
University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2015-06-26

Formal Analysis and Verification of Cyber-Physical
Systems for the Smart Grid
Henry Senyondo
University of Miami, henrykironde@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Embargoed is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Senyondo, Henry, "Formal Analysis and Verification of Cyber-Physical Systems for the Smart Grid" (2015). Open Access Theses. 571.
https://scholarlyrepository.miami.edu/oa_theses/571

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/571?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

FORMAL ANALYSIS AND VERIFICATION OF CYBER-PHYSICAL SYSTEMS
FOR THE SMART GRID

By

Henry Senyondo

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

August 2015

c©2015
Henry Senyondo

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Master of Science

FORMAL ANALYSIS AND VERIFICATION OF CYBER-PHYSICAL SYSTEMS
FOR THE SMART GRID

Henry Senyondo

Approved:

Saman Zonouz, Ph.D.
Assistant Professor of Electrical
and Computer Engineering
Rutgers University

Mohamed Abdel-Mottaleb, Ph.D.
Professor of Electrical and Computer
Engineering

Kamal Premaratne, Ph.D.
Professor of Electrical and Computer
Engineering

Dean of the Graduate School

SENYONDO, HENRY (M.S., Electrical and Computer Engineering)

Formal Analysis and Verification of
Cyber-Physical Systems for the Smart Grid

(August 2015)

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Saman Zonouz.
Co-supervised by Professor Mohamed Abdel-Mottaleb.
No. of pages in text. (53)

The current development in cyber-physical systems technology, from a static to a

more dynamically distributed environment, has contributed towards the need for the

development of the future cyber-physical security support systems. These power sys-

tems have evolved from a unidirectional to a bidirectional infrastructure with millions

of nodes from the source to the destined power user. The existing security tools can

not provide the required level of trusted platform for these system. The monitoring

of this dynamic network involves ensuring that the network is in a stable state under

all circumstances. The circumstances could include natural disasters, attacks from

terrorist activities, undetected malfunctions and poor configurations. The existing

security schemes in power control systems only consider securing the the power grid

at single point of the infrastructure level especially using firewalls. In this thesis,

we present a series of threat models that could be used against the evolving cyber-

physical system and we model tools that prevent these attacks. We utilize the SMT

verification solver engine to perform the formal analysis of the system components.

Dedicated to my Parents

iii

Acknowledgments

I want to thank my advisor Prof. Saman Zonouz for giving me this opportunity

to work under his guidance. This has only been possible because of his brilliant

mentorship and great ideas during my time at 4N6 Research Group.

I would also like to thank Prof. Mohamed Abdel-Mottaleb for being my co-

supervisor, as well as providing all the additional support needed for this work. In

addition, I would like to thank him for the parental guidance he provided.

I would also like to thank all the people who contributed to the project, Dr. Stephen

McLaughlin, Clement Garrigues, Luis Garcia Antonio, Alessio Antonini, Ying Chen.

This work could never be successful without your contributions.

I also thank the members of my committee, Prof. Mohamed Abdel-Mottaleb,

Prof. Saman Zonouz, Prof. Kamal Premaratne for providing valuable feedback and

insights for this work as well as the time they spent reviewing this thesis.

Many thanks to the 4N6 Research and Fortinet Cybersecurity Labarotory mem-

bers for the support and and creating a very conducive research environment. I also

thank our staff.

Lastly, I would like to thank my Parents, relatives and friends for being so sup-

portive. They are always there for me, and given me a listening ear.
Henry Senyondo

