
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2016

Stochastic Methods for One-Sided Bipartite
Crossing Minimization and its Variants
Tanya Jeffries

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Jeffries, Tanya. "Stochastic Methods for One-Sided Bipartite Crossing Minimization and its Variants." (2016).
https://digitalrepository.unm.edu/cs_etds/65

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/65?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Tanya Jeffries
 Candidate

 Computer Science

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Thomas Hayes, Chairperson

 Patrick Kelley

 Terry Loring

ii

STOCHASTIC METHODS FOR ONE-SIDED BIPARTITE

CROSSING MINIMIZATION AND ITS VARIANTS

by

TANYA JEFFRIES

PREVIOUS DEGREES

B.A. ECONOMICS, UNIVERSITY OF NEW MEXICO, 2010

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2016

iii

Acknowledgements

This work would not have been possible without the help of several people that I

would like to mention here. First I would like to thank my advisor Thomas Hayes for his

support throughout the entire process. His careful proofreading of the manuscript,

suggestions and critiques, along with his support of my research interests helped me to

create a work that I am truly proud of. Thank you Tom. I would also like to thank my

family and friends. To my family: Mom, Dad, and my wonderful brother Tyler, you not

only provided the words of encouragement to keep me motivated during my thesis work,

but also had the patience to listen to me when I needed an audience for brainstorming (or

post-code venting). Thank you! To my dearest friend Mabel, you have always been there

for me through the hard times and the good. Thank you. And to my late friend Dorothy,

you were not only one of my dearest friends but also an inspiration to me. You taught me

to persist, to work hard no matter the circumstances, and to cherish every day. Thank you

so much Dorothy.

And last but most certainly not least I would like to thank my animal friends! To

Argos, our family dog, you have brought so much fun and happiness into our lives.

Thank you for begging me for table scraps and the occasional belly and ear rub rub. To

Penny, my dearest dog friend, your exuberance and playful antics continue to live on in

my loving thoughts. The time that I met you marked the beginning of a new chapter in

my life, and as my master’s studies draw to an end, I remember the time we shared with

much warmth and happiness. And finally to my dearest hedgehog Fiona. You were truly

exceptional and I feel so blessed to have had you in my life. Thank you thank you and

always remember that mommy loves you.

iv

Stochastic Methods for One-Sided Bipartite Crossing

Minimization and its Variants

Tanya Jeffries

B.A., Economics, University of New Mexico, 2010

M.S., Computer Science, University of New Mexico, 2016

ABSTRACT

The one-sided bipartite graph drawing problem has been extensively studied in

the graph drawing literature, with numerous papers appearing over the years showing

novel algorithms and heuristics for minimizing associated edge crossings. Although

stochastic methods have been highly successful when applied to bipartite graph drawing,

a large, comprehensive study to compare said methods has not been carried out for one-

sided crossing minimization on traditional, unweighted graphs. Even more so, the variant

problems of weighted and bottleneck bipartite crossing minimization have seldom been

studied, with only one published algorithm, 3-WOLF (designed for one-sided weighted

crossing minimization), and one published heuristic, MEC (designed for multi-layer

bottleneck crossing minimization) appearing in the literature. To date there has been no

published work for handling one-sided bottleneck crossing minimization.

This thesis helps to close some of these gaps in the graph drawing literature. A

comparative study of stochastic methods for one-sided bipartite graph drawing is carried

out on both unweighted and weighted bipartite graphs. Novel variants of two previously

published genetic algorithms, a one-sided version of a hybrid simulated annealing

algorithm, a stochastic hill climbing procedure, and a top performing approximation

algorithm, 3-WOLF, are compared against each other and the standard benchmark

barycenter heuristic on weighted and unweighted bipartite graphs. Both unweighted and

v

weighted versions of barycenter are considered. In addition, a novel bottleneck crossings

based stochastic hill climbing procedure is compared against a one-sided variant of the

MEC heuristic for one-sided bottleneck crossing minimization. The algorithms in this

latter set of tests are conducted with and without barycenter preprocessing.

 Stochastic hill climbing was found to obtain the best results for all of the

bipartite graph drawing problems, significantly outperforming the other methods in the

weighted and bottleneck crossing contexts. The results of bottleneck crossing based

stochastic hill climbing were slightly improved with barycenter preprocessing. These

experimental findings are particularly notable in the weighted and bottleneck crossing

cases, since 3-WOLF is one of the best methods for weighted one-sided crossing

minimization and MEC the best for multi-layer bottleneck crossing minimization. In

regards to barycenter, although it didn’t perform well for weighted crossing

minimization, it was interesting to find that its traditional unweighted variant worked

better for weighted crossing minimization than its edge-weighted version.

vi

Table of Contents

Chapter 1 Introduction..1

Chapter 2 Background ..5

 Bipartite Graph Drawing..5

 Genetic Algorithmic Graph Drawing...10

 Linear Arrangements ...12

 Simulated Annealing ..14

 Weighted Crossing Minimization ..15

 Bottleneck Crossing Minimization ..19

Chapter 3 Stochastic Methods ..26

 Genetic Algorithms ..26

 Simulated Annealing ..30

 Stochastic Hill Climbing ..31

Chapter 4 Methods ..33

 Weighted and Unweighted Bipartite Graph Drawing33

 Unweighted Crossing Minimization35

vii

 Weighted Crossing Minimization40

 Bottleneck Crossing Minimization ..40

Chapter 5 Results ...47

 One-Sided Unweighted Crossing Minimization47

 One-Sided Weighted Crossing Minimization53

 Weighted versus Unweighted Barycenter Results57

 One-Sided Bottleneck Crossing Minimization63

Chapter 6 Conclusions and Future Research ..68

Appendix….. ...73

References…… ...79

1

Chapter 1: Introduction

Graph Drawing is a branch of graph theory concerned with the automated layout

of graphs. Algorithms that can clearly render the structural information of a graph are

sought in numerous fields including network science, biology, cartography, and circuit

design. General algorithms exist for visualizing arbitrary graphs (e.g. force-directed,

spectral-based, and circular drawing methods), while others are tailored to specific graph

structure (e.g. methods for the orthogonal layout of graphs and tree drawing algorithms).

One such problem belonging to the latter class is that of bipartite graph drawing. In

bipartite graph drawing the goal is generally to order the nodes of the partitioned vertex

set on two parallel lines in a way that minimizes edge crossings. The problem is

computationally hard so heuristics are often used to approximate good vertex orderings.

Over the years, researchers have explored different strategies for the problem,

both randomized and exact. Thus far there have been no comprehensive studies

comparing the numerous stochastic methods for bipartite drawing against each other and

against benchmark heuristics. Even more so there has been very little experimentation in

the closely related problem of weighted bipartite graph drawing, which incorporates edge

weights into crossing calculations. To date there has been only one published study that

addresses this problem [9]. It does so with a 3-approximation algorithm to the one-sided

weighted crossing minimization problem, which the authors call 3-WOLF.

One of the goals of this thesis is to conduct comparative studies of stochastic

methods for weighted and unweighted bipartite graph drawing. In the unweighted case

2

multiple stochastic methods for one-sided bipartite drawing will be compared against

each other and against the standard barycenter heuristic and an unweighted version of 3-

WOLF on random bipartite graphs. In the second set of tests the same algorithms will be

adapted so as to handle edge weights and will again be tested against each other and

against barycenter. Both weighted and unweighted versions of the barycenter heuristic

will be considered.

The other goal of this thesis is to give an initial look at the one-sided bottleneck

crossing minimization problem, which to date has never been studied. So far only two

papers, a technical report and a published article, have been produced to address the

multi-layer bottleneck crossing problem. Out of these studies one heuristic, MEC, has

experimentally proven to be the most dominant approach for the problem. In this last

portion of the thesis the goal is to see if a one-sided variant of MEC still maintains

dominance when compared to a stochastic hill climbing procedure that has been modified

to handle bottleneck edge crossings. Both methods are also tested on graphs that have had

barycenter preprocessing applied to them to initially minimize edge crossings.

 Within the broad scope of these general thesis goals some specific questions/ideas

addressed throughout this study are as follows:

1. Do linear arrangements serve as a good proxy for the one-sided bipartite crossing

minimization problem? That is, if a method is made to minimize the total linear

arrangement value of a bipartite graph assuming the coordinates on one side are

fixed, will it also give a low number in terms of total edge crossings?

3

2. Thus far few genetic algorithms have been published in the bipartite graph

drawing literature, primarily because of their comparatively slow running times. If

such genetic algorithms are modified to evolve solutions with low linear

arrangements rather than crossings, will their running times improve enough to be

competitive with other methods?

3. Only two genetic algorithms have been published for bipartite graph drawing, one

by Mäkinen and Sieranta [21] and the other by Zoheir Ezziane [22]. Both

compared their average crossing performance against the traditional one-sided

barycenter heuristic, but only one, that of Mäkinen and Sieranta, was

implemented to handle one-sided bipartite graph drawings. The algorithm of

Ezziane allowed nodes within both layers of a bipartite graph to be permuted. If

both algorithms evolved layouts with the same fitness measure (i.e. low linear

arrangement values), and that of Zoheir was modified to handle only one free

layer, how would the average performance of the two algorithms compare against

each other?

4. A linear ordering based simulated annealing algorithm has successfully been

applied to two-sided unweighted bipartite crossing minimization with positive

results [18], in many cases outperforming the iterated barycenter heuristic. Will it

achieve the same dominance for unweighted one-sided bipartite graph drawing?

How about in the weighted scenario?

4

5. Previous studies have opted to use a weighted variant of the barycenter heuristic

for drawing weighted bipartite graphs. Does using the traditional unweighted

barycenter heuristic perform any better, worse, or just about the same as its

weighted variant for minimizing weighted edge crossings in bipartite graphs?

The remainder of the thesis proceeds as follows. In Chapter 2 background

information explaining the unweighted and weighted bipartite drawing problems is

provided along with some background discussion on genetic algorithms and their context

in graph drawing, simulated annealing, and linear arrangements. A subsection is also

devoted to explaining work that has been done for bottleneck crossing minimization.

Chapter 3 describes previously published stochastic methods from the bipartite graph

drawing literature, as well as previous work on weighted and bottleneck crossing

minimizations. Chapter 4 follows with a description of the study’s methods. This includes

details regarding the generation of random graphs, the algorithms and heuristics chosen

for testing, parameter values, and relevant implementation details. Chapter 5 summarizes

the test results and Chapter 6 provides concluding remarks and ideas for future research.

Tables providing full test results are provided at the end of the thesis in Appendix A.

5

Chapter 2: Background

2.1 Bipartite Graph Drawing

A graph G consists of a vertex set V and edge set E connecting pairs of distinct

vertices in V. The vertex set of a bipartite graph on n vertices can be partitioned into

disjoint subsets V1 and V2. V1∪V2 = V, and every edge in G has one endpoint in V1 and

the other in V2.

