
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

Fall 11-2-2017

Improving Large Scale Application Performance
via Data Movement Reduction
Dewan M. Ibtesham
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

Part of the Computer and Systems Architecture Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Ibtesham, Dewan M.. "Improving Large Scale Application Performance via Data Movement Reduction." (2017).
https://digitalrepository.unm.edu/cs_etds/87

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/87?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           
     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  



Improving Large Scale Application
Performance via Data Movement

Reduction

by

Dewan Ibtesham

B.Sc., Computer Science and Engineering, BUET, Bangladesh, 2007

M.Sc., Computer Science, UNM, 2014

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2017



Dedication

To Amma for always believing in me,

To Abba for being my role model,

To Shoshi for her steadfast support,

&

To the loving memory of my grandmother,

Zaman Ara (1925-2016)

ii



Acknowledgments

I would like to express my sincere gratitude to the people without whom this thesis
would not be possible. I would like to begin by acknowledging my advisor, professor
Dorian Arnold for his extraordinary guidance, and support over these years. Dorian
has taught me how an idea can be transformed into good research and can be properly
communicated. His advice both on research as well as on my career have been
invaluable.

I would also like to recognize the significant contributions of my co-advisor, Kurt
Ferreira. Throughout my time at UNM, Kurt was always there with his help and
guidance. He was always instrumental in reviewing my manuscripts, asked questions
to challenge my assumptions and improve the research.

I would also like to extend my thanks to my committee members, professor Patrick
Bridges and professor David Lowenthal. Patrick has always been generous with his
time and advice. Many of the results in this dissertation was improved by his valuable
feedback. David had also provided helpful and valuable feedback to improve the
quality of this work.

Thank you to my fellow students in the Scalable Systems Lab for sitting through
the practice talks, engaging in many paper discussion sessions and helping me to
navigate graduate school. In particular, I would like to express my gratitude to:
Taylor Groves, Scott Levy, Matthew Dosanjh, Whit Schonbien and Hans Weeks.
Also many thanks to David DeBonis, Patrick Widener, Kevin Pedretti and Ryan
grant from Sandia National Laboratories for engaging discussions on many occasions.

I would like to express my gratitude to my parents, Dewan Yamin and Amina
Akhter, for shaping me the person I am today and my sister Nuzhat yamin, for
teaching me how to remain strong in di�cult situations. Special thanks to my
mother-in-law, Mahmuda Hossain, for helping us whenever we needed her. Gratitude
to Mr and Mrs. Ali for being our family away from home. I would also like to thank
the Bangladeshi community in Albuquerque specially for their love and hospitality.

Finally, I would like to thank my wife Shoshi for her continuous support through
out this journey. She was always encouraging and without her I could not have done
it.

Last, but certainly not the least, I thank my daughter, Anuva, for being herself.

iv



Improving Large Scale Application
Performance via Data Movement

Reduction

by

Dewan Ibtesham

B.Sc., Computer Science and Engineering, BUET, Bangladesh, 2007

M.Sc., Computer Science, UNM, 2014

Ph.D., Computer Science, University of New Mexico, 2017

Abstract

The compute capacity growth in high performance computing (HPC) systems

is outperforming improvements in other areas of the system for example, memory

capacity, network bandwidth and I/O bandwidth. Therefore, the cost of executing

a floating point operation is decreasing at a faster rate than moving that data.

This increasing performance gap causes wasted CPU cycles while waiting for slower

I/O operations to complete in the memory hierarchy, network, and storage. These

bottlenecks decrease application time to solution performance, and increase energy

consumption, resulting in system under utilization. In other words, data movement

is becoming a key concern for future HPC system-design.

Data volume reduction techniques (e.g. lossless data compression, information

hiding approaches, di↵erence-based patches etc.) have been useful in many contexts

to reduce data movement. In this thesis, I study the use of such techniques to reduce

data movement in the context of current and future HPC environments. I trade
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o↵ computation to reduce data volume, for faster completion of I/O operations. I

identify three key data movement areas in HPC, intra-process, inter-process and

inter-application data movement and investigate the impacts of various compression

techniques on the data associated with each of these areas. To be specific, I introduce

a compression-based paging system for HPC memory and demonstrate up to 78%

capacity improvement with minimal runtime overhead (4%). Next, I propose and

demonstrate a novel two-level di↵-based approach that can reduce inter-process data

movement by up to 99% although with potentially large runtime overhead. Finally,

I reduce inter-application data movement by up to 90% using checkpoint/restart-

based fault tolerance protocol as a case study. By doing so, I show that checkpoint

data compression can improve application runtime e�ciency by more than 50% and

reduce energy expenditure by up to 90%.
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Chapter 1

Introduction

High-performance computing (HPC) systems have become an essential tool for sci-

ence and engineering research. Modeling large complex physical processes enable sci-

entists to gather valuable insights and to extend scientific knowledge. For example,

some popular applications across di↵erent domains that use high performance com-

puting include: climate and weather simulation, stellar atmosphere study, combus-

tion/turbulence simulations, molecular dynamics simulations, quantum chemistry,

material science and seismology [28].

These long running scientific applications divide the problems they are solving,

across up to millions of processes. Each problem may require hundreds of thousands

of node hours to complete. With more powerful computing capability, an application

would complete faster and would be able to solve a problem at a higher resolution.

Therefore, enabling research to be conducted much faster, providing investigators

with more confident predictions.

The execution of an application can be broadly divided into three phases: 1)

1



Chapter 1. Introduction

computation, 2) data movement, and 3)storage1. During computation, an applica-

tion executes the instructions in the processors. It is the key element in solving large

scale problems. As a result, computation is one of the key areas of improvement

to further increase these systems’ capabilities. Data movement, on the other hand,

includes fetching data to the processor through the memory hierarchy, exchanging

messages among the processes, moving data for persistent storage and communicat-

ing with other applications such as, fault tolerance, data analytics, visualization, etc.

Today’s HPC systems comprise of millions of compute cores [6, 127]. The next

major advancement for HPC systems would be the ability to execute 1018 floating

point operations per second, a so called exaflop system. To reach this goal, we

expect future exascale class computing systems to have orders of magnitude more

cores than our current systems [67]. However, all components in the system are not

being improved at the same rate. For example, analysis of the fastest computers

from the top500 list shows that: compute capacity growth is 2 times faster than

per core memory capacity and bandwidth [127]; for storage, computational capacity

grew 1000 times faster than storage bandwidth. Similar trends have been observed for

network as well since the number of network interconnects remained fairly stable over

time[68, 120]. Thus, data movement in HPC is increasingly becoming a bottleneck

for application’s runtime performance [7, 12, 67].

In this study, I investigate di↵erent areas in HPC system where data movement

takes place and try to trade o↵ computation by reducing the volume of data through

applying compression-based techniques. My hypothesis is that reduced time spent in

data movement can hide the added (de)/compression overhead and thereby improve

an application’s overall runtime performance.

1HPC systems typically use parallel file systems for storage. In this work, we will study
the data movement associated with storage but will not dive deeply into studying storage.

2



Chapter 1. Introduction

1.1 Data movement in HPC systems

In an HPC system, the smallest processing units are the compute cores. When

a parallel or distributed application is solving a problem, it typically breaks the

problem into individual processes. The processes often are run in a symmetric multi-

processing (SMP) mode that allows a core to run multiple processes or threads. In

modern multi-core systems, each processor can have 2-64 cores and generally 2-8

processors are contained in a node. While computation takes place in the compute

cores, data is moved between the cache hierarchy and memory.

In HPC, these processes and threads generally communicate across nodes by

exchanging messages through the Message Passing Interface (MPI). Together, a large

number of communicating nodes can solve a much larger problem and can finish the

application code much faster than traditional computing systems.

Due to the limited availability and large procurement and operating costs of

HPC systems, traditional HPC systems follow a shared usage model where multiple

applications are running simultaneously to maximize resource usage. Some of these

applications provide important services such as fault tolerance, visualization etc. In

order to provide these services, large volumes of data are being transferred between

these applications.

We can broadly classify HPC data movement into three categories:

• Intra-process data movement.

• Inter-process data movement.

• Inter-application data movement.

Figure 1.1 illustrates a general overview of HPC data movement and the

associated high level hardware architectures. Due to the increasing performance

3



Chapter 1. Introduction

Figure 1.1: Data movement paths for HPC system. Double ended arrows represent
the data movement paths studied in this thesis.

gap between processing and the rest of the systems, CPU cycles are wasted while

waiting for data movement in the memory hierarchy, the disks and the network.

These bottlenecks decrease an application’s time to solution performance and as a

result of that, we cannot utilize the full potential of the system.

1.1.1 Intra-process data movement

Data intensive HPC applications can process large external datasets and often

require large working sets that can exceed memory capacity. For example, SCEC

4



Chapter 1. Introduction

Broadband platform’s [83] per process working set is more than 1GB during 75% of

it’s total runtime [62]. In comparison, the fastest two systems in the TOP500 [127]

list both have roughly 0.3GB memory per core. As a result, it is evident that some

of the memory bound applications wouldn’t be able to utilize top HPC systems to

their full potential.

The decrease in memory capacity per core, also creates a constraint for

simulation-time data analysis and data visualization within the computing node

(in-situ analysis). Therefore, a larger memory capacity can avoid the cost of moving

data to separate node or storage for co-analysis.

We can address the memory capacity problem by using a hardware-based ap-

proach. We can add more memory hardware to increase the per core memory capacity

as well as can add more nodes to improve overall capacity. But the hardware-based

solution increases both the procurement cost and the maintenance cost due to the

increased energy requirements [47, 67, 116]. Scaling up horizontally, by adding more

nodes, will also increase data movement, but it will as well have increased additional

scaling complexities such as increased failure rates etc.

Hybrid software-hardware based approaches try to address this problem by

adding locally attached non-volatile memory storage [134, 85] or new high-density

memory technologies [60, 51]. But one of the side e↵ect to that approach is the

increase in data movement between cache hierarchy, DRAM and node local storage.

As both the runtime and energy cost of data movement is a function of the distance

between DRAM and backing store [67, 116], I propose that a compressed cache in

the main memory can solve this problem.
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Compression-based approaches have also been studied for HPC memory pages.

For example, Levy et al. studied memory page similarities for recovering from mem-

ory faults [76, 75]. Studies have also reviewed memory page similarities to reduce

memory footprint [16, 15]. Outside of the HPC context, compression has been ex-

plored to reduce paging to non-volatile storage by keeping a set of compressed cache

in the main memory using both hardware- [128, 50, 40] and software-based compres-

sion [139, 30, 140, 26, 66, 131, 115]. However, due to the absence of node local storage

in traditional HPC systems, paging to node local storage and a compression-based

paging scheme has not been studied in HPC context.

With regard to intra-process data movement, I have studied and compared

runtime performances of an SSD-based paging scheme and a compressed paging

scheme in the HPC context using a simulation-based approach. I show that

using a compression-based approach to improve memory capacity will reduce the

requirement of having additional hardware as this approach can provide similar

capacity with minimal overhead.

1.1.2 Inter-process data movement

HPC applications divide the problem to be solved into smaller sub-problems and

to distribute them across nodes. These sub-problems often require communication

with other sub-problems because the intermediate results of one sub-problem may

depend on the others. These dependencies are resolved either by shared memory

access (intra-node) or through the interconnection network (inter-node).

Application processes that exchange information with other processes on a dif-

ferent node, generally use a message passing interface (MPI) [138] to communicate.

These processes exchange large amounts of application data via point-to-point

and/or group (collective) operations. As processing capabilities and job sizes
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(process counts) increase, then typically so does inter-process congestion [68, 120].

Inter-process congestion can also come from inter-application communication

saturating the network since di↵erent application jobs can run simultaneously in the

typical space-shared HPC job scheduling model [13, 14]. Without proper control on

congestion, application performance can be severely degraded [44, 48].

Improvement in network performance is lagging from the growth in HPC systems,

thereby resulting in a decreased availability of per process network bandwidth. As

a result, network bandwidth has become a precious commodity and both intra-

and inter-application network contention and congestion have become important

problems to understand and mitigate [38, 39, 42, 43, 55, 64].

Di↵erent approaches have been studied to reduce congestion and improve network

bandwidth. One approach is to distribute the application process across the system

to reduce some congestion [120]. For a job-sharing system, assigning computation

heavy processes with communication heavy processes also improves application

performance [68]. Another approach is to apply data reduction techniques to reduce

volume of data that is exchanged by application processes.

In order to reduce inter-process data movement, I studied the similarities among

the communication messages exchanged by application processes in HPC. The mes-

sages are generally exchanged using the Message Passing Interface (MPI) [138] which

is the most common framework for inter-process communication. Previous studies

have demonstrated performance improvements by applying compression on MPI mes-

sages [38, 39, 42, 43, 64]. However, none of these studies have quantified the message

similarities among MPI message payloads. I show that my two-level di↵-based ap-

proach can reduce message data volume by more than 90%.
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1.1.3 Inter-application data movement

Application services such as, for example, fault tolerance protocols [87, 107, 112],

data analytics and visualization [74, 81], move large volumes of data from compute

cores to stable storage. These are basically memory snapshots of each of these

processes that are moved to stable storage (checkpoints) or data analysis nodes (an-

alytics/visualization). Due to the large volume of data and slower I/O, applications

take a large portion of time waiting for these data transfers to be completed. To illus-

trate the problem, I will use the example of checkpoint/restart-based fault tolerance

protocol as a proxy for all application services.

Data movement due to checkpoint/restart

Checkpoint/restart is currently the most common approach to handle faults in HPC

systems. In checkpoint/restart, each application process periodically saves its state,

a checkpoint, to a persistent storage facility [33]. Checkpoints can be taken in a

coordinated or uncoordinated fashion or a hybrid of both ways. Currently the most

widely-used mechanism for checkpointing is coordinated checkpointing.

Coordinated checkpointing works by having all processes take checkpoints at the

same time, thus creating huge contention for network and I/O resources. During the

time of taking a checkpoint, each process must wait and cannot move forward with

application code until all other processes have completed committing their check-

points. With an increase in system size, application’s runtime e�ciency is expected

to decrease for the following reasons:-

• System mean time between failures (MTBF) will decrease. MTBF is inversely

proportional to the total number of cores in the system [45, 109] assuming
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every core has uniform failure rate. Hence, larger systems will experience more

frequent failures and an optimal checkpoint algorithm will take checkpoints

more frequently to reduce lost work due to failures.

• More processes will increase the overall checkpoint data volume as well as

creating more contention for network and I/O.

Based on current projections for future exascale systems, an application could spend

more than half of its wall clock time performing checkpoint/restart [35, 95].

A number of di↵erent checkpoint optimization strategies have been studied to

reduce checkpoint data movement. These strategies include memory exclusion [100],

incremental checkpointing [18, 36, 34, 102] and checkpoint compression [78, 89, 101,

103, 59]. Plank et al. demonstrated that checkpoint compression is not a viable

approach [101, 103]; but, based on today’s CPU/IO performance numbers, I demon-

strate in this study the viability of checkpoint compression. I also compare this

approach against other software/hardware-based checkpoint data reduction stud-

ies [102, 59], and study the impacts of di↵erent compression parameters in applica-

tion runtime. Finally, I show that, checkpoint data movement reduction not only

improves application’s runtime performance but also improves application’s energy

performance.

1.2 Contributions

In this thesis, I examine the trade-o↵ of computation and data movement in the

context of highly scalable HPC systems. More specifically, I examine the viability

of utilizing excess computation on current systems to reduce the volume of data

movement. My hypothesis is that compression-based techniques can be e↵ectively
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used to reduce data movement in di↵erent areas in HPCs and can improve application

runtime performance. I evaluate this hypothesis in the following ways:

• I propose a compression-based paging scheme for HPC application memory

structure. Using a trace driven simulation-based approach for the real HPC

workload, I have demonstrated that such an approach can e↵ectively improve

HPC application per-process memory capacity by up to 78% while keeping the

overhead low (under 4%).

• I study intra- and inter-message similarities among MPI-based HPC applica-

tions. I demonstrate a two-level di↵ based approach to exploit these similarities

to reduce overall network data volume by up to 99%, and to demonstrate an

upper limit of the runtime overhead of our process.

• I develop a model with which to study the viability for checkpoint compres-

sion for future systems. Using an extended performance model, I evaluate the

performance benefit of checkpoint compression for current systems and demon-

strate application runtime e�ciency improvements of more than 50% for future

systems. I develop and validate an energy performance model for checkpoint

compression and demonstrate that compression can reduce energy expenditure

by up to 90%.

I compare compression-based checkpoint optimization against other

software/hardware-based checkpoint optimizations. Finally, I study the

impact of di↵erent parameters in the checkpointing process to dictate future

directions for improvements in checkpoint compression.
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1.3 Document organization

The remainder of the document is organized as follows. In Chapter 2, I present back-

ground information and related research in the three data movement areas that are

covered in this study. In Chapter 3, I study intra-process data movement reduction

by improving the perceived per-core memory capacity. I use a simulation-based ap-

proach to introduce paging for HPC workloads and compare its performance against

a compression-based memory paging solution. In Chapter 4, I study di↵erent ways

to reduce inter-process data movement. Here I seek to identify the similarities that

exists among inter-process messages using a di↵-based approach and using simulation

to study the overheads of my approach to reduce network congestion. In Chapter 5,

I study inter-application data movement reduction by focusing on checkpoint/restart

optimization that serve as a proxy for all inter-application data movement. I study

the viability of checkpoint compression and demonstrate its application to improve

overall application runtime performance. Finally, I conclude the dissertation with a

discussion about future direction.
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Related Work

This chapter describes previous research that is related to the contributions pre-

sented in this document and summarize how the contributions of this document are

novel and distinct from currently existing research. Section 2.1 summarizes existing

research on intra-process data movement reduction. Section 2.2 describes existing re-

search on inter-process data movement. Finally, Section 2.3 provides an overview of

prior research on inter-application data movement reduction using checkpoint/restart

optimization as a proxy for all inter-application data movement.

2.1 Intra-process data movement

Recent trends show that the memory capacity per core is decreasing [94, 67]. This

limits our ability to solve large problem sizes without having to scale horizontally

by adding more nodes. Adding more nodes will increase data movement, energy

expenditure and procurement costs. Projections show that the cost of moving data

from memory is two orders of magnitudes higher than the cost of computing a double-

precision register-to-register floating point operation [67]. Since, computation is
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getting cheaper than data movement, in this work, we want to investigate the use of

compression to trade o↵ computation and improve perceived memory capacity.

Outside of the HPC domain, the application of compression over L1/L2 caches

and main memory pages has been studied extensively in the e↵orts to expand

perceived memory capacity. I will discuss some recent approaches in this area and

also di↵erent approaches in HPC to address the memory capacity problem.

2.1.1 Hardware-based compression between cache hierarchy

and DRAM

Yang et al. [141] studied compression between the L1 and L2 cache lines. In their

approach, they learned that each L1 cache line could store either an uncompressed

cache or two compressed caches depending on the fact that a cache line must be

compressed to at least 50% of its original size to have e↵ective results. Their simu-

lation based approach showed that compression could result in up to 36% savings in

L1 miss rates. This leads to a reduction of up to 48% o↵ chip data movement.

In the selective compressed memory system (SCMS) [73], it stored two adja-

cent compressed cache lines or an uncompressed cache in each cache line. SCMS

managed the L1 cache as a regular first level cache but compressed L2 caches and

DRAM pages. If two compressed cache lines can fit into a cache line, they are stored

compressed; otherwise, they are stored uncompressed. SCMS also had an additional

bu↵er between L1 and L2 caches. They demonstrated that their approach can reduce

the miss ratio by up to 35%.