University of Miami

August 2015

iv

Table of Contents

LIST OF FIGURES viii

LIST OF TABLES x

1 INTRODUCTION 1

1.1 Summary of Contributions . 4

1.2 Related Work . 4

1.3 Thesis Organization . 5

2 CYBER-PHYSICAL SYSTEMS 7

2.1 Control System Security . 8

2.2 Automation Control Architecture . 9

3 THREAT MODEL 13

3.1 Control System Threats . 14

3.2 Current Countermeasures . 17

4 EXPERIMENTAL SETUP 19

v

4.1 Reverse Engineering . 19

4.1.1 Disassembler . 19

4.1.2 Compiler . 21

4.2 Data Exchange . 22

4.3 Performance . 24

4.3.1 Compiler Evaluation . 24

4.3.2 Disassembler Evaluation . 24

4.3.3 Latency Evaluation . 24

5 MODEL VERIFICATION 30

5.1 Parallel Model Generation . 30

5.2 Symbolic Execution of PLC Code . 31

5.2.1 Model Checking . 34

5.2.2 Model Refinement . 35

6 COVERT CHANNEL COMMUNICATION 38

6.1 PHYCO Introduction . 38

6.2 PHYCO Threat Model . 39

6.3 Message Transmission . 40

6.3.1 Message Transfer . 42

6.3.2 Message Reception . 43

6.4 Data Transfer Reliability . 43

vi

7 CONCLUSION 48

7.1 Ongoing and Future Work . 48

BIBLIOGRAPHY 50

vii

List of Figures

2.1 programmable logic controller . 9

2.2 Statement List Sample . 10

2.3 Function Block Diagram Sample Sample 11

2.4 Ladder Logic . 11

2.5 PLC Architecture Overview . 12

3.1 Industrial Control Systems Attacked: ICS-CERT 2014 14

3.2 Threats Attack Methods: ICS-CERT 2014 15

4.1 MC7 figure . 26

4.2 Instruction bit representation. 27

4.3 STL source. 27

4.4 Compiler Evaluation . 28

4.5 Disassembler Evaluation . 28

4.6 PLC Latency Evaluation . 29

5.1 RCR Execution Overview . 31

5.2 Instruction List Intermediate Language grammar 33

5.3 Sample IL To ILIL conversion . 36

viii

5.4 Symbolic Execution Example . 37

6.1 PHYCO Thread Model . 41

6.2 Power System Topology. 44

6.3 Received signal affection for decoding. 45

6.4 PHYCO decoding time requirements. 46

ix

List of Tables

6.1 Received signal affection for decoding. 45

x

CHAPTER 1

Introduction

A shift in the power system infrastructure from a static to a more dynamically

distributed environment has contributed towards the need for the enhancements of

the future cyber-physical support systems. The power systems have evolved from a

unidirectional to a bidirectional infrastructure with millions of nodes from the source

to the destined power users.

These systems have also moved from physically connected networks to wireless

power transmission systems, where electromagnetic energy is distributed across the

grid without interconnecting wires [1]. The end users could be storage facilities or

applications. These storage facilities could later be used as power sources. The moni-

toring of this dynamically changing network involves ensuring that the entire network

is in a stable state under all circumstances that could include natural disasters, at-

tacks from terrorist activities, undetected malfunctions and poor configurations. This

ubiquitous nature of the power grid is referred to as the smart grid. A smart grid,

refers to a power grid environment where power distribution and information follows

a bidirectional model in an automated fashion to improve the efficiency, reliability,

economics, and sustainability of the production and distribution of electricity. The

1

2

smart grid infrastructure should have highly effective fault detection and self-healing

mechanisms.

In order to have good control of these systems, industrial control systems (ICS) and

supervisory command and data acquisition (SCADA) systems have been used. These

systems are connected to different components of the smart grid including networks

of the critical cyber-physical infrastructure and the internet. The systems monitor

large amounts of data over the smart grid that is collected at the different points.

The complexity of the systems is associated with a high cost of security since cyber-

attacks can easily be tailored at different parts. Any intrusion on the cyber-physical

infrastructure could cause catastrophic damage including a big economic loss.

The existing security schemes in power control systems only consider securing the

power grid at single points of the cyber-physical infrastructure [2, 3]. In this work,

we categorize the power grid into two layers. The top layer, which we refer to as

the network/distribution, is comprised of the distribution and the end users of the

smart grid environment. The core/lower layer deals with the automation and control

processing. All the energy distribution in the grid takes place at this layer. The layer

constitutes the control systems which govern the power flow and information flow.

A programmable logic controller (PLC) is a general-purpose programmable digital

computer that is mainly used for automation [4]. PLCs can be compared to normal

desktop computers, however they are more reliable. PLCs are designed with longevity

in mind can withstand extreme temperatures, humidity and vibration. At the smart

grid automation level, PLCs are used for processing the distribution of power, data

handling, data storage, and communication.

3

Monitoring and control of the smart grid infrastructure is done by the SCADA

systems [5–8]. The SCADA systems can be distributed over the entire smart grid

since the environment is large. Due to the evolution of the power grid, SCADA

systems have evolved and they have included the internet to their architecture cite.

A SCADA system usually consists of the following subsystems:

• Remote terminal units (RTUs) are special units that connect to sensors. The

are used to convert sensor signals to digital data. These RTUs have telemetry

hardware capable of sending and receiving the converted digital data to the

supervisory system.

• Programmable logic controller (PLCs) which perform the automation by using

sensors. The sensor data is converted to digital data and provided to the PLCs

as inputs. The PLC provide digital outputs after processing the instructions

using the input data.

• A data server is a software service which stores all the data over the smart grid.

This data could be from wired components like the PLCs or wireless components

like the Satellites. The data center is connected to most parts of the Smart grid.

Data in the smart grid is distributed and managed by a distributed database

management system. The main data elements of the SCADA are called tags

or points [9–11]. These include the input values, output values and operation

data. The input and output can be obtained from the various sensors. This

type of data is known as soft data. The operation data is obtained from the

control systems and is known as hard data.

4

1.1 Summary of Contributions

Stuxnet which was discovered in June 2010 is described as a computer worm [12]

with zero-day attack [13]. It was designed to attack industrial programmable logic

controllers. PLCs are used to automate electro-mechanical processes like those used

to control machinery on factory assembly lines, or centrifuges for separating nuclear

material. Stuxnet worm compromised Iranian PLCs, collecting information on in-

dustrial systems and causing the fast-spinning centrifuges to tear themselves apart.

Stuxnets design and architecture are not domain-specific and it could be tailored as

a platform for attacking modern SCADA and PLC systems. Stuxnet is said to have

ruined almost one-fifth of Iran’s nuclear centrifuges [12].

The current goal of this work is to develop tools that could support these critical

cyber-physical infrastructures from such attacks and can ensure a reinstatement in

case of such disasters. This would require both securing the infrastructure at the

hardware level and at the application level.

1.2 Related Work

The current evolution of the smart grid environment has led to development of new

strategies that support and enhance the security of this cyber-physical infrastructures.

Several protocols and policies have been put in place to enhance the security of the

cyber-physical infrastructure. The National Institute of Standards and Technology

(NIST) created guidelines to allow the secure integration of devices on to the smart

grid [14]. However, there has been a high increase in the number of attacks on the

cyber-physical systems. A report from ICS-CERT, shows over 70% increase in the

5

number of threats and attacks on these systems. Data mining and analysis concepts

have been utilized in network communications as a means to intrusion detection.