The visualization of a bipartite graph is often done in a layered fashion such that all

nodes in V1 and V2 are assigned constant y coordinates of y1 and y2 respectively. Vertex

subsets V1 and V2 form the so-called “layers” of the graph. Assignment of x coordinates

is then determined by the particular algorithm or heuristic being used. The graph drawing

solution most often sought is the one that minimizes total edge crossings. Fewer edge

crossings lead to less clutter and make for easier studying of the graph. This is apparent

in the following drawing which highlights a marked decrease in crossings after applying

a one-sided crossing reduction strategy to the leftmost graph drawing.

Applications in which such crossing minimized drawings of bipartite graphs are

sought occur in VLSI circuit layout design and in hierarchical graph drawing, a

generalized problem in which graphs are drawn with 3 or more layers.

It is important to observe that the number of edge crossings depends not on the actual

coordinates assigned to nodes, but rather on the ordering of nodes within their assigned

layers. Thus if |V1| = m and |V2| = n, distinct x coordinates from the sets S1 = {1,2,...,m}

and S2 = {1,2,...,n} can be assigned to the vertices of layers 1 and 2 respectively. The

6

problem of layered bipartite graph drawing then reduces to finding permutations of sets

S1 and S2 that induce the fewest number of edge crossings. The layer permutation or

crossing minimization problem leaves the coordinates of one layer fixed while permuting

those of the other. In two-sided crossing minimization both layers are free to be altered

allowing for the permutation of both layers.

Figure 1: Reduction in edge crossings from drawings from left to right after application of one-

sided bipartite drawing strategy.

Unfortunately, the bipartite drawing problem has been proven to be hard. Garey

and Johnson proved the NP-completeness of the 2-layer permutation problem [4]. Even if

the x coordinates of one layer are already assigned and just one layer is being permuted,

Eades and Wormald found that the problem of minimizing edge crossings is still NP-

Hard [5]. Given their computational intractability, algorithms and heuristics are sought

that give good approximations to optimal crossing numbers. Numerous heuristics have

been proposed over the years, a couple of the most popular being the so-called median

7

and barycenter heuristics (a.k.a. the “averaging heuristics”). The barycenter heuristic of

Sugiyama et. al. [6] is a one-sided permutation heuristic that calculates a node’s x

coordinate as the average of its neighbors’ x coordinates in the fixed opposing layer. The

median heuristic of Eades and Wormald [5] sets a node’s x coordinate to be the median

of its neighbors’ x coordinates.

Both averaging heuristics are fast with running times of O(|E|). Assuming that V2

is the layer being permuted, the median heuristic has the additional cost of |V2|log|V2| for

the sorting part of median value calculation. Of the two heuristics the median-based has

the better theoretical performance guarantees. Eades and Wormald [5] initially proved a

performance ratio of 3 for the median heuristic and Θ(min(√𝑛,n/δ)) for barycenter, where

δ is the minimum node degree of the graph. Li and Stallman subsequently showed that

even if the bipartite graph is connected (e.g. when ignoring isolated nodes) the

performance ratio for barycenter is still Ω(√𝑛) [7]. They also showed that if the vertices

of V2 are bounded by degree d barycenter has a performance ratio of d-1 regardless of the

graph’s connectivity. However, despite said performance bounds, the one-sided

barycenter heuristic was found to outperform many one-sided heuristics, including the

median heuristic, on a variety of test graphs [8]. Poranen and Mäkinen suggest that this

may be the due to the more frequent occurrence of ties when calculating medians versus

averages [36] (i.e. it is much more likely for two nodes to have the same median than

average when calculated over the x-coordinates of neighboring nodes). In the case of two

sided crossing minimization (to be discussed next), they found through experiment that

8

the average percentage of ties produced by iterated barycenter varied between 20.83 and

22.85 percent. This was smaller than the 38.87 to 42.65 percent average found for iterated

median calculations.

One-sided median and barycenter heuristics can be extended to two sided crossing

minimization through repeated and alternating application between the two layers of the

bipartite graph. These two-sided variants form the so-called iterated barycenter and

median heuristics. Unlike the one-sided cases no performance guarantees have been

proven for iterated median and barycenter. However as with the one-sided case iterated

barycenter was also shown through experiment to outperform other two-sided heuristics

[8], and has indeed become a standard benchmark heuristic in testing the performance of

two-sided crossing minimization methods.

In the related problem of weighted bipartite graph drawing, graphs with edges

weights are also accounted for. In this generalized version of the problem the goal is to

order the nodes of the graph on two parallel lines so as to minimize the sum of weighted

crossings. Weighted crossings are calculated as the products of crossing edge weights. So

for instance if two edges e1 and e2 with corresponding weights of w1 and w2 cross each

other, their crossing weight of w1*w will be added to the sum of weighted crossings.

Counting crossings in an unweighted graph is thus equivalent to counting crossings in a

weighted graph with uniform edge weights of 1.

9

Besides being a generalization of unweighted bipartite graph drawing, the

problem of weighted crossing minimization has seen application in problems specific to

weighted bipartite graphs. Weighted bipartite crossing minimization has, for instance,

seen application in recent research pertaining to VLSI layout design [41]. Weighted

bipartite graph drawing has also arisen in the visualization of weighted layered dags

(directed acyclic graphs). The edges in these scenarios have weights indicating some

degree of ‘importance’, and so desirable layouts are the ones that avoid the crossing of

edges with large weights. Applications in which this problem arises includes the

visualization of metabolic pathways (subgraphs of the larger network of metabolic

reactions) of different species for comparison [30], the layout of social networks [31],

and the visualization of layered compound graphs in the context of biochemical pathways

[32].

As with unweighted bipartite drawing, the edge weighted case yields two sub-

problems, weighted one-sided and two-sided crossing minimization. Unlike the

unweighted case the one and two sided permutation problems to weighted crossing

minimization are much less studied. To the author’s knowledge there are currently no

published studies for two-sided weighted crossing minimization, and to date only one for

one-sided crossing minimization [9]. As the authors of this study note, most studies that

have used weighted bipartite graph drawing have chosen to apply the averaging heuristics

or their weighted variants to minimize weighted crossings. This choice has not been

based off of any experimental or theoretical studies, but rather on the intuition that

10

heuristics that work well on unweighted bipartite graphs will also do so on weighted ones

once they’ve been modified to account for edge weights.

2.2 Genetic Algorithmic Graph Drawing:

Genetic algorithms are stochastic search procedures that mimic the processes of

natural selection. First introduced by John Holland in the mid-70s, a genetic algorithm

generally proceeds as follows. Given some initial population of candidate solutions it

applies modifying genetic operations to its members, creating a new population of viable

solutions in the process. Each member of the new and previous populations is measured

by some function to determine how fit it is in terms of solving the original problem.

Following fitness value calculation, a selection rule/policy is applied to sift out fitter

members for the next generation/iteration of the algorithm. The goal is to design the

algorithm so that it evolves individuals that progressively get fitter, on the average. After

some termination condition has been reached, the fittest individual with the best

approximation to an optimal solution is selected. The specific components of a genetic

algorithm are as follows:

 chromosome representation: a way of representing the “genetic” information of

each candidate solution.

 fitness evaluation function: a function measuring how fit an individual is

according to some predetermined measure of fitness.

11

 crossover operator: given two “parent” individuals, combines segments of

information from the parents’ genomes to create child chromosomes.

 mutation operator: modifies the chromosome of a single individual with some

predetermined probability.

 selection policy: given a population of individuals determines which ones will be

considered in subsequent generations/iterations of the algorithm (e.g. elitist

selection always selects the fittest member to be included in the subsequent

generation)

 stopping condition: determines when the algorithm stops, at which point the final

fittest population member is selected as output. For example, a genetic algorithm

may stop after some predetermined number of iterations have passed or until a

certain amount of time has passed with little to no improvement in the average

fitness value.

The genetic algorithmic approach has been applied to several different graph drawing

problems. They have been applied for drawing undirected graphs [12][13], for orthogonal

graph drawing [14][15], for the 2 page book drawing problem [16], and for bipartite

graph drawing, the focus of our current study. In all cases the chromosomes represent

coordinate assignments for nodes, with the genetic operators designed to perform basic

modifications to these coordinates (e.g. swapping of two nodes’ x and/or y coordinates or

movements of entire subgraph regions to other areas of the drawing area). The hope is

12

that the genetic algorithm will eventually evolve a layout that satisfies certain aesthetic

criteria. Examples include minimization of total edge length, even distribution of nodes,

uniformity of edge length, minimization of drawing area and minimization of edge

crossings, the latter being the most commonly elected criteria for fitness evaluation.

Despite their successful application to graph drawing, the previously published genetic

graph drawing algorithms (and genetic algorithms in general) suffer from a slow running

time. In the case of graph drawing genetic algorithms take the most time when

calculating edge crossings for fitness measurements. Naively the crossing count of a

graph drawing can be calculated in time (|E|2) which is quite slow. In the specialized case

of a bipartite graph edge crossings can be calculated in time O(min{n1n2, |E|log(min{n1,

n2})})[17], which although is much faster than the naive approach, can still cumulatively

add to the total costs of a genetic algorithm which will apply the algorithm to entire

populations over the course of many generations. Comparative studies for bipartite

drawing algorithms have thus far avoided evaluating previously published genetic

algorithms due to their slow running times.

2.3 Linear Arrangements:

 In the so-called linear arrangement problem, the goal is to plot a graph’s vertices

along a horizontal line so as to minimize the sum of edge lengths. The vertices are

assigned unique x coordinates so as to avoid the trivial solution of placing all nodes on

the same point. Like the two-sided bipartite crossing minimization problem, the linear

arrangement problem is NP-Hard[1].

13

Shahrokhi et. al. found an interesting connection between the linear arrangement

problem and the two-sided bipartite crossing minimization problem [2]. As a result,

bipartite drawings with lower edge length sums coincide with bipartite drawings with

fewer crossings. Thus a good approximation to the linear arrangement problem should

also give a good approximation to the two-sided bipartite drawing problem. One way of

approximating the optimal linear arrangement of a graph is by utilizing its so-called

Fiedler vector. This vector corresponds to the first nonzero eigenvalue of the graph’s

Laplacian matrix L = D - A. The matrix A corresponds to the graph’s traditional

adjacency matrix and D is a diagonal matrix containing the graph’s degree sequence

along its main diagonal.

Martin Juvan and Bojan Mohar were the first to establish a relation between a graph’s

Fiedler vector and linear arrangement cost [3]. Theoretically they showed that if there is

not much difference in successive values of a graph’s Fiedler vector then it will provide a

good proxy to its optimal linear arrangement. They also showed through experiment on

special classes of graphs (e.g. cycles, paths, complete bipartite graphs, complete graphs

and their cartesian products) for which the minimum linear arrangement value is known,

that the spectral Fiedler based ordering generally yielded close to optimal linear

arrangement values. Newton et. al. followed with an experimental study comparing Juvan

and Mohar’s spectral algorithm for linear arrangements with the multi-scale linear

arrangement algorithm of Yehuda and Koren and the iterated barycenter heuristic [20].

They also achieved favorable outcomes, finding that both linear arrangement techniques

14

tended to outperform iterated barycenter for the two-sided crossing minimization

problem.

Extensions of these ideas have been explored in the bipartite graph drawing literature.