Alamelden and Wood [4] used a similar approach as Lee et al. [73]. In their pro-

posed system design, L1 caches hold uncompressed data and L2 caches dynamically
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decides whether to compress or not, and whether they can hold either 4 compressed

cache lines or 8 uncompressed cache lines. Their ’Frequent Pattern Compression

(FPC)’ algorithm had a faster decompression rate, which was used by the L2 cache

to determine whether compression can avoid a cache miss, given the additional de-

compression overhead. They demonstrated that the proposed system’s performance

improvement was up to 17% for some workloads while the performance penalty was

never over 0.4% for the applications they tested.

After IBM’s memory expansion technology (MXT) [128] was introduced with

hardware based real time de(compression) support, some related research was con-

centrated on MXT-based implementation of main memory compression [40, 50]. Hall-

nor and Reinhardt used LZSS compression from the MXT system. They used a pool

to store compressed cache lines, and allocate variable amounts of memory to com-

pressed caches, depending on their compression ratio. They simulated benchmarks to

demonstrate from -5% to 19% performance improvement for SPEC2000 benchmarks.

It is important to note that due to the compression in MXT, the number of address-

able memory is variable, and changes dynamically based on the compressibility of

the pages in memory. The one-to-one mapping between physical page frame and

virtual memory page is no longer valid and they need to be independently managed

by the OS.

Although hardware-based approaches can provide better support for faster

compression, they seem to have limited acceptance as they require changes to both

hardware and software systems. Software-based compression on the other hand can

be made readily available for existing systems and can be turned on or o↵ selectively.
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2.1.2 Software-based compression between DRAM and disk

pages

The idea of software-based main memory page compression began in the early 1990s

by Wilson [139] and Douglis [30]. As CPUs became increasingly faster than disks,

compression speeds were also improving. So it became increasingly attractive to keep

pages in memory in compressed form to avoid paging out to disks.

In their original proposal, memory contained a new level called compressed region,

where pages were stored in their compressed form before paging them out to disk

[30, 139]. So, if a page fault could be satisfied from the compressed region, that

eliminated an expansive disk access. A compressed page also reduced the data to be

transferred between main memory and disk when swapped out. Some other studies

followed this design [26, 140]. In these designs, a page was either in the compressed

region or in the uncompressed region, but not in both. A di↵erent approach which

violated this property was proposed by Kjelso et al. [66].

Tuduce et al. proposed an adaptive main memory compression approach that

dynamically managed memory fragmentation and was able to improve performance

by up to 55% [131]. Memzip [115] provided a compressed memory architecture that

targeted the energy, bandwidth and reliability of a system instead of the traditional

capacity metric. The additional space that was due to compression was used for

error correction or energy e�cient data encoding, thereby resulting in up to 45%

performance improvement and up to 57% memory energy reduction.

Another approach, data deduplication, keeps a single page for all duplicate mem-

ory pages, thereby reducing the memory footprint of the application. The di↵erence

engine [49] calculated hashes of page contents to identify identical pages in Xen

Virtual machine systems (VM). Applying data deduplication based on these hash

values, they were able to demonstrate from 65% (heterogeneous workload) to 90%
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(homogeneous) space savings across VMs.

All of the related hardware-based and software-based memory compression re-

search that I summarized in this section focused on commodity systems and applica-

tions, and not in the HPC context. Unlike commodity systems, HPC systems do not

have locally attached storage with the compute cores and therefore do not support

paging to local storage. For our work, I introduce paging to HPC and study the

impact of compression-based paging in the HPC context.

2.1.3 Approaches to improve memory capacity in HPC

In HPC context, The PSMalloc [16] and its extension SBLLMalloc [15] are both

user level libraries that use a data deduplication approach similar to the di↵erence

engine to increase memory capacity by identifying identical memory blocks. The

PSMalloc exploits data similarity across MPI tasks while the SBLLMalloc extends

it with the ability to identify zero pages across and within tasks. The recent work of

Levy et al. on memory content similarity of HPC applications shows that significant

similarities exist in HPC memory content [76]. We believe that compression can

exploit these similarities and can reduce data movement for HPC applications.

Researchers in HPC have also investigated recent advancements into new high

capacity, higher bandwidth memory hardware and sought to understand how they

can improve memory system performance [51, 60, 136]. Hybrid memory cube (HMC),

phase change memory (PCM), 3d stacked memory are some of the modern technology

improvements that are being explored to provide lower e↵ective latency, lower power,

higher bandwidth and overall lower cost.

Hammond et al. studied the the impact of memory policies on a multi-level

memory structure that included newer and faster memory technology [51]. They used
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a simulation environment that is very similar to what we used for our experiments,

and demonstrated that the addition policy (the decision to add a page to the fast

memory) impacts application performance more than replacement policies. Jayaraj

et al. studied memory access patterns and attempted to identify high density memory

access areas in memory [60]. They proposed to keep high density access areas in faster

memories for example, HCM and demonstrated that, although these faster memory

hardwares are expensive (3 times more than DRAM), the overall relative costs can

be reduced by using a combination of di↵erent kinds of memory hardware.

2.1.4 My research contribution

For this work, we sought to introduce software-based compressed-paging for HPC

memory. Current HPC memory capacity is limited by the DRAM size since a

typical compute node has no local non-volatile storage for swap space. We study

software-based compression due to it’s flexibility compared to the hardware-based

approaches. Software-based approaches are also less expansive than hardware-based

approaches [60] and can be applied selectively. In this study, we first studied the

runtime performance impact of introducing SSD-based paging to the HPC context.

Next, we compared SSD-based paging against our proposed compression-based pag-

ing and demonstrated reduced runtime overhead while increasing the perceived mem-

ory capacity. To the best of our knowledge, paging in general and a compression-

based paging scheme has not been studied in a HPC context.

2.2 Inter-process data movement

HPC applications divide the problem space among smaller sub-problems, and assign

processes to solve these sub-problems. Processes that are solving these sub-problems,
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communicate with each other through Message Passing Interface (MPI) [138] over

the network to resolve their inter-dependencies. MPI is the message passing library

most widely used to provide messaging in parallel applications. MPI provides a

complete interface for point-to-point and collective operations, synchronizations and

I/O operations.

Due to the lack of improvement in networking subsystems, as compared to pro-

cessing, the contention for resources and network congestion results in a bottleneck.

For example, scientific applications that have distinct computation and communi-

cation phases have high sensitivity to network bandwidth. These applications have

periods of high network utilization followed by idle networks thus requiring a high

peak network bandwidth. The relative slow growth of network bandwidth therefore

creates a bottleneck for the application and slows down the message rate. For this

work, we focus on MPI message workloads and try to identify inter and intra-message

similarities. Our focus is to improve the perceived aggregate network bandwidth

by reducing the network data volume. In this section, I will summarize the back-

ground and related works in network contention/congestion and compression-based

approaches that have been used in MPI messages to reduce the inter-process data

movement.

2.2.1 Network Contention/Congestion in HPC Applications

Network congestion is a primary cause of performance degradation for communica-

tion heavy HPC applications [55, 42, 43, 64, 38, 39]. In this context, network conges-

tion can arise from self-interference, when an application’s own tra�c is contending

for limited network resources, or from cross-interference, when di↵erent applications

and services contend for the network resources.
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Network contention and congestion due to an applications own processes

In many core systems, it has been shown that contention for network interfaces and

congestion from the reduced per-core network bandwidth can significantly degrade

application performance [68, 120]. Soryani et al. [120] have shown the impact on

communication performance of sending medium versus large message sizes . They

showed that mapping communicating processes that send or receive larger messages

within a node can improve performance. In addition, assigning processes that send

large inter-node messages to di↵erent sockets can also improve performance. Study-

ing both inter- or intra-node communications, the authors identified a threshold for

optimal network utilization and proposed a process mapping scheme to distribute

network activity in an attempt to avoid contention, thereby improving message rates

by up to 19.6%.

Koop et al. [68] demonstrated performance degradation that was caused by net-

work congestion by comparing the execution times of applications executed on shared

nodes versus on dedicated nodes. By assigning communication heavy processes to

multiple nodes compared to single nodes, while keeping the process-to-core assign-

ment and total number of processes constant, the authors demonstrated the negative

performance impact of network congestion and contention. They proposed to mix

a workload by pairing computation heavy processes with communication heavy pro-

cesses. Their results showed that by reducing network contention, runtime could be

improved by 20%

Network congestion due to other applications or application services

Bhatele et al. [13] applied supervised learning algorithms to network components

in order to identify which has the greatest impact on performance. For their test

applications MILC and pF3D, they demonstrated that the average number of bytes
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passing through the network is an important indicator of congestion and recom-

mended a process mapping to reduce the average load per link. In a separate work,

the same group observed that network performance variability that was induced by

neighboring jobs can lead to significant performance variations for identical jobs [14].

They demonstrated that execution time of a communication heavy application can

vary from 28% faster to 41% slower than the average observed performance due to

interference from other jobs that were running nearby.

2.2.2 MPI Message Compression

The previously mentioned works primarily used di↵erent process mapping schemes to

reduce network congestion and contention. Other works have explored compressing

MPI messages to reduce network data volumes.

Compressing Application Messages

The potential benefits of message compression have been demonstrated in various

MPI-based studies [42, 43, 64, 38, 39]. PACX-MPI compressed all transmitted

messages uniformly (independent of type or content) and reduced the amount of

data transmission by a factor of 3X [42]. MiMPI leveraged di↵erent compression

algorithms and used message size thresholds to decide when to use compression [43].

They compared their results against IBM’s multithreaded MPI implementation and

demonstrated up to 20% improved message throughput.

cMPI applied a value-prediction based message scheme to MPI messages that

calculated the di↵erence between predicted and actual data values in messages and

encoded that the di↵erence using highly-compressible leading zero counts [64]. They

tested cMPI with NAS parallel benchmarks and were able to provide from 3% to

10% speedup.
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Lastly, CoMPI and its extension, adaptive CoMPI, selected the best message

compression algorithm at runtimes based on data types [38, 39]. CoMPI also decided

whether or not to compress a message using speedup or slowdown estimates. They

were able to speed up two HPC benchmarks by 1.2 and 1.4 times respectively with

CoMPI. One of the extensions of adaptive CoMPI also accounts for the MPI ranks

to check whether the message will be sent over the network or within processes on

the same node. It then used that information to decide whether to compress the

message or not.

2.2.3 My research contribution

This work is distinct from previous compression-based approaches because we con-

sider message payload similarity explicitly, both within a message and across mes-

sages. We apply a di↵-based approach to identify message similarities and provide

a novel two-phase di↵ application to reduce message volume by more than 90% in

some cases. To the best of our knowledge, no other work has considered a similar

approach.

2.3 Inter-application data movement

HPC applications also exchange large volumes of data with other applications that

perform important services such as, for example, fault tolerance services, data visu-

alization/analytic etc. Fault tolerance services can reduce the amount of lost work

due to software/hardware failures. So, one common approach is to store a memory

snapshot into a stable storage (checkpoint) [33], so that we can use that informa-

tion to restore computation in the event of a failure. For large-scale applications,

checkpoint data movement can lead to performance bottlenecks due to excessive data
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volumes and contention for network and storage devices.

Data visualization and data analytic provide insights on the simulation results and

sometimes intermediate results are verified to make sure that simulation is making

progress towards the correct results. Typically, we take these results and then move

them to another node for further data processing causing large volumes of data

movement across the network.

For this work, I used the checkpoint/restart-based fault tolerance protocol as a

proxy application for other inter-application data movements. Currently, the most

widely used mechanism for checkpointing is coordinated checkpointing. Hence, this

study is focused on coordinated checkpointing only.

2.3.1 Software-based checkpoint/restart data movement op-

timizations

Checkpoint/restart performance optimizations that target the checkpoint data move-

ment challenge can be divided into two classes. The first class of optimizations at-

tempts to hide or reduce (perceived) commit latencies without actually reducing the

amount of checkpoint data. These strategies include:

• diskless, remote and buddy checkpointing : Diskless checkpoint/restart proto-

cols [104] and remote checkpoint/restart protocols [24, 122, 142, 119] leverage

the higher bandwidths available to the network or other storage media like

RAM in order to mitigate the performance of slower storage media like mag-

netic disks. Additionally, remotely stored checkpoints allow systems to survive

non-transient node failures.

Plank et al. [104] proposed to keep additional processes that will store check-

point parity data, while the application process will allocate a portion of its
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memory to store the checkpoint. Parity data is calculated using bitwise XOR

operation, so that in the event of a failure, it can be used to restore the check-

point. Silva et al. [119] improved this approach by using application processes

instead of additional processes to store a neighbor’s checkpoint parity data.

A similar approach was studied using double checkpointing [29]. They stored

checkpoints in neighbor processes called ’buddy processes’ based on the fact

that in the event of a failure, the probability of the original process and the

buddy process to fail simultaneously, is extremely small. However, these ap-

proaches created significant memory overhead for storing the checkpoints in

memory.

• multi-level checkpointing : Multi-level checkpoint/restart protocols like SCR

[87, 133] write checkpoints to RAM, flash storage, or a local disk on the compute

nodes in addition to the parallel file system to improve checkpoint bandwidth.

In terms of the performance and reliability, it was a trade o↵ between getting

the fastest access storage and robustness. For example, while local disks provide

fastest access to transient storage, they were limited to failures that a↵ects only

a small part of the system.

• checkpointing file systems : Checkpoint-specific file systems like PLFS [11] lever-

age the patterns and characteristics specific to checkpoint data to optimize

checkpoint data transfers to or from parallel file systems.

The second set of strategies reduce commit latencies by reducing checkpoint sizes.

These latter strategies include:

• memory exclusion: Checkpoint/restart protocol optimizations based on mem-

ory exclusion leverage user-directives or other hints to exclude portions of pro-

cess address spaces from checkpoints [100].
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• incremental checkpointing : Checkpoint/restart protocols can use the operating

system’s memory page protection facilities to detect and save only those pages

that have been updated between consecutive checkpoints [18, 19, 34, 79, 102,

98, 3]. Page hashing techniques can also be used to avoid checkpointing pages

that have been written to but whose content has not changed [36].

• checkpoint compression: Various approaches for compressing checkpoints to

improve checkpoint/restart protocol performance have been suggested. Li and

Fuchs implemented a compiler-based checkpointing approach, which exploited

compile time information to compress checkpoints [78]. They concluded that

checkpoint compression is not a viable approach and demonstrated that a com-

pression factor of over 100% was necessary to achieve any significant benefit

due to high compression latencies.

Plank and Li proposed in-memory checkpoints and stored the checkpoints after

applying compression [101]. For their computational platform, compression

was beneficial if a compression factor greater than 19.3% could be achieved.

Because they used memory to compress and store checkpoints, the checkpoint

bandwidth was much higher compared to compiler-based checkpoints [78].

To reduce the incremental checkpoints even further, Plank et al. pro-

posed Di↵erential compression and applied compression on incremental

checkpoints [103].

Tanzima et al. have shown that similarities exist among checkpoint data from

multiple processes. They leveraged this by concatenating checkpoints from

di↵erent processes and then applying compression on them to reduce checkpoint

data volumes [59]. Their approach called the MCR Engine leveraged semantic

information from HDF5 data models.

Nicolae [93] demonstrated that within a checkpoint, duplicate pages exist. He

applied deduplication techniques to keep a single copy of duplicate pages in a
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checkpoint, thereby reducing checkpoint sizes.

2.3.2 Hardware-based checkpoint/restart optimizations

Improved hardware technologies have been suggested as ways to optimize CR pro-

tocol performance. Moshovos and Kostopoulos proposed the use of hardware-based

compressors for compressing checkpoints [89]. More recently, researchers have pro-

posed the use of solid state storage devices (SSDs) for e�cient local checkpointing [63]

or even in multi-level solutions [87]. At the cost of greater financial expense and other

potential issues like flash wear-out, SSDs provide higher storage bandwidth than tra-

ditional stable storage devices such as magnetic disks.

2.3.3 My research contribution

This work focuses on the use of software-based compressors for checkpoint compres-

sion. Given recent advances in processor technologies, this study demonstrates that,

since processing speeds have increased at a faster rate than disk and network band-

width, data compression enables us to trade faster CPU workloads for slower disk

and network bandwidth.

Using a model, this study demonstrates checkpoint compression’s viability and

provides a viability breakeven point metric, which can be used to decide when to use

checkpoint compression. This study also investigated the impact of di↵erent compres-

sion parameters on application runtime performance and provides a comparison of

this approach against other software/hardware-based checkpoint data optimizations.

Finally, this study demonstrates that, given the runtime performance improvement,

checkpoint compression can improve application energy performance as well.
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Intra-process data movement

3.1 Introduction

In this chapter, I propose the introduction of paging to the HPC architecture to

improve HPC application memory requirements. Specifically, I studied the impact

of paging to SSD-based node local storage and also introduced a compressed paging

scheme for HPC memory pages. For current HPC systems, where processing nodes

still do not have any non-volatile storage attached to them, a compression-based

page cache would work as the last level cache for pages.

For this study, I followed a trace driven simulation-based approach. I demonstrate

that by using a compression-based in-memory cache for pages, we can increase the

perceived memory capacity with minimal runtime overhead and can reduce data-

movement that may incur due to paging to node-local storage or moving data for

visualization or analytics. In the remainder of the chapter, I first describe the problem

in and a more detailed overview of our study in Section 3.2. Next, I describe our

testing methodology in Section 3.3. Then I describe how I modeled the di↵erent
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scenarios into the simulator and the associated parameters values. Following that,

I describe the results of our experiments in Section 3.4 and finish the chapter by

summarizing our contributions for this study.

3.2 Increasing memory capacity by using com-

pressed pages

Recent trends show that the memory capacity per core is decreasing. With the recent

advances in many core systems, there will be even less per core memory capacity for

future systems [94, 67]. Analysis of the top 500 computers demonstrate that compute

capacity growth is 2x faster than memory and memory bandwidth [127]. On most

systems, this ratio is currently below 0.1GB per giga FLOP and approaching 0.01;

with memory capacity per core expected to drop by 30% every two years [23].

The decrease in memory capacity per core, introduces some key challenges. First

of all, for data intensive applications, the decrease in memory capacity is a con-

straint. These type of applications process large external datasets and often require

large working sets that can exceed memory capacity [23]. In addition, more mem-

ory capacity enables users to solve problems with higher resolution and improved

accuracy. Secondly, simulation-time data analysis and data visualization requires

either a large memory footprint (in-situ analysis) or high speed network and I/O

(co-analysis). Co-analysis moves intermediate simulation results to a dedicated re-

source therefore increases data movement and associated costs. Since, the energy

cost of processing is getting cheaper than moving data across main-memory, the cost

of data movement is a big concern for co-analysis [67]. In-situ analysis doesn’t have

the data movement cost, but requires large memory capacity.

There are di↵erent approaches that can solve this problem. The most straight
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forward approach would be to add more hardware to increase the capacity. But that

would result in additional procurement costs. Higher capacity memory hardware has

also been explored such as, for example, 3D stacked or parallel stacked memory. But

that too is expensive. Jayaraj et al [60] have compared the relative cost per bit for

di↵erent types of memory technologies and showed that these high capacity memory

hardware can cost 2-5 times more than the the current DRAM systems. Adding

hardware also increases the energy budget which already is very high.

Hybrid software-hardware approaches such as, for example, DI-MMAP[134] pro-

vide a runtime that expands an application’s address space to locally attached flash

storage. Meswani et al.[85] mapped stacked DRAM and conventional DRAM to the

same physical address space and developed a hybrid memory management system.

But these approaches would still require additional hardware.

It is evident from these recent studies that a hybrid memory architecture is the

future solution to solve the capacity problem. So, we seek the answer to the question,

what happens if, instead of adding new hardware, we compress and store evicted

pages in memory. Basically, we want to answer the following questions-

• How does a compressed paging mechanism increase HPC per core

memory capacity? We propose a paging mechanism for HPC systems. A

common perception for HPC workload is that paging hurts application per-

formance. But due to the decrease in memory capacity, we want to increase

the perceived memory capacity by using a compressed page mechanism. Our

proposed compressed paging mechanism will keep evicted pages in main mem-

ory but within a compressed region. This strategy thus frees up more space

for regular pages and e↵ectively increases memory capacity without adding

additional hardware.