These tools and approaches can help in detecting intrusion based on the expected

behavior of the various data points in the network [15–18]. The smart grid has

communication platforms with several nodes and data is transmitted between these

nodes.

The communication platform of the smart grid can be attached using several ap-

proaches. Some researchers have shown techniques to attach these systems. Some

of the most complicated attacks have shown stealth capabilities. Xiao, et al. [19]

worked on a covert channel using copy-on-write-based memory deduplication imple-

mentations. In the work, they showed how these communications could be exploited

by the attackers in virtualized environments specifically. Additionally, Castiglione,

et al. [20] proposed stealth communication using spam emails. Khan, et al. [21] de-

signed a cluster-based covert channel so as to evade disk investigation and forensics

attempts. The covert channel avoids detection by not using the storage on the filesys-

tem of the compromised system hence lesser chances to be detected by the detection

tools. PHYCO avoids detection by the cyber security sensors to zero since it does

not use the cyber assets, computer networks nor PLC links of the cyber-physical

infrastructure

1.3 Thesis Organization

This Thesis illustrates the concepts and approaches that could be used to en-

hance the security of cyber-physical infrastructures. The main underlying feature of

this work is the use of formal methods to model and detect intrusions in the cyber-

6

physical systems. We define threat models and provide well tailored approaches for

the threats. Chapter one provides an overview of the current state of the cyber-

physical systems/smart grid. Chapter two explains the architecture of the control

systems in the cyber-pyhsical environment. In chapter three, we give a description of

the treat models and some current counter measures that have been proposed. Chap-

ter four show the reverse engineering of the core components of the cyber-physical

infrastructure. Additionally, we describe the architecture of our experiment in this

chapter. In chapter five, we give details of the formal methods and how they are

mapped into our system to perform model verification. Chapter six demonstrates our

threat model giving a fully descriptive and well tailored stealth intrusion example. In

chapter seven we provide a conclusion and future work.

CHAPTER 2

Cyber-Physical Systems

The current trend and shift in the power system infrastructure from a static to

a more dynamically distributed environment has contributed towards the need for

the enhancements of the future cyber-physical support systems. The power systems

have evolved from a unidirectional to a bidirectional infrastructure with a millions

of nodes from the source to the destined power user. The users could be storage

facilities or applications/end-users. Energy could be transmitted from one source

and stored; later the storage becomes the source providing energy to the end user.

For example, the green cars evolution has utilized energy storage facilities to enable

recharging of electric cars. The monitoring of this dynamic network involves ensur-

ing that the network is in a stable state under all circumstances that could include

natural disasters, attacks from terrorist activities, undetected malfunctions and poor

configurations. The existing security schemes in power control systems only consider

securing the the power grid at single point of the infrastructure level. The current

goal of this work is to develop tools that could support this infrastructure and could

ensure a reinstatement in case of such disasters. This would require both securing

the infrastructure at the hardware level and at the application level.

7

8

2.1 Control System Security

The power grid has transformed from a static to a more dynamically distributed en-

vironment [22]. This evolution has brought about new improved technology like smart

meters to be added to the original power grid. This development has contributed to

a smarter power grid referred to as the smart grid. However, the evolution requires

deep understanding of these added technologies in order to keep the grid secure. This

new hardware is developed by different manufacturers. The hardware have different

protocols that are used when communicating with the critical cyber-physical infras-

tructure. A fault in the production system could create an entry point for intrusion.

Detecting attacks over this dynamic grid becomes a very difficult process and needs

very diverse approaches.

According to Camacho, at el [23], smart grid is an incorporation of intelligence,

communication and the power grid. To provide efficient cyber-security for these

cyberphysical components, first we need to understand the core components that

support this infrastructure. In our work we classify the cyberphysical environment

into layers. At the top of the stack is the network/distribution layer. This layer

includes all the elements that enable power and communication to be transferred to

different locations. In the case of communication, the network of sensors and physical

lines are utilized for this purpose. Data in the sensors could either be analog or digital.

The sensors are also known as data points in the cyberphysical environment since each

sensor is a source of data.

9

As per the Industrial Control System Cyber Emergency Team (ICS-CERT), there

has been a high increase in the number of attacks that have been tailored toward

industrial control systems.

2.2 Automation Control Architecture

The core component of the cyberphysical infrastructure is the automation or con-

trol center. This comprises special purpose computers (PLCs) to monitor and control

the flow/distribution of the power. PLCs are micro-controllers which are specifically

Figure 2.1: programmable logic controller

built for industrial automation. Unlike desktop computers, PLCs are designed to

10

withstand the harsh environment of industrial processing. As input from sensors are

taken in, the PLCs runs a set of instructions based on these inputs and they create

the corresponding outputs. Each single execution of these machines is called a scan

cycle. Figure 2.1 shows a diagram of a PLC.

PLCs are programmed in mainly three languages: Statement List (STL), Ladder

logic (LAD) and Function Block Diagram (FBD). Both Statement List and Ladder

Logic provide a graphical circuit like diagram interface. On the other hand, the

Statement List PLC programming language is low-level machine-oriented language.