One such algorithm to be explored in section 3 combines spectral-based methods for

linear arrangements with simulated annealing techniques.

2.4 Simulated Annealing

Simulated annealing is a randomized search process that, like the genetic

algorithmic approach, aims to approximate an optimal solution to an objective function

over a large search space. The approach has been applied to a wide range of

combinatorial optimization problems, including the traveling salesman problem [33], the

solving of sudoku puzzles [34], the matching of fingerprints [35], and bipartite graph

drawing [18]. It models its behavior after the physical process of heating and then slowly

cooling material to gradually minimize its defects and overall thermodynamic energy.

The algorithm starts with an initial temperature T0 and an approximate solution s = s0 to

an objective function f to be minimized. The current temperature T of the system

(initially set to T0) is gradually lowered at the end of each iteration, usually through

multiplication with a positive constant less than one. The algorithm will proceed with this

so-called annealing schedule until some stopping condition has been reached (e.g. T has

dropped below some preset threshold temperature).

15

During each iteration a randomly chosen and closely related neighbor s’ to the

current solution s is considered. If f(s’) ≤ f(s), then the current solution s is set to s’.

Otherwise s is set to s’ with some probability that is a function of s, s’, and the current

temperature T. Often times the function e(f(s)-f(s’))/T is used. By allowing solutions to be

explored that are worse than the current one, the process helps to avoid the problem of

getting stuck in local optima, something that is often encountered in other stochastic

methods such as genetic algorithms.

The annealing schedule and temperature help to regulate the acceptance of worse

solutions throughout the course of the algorithm. At the very beginning when T is at its

highest, the probability of selecting a worse solution is higher, resulting in a larger net of

potential neighbors to explore. As the temperature cools down however, and T decreases,

the same probability of acceptance also decreases. Until the stopping condition is

reached, this gradually makes the search process of the algorithm more and more

restrictive.

2.5 Weighted Crossing Minimization

Cakiroglu et. al. devised a 3 approximation algorithm for weighted one-sided

crossing minimization, termed 3-WOLF (WOLF = weighted one layer free). The

algorithm consists of a coarse phase that partitions nodes into disjoint sets/partitions Pr

based on weighted edge sums (Algorithm 1), and a recursive refining phase that improves

the edge crossings within partitions (Algorithm 2) and maintains a special invariant, PISP

16

(partition invariant satisfying permutation), defined by the authors [9] that is associated

with each of the partitions from Algorithm 1.

Figure 2

17

18

Figure 3

The authors obtain the theoretic bound of O(|E| + |V1| + |V2|log(|V2|)) for the

running time of 3-WOLF. To gauge its experimental performance they compared its time

and output against simple weighted versions of common one-sided heuristics. The

heuristics considered in these tests were weighted versions of the median heuristic,

barycenter heuristic, GRE heuristic [10], and the penalty minimization scheme of

Demestrescu and Finocchi [11].

As the authors note, applications that require minimization of weighted crossings

usually employ weighted versions of the common averaging heuristics (i.e. median or

barycenter-based methods) or of the penalty-graph based approach [11]. The intuitive

reasoning behind this approach is that such simple edge-weighted extensions to these

successful methods will perform well in the context of weighted crossing minimization.

19

Interestingly, Cakiroglu et. al. found that this was not the case in regards to the average-

based heuristics, with their deterministic 3-WOLF algorithm outperforming weighted

versions of both the median and barycenter heuristics. This was particularly the case on

random weighted bipartite graphs with edge density greater than or equal to 0.1. In fact,

the variant of barycenter that accounted for edge weights in the averaging sums was

found to perform worst in terms of crossings out of all of the algorithms. On graphs with

densities between 10% and 50% edge density it ranged between 22 and 36 percent above

the trivial lower bound for edge crossings (see section 4.1). This was considerably higher

than the average results of the other algorithms with results ranging between 0.25 and 0.7

above the lower bound. The top 3 performing algorithms were 3-WOLF and weighted

variants of the GRE heuristic [10] and the penalty minimization-based method [11], with

3-WOLF being the fastest and giving very similar results to the other two methods.

2.6 Bottleneck Crossing Minimization

The so-called ‘bottleneck’ crossing minimization problem presents another

variant to bipartite and multi-partite graph drawing. Rather than minimize the total

number of edge crossings, the goal is to minimize the maximum number of crossings

occurring on any edge of the graph. If we let c(E)A represent the maximum number of

crossings occurring on any single edge of a graph for a particular node arrangement A,

the goal is then to find an A such that c(E)A is minimum. The optimal arrangements A

can then be described as the following: {A | c(E)A
 is minimum}.

20

Permuting the nodes by layer so as to achieve the optimal bottleneck value

minimizes the deleterious effects of crosstalk in VLSI circuits, a problem discussed by

Bhatt and Leighton [26]. Crosstalk in this context is a phenomenon by which a logic

transmitted into a circuit creates undesired effects on neighboring circuits. Stallman and

Gupta describe another application of bottleneck crossing minimization that involves

being able to view subgraphs that have been zoomed in on and show relatively few edge

crossings [27].

As with weighted bipartite graph drawing, bottleneck crossing minimization has

seldom been studied in the graph drawing literature, with only one technical report and

published article to date, both on multi-layered bottleneck crossing minimization [27].

According to Stallman, the bottleneck crossing minimization problem can easily be

proven to be NP-Hard by modifying the unweighted two-sided proof of Garey and

Johnson [4], using the bandwidth problem [1] in place of minimum linear arrangement.

To our knowledge there has not been any published work thus far on one-sided

bottleneck crossing minimization for bipartite graphs.

In his paper [29], Stallman presents a heuristic outlined previously by Stallman

and Gupta [27] for multi-layered bottleneck crossing minimization. The input is a graph

consisting of nodes that have been partitioned into layers. The components of the

procedure are outlined in Algorithms 3 and 4 below.

21

Termed MEC (Maximum Edge Crossings), the heuristic works by iteratively selecting

‘unhandled’ nodes incident to bottleneck edges and sifting them through their respective

layer, at each step attempting to locally optimize the bottleneck crossings. An initial

ordering on the nodes is assumed and each layer is free to permute. V(G) and E(G) stand

for the vertex and edge sets of the graph respectively, c(e) equals the number of times

edge e crosses with all of the other edges in the graph, and c*(E) represents the

bottleneck crossing value for the edge set as a whole. If E’ is a subset of E then c*(E’)

represents the bottleneck value over the subgraph induced by the edges in E’ only. For a

given vertex v, layer(v) refers to the layer of nodes that v belongs to, and p(v) to the

position of node v within its layer.

Figure 4

22

Figure 5

23

During each pass of EDGESIFT, the starting node v (selected if the endpoint of a

bottleneck edge) is swapped iteratively with neighboring nodes of the same layer, first

swapping positions with nodes to its left until reaching the leftmost end of the layer. v is

then moved back all the way to the right by swapping positions with rightmost neighbors

of the same layer. All the while the current minimum local bottleneck value and

associated position of v is maintained. After each swap the crossing values of the all

edges in the graph are reevaluated. However, only the edges incident to the two nodes

being swapped are evaluated for crossings. If the bottleneck value of the restricted edge

set is smaller than the current minimum, then the local bottleneck value is reset to equal

that of the current and the new and resulting placement of v is noted.

Since only the crossing values of the edges incident to v and the current neighbor

yi it is being swapped with are being evaluated for bottleneck crossing minimization, it is

entirely possible that the position of p of v output by EDGESIFT may in fact result in a

bottleneck value for the graph as a whole that is not globally optimal. Stallman and Gupta

provide an example that illustrates this case (cite Stallman and Gupta report)

Figures 6 and 7 depict one swap movement during a pass of the sub-procedure.

Here we assume that nodes 1 through 4 have x coordinates of 1, 2, 3 and 4 respectively.

The nodes 5 through 8 of layer 2 also have corresponding x coordinates of 1, 2, 3, and 4.

Assuming that node 7 has been input into EDGESIFT (since edge {2,7} has a bottleneck

crossing value of 2), the local bottleneck value and position p are initially 2 and 3

respectively within the sub-procedure. Node 7 is then swapped with 6, the node to its left

24

and the crossings are reevaluated for the affected edges. Out of the edges incident to

nodes 6 and 7, the one with the largest crossing value is still {2,7} with a local bottleneck

value of 1. The local bottleneck value and position are now reset to 1 and 2 for

EDGESIFT.

Figure 6: Initial local bottleneck value for EDGESIFT is 2 (the crossing number of edge {2,7}).

The associated position of node 7 is p = 3.

25

Figure 7: After swapping node 7 with 6, the bottleneck crossing value of the edges incident to

nodes 7 and 6 has decreased to 1. The local bottleneck value and position are updated to 1 and 2

respectively.

Stallman and Gupta tested the performance of MEC against the barycenter

heuristic for bottleneck crossing minimization in multi-layered graphs [27]. Their tests

were performed on a variety of directed acyclic graphs, including random trees and

random multipartite graphs (dummy nodes were added to the graphs to ensure that edges

only ran between adjacent layers). They consistently found MEC to beat barycenter when

it came to bottleneck crossings, with results for each graph class presented as the ratio of

the minimum achieved by barycenter to the minimum achieved by MEC. For high

density dags the ratio was consistently around 1.21, while for sparse dags it was around

2.00. When the densest and sparsest dags were ignored the ratio was roughly around 1.60.

26

Chapter 3: Stochastic Methods for Bipartite Crossing Minimization and

its Variants

3.1 Genetic Algorithms

 Throughout the following discussion we will be making frequent use of the term

“permutation”. When we talk about the permutation of a layer we are referring to an array

indexed from 1 in where the indices are x-coordinates and the values the correspondingly

placed nodes. So for instance if for layer 1 we have the permutation [4,2,1,3], this means

that node 4 has an x-coordinate of 1, node 2 an x-coordinate of 2, and so on.

Mäkinen and Sieranta were the first to devise a genetic algorithm for bipartite

graphs [21], specifically for the one-sided crossing minimization problem. Their method

employs both crossover and mutation operators along with an elitist selection policy. The

elitist policy ensures that the permutation with the fewest edge crossings carries over to

the next generation. Following this, the remaining population of the previous generation

splits into two subpopulations A and B. These consist of the permutations that are more

and less fit than the current population average. Remaining members of the next

generation are generated by iteratively crossing over randomly selected members of A

and B with each other.

Given two parent permutations [x0,...,xn-1] and [y0,...,yn-1] of the free layer, their

crossover operator produces two child offspring [x0’,...,xn-1’] and [y0’,....,yn-1’] consisting

of portions of each parent’s permutation information. Starting with the random generation

27

of indices i and j such that i < j and 1 i,j n, one child is formed by inheriting the segment

[xi,...,xj] from the first parent. The other child inherits [yi,...,yj] from the second parent.

Both segments will continue to occupy positions i through j in the respective children.