• If HPC systems have node local storage for paging how would that
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impact application performance? It is projected that future HPC systems

will have node local storage for in-situ analysis and can reduce data movement

costs[126]. We wish to study the impact of paging if we have on node local

NVM storage such as SSD. Our proposed approach is to study the impact of

application runtime if we page out to node local NVM storage.

• Can a compression-based paging mechanism improve the runtime

compared to a SSD-based paging mechanism? Finally, we propose to

compare the performance of our compressed paging mechanism to the resulting

case when we page to node local SSD storage.

The compressed-memory system presented here follows the design proposed by

Douglis et al. [30]. It divides the main memory into an uncompressed region that

stores uncompressed pages and a compressed region that holds pages in compressed

form. This study di↵erentiates itself from the previous work, due to the nature

of the workload being considered. In this work, we studied specifically the impact

of paging on the application runtime and the perceived memory capacity benefits

for HPC workloads. To the best of our knowledge, this has never been studied in

HPC context. On a common system, when the amount of physical memory is less

than what an application requires, the OS swaps out some pages to make space for

other pages that the application needs. On a compressed-memory system, when

an application’s working set exceeds the uncompressed region, the OS compresses

the pages that haven’t been accessed for the longest time and stores them in the

compressed region.
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3.3 Methodology

For this study, I used a trace-driven simulation-based approach. Simulation is a com-

mon methodology for conducting design space exploration. It enables researchers to

simulate current hardware as well as future hardware which is not yet available.

Simulation also often is easier to implement and quicker to deliver results. In HPC,

where the majority of computing resources are available only in research labs, it is

nearly impossible to make changes to current systems. Simulators provide a safe

environment to propose architectural/software/hardware changes as well as the abil-

ity to verify our hypothesis. As a result, simulation is a very popular approach for

conducting design space exploration.

There are many simulators that enable researchers to investigate the memory

system performance of applications [97, 106, 110, 123, 132]. Memory system simu-

lators fall into two main categories: trace-driven or execution-driven. Trace-driven

memory simulators use memory address traces as input to simulate application

performance but rely on existing tools to collect memory address traces. Execution

driven simulators are fed functional/performance models to simulate application

performance. Since the address traces are available for reuse, trace driven simulators

are popular to simulate di↵erent memory system architectures [132].

The methodology for this work is comprised of three principle components:

1. Memory trace collection: I instrument application runs and collect traces.

2. Trace processing for simulation input: I prepare and format the collected

traces according to the specifications of the simulator input.

3. Simulation-based evaluations of page compression on application

runtime: I configure the simulator for various scenarios and simulate the
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traces. After each run, the simulator outputs average read/write latency and

execution time for the applications under those simulated environments.

Figure 3.1 provides a high-level view of our approach. What follows here is a detailed

description of these components as well as the benchmarks and applications used in

this study.

Figure 3.1: Overview of our experimental methodology

3.3.1 Memory trace collection

To collect the traces, I used Intel Pin tool [82]. Pin is a dynamic binary instrumen-

tation platform that was developed and maintained by Intel for use on Intel x86 and
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x86 64 platforms. Pin uses just in time (JIT) compilation techniques to instrument

a running program. It means that the Pin tool generates and introduces instrumen-

tation code into the program immediately before the first execution of that code by

inserting extra code into the binary program. Pin is very e↵ective at minimizing in-

strumentation overhead. For every memory operation traces, I collected three types

of information-

• Type of the memory instructions: 1)instructions that have one or more source

operands in memory (MEM read), 2)instructions whose destination operand

is in memory (MEM write), and 3)instructions whose source and destination

operands are in memory (MEM read and write)

• Logical address of the memory instruction.

• Cost to execute the memory instruction in terms of CPU cycles. In other

words, how many cycles it would take a CPU to complete that particular

memory operation.

Our Test Applications

To demonstrate the potential impact of paging and our compressed page cache

scheme on HPC applications, we used two mini applications from the Mantevo

Project and an actual large-scale application. These benchmarks and applications

are described below.

• The mini applications

We used two mini-applications or mini apps from the Mantevo Project [53],

namely HPCCG version 1.0, miniFE version 2.0. These miniapps are implicit

finite element mini apps. HPCCG is a conjugate gradient benchmark code
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for a 3D chimney domain that can run on an arbitrary number of processors.

This code generates a 27-point finite di↵erence matrix with a user-prescribed

sub-block size on each processor. miniFE mimics the finite element generation

assembly and solution for an unstructured grid problem.

Mini apps are small, self-contained programs that embody essential perfor-

mance characteristics of key applications. They are intended to mimic real

application characteristics but are meant to be lightweight application proxies

for the heavy-weight applications. We have compared and observed mini

apps’ for their performance similarity as compared to the actual application it

represents in previous work as well [58].

• A full application: LAMMPS We use LAMMPS (the Large-scale

Atomic/Molecular Massively Parallel Simulator) to serve as our full featured

scientific application. LAMMPS [105, 111] is a classical molecular dynamics

code developed at Sandia National Laboratories. LAMMPS also is a key

simulation workload for the U.S. Department of Energy and is representative

of many other molecular dynamics code. For our experiments, we used the

embedded atom method (EAM) metallic solid input script, which is used by

the Sequoia benchmark suite.

These applications were selected because they demonstrated a diverse set of mem-

ory access patterns based on previous studies. Voskuilen et al. have studied memory

access densities of both HPCCG and miniFE and demonstrated their di↵erence in

memory access patterns [136]. They identified high density memory regions based on

an application’s memory accesses. From their study, it was determined that HPCCG

has 60% memory access in a small set of high density memory regions (18 regions).

On the other hand, miniFE has more uniform memory accesses and only 22% of
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Problem size Problem dimension
Working set size (Bytes)
HPCCG miniFE LAMMPS

8x 16 x 16 x 16 5414912 5308416 8552448
4x 8 x 16 x 16 4612096 4517888 6193152
2x 8 x 8 x 16 4272128 4423680 4811776
1x 8 x 8 x 8 4202496 4239360 4264960

Table 3.1: Problem sizes and their associated working set sizes for our test applica-
tions.

memory accesses took place in high density memory regions (5 regions). Jayaraj et

al. have demonstrated the di↵erence in memory access patterns between miniFE and

LAMMPS and demonstrated LAMMPS’ irregular memory access patterns [60]

For our experiments, HPCCG, miniFE and LAMMPS solved a problem with

dimension 8x8x8 (1x). We collected traces for each of these applications while

doubling the problem size until the problem size was 16x16x16 (8x). Our goal was

to make sure that for all the test-cases, the application working set sizes remained

between 4MB and 8MB. We believe this was a reasonable workload for our study

and similar trace-driven simulation-based studies have also kept their memory limits

similar to ours [51].

There were multiple reasons for keeping such small memory footprint. First of

all, by keeping even the smallest working set larger than 4MB, we made sure that

during our simulations, a 4MB main memory would force applications to page. In

Table 3.1, we list the working set sizes for our test cases.

Second and most importantly, a larger memory footprint would create a very

large trace and increased simulation time. At the beginning of the application trace

collection process in this study, our main challenge was collecting representative
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1x 2x 4x 8x
lines size lines size lines size lines size

HPCCG 9336562 234 9928388 246 11160447 273 13708812 328
miniFE 13288842 336 17662300 448 26446484 672 43896602 1116
LAMMPS 17426219 414 32237082 773 61467478 1502 117814302 2791

Table 3.2: Trace file sizes in MB and the number of traces for each of our test
applications as we increase the problem size

application traces that would finish simulation under a reasonable time frame. For

a larger targeted working set size, the trace files began to be as large as tens of

gigabytes with tens of billions of memory traces. Not only was this not feasible but

also the simulation on these large trace files spanned over multiple days. At this

scale, all the experiments required for this study could not be performed in full in a

reasonable time frame.

To address this issue, I modified the application code to collect traces of 10 itera-

tions throughout each application. Due to the extremely large size of the traces, this

approach was applied before for purposes of memory trace collection [136] and demon-

strated that for HPCCG, memory access patterns stayed nearly identical across it-

eration samples. Table 3.2 presents the the number of traces and the total size for

the collected traces. Even with the limited number of the iteration, the traces grew

more than billion lines and 2700MB in size. Since, our simulator is cycle accurate

and replays the memory operations from the trace files, each simulation run took 3-6

hours.

3.3.2 Trace processing

Next, I processed the traces collected by Intel pin tool and converted each memory

trace according to the input specification of the memory simulator. The simulator
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requires each memory trace to be represented by a line in the trace file. For each

line, it requires three values separated by spaces that makes up one memory trace:

1) clock cycle, 2) memory operation type and 3) memory address.

I should mention that, instructions whose source and destination operands are

both in memory, my trace collection framework was outputting the same instruction

twice in each line. Since the simulator did not support this behavior, I cleaned up

the trace files and split each of these instructions into two simultaneous instructions,

so that the first one served as a single instruction that was followed by the other.

However, the number of such instructions in our collected traces were extremely

small, and was under 0.001% of the total traces.

3.3.3 Simulation of traces

To simulate application memory performances, I used a trace driven memory sim-

ulator, DRAMSim2 [110]. DRAMSim2 is configured with two modules to complete our

simulation environment- HybridSim [123] and NVDIMMSim [1]. These two modules

enables DRAMSim2 to simulate a hybrid system with a conventional DRAM memory

and a non-volatile memory system. I chose these simulators because they are accu-

rate and easy to use; they provide flexibility o↵ering a large number of options and

my desired functionalities and most importantly due to the availability of the source

code.

DRAMSim2, configured with HybridSim and NVDIMMSim is becoming popular in

similar memory system design exploration research and is being used in recent

studies [137, 60, 51, 130] to simulate future hybrid memory systems.

DRAMSim2 is a cycle accurate model of a DRAM memory controller, the DRAM
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modules which comprise system storage, and the bus by which they communicate.

Di↵erent objects within the memory device such as, for example, the ranks, banks,

command queue and the memory controller can be modeled by the simulator.

DRAMSim2 timing behavior has been compared and validated against verilog-based

device models that have been published by hardware vendors [110].

HybridSim provides two ways to integrate nonvolatile memory. The first method

uses it as backing storage just like a system that has paging enabled and the second

method uses it directly within the memory controller and is considered as part of

the main memory. HybridSim uses DRAMSim2 to model DRAM and NVDIMMSim to

model non-volatile memory. For our experiments, I configured and used HybridSim

to simulate a system that uses a hybrid memory scheme. Then, I input our proposed

compressed cache performance numbers to describe it in HybridSim and used the

simulator to simulate application performance using the collected traces. I configured

the memory capacities and the latency of each memory operation to simulate the

behavior of the following three cases

1. The first case is when I have a memory system such that the working set fits

entirely into DRAM. So we do not need any paging.

2. Next is the case when I enable paging. I configure the simulator such that I

have an SSD as our backing storage for the DRAM and the OS pages to that

SSD. Note that in this scenario the size of the SSD doesn’t matter since we

can assume that we have enough storage to page out to the SSD.

3. The final case is when I allocate a portion of DRAM as our backing storage

for paging. In this scenario, I configured HybridSim such that the SSD is

connected directly to the memory controller. For this case, I next limit the

available DRAM capacity and change the SSD read/write latency measure-
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ments to simulate the compressed DRAM read/write time. So basically, each

read/write latency number would be equal to the latency number for DRAM

and the latency number to compress/decompress a 4K page.

Simulating a compressed page cache

In order to simulate a compressed page cache system, I add the cost of compres-

sion/decompression to the read/write time of the pages, and decreased the size of

the available memory as I increase the size of compressed page area. If I consider

the average access time of a main memory system without compression t
mem

, then

t
mem

= spage

bwmem
, where s

page

is the page size and bw
mem

is the main memory

bandwidth.

On the other case when I enable compressed pages, I can measure the average

access time with compressed pages t
mem compressed

as:

t
mem compressed

=
s
page

r
compress

+
s
compressed page

bw
mem

(3.1)

For our experiments, I configured the simulator to simulate a total memory ca-

pacity of 8MB. This is because the working set sizes of our three test applications,

solving problems described in Section 3.3.1, were between 7 and 8MB to keep the

traces reasonably sized. A larger memory footprint can generate traces exceptionally

large and simulation could take days to complete. For this reason, similar studies

have also kept memory footprints low[51].
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test app read latency write latency erase latency
SSD-based paging all apps 25µs 200µs 1500µs

compression-based
paging

LAMMPS 28µs 42µs 1ns
miniFE 92µs 132µs 1ns
HPCCG 100µs 117µs 1ns

Table 3.3: Latency numbers as simulator input when simulating a compressed cache

Next, I modified the DRAM capacity to simulate three di↵erent cases. For the

first case, when there is no paging, the DRAM has all 8MB of capacity. For the

other two cases when I enable paging, I change the DRAM capacity to 4MB, 2MB

and 1MB respectively. The rest of the memory is configured to simulate either

SSD or a compressed memory system. All transfers between the SSD/compressed

memory to the main memory is performed at page level granularity. The timing

parameters for SSD are based on MLC flash numbers [61, 123] and DRAM timing pa-

rameters are based on Micron DRAM data-sheet[121]. All the devices are 8 bits wide.

Generally, SSD devices have three di↵erent timing parameters: read time, write

time and erase time. On the other hand, DRAMs don’t have any erase latency. So

when we used SSD device parameters to simulate our compressed cache(which would

be stored on DRAM), I changed the erase latency in the simulator to 1ns to make

the erase time negligible1. In contrast an SSD device would have erase times between

1500-2000µs. Doing this enables us to simplify the simulation parameters without

negatively a↵ecting our simulation results. We present our simulation parameters for

our experiments in Table 3.3 respectively. The remainder of our simulator parameters

are identical throughout our experiments. The compression numbers we used to

calculate Table 3.3 are empirically measured in our previous work [58].

11ns was the minimum erase latency supported by the simulator.
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3.4 Results

The goal of introducing a compressed-paging-based memory system is to leverage

compression to improve the memory capacity with minimal runtime overhead. To

demonstrate that process, in this section I first compare the impact of SSD based-

paging and our proposed compression based- on di↵erent memory performance pa-

rameters, namely, average read/write latency. Next, I compare the runtimes when

using these two di↵erent paging schemes against the case when we don’t have paging

that is the case when entire working set fits into memory.

3.4.1 Impact on memory read/write latency

In this section, I compare the average read/write latency for our three test appli-

cations and also compare the cases when we used SSD-based paging scheme to our

proposed compression-based paging scheme. Then we compare these read/write la-

tencies against the read/write latency of the cases when we don’t have any paging,

i.e., when the entire working set fits into main memory. Figure 3.2(a)- Figure 3.4(b)

presents our read/write latency comparison for our three test applications.

In these graphs, the x-axis represents the problem size where 2x means the

problem size is twice as large as the problem size for 1x. Each bar represents the

case of a memory subsystem being used for that particular experiment. SSD-2048

presents the case, when we have SSD-based paging with main memory size was

limited to 2048MB. Similarly, compressed-2048 means our compression-based paging

and the main memory size was limited to 2048KB. By limiting the main memory

sizes, we can simulate di↵erent paging behavior: the smaller the main memory,

the more number of pages were swapped out and was stored to the swapped space

(SSD or compressed paging store). For all the test cases, the size of the swapped

space (the paging storage, where an evicted page is stored) didn’t really impact our
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results, due to two reasons - 1) SSD capacity are traditionally much larger than

DRAM, so we wouldn’t run out of space for paging and 2) for compressed-paging,

given the high compression ratio ( 90%) [56], the amount of cache needed is a very

small fraction of the actual memory-size.

(a) Normalized average read latency for HPCCG

(b) Normalized average write latency for HPCCG

Figure 3.2: Normalized average read/write latency for HPCCG. x-axis represents the
problem sizes and y-axis represents latency normalized against the no-paging case.
Smaller means better.

From, Figure 3.2(a) through Figure 3.4(b) we can see that for all three test

applications, the normalized performance penalty for writes are larger than that of
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(a) Normalized average read latency for miniFE

(b) Normalized average write latency for miniFE

Figure 3.3: Normalized average read/write latency for miniFE. x-axis represents the
problem sizes and y-axis represents latency normalized against the no-paging case.
Smaller means better.

reads for both the SSD-based and compression-based paging cases. This outcome

is expected, since the compression overhead is larger than the decompression

overhead [56].

Also as we keep the main memory size smaller, we see the average latency in-

creases as more pages are need to be swapped. Figure 3.2(a) and Figure 3.2(b) also
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(a) Normalized average read latency for LAMMPS

(b) Normalized average write latency for LAMMPS

Figure 3.4: Normalized average read/write latency for LAMMPS. x-axis represents
the problem sizes and y-axis represents latency normalized against the no-paging
case. Smaller means better.

demonstrates HPCCG has much more uniform latency changes (smaller main mem-

ory size results in increased latency) compared to the other two test applications.

This is due to the fact that, majority of HPCCG memory accesses are in a small

number of memory pages [136]. As a result, the number of pages that are swapped

out are fairly uniform for the di↵erent problem sizes. For LAMMPS and miniFE, we

can see that for larger problem size (4x and 8x) when we have smaller main memory

(1028KB), the average write latency penalty is much larger than the other cases.
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This is due to two facts: 1) the memory accesses for these two applications are more

distributed across di↵erent regions [136, 60] and 2) due to the main memory size

being very small(1028KB), we saw a large number of pages being swapped out which

increased the overall average latency due to the compression overhead.

3.4.2 Impact on execution time

Next, we compare the execution time of the three test applications. We present the

normalized time spent in a memory system following the same type of charts as the

previous section. Similar to the previous section, the x-axis represents the prob-

lem size for our di↵erent memory configurations and y-axis presents the normalized

execution time. Figure 3.5- Figure 3.7 shows the normalized execution times for

HPCCG, miniFE and LAMMPS respectively.

Figure 3.5: Normalized execution time for HPCCG. x-axis represents the problem
sizes and y-axis represents execution time normalized against the no-paging case.

From these figures, we make the following observations -

• The overhead for paging in HPC applications is negligible and is under 8% for

44



Chapter 3. Intra-process data movement

Figure 3.6: Normalized execution time for miniFE. x-axis represents the problem
sizes and y-axis represents execution time normalized against the no-paging case.

Figure 3.7: Normalized execution time for LAMMPS. x-axis represents the problem
sizes and y-axis represents execution time normalized against the no-paging case.

all three of our test applications.

• This overhead can be further reduced by using software-based compression and

by using portions of the memory to store pages in compressed form.

• The overhead for compression-based paging for our test applications are under
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4%.

3.4.3 Impact of compression parameters

Next, we wanted to understand the impact of di↵erent compression parameters on

our proposed compressed-paging scheme. We do this, by keeping both the mem-

ory size and memory trace constant and by changing the compression parameters in

Equation 3.1. We looked into two di↵erent compression parameters: first the com-

pression factor which is the total space saving due to compression and the other is

(de)compression speed which is how quickly we can (de)compress.

Compression factor

To understand the impact of the compression factor on the performance of our

compressed-paging scheme, we modified the compression factor parameter and ex-

perimented with 4 di↵erent hypothetical compression factors (90%, 80%, 70% and

60%). A higher compression factor means more data volume reduction. The size of

the evicted page (that is swapped to the compressed paging store) is a function of

the compression factor based on Equation 3.1 and in turns influences the memory

access times for the simulator. Therefore, with decreasing compression factors (larger

compressed page sizes), we would see slower memory access times.

For these experiments, the main memory size was set to 4MB. I compared these

execution times against the no-paging case and present our results in Figure 3.8.

In this figure, each bar represents the compression factors for our three test

applications. All the execution times are normalized against the execution time when

we do not have any paging enabled. We can see from Figure 3.8 that changing the

compression factor has very limited impact(less than 0.3%) on normalized execution
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Figure 3.8: Impact of varying compression factor on execution time. y-axis represents
normalized execution time compared to the no-paging case. Smaller is better.

time. However, since having a larger compression factor means we can store more

pages in memory, the space benefit is larger and the perceived memory capacity is

greater with higher compression factors.

