and load-balanced
protocol for MPS that is unconditionally-secure against malicious attacks and does not rely
on trusted parties.

Our Contribution. We first propose a formal definition of security for MPS. Our def-
inition is different from the standard definition of security for multi-party computation
(MPC) [BGW88], where a group of parties each holding a private input want to compute a
known function over their inputs, without revealing any more information about their inputs
than what is revealed by the output of the function. Instead of focusing on inputs privacy,
we base our definition on the secrecy of the output permutation.

Next, we propose an unconditionally-secure MPS protocol that scales polylogarithmically
with the number of parties, tolerates malicious faults, and is load-balanced. Simulations of
our protocol suggest that it compares favorably with the current state of the art in terms of
communication cost, computation cost, and the number of communication rounds.

In our protocol, we achieve sublinear per-party communication complexity by requiring
each party to only communicate with polylogarithmic-size groups of parties rather than
with all parties. This approach, however, introduces important technical challenges to our
model; the most important one is to guarantee the adversary cannot break the security of
our protocol via coalitions of corrupted parties in more than one group, when we share
the same secret information with the parties in these groups. Some prior work solve
this by relaxing the load-balancing requirement [BGT13], the resiliency bound [ZMS14],
or practical efficiency [DKMS12]. We propose a novel technique called share renewal
without relaxing any of these requirements.

When a protocol is concurrently executed alongside other protocols, one requires to ensure
this composition preserves the security of the protocol.1 Since our goal is to design
modular MPS protocols that can be flexibly used with other protocols, we show security of
our protocol under the universal composability framework as described by Canetti [Can01].

Our Model. Consider n parties P1, ..., Pn in a fully-connected synchronous network with
private and authenticated channels. We assume the parties have no access to any trusted
party and/or to any reliable broadcast channel. We consider a malicious adversary who
corrupts at most t < n of the parties and can see (and analyze) the entire traffic in the
network, but cannot see the content of messages transmitted between uncorrupted parties

1An adversary attacking several protocols that run concurrently can cause more harm than by attacking
stand-alone executions of these protocols [Can01].
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since we assume private links. The corrupted parties not only can gossip their information
with other corrupted parties but also can deviate from the protocol in any arbitrary manner,
e.g., by sending invalid messages or remaining silent. We finally assume that the adversary
is static meaning that it has to select the set of corrupted parties at the start of the protocol.

Problem Statement. Let F be a finite field, and π : {1, ..., n} → {1, ..., n} denote a permu-
tation; a one-to-one and onto function that maps a sequence of n elements (x1, ..., xn) ∈ Fn

to another sequence (xπ(1), ..., xπ(n)) ∈ Fn. For i ∈ {1, ..., n}, every party Pi holds an input
xi ∈ F. A multi-party shuffling (MPS) protocol allows these parties to agree on a permuta-
tion π of the sequence (x1, ..., xn). We consider two variants of this problem. In the first
variant, which we call single-output MPS, each party Pi is required to receive only one of
the shuffled inputs xπ(i). In the second variant, which we call all-output MPS, each party
receives the entire output sequence (xπ(1), ..., xπ(n)). We now define our notion of security.

Definition 1. An MPS protocol is said to be t-secure if and only if, in the presence of a
malicious adversary corrupting up to t < n of the parties, the protocol ensures

• Unlinkability: the adversary can guess π correctly with probability at most 1
(n−t)! . We

refer to the set of possible permutations from which the adversary tries to guess the
secret permutation π as the unlinkability set.

• Correctness: each party is guaranteed that the output it receives is one of the inputs
(for single-output MPS) or contains all (and only all) the inputs (for all-output shuffle).

• Output delivery: corrupted parties cannot prevent honest parties from receiving their
output.

In this section, we consider a relaxed version of Definition 1. This allows us to achieve the
highest level of efficiency in our protocol in exchange of a very small increase in the success
probability of the adversary.

Definition 2. We say an MPS protocol is almost t-secure if and only if in the presence of a
malicious adversary corrupting up to t < n of the parties, the protocol guarantees correct-
ness and output delivery, and that the adversary can guess π correctly with probability at
most 1

(n−t)! (1 + δ), where δ = o(1) is called the deviation factor.

3.4.1.1 Our Results

We prove the following main theorem in Section 3.4.4.
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Theorem 2. There exists a universally-composableMPS protocol such that with probability
1 −O(n−3), it guarantees the following properties:

• The protocol is almost t-secure against a computationally-unbounded malicious ad-
versary with static corruptions, where t < (1/3 − ε )n, for some positive constant
ε .

• The deviation factor is O(2−2k
√

log n
), for some constant k > 1.

• Each party sends Õ(1) bits and computes Õ(1) operations.2

• The protocol terminates after O(log n) rounds of communication.

In Section 3.4.3.4, we also construct a computationally-secure variant of Theorem 10
to observe (via simulations) how much cryptographic techniques can influence practical
efficiency of our protocol. This protocol provides the same guarantees as Theorem 10
except for a polynomially time-bounded adversary. We provide our simulation results in
Section 3.4.5.

3.4.1.2 Related Work

Shuffling in the multi-party setting has already been studied, primarily in the context of
mix-nets. As first defined by Chaum [Cha81], a mix-net consists of a chain of servers (called
mixes) that randomly reorder a sequence of messages in a way that the correlation with the
corresponding input messages remains hidden. To ensure honest behavior in the malicious
setting, a verifiable shuffling [Nef01, AW07] technique is often used, where each mix is
asked to prove correctness of its shuffles without leaking how the shuffle was performed.

Unfortunately, Mix-nets and verifiable shuffling techniques rely on cryptographic as-
sumptions. Moreover, mix-nets require semi-trusted servers and are known to be vulnerable
to traffic-analysis attacks [PW86]. In traffic analysis, a global adversary maps messages
to their senders and recipients by monitoring the traffic exchanged between parties. Pro-
tocols such as [RS93, BFT04] attempt to solve this with provable guarantees. However,
they are either complicated and scale linearly with the number of parties [RS93], or are
not secure against malicious attacks and an adversary monitoring all communication chan-
nels [BFT04].

2The symbol Õ is used as a variant of the big-O notation that ignores the logarithmic factors. Thus,
f (n) = Õ (g(n)) means f (n) = O

(
g(n) logk g(n)

)
, for some k.
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Chaum [Cha88] uses MPC to introduce the dining cryptographers network (DC-net)
for achieving unlinkability 3 between inputs and outputs; a crucial requirement for both
anonymous communication and MPS. He uses a simple MPC technique to design an
unconditionally-secure anonymous broadcast protocol called . When a party P wants to
broadcast a message M anonymously, all parties participate in a multi-party sum with input
zero except P who participates with its input M . As a result of MPC, all parties learn the
sum of the inputs (i.e., M) without any party being able to trace the output to P. The DC-net
eliminates the two limitations of Mix-nets: cryptographic assumptions and traffic-analysis
vulnerability.

Although the original DC-net allows only one participant to broadcast at a time, there
are variants such as [vABH03] that implement all-to-all anonymous broadcast and thereby
enable multi-party shuffling of the inputs. Unfortunately, DC-nets suffer from collision and
jamming attacks. Although several work address these issues [vABH03, GJ04, CGWF13],
they either do not scale well with the number of parties [vABH03, GJ04] or require a few
highly-available servers [CGWF13].

MPS is closely related to data-oblivious protocols [GO96]. A protocol is data-oblivious
if its control flow is independent of input data. Such a protocol can be used to anonymize
access patterns or prevent an adversary from taking over a certain fraction of protocol inputs.
Customized shuffling techniques are designed in the context of oblivious RAMs [GO96],
oblivious database manipulation [LWZ11], oblivious sorting [Zha11, Goo11, HKI+12],
and evaluation of sublinear functions [BGT13].A multi-party sorting protocol such as that
of [Zha11, HKI+12] can be used to perform MPS. Although these protocols scale well with
n, they scale poorly with the number of parties.

Rackoff and Simon [RS93] show that if all parties send at each time step, then the
traffic-analysis problem can be solved using MPC. This means that a general MPC scheme
such as [BGW88] that can securely compute any functionality (including shuffling), can be
used to design an MPS protocol with traffic-analysis resistance. Although much theoretical
progress has been made in the MPC literature to achieve polylogarithmic overhead [BGT13,
DKMS12], there is a lack of practical solutions, especially for large number of parties.
Moreover, most of these techniques cannot be easily implemented due to a lack of detailed
protocol specifications.

In Table 3.1, we compare our main protocol with several other ones that can be used to
3Pfitzmann and Hansen [PK01] define “Unlinkability of two or more items means that within this system,

these items are no more and no less related than they are related concerning the a priori knowledge.” This
means the probability of those items being related stays the same before and after the run within the system.
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Table 3.1: Comparison of MPS techniques

Protocol
Adversary’s

Computational
Power

Malicious
Adversary?

Fraction
of Parties
Controlled

Fraction
of Links

Monitored

MPS
Security

Latency Bandwidth

[Cha81] Bounded No O(1)† See note‡ See note§ polylog(n) polylog(n)
[RS93] Bounded No O(1)† All Statistical polylog(n) Õ(n)
[BFT04] Bounded No O(1)† O(1) Statistical polylog(n) polylog(n)
[BGT13] Bounded Yes 1/3 − ε All Almost polylog(n) Õ(n)
[DKMS12] Unbounded Yes 1/3 − ε All Almost O(log n) Õ(

√
n)

Our result Unbounded Yes 1/3 − ε All Almost O(log n) Õ(1)

†This protocol assumes the rest of parties are trusted.
‡[PW86] shows traffic-analysis attacks on this protocol if all links are monitored by the adversary.
§Originally supposed to generate perfect shuffles but known attacks reduce shuffle security.
Measures the statistical distance between the distribution generated by the system and the uniform
distribution [RS93].

solve the MPS problem. To make a fair comparison with the MPC protocols of [BGT13,
DKMS12], we use their techniques to compute our own shuffling functionality described
in Section 3.4.3. In this table, by bandwidth we mean the communication complexity per
shuffled message delivered.

3.4.2 Preliminaries

We now define our notation and describe the tools used throughout this section.

Notation. For prime p, let Fp denote a finite field with p elements. We say an event occurs
with high probability, if it occurs with probability 1 − 1/nc, for some positive constant c.

Verifiable Secret Sharing. A secret sharing protocol allows a party (called the dealer)
to share a secret among n parties such that any set of t or less parties cannot gain any
information about the secret, but any set of at least t + 1 parties can reconstruct it. A
verifiable secret sharing (VSS) protocol is a secret sharing protocol with the additional
property that after the sharing phase, a corrupted dealer is either disqualified or the honest
parties can reconstruct the secret, even if shares sent by corrupted parties are spurious. In
our protocol, we use the VSS scheme of Ben-Or et al. [BGW88]. We refer to the sharing
protocol of this scheme as VSS-Share and to its reconstruction protocol as VSS-Reconst.

The VSS scheme of [BGW88] is based on Shamir’s secret sharing [Sha79]. In this scheme,
the dealer shares a secret s among n parties by choosing a random polynomial f (x) of
degree t such that f (0) = s. For all i ∈ [n], the dealer sends f (i) to the i-th party. Since
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at least t + 1 points are required to reconstruct f (x), no coalition of t or less parties can
reconstruct s. A secret sharing scheme is linear if given two shares ai and bi of secrets a

and b, ci = ai + bi is a valid share of c = a + b.

Theorem 3 ([BGW88]). There exists a synchronous linear VSS scheme for t < n/3 that is
unconditionally-secure against a static malicious adversary.

Quorum Building. King et al. [KLST11] give a protocol that can be used to bring all
parties to agreement on a collection of n quorums. A quorum is a set of N = O(log n)

parties, where it is guaranteed that at most a fixed fraction of the parties in the set are
corrupted. In general, one can use any BA algorithm (such as [BGH13]) to build a set of
quorums in the way described in [KLST11].

Theorem 4 ([KLST11, BGH13]). There exists an unconditionally-secure protocol that
brings all honest parties to agreement on n quorums with probability 1 − O(n−3). The
protocol has Õ(n) amortized communication and computation complexity over the number
of parties, and it can tolerate up to (1/3 − ε )n corrupted parties, for any positive ε . Each
quorum is guaranteed to have T < N/3 corrupted parties.

We refer to this protocol as Build-Quorums. Several recent MPC schemes [BGT13,
ZMS14] make use of quorums to achieve scalability. We are particularly inspired by
Dani et al. [DKMS12].

Sorting Networks. A sorting network is a network of comparators. Each comparator is a
gate with two input wires and two output wires. When two values enter a comparator, it
outputs the lower value on the top output wire, and the higher value on the bottom output
wire. Ajtai et al. [AKS83b] describe an asymptotically-optimal O(log n) depth sorting
network. However, this network is not practical due to large constants hidden in the depth
complexity. Leighton and Plaxton [LP90] propose a probabilistic sorting circuit with
depth 7.44 log n that sorts a randomly chosen input permutation with very high probability
meaning that it sorts all butσ ·n! of the n! possible input permutations, whereσ = 1/22κ

√
log n ,

for some constant κ > 0.4

Secure Comparison. Given two linearly secret-shared values a, b, Damgård et al. [DFK+06]
propose an efficient protocol for computing a new secret-shared value ρ = (a ≤ b) meaning

4This gives a Monte Carlo guarantee: for (1 − σ)n! of input permutations, the circuit sorts correctly, but
for the rest σn! permutations, it simply fails and gives no guarantees.
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that ρ is 1 if a ≤ b and 0 otherwise. Their protocol is unconditionally secure, has O(1)

rounds, and requires O(`) invocations of a secure multiplication protocol, where ` is the
bit-length of elements to be compared. We denote this protocol by Compare. For multi-
plication of secret-shared values, we use the protocol of Ben-Or et al. [BGW88] with the
simplifications of Gennaro et al. [GRR98]. By plugging the VSS of Theorem 3 into the
protocol of [GRR98], we achieve an unconditionally-secure multiplication protocol, which
we denote by Multiply.