Instructions in the Statement List language are line-oriented; Each instruction takes

up one line. The instruction line begins with an operation or command and one or

many operands. In some cases like loops/jumps, the instructions may be preceded by

a label followed by a colon. Figure2.2 shows a sample of STL programming language.

Figure 2.2: Statement List Sample

The Function Block Diagram is a graphical programming language that connects

block-boxes to form a program. These blocks may be arithmetic, Boolean, or other

11

functional elements and function blocks. Figure 2.3 shows a sample of the FBD

language.

Figure 2.3: Function Block Diagram Sample Sample

Ladder Logic is a graphical programming language comparable to relay controls.

They utilize the Boolean variables and connect elements using vertical or horizontal

lines. Figure2.4 shows a sample of LD language.

Figure 2.4: Ladder Logic

The PLC firmware is comprised of the several blocks; organization blocks (OB),

Function Block (FB), Data Block (DB) and Function (FC). PLC execution of the

instruction set starts at the organization block. An industrial process can have more

than one OB block. The Function Block stores the static variables of the PLC.

The Function does not contain static variables but can be assigned parameter for

12

processing. At the start of the program execution, the operating system identifies

the OB block and the control is passed to this block. The flow of control during

execution is based on the instructions in that process implemented. In the case where

the program has other OB blocks, control is passed on to these blocks sequentially

based on the block number.

In addition to the main blocks (OB, FB, DB and FC), the PLC has three system

blocks SFB, SFC and SDB. These blocks are not available to the users but can be

assessed from the main building blocks (OB, FB and FC). The figure2.5 below gives

an overview of the PLC architecture.

Figure 2.5: PLC Architecture Overview

CHAPTER 3

Threat Model

Stuxnet, discovered in 2010 [12], is one of the most powerful malware that is known

to have attacked cyber-physical systems. The malware was developed to target the

control systems of the Iranian nuclear power plant. This malware may have been

introduced to the system using a USB, however it had the capabilities of reproducing

and infecting other PLC control systems on the network. The malware was designed

to read data while sending it to a different control unit undetected. At the Iranian

nuclear plant, Stuxnet also provided false data readings to the human machine inter-

face (HMI) as it operated the centrifuges with its own sets of data and commands.

This eventually managed to cause the fast-spinning centrifuges to tear due to the

high speed caused by the malware. There are many approaches and protocols that

have been proposed to protect cyber-physical systems [24,25] However, cyber-physical

systems still lack sufficient approaches and tools for protection. In this chapter, we de-

scribe the various attack vectors that can be used against the cyber-physical systems

and last we give an overview of the current counter measures.

13

14

3.1 Control System Threats

CyberPhysical system attacks can be tailored using various vectors. Different at-

tack vectors have be demonstrated and several of these attacks have been reported and

documented by the ICS-CERT. In 2014, ICS-CERT reported 245 industrial control

systems attack that were responded to. Figure 3.2 shows the 2014 ICS-CERT fiscal

year report. According to the report, 32% targeted the Energy Sector, 27% targeted

Critical Manufacturing systems, 6% targeted Health care, Water supply systems and

Communications each with 6%, and Government Facilities at approximately 5%.

Figure 3.1: Industrial Control Systems Attacked: ICS-CERT 2014

According to the report, more than half of the incidents reported, the method of

attack remained unclear, while 17% were spear phishing ops, 22% were network scan-

ning, and 5% targeting weak authentication. Figure 3.2 shows the various methods

used in these attacks. The effectiveness of these attacks depends on how well the mal-

15

ware is developed. In addition, the extent of penetration depends on the protection

protocols at various layers in the cyber-physical infrastructure. To understand the

possibility of the attack vectors, we discuss the various entry points and the possible

extent of penetration. The extent of penetration, after an entry point has been found,

depends on the internal security of the system components in that network.

Figure 3.2: Threats Attack Methods: ICS-CERT 2014

The HMI is an important component of the smart grid or cyber-physical systems.

This HMI is comprised of computers that are used for the monitoring of the various

states of the systems. An attack can be launched by compromising these systems

internally. Since these machines are operated by humans, an insider could introduce

the malware to the system using various memory devices such as USBs. In another

case, a legitimate employee could intentionally give wrong instructions to the control

system with a goal of destroying the system.

16

CyberPhysical systems make up very large distributed networks. The networks

spread from the end user applications to the power sources. As the network expands

rapidly with the integration of new devices on the grid, security measures have been

developed to protect the network. The main method used is the use of firewalls. These

firewalls could easily be exploited if some of the devices are not well configured [26,27].

Once a network is compromised, several attacks could be launched that would cause

catastrophic damages to the cyber-physical critical infrastructure. An intelligent

malicious attack [28] can also use the network topology to calculate the appropriate

attack.

Network attacks can be performed both at the power control layer and at the dis-

tribution/application layer. In the former case, a single PLC attack over a distributed

network could lead to the compromise of other PLCs in the same network [29–32].

An attacker could use the topology of this compromised network to perform a more

sophisticated attack on the entire system. For example, PHYCO [28] utilizes the

topology of these systems to perform a targeted and well calculated attack.

At the distribution or application level, several threat models have been proposed

targeting end users [33]. These security threats include smart meter data collection

for consumer profiling. In this case, smart meters are attacked and the data collected

is used to spy on the consumers.

Another attack vector could be compromising the grids components at the manu-

facturing centers. Since the hardware that supports these cyber-physical infrastruc-

ture uses software, a slight twist in the requirements could cause these machines to

have entry points that may not be detectable at manufacturing and testing time. How-

ever, some measures have been proposed to reduce the risks of such incidences [34].