Missing elements from each permutation are then added back to the children in the order

they appear in the opposing parent (i.e. the parent that the child did not inherit from). As

an example, suppose that two parents x = [4,3,1,2] and y = [3,1,2,4] are being crossed

over with each other in this setting, with random indices of i = 1 and j = 2 generated at

the beginning. The resulting children of the crossover will be [2,3,1,4] and [4,1,2,3]. The

first child inherits the segment [3,1] from the parent x, and is then augmented by

elements 2 and 4 according to their order in parent y. Similarly, child two inherits [1,2]

from parent y, with elements 3 and 4 appended to it in the order that they appear in y.

As for their mutation operator, it essentially entails the randomized relocation of

an element within its permutation followed by a right or leftward shifting of elements.

For each number in the permutation, a random number p is generated between 0 and 1

inclusive. If p is smaller than some fixed and predetermined mutation rate r, then

mutation takes place. Assuming that mutation is triggered at the number in position i, a

random index j not equal to i is generated. If j > i, then xi gets put in position j and

element xk k = i+1,...,j are shifted over one to the left. If j < i, then xi is moved to position

j and elements xk k = j, j+1,...,i-1 are shifted over one to the right. Through experiment a

Mäkinen nd Sieranta found a mutation rate of 0.03 worked best for this this type of

operation.

28

Mäkinen and Sieranta tested their algorithm on random bipartite graphs with

equal sized vertex subsets and varying edge densities. On graphs of size 10 (i.e. 10 nodes

per layer) and 15 the algorithm compared favorably to the barycenter heuristic. For size

15 graphs their GA to performed as much as 2% better than barycenter in terms of

average crossings. On graphs of 50% density their GA performed similarly to barycenter.

Although they did not publish running times, the authors noted that the primary drawback

of their genetic algorithm was in its slow runtime due to expensive edge crossing

calculations repeated over successive generations.

 Another more recent application of genetic algorithms to bipartite graph drawings

came with Zoheir Ezziane’s GA for two-sided bipartite crossing minimization. [22].

Apart from the fact that it assumes both layers are free to permute, his algorithm also

differs from that of Mäkinen and Sieranta in that it does not assume equal-sized vertex

subsets, and also because it relies solely on a mutation operator. Ezziane chose this

mutation-only strategy to avoid the significant computational work that often comes with

incorporating a crossover operation.

The mutation operator he uses essentially swaps elements of the permutation

array while keeping track of those that have already been considered. For each element x

in the first layer (and similarly for each member of the second layer), a random number

between 0 and 1 inclusive is generated. If said number is less than or equal to some preset

mutation rate p (chosen to be 0.8 in the study) then x swaps permutation positions with

another randomly chosen element y from its layer, but only if mutation hadn’t previously

29

been triggered at y. To see what this means, suppose that the permutation [3,2,1,4,5] is

undergoing mutation under Zoheir’s genetic algorithm. From the set {1,2,3,4,5} we start

by selecting 1 and randomly generate a number between 0 and 1, let’s say 0.7. Since that

value is within range of the mutation rate, we select a random node to swap 1 with, let’s

say 3. The permutation then becomes [1,2,3,4,5]. We then pick the next element in our

set, 2, and again randomly generate a number, say 0.85. Since 0.85 is greater than the

mutation rate of 0.8, we leave 2 where it currently is in the permutation. As for the next

element, 3, assume that mutation is again triggered and that it has been decided through

random selection that it will trade places with 1. Since 1 already underwent a swap

operation, it cannot trade places with 3. 3 could potentially switch positions with 2

however since 2 did not swap its position. If 3 (or any element for that matter) cannot

find another tone to switch places with, then it will remain in the position assigned to it

by the permutation.

Like Mäkinen and Sieranta, Ezziane also uses an elitist-based policy to ensure

that the fittest individual is preserved through generations. It considers the fittest

members from the current and previous generations, replacing the worst member of the

current generation if the fittest member of the current generation has more edge crossings

than the fittest member of the previous. Remaining members of the succeeding

generation are selected through a so-called ‘roulette wheel’ selection policy that awards

permutations with better fitness values a higher probability of survival. As Ezziane

describes it, the relative and cumulative fitness values are calculated for each individual.

30

Cumulative fitness is then subsequently used as a basis for selecting successive

generation members. A summary of the procedure is outlined [28].

3.2 Simulated Annealing

Srivastava et. al. successfully applied simulated annealing to the two-sided

bipartite drawing problem. [18] Following spectral initialization for linear arrangement

approximation, their algorithm calculates linear arrangement costs of neighbors formed

by swapping the positions of randomly selected pairs of nodes. Over time it also keeps

track of neighbors with lowest crossing count. Every time that a neighbor solution is

explored it’s edge crossing number is calculated. If its crossing count value is equal to the

best found so far it is added to a set of best crossing solutions. If it’s lower than the best

found value then the best set is emptied and the current neighbor is added to it.

Although the algorithm tries to achieve both low crossing numbers and linear

arrangements, it avoids getting stuck in local linear-arrangement based optima by

simultaneously keeping track of low crossing arrangements, even if they deviate from

optimal linear arrangements. The authors found this dual strategy to outperform iterated

barycenter, as well as the linear arrangement based methods of Newton et. al. [19] on a

wide range of bipartite test graphs (the same categories of and some test data from [37]).

Even more so, in about 30% of instances taken from their experiments, their algorithm

was able to produce crossing numbers lower than those previously published. For cycles

31

of even length and mesh graphs (graphs for which the minimum crossing number is

known), the simulated annealing algorithm was able to achieve the exact minimum.

3.3 Stochastic Hill Climbing

 Newton et. al. have successfully applied greedy randomized hill climbing to the

one and two-sided crossing minimization problems [23][19]. In the one-sided case the

basic sequential version of their heuristic works by randomly selecting nodes from the

free layer and iteratively swapping them in a greedy fashion to reduce total crossing

count. This differs from the ‘stochastic’ procedure tested by Jünger and Mutzel [8], and

from the greedy switch and sifting heuristics of Eades and Kelly [24] and Matuszewski

et. al. [25], the latter two of which greedily swap only neighboring nodes.

Newton et. al. compared several versions of their one-sided stochastic hill

climbing procedure against the highly successful penalty minimization scheme of

Demetrescu and Finocchi [11] and sifting method of Matsuzewski et. al. [25] on large

sparse graphs. Specifically, they tested the performance of a standard sequential/iterative

version of their heuristic and several parallelized versions of stochastic hill climbing for

one-sided crossing minimization of random graphs with sizes n = 100, 200, …., 1000

nodes per layer and graph densities of 0.1%, 1%, or 10%. The parallelized versions of

stochastic hill climbing involved interactions between master and slave entities where the

master would send permutations to the slaves which would then modify them through

application of stochastic hill climbing. A couple of the parallel methods that took on the

32

form of genetic algorithms also introduced mutation and cooperation (in which the master

maintains continuous communication with the slaves by resending the best or randomly

chosen permutations to them).

The sequential and parallelized versions of stochastic hill climbing were all able

to eventually surpass the sifting and penalty minimization results, showing the flexibility

of randomized hill climbing for one-sided bipartite graph drawing. While the parallel

versions of stochastic hill climbing were initially able to achieve better solutions than the

sequential version faster, it took those and the sequential version about the same amount

of time to reach the approximately optimal solution.

33

Chapter 4: Methods

4.1 Weighted and Unweighted Bipartite Graph Drawing

 6 algorithms in total were tested (the barycenter heuristic and 5 stochastic

methods) against each other for one-sided bipartite crossing minimization performance.

Except for barycenter each algorithm had a novel modification outlined below (e.g.

different stopping condition, fitness evaluation, or parameter values) to improve

performance and/or running times. All algorithms were implemented in Python with

reference to the networkx library (version 1.9.1) for basic graph creation. 100 random

weighted and unweighted bipartite graphs were generated for each combination of graph

size (20, 25 and 30) and edge density (0.1, 0.2, and 0.3) using the author’s own code. The

term ‘edge density’ refers to the ratio of the number of edges in a graph to the maximum

possible. The sets of graphs were then subsequently tested by each algorithm/heuristic.

Weighted graphs were assigned random edge weights of 1, 2 3, 4 or 5. As most prior

comparative studies only consider extremely sparse graphs for tests (e.g. graphs with

density at most 0.1) it was thought beneficial to also consider graphs with higher

densities of 0.2 and 0.3 so as to better gauge the scaling of algorithm/heuristic

performance. Graphs with higher edge densities (in the range of 0.4 to 1.0) were not

considered in the algorithm tests. Applications requiring low crossing minimization

generally involve bipartite graphs that are on the sparser side. Also, the difference

between algorithms when it comes to crossing minimization performance decreases with

34

density, so the ranking of algorithms is more apparent when it comes to handling sparse

graphs.

For both the weighted and unweighted scenarios, each algorithm/heuristic was run

5 times for every graph in a test set, with the average crossing number and standard

deviation calculated for the 5 runs. The mean of all 100 average crossing numbers was

then calculated for each test set and recorded. Similar calculations were done to

determine the average deviation above the trivial lower bound for the number of

crossings:

LB = ∑ min⁡(𝑐𝑢𝑣{𝑢,𝑣}⊆𝐿2
, 𝑐𝑣𝑢){u, v}

For each pair of distinct vertices u,v in layer 2, the lower bound calculates and

sums up the weighted minimum of cuv and cvu. The symbol cij represents the number of

crossings in the subgraph induced by the edges incident to nodes i and j, assuming that i

is placed to the left of j. If the graph is weighted, then this term is equal to the total

associated weighted crossings. Surprisingly, in the unweighted case, Jünger and Mutzel

found this lower bound to be an extremely close approximation to the exact optimum as

calculated by their branch and cut algorithm [8]. For random bipartite graphs of size 20

with densities 0.1 to 0.9 the lower bound was at most 0.3% lower than the optimum. For

very sparse graphs (each node has degree 2 on average) with sizes ranging between 10

and 100 the lower bound was almost exactly equal to the exact minimum calculated by

their branch and cut method.

35

The same procedure for calculating averages crossings, times and deviations were done

for the weighted graphs, the only difference being that edge weights were accounted for

when calculating average weighted crossings in both the algorithms and the lower bound,

and when determining total weighted edge lengths for the genetic algorithms. All

algorithms/heuristics were implemented to make use of the divide and conquer procedure

of Nagamochi and Yamada [17] when calculating total edge crossings.

A note should be made on initial x-coordinate assignments. All isolated nodes in

the second layer (the layer being permuted) were ignored by the algorithms and appended

at the end as the last nodes of the layer. The remaining nodes in the graph were given

default x coordinates of 1,2,....etc. in each layer sorted according to the nodes’ labels. So

for example if the nodes in layers 1 and 2 were {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}

respectively, then the x-coordinates for each layer would become {1, 2, 3, 4}. Similarly if

by discounting isolated nodes in layer 2 we were left with nodes 5, 6 and 8, their default

x-coordinates would become 1, 2 and 3 (1 assigned to node 5, 2 to node 6, and 3 to node

8). The isolated nodes would be appended to the end of the layer with x-coordinates of 4

and 5. With the exception of the hybrid simulated annealing algorithm which calculates

an initial coordinate assignment, all graphs were assigned the default x-coordinates of the

prior description when input into the bipartite graph drawing methods. Sections 4.1.1 and

4.1.2 provide details on the algorithms considered for unweighted and weighted bipartite

graph drawing tests.