Secure Broadcast In the malicious setting, when parties have only access to secure pair-
wise channels, a protocol is required to ensure secure (reliable) broadcast. Such a broadcast
protocol guarantees all parties receive the same message even if the broadcaster (dealer) is
corrupted and sends different messages to different parties. It is known that a Byzantine
agreement protocol can be used to perform secure broadcasts. Braud-Santoni et al. [BGH13]
describe the following result. In our proofs, we refer to this algorithm by BA.

Theorem 5 ([BGH13]). There exists an unconditionally-secure protocol for performing
secure broadcasts among n parties. The protocol has Õ(n) amortized communication and
computation complexity, and it can tolerate up to (1/3 − ε )n corrupted parties, for any
positive ε .

The algorithm of [BGH13] achieves this result by relaxing the load-balancing require-
ment. If concerned with load-balancing, one can instead use the load-balanced Byzantine
agreement of King et al. [KLST11] with O(

√
n) blowup.

3.4.3 Our Protocol

We now describe our MPS protocol. Consider two finite fields Fp and Fq of prime orders
p and q respectively. The high-level idea is as follows: for each party Pi holding an input
xi ∈ Fp, a uniform and independent random value ri ∈ Fq is chosen to form an input pair
(ri, xi), where i ∈ [n]. Then, the sequence of pairs ((r1, x1), ..., (rn, xn)) is sorted according
to the first elements of the pairs. We show that, for sufficiently large prime q, this algorithm
randomly shuffles the sequence of inputs (x1, ..., xn) with high probability.

To compute this functionality securely, we construct the circuit shown in Figure 3.3,
which we denote byM. This circuit consists of the probabilistic sorting circuit of [LP90]
augmented by n input gates; the functionality of each gate is computed by a quorum. M
is created jointly by all parties before the protocol starts during an input-independent setup
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Figure 3.3: MPS circuit

phase. Then, it is jointly evaluated by all parties possibly many times to shuffle many input
sequences5.

The circuitM is constructed in the following way. First, we create n quorums Q1, ...,Qn

each with N = O(log n) parties. We assign each party Pi to Qi, for all i ∈ [n]. This quorum
is responsible for receiving Pi’s input xi and choosing a random value ri on behalf of Pi.
Now, let C denote the probabilistic sorting network of [LP90] and m = Θ(n log n) be the
number of gates in C.

For all j ∈ [m], we assign the j-th gate of C to Q( j mod n). This quorum is later used
for secure evaluation of the gate’s functionality. For simplicity of notation, we assume the
quorums associated with the output gates of C are Q1, ...,Qdn/2e .6 When used to receive
inputs ofM, we refer to Q1, ...,Qn as input quorums. When used to send outputs ofM to
all parties, we refer to Q1, ...,Qdn/2e as output quorums.

Creating the probabilistic sorting circuit C requires O(log2 n) random bits known to all
parties. We generate these bits by asking one of the quorums to agree on a sequence R of
O(log2 n) random bits, and then send R to all parties via a binary tree of quorums. This
randomness is then used by the parties to agree on the structure of C using the random

5This setup phase is information-theoretically secure and does not rely on one-time pads. Thus, the same
M can be used any number of times for shuffling many input sequences.

6Note that a quorum can be re-used any number of times for local computations as long as its inputs for
each use are secret-shared independently from other uses.
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butterfly tournament procedure described in [LP90].
To ensure privacy, every quorum in M receives and maintains its inputs in a secret-

shared format, i.e., each party receives only a share of each input rather than the actual
input. Moreover, all computations in these quorums are performed over secret-shared
values. When we say a party VSS-shares (or secret-shares) a value s in a quorum Q (or
among a set of parties), we mean the party participates as the dealer with input s in the
protocol VSS-Share with all parties in Q (or in the set of parties). As a result, the parties
agree on a random polynomial f (x) such that f (0) = s, and the i-th party receives f (i) as
his verified share of s.

Protocol 3.1 shows our main protocol, where M is evaluated level-by-level until the
final outputs are generated by the output quorums. For all i ∈ [n], parties in the output
quorum Qi send their shares directly to Pi who reconstructs the corresponding secret xπ(i),
where π denotes the permutation generated by the circuit.

It is left to implement two subprotocols used in Protocol 3.1: Renew-Shares and
Ran-Gen. In Section 3.4.3.1, we describe Renew-Shares as a protocol that allows par-
ties of a quorum to securely send a secret-shared value to parties of another quorum. In
Section 3.4.3.2, we describe Ran-Gen as a protocol that allows a group of parties to agree
on a uniformly random value. We prove the security of Protocol 3.1 (and Theorem 10) in
Section 3.4.4. In particular, we show that for sufficiently large k > 0 and q = Ω(kn2 log n),
this protocol provides almost t-secure MPS with high probability.

3.4.3.1 Share Renewal

Once the computation of each gate is finished, parties in the quorum associated with that
gate send the secret-shared result to any quorums associated with gates that need this result
as input. Let Q denote a quorum at which the computation of a gate has finished, and let Q′

denote a quorum that requires the output of that computation. In order to secret-share the
result to Q′ without revealing any information to any individual party (or to any coalition
of corrupted parties in both Q and Q′), a fresh sharing of the result must be distributed in
Q′. If s is secret-shared using a polynomial f (x) of degree t, then a fresh sharing of s is a
new secret sharing of s defined using another polynomial g(x) of degree t chosen uniformly
and independently at random. We refer to the problem of generating a fresh sharing of a
secret-shared value among a new set of parties as share renewal.

Handling the share renewal problemefficiently and robustly is challenging. Dani et al. [DKMS12]
solve it by masking the result in Q using a fresh random value and unmasking it in Q′. Al-
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though their approach is secure against up to T < N/3 corrupted parties in each quorum,
they do not provide an explicit construction and simple constructions seem very expensive
in terms of both communication and computation costs.7

Boyle et al. [BGT13] overcome this problem by sending encrypted inputs to only one
quorum which does all of the computation using fully-homomorphic encryption. This is
not load-balanced, as it incurs a large computation and communication overhead to parties
in that quorum. Zamani et al. [ZMS14] propose a simple technique for this problem that is,
unfortunately, secure only against up to T < N/6 corrupted parties in each quorum.

We now describe a novel technique for share renewal that is secure against up toT < N/3
corrupted parties in each quorum. Let s denote the output of Q that is secret-shared among
parties in Q using a random polynomial f (x) of degree t. Our technique is based on the
observation that if every share of s is reshared using a fresh random polynomial, then a
specific linear combination of the new shares defines a new random polynomial g(x) such
that g(0) = s. This was first observed by Gennaro et al. [GRR98] as a simple method for
polynomial randomization and degree-reduction in themultiplication protocol of [BGW88].

Let g(x) = s + a1x + ... + aT xT . Our goal is to calculate the coefficients a1, ..., aT .
Following [GRR98], we write



1 1 · · · 1
1 2 · · · 2N−1

...

1 N · · · N N−1





s

a1
...

aN



=



f (1)

f (2)
...

f (N )



,

where aT+1, · · · , aN = 0. The matrix above is an N-by-N Vandermonde matrix that
is non-singular and hence is invertible. Let

[
λ1 λ2 · · · λN

]
be the first row of the

inverse matrix. Thus, s = λ1 f (1) + ... + λN f (N ). For all i ∈ [N], consider a fresh
polynomial hi (x) of degree T , where hi (0) = f (i). We define g(x) =

∑N
i=1 λihi (x). Since

g(0) = λ1 f (1)+ ...+ λN f (N ) = s, the polynomial g(x) defines a fresh sharing of s. Using
this, we define our share renewal protocol Renew-Shares in Protocol 3.2.

In the first step of Renew-Shares, we ask each party to reshare its share f (i) by
running a protocol called Reshare. This protocol ensures that every corrupted party
shares its correct share f (i) instead of some random or maliciously-chosen value. Asharov
and Lindell [AL11] implement a protocol (called subshare) that ensures this resharing

7Their approach relies on the existence of an unmasking circuit securely evaluated by parties in Q′. Such
a circuit must implement an error-correcting technique which requires many multiplication gates.
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process is done robustly. We refer to this protocol as Reshare. In Section 3.4.4, we prove
Renew-Shares is UC-secure against at most T < N/3 corrupted parties in each quorum.

3.4.3.2 Random Generation

We define protocol Gen-Rand using a simple and well-known technique for generating
uniformly random secret which is done by adding shares of uniformly random secrets
received from all parties. Protocol 3.3 describes the protocol.

3.4.3.3 Remarks

In the following, we discuss alternative approaches that could be used to design different
MPS protocols from Protocol 3.1.

All-Output MPS. Protocol 3.1 describes a single-output MPS construction, where each
party receives only one element of the output sequence. Although this is useful in many
applications such as data-oblivious protocols that often use MPS as an intermediate step,
an all-output MPS protocol can be used in some applications such as anonymous broadcast.
To achieve all-output MPS, the output delivery step of Protocol 3.1 becomes as follows. For
all i ∈ [n − 1], parties in the output quorum Qdi/2e run VSS-Reconst to reconstruct yi and
yi+1 and then send (yi, yi+1) to all n parties. Each party receiving a set of N pairs from each
output quorum, chooses one pair via majority filtering and considers it as the output of that
quorum.

Remark on Deterministic Sorting Networks. While the probabilistic sorting network of
[LP90] is sufficient for us to achieve an almost t-secure MPS with logarithmic latency
(Theorem10), one can instead use a deterministic sorting network such as those of [AKS83a,
Bat68] to achieve t-secure MPS (i.e., uniform shuffling) at the expense of increased latency,
communication, and computation costs. We are not aware of a sorting network that can
result in better asymptotic and practical costs than the sorting network of [LP90] in terms
of latency, communication, and computation costs.

Remark on Permutation Networks. One approach for solvingMPS is to securely evaluate
a permutation network instead of obliviously sorting randomvalues. A permutation network
is a network of swappers, where each swapper is a gate with two inputs and two outputs;
it permutes the inputs randomly with probability 1/2. A permutation network with n input
wires is typically used to generate a random permutation of n values. A network consisting
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entirely of switches with swapping probability of 1/2 cannot generate uniform permutations
of n values, because for a network with m swappers, there are 2m different outcomes. Since
n! is not a power of 2, some of the possible n! permutations are generated with higher
probability than others.

Waksman [Wak68] suggests an O(n log n) time and memory algorithm for generating
unbiased permutations. The idea is to first choose a permutation uniformly at random and
then compute a proper setting of swappers that represents the permutation.8 Unfortunately, it
is not clear how this algorithm can be implemented efficiently in a load-balancedmulti-party
setting. Czumaj et al. [CKLK01] propose a permutation network with O(1/n2) statistical
distance from the uniform distribution. To the best of our knowledge, this network provides
the smallest distance among known networks with polylog(n) depth. Still, this result cannot
be used to achieve an almost t-secure MPS (as in Definition 2) because in worst case, the
adversary can guess the correct permutation with probability 1/n!+O(1/n2) that isω(1/n!).

3.4.3.4 Cryptographic Variant of Protocol 3.1

We now describe a computationally-secure variant of Protocol 3.1 using two cryptographic
subprotocols: theVSS protocol of [KZG10] (known as eVSS) and themultiplication protocol
of [GRR98]. Since eVSS generates commitments over elliptic curve groups, it requires
smaller message sizes than other cryptographic VSS schemes such as [GRR98].

Theorem 6 ([KZG10]). There exists a constant-round linear VSS scheme for t < n/2 secure
against a computationally-bounded adversary.

Theorem 7 ([GRR98]). There exists a constant-round multiplication protocol secure
against a computationally-bounded malicious adversary corrupting up to n−1

2 parties.

Theorem 8. By plugging the VSS of Theorem 6 and the multiplication protocol of Theorem 7
into Protocol 3.1, each party is required to send Õ(1) messages of size ` = O(κ + log n)

each and compute Õ(`) operations, where κ is the security parameter. The protocol has
latency O(log n).

In Section 3.4.5, we empirically compare this cryptographic variant with Protocol 3.1.
8Here, we assume each swapper has a control bit that when it is set, the swapper always swaps its two

inputs, otherwise it keeps their order.
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3.4.4 Security Proof

The error probability in Theorem 10 comes entirely from the following steps of Protocol 3.1
failing to output correct results with some probability:

• Setup: Protocol Build-Quorums may fail to create good quorums. Theorem 4 shows
this failure happens with probability o(1).

• Random Generation: It is possible that two or more input quorums choose exactly
the same random elements from Fq. In this situation, we say a collision happens.
Collisions increase the probability that the adversary can correctly guess the secret
permutation generated by the protocol. Lemma 10 proves that, for sufficiently large
q, failure due to collisions happens with probability o(1).

• Sorting: The sorting circuit of [LP90] may fail to sort correctly with probability o(1).

All other components of our protocol are deterministic and thus have no error probability.
For simplicity, we assume the three steps above return without failure.9 However, even
assuming the sorting step of Protocol 3.1 returns without failure, the adversary can still
take advantage of the a priori knowledge that a σ fraction of the input permutations are
never sorted by the circuit, to reduce the set of possible input permutations; thus increasing
his chance of correctly guessing the secret permutation. In Lemma 9, we show this a
priori knowledge increases the chance of the adversary in correctly guessing the secret
permutation by only a small (i.e., o(1)) amount. Hence, Protocol 3.1 achieves an almost
t-secure MPS. We prove this lemma in Section 3.4.4.