Compression speed

To understand the impact of varying compression speeds on execution time, we var-

ied the (de)compression speeds for our compressed paging scheme and simulated the

execution times using two di↵erent hypothetical compression algorithms. One is 10x

faster than our observed compression algorithm and the other one is 10x slower than

our observed compression algorithm. Next, we normalized the two execution times

against the no-paging-case execution time and present the results in Figure 3.9. In

this figure, we observe that, the compression speed can impact execution more than

the compression factor. Our observed compression factor performed very similar to a

hypothetical compression algorithm with 10 times faster speed. On the other hand,

a slowdown in compression speed negatively impacted the execution time even more.
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Hence, we can say that for these three test applications, a slower compression algo-

rithm would impact the execution time more than a faster compression algorithm.

Figure 3.9: Impact of varying compression speed on execution time. y-axis represents
execution time normalized against the no-paging case. Smaller is better.

3.4.4 Space benefits of compressed-paging

Finally, we compared the perceived memory capacity improvement that was due to

our compressed-paging scheme. In 3.4, 3.5 and 3.6, we present the perceived

memory capacity improvements for our three test applications. In these tables,

memory savings x% imply that, due to compressed-paging, we could use x% of

the original (non-paging) memory size for other workloads, and that the original

workload can be solved using (1� x)% of the original (non-paging) memory size.

From these three tables, we can see that the larger we allocate memory, the

smaller the perceived memory capacity becomes. This is due to the nature of the

working set size of our test runs. When allocated memory-sizes are small, we store

more pages into a compressed-cache which results in greater memory capacity im-

provements.
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Problem scale Allocated DRAM size Memory savings (%)
8x 4096 20.29
4x 4096 8.15
2x 4096 1.64
1x 4096 0.18
8x 2048 55.14
4x 2048 49.08
2x 2048 45.82
1x 2048 45.09
8x 1024 72.57
4x 1024 69.54
2x 1024 67.91
1x 1024 67.54

Table 3.4: Memory savings due to compressed-paging for HPCCG

To summarize, we can see that for our test applications and test-workloads, we

can save up to 78% of the main memory for additional workloads.

Problem scale Allocated DRAM size Memory savings (%)
8x 4096 18.89
4x 4096 6.45
2x 4096 4.67
1x 4096 0.96
8x 2048 54.44
4x 2048 48.22
2x 2048 47.33
1x 2048 45.48
8x 1024 72.22
4x 1024 69.11
2x 1024 68.67
1x 1024 67.74

Table 3.5: Memory savings due to compressed-paging for miniFE
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Problem scale Allocated DRAM size Memory savings (%)
8x 4096 45.86
4x 4096 29.05
2x 4096 11.55
1x 4096 1.49
8x 2048 67.93
4x 2048 59.52
2x 2048 50.77
1x 2048 45.75
8x 1024 78.97
4x 1024 74.76
2x 1024 70.39
1x 1024 67.87

Table 3.6: Memory savings due to compressed-paging for LAMMPS

3.5 Summary

In this chapter, we have presented our proposed compression-based paging scheme

for HPC systems. Using a simulation-based approach, we have compared the

runtime performance of our compression-based paging scheme against the current

architecture, which does not support paging and against a scenario where we would

page to SSD-based node local storage. Our proposed compression-based paging

scenario showed minimum runtime overhead (under 4%) for all our test applications

and can provide up to 78% of additional memory capacity without having any

hardware modifications.

We also compared the impact of two compression parameters on execution time

and demonstrated that the currently available compression algorithm can perform

fairly well. We demonstrated that a faster compression algorithm would perform

similarly even with an order of 10 improvement in compression speed, and that

a slowdown in compression speed would penalize the execution time more. On
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the other hand, the di↵erences in execution time for varying compression factor

is very small although the higher the compression factor the greater the capacity

improvements we would see.

One of the reasons for observing little overhead in execution time with the intro-

duction of paging, is found in the memory access patterns of our test applications.

Future work should investigate these memory access patterns and how to optimize

paging based on how frequently a page is paged out. Based on this information,

the application could have variable sizes of compression-based caches, thus further

improving the perceived memory capacity.
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4.1 Introduction

Advances in network technology have not been able to keep pace with the rate of

advances in computational capabilities. Therefore, network bandwidth has become a

precious commodity and both intra- and inter-application network contention and the

potential resulting congestion have become important problems to understand and

mitigate [13, 14, 55, 68, 120]. In this chapter, I studied the similarities among inter-

process communication data volumes in order to apply compression-based techniques

to reduce data movement and improve the perceived network bandwidth. I studied

the most commonly used inter-process communication framework, MPI (Message

Passing Interface) [138] as a proxy for all other inter-process communication frame-

works.

I studied both intra (within a message) and inter-message (among di↵erent mes-

sages) similarity in the context of MPI-based applications. The goal of the study

was to identify message data volume reduction techniques that could reduce net-

work congestion and thereby e↵ectively increase the available bandwidth of existing
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network hardware. This study, makes the following contributions:

• I present two approaches that I applied to reduce message volumes at the cost

of additional processing: compression and computing message di↵erences or

di↵s.

• In the latter case, I present a novel two-level di↵-based approach that reduced

message volumes by more than 90% in some cases.

• Finally, I present the application runtime overhead due to the added latency

introduced by this approach and discuss how this overhead can be reduced.

.

The rest of this chapter is organized as follows. First, I summarize the problem

from previous works which demonstrate network congestion and its negative impacts

on performance. Next, I describe my proposed compression-based approach and

evaluation methodology by outlining the experimental framework and tool chain

used in this work. Then, I present the results and analyses of my approach and

conclude with a discussion of the outcomes and future directions for research.

4.2 Network congestion due to inter-process com-

munication

Network congestion is a primary cause of performance degradation for communi-

cation heavy HPC applications [38, 39, 43, 42, 55, 64]. In this context, network

congestion can arise from inter-process interference when an application’s own tra�c

is contending for limited network resources, or inter-application interference when

di↵erent applications and services contend for network resources.
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In many core systems, it has been shown that contention for network interfaces

and congestion due to the reduced per-core network bandwidth can degrade appli-

cation performance significantly [68, 120]. Researchers have attributed the average

number of bytes passing through the network to be a major contributor of network

congestion [13]. The network congestion is caused by large volumes of data that

are produced primarily by the frequent communications among the HPC processes.

These processes exchange information using point-to-point and/or group (collective)

operations through MPI.

In this work, we studied the message payloads that HPC application processes

exchange through MPI and sought to identify the similarities that exist among these

messages. Our hypothesis was that if there were similarities among messages, we

could leverage them to apply compression and thereby reduce network congestion

by reducing the network data volume. The potential benefits of MPI-based inter-

process message compression had been demonstrated in various MPI-based studies

[38, 39, 42, 43, 64]. But, our work distinguished itself from previous compression-

based approaches because we explicitly considered message payload similarity, both

within a message and across messages. To the best of our knowledge, no other work

has considered a similar approach.

4.3 Methodology

The methodology for this work comprise three principle components: (1) message

data collection, (2) intra- and inter-message data similarity analyses, and (3)

simulation-based evaluations of message compression and di↵-based performance

impacts. In the following, we illustrate and describe in detail these components as

well as the benchmarks and applications used in this study.
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Figure 4.1: Message collection framework through MPI profiling interface.

4.3.1 Message Data Collection

Through its profiling interface, the MPI standard [138] provides a convenient way

to intercept, and prepend and postpend operations to every MPI call. The profiling

interface also provides access to message data types. Basically, every MPI function

is can be invoked through two distinct names, one prefixed with MPI and the other

prefixed with PMPI. As demonstrated in Figure 4.1, we can intercept MPI mes-

sage transmission operations by writing our own MPI ⇤ routines that call libraries

PMPI ⇤ routines, prepending and postpending our own activity before and after

the PMPI ⇤ routines. For each MPI message transmission operation, we

1. intercept the message using the PMPI profiling layer,

2. identify the process ranks of each message’s sender and receiver,
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3. log each message’s payload, tagged with its source and destination ranks, and

finally,

4. send the original message to its destination.

Since, at the message sender process, we capture both sender and receiver ranks

with the message payload, sender-based message interception is su�cient. Later, in

our o✏ine analysis, we use this information to apply sender- and/or receiver-based

message filtering.

4.3.2 Intra-message Similarities

An initial question we wished to explore was what level of data similarities can exist

within a message, i.e. intra-message similarities. Compression utilities are useful

tools to help us answer this question. Compression factor, the extent to which a

compression algorithm reduces a data volume, as defined by equation 4.1 below, is

directly related to intra-message similarity: the larger the compression factor, the

greater the intra-message similarity.

compression factor = 1� compressed message size

original message size
(4.1)

Compression factor is the percentage reduction due to data compression. So, for

example, a 60% compression factor means that the given compression utility can

reduce data volume by 60%. Thus the compressed data is 40% of the original data.

4.3.3 Inter-message Similarities

A subsequent question we wished to explore was at what level of data similarities

among di↵erent messages, aka inter-message similarities, exist. We used three di↵er-

56



Chapter 4. Inter-process data movement

ent methods to answer this question: (1) similarity preserving hashes, (2) a one-level

message di↵erence mechanism, and (3) a two-level message di↵erence mechanism.

Similarity preserving hashes:

For similarity preserving hashes, we used the Trend Locality Sensitive Hash

(TLSH) [96] tool, which compares a series of subsequent messages with a particular

base message. TLSH di↵ers from traditional hashes such that a small change in the

data to be hashed results in a small change to the hash value. Given two data sets,

TLSH works as follows:

1. compute the hash values of the two data sets,

2. compute the distance between the two hashes;

3. map the distance between the two hashes into a quantitative score, where a

score of zero means the data sets are completely identical; a low score, for

example 50, means they are very similar, and two totally di↵erent data sets

would render a very high score, for example 1000 or greater.

While TLSH provides a quantitative insight about the di↵erence between two

messages, we cannot map this score to the size di↵erence of two messages in bytes.

As a result, similarity preserving hashes can lend us insight into message similarities,

but we cannot use this approach as a general mechanism to understand potential

data volume reductions.

One-level Di↵s

Di↵erence-based or di↵-based tools work by taking two pieces of data and using a

diff() function to generate a patch based on the incremental di↵erence between the
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two data items. Using the base data item and the generated di↵, a patch() function

can regenerate the other data item:

diff(m1, m2) ! d1

patch(m1, d1) ! m2

Using di↵-based approaches, after the base message is transmitted, instead of trans-

mitting full subsequent messages, we can hopefully transmit smaller di↵s or patches.

We call this first approach a one-level di↵ because we are computing di↵s or patches

between subsequent messages. (Later we will see that for two-level di↵s, we com-

pute patches of patches.) This way, we can use the di↵erence between a subsequent

message and its patch as our di↵erence metric. In this case, we define our di↵-based

compression factor as a percent data reduction between the patch and the di↵ed

message:

compression factor = 1� patch size

message size
(4.2)

An example workflow of using one-level patches follows. Imagine a pair of com-

municating processes, A and B, where A is the sender and B is the receiver. The

message sequence from A to B is m1,m2,m3,m4,m5, .... Using a di↵-based approach,

as depicted in Figure 4.2:

1. A sends m1; B receives m1.

2. A calculates �
m2,m1 , the di↵ between m1 and m2 and transmits the di↵.

3. B receives �
m2,m1 and regenerates m2 by patching m1 with �

m2,m1 ;

58



Chapter 4. Inter-process data movement

Figure 4.2: An example of one-level di↵s

4. A calculates �
m3,m2 and sends it to B.

5. B receives �
m3,m2 and regenerates m3 by patching m2 with �

m3,m2 ;

6. ... (and so forth)

The above example shows that, by using one-level di↵s, at any point in time for

each sender-receiver pair, both sender and receiver need to keep only a copy of the

last transmitted or received message, respectively.
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Two-level Di↵s

Next, we present a new application of di↵, which we call two-level di↵. This

approach exploits the fact that there often are similarities among the one-level di↵s

themselves, which recursively leverage di↵s of di↵s. In our initial set of experiments,

we identified a regular pattern in terms of one-level di↵ sizes. We found that a large

number of one-level di↵s are very similar in size. Beginning with this insight, we

wanted to understand whether there are similarities within these patches, that we

can exploit. So, we chose to study two-level di↵s.

We now demonstrate two-level di�ng using the example from the previous sub-

section. In this case, depicted in Figure 4.3, we keep our base fixed as m1 and

calculate �
m2,m1 and �

m3,m1. Our first two-level di↵ becomes ��m2,m1,�m3,m1 , the

di↵erence between the two one-level di↵s. The size of two-level di↵s depends on the

di↵erences between each of the subsequent messages and the base.

The workflow using two-level di↵s follows:

1. A sends m1; B receives m1.

2. A computes and sends �
m2,m1 to B; B patches m1 with �

m2,m1 to regenerate

m2.

3. A computes �
m3,m1 then ��m2,m1 ,�m3,m1

and sends the latter to B. B patches

�
m2,m1 with ��m2,m1 ,�m3,m1

to regenerate �
m3,m1 and then patches m1 with

�
m3,m1 to regenerate m3.

4. ...

From the above example, we can see that instead of sending m3, A can send

the hopefully smaller ��m2,m1 ,�m3,m1
, thus e↵ectively compressing from |m3| to
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Figure 4.3: An example of two-level di↵s

|��m2,m1 ,�m3,m1
|. Thus, the two-level di↵ compression factor would be

compression factor = 1� two-level di↵ size

original message size
(4.3)

Note that for two-level di↵s, we can keep a base constant for a certain window

of messages. For our experiments, we use a window size of 5 messages. That means,

that for every 6th message, we update the base. For our test applications, we found

that number to be the threshold at which the two-level di↵ sizes start to increase.

Two-level di↵s memory overhead is similar to that of one-level di↵s. However, in

addition to saving one message per sending and receiving process, we need to store

an additional one-level di↵ for each sender and receiver.
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4.3.4 Simulating Application Runtimes

We use a simulation-based approach to evaluate the impact of compression on

application runtime. We chose simulation, because of its simplicity and availability.

Simulation also enables us to run large scale experiments without having to worry

about hardware resources.

We used LogGOPSim [54], a fast, accurate, freely-available discrete event

simulator that supports large scale simulations based on real application traces.

This framework is based on an extension of the LogP model of parallel compu-

tation [5]. The simulator includes a trace collector(liballprof) to collect MPI

communication traces that serve as input to the simulator. The traces capture and

are used to extrapolate (to larger scales) applications’ computation and communi-

cation characteristics. The extrapolation is done via a schedule generator, SchedGen.

Trace collection

For our experiment, we first link the provided MPI trace collection library, liballprof,

to our test applications. Similar to our message similarity experiments, we collect

traces for HPCCG and miniFE solving a problem with dimension 100x100x100 and

LAMMPS solving a problem with input size 5x5x5. We have used these problem

sizes in our previous studies [56, 57, 58] and demonstrated that they are a good

representation of actual problem sizes.

Our test applications ran on 4 MPI process, each one running on its own pro-

cessing core. LogGOPSim have demonstrated its ability to extrapolate to large scale

traces accurately with under 7% error rate [54]. Hence, we believe our choice of

problem size can be accurately extrapolated to our simulated system size.
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Schedule generation and simulation

After the trace collection, we used SchedGen to create GOAL (group operation as-

sembly language) schedules from each trace, extrapolated from four to 4096 pro-

cesses. These extrapolated GOAL schedules eventually serve as our simulator in-

puts. Additionally, LogGOPSim accepts a number of input parameters that describe

the characteristics of the target simulated environment. We present in Table 4.1 the

LogGOPSim input parameters that we used for our experiments. The parameter val-

ues are from a previous LogGOPSim study [54] which represents a cluster system with

2GHz Opteron Quad core processor nodes connected by Infiniband interfaces. We

then modify the values of parameter P to the number of processors to be simulated

and modify the overhead per byte O to simulate the behavior of a system where mes-

sages are compressed before transmitting and decompressed before receiving. This

is because overhead is the time when CPU is busy performing (de)/compression.

L Maximum latency between any two processors 5300 ns
o CPU overhead per message 2300 ns
g Time between two message injections in the net-

work
2000 ns

G Cost per byte per message 3 ns
S Message synchronization threshold 32768 B
O Overhead per byte compression

overhead
P Number of processors 16

Table 4.1: LogGOPSim simulator input parameters and their values

4.3.5 Our Test Applications

To demonstrate the potential impact of network congestion on performance, we used

the Sandia Micro-Benchmark Suite. To characterize application message similarities,

we used three mini applications from the Mantevo Project and two actual large scale
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applications. We chose these applications because they are open source, available

and widely-used in scientific and systems research. The mini apps embody essential

performance characteristics of key applications. On the other hand, the two full ap-

plications, LAMMPS and MILC, demonstrate two di↵erent communication patterns.

These benchmarks and applications are described below.

Sandia micro-benchmark

Sandia Micro-Benchmark Suite (SMB) [10] is a collection of micro-benchmarks devel-

oped for testing and evaluating high-performance network interfaces and protocols.

From this suite, we used the message rate benchmark, which provides a sustained

message throughput in application scenarios. We measured message rates while in-

creasing the message sizes, running our experiments on 16 nodes of Volta, a 24

core/node Cray system with an Aries interconnect from Sandia testbed [70]. We

used two di↵erent configurations of 24 and 48 processes per node.

The mini applications

We used three mini-applications or mini apps from the Mantevo Project [53]. HPC

benchmarks generally target the evaluation of computer system performance. On

the other hand, the mini apps are intended to mimic real application characteristics.

We compared and observed the mini apps’ performance similarity against the actual

application it represents in previous work as well [58].

The mini apps we used for this study are HPCCG version 1.0, miniFE version

2.0 and miniMD version 1.2. The first two miniapps are implicit finite element mini

apps. HPCCG is a conjugate gradient benchmark code for a 3D chimney domain

that can run on an arbitrary number of processors. This code generates a 27-point
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finite di↵erence matrix with a user-prescribed sub-block size on each processor.

miniFE mimics the finite element generation assembly and standard solution for

an unstructured grid problem. miniMD is the mini application that represents the

molecular dynamics application LAMMPS [105, 111]) and contains the performance

impacting code from LAMMPS.

Two full application: LAMMPS and MILC

We used LAMMPS (the Large-scale Atomic/Molecular Massively Parallel Simulator)

to as one of our full featured scientific applications. LAMMPS [105, 111] is a classical

molecular dynamics code that was developed at Sandia National Laboratories.

LAMMPS is a key simulation workload for the U.S. Department of Energy and is

representative of many other molecular dynamics codes. For our experiments, we

used the embedded atom method (EAM) metallic solid input script, which is used

by the Sequoia benchmark suite.

The MIMD Lattice Computation (MILC) collaboration [21] solves lattice QCD

problems and is available as part of the NERSC and NSF benchmarks. The MILC

su3 rmd application is used to create sample four dimensional SU lattice gauge config-

urations for physics simulation. In our experiment, we used the problem ks imp dyn

from the MILC problem suites. The ks imp dyn simulates a full QCD in a staggered

fermion scheme.

Each application was run using 4 MPI processes and each process was run on an

individual hardware core. In Table 4.2, we present the input parameters and the

total number of messages collected from the test applications for this study. These

are all of the messages that the processes exchanged throughout the application
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Application Problem size Problem Number of messages

HPCCG 100x100x100
Conjugate
gradient

981

miniFE 100x100x100 Finite element 2448
miniMD 100x100x100 EAM 3440
LAMMPS 5x5x5 EAM 6600
MILC 8x8x8x8 ks imp dyn 70094

Table 4.2: Our test applications, the problems they were solving, and the total
number of message collected

runs. We believe that the number of these messages is su�ciently representative

to support the findings in our study. The numbers we present are averaged over

all of these messages. From the number of messages, it’s evident that MILC is

extremely communication-heavy as compared to our other test applications. Most

of the communications that MILC used were also asynchronous; hence, there was an

ample number of overlaps in communications and computations in MILC.