4.1.1 Unweighted Crossing Minimization:

36

The algorithms/heuristics considered in the tests for unweighted bipartite graphs are as

follows:

1. BC: the standard average-based barycenter heuristic

2. Makinen_GA: the GA of Mäkinen and Sieranta [21] for one-sided bipartite

graph was implemented. Just as with two-sided drawings, the observation was

made that one-sided drawings with fewer edge crossings tend to have lower linear

arrangement values and vice versa. As such, a fitness function for measuring the

linear arrangement value of a permutation was used to improve the genetic

algorithm’s running time, one of its primary drawbacks. A population size of 51

was used, but the mutation operation was taken out to improve runtimes. Cutting

out mutation was found to significantly improve the overall runtimes of

Makinen_GA. The same elitist selection policy, crossover, and mutation operators

as described by the authors were used. As for the stopping condition, the

algorithm would stop after 75 consecutive runs had passed with no improvement

in the best found result. After reaching the stopping condition the algorithm

would select and return the permutation with the lowest crossing count from the

final generation.

3. Zoheir_GA: one-sided version of Zoheir Ezziane’s [22] genetic algorithm for

two-sided bipartite graph drawing [22] was implemented. As with Makinen_GA

the genetic algorithm was evolved to minimize total linear arrangement value to

obtain reasonable runtimes. A mutation rate of 0.8 and population size of 50 were

37

used. These parameters appeared through experiment to give the best balanced

tradeoff in terms of output vs. running time. The mutation step of Zoheir’s GA

was modified as well. In the original algorithm’s description the mutation of a

permutation involved the swapping of node positions while keeping track of

previously handled nodes. The genetic algorithm implemented for the following

tests was made to randomly swap nodes without keeping track of previously

handled ones. This modification was made to improve overall runtimes. The

algorithm would stop after 75 consecutive generations passed without improving

the best found result. The same elitist roulette wheel selection policy (Algorithm

3) as described by Ezziane was used. Just as with Makinen_GA, Zoheir_GA

would end by selecting and returning the permutation with the lowest crossing

count from the final generation.

4. Hybrid_SA: A one-sided version of the two-sided hybrid simulated annealing

algorithm of Srivastava and Sharma [18] was implemented. Unlike the original

two-sided algorithm, no spectral calculations were done for initial node

placement. Rather, all nodes kept their original default coordinates at the

beginning of the algorithm. The nodes of layer 2 were permuted according to their

ordering in the Fiedler vector, while the nodes of layer 1 were kept in their

original fixed coordinate assignment. An initial temperature of T0 = 300, final

temperature Tf = 1, and cooling ratio = 0.97 were set as the main parameters for

the algorithm. Also, 7 neighboring solutions were explored during each iteration

38

of the algorithm. This number along with the previous parameters were chosen

because they resulted in average crossing values that were closer in range to those

computed by the other algorithms. Rather than returning a set of best solutions (as

was described in [18]), the algorithm was modified to return just one permutation

encountered over the course of Hybrid_SA that had achieved the lowest found

crossing number.

5. SHC: the basic one-sided sequential stochastic hill climbing heuristic of Newton.

et. al. [23] was implemented. The algorithm would stop after the best found

solution had been encountered 100 times. To improve SHC running times an

observation on edge crossings was made. To explain this, suppose that nodes x

and y of layer 2 are randomly chosen by SHC for greedy swapping, with x

initially lying to the left of y. Also consider [x:y], which denotes the nodes lying

between x and y, sorted by x-coordinate. V’ will denote the subset of nodes

consisting of x, y and the nodes in [x:y], while E’ will be the set of edges incident

to the nodes of V’. If during an iteration of stochastic hill climbing we were to

decide on whether to swap nodes x and y, the decision could be made based on

edge crossings in the subgraph G’ = (V’, E’), rather than on the original graph G

as a whole. That is, rather than having to calculate edge crossings for all edges of

the graph (the most expensive operation per iteration of SHC), sometime could be

saved by focusing only on those edges that may be affected by the node swap.

These edges would be those defined by G’. As a concrete example, consider the

39

bipartite graph of Figure 4. In this drawing, it is assumed that nodes 7 and 9 were

randomly chosen from the second layer for greedy swapping. If said nodes are

swapped, (i.e. 7 gets placed in the position previously occupied by 9 and 9 is

assigned the initial x-coordinate of 7), then the only edges whose crossing counts

will be affected are those lying in the subgraph induced by nodes 7, 8 and 9 and

the associated incident edges. Focusing on this smaller subgraph helps to cut

down on total running time by discounting the edges whose cross counts stay the

same before and after a greedy swap.

Figure 8: When swapping nodes 7 and 9 during stochastic hill climbing, examining the

subgraph induced by nodes 7 through 9 and their incident edges suffices for edge

crossing calculations.

6. 3-WOLF: unweighted version of the 3-approximation algorithm by Cakiroglu et.

al. [9] was implemented. In the unweighted case weights of 1 were uniformly

assigned to all edges of the graph.

40

4.1.2 Weighted Crossing Minimization:

Weighted bipartite graph testing was done under two different scenarios. In the

first series of tests the algorithms/heuristics considered were the same as those used in the

unweighted case, the only difference being that edge weights are now accounted for (e.g.

when calculating weighted edge crossings, weighted linear arrangements, and weighted

barycenter averages). In the case of linear arrangements, if an edge e has weight wij and

endpoints with coordinates of (x1, y1) and (x2, y2), then it’s total weighted linear

arrangement value is equal to wij*|x1 - x2|.

In the second line of testing the traditional barycenter heuristic (BC) was tested

against its own weighted variant (BC_W) on random weighted bipartite graphs. This was

done to see how well the barycenter heuristic could approximate the weighted crossing

minimization numbers by ignoring edge weights rather than factoring them into its

average-based calculations.

4.2 Bottleneck Crossing Minimization

Two novel algorithms for one-sided bottleneck crossing minimization were tested

against each other: a one-sided version of the maximum edge crossings heuristic (MEC)

and a variation of stochastic hill climbing that greedily swaps vertex positions according

to the same local bottleneck crossings principle of MEC. Two versions of each heuristic

were considered, those with and those without initial barycenter preprocessing. As in

Section 4.1, heuristics for one-sided bottleneck crossing minimization were implemented

41

in python with reference to the networkx library (version 1.9.1). Random unweighted test

graphs with sizes 20, 25 and 30 and densities 0.1, 0.2 and 0.3 were generated using the

author’s own code, with each graph size and density class consisting of 100 random

bipartite graphs.

Each heuristic was run 5 times for every graph in a test set, with the average

bottleneck crossing number calculated for the 5 runs. The mean of all 100 average

crossing numbers was then calculated for each test set and recorded. The average times

(recorded in seconds) were calculated similarly. Unlike the case of bipartite crossing

minimization, there is no trivial lower bound to approximate the optimal bottleneck

crossing number for the one-sided bottleneck problem. Comparisons of heuristic

performance were thus made based on the average results of each heuristic’s column for

specified graph sizes.

All test graphs were initially assigned the same default x-coordinates of Section

4.1 when input into the bottleneck crossing minimization methods. It is assumed in both

heuristics that node permutations are being executed only on the second layer, L2, of the

bipartite graph. Specific implementation details for the tested heuristics are now outlined

as follows:

1. OMEC (One-Sided Maximum Edge Crossings): A one-sided version of the

Maximum Edge Crossing heuristic originally described by Gupta and Stallman

[27]. The EDGESIFT sub-procedure is the same as that of Section 2.5. Rather

42

than using their ‘swap’ procedure for updating edge crossings, a simple edge

counting sub-procedure, Edge_Count_Simple (Algorithm 7), was used. Assuming

an edge e1 has endpoints with x-coordinates x1 (in layer 1) and x2 in layer 2 and

similarly that another edge e2 has endpoint x-coordinates of y1 and y2 of layers 1

and 2 respectively, the algorithm makes use of the fact that e1 crosses with e2 if

either 1: x1 < y1 and y2 < x2 or 2: y1 < x1 and x2 < y2. In the first case edge e2 is

said to cross “to the left of e1” and in the second e2 crosses “to the right of e1”.

Although the implementation of Edge_Count_Simple assumes that both graph

layers have the same number of nodes, it can easily be modified to handle

unequal-sized vertex subsets.

Figure 9

43

44

Figure 10

2. BSHC (Bottleneck Stochastic Hill Climbing): A one-sided stochastic hill

climbing method adapted to handle bottleneck crossings using the local bottleneck

45

crossing principles of MEC’s EDGESIFT. As with OMEC, Algorithm 7 was

implicitly utilized by BSHC to handle the maintenance of edge cross counts. As

reflected in its pseudocode (Algorithm 8), BSHC was made to keep running until

15 consecutive generations had passed with no improvement in the graph’s

bottleneck value.

46

Figure 11

3. BC + OMEC: OMEC with initial barycenter preprocessing. Applies OMEC to a

bipartite graph that has had the barycenter heuristic initially applied to it.

4. BC +BSHC: BSHC with initial barycenter preprocessing. Applies BSHC to a

bipartite graph that has had the barycenter heuristic initially applied to it.

47

Chapter 5: Results

5.1: One-Sided Unweighted Crossing Minimization

 Average test results on graphs of size 20 in terms of percentage deviation from the

lower bound and time measured in seconds are given in Figures 12 and 13 below. For full

results including average crossing values, standard deviations, and results for larger graphs,

see the Appendix.

 From Figure 12 one can clearly see that all crossing minimization methods

gradually perform better on average with increasing graph density. For instance,

Hybrid_SA achieved average percent deviations of 6.5, 3.7, and 2.5 percent above

optimality for graph densities of 10, 20 and 30 percent respectively. Similarly, the

barycenter heuristic resulted in corresponding percent deviations of 3.0, 1.2, and 0.6. This

trend of improved performance with higher edge density is likely due to there being less

room for improvement as the number of edges in a graph increases. As a graph’s density

grows, it naturally becomes harder to avoid the crossing of pairs of edges, making it

“easier” for an algorithm to have closer to optimal output.

48

Figure 12: Average percent deviation of algorithms from the lower bound on random,
unweighted, size 20 graphs.

49

Figure 13: Average algorithm times (in seconds) when executed on random, unweighted, size 20
graphs.

Not surprisingly, barycenter ranks within the top two of the 6 methods when it

comes to minimizing crossings. As previously noted, for size 20 graphs with densities 10,

20 and 30 percent the heuristic was able to achieve crossings 3, 1.2, and 0.6 percent higher

than the associated lower bound on average. The only other method to outperform it was

the one-sided stochastic hill climbing heuristic SHC, which produced corresponding

deviations of 1.8, 0.9 and 0.4 percent above the lower bounds. However, despite its close

to optimal crossings performance stochastic hill climbing was not the fastest method, with

50

running times similar to those of one-sided hybrid simulated annealing (although with a

higher standard deviation values). On graphs of size 20 and density 30%, for instance, SHC

averaged a runtime of 3.0 seconds. This was clearly slower than the 0.0 second runtimes

of barycenter and WOLF, the two fastest methods for one-sided crossing minimization.