Lemma 9. Protocol 3.1 implements an almost t-secure MPS.

In Lemma 10, we find suitable values for q (the size of the field of random values) such
that the probability of collision is bounded by a sufficiently small value. We prove this
lemma by a simple application of the Chernoff bound in Section 3.4.4.

Lemma 10. For some prime q, let Fq be the field of random elements generated in the
Random Generation step of Protocol 3.1. The probability that a collision happens between
any two parties is o(1) if q = Ω(kn2 log n), for some k > 0.

We prove the security of Protocol 3.1 in the universal composability framework. To this
end, we define a hybrid model based on the modular composition theorem [Can01], and

9For simplicity in our proofs, we assume the subprotocol Build-Quorums is run only once, and it does not
run concurrently with any other protocols.
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argue that, for any adversary that interacts with our protocol, there exists a simulator such
that no environment can tell apart whether it is interacting with a run of the hybrid protocol
and the adversary, or with a run of the ideal model of our protocol and the simulator. The
following lemma is proved in Section 3.4.4.1.

Lemma 11. Up to the output delivery step, Protocol 3.1 guarantees the following:
1. Any set of t < (1/3 − ε )n parties cannot learn any information about the protocol

inputs other than what they can jointly learn solely from their set of inputs.

2. Any set of t < (1/3 − ε )n parties cannot prevent the protocol from succeeding.

3. The security is maintained under universal composability.

We now prove Theorem 10. Throughout this section, whenever we talk about a protocol
that runs among N = O(log n) parties belonging to a quorum, we denote the set of indices
of the corrupted parties in this quorum by I. We start by proving Lemma 9.

Proof. Let X = (x1, ..., xn) be the input sequence andY =
(
y1, ..., yn

)
be the output sequence

generated by Protocol 3.1 such that, for all i ∈ [n], yi = xπ(i), where π : [n]→ [n] is the
permutation mapping X to Y . To prove Protocol 3.1 is almost t-secure, we show that the
adversary can guess π correctly with probability at most 1

(n−t)! (1 + o(1)). We do this by
measuring the information leaked by the protocol about π to an adversary controlling at
most t parties.

Before proceeding, we remark that the set of all permutations (each as a function
f : [n] → [n]) over n values is always the same regardless of the values themselves.
Formally, let A and B denote any two arbitrary sets, SA denote the set of all permutations of
elements in A, and SB denote the set of all permutations of elements in B. Then, SA = SB.
This is because a permutation is essentially a function mapping every position in a sequence
to another position in that sequence, and the set of all such functions over n values {1, ..., n} is
always the same. Throughout this proof, we let S denote the set of all possible permutations
over n values. Clearly, |S | = n!.

Let H denote the unlinkability set which is the set of all permutations from which the
adversary tries to guess π, where |H | ≤ |S |. In fact, the larger H , the smaller the chance
of the adversary in breaking the security of the protocol. If the protocol did not leak any
information, then |H | = |S | = n!. To show this, let X+ denote the sequence of inputs to
the sorting circuit denoted by C. This sequence contains the elements of X augmented by
the random values r1, ..., rn generated in the Random Generation step of Protocol 3.1; thus
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X+ = ((r1, x1), ..., (rn, xn)). Let Y+ =
(
(s1, y1), ..., (sn, yn)

)
denote the sequence that C

outputs. We say an arbitrary sequence Z+ = ((t1, z1), ..., (tn, zn)) is equal to Y (and denote
Z+ = Y+) if and only if yi = zi, for all i ∈ [n].

In fact, Z+ = Y+ if and only if ti is the i-th smallest element in {r1, ..., rn} conditioned
on knowing the i − 1 smallest elements. Note that although the inputs to C are values
chosen uniformly and independently at random from Fq, the set of permutations that each
can map the inputs of C to its outputs is still S because there are n input positions and
n output positions. Thus, the number of possible permutations mapping X+ to Y+ is
n · (n − 1) · ... · 1 = n! = |S |. Since for every input sequence X the protocol builds exactly
one augmented sequence X+, the number of permutations mapping X to Y that the protocol
can generate is also n!.

Even though Protocol 3.1 is capable of generating all n! permutations (that exist in S),
it leaks some information allowing the adversary to rule out two subsets of permutations
from S making H smaller than S. These subsets are as follows:

1. R1: The largest subset of S that the adversary can obtain by learning t protocol inputs
and their order in the output sequence. This is revealed after the output delivery step
of Protocol 3.1 by the coalition of t corrupted parties. By fixing t positions in the
input sequence, the adversary rules out |R1 | = n! − (n − t)! permutations from S.

2. R2: A subset of S consisting of a σ fraction of the permutations in S. These
are the permutations that cannot be sorted by C. Thus, the adversary rules out
|R2 | = σ |S | = σn! permutations from S.

In Lemma 12, we show that, in each run, Protocol 3.1 chooses a permutation from S

uniformly and independently at random. Intuitively, this means that, from the adversary’s
point of view, the elements of R2 are uniformly distributed over S. Formally, letψ denote the
random variable corresponding to the permutation that the protocol randomly chooses from
S. Lemma 12 shows that the adversary has no control over the sequence of random values
(r1, ..., rn). This means that the events ψ ∈ R1 and ψ ∈ R2 are statistically independent.
Thus,

Pr(ψ ∈ R1 ∧ ψ ∈ R2) = Pr
(
ψ ∈ (R1 ∩ R2)

)
= Pr(ψ ∈ R1) · Pr(ψ ∈ R2)

= Pr(ψ ∈ R1) ·
|R2 |

|S |

= σ Pr(ψ ∈ R1).
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Since Pr(ψ ∈ R1) = |R1 |
|S | and Pr

(
ψ ∈ (R1 ∩ R2)

)
=
|R1∩R2 |

S ,

|R1 ∩ R2 | = σ |R1 |.

In Lemma 11, we prove that, other than t input values and their order in the output
sequence, Protocol 3.1 does not reveal any information about the inputs to the adversary.
This means that the adversary cannot learn more information about π other than what it
learns from R1 and R2. Thus,

|H | ≥ |S | − |R1 ∪ R2 |

= |S | − |R1 | − |R2 | + |R1 ∩ R2 |

= n! − (n! − (n − t)!) − σn! + σ (n! − (n − t)!)

= (1 − σ)(n − t)!.

We now show that, from the adversary’s point of view, the elements of H are all equally
likely to be the secret permutation. In Lemma 12, we show that the Random Generation
step of Protocol 3.1 securely generates a uniform and independent sequence (r1, ..., rn) that
is completely unknown to the adversary. Since the protocol chooses the permutation π
from H according to this random sequence, π is also chosen uniformly and independently
at random.

Let ξ ∈ H denote the random variable corresponding to the permutation guessed by the
adversary. The probability that the adversary guesses the correct permutation π is

Pr(ξ = π) =
1
|H |
≤

1
(1 − σ)(n − t)!

=
1

(n − t)!

(
1 +

σ

1 − σ

)
=

1
(n − t)!

(
1 +

1
22κ

√
log n
− 1

)
≤

1
(n − t)!

(
1 + 2−2k

√
log n

)
=

1
(n − t)!

(1 + o(1))

In the third line, we set σ = O(2−2κ
√

log n
) from [LP90], for any constant κ > 0. The fourth

line is correct for any constant k > 1. The last line is correct because 2−2k
√

log n
= o(1).

Therefore based on Definition 1, Protocol 3.1 is almost t-secure.
�
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Lemma 12. The Random Generation step of Protocol 3.1 generates a sequence (r1, ..., rn),
where each element is chosen uniformly and independently at random from Fq, and the
adversary does not learn anything about the sequence.

Proof. Based on the security of Gen-Rand shown in Lemma 14, each input quorum Qi

agrees on a uniform and independent random value ri chosen from Fq. Since at most
T < N/3 of the parties in Qi are corrupted, and ri is kept in the secret-shared format,
the adversary cannot learn anything about the sequence and/or maliciously set/change the
sequence. �

We now prove Lemma 10. Based on the security of Gen-Rand shown in Lemma 14,
all elements generated by the input quorums in the random generation step of Protocol 3.1
are chosen uniformly at random and independent of all other random elements generated
throughout the protocol. Let Pi and Pj be two parties and ri, r j ∈ Fq be the random values
assigned to them respectively by their corresponding input quorums. The probability that
ri = r j is 1/q. Let Xi j be the following indicator random variable and Y be a random
variable giving the number of collisions happening between any two parties. We write

Xi j =




1, ri = r j

0, otherwise
, Y =

∑
i, j∈[n]

Xi j .

Using linearity of expectations,

E(Y ) = E
( ∑

i, j∈[n]
Xi j

)
=

∑
i, j∈[n]

E(Xi j ) =
1
q

(
n
2

)
=

n(n − 1)
2q

.

We want to find an upper bound on the probability of collisions using the Chernoff bound
that is

Pr (Y ≥ (1 + α)E(Y )) ≤ e−
α2E (Y )

3 .

To ensure that no collision happens with high probability, we need to have (1+α)E(Y ) <

1 while e−
α2E (Y )

3 < 1
nk , for any k > 0. Choosing α < 1

E(Y ) − 1 and solving the inequalities
for E(Y ) we get

e−
α2E (Y )

3 <
1
nk ⇒ e−

α2E (Y )
3 < e−k log n ⇒ 1 −

α2E(Y )
3

< −k log n ⇒

(α + 1)2E(Y )
3

> k log n ⇒ E(Y ) <
1

3k log n
.

Since E(Y ) = n(n−1)
2q < 1

3k log n , solving this for q gives the bound q > 3
2 kn2 log n and

α < 3k log n − 1. �
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To complete the proof of Theorem 10, we need to show that, up to the output delivery
step, Protocol 3.1 does not reveal any information about the inputs to any party. We prove
this in Lemma 11 using the universal composability framework [Can01] briefly reviewed
in Section 3.4.4.1.

3.4.4.1 Security Under Composition

The UC framework is based on the simulation paradigm [Gol00], where the protocol is
considered in two models: ideal and real. In the ideal model, the parties send their inputs to
a trusted party who computes the function and sends the outputs to the parties. We refer to
the algorithm run by the trusted party in the ideal model as the functionality of the protocol.
In the real model, parties run the actual protocol that assumes no trusted party. We refer to
a run of the protocol in one of these models as the execution of the protocol in that model.

A protocol P securely computes a functionality F if for every adversary A in the real
model, there exists an adversary S in the ideal model, such that the result of a real execution
of P withA is indistinguishable from the result of an ideal execution withS. The adversary
in the ideal model, S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. To prove
security under composition, the UC framework introduces an adversarial entity called the
environment, denoted by Z, who generates the inputs to all parties, reads all outputs,
and interacts with the adversary in an arbitrary way throughout the computation. The
environment also chooses inputs for the honest parties and gets their outputs when the
protocol is finished.

A protocol is said to UC-securely compute an ideal functionality F if for any adversary
A that interacts with the protocol there exists a simulator S such that no environment Z
can tell whether it is interacting with a run of the real protocol and A, or with a run of the
ideal model F and S.

Now, consider a protocol P that has calls to ` subprotocols P1, ...,P` which are already
proved to be UC-secure. To facilitate the security proof of P, we can use the modular
composition theorem [Can00]. This theorem states that, in order to prove the security of
P, it is sufficient to compare the ideal model to a hybrid model (instead of the real model),
where the subprotocols are assumed to be ideally computed by a trusted third-party. This
hybrid model is usually called the (P1, ...,P`)-hybrid model because it involves both a real
protocol execution and an ideal trusted third-party computing the subprotocols.
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3.4.4.2 Proof of Theorem 10

Before proceeding to the proof, we remark that the error probability in Theorem 10 comes
entirely from the possibility that Build-Quorums or the threshold counting procedure may
fail to output correct results. All other components of our algorithm are deterministic and
thus have no error probability. We also assume that, at the beginning of our MPC protocol,
the parties have already agreed on n good quorums, and the threshold counting procedure
is performed successfully.10

As in [Gol04], we refer to the security in the presence of a malicious adversary control-
ling t parties t-security. For every gate u ∈ M, we let Qu denote the quorum associated
with u, and Iu denote the set of the corrupted parties in the quorum associated with u. Also,
let I denote the set of all corrupted parties, where |I | < t.

In the context of perfectly-secure protocols, Kushilevitz et al. [KLR10] showTheorem 9,
which helps us derive the UC-security of some of our building blocks. This theorem targets
perfectly-secure protocols that are shown secure using a straight-line black-box simulator.
A black-box simulator is a simulator that is given only oracle access to the adversary
(see [Gol00] Section 4.5 for a detailed definition). Such a simulator is straight-line if it
interacts with the adversary in the same way as real parties meaning that it proceeds round
by round without ever going back.

Theorem 9 ([KLR10]). Every protocol that is perfectly-secure in the stand-alone model
and has a straight-line black-box simulator is UC-secure.

Our goal is to prove theUC-security of Protocol 3.1. Following themodular composition
theorem, we first define the ideal functionalities shown in Table 3.2 that correspond to the
subprotocols used in Protocol 3.1. We then prove that Protocol 3.1 is t-secure in the (FBA,
FVSS-Share, FVSS-Reconst, FMultiply, FCompare, FRenew-Shares, FGen-Rand)-hybrid model. Finally,
we use Theorem 9 to infer the UC-security of Protocol 3.1.