Compression utilities

For our chosen compression algorithm, we targeted the best (in terms of compres-

sion factor), lossless compression algorithm. We required losslessness to ensure that

the destination processes can reconstruct precisely the message originally sent by

source processes. We wanted the highest compression factor to identify the upper

bound of the message similarities. This, in turn, represents the best opportunities

for bandwidth savings.

For the above reasons, we used the compression algorithm that performed best in

one of our previous studies [56], parallel bzip2 library pbzip2. pbzip2 is a parallel

implementation of bzip2. bzip2 is an implementation of the Burrows-Wheeler trans-

form [46], which utilizes a technique called block-sorting to permute the sequence

of bytes to an order that is easier to compress. The algorithm converts frequently-
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recurring character sequences into strings of identical letters and then applies a move

to front transform and Hu↵man coding. pbzip2 is lossless and also multi-threaded

and, therefore, can leverage multiple processing cores to improve compression la-

tency. The input file to be compressed is partitioned into multiple files that can be

compressed concurrently.

For di�ng, we used bsdi↵ [99] to compute the di↵erences between subsequent

messages. bsdi↵ is a binary patching tool and is widely used. bsdi↵ also leverages

bzip2 compression to compute patches. So, the patches computed by bsdi↵ are

already compressed. bsdi↵ computes the di↵erence between two files by finding a

set of identical regions and then extending the regions forward and backwards to

allow mismatches. When the patches are reapplied, it can reproduce the original

file, thus providing lossless compression. We chose bsdi↵ because of its ability to

generate lossless, platform independent patches from binary data, and for being able

to provide the best compression ratio [91, 77]. On average, the patches produced by

bsdi↵ are a factor of five smaller than those produced by any other binary patch tool.

For our runtime overhead comparison, we also looked into the runtime overhead

for two faster di↵ algorithms. The first one is xor+lz4. Levy et. al [75] developed this

di↵ algorithm, which first applies bitwise exclusive or (xor) followed by compressing

the xor with the lightweight, lossless data compression algorithm lz4 [22]. The other

di↵ tool is xdelta, a binary di↵ algorithm based on VCDi↵ [69]. Both are fast di↵

algorithms but produces much larger patches compared to bsdi↵.

4.4 Results

In this section, we seek to answer several important questions:
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• How does network congestion impact performance?

• Are duplicate messages exchanged between sender/receiver process pairs?

• How much data similarity exists with a message?

• What is the di↵erence (or delta) between two subsequent messages?

• Do subsequent messages from a particular sender/receiver pair di↵er over time?

• What is the application overhead of these compression techniques?

The remainder of this section answers these questions.

4.4.1 Network congestion negatively impacts performance

In order to address how network congestion impacts performance, we use the mes-

sage rate benchmark from the Sandia Micro-Benchmark Suite (SMB) [10] With this

benchmark, we measured the message rates as we increased the message sizes. We

ran our tests on a CRAY XC-30 cluster, Volta, from Sandia National Lab. Each

node had 24 Ivy Bridge cores and was connected by Aeries interconnects. We ran

the SMB message rate benchmark on 16 nodes and two di↵erent configurations: 24

processes per node (ppn) and 48 ppn. We varied the message sizes starting from

4KB up to 64KB, each time doubling the message size and measuring the message

rates for two di↵erent communication patterns:

• single-peer, unidirectional: A process communicates with exactly one other

process and it either sends or receives one message with that peer at a time.

• multi-peer, bidirectional: A process communicates with multiple process

peers and it can both send and receive messages from its peer.
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Figure 4.4: Message rate drops as we saturate the network leading to congestion.
x-axis represents message size and y-axis represents message rates (higher means
better). Each bar represents results from a single run with either 24 or 48 processes
per node from di↵erent communication patterns.

Figure 4.4 shows our experimental results. From the figure, we can see that, as

we increase the message size, we are saturating the network with more data and as a

result the message rate is decreasing. We should note that the benchmark includes

both intra-node and inter-node message exchanges. As a result, we see slight increase

in message rates at higher message sizes when we use 48 processes per node compared

to 24 processes per node.

4.4.2 Identifying duplicate messages

In studying message similarity, the first question we addressed is duplicate messages.

If we can identify a large percentage of duplicate messages, we can store them at the

receiver and can avoid sending the entire message.
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In order to answer this question, we analyzed the message contents for all of our

applications. First, we grouped all messages within an application by the sender

ranks and then by the receiver ranks. Next, we compared all messages against all

other messages for a particular process pair.

HPCCG miniFE LAMMPS miniMD MILC
sender 0.175% 0.001% 0.022% 0.0259% 0.003%
receiver 0.174% 0.002% 0.022% 0.0259% 0.003%

Table 4.3: Only a very small percentage of messages are identical within a process
pair.

We present the results of our duplicate message study in Table 4.3. We see that

for all five test applications, the number of duplicate messages sent from a particular

sender or received at a particular receiver is very small, less than 0.2%. This result

suggests that is not a viable message compression technique for these workloads.

4.4.3 Intra-message similarity

In the previous subsection, we demonstrated that most of the messages sent/received

within an application are unique. Next, we wanted to investigate the similarity within

a message to see if that might be exploited. In order to study the similarity within a

message, we applied the parallel bzip utility on all the messages individually and then

used the compressibility of the messages as a quantitative indicator of the similarity

within the message.

After compressing the messages, we calculated the compression factor using Equa-

tion 4.1. Next, we created a histogram based on the observed compression factors

and counted the percent of messages with that compression factor.

We present our compression results in figure 4.5. In this figure, the higher the

compression factors the better. As we can see from the figure, more than half of the
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Figure 4.5: Compressibility of messages for our test applications using parallel bzip.
Higher compression factors are better.

messages (almost 70%) for miniFE and LAMMPS, the compression factor is under

40%. For HPCCG, more than 70% of the messages have less than a 60% compression

factor. miniMDmessages demonstrated the best compression performance and MILC

messages demonstrated the worst. Almost all messages of MILC showed very low

levels of compression factor, while more than 60% of miniMD messages have 60% or

more compression factor. This demonstrated that for all of our applications, except

for MILC, some intra-message similarity existed: at least 25% of the messages can

be reduced by 20% or more. But this technique had limited usefulness in reducing

message volumes since only 30% or fewer messages have more than a 60% compression

factor, except for miniMD.
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Figure 4.6: Compression factor for one-level di↵s of the messages from our test
applications. Higher is better.

4.4.4 Inter-message similarity

Thus far, we have focused on identifying similarities within a message or finding

duplicate messages over the course of an application run. In this section, we studied

whether there are similarities among subsequent messages to exploit the possibility

of reducing message volumes.

First, we investigated the e↵ectiveness of a one-level di↵ for our five test applica-

tions. We calculated the compression factor for these messages using equation 4.2 as

described in section 4.3.3. Similar to the previous subsection, we created a histogram

of the one-level di↵ compression factors, and present our results in figure 4.6. The

y-axis represents the percentage of messages that fall within the compression factor

range. Higher compression factors are better as they mean a smaller size for the sent

messages.

From the figure, we can see that the one-level di↵s perform similarly to our
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Figure 4.7: A comparison of the sizes of the original messages, the one-level di↵s and
the two-level di↵s for HPCCG. Smaller is better.

compression numbers from the previous section both in terms of compression factor

and the percentage of messages that achieve that compression factor. For HPCCG,

miniFE and miniMD, the compression factor numbers are very similar. However, for

LAMMPS we see that the one-level di↵s perform slightly better than parallel bzip as

more than 30% messages now have compression factors of 60% or greater. We also

begin to see some improved compression factors for MILC, although the majority of

MILC messages still have not demonstrated any improvement in compression factor.

Next, we present the results for our two-level di↵ experiments described in

section 4.3.3. In Figures 4.7- 4.11, we depict a comparison of the original sizes of

the messages, their one-level di↵ sizes and their two-level di↵ sizes, as a histogram
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Figure 4.8: A comparison of the sizes of the original messages, the one-level di↵s and
the two-level di↵s for HPCCG. Smaller is better.

for our test applications. Note that the bin sizes for the histograms presented in

these figures are all di↵erent. This is due to the fact that the distribution of message

sizes and their di↵ sizes (both one- and two-level) for our test applications were

di↵erent from one another.

In these figures, the y-axis represents the percent of messages that fall within

the message size bins. As we can see from the figure, while the one-level di↵s can

reduce the network data volume to some extent, we can substantially reduce the

network data volume by applying the two-level di↵s. The two-level di↵ can reduce

the network tra�c by more than 90% since more than 90% of the two-level di↵s are

74



Chapter 4. Inter-process data movement

Figure 4.9: A comparison of the sizes of the original messages, the one-level di↵s and
the two-level di↵s for miniMD. Smaller is better.

under 4K bytes in size. This shows that two-level di↵ can be extremely useful to

reduce network congestion in communication-heavy MPI applications.

Now we ask, what does it mean to have such a small size of our two-level di↵?

While the one-level di↵s consist of the di↵erence between two messages, the two-level

di↵s are the di↵erence between two one-level di↵s. So, if we think of our messages

as an array of bytes, the one-level di↵s represent the bytes where the array values

are changed and the two-level di↵ represents the changes within those byte changes.

Therefore, having such small values for two-level di↵s implies that the changes in

messages are regular and extremely similar. As a result, when we compare these

changes, we get these small two-level di↵ sizes.
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Figure 4.10: A comparison of the sizes of the original messages, the one-level di↵s
and the two-level di↵s for LAMMPS. Smaller is better.

4.4.5 Impact on application runtime

The results from the previous subsections show that there are similarities among

messages that we can exploit to reduce the network data volume by trading o↵

computation for this reduced volume. This compression, although useful, introduces

additional latency to message transmission. In the remainder of this section, we

attempt to understand how this latency impacts the runtime of our test applications.

To address this performance question, we use the LogGOPSim validated simulator

framework [124]. LogGOPSim allows us to simulate application behavior while taking

into account the overhead of compression. From our experiments, we have measured
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Figure 4.11: A comparison of the sizes of the original messages, the one-level di↵s
and the two-level di↵s for MILC. Smaller is better.

the compression rates for our compression and di↵ tool. We took the reciprocal of the

compression rate and used that as the compression overhead per byte (O) parameter

of LogGOPS model.

Before studying the overhead in application runtime performance, we should also

mention that, at the time of the study, the current implementation of LogGOPSim

does not account for network congestion. The simulator assumes that when a message

is being sent, it has a dedicated link between the communicating nodes for that

message. As a result, we could not leverage the improved bandwidth due to the

smaller size of the compressed message or the patch. But since the simulator is the

only available simulator that works with application traces, we believe that it can
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give us an upper bound of the performance penalty that our test applications can

experience due to the added compression latency.

We ran our traces in two scenarios: no overhead and compression overhead. We

then compared these two simulated runtimes and present the runtime overhead for

4096 processes in Table 4.4.

di↵ algo-
rithms

Overhead
per byte

HPCCG miniFE miniMD LAMMPS MILC

xor+lz4 4ns 0.27% 0.09% 0.06% 0.58% 0.07%
xdelta 37ns 6.77% 2.72% 1.59% 14.16% 1.55%
bsdi↵ 250ns 50.63% 21.63% 16.59% 101.83% 9.33%
bzip2 387ns 84.10% 34% 26.92% 156.74% 17.2%

Table 4.4: Normalized runtime for our test applications against the case when we
do not have the overhead due to our di↵-based approach. Smaller means better.
Note: these numbers do not include the benefits of reduced congestion because of
the limitation of our simulator.

In Table 4.4 we see that for our two compression tools, due to the large overhead

per bytes (O), there are large slowdowns in application runtime for all five of our

applications. These slowdowns are upper bounds in overhead, since they do not take

into account the positive e↵ect of reduced congestion.

Since the overheads are quite large, we wanted to see how a faster compression

tool might mitigate this overhead. So, we used two faster di↵ algorithms from the

literature [75] (xor+lz4 and xdelta) and simulated our collected traces against these

two di↵ algorithms.

As we can see from Table 4.4 the faster di↵ algorithms, due to their smaller

overhead per byte (O) value, can reduce the runtime overhead to under 14%.

However, these two di↵ algorithms reduce the patch creation time overhead by

trading o↵ the size of the patches [75]. As a result, we would not observe the same
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level of compression factor that we observed with bsdi↵ in Figure 4.7- Figure 4.10

and the bandwidth advantage would be limited.

Does the runtime overhead change with scale?

Figure 4.12: As we increased the process count, the runtime overhead remained
nearly the same.

Finally, we would like to verify the scalability of our compression based approach

over application runtime. In other words, we wanted to answer the question whether

the upper bound of overhead described in subsection 4.4.5 changes as we increase

process count. In order to do that, we performed a scaling experiment for all of
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our test applications and measured their runtime overheads due to compression. We

first ran simulations for 256 processes and then doubled the process count until we

reached 4096 processes. Next, we normalized the runtimes reported by the simulator

against the case when we do not have compression overhead.

We present our results in Figure 4.12. The y-axis represents the runtime overhead

for compression for the four di↵erent compression approaches mentioned in our study.

The lower the overhead the better. And in the x-axis we increased the process count.

From this figure, we can see that the runtime overhead does not have any e↵ect with

changes in application scale.

The scalability results demonstrate that, if we could simulate congestion, we

would see a reduction in overhead as we scaled up. The reason is that as we increase

the number of processes, we increase network data volume and thus increase conges-

tion. But, since our runtime overhead remains roughly the same, we would see less

runtime overhead for our applications.

4.4.6 Memory overhead due to the di↵-based approach

In Section 4.3.3, we explained how the di↵-based approach works and the require-

ment of storing few messages and di↵s locally to be able to apply the patch and

reconstruct subsequent messages. In this section, I will analyze how that may im-

pact the memory.

For a system using one-level di↵s, we claimed that, at any point in time for

each sender-receiver pair, both sender and receiver need to save only a copy of the

last transmitted or received message, respectively. So, for a process that is sending

messages to n processes and receiving messages from m processes, it needs to save

at most O(n + m) messages at any time. To illustrate this, we can use the same

example that we used in Section 4.3.3 to describe the one-level di↵ process. For
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a particular receiver, process A stores m1 until the di↵, �
m2,m1 , is transmitted. In

which case, A can discard m1 and store m2 since m2 would be required to calculate

the next message �
m3,m2 . Similarly, after transmitting �

m3,m2 , message m2 can be

replaced by m3. As a result, for each receiver of A, as a sender, process A needs to

save only 1 message per receiver. Similarly, as a receiver, A needs to save only the

last reconstructed message (calculated from the di↵ by applying the last transmitted

patch). Therefore, a process needs to store O(n+m) messages at any time.

For a system, that uses the two-level di↵-based approach, memory overhead

is similar to that of one-level di↵s. However, in addition to saving one message

per sending and receiving process, we need to store an additional one-level di↵

for each sender and receiver. The sender would use the one-level di↵ to create

the two-level di↵ and the receiver would use the one-level di↵ and the transmitted

two-level di↵ to apply the patch and reconstruct the original message. There-

fore, for two-level di↵s, a process communicating with n senders and m receivers

would need to save O(n+m) messages as well as O(n+m) one-level di↵s at any time.

Given the bounds in number of messages that are required to be stored in each

process, the memory overhead can grow really high if a process is communicating

with a large number of other processes. To keep the design scalable, processes can

keep a threshold, such that the maximum number of messages stored in memory

cannot exceed that threshold. RDMA-based MPI implementations use a similar

approach in order to limit the memory overhead caused by the number of mailboxes

in memory.

Another solution to this problem would be to maintain an automatic timeout

such that, if a process has not communicated with another process for a certain

amount of time, it can discard the locally stored messages. However, studies have

81



Chapter 4. Inter-process data movement

observed that, in many MPI applications, a process only communicates with a subset

of all other process [80, 135]. Liu et al. tested 5 HPC applications and benchmarks

and observed that, for a world of 1024 processes, each process communicated with

on average between 1 to 11 other processes [80]. The maximum average of 11

was demonstrated by CG, which is a NAS parallel benchmark [8] that mimics the

behavior of a communication-heavy application.

The memory overhead is also a function of the size of the messages. However,

studies have demonstrated that messages sizes become smaller as we increase the

number of nodes and stays within 10s to 100s KB [65, 108]. Given these message

sizes and the average number of communication peers, we believe that the memory

overhead would be minimal.

4.4.7 Impact of bandwidth improvement

Finally, we wanted to explore the impact of perceived bandwidth improvement and

how that impacted the message rates. We used the SMB message rate benchmark to

run these tests and varied the message sizes based on di↵erent compression factors.

We ran our tests on 8 nodes and 48 process per nodes using the Sandia Volta

machine. We first calculated the message rates for a message size of 256KB. Next,

we compared that against the cases where the message size is reduced by di↵erent

compression factors. We achieved this by changing the message sizes to simulate the

bandwidth improvement. However, we did not modify any latency numbers in this

experiment. Hence the test only considers message rate improvement due to the

reduced message sizes. We ran these tests for two di↵erent communication patterns:

single-peer and multi-peer.
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Compression factors
99.00% 95.00% 90.00% 80.00% 70.00%

single-peer 1.75 1.37 1.41 1.25 1.19
multi-peer 1.70 1.34 1.35 1.20 1.13

Table 4.5: Message rate improvements due to the improved network bandwidth for
di↵erent compression factors. These numbers are normalized against the case when
there is no compression. Higher means better.

Table 4.5 lists the message rate improvements for di↵erent compression scenarios.

We can see that, the message rate improvements began to diminish with decreases

in the compression factor. Given the large amount of message volume reduction, we

demonstrated that, due to our two-level di↵-based approach, the perceived network

bandwidth improvement can improve message rates by up to 75% in the best case

(HPCCG).

4.5 Discussion and future work

In this work, we demonstrated that both intra- and inter-message similarities can

exist among HPC application messages and that these similarities can be exploited

to reduce network data volumes. For our application set, we characterized and

quantified these similarities and presented a new, two-level, di↵-based algorithm to

further exploit the similarities. Our new approach can reduce network data volume

by more than 90%. We also simulated a compression based MPI framework and

used it to explore an upper bound of the performance penalty due to the added

compression latency. We demonstrated that the bandwidth savings can come at a

significant runtime penalty. In order to reduce compression overhead, we explored

faster di↵-based algorithms and demonstrated that, for faster di↵ based algorithms,

the performance penalty falls under 14%. But the faster di↵ algorithms also trade

o↵ compression savings.
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For future work, we would like to explore di↵ algorithms that o↵er both high com-

pressibility and fast performance. Below, we summarize some future opportunities

in this area:

• Demonstrating the benefit of reduced congestion. We would like to

investigate the performance impact on application runtime due to reduced

congestion. A straight forward approach would be to implement our two-level

di↵-based approach as an extended MPI runtime and compare application

runtime in scenarios where application performances are constrained by

network bandwidth.

• Faster di↵ algorithms. One possibility for improving algorithm speed is via

the use of hardware acceleration, for example GPU-based algorithms. GPUs

have many fast, parallel processing units, which can reduce the overhead and

thus the performance penalty. However, parallelizing the di↵ algorithm may

not be straight forward, and we could not find any general implementations of

parallel di↵ algorithms.

One possibility would be to partition messages into blocks of uniform lengths

and calculate the di↵s on each block. But, as we reduce block sizes to take

advantage of many parallel cores, we may limit the scope of identifying

similarities across larger window sizes, thus potentially reducing the compres-

sion factor. Another approach might be to leverage the capacity of many

core processors, by having dedicated cores for de/compression. That way,

compression would be o✏oaded from main application processors potentially

reducing the performance impact of the de/compression overhead.