17

3.2 Current Countermeasures

programmable logic controllers are the core components of power-distribution con-

trol in the cyber-physical infrastructure. These programmable logic controllers are

embedded with software that control and executes the instructions on the machine.

This software is referred to as firmware and can be updated. In order to program

the PLCs, source code written in either STL, LAD or FBD is compiled and is in-

stalled on the machines. The use and the update of software exposes these systems

to vulnerabilities. Many researchers have shown attacks targeted at firmwares.

Rouf, et al. [35], demonstrated an attack in which they perform an eavesdropping

at 40ms on moving car sensors. In the work, they reverse engineered the underlying

protocols of the firmware. They revealed the static 32 bit identifiers used in the

protocols and showed how messages could be triggered remotely. Similarly, Koscher,

et al. [36], showed how, if the Electronic Control Unit (ECU) was infiltrated, an

attacker can leverage the ability to completely circumvent a broad array of safety-

critical systems.

In this thesis, we provide a similar approach of infiltration. We demonstrate the

possible vulnerabilities in the embedded systems used in the cyber-physical systems.

Specifically we perform our case study on the programmable logic controllers. In the

study, we demonstrate how the firmware could be compromised. Our work is based

on a tailored remote attack. In addition, we show a stealth channel of attack vector

on the cyber-physical systems.

Last, we provide countermeasures for such attacks that could be targeting the

cyber-physical systems. In our research, we propose several methods that could be

18

used to detect any intrusion on these critical infrastructures. The models are based

on formal analysis approaches in which we demonstrate the Trusted Safety Verifier.

In order to provide an efficient trusted base for the cyber-physical systems, we lower

the detection of intrusion and malware to the firmware level.

CHAPTER 4

Experimental Setup

4.1 Reverse Engineering

4.1.1 Disassembler

The disassembler converts the machine readable mc7 executable binary files run-

ning on the PLC to Statement List language source. Each mc7 file is processed

linearly, reading each bit and there after transforming a group of bytes to the cor-

responding source instruction statements. The number of bits representing each in-

struction for this architecture vary in size depending on the type of instruction and

the operation performed by the instruction. The bit pattern design is dependent on

the category of instruction which we classified under the following categories; data

transfer operations, arithmetic operations, branching operations, logical operations,

and machine-control operations. The number of bits for the instructions that operate

on data depend on the number of bytes for that data. For example, the opcode Load

input byte (L IB) takes 16 bits to represent the data that ranges between 0 to +127

and it uses 32 bits to represent the data between +128 to +65535.

To understand the organization of these bits in the binary, we analyzed permuta-

tion sets of instruction in the different memory blocks of the PLC. The organization

19

20

block (OB), was used as the initial start point for the analysis since it is the begin-

ning point of program execution. We started with an analysis of the mc7 file created

when the project’s main block (OB) is empty. The instructions in the OB block were

incremented starting with an empty network, followed with sets of instruction and

later calls to different function blocks were included.

Figure 4.2 shows an example of the bit organization in an instruction. The first

two instruction opcodes A and ON need 2 bytes, X requires 4 bytes. In this case, the

m bits are used for either input-output or memory area, the b bits are for the address

line and the v bits are used to represent either input or output or memory data.

The mc7 executable binary files are obtained after compiling source code from

either STL, LAD or FBD source programs. These files contain both the meta data of

the program and the instruction hexadecimal representation. Instruction are grouped

in networks and the size of each network is equal to the total number of bytes for

these instructions. Depending on the language used, a hexadecimal value at the

address 0x04 is used to match the corresponding language that was used. For each

mc7 file, memory is allocated at the address 0x05 to identify the block types (OB,

FB, FC). The next two memory addresses are reserved for the block number. Two

bytes before the start of the code section (0x22 and 0x23) are allocated to store data

related to the size of code (SC). The size of code is calculated using the equation

SC = ϕ [0x23] + 100 ∗ϕ [0x22]− 0x02. To understand these semantics used for the

PLC instructions, we compared executable files compiled and run on the PLC. The

source code are compiled and the binaries are directly loaded into the PLC, no copy of

the binaries are stored in the compiling software. To obtain these compiled executable

files we download the copies directly from the PLC. This requires the data to be read

21

from certain memory location of the PLC after a connection has been established.

Using a PLC communication framework {libnodave reference}, we obtained copies

of the executable files that were loaded in to the PLC. The copies of these mc7

executable files obtained from the PLC are progressively analyzed to determine the

structures of the bits and the mnemonic representation of each corresponding STL as

shown in figure 4.2.

PLC programs are made of a combination of one or more networks. A network

defines the simple task for automation, a group of these networks would coordinate

a given task for a particular automation. Since the source code is structured in

networks, the total size of individual networks (Sn) equals to the size of the code

i.e SC =
∑N

n=0 Sn. The address of the total number of networks in a given block

is dependent on the block type and block number. To obtain this address, each

block type has a block number that is proportionally associated with a constant (δC)

which is used when calculating the address of the total number of networks (N). The

address of the final instruction is obtained by adding the size of code to the address

marking the beginning of the code N = ϕ [δC + SC].