In order to prove the t-security of Protocol 3.1 in the hybrid model, we first show that all
of our subprotocols are UC-secure. Similar to the above approach, we first prove t-security
of every subprotocol in its corresponding hybrid model using a straight-line black-box
simulator and then use Theorem 9 to infer its UC-security. To prove the t-security of a
protocolΠ, we describe a simulatorSΠ that simulates the real protocol execution by running
a copy of Π in the ideal model. For each call to a secure subprotocol π, the simulator calls

10For simplicity, we assume the primitive Build-Quorums is run only once, and it does not run concurrently
with other protocols.
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Table 3.2: Ideal functionalities
Functionality Implemented by Refer to
FBA Protocol BA Theorem 5
FVSS-Share Protocol VSS-Share Theorem 3
FVSS-Reconst Protocol VSS-Reconst Theorem 3
FMultiply Protocol Multiply Protocol 6.17 of [AL11]
FReshare Protocol Reshare Protocol 6.8 of [AL11]
FCompare Protocol Compare Comparison protocol of [DFK+06]
FRenew-Shares Protocol Renew-Shares Protocol 3.2
FGen-Rand Protocol Gen-Rand Protocol 3.3

the corresponding ideal functionality Fπ. A view of a corrupted party from execution of a
protocol is defined as the set of all messages it receives during the execution of that protocol.
At every stage of the simulation process, SΠ adds the messages received by every corrupted
party in that stage to its view of the simulation. This is achieved by running a copy of Π for
each corrupted party with its actual input as well as by running a copy of Π for each honest
party with a dummy input.11 The view of the adversary is then defined as the combined
view of all corrupted parties. Finally, we argue that the view of the adversary from the
execution of the hybrid model is indistinguishable from its view of the simulation.

Lemma 13. Subprotocols BA, VSS-Share, VSS-Reconst, Reshare, Multiply, and Compare
are UC-secure.

Proof. Lindell et al. [LLR06] show that any BA protocol in the standard model (such as the
protocols of [BGH13, KLST11]) is secure under concurrent general composability. Using
Theorem 9, since the security proofs of VSS-Share, VSS-Reconst, Reshare, and Multiply
given in [AL11] use straight-line black-box simulators, these protocols are UC-secure.
Finally, Compare is shown to be UC-secure in [DFK+06]. �

The ideal functionality FGen-Rand is given in Protocol 3.4. At least N − T of the inputs
ρ1, ..., ρN are sent by uncorrupted parties and thus are chosen uniformly and independently
at random from Fq. Hence, r =

∑N
i=1 ρi is also a uniform and independent random element

of Fq.

Lemma 14. The protocol Gen-Rand is UC-secure.
11SΠ learns neither the actual inputs nor the actual outputs of the honest parties.
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Proof. We prove the t-security of Gen-Rand in the FVSS-Share-hybrid model which is similar
to Protocol 3.3 except that every call to VSS-Share is replaced with a call to the ideal
functionality FVSS-Share. The corresponding simulator SGen-Rand is given in Protocol 3.5.

The views of the corrupted parties in the hybrid execution and the simulation are indis-
tinguishable because the only difference between the two views is that SGen-Rand generates
the shares from dummy input 0 instead of actual inputs. Since FVSS-Share generates uniform
and independent random shares from any input, the two views are identically distributed.
Following Theorem 9, since our simulator is straight-line and black-box, Gen-Rand is
UC-secure. �

Lemma 15. The protocol Renew-Shares is UC-secure.

Proof. The corresponding ideal functionality FRenew-Shares is shown in Protocol 3.6. In
this functionality, we denote the ideal functionality of Reshare by FReshare which is equal
to F subshare

V SS defined in [AL11]. Using this functionality, a set of parties can verifiably
secret-share values that are themselves shares. If a corrupted party Pi provides an invalid
secret-sharing of its share si, or it remains quiet (in which case FRenew-Shares sets si = ⊥),
F subshare

V SS defines a new sharing that represents si and uses it in place of the invalid (or
missing) sharing. See [AL11] for more details.

We prove in the (FVSS-Share, FReshare)-hybrid model which is similar to Protocol 3.2
except that every call to VSS-Share and Reshare are replaced with calls to the ideal func-
tionalities FVSS-Share and FReshare respectively. The corresponding simulator SRenew-Shares

is given in Protocol 3.7.
Let Q and Q′ be two quorums involved in the share renewal procedure, where parties

in Q want to send a secret-share value s to parties in Q′. Consider a corrupted party P.
First, if P < (Q ∪Q′), then elements of VIEWP are independent of the shares Q sends to Q′.
Moreover, elements of VIEWP are independent of the output of Q′ since Q′ also renews its
outputs.

Second, if P ∈ (Q ∪Q′), VIEWP consists of at most two secret-shares of s defined
using two independently random polynomials. The view of a corrupted party P in Q′ only
contains subshares (i.e., shares of shares) of s that reveal nothing about the original shares.
Using these subshares, P can reconstruct only one share of the secret over a new random
polynomial that is independent of the shares of the parties in Q. The adversary can obtain
at most N/3 shares of any secret-shared value during FReshare; N/3 shares of s come from
corrupted parties in Q and N/3 shares come from s being secret-shared in Q′ using another
random polynomial. Since FReshare generates a new random polynomial, the first set of N/3
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shares are independent of the second set of N/3 shares. Since least N/3 + 1 shares are
required for reconstructing the secret, the two views are indistinguishable. �

We are now ready to prove Lemma 11.

Proof. We prove the security of Protocol 3.1 in the (FBA, FVSS-Share, FVSS-Reconst, FMultiply,
FCompare, FRenew-Shares, FGen-Rand)-hybrid model. We proved the security of all subprotocols
in Lemma 13, Lemma 14, and Lemma 15. The last step of the proof is to show that
Protocol 3.1 is secure in the (FBA, FVSS-Share, FVSS-Reconst, FMultiply, FCompare, FRenew-Shares,
FGen-Rand)-hybrid model. This is done by an induction over all gates of the sorting circuit.
The view of the adversary VIEWI from simulation is simply constructed by collecting all
shares held by corrupted parties in the quorums associated with every gate of the circuit.
Based on Theorem 9, since we have proved the t-security of Protocol 3.1 using a straight-line
black-box simulator, the protocol is UC-secure. �

3.4.4.3 Cost Analysis

We first compute the cost of each step of the protocol separately and then compute the
total costs. Let ν1(n) and ν2(n) denote the communication and computation complexity
of VSS-Share respectively when it is invoked among n parties. For our unconditional
Protocol 3.1, we assume VSS-Share implements the sharing protocol of Theorem 3, and for
our cryptographic MPS, we assume VSS-Share implements the sharing protocol of VSS of
Theorem 6. Both of these VSS protocols take constant rounds of communication.

• Setup. The communication and computation costs are equal to those costs of the
quorum building algorithm of Theorem 4 which is Õ(1) for each party. This protocol
takes constant rounds of communication.

• Input Sharing. This step invokes VSS-Sharing n times among N = O(log n) parties.
So, this step sends O(n · ν1(N )) bits and performs O(n · ν2(N )) operations. Since the
VSS scheme is constant-round, this step also takes constant rounds of communication.

• Random Generation. Gen-Rand sends O(N · ν1(N )) messages, performs O(N ·

ν2(N )), and has constant rounds.

• Sorting. The sorting network [LP90] has O(n log n) comparators and depth O(log n).
So, the communication cost of this step is equal to the communication and computation
cost of running O(n log n) instantiations of Compare and Renew-Shares. Compare
requires O(log q) invocation of Multiply (see [DFK+06]) which sends O(N4 · ν1(N ))
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Figure 3.4: Communication cost (left), computation cost (middle), and the number of
communication rounds (right)

messages and computes O(N4 · ν2(N )) operations. Renew-Shares also sends O(N ·

ν1(N ) + N3) messages and computes O(N · ν2(N ) + N3) operations. Hence, the
sorting step sends O(n log n · log q · N4 · ν1(N )) messages computes O(n log n · log q ·

N4 ·ν2(N )). Since the sorting circuit has depthO(log n), and Compare takes constant
rounds, this steps takes O(log n) rounds of communication.

• Output Delivery. For each output quorum, the costs of output delivery is equal to the
communication and computation costs of sending N elements to one of the parties.
The party then locally reconstructs the output by running VSS-Reconst over at most
N shares. Thus, the total communication and computation complexity of this step is
O(n · N ). This step takes only one round of communication.

• Total. Since q = Ω(kn2 log n), for a constant k, we consider q = O(n3) and
log q = O(log n). Using the VSS of Theorem 6, we get ν1(N ) = ν2(N ) = N2 =

O(log2 n). Thus, our cryptographic MPS protocol sends O(n log8 n) messages of
size ` = O(κ + log n) each and computes O(n` log8 n) operations. This proves
Theorem 8. For the costs of Theorem 10 (i.e., our unconditional result), since
ν1(N ) = ν2(N ) = O(poly(N )), Protocol 3.1 sends Õ(n) bits and computes Õ(n)

operations. In both cases, the output delivery step costs O(n log n) field elements.
Finally, in both cases, the protocol requires O(log n) rounds of communication.

3.4.5 Simulation Results

To study the feasibility of our scheme and compare it to previous work, we simulated
a proof-of-concept prototype of our protocol (and the cryptographic variant described in
Section 3.4.3.4) along with two others that are based on a similar model to ours. These



CHAPTER 3. ANONYMOUS BROADCAST 81

protocols are due to Dani et al. [DKMS12] and Boyle et al. [BGT13]. To the best of
our knowledge, these protocols are the most efficient in terms of communication cost,
computation cost, and the number of rounds for large networks. Since the protocols of
[DKMS12] and [BGT13] are general MPC algorithms, we use them for computing our
(single-output) shuffling functionality described in Section 3.4.3. We are interested in
evaluating our protocols for large networks; thus, our choice of protocols for this section is
based on their scalability for large values of n.

The prototypes are written in C#, using .NET Framework 4.5, NTL 6.1, GMP 6.0,
PBC12 0.5.14, and PolyCommit13 libraries. We ran the simulations on an Intel Xeon E5
machine running Windows 8.1. We simulated our cryptographic protocol for inputs chosen
from the field of integers with a 160-bit prime; this ensures about 80 bits of security. We set
the parameters of our protocols in such a way that we ensure the probability of error for the
quorum building algorithm of [BGH13] is smaller than 10−5. For the sorting circuit, we set
k = 2 to get σ < 10−8 for all values of n in the experiment. Clearly, for larger values of n,
the error becomes superpolynomially smaller, e.g., for n = 225, we get σ < 10−300. For all
protocols evaluated in this section, we assume cheating (by corrupted parties) happens in
every round of the protocols. This is done by having t = bn/3c of the parties send random
message in every round of the protocols.

Figure 3.4 illustrates the simulation results obtained for various network sizes between
25 and 230 (i.e., between 32 and about 1 billion). To get a system-independent estimation
of the computation costs, we implemented a wrapper that counts the number of processor
instructions evaluated during the execution of each protocol. We repeat each experiment
five times and report the average for each network size. To better compare the protocols,
the vertical and horizontal axis of all plots are scaled logarithmically.

In Figure 3.4, we report results from three different versions of our protocols. The first
plot (marked with triangles) refers to our unconditionally-secure protocol (Protocol 3.1).
The second plot (marked with circles) represents the cryptographic variant of Protocol 3.1
described in Section 3.4.3.4. The third plot (marked with diamonds) shows the cost of our
unconditionally-secure protocol with amortized (averaged) setup cost. To obtain this plot,
we run the setup phase of Protocol 3.1 once and then use the setup data to run the online
protocol 100 times. The total number of bits sent was then divided by 100 to get the average
cost.

We observe that our protocol performs significantly better than the prior work. For
12http://crypto.stanford.edu/pbc
13https://crysp.uwaterloo.ca/software

http://crypto.stanford.edu/pbc
https://crysp.uwaterloo.ca/software
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example, for n = 215 (about 33 thousand parties), our amortized protocol requires each party
to send about 128MB of data, while the protocols of [BGT13] and [DKMS12] each send
more than one terabyte of data per party. For the computation cost, our amortized protocol
requires each party to perform about one billion operations, while the other protocols require
each party to perform more than 1013 operations. Finally, our amortized protocol requires
about 500 rounds of communication, while the protocols of [BGT13] and [DKMS12]
require about 1500 and 4100 rounds of communication respectively.

3.5 Application: Privacy-Preserving Location-Based
Services

In this section, we describe the problem of privacy-preserving location-based services
(LBS), discuss its current challenges, and explain reasons why we believe our multi-party
shuffling algorithm can be used to alleviate these challenges. We start by motivating the
importance of privacy-preserving LBS.

With the rise of smartphones and tablets that are equipped with various positioning
systems (like GPS) and that share locational data over the Internet constantly, user privacy
is now becoming a more challenging problem than ever. Mobile users frequently ask
location-based services to find points of interest near them, to receive information about
traffic along their route, and to receive customized advertising. Such data can be used by
others (e.g., companies and governments) for precise surveillance and compromising user
privacy. Documents provided by Edward Snowden in 2013 show that NSA is collecting data
about the locations of millions of cell phones by tapping into mobile networks [GS13]. Such
data can be used to track the movements of individuals precisely and to find relationships
between people by correlating various patterns in the locational data.