The high speed of these algorithms can be attributed to the fact that they are deterministic,

reordering nodes according to certain calculated sums.

 Although 3-WOLF and Hybrid_SA did not rank within the top 2, the two methods

(ranked 3rd and 4th) still achieved crossing values that were close to optimal, being at most

6.5 percent above the average lower bound. Interestingly, although 3-WOLF was designed

to optimize weighted edge crossings, it still performed very well on the unweighted graphs.

For size 20 graphs it’s average crossings ranged between 5.8 and 3.6 percent above the

average lower bounds. Although the hybrid simulated annealing algorithm produced

average results close to those of 3-WOLF, it did not achieve the same level of optimality

as it did when applied to its original two-sided crossing minimization context [18]. This

could be due to its hybrid design, which searches for permutations that give both low linear

arrangement and low crossing count values. Although low linear arrangements tend to

coincide with low cross counts in both the one and two-sided cases, they do not necessarily

yield optimal results for the latter. The previously cited relations between linear

arrangements and edge crossings in bipartite graphs was proven with the assumption that

both layers (i.e. every node in the graph) could be permuted [2,3]. It could be then that part

of the reason Hybrid_SA did not give results closer to stochastic hill climbing was because

51

of the one-sided context of the drawing problem. When applied in its original two layer

setting the linear arrangement values that it optimizes for likely give closer approximations

to optimal graph crossings than in the current study’s single layer case. Hybrid_SA may

have also missed the cut in rankings because it was not given any spectral initialization in

the one-sided crossing tests. The original two-sided version of the algorithm began with an

initial Fiedler vector-induced placement of nodes. This likely helped the simulated

annealing algorithm a lot both in terms of average crossings and in terms of time, something

that the one-sided version, Hybrid_SA, did not benefit from.

 In regards to the two genetic algorithms, it was the algorithm of Mäkinen and

Sieranta that consistently performed better in terms of average crossings. For density 10,

20 and 30 percent graphs of size 20 Makinen_GA deviated 16.3, 8.8 and 5.9 percent, on

average, above the lower bound. This was clearly lower than the average corresponding

deviations of 30.1, 15.6 and 10.4 percent that resulted from application of Zoheir_GA.

With the exception of Zoheir_GA on size 20 and density 30 percent graphs which had an

average runtime of 4.8 seconds, the two genetic algorithms were able to achieve runtimes

close to those of Hybrid_SA and SHC. This shows that at least in the unweighted context

with graphs that are not too large, genetic algorithms for bipartite graph drawing can be

time competitive if given a suitable proxy measurement for fitness evaluation. The increase

in time efficiency does come at a cost though in terms of average crossings performance,

with Makinen_GA and Zoheir_GA ranking 5th and 6th according to crossing minimization

performance.

52

As to why the genetic algorithm of Mäkinen and Sieranta performed better than

that of Zoheir, it could be due to several things. For one, although the crossover operation

of Makinen_GA was quite expensive, it did appear by design to introduce a lot of

randomization in the resulting child permutations, for instance when each child would

inherit its missing elements according to their order in the opposing parent. At the same

time, the crossover operation was also made to preserve the ordering of nodes within

segments from both (potentially fit) parents. In addition, the combination of more and less

fit permutations during this phase helped to randomize the process even more. As a result,

even though the mutation operator was removed to improve runtimes, the combined

crossover and selection portions of Makinen_GA appeared to have enough randomness to

avoid getting stuck in local optima while still evolving permutations with good fitness

values. As it repeatedly swaps the positions of nodes at random, the genetic algorithm of

Zoheir Ezziane does appear on the surface to be capable of searching a large space of

permutations and to have a lot of inbuilt randomness, like Makinen_GA. However, unlike

stochastic hill climbing, the genetic algorithm of Zoheir does not keep track of

improvements in edge crossings with node swaps. Even if the reordering of a pair of nodes

results in an increase in edge crossings, it will accept the permutation just the same. Even

more importantly though, the iterative randomized swap procedure of Zoheir’s GA is less

likely to preserve good node arrangements from previous generations. While the genetic

algorithm of Mäkinen and Sieranta preserves permutation segments during crossover, the

heavily mutation based algorithm of Zoheir is constantly changing permutations at a high

53

rate. As a result, it could be the case that Zoheir_GA was the lesser of the two genetic

algorithms because, by its design, it is harder to maintain a consistently high average fitness

value from generation to generation.

5.2: One-Sided Weighted Crossing Minimization

 Following in Figures 14 and 15 are the average results of the weighted versions of

the methods from Section 5.1 when applied to random weighted bipartite graphs. As in the

unweighted case only the average percent deviations and times are reported for weighted

size 20 graphs. Full results for graph sizes of 20, 25 and 30 can be found in the appendix.

 Apart from the average weighted crossing values being higher (due to the addition

of integer edge weights between 1 and 5) as well as the times, the percent deviations from

average lower bounds are also larger when compared to the corresponding percents for

unweighted graphs. This can in part be attributed to the rise in crossing minimization

complexity that comes with adding edge weights to a graph. The top three methods, SHC,

3-WOLF, and Hybrid_SA, scale well with the added complexity and show only small

increases in their deviations from optimality and average runtimes in comparison to their

unweighted counterparts. For density 10 percent size 20 graphs 3-WOLF generally

outperformed Hybrid_SA, while for higher 20 and 30 percent density graphs Hybrid_SA

tended to give similar or slightly lower percentage deviations than 3-WOLF.

54

Figure 14: Average percent deviation of algorithms from the lower bound on random,
unweighted, size 20 graphs.

55

Figure 15: Average algorithm times (in seconds) when executed on random, weighted, size 20
graphs.

 Interestingly, the weighted version of barycenter no longer achieves top ranking in

the weighted drawing context. A similar observation was made by Cakiroglu et. al. when

experimenting with weighted versions of common heuristics [9]. For unweighted bipartite

graphs with size 20 and density 10, the barycenter heuristic was able to come within 3

percent of the estimated lower bound on crossings. On weighted graphs of the same size

and density, however, it’s percent deviation is over 26 percent, considerably higher than

the near optimal 2.3 percent of the edge-weighted stochastic hill climbing and the second

best 5.9 percent of 3-WOLF. Even on random weighted graphs with 30 percent density

barycenter performed 8 percent worse than stochastic hill climbing and had more than

56

double the percentage deviation value of 3-WOLF. The only method that weighted

barycenter consistently performed better than was the weighted variant of Zoheir’s GA.

The genetic algorithm of Makinen and Sieranta was able to achieve slightly better weighted

crossing values than barycenter on random weighted graphs of size 20.

 In the weighted scenario Makinen_GA continued to outperform Zoheir_GA

although with higher runtimes runtimes. The reasons for its superior crossings performance

should be the same as in the unweighted case, namely that the former genetic algorithm

appears more capable of evolving populations of permutations with higher average fitness

than Zoheir’s genetic algorithm. As for its runtimes, the genetic algorithm of Makinen and

Sieranta clearly takes longer to run in the weighted scenario versus the prior unweighted

case. This may be because the crossover operator that it is heavily dependent on may not

scale well with the added complexity of weighted edges. What functions as a relatively

efficient operator on unweighted bipartite graphs may not translate to efficiency or rapid

convergence on their weighted counterparts.

That neither genetic algorithm was as competitive as the top 3 for weighted crossing

minimization is likely due to their weighted linear arrangement based fitness functions

which don’t appear to approximate weighted edge crossings very well. Essentially, the

reasoning would be similar to that made in the previous section for explaining why the

hybrid simulated annealing algorithm wasn’t able to achieve top ranking.

57

 As previously noted, stochastic hill climbing was the clear winner for minimizing

weighted edge crossings. It was not as fast as the deterministic 3-WOLF though, which

achieved the same rounded runtimes as barycenter. On size 20 graphs the runtimes for SHC

ranged between 0.8 and 3.0 seconds on average, similar to Hybrid_SA. However, despite

its slower runtimes, the fact that the weighted stochastic hill climbing heuristic, the simplest

of all the crossing minimization procedures, was able to consistently beat 3-WOLF by at

least more than 3 percent on size 20 graphs is impressive, particularly when one considers

how much a percentage difference can account for in terms of total weighted crossings (see

appendix results), and also because 3-WOLF has been shown to be a near optimal

algorithm for weighted crossing minimization. The inherent flexibility of stochastic hill

climbing and its ability to achieve crossings so close to the approximate lower bounds

suggest that it is not only effective as a simple stand-alone method for weighted crossing

minimization, but also as a potential post-processing procedure. If the graph data isn’t too

large and/or runtime is not an issue, then stochastic hill climbing alone can be used for

approximating the minimum crossing number for a weighted bipartite graph. If, on the

other hand, the graph data is quite large and/or runtime is more of an issue, then weighted

stochastic hill climbing can be applied as a greedy post-processing method to improve the

result of 3-WOLF for a weighted graph.

5.3: Weighted versus Unweighted Barycenter Results:

58

 Average results of weighted (BC_W) and unweighted (BC) variants of the

barycenter heuristic for weighted size 20, 25 and 30 bipartite graphs are presented in figures

16, 17 and 18. Actual average weighted crossing numbers can be found in the appendix.

Since both variants of the barycenter heuristic consistently averaged runtimes of 0.0

seconds, bar charts reflecting execution times were excluded.

The traditional barycenter heuristic was not originally designed to account for edge

weights. If given a weighted graph as input, BC simply ignores the edge weights and orders

nodes according to the averages of their neighbors’ x-coordinates. BC_W, on the other

hand, does consider edge weights in its calculations by computing averages as edge-

weighted sums of neighbors’ x-coordinates.

Neither BC nor BC_W was able to outperform the best methods of Section 5.2.

However, interestingly, the simple non-edge-weighted version of barycenter performs

better than its weighted variant when it comes to minimizing weighted edge crossings. This

goes against the intuition that factoring in edge weights will help to improve the

performance of a heuristic like barycenter when tested on weighted graphs. As one can see

though, by ignoring edge weights the simpler version of barycenter was able to improve

the average edge crossing performance by a significant amount over its weighted

counterpart in some cases. For bipartite graphs with density 10 percent and sizes 20, 25

and 30 the corresponding improvements in average crossings were about 10, 7 and 5

percent respectively. For density 20 percent graphs with sizes 20, 25 and 30 the

corresponding average improvements were 3.6, 2.9, and 2.6 percent. And for density 30

59

percent graphs with sizes 20, 25 and 30 the average improvements were 2.8, 1.8, and 1.7

percent.

Figure 16: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 20.

60

Figure 17: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 25.

61

Figure 18: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 30.

 Although the standard barycenter heuristic consistently performs better on the test

graphs than its weighted variant, one may notice from the previously cited numbers that

the percentage difference between the two decreases with graph size and density. It is

possible that the two versions of barycenter perform more similarly with bigger graphs

simply due to their higher complexity. It is especially the case that with higher density

62

graphs, as the number of edges increases, the possibilities for reducing weighted crossings

should go down as more pairs of edges come up that can’t avoid crossing with each other.