N = ϕ

[
δC +

N∑
n=0

Sn

]
(4.1)

4.1.2 Compiler

Our compiler converts the statement list source code to the mc7 executable bi-

nary files based on the PLC architecture. The processing of the STL source code is

performed linearly just like the case of the disassembler. Initially the source code is

parsed, since the syntax of the language permits only one instruction statement per

22

line, single lines are processed one at a time. The amount of memory to be used

from for the instruction is calculated after determining the bytes to be used by the

instruction. Each instruction line is pre-processed to identify the opcode or both the

opcode and operand. The number of bits used for only the opcode is predetermined

since it does not vary. Using a look up table with a predefined bit structure for that

particular opcode, the opcode is transformed to the corresponding bit representation.

Each structure of the opcode defines a the format for the data associated with the in-

struction giving a range of values that are acceptable for the instruction. The operand

is then transformed based on this range of values. To obtain the bit representation

for the instruction, we perform an AND operation on the opcode and the operand.

The result is converted to the respective hexadecimal equivalent. Figure 4.2 shows a

sample opcode and the their respective bit structures.

Mc7 files constitute meta data, this data varies from one file to another. In order

to compile the source code, we identify the memory locations for some of meta data.

The locations for the different meta data depends on the attributes within the source

files to be compiled. For example, the block number, block type, and the source

language used for the source program.

4.2 Data Exchange

In order to verify the set of instructions running on the PLC, we need to have a

copy of the source code, PLC concrete values and the set of specifications for the given

automation task. During the program compilation of the source code, the binaries are

uploaded to the PLC and no copy of this binary is externally stored. Obtaining these

binary files (mc7) that are running on the PLC requires to establish a communication

23

with the PLC. In the experiment, libnodave is used to communicate and download

these executable file from the PLC. Programs on the PLC are executed in cycles called

scan cycles. Each scan cycle reads the memory image on an average of 150ms and

based on the input a given set of outputs are produced. To perform the verification

for real time systems, we needed to keep a count each scan cycle number. In the

experiment, a static variable is included in the source program and this is updated

for every scan cycle as the scan cycle number.

Each scan cycle reads data from the input memory locations of the memory image.

This input data comes from various input sensors. RCR monitors the scan cycles and

obtains the concrete values corresponding to that scan cycle. The concrete values are

then converted to ILIL format. Since we have the system running on two platforms,

the connection from the PLC using libnodave acts as the server. Data from the server

is then sent to the client RCR program. The server continuously reads the concrete

values in real time. Since each TEG state corresponds to a given scan cycle, we AND

the concrete values to the respective TEG state for that scan cycle.

Symbolic execution is known to have an explosion problem due to the number of

states generated. In RCR, for each path condition created after the concrete values

have been added, we perform a satisfiability check for that path. If the path condition

is not satisfied, the graph generation for the particular path is expelled.

24

4.3 Performance

4.3.1 Compiler Evaluation

In our experiment we study the compilation performance in relation to time. To do

so, we consider the following experiment. We initially designed a small project with

3 networks and 15 lines of statement list instructions. The code size of this project

was increased by a scale of three more networks each containing 15 instructions. In

order to have a fair comparison we performed 1,000 executions for each code size,

hence obtaining the average time for the code compilation. The graph in figure 4.4

shows how the size of code performs with an increased size of code. From the graph,

we observed that the as the size of the code increases the times for compilation tends

towards a constant time.

4.3.2 Disassembler Evaluation

In order to evaluate the performance of the disassembler, we followed the same

technique used for the compiler evaluation. We obtained already compiled mc7 files

with known sizes of both networks and instruction list code lines. We disassembled

these files 1000 times for each code size and an average time was obtained. The

graph in figure 4.5 shows the Correlation between the size of code and the time for

disassembling.

4.3.3 Latency Evaluation

Our measurement technique utilizes the PLC scan cycle time and the size of bytes

read from the memory image of the PLC. In a normal no interactive environment, no

bytes are read from the memory image. RTV reads the memory image in real time

25

obtaining different concrete cycle values. In order to determine the overhead caused

by the running RTV, we evaluated the execution time for a sample piece of code on

the PLC, taking note of the PLC time. The analysis reveals that the PLC execution

is not dependent on the size of bytes or the number of times bytes from the image

memory are read. However since the size of data read is increasing and the number

of iterations, from the result, we observed that there is an increase in the transfer

times of various sizes of data.

26

Figure 4.1: MC7 figure

27

A ?? ?? - 1m00 0bbb ixxx xxxx And

ON ?? ?? - 1m10 1bbb ixxx xxxx Or Not

L IB 4A ?? - 0100 1010 0ggg gggg

L IB 7E 11 ?? ?? - 0111 1110 0001 0001 gggg gggg gggg gggg

X 05 ?? 00 ?? - 0000 0101 00vv 0bbb 0000 0000 0xxx xxxx

Exclusive Or.

Figure 4.2: Instruction bit representation.

1 NETWORK

2 A I 0.0 //C000

3 A I 0.1 //COC1

4 = Q 0.0 //D880

5 NETWORK

6 O I 0.2 //CA00

7 O I 0.3 //CB00

8 = Q 0.1 //D980

9 NETWORK

10 X I 0.4 //05140000

11 X I 0.5 //05150000

12 = Q 0.2 //DA80

13 NETWORK

14 L C#140 //Counter preset value.

15 A I 0.1 //Preset counter after detection of rising edge of I 0.1.

16 S C1 //Load counter 1 preset if enabled.

17 A I 0.0 //One count down per rising edge of I 0.0

18 CD C1 //Decrement counter C1 by 1 when RL0 transitions.

19 AN C1 //Zero detection using the C1 bit.

20 = Q 0.0 //Q 0.0 = 1 if counter 1 value is zero.