So far, most privacy-preserving LBS have assumed the existence of a trusted third
party [GG03, GL05, MCA06, BLPW08], which is often used for anonymizing location
data. Unfortunately, finding such trusted parties in practice is usually very hard or even
impossible. Due to the huge number of mobile users interested in sharing their location
data frequently, such centralized parties should be powerful servers that are usually owned
by large companies and governments. Moreover, centralized parties may be subject to gov-
ernmental control, and may be banned or forced to disclose sensitive location information.
In this section, we describe our protocol for the problem of secure location sharing.
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LBS Privacy Approaches. Main approaches for achieving location privacy can be divided
into two categories that provide either location confidentiality or location anonymity. Loca-
tion confidentiality is to hide14 user’s location and to process locational queries over hidden
data. Such data are never revealed to any authority although it might be possible to link
the user’s identity to its hidden query. Location anonymity, on the other hand, is to hide
the connection between a locational query and the user who issues the query. In anonymity
terminology, this is often called unlinkability, which means that a particular message is not
linkable to any sender (or recipient), and that to a particular sender (recipient), no message
is linkable [PK01].

While location confidentiality provides a great level of privacy, processing queries over
hidden (e.g., encrypted) data is usually hard and expensive. For example, homomorphic
encryption [Gen09] and private information retrieval [CKGS98] can be used for privacy-
preserving query processing but known such techniques are still computationally intensive.
On the other hand, if the number of users having queries is large, which is often the case
for LBS, then the queries can be anonymized efficiently to provide a strong level of privacy.

Resistance to Traffic-Analysis. One challenging problem with most anonymity-based lo-
cation services is resistance against traffic-analysis. A global adversary can sniff traffic
exchanged between the user and the service provider to link a query containing location
information to the user who has issued that query. Such a powerful adversary was assumed
to be unrealistic in the past but it might be realistic today if the service provider is con-
trolled or compromised by a state-level surveillance authority [FF14]. Unfortunately, most
anonymity-providing protocols like Casper [MCA06], Privé [GKS07], and Tor [DMS04]
are not secure against traffic analysis attacks.

k-Anonymous LBS. Several LBS are built upon a relaxed notion of anonymity called k-
anonymity [GG03, MCA06, GKS07, GL05], where the adversary is assumed to be unable
to identify the actual sender/receiver of a locational query from a set of k parties (called
anonymity set). Even though k-anonymity often increases efficiency significantly, choos-
ing small k’s can result in severe privacy problems. For example, attackers often have
background knowledge and it is shown that small anonymity sets are likely to leak privacy
when attackers have such knowledge [MKGV07]. We argue that this is often the case for
location anonymity as queries issued by people in different locations usually contain side
information about their location. For example, a person located in New Mexico is more

14By hiding, we mean using techniques like encryption, steganography, and secret sharing for obscuring
data.



CHAPTER 3. ANONYMOUS BROADCAST 84

likely to search for a restaurant serving chili stew than a person in Vermont. Thus, we
believe an algorithm is needed that scales well with the size of anonymity set, k.

Location Cloaking. In a seminal work, Gruteser and Grunwald [GG03] introduced two
key ideas for achieving location k-anonymity called spatial cloaking and temporal cloaking.
In spatial cloaking, a client’s location (e.g., a two-dimensional point) is converted into a
spatial area such that there are k mobile clients located in the area. While a spatially-cloaked
location can be calculated efficiently (e.g., using the techniques of [GG03, GL05, MCA06,
GKS07]), the inaccuracy associated with the cloaked location often results in sending
unnecessary information back to the user. In temporal cloaking, location anonymity is
achieved by delaying the user’s query until k clients also issue their queries. One drawback
of this method is increased latency, especially when k is large. On the other hand, with the
fast growth of the number of mobile users sharing their location information, this latency
problem is becoming less important.

3.5.1 Previous Work

Using anonymity for location privacy was first proposed by Kong and Hong [KH03].
They propose an anonymous routing protocol called ANDOR that targets mobile ad-hoc
networks. They address two closely-related unlinkability problems, namely route anonymity
and location privacy. Based on a route pseudonymity approach, ANODR prevents the
adversary from exposing local wireless transmitters’ identities and tracing network packet
flows. For location privacy, their protocol ensures that the adversary cannot discover the
real identities of local transmitters.

Gruteser and Grunwald [GG03] show that location data introduces new and potentially
more severe privacy risks than network addresses pose in conventional services. Moreover,
they analyzed the technical feasibility of k-anonymous location-based services and showed
the privacy risks can be reduced through it. They propose an algorithm and service model
that that can be used by a centralized location broker service and guarantee k-anonymous
location information.

Zhong et al. [ZGH07] propose three protocols, Louis, Lester and Pierre, to achieve
location privacy for a service that alerts a person of his nearby friend. Location privacy
guarantees that users of the service can learn a friend’s location if and only if the friend is
actually nearby. Their approach was based on secure two-party computation and all three
protocols exploit homomorphic encryption. The Louis protocol requires a semi-trusted
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third party that does not learn any location information. The Lester and Pierre protocols do
not need a third party. The Lester protocol has the drawback that a user might be able to
learn a friend’s location even if the friend is in an area that is no longer considered nearby
by the friend. The Pierre protocol does not have this disadvantage at the cost of not being
able to tell the user the precise distance to a nearby friend.

The Casper framework of Mokbel et al. [MCA06] consists of two main components
called location anonymizer and privacy-aware query processor. The location anonymizer is
a trusted third party that acts as a middle layer between mobile users and the location-based
database server. It receives the location information, blurs the information into cloaked
spatial areas, and sends the cloaked spatial areas to the location-based database server. The
authors also design a privacy-aware query processor that helps database server to deal with
anonymous queries and cloaked spatial areas rather than the exact location information.
Unfortunately, the cloaked locations in Casper are usually very large and the algorithm
lacks a mechanism to dynamically determine the size of cloaking regions.

Ghinita et al. [GKS07] propose a decentralized model that helps mobile users self-
organize into a fault-tolerant overlay network in order to run privacy-preserving anonymous
location-based queries. Their protocol develops a rectangular area enclosing k users called
k-Anonymous Spatial Region (k-ASR) in order to guarantee query anonymity even if the
attacker knows the locations of all users. k-ASRs are built in a decentralized fashion,
therefore the bottleneck of a centralized server is avoided. The empirical results confirm
that the system achieves efficient and scalable anonymization and load-balancing with low
maintenance overhead, while being fault-tolerant. On the other hand, the protocol does not
provide provable security guarantees and can only tolerate non-adversarial fail-stop faults.

Gedik and Liu [GL05] develop a k-anonymizer that is run by a trusted server. Their
algorithm enables each mobile client to specify the minimum level of anonymity it desires
and the maximum temporal and spatial tolerances it is willing to accept when requesting
for k-anonymity. The authors propose a location cloaking algorithm called CliqueCloak,
which combines the ideas of spatial and temporal cloaking. Unfortunately, the algorithm
is expensive and shows poor performance for large k as it relies on the ability to locate a
clique in a graph to perform location cloaking.

The PrivacyGrid framework of Bamba et al. [BLPW08] is composed of dynamic
grid-based spatial cloaking algorithms for providing location k-anonymity and location
`-diversity (as defined in [MKGV07]) for mobile environments. The algorithms find the
smallest possible cloaking region meeting desired privacy levels by measuring several
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metrics for k-anonymity and `-diversity. While the algorithms are shown to be highly
efficient and to achieve higher anonymization success rate, they rely on a trusted server for
location tracking and anonymization service.

3.5.2 LBS via MPS

Consider n parties P1, P2, ..., Pn each having a locational query xi ∈ Zp, for a prime p

and all i ∈ [n]. The parties want to anonymously send their queries to a location-based
server and receive the results back. Our MPS protocol can be used to shuffle the locational
queries among the parties. Since MPS guarantees the user inputs cannot be tracked to the
corresponding users, this allows a traffic analysis resistant algorithm for LBS. In order to
adapt the MPS algorithm described before in this chapter for LBS, we need to replace the
Output Delivery stage of our MPS algorithm with the following:

• Query Processing. Let (〈si〉, 〈yi〉) and (〈si+1〉, 〈yi+1〉) be the pairs of shared val-
ues each output quorum Q′i receives. Parties in Q′i run zi= Reconst(〈yi〉) and
zi+1= Reconst(〈yi+1〉) and send zi and zi+1 to the LBS. For all the zi and zi+1 messages
received from parties of Q′i, the location-based server picks two via majority filtering.
Then, the server processes the queries z1, ..., zn, and sends the results to all parties.

3.6 Conclusion

In this chapter, we first described a Byzantine-resistant protocol for fully-anonymous broad-
cast in large-scale networks that has a total communication complexity of Õ(n) bits per
anonymous bit and a polylogarithmic latency. To the best of our knowledge, this is the
first result that ensures provable anonymity against an unbounded adversary that sends
asymptotically less than O(n2) bits per anonymous bit.

Although the Õ(n) bit complexity of our protocol scales very well comparing to the
state-of-the-art, the actual bandwidth cost is still very high. This is mainly due to the large
constants in the communication complexity of the scalable MPC algorithm and the large
number of gates in our circuit. It may be possible to decrease the message cost significantly
in practice by using threshold cryptography to speed up Byzantine agreement [YKGK10],
which is used repeatedly in the MPC algorithm for simulating a reliable broadcast channel.

In this chapter, we also described a multi-party shuffling protocol that is fully decen-
tralized and tolerates up to t < (1/3 − ε )n malicious faults. Moreover, our protocol is
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load-balanced and can tolerate traffic-analysis attacks. The amount of information sent
and the number of computations performed by each party scales polylogarithmically with
the number of parties. Scalability is achieved by performing local communications and
computations in groups of logarithmic size.

Several open problems remain. First, can we decrease the number of rounds of our
protocol using a smaller-depth sorting circuit? For example, since our protocol sorts
uniform random numbers, it seems possible to use a smaller depth non-comparison-based
sorting circuit like bucket sort. Second, can we improve performance even further by
detecting and blacklisting parties that exhibit adversarial behavior? Finally, can we adopt
our results to the asynchronous model of communication? We believe that this is possible
for a suitably chosen upper bound on the fraction of faulty parties.
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Algorithm 3.1 Secure Multi-Party Shuffling Scheme
Inputs. For all i ∈ [n], party Pi holds an input xi. Let C denote the probabilistic sorting network
of [LP90] and d denote its depth.

Goal. Parties jointly compute a random shuffle of their inputs.

The protocol:
1. Setup.

a) Parties run Build-Quorums to agree on n quorums Q1, ...,Qn.

b) Parties in Q1 run Gen-Rand and VSS-Reconst repeatedly to generate a sequence R of
Θ(log2 n) random bits.

c) Parties in Q1 send R to all other quorums in the following way. For all i ∈ {2, .., n},
parties in Qi receive R from Q bi/2c , and then send it to all parties in Q2i and Q2i+1.

d) For all i ∈ [n] and j ∈ [m], parties assign Qi to Pi and Q( j mod n) to the j-th gate of C,
and connect the gates based on the random butterfly tournament described in [LP90]
and the random sequence R.

2. Input Sharing. Party Pi VSS-shares his input xi with Qi.

3. Random Generation. Parties in input quorum Qi perform the following steps:

a) Run Gen-Rand to generate a random secret-shared value ri ∈ Fq, where q > 3
2 kn2 log n

for any k > 0.

b) Run Renew-Shares to send the secret-shared pair (ri, xi) to Q di/2e .

4. Sorting. C is evaluated level-by-level starting from the input gates. For each gate G in C and
quorum Q assigned to G, parties in Q perform the following steps:

a) Comparison. Let (r, x) and (r ′, x ′) be the secret-shared inputs of G. The parties run
Compare to securely compare the secret-shared values r, r ′. Let ρ = (r ≤ r ′) be the
resulting secret-shared value. The parties compute the output secret-shared pairs (s, y)
and (s′, y′) from

s = ρ · r + (1 − ρ) · r ′, y = ρ · x + (1 − ρ) · x ′

s′ = ρ · r ′ + (1 − ρ) · r, y′ = ρ · x ′ + (1 − ρ) · x

For every addition of secret-shared values a, b, parties locally compute a + b. For every
multiplication, they run Multiply.

b) Output Resharing. Parties run Renew-Shares to send secret-shared values s, y, s′, y′

to the parent quorum.

5. Output Delivery. For all i ∈ [n − 1], let (si, yi) and (si+1, yi+1) be the pairs of secret-shared
values the output quorum Q di/2e computes in the previous step.

a) Each party in this quorum sends his share of yi to party Pi and his share of yi+1 to party
Pi+1.

b) Parties Pi and Pi+1 run VSS-Reconst to reconstruct yi and yi+1 respectively.
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Algorithm 3.2 Renew-Shares
Inputs. A set of parties P1, ..., PN jointly hold a secret-shared value s, i.e., a polynomial f (x) of
degree T < N/3 is defined such that f (0) = s, and for all i ∈ [N], Pi holds f (i).

Goal. Generate a fresh sharing of s among another group of parties P′1, ..., P
′
N . This means that the

protocol must calculate a polynomial g(x) of degree T uniformly and independently at random such
that g(0) = s, and for all j ∈ [N], P′j holds g( j).

The protocol:

1. Each party Pi runs Reshare to VSS-share f (i) among P′1, ..., P
′
N using a random polynomial

hi (x) of degree T such that hi (0) = f (i).

2. Each party P′j locally computes its share of s from g( j) =
∑N

i=1 λihi ( j).

Algorithm 3.3 Gen-Rand
Goal. A set of parties P1, ..., PN want to agree on a secret-shared value r chosen uniformly at
random from Fq, for some prime q.

The protocol:

1. For all i ∈ [N], party Pi chooses ρi ∈ Fq uniformly at random and VSS-shares it among all
N parties.

2. For all j ∈ [N], let ρ1j, ..., ρN j be the shares Pj receives from the previous step. Pj computes
r j =

∑N
k=1 ρk j .