This is not to say, however, that the relative performance of the two methods should be

judged purely based off of percentage differences. Even a percentage difference seemingly

as small as 1.7 can amount to a weighted edge crossing reduction of almost 2,000 (e.g.

when comparing the average 123808.2 of BC for size 30 density 30 graphs to the

corresponding average of 125794.6 of BC_W as shown in the appendix). This could

potentially be significant based on the application in which such results may arise, giving

even more credence to the simpler fast heuristic that ignores edge weights.

 As for the sparser, density 10 graphs, the unweighted barycenter heuristic clearly

performs better than its weighted counterpart. As to why this may be the case, it is useful

to think of an edge-weighted graph as a multigraph (a graph that allows for loops and

multiple edges). Rather than picturing a weighted edge as a straight line running between

layers with a number attached to it, one can also imagine it as several straight lines each

with a weight of one and all connecting the same pair of vertices. So, rather than having a

single edge between two nodes with a weight of 3, one could alternately have three parallel

edges with weight one connecting the same pair of nodes. Minimizing crossings in a

weighted bipartite graph then becomes equivalent to minimizing the crossings in its

corresponding multigraph. If we now think in terms of arranging nodes to reduce the

crossings on each single edge of unitary weight in the multigraph, the regular barycenter

method that tends to straighten edges by calculating unweighted averages seems to be the

63

natural choice. Introducing edge weights in this context could potentially throw off the

average calculations and lead to a permutation that results in bad crossing values not just

for one, but all parallel edges connecting the same pair of nodes. Since the placement of a

node affects all parallel edges adjacent to it, good heuristic like the unweighted barycenter

that gives low crossing values for single edges should benefit the remaining parallel edges.

This could explain its superior performance on the crossing values of the weighted graph

as a whole.

5.3: One-Sided Bottleneck Crossing Minimization

 Average bottleneck crossing minimization results for OMEC, the one-sided variant

of MEC, BSHC, the bottleneck crossings based stochastic hill climbing procedure, and

each of the two methods with barycenter preprocessing (BC+ OMEC and BC+BSHC

respectively) are presented in figures 19 and 20 below. Only size 20 graph results are

shown, with results for other graph sizes and standard deviations given in the appendix.

As one can see, for all graph densities the bottleneck edge oriented variant of

stochastic hill climbing was able to outperform OMEC by a significant amount in terms of

average bottleneck crossing values. For size 20 density 10 graphs the average bottleneck

value of BSHC was 22.5% better than that of OMEC (27.8/22.7). When the density

increased to 20% the ratio of OMEC to BSHC was about 1.2. On size 20 graphs the two

methods had similar runtimes. However, as the edge density and graph size increased so

did the difference between the methods’ times (see appendix), with the average runtimes

64

of OMEC significantly outgrowing those of BSHC. Make note on slower runtime here

for OMEC.

Figure 19: Average bottleneck crossing results of OMEC and BSHC (with and without barycenter
preprocessing) on random unweighted size 20 bipartite graphs.

65

Figure 20: Average bottleneck crossing times of OMEC and BSHC (with and without barycenter
preprocessing) on random unweighted size 20 bipartite graphs.

Apart from OMEC and BSHC Figure 19 also considers the results of the two

methods when applied to random graphs that have been reordered by barycenter for initial

preprocessing (i.e. BC+OMEC and BC+BSHC). The intuition behind this preprocessing

step is that by applying barycenter first, the test graphs should get a quick reduction in the

average crossings occurring on individual edges. With a smart initial layout like this that

is closer to optimality, the heuristics shouldn’t take as much time to further refine the

ordering for bottleneck crossing minimization. According to the results, this intuition was

correct. In most cases barycenter preprocessing helped to reduce the average bottleneck

66

crossing values along with cuts in corresponding runtimes. For OMEC the initial

barycenter-induced orderings helped reduce its average bottleneck crossings by significant

amounts. Without preprocessing, the average OMEC bottleneck values on size 20 graphs

with 10, 20 and 30 percent edge densities were 27.8, 70.5 and 114.4 respectively. With

preprocessing these numbers decreased to 23.8, 63.3 and 107.8, values closer to those

output by BSHC. Barycenter preprocessing was also able to reduce the runtimes of OMEC

slightly for size 20 graphs, and in some cases significantly or size 25 and 30 graphs (see

appendix). For bottleneck-based stochastic hill climbing the average bottleneck values

obtained with preprocessing were similar to those without barycenter initialization. This is

a likely indication that the values obtained through BSHC were already close to optimal.

And as with OMEC, the runtimes of BSHC showed slight improvements with barycenter

preprocessing that gradually became more apparent as the graph size and density grew (see

appendix).

Despite the reduction in the crossings performance gap between BSHC and OMEC,

BSHC was still able to achieve the lowest average bottleneck crossings after initial

barycenter processing. Since OMEC ignores nodes after passing them to EDGESIFT, it’s

exploration of the search space is much more limited than bottleneck-based stochastic hill

climbing, even after barycenter has improved the initial layout. As a result, the

approximations for the bottleneck crossing minimization problem on the test graphs were

better for BSHC both with and without barycenter preprocessing.

67

Chapter 6: Conclusions and Future Research

 Stochastic hill climbing was consistently found throughout all of the preceding tests

to perform the best for one-sided unweighted, weighted, and bottleneck bipartite crossing

minimization. These findings were particularly notable in the weighted and bottleneck

crossing minimization contexts. In these cases, stochastic hill climbing was found to be

flexible enough to surpass the results of 3-WOLF and the one-sided version of the MEC

heuristic for handling bottleneck crossings. In their previous work Cakiroglu et. al. [9] had

found 3-WOLF to be a top performing algorithm for one-sided weighted crossing

minimization. Despite being the simplest of the crossing minimization methods, stochastic

hill climbing had enough randomization to outperform the prior dominance of 3-WOLF.

Also prior to this study, the one-sided bottleneck crossing minimization problem had never

been considered, and in the multi-layer crossing minimization case MEC was found to be

the best algorithm for the problem. In the tests on random unweighted bipartite graphs of

varying sizes the bottleneck-based stochastic hill climbing procedure was found to

consistently yield average bottleneck crossing values significantly lower than those output

by the one-sided version of the maximum edge crossings heuristic. Even after applying the

barycenter heuristic on test graphs for initial node placement, bottleneck-based stochastic

hill climbing was still found to outperform the one-sided variant of MEC.

The main drawbacks for stochastic hill climbing came in terms of time, with

gradual increases in runtime as the test graphs got larger and denser. If runtime is not

68

critical then the stochastic hill climbing procedures could be used alone for solving the

crossing minimization problems of the preceding sections. Being able to improve the

average crossing values by even a small percentage gives stochastic hill climbing a

competitive edge, as even a small percentage deviation from optimality can translate to

thousands of corresponding edge crossings. If the time efficiency for calculating crossing

minimization is important, then stochastic hill climbing could still be used as a post-

processing procedure, say after barycenter or 3-WOLF, to reduce edge crossings. This was

evidenced in the case of bottleneck crossing minimization, where initial barycenter

placement was found to improve the runtimes of stochastic hill climbing by significant

amounts while still achieving superior crossing values. And if simplicity is desired, then

stochastic hill climbing is particularly attractive in that it is, besides barycenter, the simplest

algorithm to implement. That one of the simplest methods was able to achieve the best

approximations for the hard crossing minimization problems is particularly impressive.

 With these conclusions in mind and in relation to the overall work of this thesis the

following extensions and problems could form promising lines of future research:

1. Although Stallman and Gupta [27] claim that it is simple to prove the NP-Hardness

of the multi-layer bottleneck crossing minimization problem by adapting

techniques from previous work [1][4], a formal proof is not supplied in their

technical report or in the subsequent paper by Stallman [29]. A formal proof of this

claim would be desirable, as well as one for the one-sided variant of the problem.

69

2. The majority of studies that concern bipartite graph drawing assume that the

minimization of crossings is not only beneficial for circuit-based applications, but

is also the basis of the easiest to read and aesthetically pleasing of bipartite graph

layouts. It would be interesting to conduct a study by which users view and rate

bipartite graph drawings that have been optimized according to varying criteria:

crossing minimization, minimal edge length, and bottleneck crossing minimization.

Although graph drawings are primarily judged by edge crossings, it may be that in

the case of bipartite graphs, drawings that are optimized according to other aesthetic

measures appear more useful and are easier to understand.

3. In the case of traditional bipartite graph drawing, exact methods exist for one-sided

[8], two-sided [39] and multilayer crossing minimization [38]. To the author’s

knowledge there are no published algorithms for calculating the minimum

bottleneck crossing number for bipartite graphs. It would be very useful for future

research to have such a method, not only to solve the problem exactly and hopefully

efficiently but also to provide a minimum baseline to gauge the crossing

performance of various approximation algorithms and heuristics.

4. The problem of two-sided weighted crossing minimization has never been studied.

It would be worthwhile to compare the performance of an iterative 3-WOLF against

a two-sided weighted stochastic hill climbing in this context. It would also be

interesting to see how iterated barycenter methods (both ones including and

excluding edge weights in their calculations) would perform, especially since the

70

iterated barycenter heuristic is one of the primarily dominant methods for

unweighted two-sided bipartite graph drawing.

5. It was observed that the traditional barycenter heuristic yielded lower weighted

crossings when ignoring edge weights than the weighted variant that has been used

previously by researchers for weighted graphs. The difference between the two in

terms of percentage deviation from optimality does appear to close though with

increasing graph sizes and densities (see appendix). Further experimental studies

should be done to compare the performance of the two versions of barycenter on

larger-sized graphs and with more variation in edge weights to see how the results

may change with bigger data.

6. It would be worthwhile to repeat the weighted and unweighted one-sided drawing

experiments with barycenter heuristic methods that have been augmented with

various tie breaking heuristics (i.e. heuristics that will determine the relative order

of nodes that have the same average computed by barycenter). Poranen and

Mäkinen explored the utility of such tie-breaking methods for two-sided bipartite

graph drawing, finding that such heuristics did indeed improve the average results

on various sets of bipartite test graphs [36]. It would be particularly interesting to

see how well these heuristics apply to both the weighted and unweighted cases for

one-sided bipartite graph drawing.

7. It would also be interesting to modify the population generation and selection

phases of our genetic algorithms to discount repeated permutations. This could, as

71

noted by Khan [41] potentially lead to a wider more varied searching of the solution

space. In turn the average crossing results may improve, and possibly even the

running times (for instance if it results in the GA’s taking fewer iterations to

converge) despite the extra computational effort in checking for repeat

permutations.

8. It would be worthwhile to repeat the bottleneck crossing tests with a version of

BSHC that is more optimized. Specifically, a modified version of the sub-procedure

for counting subgraph edge crossings in stochastic hill climbing could cut down the

runtime of BSHC. Rather than recalculating the edge crossings of the graph as a

whole during each iteration, bottleneck stochastic hill climbing could limit its

calculations to a smaller subgraph and thus save a considerable amount of runtime.

The runtime of OMEC could also be improved by making use of the updating swap

procedure of MEC, rather than the simpler Edge_Count_Simple method for

keeping track of individual edge crossings.