• Leveraging application specific knowledge. Inspired by the results

in this study, application developers can consider computing message di↵s
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at the application level and sending incremental di↵erences only. While

this would create an additional complexity for application developers, they

may be able to leverage domain specific knowledge. Such a concept has

been successfully exploited within the context of faster, domain specific di↵

algorithms [90, 129, 2].
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Inter-application data movement

reduction

In this chapter, I study inter-application data movement reduction using a

checkpoint/restart-based(CR) fault tolerance protocol as a case study. I demon-

strate that, by reducing the inter-application data volume, we can reduce the

overheads that improve the e�ciency of the overall application runtime.

For this study, a model-based approach is used employing empirically measured

performance data as model parameters. I propose this model to explore the viability

of compression for the checkpoint operation. I further explore compression-based CR

optimization in three respects: (1) by exploring its baseline performance and scaling

properties, (2) by evaluating whether improved compression algorithms might lead to

even better application performance, and (3) by comparing checkpoint compression

against and alongside other software- and hardware-based optimizations. Finally, I

study the energy impact of compression-based CR optimization.
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5.1 Data movement in checkpoint/restart-based

fault tolerance

Fault-tolerance (also termed reliability or resilience) is a major concern for current,

large-scale high-performance computing (HPC) systems. This concern grows for fu-

ture, extreme-scale systems for which increased node counts, more complex nodes

and changes in chip manufacturing processes are projected to lead to low compo-

nent mean times between failures (MTBFs) [113]. In these environments, decreased

MTBFs and a confluence of other issues, including increased I/O pressures and

increased overheads of traditional fault-tolerance approaches, have motivated new

research endeavors to understand and improve the viability of fault-tolerance mech-

anisms like checkpoint/restart (CR) protocols. In particular, several studies have

raised concerns about the continued viability of checkpoint/restart-based fault tol-

erance [113, 35].

CR protocols [33] periodically save process state to stable storage devices. For

large-scale applications comprised of many thousands or even millions of processes,

checkpoint data movement can lead to performance bottlenecks due to excessive data

volumes and contention for network and storage devices. As we described in Sec-

tion 2.3, researchers have proposed several CR protocol performance optimizations

to alleviate this data movement challenge, including checkpoint data compression. In

this chapter, we focus on the checkpoint compression optimization and reveal several

insights regarding its impacts on the performance of large-scale applications.

This work aims to answer several broad questions:

• What is the general viability of checkpoint compression CR optimizations?

• Would better or faster compression algorithms render better overall application

performance?
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• How do checkpoint compression optimizations compare against other hardware

and software-based optimizations?

• How do checkpoint compression optimizations perform in conjunction with

other CR optimizations?

• What is the energy impact of checkpoint compression optimization?

We explored these questions guided by current system characteristics and with an

eye toward emerging and new potential technologies. Using a performance model [56]

based on Daly’s higher order checkpointing model [25], we analyzed the impact

of compression speeds and compression performance. We compared these results

against a number of state-of-the-art software and hardware CR optimizations. In

addition, we used information theory along with knowledge from an application-

level checkpointing library to evaluate the e�cacy of standard compression utilities.

Based on these studies, this work o↵ers the following contributions:

1. A viability model for checkpoint data compression that accounts for the cost

and benefits of compression for checkpoint commit and recovery operations.

2. A validated coarse-grained energy model that accounts for the total energy

spent by an application using checkpoint-compression.

3. A demonstration that checkpoint data compression can significantly improve

an application’s runtime across a wide range of scenarios.

4. A demonstration that existing, text-based compression algorithms may o↵er

su�cient speed and checkpoint data compressibility such that enhanced com-

pression algorithms likely will render little application performance improve-

ment.
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5. A demonstration that checkpoint data compression can yield application per-

formance improvements when used in conjunction with other software CR pro-

tocol optimizations.

6. A demonstration that checkpoint data compression used in conjunction with

other software CR protocol optimizations can be a viable, cost-e↵ective alter-

native to hardware-based CR solutions.

7. A demonstration that checkpoint data compression can lead to up to 90%

energy savings.

The rest of this chapter is organized as follows: First, in Section 5.2 we describe

our evaluation methodology and tool chain. In Section 5.3, we present our results of

the performance and scaling features of compression-based checkpoint optimizations,

followed in Section 5.4 by a study of the potential benefits of enhanced compression

algorithms. Our last set of results, presented in Section 5.5, comprise a comparative

study of checkpoint data compression and other CR optimizations, . Finally, we

conclude with a summary of our findings and a discussion of the implications of

these results for future HPC systems.

5.2 Methodology: Data Collection and Perfor-

mance Models

In this study, we compared checkpoint compression to other CR protocol optimiza-

tions. Figure 5.1 depicts our approach for executing this study and the set of tools

that we used. Our general method was to (1) collect empirical data for the functional

(amount of compression) and performance (compression/decompression speeds) be-

havior of di↵erent compression algorithms on real checkpoint data; and (2) feed this
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Figure 5.1: Our Method: Empirically collected checkpoint compression data is in-
put to an extension of Daly’s Model. The results are used to compute application
e�ciency.

data along with di↵erent application workloads and system configurations into vali-

dated performance models to observe the resulting application performance. In this

section, we o↵er the comprehensive details of our approach.

5.2.1 Collecting Checkpoint Compression Performance Data

To collect checkpoint compression performance data, we instrumented a set of exas-

cale proxy applications and two large-scale production applications with CR capa-

bilities. We executed these applications with CR enabled to collect the application

checkpoints. Then, we used various compression utilities o✏ine to measure the extent

to which the checkpoint files can be compressed as well as the speed of checkpoint

compression and decompression.

The Proxy Applications

Proxy applications (or mini-applications or mini apps) are small, self-contained pro-

grams that embody essential performance characteristics of key applications. We
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chose four mini apps from the Mantevo Project [53], namely HPCCG version 0.5,

miniFE version 1.0, pHPCCG version 0.4, miniMD 1.2 and phdMesh version 0.1.

The first three are implicit finite element mini apps and phdMesh is an explicit fi-

nite element mini app. HPCCG is a conjugate gradient benchmark code for a 3D

chimney domain that can run on an arbitrary number of processors. This code gen-

erates a 27-point finite di↵erence matrix with a user-prescribed sub-block size on

each processor. miniFE mimics the finite element generation assembly and solution

for an unstructured grid problem. pHPCCG is related to HPCCG, but has features

for arbitrary scalar and integer data types, as well as di↵erent sparse matrix data

structures. MiniMD is the mini application that represents the molecular dynam-

ics application LAMMPS [105, 111]) and contains the performance impacting code

from LAMMPS. PhdMesh is a full-featured, parallel, heterogeneous, dynamic, un-

structured mesh library for evaluating the performance of operations like dynamic

load balancing, geometric proximity search or parallel synchronization for element-

by-element operations.

The Production Applications

We evaluated checkpoint compression performance on two full-featured scientific ap-

plications - LAMMPS (the Large-scale Atomic/Molecular Massively Parallel Simu-

lator [105, 111]) and CTH [31].

• LAMMPS is a classical molecular dynamics codes developed at Sandia Na-

tional Laboratories (SNL). LAMMPS is a key simulation workload for the

U.S. Department of Energy (US DOE) and is representative of many other

molecular dynamics codes. In addition, LAMMPS has built-in checkpointing

support that allows us to compare generic, system-based mechanisms with an

application specific mechanism. For our experiments, we used the embedded
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atom method (EAM) metallic solid input script, which is used by the Sequoia

benchmark suite.

• CTH is a production shock physics application from SNL that scales from

tens to hundreds of thousands of processes. The input description used is the

”fragmenting pipe” problem, a multi-material enclosed tube with a rapid shock

expansion on one end. This is an unclassified input that is similar to classified

CTH workloads run at SNL.

The Compression Utilities

For this study, we used popular compression algorithms that were investigated in

Morse’s comparison of compression tools [88]. In previous work, we showed the re-

sults from a wide variety of algorithms [56]. Here we present the results from the

algorithms that yielded better compression factors, namely parallel bzip and zip. Ad-

ditionally, some algorithms can be parameterized to trade o↵ between execution time

and compression factors; for example, getting better compression factors but with

slower compression decompression rates or getting worse compression factor but with

faster compression decompression rates. But in some cases, we observed that small

improvements in one parameter would not necessarily improve the viability band-

width (the I/O commit bandwidth threshold for compression to remain viable) due

to the poor performance of the other parameter. Although we calculated the viability

bandwidths associated with di↵erent parameters, we only present here the parameter

sets that yielded the best trade-o↵s, in terms of compression/decompression speeds

versus compression factor.

• zip: zip is an implementation of Deflate [27], a lossless data compression

algorithm that uses the LZ77 [143] compression algorithm and Hu↵man coding.

It is highly optimized in terms of both speed and compression e�ciency.
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zip takes an integer parameter that ranges from zero to nine, where zero

means fastest compression speed and nine means best compression factor. For

our experiments, zip(1) represents the best trade-o↵.

• pbzip2[46]: pbzip2 is a parallel implementation of bzip2. pbzip2 is multi-

threaded and, therefore, can leverage multiple processing cores to improve com-

pression latency. The input file to be compressed is partitioned into multiple

files that can be compressed concurrently.

pbzip2 takes two parameters. The first parameter is the block size, an

integer that ranges from zero to nine, where a smaller value specifies a smaller

block size. The second parameter defines the file block size into which the

original input file is partitioned. For our experiments, pbzip2(1,5) represents

the best trade-o↵.

Checkpoint/Restart Utilities

The Berkeley Lab Checkpoint/Restart library (BLCR) [52] is an open-source, system-

level CR library available on several HPC systems. For all of our experiments,

excluding the ones that required application-specific checkpoints, we obtained check-

points using BLCR. Furthermore, we used the Open MPI [41] framework, which has

integrated BLCR support.

For our studies of application-specific and user-level checkpointing, we used the

CR library built into LAMMPS. LAMMPS can use application-specific mechanisms

to save the minimal state needed to restart its computation. Specifically, it saves

each atom location and speed. The largest data structure in the application, the

neighbor structure that is used to calculate forces, is not saved in the checkpoint

but is recalculated upon restart. This scheme reduces per-process checkpoint files to

about one eighth of the application’s memory footprint.
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Power Instrumentation and Measurements

We used the PowerInsight energy measurement devices designed and developed

jointly by Sandia National Laboratories and Penguin Computing [72]. This instru-

ment enables component-based power and energy measurements by using individual

hall-e↵ect sensors on each of the power rails leading to the CPU, memory and other

devices. PowerInsight is completely separate from the system under test; it is electri-

cally separated and uses a separate computing device for performance data collection

and aggregation, thereby allowing for high sampling rates with no perturbation of

the system under test. In this work, we used a sampling frequency of 10 Hz per

power rail, which is adequate for observing the phases within the experiment that

occur at a frequency of two orders of magnitude greater.

The test system is an AMD A10-5800K APU 100W CPU containing four general

purpose (x86) cores. The power per core is a factor or two less energy e�cient than

other intel and AMD architectures. Experimentation with a less energy-e�cient

processor provides an upper bound for the average Joules per operation. Other

architectures should yield even better results as the core count increases without a

similar increase in total socket power consumption.

With this setup, we sampled instantaneous power during application execution,

checkpoint commit, restarts, compression and decompression. We observed mea-

surements from a single node, running on all four cores, since prior work had shown

that generally energy consumption stays uniform across an application’s nodes [32].

In a di↵erent work [86], Mills et al. observed that the energy and power perfor-

mance of the network and other devices do not vary significantly from run to run.

Furthermore, the processor and memory constitutes the majority of the energy con-

sumption. Therefore, we only accounted for the power performance of the processor

and memory subsystem to calculate the total energy consumption of each operation.
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5.2.2 Performance Models

Checkpoint Compression Viability Model

Checkpoint data compression is a viable approach when its benefits outweigh its

costs. Our checkpoint compression viability model is inspired by the one presented

in Plank et al.[101]. Plank et al. focused solely on the impact of compression for

the checkpoint commit phase. Our model accounts for the cost and benefits of

compression for both the checkpoint and recovery phases.

We assume coordinated CR (cCR) in which all processes of a distributed applica-

tion explicitly or implicitly coordinate at the beginning of each checkpoint interval,

so as to commit a globally consistent application state composed of one checkpoint

per process1. cCR currently dominates CR protocols used in HPC practice.

We also assumed an equal number of checkpoint and recovery operations. Our

justification for this assumption follows: Ideally, an application will only take a

checkpoint, immediately before an imminent failure so that both the overhead of

checkpoint/restart and the amount of lost work is minimal. Therefore, the optimal

checkpointing protocol will average a single checkpoint before each failure and only

needs to recover once per failure. In fact, Daly demonstrates that when, �, the time

to take a checkpoint is small compared to, M , the mean time between failures, M

is a very good approximation for ⌧
opt

, the optimal checkpoint interval [25]. Hence,

in the optimal case, the number of checkpoints equals the number of failures, which

also equals the number of recoveries. Several works define optimal checkpoint inter-

vals [25, 17]. Finally, we assumed that checkpoint commit is synchronous; that is,

that the primary application process is paused during the commit operation and is

1We can coarsely approximate the performance of uncoordinated CR by adjusting our
model parameters to reflect di↵erent commit and recovery costs due to independent local
checkpoints and local recovery protocols.
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not resumed until the checkpoint commit is complete.

Checkpoint compression is viable when the time to compress and commit a check-

point and the time to read and decompress that checkpoint is less than the time to

commit and read the uncompressed checkpoint. Assuming the read and write trans-

fer rates are equal:

t
comp

+ 2t
cc

+ t
decomp

< 2t
uc

where t
comp

is compression latency, t
decomp

is decompression latency, t
cc

is the time

to read or write the compressed checkpoint and t
uc

is the time to read or write the

uncompressed checkpoint. This expression can be rewritten as:

c

r
comp

+

✓
2⇥ (1� ↵)⇥ c

r
commit

◆
+

c

r
decomp

< 2⇥ c

r
commit

where c is the size of the original checkpoint, compression factor ↵ is the per-

centage reduction due to data compression, r
comp

is compression speed or the rate of

data compression, r
decomp

is decompression speed, and r
commit

is commit speed or the

rate of checkpoint commit or reading (including all associated overheads). The last

equation can be reduced to:

2↵⇥ r
comp

⇥ r
decomp

r
comp

+ r
decomp

> r
commit

(5.1)

Equation 5.1 defines the minimal ratio between checkpoint commit rate, com-

pression rate, decompression rate and compression factor in order for the overall

time savings of checkpoint compression to outweigh its costs. Of course, checkpoint

compression has the additional benefit of saving storage space, but we do not factor

that into our model.
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Application E�ciency Performance Model

Application e�ciency is the ratio of an application’s time to solution when the appli-

cation is using some fault-tolerance mechanism to recover from failures as they occur

to the application’s time to solution assuming perfect conditions, that is, no failures

and, therefore, no need to employ any fault-tolerance mechanisms. In the context

of CR protocols, the higher an application’s e�ciency, the greater the time spent

executing the application’s intended computation and the less the time spent taking

checkpoints, recovering from failures or re-doing computations lost due to failures.

Modeling Checkpoint Compression Daly’s higher order model [25], which as-

sumes node failures are independent and exponentially distributed, takes as input the

system MTBF, the checkpoint commit time, the checkpoint restart time, the number

of nodes used in the application and the time for the application’s execution time

in a failure-free environment. We used this model with integrated checkpoint com-

pression and decompression. Checkpoint commit times include the time to compress

the checkpoint data and the time to write this compressed data to stable storage.

Similarly, restart times include the time to read the compressed checkpoint data from

stable storage and perform the decompression step.

Modeling Incremental Checkpointing We also added support for incremen-

tal checkpointing into Daly’s performance model. The model takes two additional

parameters. The first new parameter specifies the size ratio of an incremental check-

point to a full checkpoint. We assume that approximately the same fraction of the

address space changes between each checkpoint. This assumption is based on the

results of a previous incremental checkpointing study [37].

The second new parameter, the number of incremental checkpoints taken before

taking the next full checkpoint, reflects the periodic need to take full checkpoints.
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Increased recovery latencies and increased storage costs are two factors that motivate

periodic full checkpoints. If an application fails and is recovered from the ith incre-

mental checkpoint after a full checkpoint, additional overhead is required to either

coalesce the full checkpoint and the i increments, or to recover the full checkpoint

and iteratively recover the state in each increment. Incremental checkpointing nec-

essarily increases storage costs since it requires maintaining a full checkpoint as well

as subsequent increments. If each increment is on average 1/s the size of the full

checkpoint, after s increments, storage costs would have doubled. We use Naksine-

haboon et al.’s derivation of the optimal number of increments n between two full

checkpoints as: n =
l
4c/5r

commit

� 1
m
, where c is the size of a full checkpoint and

r
commit

is the rate a file can be committed to stable storage [92].

For simplicity, we assume that taking incremental checkpoints and reconstructing

a checkpoint from the increments do not incur additional costs. There are a number

of techniques, such as concurrent coalescing, that make this assumption reasonable.

Additionally, we assume that checkpoint increments have similar compression ra-

tios as that of the full checkpoints. This assumption has been validated using the

incremental checkpointing library described in [37].

Other Assumptions Apart from the empirically observed data we used to param-

eterize our performance models, we assumed that each process uses 2 GB of memory

(based on observed workloads at Sandia National Laboratories) and checkpoints 1
3

of that memory [37], a five year node MTBF [114] and a per process I/O rate of 1

MB/s. This latter value was optimistically chosen, based on a performance study on

Argonne National Laboratory’s 557 TFlop Blue Gene/P system (Intrepid) [71].
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Modeling System Performance considering Costs

In our comparison of checkpoint data compression optimizations to hardware-based

SSD solutions, we considered the relative financial costs of di↵erent system configura-

tions. This study was meant to be instructive, not necessarily definitive, thereby al-

lowing us to make simplifying assumptions and to use a relatively simple cost model.

Using system cost factoring in the replacement of worn SSDs and the amount of

work completed in a fixed time span, based on the system’s hardware and software

configuration, we created a performance-price model.

System Cost Model Unlike traditional storage technologies, SSDs su↵er a wear

or endurance problem: SSDs have an endurance number that specifies the number of

write/erase cycles can occur before the device wears out. To compute the final pro-

curement cost of an SSD-based system, we computed the number of weeks between

SSD replacement based on their lifespan write capability and the average weekly

checkpoint data commitment:

lifespan
ssd

(weeks) =
ssd lifespan write capability

weekly checkpoint volume
(5.2)

where

ssd lifespan write capability = SSD capacity ⇥ SSD endurance number

and

weekly checkpoint volume = number of weekly checkpoints⇥ checkpoint size.

We can now compute tcost
node

, the total per node procurement cost, as:

tcost
node

= cost
node

+

✓
cost

ssd

⇥
⇠
lifespan

system

(weeks)

lifespan
ssd

(weeks)

⇡◆
(5.3)

where cost
node

is the cost of a node without SSD devices, cost
ssd

is the per node

cost of new SSDs, and lifespan
system

(weeks) is the overall lifespan of the system
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in weeks. We assume that only checkpoint data is written to the SSD devices and

that they wear uniformly and according to their specifications. Several studies have

shown that these devices can wear out as much as ten to 30 times faster than the

specified rating of the device [125]. As a result, our model is optimistic since SSD

devices may need to be replaced more often.

Also, we only considered procurement costs and ignored ongoing costs to run and

maintain the system. E↵ectively, we are assuming that any di↵erences in expenses

for running and maintaining systems with di↵erent configurations are negligible.

A Performance-price Model For a given system lifespan and di↵erent system

configurations, our performance-price model calculates the work per dollar ratio using

the amount of application work completed given the application’s e�ciency based

on the e↵ectiveness of its fault-tolerance mechanisms and the system’s cost:

Performance price =
work ⇥ efficiency

t
cost

(node)⇥ number of nodes
(5.4)

We assume 100% system utilization throughout its lifetime. Application e�ciency

under various fault-tolerance configurations (including optimizations) will determine

how much useful work is achieved within the five-year period.