Algorithm 3.4 FGen-Rand
Goal. For a gate u ∈ M, generate a random value r ∈ F and VSS-share it among parties P1, ..., PN

in the quorum associated with u.

Functionality:
1. Receive inputs ρ1, ..., ρN ∈ F from P1, ..., PN respectively. For every i ∈ [N], if Pi does not

send an input, then define ρi = 0.

2. Calculate r =
∑N

i=1 ρi and invoke FVSS-Share to send a share ri of r to Pi.
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Algorithm 3.5 SGen-Rand
Inputs. For a gate u ∈ M, the inputs {ρ j }Pj ∈Iu of the corrupted parties P1, ..., PN in the quorum
associated with u.

Simulation:

1. For every Pi ∈ (Qu − Iu) (i.e., for every honest party Pi), call FVSS-Share with dummy input
0. Let si1, ..., s

i
N denote the outputs.

2. For every Pj ∈ Iu,

a) Run FVSS-Share with input ρ j . Let ρj1, ..., ρ
j
N denote the outputs. For every k ∈ [N], add

ρkj to the view of Pj .

b) Compute r j =
∑N

k=1 ρ
k
j and add r j to the view of Pj .

Algorithm 3.6 FRenew-Shares
Goal. Given a secret s shared among a group of parties P1, ..., PN , generate a fresh sharing of s
among another group of parties P′1, ..., P

′
N .

Functionality:
1. Receive inputs s1, ..., sN from P1, ..., PN respectively. For every i ∈ [N], if Pi does not send

an input, then define si = ⊥.

2. For every i ∈ [N], invoke FReshare to generate a sharing of si over a polynomial hi (x) of
degree T such that hi (0) = si.

3. For every j ∈ [N], compute g( j) =
∑N

i=1 λ jhi ( j) and send g( j) to P′j .

Algorithm 3.7 SRenew-Shares
Inputs. The inputs {s j }j∈I and outputs {g( j)}j∈I of the corrupted parties.

Simulation:

1. For every i < I, call FReshare with dummy input 0. Let si1, ..., s
i
N denote the outputs.

2. For each j ∈ I,

a) Run FReshare with input s j . Let s j1, ..., s
j
N denote the outputs. For every k ∈ [N], add skj

to the view of Pj .

b) Compute g( j) =
∑N

k=1 λ jhk ( j) and add g( j) to the view of Pj .



Chapter 4

Blocking-Resistant Tor Bridge
Distribution

4.1 Introduction

Today, mass surveillance and censorship severely threaten democracy and freedom of
speech. Governments around the world control the Internet to protect their domestic
political, social, financial, and security interests. This makes anonymity a crucial tool
for preserving privacy of individuals in cyberspace. Tor [DMS04] is the most popular
anonymous communication network with more than 2.5 million users per day [Tor15a]. Tor
relays the Internet traffic via more than 6,000 volunteer nodes called relays spread across
the world. Tor users can connect to the network and have their Internet data routed through
the network before reaching any server, thus the servers are not able to distinguish between
Tor users or locate them.

Since the list of all relays is available publicly, state-sponsored organizations can enforce
Internet service providers (ISPs) to block access to all of them making Tor unavailable in
territories ruled by the state. When access to the Tor network is blocked, Tor users have
the option to use bridges – volunteer relay nodes that are not all listed in Tor’s public
directory [DM06]. Bridges serve only as entry points into the rest of the Tor network, and
their addresses are carefully distributed to the users, with the hope that they cannot be all
learned by censorship authorities. Tor users behind censorship firewalls must find bridges
through email, uncensored web sites, etc.

Although currently the bridges are distributed among the users based on different
strategies such as CAPTCHA-enabled email-based distribution and IP-based distribu-
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tion [DM06], studies indicate that censors are using sophisticated mechanisms along with
a large coalition of corrupt users (scanners) to obtain and block many bridge addresses
rendering Tor unavailable for many users [Din11b, WL12, EFW+15].

In this chapter, we study the problem of bridge distribution in Tor, where a set of bridges
is distributed among n users, t of whom are controlled by a censor, in such a way that all
honest users can access a bridge that is not blocked by the censor. A solution to this problem
would allow us to make the Tor network provably available for all users. Unfortunately, state
of the art techniques for bridge distribution either cannot guarantee that all honest users can
access Tor [WLBH13, MML12] or only work when t is known in advance [Mah10].

In contrast, we describe an algorithm that ensures Tor is available to all honest users
with high probability without requiring any a priori knowledge about t. It is often hard in
practice to estimate the number of corrupt users due to the sophisticated nature of Internet
censorship inmany countries such asChina [Oni12, EFW+15]. Moreover, censors can easily
implement strategies to prevent the circumvention mechanism from correctly estimating the
number of corrupt users.

Inspired by the resource competitive analysis approach of Gilbert et al. [GSKY12] and
Bender et al. [BFM+15], our algorithms provide the following guarantee: if the adversary
pays t amount of resource cost, then the resource cost of our algorithms is some function of t.
This allows us to achieve near-optimal resource costs with strong robustness to disruptions
caused by the censor.

Our main strategy for preventing the censor from blocking a large fraction of the bridges
is to use randomization. This is because the colluding censor cannot predict the behavior of
the randomized process in distributing a set of bridges to the users, and thus it cannot arrange
its corrupt users in such a way that prevents some of the honest users from connecting to the
Tor network. Moreover, our algorithm can adaptively adjust the number of bridges required
based on the number of bridges compromised so far and guarantees that the number of
rounds until all honest users can connect to Tor is bounded by O(log t). Our algorithms can
be run independently from Tor; the Tor network remains intact to focus on its main purpose
of providing anonymity.

In Section 4.1.1, we describe our communication and adversarial model. In Sec-
tion 4.1.2, we state our main theorem. We review the previous results and related work in
Section 4.2. In Section 4.3, we describe our algorithms for reliable bridge distribution; we
start from a simple algorithm and improve it as we continue.
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Figure 4.1: Our model

4.1.1 Our Model

Consider n users (clients) connected to the Internet via an ISP inside a censorship territory
and a trusted server called the bridge distributor (or simply the distributor) connected to the
Internet via an ISP outside the territory. The distributor has information about a set of m

Tor bridges that are also located outside the territory. Each user wants to obtain information
about a subset of the bridges at least one of which can be used to connect to Tor. The
user sends its request to the distributor using a rate-limited channel1 such as email and the
distributor sends a set of bridges back to the user via the same method of contact.

Among the users, there are t < n corrupt users controlled by an adaptive adversary
(the censor) who can choose the set of corrupt users at the beginning of each round of
communication, but is limited to corrupting at most t distinct users combined in all rounds.
We refer to the other n − t users as honest users. Each corrupt user is willing to obtain
information about the bridges in order to block them, but does not have to block a bridge
as soon as it finds the bridge; it is allowed to strategically (perhaps by colluding with other
corrupt users) to decide when to block a bridge. Moreover, we assume our algorithms do not
have any knowledge about t before they begin, and the adversary has no knowledge about
the randomness generated by the distributor throughout the algorithms other than what it
can learn from the bridges assigned to the corrupt users. Figure 4.1 depicts our model.

4.1.2 Our Results

We prove the following main theorem in Section 4.3.2.
1A vital communication mechanism such as Gmail that the censor cannot block due to major economic

and political consequences, but is not suitable for interactive communication over the Internet such as web
surfing.
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Theorem 10. There exists a bridge distribution algorithm that guarantees the following
properties with probability 1 − 1/nk , for any k > 0:

1. All honest users can connect to Tor after dlog te + 2 rounds of communication with
the distributor.

2. The total number of bridges required is O(t).

The best known algorithm for bridge distribution [Mah10] only works when the number
of corrupt users, t, is known in advance and requires at most k

(
1 + dlog (n/k)e

)
bridges.

In contrast, our algorithms not only do not require any prior knowledge about t but also use
fewer bridges.

4.2 Related Work

The bridge distribution problem can be seen as a special case of the proxy distribution
problem, where a set of unblocked servers (proxies) outside the censorship territory are
distributed among the users inside the territory. These proxies are used to relay Internet
traffic to blocked websites. The proxy distribution problem has been studied by several
previous work.

Feamster et al. [FBW+03] propose a proxy distribution algorithm that requires every
user to solve a cryptographic puzzle to discover a proxy. This way, the algorithm prevents
the corrupt users from learning a large number of proxies. Unfortunately, empirical results
of [FBW+03] show that a computationally powerful censor can easily block a very large
fraction of the proxies.

The Kaleidoscope system of Sovran et al. [SLL08] disseminates proxy addresses over
a social network whose links correspond to existing real world social relationships among
users. Unfortunately, this algorithm assumes the existence of a few internal trusted users
who can relay other users’ traffic and cannot guarantee its users’ access to Tor.

McCoy et al. [MML12] propose Proximax; a proxy distribution system that uses social
networks such as Facebook as trust networks that can provide a degree of protection against
discovery by censors. Proximax estimates each user’s effectiveness and chooses the most
effective users for advertising proxies with the goals of maximizing the usage of these
proxies while minimizing the risk of having them blocked.

Even if bridges are distributed carefully among the users, censors can still block access
to the Tor network via deep packet inspection (DPI). The Tor Project has developed a variety
of tools under the name pluggable transports [Tor15b] that can be used to obfuscate the
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traffic transmitted between the client and the bridge. This makes it hard for the censor (who
monitors the traffic) to distinguish between the legitimate-looking obfuscated traffic and
the actual Tor traffic. Although pluggable transports are necessary for preventing bridge
blocking via DPI, they cannot prevent blocking via colluding corrupt users. Moreover,
recently Wang et al. [WDA+15] showed that current obfuscation mechanisms used in Tor
can be reliably detected by censors with sufficiently low false-positive rates. In our model,
we assume our algorithm runs in parallel with a reliable pluggable transport tool that can
prevent DPI blocking.

Mahdian [Mah10] studies the proxy distribution problem when the number of corrupt
users, t, is known in advance. He proposes algorithms for both large and small values of t

and provides a lower bound for dynamic proxy distribution that is useful only when t � n.2
Unfortunately, it is usually hard in practice to reliably estimate the value of t. Mahdian’s
algorithm for large known t requires at most k

(
1 + dlog (n/k)e

)
bridges, and his algorithm

for small known t uses O(k2 log n/ log log n) bridges.
Wang et al. [WLBH13] propose a reputation-based bridge distributionmechanism called

rBridge that computes every user’s reputation based on the uptime of its assigned bridges and
allows the user to replace a blocked bridge by paying some reputation credits. Interestingly,
rBridge is the first model to provide user privacy against an honest-but-curious distributor.
This is achieved by performing oblivious transfer between the distributor and the users along
with commitments and zero-knowledge proofs for achieving unlinkability of transactions.

Our algorithms rely on a technique for testing reachability of bridges from outside
the censored territory. Dingledine [Din11a] and Ensafi et al. [EKAC14] describe active
scanning mechanisms for testing availability of bridges. The details of these methods and
their current challenges are out of scope of our work.

4.3 Our Algorithm

In this section, we first construct a bridge distribution algorithm that adaptively increases the
number of bridges used with respect to the number of bridges blocked. Before proceeding
to our algorithms, we define the standard terms and notation used throughout this chapter.

Notation. We say an event occurswith high probability, if it occurs with probability at least
1 − 1/nk , for some k ≥ 1. We denote the set of integers {1, ..., n} by [n]. We denote a set

2 For large values of t (e.g., t = cn for c ∈ (0, 1)) the trivial lower bound of Ω(t) is better than
Ω

(
t log (n/t)

log t+log log n

)
of [Mah10].
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Algorithm 4.1 Bridge Distribution Scheme
1: Initialize parameters: i ← 0; bi ← 1; U ← a set of users {u1, ..., un}
2: while true do
3: if bi ≥ 2i then
4: i ← i + 1
5: Bi = Distribute(U, 2i)
6: end if
7: bi ← number of bridges in Bi that are blocked
8: end while

of n users participating in our algorithms by {u1, ..., un}. We say a bridge is blocked when
the censor has restricted users’ access to this bridge. We refer to the remaining bridges as
unblocked bridges.

4.3.1 Basic Bridge Distribution Algorithm

Our basic method is a Monte Carlo algorithm that proceeds in rounds (see Algorithm 4.1):
in each round, the algorithm randomly distributes a set of bridges among the users and
proceeds to the next round once the number of blocked bridges exceeds a threshold that is
increased exponentially in each round. In every round, we increase the number of fresh
bridges with respect to the number of bridges blocked so far.

We later show that each run of Algorithm 4.1 guarantees that all users can connect to
Tor with some constant probability. Thus, if the distributor repeats the algorithm O(log n)

times in parallel, it can guarantee that all users can connect to Tor with high probability.
We refer to a single execution of the while loop in Algorithm 4.1 as an iteration. We

refer to each increment of the variable i (in line 4) as a round. Note that several iterations
may correspond to the same round depending on the condition in line 3 of the algorithm. For
simplicity, we assume the O(log n) instances of Algorithm 4.1 run synchronously meaning
that they start and finish each iteration at the same time.3 We also assume that each iteration
runs atomicallymeaning that the users are allowed to use (or block) the bridges assigned to
them (in any round) only at the end of each iteration.

Algorithm 4.2 implements the function Distribute. The algorithm assigns to each user
one of the bridges chosen uniformly and independently at random. Each run of Algo-
rithm 4.2 assigns only one bridge to every user in each round. Since the algorithm is

3 Since the distributor runs the parallel executions locally, it is easy to guarantee that they run syn-
chronously.
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repeated several times, possibly over multiple rounds and O(log n) executions of Algo-
rithm 4.1, every user receives multiple bridges until all honest users are guaranteed to
succeed with high probability.