21 NETWORK

22 AN I 2.6 //E602

23 = Q 0.7 //DF80

Figure 4.3: STL source.

28

Figure 4.4: Compiler Evaluation

Figure 4.5: Disassembler Evaluation

29

Figure 4.6: PLC Latency Evaluation

CHAPTER 5

Model Verification

5.1 Parallel Model Generation

To enable real-time system monitoring, RCR needs to generate the controller pro-

gram models and perform the corresponding model checking procedures at a faster,

or at least equal, pace than/to the actual evolution of the underlying physical sys-

tem. Otherwise, if RCR gets behind the actual execution, RCR ’s outputs would be

useless, because the operators would notice the actual malicious consequences of the

attacker program before RCR could analyze them. To facilitate real-time model gen-

eration and formal verification, RCR makes use of several design and programming

techniques to accelerate the whole process. First, given a PLC controller program,

RCR implements the model generation procedures to run in parallel threads. To that

end, given the recursive DFS-like generation process of the temporal execution graph,

RCR assigns every recursive exploration call to an available thread in a global thread

pool. Initially, the thread pool size is set to the number of the available cores in

the system, and every time a recursive function returns its corresponding thread it is

added back to the pool. Figure 5.1 shows the overview of the RCR model.

30

31

…	

…	

PLC	 (Actual	 Execu0on)	

Real-‐Time	 Model	 	 Genera0on	 Synchroniza0on	

Con0nue	 	
Model	 	
Genera0on	

Terminate	 	
Further	 	
Recursion	

Generated	 Model	 So	 Far:	 Current	 Concrete	
	 Execu0on	 State	

Figure 5.1: RCR Execution Overview

5.2 Symbolic Execution of PLC Code

The execution of the binary files on a PLC is done in cycles. These cycles are

called scan cycles. Each scan cycle reads the the memory image of the PLC before

each execution. With the set if sensor inputs, the PLC executes the control logic

and creates a new set of output that correspond to the inputs. In our experiment,

logic and input are analyzed using symbolic execution hence calling the cycle a sym-

bolic scan cycle. PLC logic can be programmed in three different languages; Ladder

32

logic, Function Block Diagram and Statement List. Ladder logic and Function Block

Diagram languages provide circuit-like diagrams and are more graphical. However,

the underlying fundamental part is an assembly-level language. On the other hand,

Statement List is purely an assembly-level language and enables easy binary analysis.

Since the source code is compile to an executable binary file, our analysis is centered

on these binary codes. This enables us to focus on the lower level analysis and hence

make it possible to analyze binary files compiled using other languages. In order to

perform binary analysis on the PLCs, we use and intermediate language, the Instruc-

tion List Intermediate Language. The main reason for an intermediate language is

because of the PLC-specific features that make it difficult to leverage existing binary

tools in our analysis.

ILIL is based on the Vine IL, used in the BitBlaze binary analysis platform we

developed the Instruction List Intermediate Language (ILIL). An ILIL program is a

list of top-level instructions followed by a list of function definitions. Each function

corresponds to a single function block in the PLC program. The top-level code

consists of the organization block, which is where each scan cycle begins execution.

The organization block then calls function blocks in turn.

ILIL uses the two basic Vine types: registers and memories. A single register

variable is used to represent each CPU register in a particular PLC architecture.

These are implemented as bit vectors of 1, 8, 16, 32, and 64 bits. Memories are

implemented differently in ILIL than in Vine. ILIL memories are mappings from

hierarchical addresses to integers. Memory loads return the integer for a given address,

and memory stores return a new copy of the memory with the specified location

modified.

33

In addition to registers and memories, ILIL adds a third type: addresses. In Vine,

memories are mappings between integers. This is reasonable as most architectures use

32- or 64-bit address registers. This isnt sufficient for PLCs, which use hierarchical

addresses. A hierarchical address has several namespace qualifiers before the actual

byte or bit address. For example, in Siemens PLCs, addresses have a single namespace

qualifier called a memory area. In Allen Bradley, there are three namespace qualifiers:

rack, group, and slot. ILIL addresses are essentially integer lists where the leftmost

n entries represent the n namespace qualifiers. We also extend the memory type

to include n. Thus, the ILIL statement mem := : memt (1 initializes an empty

memory with a single namespace qualifier, where memt is the memory type defined

in the ILIL grammar. Figure 5.2 shows the ILIL grammar. Figure 5.3 shows a sample

transformation of Statement List into ILIL.

Figure 5.2: Instruction List Intermediate Language grammar

Since we do not use the PLCs clock time, we used a data memory address to keep

track of the times. During symbolic execution when a timer is checked, values at this

34

address will generate a fresh symbol. In the model-checking step, this symbol will be

non-deterministic, meaning it will cause both paths to be explored if used in a branch

condition.

Symbolic execution follows all possible paths of a single scan cycle of the program

being executed. A Satisfiability Modulo Theory (SMT) solver enables us to follow

only the feasible paths during the execution. We also enforced the execution of loops

at a minimal number to reduce the load. The result of a symbolic execution is the

symbolic scan cycle, which represents all possible executions of a particular scan cycle.