A Coarse-grained Checkpoint Compression Energy Model

To study the energy impact of our compression-based CR optimization, we used a

coarse-grained energy measurement approach. We decompose a CR-based applica-

tion into three phases: running the application, taking a checkpoint, and restarting

from a checkpoint. (We do not distinguish executing application code during normal

operation from re-executing application code after rollback due to a failure.) There-

fore, the energy, E, consumed during an application’s execution can be modeled
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simply as:

E = E
app

+ E
ckpt

+ E
rst

, (5.5)

where E
app

is the energy expended on running the application’s code, E
ckpt

is the

energy expended from taking checkpoints, and E
rst

is the energy expended during

restarts. We consider each phase as a blackbox unit and don’t address finer details.

For example, when taking a checkpoint, we consider the energy consumption due

to a checkpoint as a single cost. In contrast, a finer grained approach may further

decompose the checkpoint phase into finer sub-tasks, like inter-process coordina-

tion, calculating the portion of the address space to checkpoint and committing the

checkpoint to stable storage. We hypothesize that this coarse-grained approach is

su�ciently accurate for modeling an application’s energy consumptions and that we

do not need such finer grained details.

Our coarse-grained approach assumes for each phase that we can use a simple

computation based on average power and time to estimate the energy consumed by

that phase:

E
app

= T
app

⇥ P̄
app

, (5.6)

where T
app

is the time spent executing the application, including normal execution

and rework, and P̄
app

is the average power during application execution.

E
ckpt

= T
ckpt

⇥ P̄
ckpt

, (5.7)

where T
ckpt

is the time spent checkpointing, and P̄
ckpt

is the average power during

the checkpoint phase.

E
rst

= T
rst

⇥ P̄
rst

, (5.8)

where T
rst

is the time spent restarting from a failure, and P̄
rst

is the average power

during a restart. Furthermore, T
ckpt

is the number of checkpoints times the per

checkpoint latency, and T
rst

is the number of failures times the per restart latency.
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We empirically measured the values of P̄
app

, P̄
ckpt

and P̄
rst

. Using Daly’s equa-

tion [25], we determined the number of checkpoints taken, the number of occurring

failures and the amount of rework time. Daly’s equation assumes that node failures

are independent and exponentially distributed, and calculates time as optimal check-

point intervals. In general, HPC users are more concerned about application run-

time and finishing applications faster rather than about their energy costs. Hence,

we didn’t use the energy optimal checkpoint interval as proposed by Meneses et

al [84]. To add the checkpoint compression optimization to the model, we empir-

ically measured the average power for checkpoint compression and decompression

and multiply those values by the total time spent compressing and decompressing

checkpoints, respectively, and to add those additional energy costs to the others.

Using this approach, we can model any application workload, failure rate, check-

point commit rate, compression performance, etc. and thereby estimate the total

energy costs for that application run. Similarly, we can profile application energy

consumption with other CR optimizations – only changes in the costs of check-

point and restarts must be accounted for. We validated our model, as shown in

Section 5.6.1.

5.3 Checkpoint Compression Performance

5.3.1 Checkpoint Compression Viability

To test the viability of compression, we only focused on problem sizes that al-

lowed each application to run long enough to generate 5 checkpoints. The three

implicit finite element mini apps, HPCCG, pHPCCG and miniFE were each given a

100x100x100 problem size. Alternatively, phdMesh and LAMMPS were each given

a 5x5x5 problem size. Each application was run using 2–4 MPI processes, except for
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Parameter Description

E Total application energy
consumed

E
app

Energy consumption for
running the application
code.

E
ckpt

Energy expenditure due to
checkpoint operation.

E
rst

Energy expenditure due to
restarts.

T
app

Time spent execute applica-
tion code.

T
ckpt

Time spent taking check-
points.

T
rst

Time spent restarting from
failures.

P̄
app

Average power for execut-
ing application code.

P̄
ckpt

Average power during
checkpoint operation.

P̄
rst

Average power for restart.

Table 5.1: A summary of our coarse-grained energy model parameters.

phdMesh, which was run without MPI support. Checkpoint intervals for miniFE,

pHPCCG, HPCCG and LAMMPS were 3, 3, 5 and 60 seconds, respectively. For

phdMesh the 5 checkpoints were taken at simulation time step boundaries. BLCR

was used to collect all checkpoints. The per-process checkpoint sizes were approx-

imately 93MB for miniMD, and 311 MB to 393 MB for the rest of the mini apps.

For the two production applications, checkpoint sizes were approximately 80 MB for

LAMMPS and 25MB to 30MB for CTH.

We used compression factor, ↵, as our metric to show how compressible check-

point data are, where we compute compression factor as: 1� compressed size

uncompressed size

.

Figure 5.3.1 shows how e↵ective the various algorithms are at compressing check-
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point data. We can see that both the algorithms achieve a very high compression

factor of about 80% or higher for all our test apps and mini apps except for miniFE

which was between 68-80%. This means that the primary distinguishing factor be-

comes the compression speed, that is, how quickly the algorithms can compress the

checkpoint data.

Figure 5.2: Checkpoint Compression Factors, higher is better: a factor of 90% means
that the file size was reduced by 90%.

Figures 5.3(a) and 5.3(b) show our observed compression and decompression

speeds, respectively. In general, and not surprisingly, the parallel implementation of

bzip2, pbzip2, generally outperforms all the other algorithms. Decompression is a

much faster operation than compression, because during the compression phase we

must search for compression opportunities, while during decompression, we simply

are using a dictionary or lookup table to expand compressed items.
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(a) Compression Speed

(b) Decompression Speed

Figure 5.3: Checkpoint Compression/Decompression Speeds. Higher is better

Based on the above results and Equation 5.1, which represents our viability model,

Figure 5.4 demonstrates the checkpoint read/write bandwidths that make compres-

sion viable. For each application, the lowest bar of the two compression algorithms

represents its worst case scenario. For the worst-case application, miniFE, check-

point compression applying zip is viable unless a system can sustain a per process
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Figure 5.4: Checkpoint Compression Viability: Unless, checkpoint read/write band-
width exceeds our viability factor (y-axis), checkpoint compression should be used.

checkpoint read/write bandwidth of greater than about 34.8 MB/s. In the best case,

LAMMPS, the necessary per process checkpoint read/write bandwidth increases to

greater than about 224.5 MB/s.

The relationship between compression performance (compression factor and com-

pression and decompression speeds) and checkpoint I/O bandwidth is the key factor

in the viability of checkpoint compression. As Figure 5.4 shows, for our worst-

case application, miniFE with zip compression, compression is viable if per-process

checkpoint bandwidths are less than 34.8 MB/s. In the best case, LAMMPS with

pbzip2 compression, per process checkpoint bandwidths must exceed 224.5 MB/s.

To compare this against real world systems, we use a report based on a study of

I/O performance on Argonne National Laboratory’s 557 TFlop Blue Gene/P sys-

tem (Intrepid) [71]. This work executes an I/O scaling study measuring maximum
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achieved throughput for carefully selected read and write patterns. From this report,

the best observable per process I/O bandwidths were 1 MB/s for both reading and

writing. This performance scales to about 32,768 processes and then it decreases.

For example, at 131,072 processes, per process read bandwidth is 385 KB/s and per

process write bandwidth is 328 KB/s. The Oak Ridge Cray XT5 Jaguar petascale

system has peak per-node and per-core checkpoint bandwidths of 5.3 MB/s and 1

MB/s, respectively, three orders of magnitude less than what is needed. Similarly,

the Lawrence Livermore Dawn IBM BG/P system has a peak per-node checkpoint

bandwidth of about 2 MB/s 2 As a result, aggressive use of checkpoint compression

appears to be viable and indeed desirable on current large-scale platforms.

Checkpoint Compression Performance for Mini versus Real Apps It is

legitimate to wonder whether for this study the mini apps serve as reasonable proxies

of their full application counterparts. To help address this concern, we observed that

the mini app miniMD is meant to correspond to the full application LAMMPS. The

results from Figures 5.3 and 5.4 are tabulated in Table 5.2. From this data, we see

that the compression performance and viability points for miniMD and LAMMPS

are very comparable: the compression viability bandwidth for miniMD is within 10%

of that of LAMMPS. While this single result is not conclusive for all the mini apps, it

suggests that it is not unreasonable to consider the mini apps to be suitable stand-ins

for full applications for this study.

2Oak Ridge’s Spider Lustre-based file system provides 240 GB/s of aggregate
bandwidth[118], while Dawn’s Lustre file system is listed as providing 70 GB/sec of peak
bandwidth on LLNL reference pages [9].
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Compression
Factor %

Compression
Speed MB/s

Decompression
Speed MB/s

Compression
Viability Break-
even point MB/s

pbzip zip pbzip zip pbzip zip pbzip zip
LAMMPS 92.7 91.6 154.2 209.1 564.9 195.5 224.6 185.2
miniMD 91 89.7 144 193.6 478.8 179.9 201.5 167.4

Table 5.2: Checkpoint compression performance similarity for miniMD and
LAMMPS, solving same problem. The parameters for pbzip are (1,5) and for zip it
is (1).

5.3.2 Compressing System-level versus Application-level

Checkpoints

Next, we examined the compression e↵ectiveness of system-level checkpoints com-

pared to that of application specific checkpoints. A number of scientific applications

provide their own mechanisms to save their checkpoints and can restart the problem

from those saved states. We would like to verify whether checkpoint compression is

e↵ective for application generated checkpoints as well. We use LAMMPS for this

testing due to its optimized, application-specific checkpointing mechanism described

in the previous section. For these tests we compare application generated restart

files with those generated by BLCR. In each case, we take 5 checkpoints that are

equally spaced throughout the application run.

System-level checkpointing saves a snapshot of the application context such that

it can be restarted where it left o↵ by capturing application specific data, shared

library states etc. On the other hand, application specific checkpointing only needs

to save the data that is necessary to resume the operation. As a result, for a fixed

problem, system level checkpoints are typically much larger in size. In our tests,

LAMMPS’ application specific checkpoints were 12MB in size compared to about

80MB BLCR generated checkpoints for the same problem. However, based on our
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results in Table 5.3, we observe that checkpoint compression is viable for both ap-

plication specific and system-level checkpoints.

There is, however, a qualitative di↵erence in the break-even points for checkpoint

compression. Our data reveals that the major reason is that, system-level checkpoints

compressed better than user-level checkpoints (for example, pbzip2 compression fac-

tors are 92.7% compared to 43%). This is because application-level checkpoints are

optimized by omitting data that can be reconstructed when an application restarts.

This reduces the compressibility of the application level checkpoints. For the same

reason, we observed the di↵erences in sizes for these two types of checkpoints. More

over, the average compression and decompression speeds were higher for system-level

checkpoints than for user-level checkpoints (again for pbzip2, 154.2 MB/s compared

to 37 MB/s).

Compression
Factor %

Compression
Speed MB/s

Decompression
Speed MB/s

Compression
Viability Break-
even point MB/s

pbzip zip pbzip zip pbzip zip pbzip zip
System 92.7 91.6 154.2 209.1 564.9 195.5 224.6 185.2
Application 43 41.9 37.2 26.7 104.5 97.1 23.6 17.6

Table 5.3: Compression Break-even Points for system-level and Application Specific
Checkpoints. The parameters for pbzip are (1,5) and for zip it is (1)

5.3.3 Checkpoint Compression Performance and Applica-

tion Scale

For our scaling experiments, we use LAMMPS with its built-in checkpoint mecha-

nism. We observe how checkpoint viability scales with (1) memory size; (2) time

(between checkpoints); and (3) process counts.
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(a) Scaling Checkpoint Sizes and Application Runtime.

(b) Scaling Process Counts.

Figure 5.5: Results from our Scaling Experiments.
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In our first set of scaling experiments, we evaluated the first two scaling dimen-

sions, checkpoint size and time between checkpoints. We progressively increased

the LAMMPS problem size while keeping the number of application processes fixed

at two. In this manner, memory footprint and checkpoint sizes increased. This also

means that the application runs for a longer time, since the per process workload has

been increased. For each LAMMPS process, five checkpoints were taken uniformly

throughout the application run. The checkpoints we collected from these tests av-

eraged about 168MB, 336MB, 470MB and 671MB for the various problem sizes.

Figure 5.5(a) shows the viability results from these experiments which demonstrates

that in no case did checkpoint size show any impact on the viability of checkpoint

compression for LAMMPS.

For the study of scaling in terms of process count, we compared the compression

ratios when weak scaling LAMMPS EAM simulations from 2 to 128 MPI processes.

In each test, the per-process restart file size was over 170 MB taken using LAMMPS’

built in application checkpointing mechanism. In these runs we took 5 equally

spaced checkpoints.

Figure 5.5(b) shows once again that application process counts did not impact

checkpoint compression viability. Since compression and decompression (in the case

of failures) are performed on the checkpointing or recovery node, increasing scale

does not increase compression/decompression and application resource contention.

Additionally, we have no reason to believe that compression performance results

will be di↵erent for larger process count runs. Our rationale is as follows: checkpoint

compression performance (compression speed, decompression speed and compression

factor) is a function of the “data features” of the memory footprint, such as, for

example, data types and values. For typical scientific computing applications, we do

not expect these data features to vary among a given application’s processes even as
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scale grows.

5.4 Understanding Checkpoint Compression Per-

formance

Given the viability results from the previous section which show that checkpoint data

compression can yield significant improvements in application performance, a natural

question is whether further improvements to checkpoint compression can render even

more benefits. We answered these questions by performing studies that allow us to

evaluate the performance impact of compression factor and compression speed.

5.4.1 The Impact of Compression Factor

Checkpoint data volume reduction is arguably the most significant user-controllable

factor that impacts checkpoint-restart performance. Therefore, it is important to ex-

amine the limits of checkpoint data volume reduction through compression. A related

question is whether it is worth considering compression algorithms that specifically

target checkpoint data. We provided novel insights into these questions by using in-

formation theory to explore the compression performance of o↵-the-shelf utilities and

to evaluate the additional impact of a hypothetical, custom algorithm that achieves

optimal compression. For this discussion, we use the metric compression factor

which, as we previously defined, is the inverse of the compression ratio; therefore

higher compression factors are better.
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An Application-specific Case Study

Based on the compression performance results from Section 5.3.1, we focused on

checkpoint/restart for the LAMMPS application. LAMMPS exhibits the poorest

checkpoint compressibility and, hypothetically, the greatest opportunity for improve-

ment for all the applications tested. We used knowledge of the LAMMPS on-disk

checkpoint format to translate application-specific checkpoint data into its composite

data elements. Using this, we computed the entropy of LAMMPS checkpoints using

Shannon’s entropy calculation [117].

Shannon’s theorem gives us the minimal number of bits needed to represent a

certain amount of information. Using our understanding of the LAMMPS’ checkpoint

format, we calculated a frequency distribution for the values in the checkpoint file.

We calculated this distribution in a representation independent way; for example,

the double 0.0 is interpreted to be the same value as the integer 0, because they

contain the same information. Using this frequency distribution, we then calculated

the entropy of this newly-created ”checkpoint language” for LAMMPS’ checkpoints.

This entropy calculation gives us a minimal encoding.

Table 5.4.1 shows the results of this minimal checkpoint encoding. This check-

point contained about 3.5 million total symbols of which about 1 million were unique,

thereby resulting in an entropy of 10.59 or a theoretically maximal compression fac-

tor of 79.5%. Comparatively, our bzip2-encoded strings for the same checkpoint

(excluding the bzip2 dictionary and headers, as we do not include this information

in the entropy calculation above) had a compression factor of 67.6%, a significant

di↵erence in compression performance. Therefore, a hypothetical optimal checkpoint

compression algorithm tailored specifically for the information contained within it

will compress the checkpoint to 20% of its original size, in comparison to bzip2, which

compressed the checkpoint to 32%.
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Total
Symbols

Unique
Symbols

Entropy
Optimal Compression

Factor
Bzip Compression

Factor
3,584,043 1,023,367 10.59 79.5% 67.6%

Table 5.4: Comparing a theoretical minimal encoding with bzip2.

Next, we used this LAMMPS checkpoint compression comparison data to model

how LAMMPS performance would improve with this optimal algorithm that could

better compress its checkpoints. Based on gathered experimental data used to de-

termine the better algorithms and algorithm parameterization, we observed that an

improved compression factor generally results in slower compression/decompression

rates. For this study, we optimistically assume that the hypothetical optimal algo-

rithm would not experience such slowdowns. Furthermore, we optimistically assumed

that the optimal algorithm could run as quickly as the parallel bzip2 algorithm, the

algorithm with the best observed compression/decompression rates across all of our

experiments.

We looked at three di↵erent scenarios, systems with 10K, 50K and 100K to-

tal sockets. Figure 5.6 shows the impact on application e�ciency as compression

factors varied, highlighting our observed compression factor and our theoretic maxi-

mum compression factors. For each of the three scenarios, we observed that optimal

compression would yield a relatively small increases in application e�ciency, the

largest being an additional 7.2% of e�ciency in the 100K socket scenario. Therefore,

we conclude that exploring checkpoint-specific compression algorithms is unlikely to

yield significant improvement over the standard text-based compression algorithms.

In fact, with the expected growth of I/O bandwidth on future systems, these dif-

ferences in e�ciencies will continue to decrease, thus supporting our position that

current compression algorithms are su�cient for future systems as well.
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Figure 5.6: Varying compression factor

5.4.2 The Impact of Compression Speed

While compression factor is probably the biggest determinant of the performance

impact of checkpoint compression, it is also necessary to understand the importance

of compression speed. We evaluated the potential benefits of accelerating our top

performing algorithm (in terms of compression factors), for example, by using algo-

rithmic enhancements or hardware technologies like GPUs. Using the compression

performance exhibited by pbzip2 on phpccg checkpoints (our top performer for com-

pression factor) as a baseline and the application e�ciency performance model from

Section 5.2.2, we varied compression and decompression rates from a slow-down of

100 to a speed-up of 10,000. This allows us to explore how application e�ciency

varies with compression/decompression rates.
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Figure 5.7: Varying compression/decompression speed

The results, depicted in Figure 5.7, show that four orders of magnitude improve-

ment in speed would yield only an insignificant improvement in application e�ciency

on current systems. While this is an important result, it is not so surprising: Given

the current checkpoint commit rates (based on available per process I/O bandwidth

to checkpoint storage), the time spent compressing a checkpoint is insignificant when

compared to the time spent committing the checkpoint to stable storage. These re-

sults suggest that attempting to improve compression rates is not worthwhile as long

as our platforms checkpoint commit bandwidths remain less than the CPU viability

bandwidths from the previous section. For the vast majority of current leadership-

class capability machines, the CPU viability bandwidth is dramatically higher than

that of the per-process checkpoint commit bandwidth.

What remains unclear is the impact of increasing compression speed as the I/O

bandwidth increases, which is expected in future systems. Figure 5.8 shows the
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increase in application e�ciency as a function of the per-node checkpoint commit

bandwidth. Once again, we used the application e�ciency performance model from

Section 5.2.2. Similar to previous work in this manuscript, we assumed a 5 year

socket MTBF and use optimal compression factors. The Y-axis in this figure is

the di↵erence in application e�ciency between the accelerated and non-accelerated

case. For the accelerated case, we assumed a hypothetical compression of 100 times

the CPU compression speeds. These optimal speedups have been observed with

carefully crafted codes and workloads with GPUs [20]. We modeled these overheads

for a number of node counts between 10k and 200k. From this figure, we can see

that a two order magnitude increase in compression/decompression speeds leads to

only marginal increases in application e�ciency. This result suggests that the e↵ort

involved in accelerating compression/decompression speeds may not be worth the

performance return.