Algorithm 4.2 Function Distribute

Goal: A sequence of mi bridges is randomly distributed among a set of n users U = {u1, ..., un}.

1: function Distribute(U,mi)
2: Bi ← a sequence of mi unblocked bridges
3: for all j ∈ [n] do
4: Pick an integer k ∈ [mi] uniformly at random
5: Assign Bi[k] to u j

6: end for
7: return Bi

8: end function

4.3.2 Proof of Algorithm 4.1

We now prove the properties of Algorithm 4.1. For simplicity, we assume a user can connect
to Tor in an iteration if and only if at least one unblocked bridge is assigned to it. Although
the adversary has a total budget of t corrupt users, only some of the corrupt users might
be actively blocking bridges in any given round. From the distributor’s perspective, since t

is unknown, only those users who have blocked at least one bridge in any round so far are
considered corrupt and are counted towards the adversary’s total budget. If a corrupt user
has only attempted to block bridges that have already been blocked by other corrupt users,
then our algorithm obviously cannot identify this user as a corrupt user until the user blocks
at least one unblocked bridge in future rounds.

We use the following variables in our proof:

• mi: the number of bridges distributed in round i.

• bi: the number of bridges blocked in round i.

• ti: the number of corrupt users each of whom has blocked at least one bridge in round
i.

• Bi: the sequence of bridges distributed in round i.

Lemma 16. In the i-th round of Algorithm 4.1, if bi < 2i, then all honest users can connect
to Tor with high probability.
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Proof. We first consider the execution of one of the dc log ne instances of Algorithm 4.1.
For each user, Algorithm 4.3 chooses a bridge independently and uniformly at random and
assigns it to the user. Without loss of generality, assume the corrupt users are assigned
bridges first. For k = 1, 2, ..., ti, let {Xk } be a sequence of randomvariables each representing
the bridge assigned to the k-th corrupt user. Also, letY be a random variable corresponding
to the number of bad bridges (i.e., the bridges that are assigned to at least one corrupt
user) after all ti corrupt users are assigned bridges. The sequence {Zk = E[Y |X1, ..., Xk]}
defines a Doob martingale [DP09, Chapter 5], where Z0 = E[Y ]. Since each corrupt user is
assigned a fixed bridge with probability 1/mi, the probability that the bridge is assigned to
at least one corrupt user is 1 − (1 − 1/mi)ti . By symmetry, this probability is the same for
all bridges. Thus, by linearity of expectation,

E[Y ] =
(
1 − (1 − 1/mi)ti

)
mi ≈ (1 − e−ti/mi )mi .

Since 2i−1 ≤ bi < 2i, we have 2i−1 ≤ ti < 2i because in each round mi = 2i bridges are
distributed and each corrupt user is assigned exactly one bridge; thus, each corrupt user can
block at most one bridge. Hence,

(1 − 1/
√

e)mi ≤ E[Y ] < (1 − 1/e)mi . (4.1)

Therefore in expectation, a constant fraction of the bridges become bad in each instance of
the algorithm.

Since |Zk+1 − Zk | ≤ 1, Z0 = E[Y ], and Zti = Y , by the Azuma-Hoeffding inequal-
ity [DP09, Theorem 5.2],

Pr (Y > E[Y ] + λ) ≤ e−2λ2/ti,

for any λ > 0. By setting λ = √mi, we have

Pr(Y > E[Y ] +
√

mi) ≤ e−2mi/ti < 1/e2. (4.2)

The last step is because ti < mi. Therefore, with at most a constant probability, the actual
number of bad bridges is larger than its expected value by at most √mi. Therefore, the
probability that an honest user is assigned a bad bridge is at most

E[Y ] + √mi

mi
<

(1 − 1/e)mi +
√

mi

mi

= 1 − 1/e + 1/
√

mi, (4.3)

where the first step is achieved using (4.1).
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Now, let p1 = Pr(Y > E[Y ] + √mi), and let p2 be the probability that an honest user is
assigned a bad bridge. From (4.2) and (4.3), we have

p1 < 1/e2 and p2 < 1 − 1/e + 1/
√

mi .

Thus, the error probability of the algorithm for one user in one round is equal to p1 + (1 − p1)p2,
which is at most 0.8 for m ≥ 65.

If the algorithm is repeated d15 log ne times in parallel, then the probability that a user
is assigned a bad bridge is at most 0.8d15 log ne ≤ 1/n3. By union bound, the probability that
any of the n users is assigned a bad bridge in a round is at most 1/n2. By Lemma, since the
algorithm runs for at most dlog te + 2 < n rounds, by union bound the total error probability
of the algorithm is at most 1/n. Therefore, all honest users can connect to Tor with high
probability. �

Algorithm 4.2 may assign different number of users to each bridge. In the following
lemma, we show that each bridge is assigned almost the same number of users as other
bridges with high probability.

Lemma 17. Let X be a random variable representing the maximum number of users
assigned to any bridge, and let Y be a random variable representing the minimum number
of users assigned to any bridge. We have

Pr
(
X ≥

eµ ln n
ln ln n

)
≤

1
n

and Pr
(
Y ≤

eµ ln n
ln ln n

)
≤

1
n
,

where µ = n/mi.

Proof. Algorithm 4.3 can be seen as the classic balls-and-bins process: n balls (users)
are thrown independently and uniformly at random into mi bins (bridges). Therefore, the
distribution of the number of users assigned to a bridge is approximately Poisson with
µ = n/mi [MU05, Chapter 5].

Let X j be the random variable corresponding to the number of users assigned to
the j-th bridge, and let X̃ j be the Poisson random variable approximating X j . We have
µ = E[X j] = E[X̃ j] = n/mi. We use the following Chernoff bounds from [MU05, Chap-
ter 5] for Poisson random variables:

Pr(X̃ j ≥ x) ≤ e−µ(eµ/x)x , when x > µ (4.4)

Pr(X̃ j ≤ x) ≤ e−µ(eµ/x)x , when x < µ (4.5)
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We let x = µy, where y = ez and z = ln n
ln ln n . From (4.4), we have

Pr(X̃ j ≥ µy) ≤
(

ey−1

yy

) µ
≤

ey−1

yy

=
1
e

(
1
zz

)e

≤
1
e

(
1

c′n

)e

≤
1
n2 ,

for some positive constant c′. The second step is because yy > ey−1 (since z > 1) and µ > 1.
The last step is from Lemma. �

Lemma 18. By running Algorithm 4.1, all honest users can connect to Tor with high
probability after at most dlog te + 1 iterations.

Proof. Let k denote the smallest number of rounds needed until all users can connect to
Tor with high probability. Intuitively, k is bounded, because t, the budget of the adversary,
is bounded. Therefore, for all i ≥ k, we have bi < 2i, and based on Lemma 16, all users can
connect to Tor with high probability. In the following, we find k with respect to t.

The best strategy for the adversary is to maximize k, because this prevents the algorithm
from succeeding soon. In each round i, this can be achieved by minimizing the number of
bridges blocked (i.e., bi), while ensuring the algorithm proceeds to the next round. However,
the adversary has to block all 2i bridges distributed in each round to force the algorithm to
proceed to the next round. Let ` be the smallest integer such that 2` ≥ t. In round `, the
adversary has enough budget to cause the algorithm to proceed to round ` + 1. However
in round ` + 1, the adversary can block at most 2` < 2`+1 bridges which is insufficient for
proceeding to round ` + 2. Therefore, ` + 1 is the last round and k = ` + 1. Since 2` ≥ t,
k = dlog te + 1. In other words, if the algorithm is run for at least dlog te + 1 iterations, then
with high probability all honest users can connect to Tor.

�

Lemma 19. The total number of bridges used by Algorithm 4.1 is at most (8t − 2)c log n.

Proof. In every round i > 1, the algorithm distributes a new bridge only to replace a bridge
blocked in round i − 1. Thus, the total number of bridges used until round i, denoted by
Ni, is equal to the number of bridges blocked until round i plus the number of new bridges
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distributed in round i, which we denote by ai. Therefore,

Ni = ai +

i−1∑
j=1

b j . (4.6)

In the i-th round, the algorithm recruits ai ≤ 2i new bridges, because some of the bridges
required for this round might be reused from previous rounds. Since in the i-th round
bi < 2i,

Ni < 2i +

i−1∑
j=1

2 j = 2i + 2i − 2 = 2i+1 − 2.

From Lemma 18, it is sufficient to run the algorithm for dlog te + 1 rounds. Therefore,

Ni < 2dlog te+2 − 2 < 8t − 2,

i.e., the total number of bridges used by the algorithm is at most (8t − 2)c log n. �

4.3.3 Improved Distribution Algorithm

In each run of Distribute, an n
mi
-by-mi matrix is created and each user in U is randomly

assigned to one of the elements of the matrix such that all users appear in the matrix and
each user appears exactly once. The random assignment of users is done using a random
permutation π that maps every integer between 1 and n (corresponding to every element of
the matrix) to an integer between 1 and n (corresponding to every user index).

Next, the algorithm recruits a set of w fresh (unblocked) bridges and assigns a unique
bridge to all users in each column of the matrix. To improve the efficiency of our algorithm
in practice, we assume the bridges that were recruited in previous rounds and remain
unblocked are reused for distribution in the next round.

Figure 4.2 shows the matrix generated in each execution of Algorithm 4.2. In this figure,
π : [n]→ [n] refers to the random permutation generated in line 3 of the algorithm, and
B refers to the sequence of w bridges being assigned to the users in the current run of the
algorithm.

Lemma 20. Let Algorithm 4.1 call the modified version of Distribute defined in Algo-
rithm 4.3, and mi = 2i+1 in each round i. Then, Algorithm 4.1 guarantees that all honest
users can connect to Tor with high probability, and the total number of bridges used is at
most (6t − 1)c log n.
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Algorithm 4.3 Fully-Load Balanced Distribute

Goal: A sequence of mi bridges is randomly distributed among a set of n users U = {u1, ..., un}.

1: function Distribute(U,mi)
2: Bi ← a sequence of mi unblocked bridges

3: Define a matrix M =
[
u
π
(
i+( j−1) n

mi

) ]
n
mi
×mi

such

that π : [n]→ [n] is a random permutation
4: for all j ∈ [mi] do
5: Assign Bi[ j] to users in j-th column of M
6: end for
7: return Bi

8: end function

𝐵[1]
↓

𝐵[2]
↓

…

↓

𝐵[𝑤𝑖]
↓

𝑢𝜋 1

𝑢𝜋 2

𝑢𝜋 3 ⁞

⁞ 𝑢𝜋 𝑛

𝑛

𝑤𝑖

𝑤𝑖

Figure 4.2: Matrices generated by Algorithm 4.2 in round i

Proof. Since the n users are arranged uniformly and independently at random in M , and
there are ti active corrupt users among them, the probability that for a given user u the
column that u appears in contains at least one corrupt user is at most

1 −
(n − ti

n

)n/mi

= 1 −
(
1 −

ti

n

)n/mi

≤
ti

mi
.

The last inequality is correct based on the Bernoulli’s inequality when ti ≤ mi. If bi < 2i,
then ti < 2i because in each round each corrupt user appears in exactly one column in M ,
and thus can block at most one bridge. Since in each round mi = 2i+1 ≥ 2ti, this probability
becomes a constant ≤ 1/2.

Since dc log ne instances of Algorithm 4.1 run in parallel, the probability that every
column that u appears in among all matrices is “bad” (i.e., has at least one active corrupt
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𝑏𝑖−1 ≥ 2𝑖−1 𝑏𝑖 ≥ 2𝑖
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Figure 4.3: Number of bridges distributed in the i-th round of Algorithm 4.1

user) is at most (1/2)c log n = 1/nc. By applying the union bound, the probability that any
of the n users fails to sit in a “good” column (i.e., a column with no active corrupt user)
is at most 1/nc−1. Therefore for any c > 1, all honest users can connect to Tor with high
probability. �

Lemma 21. By running Algorithm 4.1, all honest users can connect to Tor with high
probability after at most dlog te + 1 iterations.

Proof. Similar to Lemma 18, we let k denote the smallest number of rounds needed until
all users can connect to Tor with high probability. k is bounded, because t is bounded.
So, for all i ≥ k, bi < 2i, and based on Lemma 20, all users can connect to Tor with high
probability. We now find k with respect to t.

In each round i, the adversary can maximize k by minimizing the number of bridges
blocked (i.e., bi), while ensuring the algorithm proceeds to the next round. This can be
done by blocking only half of the 2i+1 bridges distributed in each round and memorizing the
rest 2i bridge addresses to be blocked in future rounds, where t < 2i. Let ` be the smallest
integer such that t ≤ 2`. Until round `, the adversary can memorize at most

`−1∑
j=1

2 j = 2` − 2

bridges. In round `, no more bridges can be memorized, because the adversary has to block
all of the t ≤ 2` bridges it has learned in this round to force the algorithm to proceed to
round ` + 1. In round ` + 1, however, the adversary can block at most

2` − 2 + 2` = 2`+1 − 2 < 2`+1
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bridges, which is insufficient for proceeding to round ` + 2. Therefore, ` + 1 is the last
round and k = ` + 1. Since t ≤ 2`, k = dlog te + 1. In other words, if the algorithm is run
for at least dlog te + 1 iterations, then all honest users succeed with high probability. �

Lemma 22. The total number of bridges used by Algorithm 4.3 is at most (12t − 2)c log n.