72

Appendix

The tables that follow fully summarize the data obtained through the experiments

outlined in Chapter 4. Each table presents the average performance results for algorithms

in specific graph drawing contexts and for varying graph sizes (20, 25, or 30). In the case

of weighted and unweighted crossing minimization, data are given in the same tabulated

form with a column set for each algorithm. Column data is given in rows (corresponding

to specific graph densities and separated by horizontal lines) for both average results and

standard deviations in results. Columns for the top 2 or 3 performing algorithms in

unweighted and weighted crossing minimization are bolded to emphasize their rankings.

Within each row of a column, the average number of edge crossings, time (in

seconds) and percentage deviation of an algorithm from the lower bound are given in said

order and separated by vertical lines. So for instance, on random unweighted bipartite

graphs of size 20 and density 10% the genetic algorithm of Mäkinen and Sieranta

produced layouts, with 209.4 crossings in 1.4 seconds on average. Its average percentage

deviation above the lower bound was 16.3%. Its average associated standard deviations

were 9.5, 0.4, and 5.5 respectively.

Following weighted and unweighted crossing minimization result tables are those

comparing the results of weighted (BC_W) versus the traditional unweighted (BC)

barycenter heuristic. Since both heuristics are essentially deterministic their average

standard deviations in results (which are all 0.0) are not given. The average weighted

73

crossings, time, and percent from optimality are presented in the same format as in the

preceding tables. Results for graphs of size 20, 25 and 30 are all given in the same table.

The final set of tables at the end of the appendix give the full results for one-sided

bottleneck crossing minimization with and without barycenter preprocessing. Average

bottleneck crossings and time in seconds of each algorithm are given for each graph size

and density with standard deviations in parentheses. So for instance on graphs of size 20

and density 10 percent OMEC resulted in an average bottleneck crossing value of 27.8

with a standard deviation of 0.3. The corresponding average time was 0.4 seconds with

an average standard deviation of 0.0 seconds.

Unweighted One-Sided Crossing Minimization Test Results:

74

Weighted One-Sided Crossing Minimization Test Results:

75

76

Weighted vs. Unweighted Barycenter Results:

One-Sided Bottleneck Crossing Minimization Results:

77

78

References

[1] M.R. Garey, D.S. Johnson. Computers and Intractability - A Guide to the Theory and

Practice of NP-Completeness. W.H. Freeman, San Francisco, 1979

[2] F. Shahrokhi et. al. “On Bipartite Drawings and the Linear Arrangement Problem,”

SIAM J. Comput., vol. 30, 2001, pp. 1773-1789.

[3] M. Juvan and B. Mohar. “Optimal Linear Labelings and Eigenvalues of Graphs,”

Discrete Appl. Math, vol. 36, 1992, pp. 153-168.

[4] M.R. Garey and D.S. Johnson. “Crossing Number is NP-Complete,” SIAM J.

Algebraic and Discrete Methods, vol. 4, pp. 312-316, (give date).

[5] P. Eades and N.C. Wormald. “Edge Crossings in Drawings of Bipartite Graphs,”

Algorithmica, vol. 11, 1994, pp. 379-403.

[6] K. Sugiyama et. al. “Methods for Visual Understanding of Hierarchical System

Structures,” IEEE Transaction on systems, Man and Cybernetics, vol. 11, No. 2, 1981,

pp. 109-125.

[7] Xiao Yu Li and Matthias F. Stallman. “New Bounds on the Barycenter Heuristic for

Bipartite Graph Drawing,” Information Processing Letters, vol. 82, June 30 2002, pp.

293-298.

[8] M. Jűnger and P. Mutzel. “2-Layer Straight Line Crossing Minimization:

Performance of Exact and Heuristic Algorithms,” J. Graph Algorithms Appl., vol. 1,

1997, pp. 1-25.

[9] Olca A. Cakiroglu et. al. “Crossing Minimization in Weighted Bipartite Graphs,”

Experimental Algorithms, vol. 4525, Springer Berlin Heidelberg, 2007, pp. 122-135.

79

[10] A. Yamaguchi and A. Sugimoto. “An Approximation Algorithm for the Two-

Layered Graph Drawing Problem,” in Proceedings of 5th Annual Intl. Conf. on

Computing and Combinatorics (COCOON ‘99), LNCS, Springer, 1999, pp. 81-91.

[11] C. Demestrescu and I. Finocchi. “Breaking Cycles for Minimizing Crossings,” J.

Exp. Algorithms, vol. 6, no. 2, 2001.

[12] T. Eloranta and E. Makinen. “TimGA: A Genetic Algorithm for Drawing Undirected

Graphs,” Divulgaciones Matematicas, vol. 9, no. 2, 2001, pp. 155-170.

[13] Q.G. Zhang et. al. “Drawing Undirected Graphs with Genetic Algorithms,”

Advances in Natural Computation, vol. 3612, 2005, pp. 28-36.

[14] B. M. M. Neta et. al. “A multiobjective genetic algorithm for automatic orthogonal

graph drawing,” in Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, GECCO 2011, Dublin, Ireland, ACM, July 12-16, 2011, pp.

925-932.

[15] B. M. M. Neta et. al. “A fuzzy genetic algorithm for automatic orthogonal graph

drawing,” Applied Soft Computing, vol. 12, no. 4, April 2012, pp. 1379-1389.

[16] H. He et. al. “Genetic algorithms for the 2-page book drawing problem of graphs,”

Journal of Heuristics, vol. 13, no. 1, Feb 2007, pp. 77-93.

[17] Hiroshi Nagamochi and Nobuyasa Yamada. “Counting edge crossings in a 2-layered

drawing,” Information Processing Letters, vol. 91, no. 5, September 15, 2004, pp. 221-

225.

[18] K. Srivastava et. al. “A hybrid simulated annealing algorithm for the Bipartite

Crossing Number Minimization Problem,” in Evolutionary Computation, 2008. CEC

2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on, Hong

Kong, 2008, pp. 2948-2954.

80

[19] Matthew Newton et. al. “Two New Heuristics for Two-Sided Bipartite Graph

Drawing,” in Graph Drawing Lecture Notes in Computer Science, vol. 2528, Springer

Berlin Heidelberg, 2002, pp. 312-319.

[20] Y. Koren and D. Harel. “A multi-scale algorithm for the linear arrangement

problem,” in Proceeding WG ‘02 Revised Papers from the 28th International Workshop

on Graph-Theoretic Concepts in Computer Science, London, UK: Springer-Verlag, 2002,

pp. 296-309.

[21] E. Mäkinen and M. Sieranta. “Genetic Algorithms for Drawing Bipartite Graphs,”

International Journal of Computer Mathematics, vol. 53, 1994, pp. 157-166.

[22] Z. Ezziane. “Experimental Comparison between Evolutionary Algorithm and

Barycenter Heuristic for the Bipartite Drawing Problem,” J. Computer Science, vol. 3,

no. 9, 2007, pp. 717-722.

[23] M. Newton et. al. “A Parallel Approach to Row-Based VLSI Layout using

Stochastic Hill Climbing,” Developments in Applied Artificial Intelligence, Springer

Berlin-Heidelberg, vol. 2718, 2003, pp. 750-758.

[24] P. Eades and D. Kelly. “Heuristics for reducing crossings in 2-layered networks,”

Ars Combinatoria, vol. 21, 1986, pp. 89-98.

[25] C. Matuszewski et. al. “Using sifting for k-layer straightline crossing minimization,”

in 7th International Symposium on Graph Drawing (GD’99), LNCS 1731, Springer,

1999, pp. 217-224.

[26] S. Bhatt and F. Leighton. “A framework for solving VLSI graph layout problems,”

Journal of Computer and System Sciences, vol. 28, 1984, pp. 300-343

81

[27] S. Gupta and M. Stallman. “Bottleneck crossing minimization in layered graphs,”

Dept. Computer Science, NC State University, North Carolina, Rep. 13, 2010.

[28] Henry S.H. Chung et. al. “An Optimized Fuzzy Logic Controller for Active Power

Factor Corrector Using Genetic Algorithm” in The Practical Handbook of Genetic

Algorithms: Applications, 2nd ed. Boca Raton, FL, CRC Press, 2000, ch. 11, sec. 11.3.4,

pp. 376.

[29] M. Stallman. “A heuristic for bottleneck crossing minimization and its performance

on general crossing minimization: Hypothesis and experimental study,” Journal of

Experimental Algorithmics, vol. 17, 2012.

[30] U. Brandes et. al. “Visualizing related metabolic pathways in two and a half

dimensions” (long paper), in Proceedings of Graph Drawing (GD ’03), LNCS, Springer,

2004, pp. 111-122.

[31] U. Brandes and D. Wagner. “Analysis and Visualization of Social Networks,” in

Graph Drawing Software, Springer, 2003, pp. 321–340.

[32] M. Forster. “Applying crossing reduction strategies to layered compound graphs,” in

Proceedings of Graph Drawing (GD ’02), LNCS, Springer, 2002, pp. 276-284.

[33] Brian P. Flemming et. al., “Minimization or Maximization of Functions,” in

Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University

Press, ch. 10, sec. 9, pp. 445-447.

[34] Zahra Karimi-Dehkordi et. al., “Sudoku Using Parallel Simulated Annealing”, in

Advances in Swarm Intelligence, Springer Berlin Heidelberg, 2010, ch. 60, pp. 461-467.

82

[35] Xiaofang Pei et. al., “Application of Simulated Annealing Algorithm in Fingerprint

Matching,” in Applied Informatics and Communication, Springer Berlin Heidelberg,

2011, ch. 5, pp. 33-40.

[36] Timo Poranen and Erkki Makinen. “Tie Breaking Heuristics for the Barycenter and

Median Algorithms,” unpublished.

[37] Web site for test graphs: Available: http://math.nist.gov/MatrixMarket/

[38] M. Jűnger et. al. “A polyhedral approach to the multi-layer crossing minimization

problem,” in Graph Drawing: 5th International Symposium, GD ‘97, Rome, Italy,

September 18-20, 1997. Proceedings, Springer, 1997, ch. 2, pp. 13-24.

[39] V. Valls et. al. “A branch and bound algorithm for minimizing the number of

crossing arcs in bipartite graphs,” European Journal of Operational Research, vol. 90,

1996, pp. 303-319.

[40] B. Smith and S. K. Lim, “QCA channel routing with wire crossing minimization,” in

Proceedings of the 15th ACM Great Lakes Symposium on VLSI, GLSVLSI ‘05, 2005, pp.

217-220.

[41] Salabat Khan et. al. “A Solution to Bipartite Drawing Problem Using Genetic

Algorithm,” in Advances in Swarm Intelligence, Springer-Verlag Berlin Heidelberg,

2011, ch. 63, pp. 530-538.

http://math.nist.gov/MatrixMarket/

	University of New Mexico
	UNM Digital Repository
	5-1-2016

	Stochastic Methods for One-Sided Bipartite Crossing Minimization and its Variants
	Tanya Jeffries
	Recommended Citation

	tmp.1469198166.pdf.kKD1J