5.5 Checkpoint Compression and Other Opti-

mizations

Finally, we put the performance of checkpoint compression in context by comparing it

against a number of popular software, hardware, and mixed hardware/software solu-

tions. Also, we investigated the performance of scenarios where checkpoint compres-

sion can be combined with these techniques. We compare checkpoint compression

performance against a software-only, incremental checkpointing solution, showing

the performance of the combination of incremental checkpointing with compression.

We used the best-observed checkpoint compression performance, specifically, pbzip

compression with LAMMPS checkpoints, which yielded about 92.7% compression

factor, 154.2 MB/s compression rate and 564.9 MB/s decompression rate. For incre-

mental checkpointing, we used an 80% compression factor, the optimal incremental
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Figure 5.8: E�ciency increases for a number of node counts as a function of per-
node checkpoint commit speeds assuming that a compression/decompression speed is
a factor of 100 greater than what we see on current systems. The e�ciency di↵erence
is defined as the accelerated e�ciency minus the e�ciency using current speeds

checkpointing compression found in [36]. As before, we assumed that incremental

checkpoints have similar compression ratios as the standard full checkpoints. This

assumption has been validated previously in [36]. We then compared these software-

only checkpointing solutions against state-of-the-art and considerably more costly

hardware-based solutions: checkpointing to SSDs (solid-state device) and the multi-

level checkpointing solution Scalable Checkpoint Restart (SCR) [87].

5.5.1 Compression and Increment-based Optimizations

Figure 5.9 shows the comparison results of compression-based and increment-based

scenarios alongside the standard cCR performance. We make several observations:
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1. Unsurprisingly, all combinations of compression-based and increment-based op-

timizations outperform standard coordinated checkpointing (labeled “baseline”

in the figure).

2. Compression yields greater application e�ciency than pure, optimal incremen-

tal checkpointing (labeled “ickpt”). This result is notable in that our model

does not include the potentially high-overhead of the mechanisms used in in-

cremental checkpoints to detect updated memory regions or introspective ap-

plication knowledge. So in environments where this overhead is prohibitively

excessive or application characteristics are unknown, checkpoint compression

is a simple solution that can achieve better performance with no application

programmer burden.

3. The combination of compression-based and increment-based optimizations

yields the best performance of these software-only methods.

From these results, we conclude that checkpoint compression can lead to signifi-

cant performance improvements for large-scale applications. Most importantly, this

method can be combined with other checkpoint optimizations to further improve

application e�ciency.

5.5.2 Compression and Other Optimizations

Next, we compared our checkpoint compression technique against the performance of

two hardware-based checkpoint optimizations. Specifically, we compared it against a

local SSD checkpointing solution [63] and a multi-level solution(SCR) that uses local

and remote memory, SSDs, a parallel file system, and a software RAID to ensure re-

liability [87]. It is important to note that these hardware checkpointing solutions are

considerably more expensive than a software-only solution such as incremental and
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Figure 5.9: Impact of the software-only optimizations checkpoint compression and
incremental checkpointing on application e�ciency.

compression-based checkpointing. In fact, the device reliability required for the SSD

only solution may be prohibitively expensive even at smaller scale as recent studies

have shown that in 15% of failures, the checkpoint cannot be recovered from current

SSD technology [87] and may require a highly reliable backing store like a parallel

file system. Also, the SCR approach, in addition to using additional hardware, uses

a portion of on-node memory to store checkpoints. This point is especially impor-

tant for future extreme-scale systems. As core counts increase dramatically, we are

moving from a compute-scarce environment to one where we have an abundance of

compute cycles but a scarcity of memory.

Again, we assumed each process uses 2GB of memory and checkpoints 1
3 of that

memory. We also assumed a 5 year MTBF and a per-process I/O rate of 1MB/s

for the compression and incremental checkpointing case. For the SSD-only case,

we assumed a 2GB/s checkpoint commit rate and a 8GB/sec checkpoint read rate.
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Lastly, for SCR, we assumed a per-process mean checkpoint commit rate of 211MB/s

for both read and write. This mean commit rate is calculated from that used in

another study [107], where the authors presented a user-space file system, CRUISE,

which dramatically improved the performance of SCR. The take-away here is that the

per-process checkpoint commit rates of these hardware-based solutions are several

orders of magnitude larger than the software solutions.

Figure 5.10 shows a comparison of compression with the hardware-based tech-

niques outlined in this section. For comparison, we also included the e�ciency of

standard rollback/recovery to the parallel file system shown previously. From this

figure, we observe that:

1. Perhaps as expected, the hardware-based solutions perform significantly better

than the software solutions

2. The SSD-only solution has nearly 100% e�ciency through the socket counts

tested, though as pointed out previously, recent work suggests this solution

may not be achievable.

3. The multi-level checkpointing approach, which uses multiple levels of the sys-

tem storage and can recover from all observed failures, performs similarly to

an SSD-only approach.

4. The optimal software-only approach (ickpt+compress), though having a com-

mit speed slower by two orders of magnitude, only performs 20% worse than

the other approaches.

This set of results shows the benefit of this compression approach. With no

application-specific knowledge, no additional hardware, minimal memory overhead,

using standard and freely available compression algorithms, and using checkpoint

commit bandwidths observed on today’s systems, we can obtain e�ciency within 20%
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Figure 5.10: Comparison of hardware/multi-level checkpointing techniques with pure
software techniques like compression and incremental checkpointing

of the costly hardware solution. Compression-based approaches can be made readily

available to existing systems while hardware-based solutions require installation and

other disruptive changes.

5.5.3 A Performance/Price Evaluation of SSD-based Sys-

tems

In this section, we examined the cost e�ciency of these hardware-based, software-

based, and hybrid CR optimization strategies. For this study, we computed and com-

pared the performance-price ratio for a hypothetical cluster under di↵erent configu-

rations that map to hardware-based CR optimizations, SSD-enhanced, and software-

based CR optimizations, namely compression and incremental checkpointing. Recall

122



Chapter 5. Inter-application data movement reduction

our performance-price model from Section 5.2.2:

Performance price =
workload⇥ efficiency

t
cost

(node)⇥ number of nodes

where

tcost
node

= cost
node

+

✓
cost

ssd

⇥
⇠
lifespan

system

(weeks)

lifespan
ssd

(weeks)

⇡◆

and

lifespan
ssd

(weeks) =
ssd lifespan write capability

weekly checkpoint volume

and

ssd lifespan write capability = SSD capacity ⇥ SSD endurance number

Our hypothetical cluster has 12,250 nodes, two sockets per node and eight cores

per socket for a total of 16 cores per node. We assumed a system lifespan of 260

weeks (five years) and our workload comprises one process per core and executes for

the entire 260 weeks. We used application e�ciencies obtained from the results in

the previous section: 90.94% e�ciency for the SSD-based optimizations and 78.92%

e�ciency for the software-based optimizations.

We computed ssd lifespan write capability for di↵erent SSD technologies,

namely single layer cell (SLC), multi-level cell (MLC), and three-level cell (TLC),

assuming 256 GB SSDs and the write endurance for specific device instances as

shown in Table 5.5.

We computed the last column of Table 5.5, lifespan
ssd

(weeks), assuming that

there is one 256 GB SSD per socket (per eight cores), that each process running on

a core has 2 GB of memory available and each checkpoint is one-third of 2 GB, and

used Daly’s model to calculate the number of checkpoint commits to each SSD per

week.
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Type Name Price(USD) E
rating

E
max

lifespan(weeks)

TLC
Samsung
840Pro

$200 750 2,500 47.4

MLC
OCZ Revo
drive 3

3 $460 3,000 10,000 189.5

SLC
OCZ Z
drive R2

$4800 100,000 100,000 6,315

Table 5.5: Endurance ratings(E
rating

) and price for various SSDs. Also E
max

in this
table represents maximum endurance.

Using the above method, Figure 5.11 shows the performance-price comparisons

of the various hardware-based and software-based CR optimizations for a range of

baseline node costs from $500 to $3000. We see that for lower baseline per-node

costs a software based approach produces significantly more units of work per dollar.

However, as the node prices increase, SSD cost overheads are amortized such that

the hardware-based solutions become almost as cost-e�cient as the software based

one.

5.6 Energy impacts of checkpoint compression

In this section, we answer two primary questions: (1) What is the accuracy of a

coarse-grained approach to measuring and modeling the energy performance of CR

protocols? and (2) Does checkpoint compression lead to an increased or decreased

energy expenditure? We now address these questions, first presenting the validation

of our coarse-grained model and then using the model to predict the performance of

CR using compression.
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Figure 5.11: Comparison of work done per unit price per node for a system with
di↵erent types of SSD device compared against software-based solution. (higher is
better).

5.6.1 Validating our Energy-performance model

We validated our coarse-grained checkpoint-compression energy model described in

Section 5.2.2 using LAMMPS and BLCR. Our validation approach was as follows:

we ran LAMMPS for a period su�ciently long enough that allowed us to take many

checkpoints. In our measurement phase, we collected coarse-grained power measure-

ments obtained from the execution period up to and including the first checkpoint.

Then we input these measurements into our model to predict the energy footprint

of the entire remainder of the application’s execution. (Of course, we continued

the measurement collection throughout the application’s execution to compare our

model’s predicted values to those actually observed.) We repeat this process three

times, and the results we present here are the average of these three runs. Each

LAMMPS run included taking 50 checkpoints at a fixed 10-second intervals.
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During the measurement phase, we sampled power to obtain P̄
app

, the average

power while executing the application code, and P̄
ckpt

, average power for taking

a checkpoint. For the entire application’s execution, we also measured T
app

, the

total time spent executing the application’s code and T
ckpt

, the total time spent

taking checkpoints. We input these parameters into our model to predict the energy

expenditure, as the application execution increases, in five checkpoint increments.

That is, the first prediction predicts what the application’s energy consumption

will be after taking five checkpoints; the second prediction predicts through ten

checkpoints and so on up to all 50 checkpoints.

Figure 5.12 shows that our coarse-grained model can predict the energy

consumption of a CR-based application very accurately with prediction

accuracy ranging from 94% to 99% for our experiments. For this validation,

we did not have a failure injection framework and hence did not include restart or

rework. However, we see no reason to believe that our coarse-grained model will not

work just as e↵ectively for restart and rework.

Figure 5.12: Model predicted energy costs are very accurate and within 94-99% of
the average measured costs.
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P̄
app

(W) P̄
ckpt

(W) P̄
rst

(W)

HPCCG 70.66 58.79 40.87
LAMMPS 79.88 53.63 91.15
pHPCCG 60.51 54.74 53.43
MiniFE 59.81 23.80 50.03

Table 5.6: Measured average power costs of application run, checkpoint and restart
for di↵erent applications

5.6.2 Checkpoint compression energy performance

Using our validated model, we predict the energy performance for LAMMPS and

three mini apps from the Mantevo Project [53], namely HPCCG, pHPCCG and

MiniFE. As previously described, we obtained the checkpoint sizes and compres-

sion/decompression performance statistics for these applications from a previous

project [56]. We also used our application e�ciency model from that project to

calculate the time spent for (1) checkpointing, (2) restarting from failures and (3) ex-

ecuting rework after restarts.

Our e�ciency model used Daly’s optimal checkpoint interval calculation [25], as

described in Section 5.2.2. In Table 5.6, we list our empirically-measured average

power costs of (1) unit time application run, (2) checkpoint operation and (3) restart

operation that we input to our model. We also empirically measured the average

power consumption of checkpoint compression and decompression, and incorporated

those metrics into the model to account for the energy costs of checkpoint compres-

sion optimization.

Figure 5.13 shows the overall energy savings using CR with checkpoint compres-

sion versus regular CR. We make two observations:

1. the CR compression optimization always provides a reduction in
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overall application energy consumption; and

2. the energy savings yielded by the CR compression optimization in-

creases with application scale. In our study, the energy savings increased

from 10% at a socket count of 10,000 to almost 90% at a socket count of 90,000.

The reduction in the number of checkpoints taken o↵sets the extra per checkpoint en-

ergy consumed due to checkpoint compression. This reduction is seen in Figure 5.14,

which compares the total number of checkpoints taken for uncompressed and com-

pressed cases for the same workload. Due to the increased application e�ciency for

checkpoint compression, even though checkpoint frequency increases, the decreased

application execution time leads to fewer overall checkpoints being taken.

Figure 5.13: Total energy savings compared to regular checkpoint/restart for di↵erent
applications

The energy savings increase with scale because as an application’s scale increases,

the application becomes increasingly ine�cient using normal CR (falling below 10%
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Figure 5.14: Comparison of the number of checkpoints taken with or without check-
point compression

[56]) and the impact of CR optimizations like compression becomes greater. Again,

as shown in Figure 5.14, as scale increases the di↵erence in the number of checkpoints

taken with and without checkpoint compression increases.

Finally, Figure 5.15 isolates the energy savings just for CR operations yielded by

compression. This figure shows energy savings from 45% to 96%. Referring again

to Figure 5.14, compression does not reduce the number of checkpoints taken by

LAMMPS as much as it does for the other applications. This results in lower energy

savings for LAMMPS overall, as shown in Figure 5.13, and when considering only

CR operation, as in Figure 5.15.
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Figure 5.15: Energy savings for checkpoint/restart operations only.

5.7 Summary

In this chapter, we investigated checkpoint data compression as a proxy for inter-

application data movement reduction. We demonstrated that checkpoint data com-

pression is a very viable approach for CR protocol optimization. We then studied the

performance limits of checkpoint compression and put the results of this technique

in the context of the current state-of-the-art in checkpointing. Specifically, we used

information theory to show that current compression techniques are close enough to

a theoretically optimal solution so that improved algorithms likely will render little

to no di↵erence in overall application performance. We also showed that checkpoint

compression outperforms another popular software-based checkpoint optimization,

incremental checkpointing, and that a combination of both leads to further per-

formance improvements. Together, compression and increment-based optimizations

can yield performance to within 20% of current state-of-the-art hardware-based so-

lutions. We also showed that our software-based checkpoint/restart optimization

produces more work per unit cost than the hardware-based approaches as long as
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per-node procurement costs are kept low. Finally, we showed that due to the in-

creased runtime e�ciency, compression-based checkpoint optimization leads to up to

90% savings in energy as well.

We believe that this work reveals many fundamental insights about the role check-

point data compression can and should have as a part of the solution space of e�cient

application-independent fault-tolerance strategies. Perhaps the greatest outcome is

the insight that this simple, application-agnostic approach can render significant per-

formance improvements when used in isolation or in combination with other software

and hardware-based optimizations.
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Conclusion and Future Work

HPC systems have observed tremendous improvements in processing performance

as compared to other areas of the systems. Therefore, data movement has resulted

in the bottleneck, rather than computation, as the most significant cost. The goal

of this work was to study di↵erent areas of data movement in HPC systems and to

demonstrate that compression-based approaches can be e↵ectively applied to reduce

them. I identified and studied three di↵erent areas in HPC where data movement

was becoming bottlenecks and applied compression-based techniques to reduce data

movement volumes and to improve HPC application’s runtime performance. In this

chapter, I summarize my findings and explore future research directions.

6.1 Contributions

In this dissertation, I demonstrated viable approaches of applying software-based

compression to reduce data movement in HPC, using a combination of modeling,

simulation and implementation. The major contributions of this work are:
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• Intra-process data movement reduction

In Chapter 3, I studied intra-process data movement reduction by improving

the perceived per-core memory capacity by using compression-based paging.

Improved memory capacity enables in-situ data analysis and visualization and

does not require moving data to a di↵erent node, as well as enabling larger

problem-solving capacity. I used a simulation-based approach to introduce

paging for HPC workloads and to study the runtime overheads due to the in-

troduction of paging. I modeled compression performance numbers to memory

performance numbers as simulator inputs and proposed a compression-based

memory paging solution. I demonstrated that my proposed compression-based

paging scheme can improve perceived memory capacity by 78% with minimal

runtime overhead (under 4%).

• Inter-process data movement reduction

In Chapter 4, I studied di↵erent ways to reduce inter-process data movement.

Here I identified the similarities that exist among inter-process messages using

a di↵-based approach and used trace-based simulation to study the overheads

of my approach to reduce network congestion. I proposed a novel two-level

di↵-based approach that can reduce inter-process data movement by up to

99% although with potentially large runtime overhead.

• Inter-application data movement reduction

In Chapter 5, I studied inter-application data movement reduction by focusing

on checkpoint/restart (CR) optimization as a proxy for all inter-application

data movement. I studied the viability of checkpoint compression and

demonstrated its application to improve overall application runtime perfor-

mance. I developed a viability model for checkpoint data compression that

accounts for the cost and benefits of compression for checkpoint commit and

recovery operations. Using an extension of Daly’s model, I demonstrated
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that compression-based checkpoint data movement reduction can significantly

improve an applications runtime (by more than 50%) across a wide range of

scenarios.

I studied compression algorithm parameters and their impact on checkpoint

compression and demonstrated that text-based compression algorithms may

o↵er su�cient speed and checkpoint data compressibility such that enhanced

compression algorithms likely will render little application performance

improvement.

I compared my compression-based checkpoint data movement reduction op-

timization against other software- hardware-based checkpoint optimizations

and demonstrated that checkpoint data compression used in conjunction with

other software CR protocol optimizations can be a viable, cost-e↵ective alter-

native to hardware-based CR solutions. Finally, I developed and validated

a checkpoint-compression energy performance model and demonstrated that

compression-based checkpoint optimization would also improve an application’s

energy performance (by up to 90%) due to the application’s e�ciency improve-

ment.

As HPC systems approach exascale performance, we will continue to see massive

growth in data movement. This work demonstrated that similarity exists in HPC

data and can be exploited to reduce the data movement problem in various levels of

the data movement hierarchy. Scientists and application developers can improve the

application performance by leveraging the data similarity. Other areas in HPC, that

I have not studied can also benefit from this research. For example, HPC storage can

readily reduce the data volume to be committed and improve e↵ective throughput

by compression. Data processing and analysis that transfers data outside the node
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can also improve by leveraging data similarity. Outside of the HPC domain, cloud-

computing is also experiencing the ’big data’ problem due to the the rise of user

generated data through social media and internet of things. I believe the insights

from this study can be studied in cloud-computing contexts and can achieve similar

positive results.

6.2 Future Work

In this dissertation, I have studied compression-based data movement reduction

optimization for di↵erent areas in HPC systems. However, a number of potential

research inquiries remain.

My research on intra-process data movement reduction, described in Chapter 3,

demonstrated that the memory access patterns for our test applications were

an important indicator for the perceived memory capacity improvement. Future

work, should investigate the impact of di↵erent page-replacement policies based

on applications’ memory access patterns. The insight from these studies could

motivate variable-sized compressed-cache, thus further improving the perceived

memory capacity. In addition, a demonstration of leveraging the additional memory

capacity that was available due to compressed-paging would make for an interesting

study as well.

The two-level di↵-based approach that I introduced in Chapter 4 demonstrated

that there exists great opportunity to reduce MPI-based inter-process data move-

ment but at a high runtime overhead. However, the simulator used in that study,

LogGOPSim, did not have support for modeling network congestion. Overcoming this

limitation is a challenge, but it would allow us to clearly understand the trade-o↵
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of using our two-level di↵-based approach by accounting for both the overhead and

the benefit of reduced congestion. Inspired by the results in this study, application

developers can consider computing message di↵s at the application level and sending

incremental di↵erences only. While this would create an additional complexity for

application developers, they may be able to leverage domain specific knowledge and

implement faster di↵ algorithms.

Finally, in Chapter 5, I demonstrated the runtime and energy benefits of inter-

application data movement reduction by using checkpoint-compression as a proxy

of application services. The next step is to extend this study to other types of

checkpoints (for example: uncoordinated checkpoints) and see whether we can get

similar benefits. A streaming compression-based approach would be another avenue

of work that can be easily extended from my study, as a way to reduce checkpointing

time even further by overlapping compression with checkpoint commits. The final

step would be to implement compression into a checkpointing library and study the

actual impact on an application’s runtime and energy performance.
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