Proof. Similar to Lemma 19, the total number of bridges can be calculated from (4.6). In
the i-th round, the algorithm recruits ai ≤ 2i+1 new bridges. Since bi < 2i,

Ni < 2i+1 +

i−1∑
j=1

2 j = 2i+1 + 2i − 2 = 3 · 2i − 2.

From Lemma 21, it is sufficient to run the algorithm for dlog te + 1 rounds. Hence,

Ni < 3 · 2dlog te+1 − 2 < 12t − 2,

i.e., the total number of bridges used by the algorithm is at most (12t − 2)c log n. �

In the following lemma, we use martingales to show that the number of bridges used
by the algorithm can be reduced by a factor of two when a constant fraction of the users
are corrupted, i.e., when t = αn, for some constant α ∈ [0, 1]. To achieve this, we let
Algorithm 4.1 distribute only mi = 2i bridges in each round.

Lemma 23. Let only a fixed constant fraction of the users be corrupted, and mi = 2i in
each round i of Algorithm 4.1. The algorithm guarantees all honest users can connect to
Tor with high probability, and the total number of bridges used is (8t − 2)c log n.

Proof. For j = 1, 2, ...,mi, let {X j } be a sequence of random variables each corresponding
to the j-th column of M , where each column consists of n

mi
users chosen uniformly at

random without replacement from the set of all users. Also, let Y be a random variable
corresponding to the number of columns that have no corrupt users. Since E[|Y |] < ∞, the
sequence {Z j = E[Y |X1, ..., X j]} defines a Doob martingale. Since the probability that a
given column has no corrupt user is at least ((n − ti)/n)n/mi , by the linearity of expectation,

E[Y ] = mi ·

(
1 −

ti

n

)n/mi

.

Since in each roundmi = 2i ≥ ti and t = αn, for some constantα ∈ [0, 1], we haveE[Y ] = mi (1 − α)1/α.
This means that, in expectation, a constant fraction of the columns in each matrix (in each
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round) are good. Since choosing one random column changes the expected number of good
columns by at most one, |Z j+1 − Z j | ≤ 1. Using the Azuma’s inequality, we get

Pr ( |Y − E[Y ]|) ≥ λ) ≤ 2e−2λ2/mi,

for any λ > 0. Therefore, the actual values of Y are highly concentrated around its expected
value E[Y ].

The number of bridges distributed in each round of the modified algorithm is mi = 2i.
Thus, using equation (4.6) in Lemma 19, the total number of bridges used by the modified
algorithm is at most (8t − 2)c log n. �

4.4 Simulation Results

To evaluate various properties of our algorithms, we implemented a proof-of-concept pro-
totype and tested it in a simulated environment under various adversarial behavior. The
prototype is written in C# using .NET Framework 4.5. We ran the simulations on an Intel
Core i5-4250U 1.3GHz machine with 4GB of RAM running Windows 10 Pro. We set
the parameters of our protocols in such a way that we ensure the failure probability of the
distribution algorithm is smaller than 10−5.

Figure 4.4: Bridge Distribution Simulation Application
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Figure 4.5: Simulation results for n = 8192 and t = 4096 with aggressive (left) prudent
(middle), and stochastic (right) adversary.

4.5 Conclusion

We described bridge distribution algorithms that allow all (honest) users to connect to Tor
in the presence of an adversary corrupting an unknown number of users. Our algorithms
can adaptively increase the number of bridges according to the behavior of the adversary
and use near-optimal number bridges.
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Figure 4.6: Simulation results for n = 1024 and various number of corrupt users with
aggressive (left) prudent (middle), and stochastic (right) adversary.



Chapter 5

Conclusion and Open Problems

With the increasing level of sophisticated cyber-attacks that target user privacy and oper-
ation of information systems, we require new tools and technologies that enable privacy-
preserving communications and computations over user data and that tolerate arbitrary
failures of system components.

We described efficient algorithms for tracking-resistant anonymous communication in
both the Internet and peer-to-peer networks. Moreover, unlike the majority of previous work
which rely on centralized trusted servers, most of our algorithms are fully-decentralized and
do not require any trusted party.

In the rest of this chapter, we propose a few open problems related to the research done
in this dissertation. Most of these open problems are related to possible improvements to
our current MPC and ABC protocols in order to achieve practicality. We also initiate a new
direction in solving MPC using oblivious RAM model which is a relatively new area with
a radical but intuitive approach to secure computation.

5.1 Practical MPC

The following are some promising techniques for improving the efficiency of our MPC
protocol.

• Blacklisting malicious parties. One technique for increasing efficiency of our proto-
cols is to detect and evict parties that exhibit adversarial behavior over time. Once all
malicious parties are blacklisted, the protocol can go into a light-weight mode, where
the expensive verification steps are avoided. If new adversarial faults happen while

108
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in the lightweight mode, the protocol should be able to maintain privacy, restart the
computation, and blacklist new malicious parties.

• Covert adversarial model. Addressing an adversarial model like covert that is weaker
than unconditional but stronger than cryptographicmodels. Cryptographic techniques
are often communication and round-efficient but are computationally expensive, re-
quire large key sizes, and sometimes hard to implement. Unconditional methods are
often simple to implement but hard to design. They also provide an excessive level of
security that is usually unnecessary in practice and increases communication costs.
A model in between seems to provide most of these benefits at a small cost.

• Improving the resiliency bound. Increasing the fraction of dishonest parties that
our algorithms can tolerate. This probably requires new share renewal and secure
multiplication techniques. A simple technique seems possible using themultiplication
protocol of [GRR98].

5.1.1 MPC in the Oblivious RAMModel

The typical approach for implementing an algorithm for MPC is to rewrite the algorithm
as an arithmetic circuit or a Boolean circuit and then, execute each gate of the circuit
using secure addition or multiplication operations. Cramer et al. [CFIK03] argue that one
can represent any formulas and branching program by low-degree randomizing polynomials
over some finite ring, which can be evaluated in constant rounds. However, these approaches
have their own limitations, e.g., it is not easy to construct the optimal branching program
for complex functions. On the other hand, Damgard et al. [DFK+06] show how to perform
equality-check, comparison, bit-decomposition, and unbounded fan-in symmetric functions
in constant-round over finite fields. Nevertheless, it is not obvious how to efficiently perform
oblivious evaluation of functions such as sorting and shuffling in constant rounds by using
these elementary protocols.

Most algorithms have already been described in terms of instructions (programs) to a
RAM machine. Such programs are usually called RAM programs. A RAM machine has
a lookup functionality for accessing memory locations that takes O(1) operations. Given
an array A of N values and an index x ∈ {1, ..., N }, the lookup functionality returns A[x].
Goldreich and Ostrovsky [GO96] propose a new technique called Oblivious RAM (ORAM)
that allows a client to hide its access pattern to a remote storage by continuously shuffling and
re-encrypting data as they are accessed. ORAM techniques enjoy simplicity and practical
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efficiency.
Hiding the access pattern, or making it oblivious, means that any equal-length sequence

of clients’ data requests to the server are equivalent from the point of viewof the eavesdropper
who might be the server itself. The server must only know the number of queries in the
sequence. Achieving this property implies in particular that the following information
would be unknown to the server: (1) the locations of accessed data items, (2) the order of
data requests, and (3) the number of requests to the same location. In addition, different
types of access (e.g., get-value, set-value, insert-new-value) must also be indistinguishable.

We envision a programming model for MPC based on the ORAMmodel. This separates
the program into two parts: control flow andmemory. Memory can be abstracted by either a
trusted server or by the well-known and proven shared memory paradigm. Control flow can
be parallelized in order to reduce computational time and latency. We propose a technical
approach that relies on the use of quorums and homomorphic secret sharing as described
in Section 2. Information is secret-shared among parties inside a quorum and the control
flow and access to variables are handled securely by the quorums. This is performed in a
way that ensures no single party ever can access or learn the value of any variable. Instead,
the variables are manipulated via quorums that act as single functional units. The state of a
variable is manipulated via homomorphic operations applied to these shares.

5.2 Practical Anonymous Broadcast

In this dissertation, we described an anonymous broadcast protocol that securely shuffles
input messages by evaluating a sorting network using MPC. In this section, we provide two
promising approaches for improving efficiency of this protocol. In both approaches, wee
seek better techniques for multi-party shuffling of a set of messages by replacing the sorting
network with a possibly smaller-depth and simpler circuit.

5.2.1 Non-Comparison-Based Sorting

One major drawback of our current ABC protocol is its round complexity. One promising
way of improving this is to design a sorting circuit from known non-comparison-based
sorting algorithms such as bucket sort and radix sort. This seems possible because our
multi-party shuffling protocol sorts uniform random numbers. Since the O(n log n) lower
bound on the time complexity of sorting algorithms does not hold for non-comparison-based
sorting algorithms, we conjecture that it might be possible to build a sorting circuit without
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using comparators to achieve a better than O(log n)-depth sorting circuit. For example, Is
it possible to use known oblivious sorting algorithms such as [HICT14, HKI+12, Goo11]
to improve round complexity?

5.2.2 Shuffling via Expander Graphs

One approach for solving the secure shuffling problem is to evaluate a permutation network
using MPC. In this section, we first describe permutation networks and their limitations for
the problem of anonymous broadcast. Then, we conjecture that expander graphs can be
used for constructing permutation networks that meet our anonymity goals.

Permutation Networks. Apermutation network is a network of swappers (a.k.a., switches).
Each swapper is a gatewith two input wires (variables) x1, x2, a switchwire r , and two output
wires y1, y2. While x1 and x2 can be any value, r is either zero or nonzero. Each swapper
behaves in the following way. If r = 0, then y1 = x1, y2 = x2, otherwise, y1 = x2, y2 = x1.
A permutation network may be used for generating different permutations of n values by
setting the switches arbitrarily. Typically, a permutation network has dn/2e input swappers,
dn/2e output swappers, and several intermediate swappers all connected to each other via
their wires in some way.

By setting the switches uniformly at random, one obtains a certain probability distribution
that is often desired to be close to the uniform distribution. A network consisting entirely of
switches with swapping probability of 1/2 cannot generate a uniform distribution because
for a circuit with m such gates, there are 2m possible outcomes. Since m! - 2m, some
permutations are more likely to be generated by the network than others (see [Knu98]
Section 5.3.4 for a detailed discussion). Typically, the effectiveness of a permutation
network is measured by the variation distance between the uniform distribution (denoted by
u) and the probability distribution generated by the network (denoted by v) on the sample
space Ω of all possible permutations, defined as

d(u, v) = 1/2
∑
ω∈Ω

|u(ω) − v(ω) |

Czumaj et al. [CKLK01] propose a permutation network for generating almost-uniform per-
mutations with distance O(1/n2) from uniform distribution. To the best of our knowledge,
this network has the smallest distance among other known permutation networks such as
[Wak68].
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Anonymity via Permutation Networks. One approach for secure multi-party shuffling is
to securely evaluate a permutation network using MPC. We believe such a circuit not only
can have a smaller depth but also it can result in a higher bandwidth efficiency of our
protocol because we believe secure swapping is significantly less expensive than secure
comparison in terms of both communication and computation costs. For example, our
microbenchmarks show that a secure comparison (using the technique of [NO07]) requires
sending roughly 200 times more bits than a secure swapping in a network with one million
parties.

In the context of anonymous broadcast, however, we believe the variation distance (defined
above) is not necessarily an effective measure of anonymity due to the following informal
argument. In anonymity, we are interested to keep the worst-case deviations as small as
possible. In other words, we want almost all permutations to happen with a probability
close to uniform. Unfortunately, the variation distance does not indicate whether only a few
permutations (out of the sample space) have large deviations from the uniform probability or
most permutations have small deviations from the uniform probability. Thus, for anonymity,
we propose to measure the weakness of a random permutation generator by the maximum
deviation from the uniform distribution on the sample spaceΩ of all possible permutations,
i.e.,

w(u, v) = max
ω∈Ω
|u(ω) − v(ω) |

Permutation Networks using Exapnders. Informally, an expander is a graph in which
the neighborhood of any set of vertices S is large relative to the size of S. This means that
every subset of vertices expands rapidly. Ideally, the graph should have few (linear) edges,
and in fact be of bounded degree, i.e., a good expander has low degree and high expansion
parameters. Due to their rapid mixing properties, expanders have been extensively used
in many applications such as pseudorandom generators and sorting networks. Although
they have been used for designing sorting networks [AKS83b, Pat90], we are not aware
a permutation network based on expanders. We are specifically interested to see if using
random walks on an expander we can build a permutation network with a small maximum
deviation (as defined above).

5.3 Other Privacy-Preserving Applications

We are interested in studying applications that can be efficiently solved using our MPC
and ABC algorithms. One such application is a privacy-preserving location-based service
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described in Section 3.5. As mentioned earlier, we envision that the problem of privacy-
preserving LBS can be efficiently modeled as an MPC problem.

User data collected by companies and government agencies are constantly mined and
analyzed. Such data sets are usually very large that drive organizations to outsource their
analytics activities to the cloud or large multi-party networks. Unfortunately, this lays
out several privacy challenges because untrusted parties can abuse the data and extract
sensitive private information from customers. Sorting is one of the most important and
well-studied primitives in data analysis. In a multi-party setting with untrusted parties,
however, Multi-Party Sorting (MPS) is a new and challenging problem with applications in
several problems including privacy-preserving data mining, private information retrieval,
and private database operations [JKU11, Zha11]. Unfortunately, known solutions either
scale poorly with the number of parties [HKI+12] or have impractical costs [BGT13,
DKMS14]. Using our MPC protocol, we can build an efficient MPS algorithm for privacy-
preserving data mining of massive data sets such as large matrix factorization.
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