In order to scale up our tool, we combine scan cycles to form a temporal graph that

represents all the possible system executions. Figure 5.4 demonstrates the symbolic

execution of

5.2.1 Model Checking

In order to check for violation of the PLC during the execution, we convert IL code

to ILIL code. The ILIL is then symbolically executed, creating the output mappings

between the path conditions and the symbolic output variable values. Using this

mapping, we verify if the PLC IL program violates the specifications of the PLC

that it is being executed on. These outputs are used to form the temporal execution

graph (TEG). The TEG graph is then used to formally verify that the PLCs execution

meets the power network security requirements. These requirements are defined as

the linear temporal logic specifications which should not be violated.

35

5.2.2 Model Refinement

As the TEG is created, to void the path explosion challenge, we perform a few

heuristics to refine the TEG graph [37]. This makes the formal analysis feasible. The

atomic propositions representing the specifications are converted into linear temporal

logic, these are added to the TEG as we recursively traverse it. For each iteration, we

use the SMT solver to check if for each atomic proposition can take on true of false

values or otherwise we assign concrete values.In case the state can take both values,

the states are duplicated and we add the negated atomic proposition predicate to the

original duplicate states existing predicates using a logical AND operator.

At this state, we obtain an abstract graph in which each state is represented by the

atomic proposition values only. The concrete proposition value assignment helps in

the model-checking state to determine whether the formula is satisfiable. if it doesnt,

the model-checking engine comes up with a counter example that demonstrates how

the security specification can be violated through a listed execution path. The HMI

operator can look at these path so as to resolve the problem or detect an attack if

the code is injected maliciously by an adversary.

36

Figure 5.3: Sample IL To ILIL conversion

37

Figure 5.4: Symbolic Execution Example

CHAPTER 6

Covert Channel Communication

6.1 PHYCO Introduction

Apart from the security level developed at the core levels of the smart grid, there is

a need to secure the communication infrastructure used in electric power systems [38].

As reported by the Industrial Control System Cyber Emergency Team (ICS-CERT),

there is an increase in the number of cyber-physical attacks. The current security

models in power control systems only consider explicit communications. In our re-

search, we developed a novel covert channel that leverages physical substrates within

a power system, to transmit information between compromised device controllers.

In this chapter, we discuss the capabilities of PHYCO. Basically, using PHYCO we

can enable compromised controllers that are far apart to coordinate an attack if

they manipulate relays to modify the power network’s topology. The performance of

PHYCO has been evaluated using PLCs on a realistic simulated power grid. We have

also shown how PHYCO can bypass existing intrusion detection sensors and physical

inspections.

Based on the reported increase of cyber threats against critical cyber-physical

infrastructures [13], a new trend that we predict is to implement synchronization

38

39

protocols to deploy coordinated intrusions in order to be effective against large-scale

power grid infrastructures. Current security protocols have shown good performance

with single point attacks. However, these current protocols and tools do not have the

capabilities to handle coordinated attacks.

Efforts have been made to make a stealthy form of communication channels. Xiao,

et al. [19] worked on a covert channel using copy-on-write-based memory dedupli-

cation implementations. These could be exploited by the attackers in virtualized

environments specifically.

Castiglione, et al. [20] proposed stealth communication using spam emails. Khan,

et al. [21] designed a cluster-based covert channel so as to evade disk investigation

and forensics attempts. The covert channel avoids detection by not using the storage

on the filesystem of the compromised system hence lesser chances to be detected by

the detection tools. PHYCO avoids detection by the cyber security sensors to zero

since it does not use the cyber assets, computer networks nor PLC links of the cyber

physical infrastructure.

6.2 PHYCO Threat Model

Our model assumes that single point of entry have been compromised using several

attack vectors like the example of Stuxnet [29]. Assuming that the adversaries have

already compromised two computing host systems hs and hr. The two systems make

efforts to communicate to each other in order to coordinate a large-scale distributed

attack against the physical grid. Assuming the compromised machines are PLCs.

In this model, hs which we call the sending host, can send a message to the receiv-

ing host hr. Since the physical network communication is not part of the PHYCO

40

model, these compromised hosts need to be equipped with the necessary sensing and

actuation capabilities. The sending hs, needs to be in charge of a PLC that has

the capabilities to manipulate the power grids topology. This can be done through

changing some of the parameters of the PLC data image. As the sending host sends

the changes, the receiving port reads the data corresponding to the changes in real

time.

In particular, hs needs to be in charge of a local power grid component control

so that it could manipulate the power grid’s topology and/or parameters whenever

needed. On the other hand, hr has to receive real-time sensor measurements regarding

the power grid’s current status. These actuating and sensing capabilities are mutually

dependent. That is, the required sensing capabilities on the receiving end hr, depend

heavily on what actuation capabilities the sending party hs owns. As a case in point,

if is sending message bits through the opening and closing of a power line switch,

hr needs to sense the affected power system parameter, such as the current on a

transmission line.

6.3 Message Transmission

In order to coordinate a large scale, PHYCO, compromises two PLCs. PLCs are

the core components of the cyber-physical infrastructure. They control the power flow

in the grid. Since the two compromised components (PLCs) cannot communicate to

each other due to the firewall between them as shown in the figure 6.1, they take

advantage of the power control capabilities. In order to transfer data, the sending

PLC makes a small change in the power generation P∆. The change can be a decrease

41

or increase in the power generated along the line by a small amount that is used to

represent a 1 or 0 bit.

Figure 6.1: PHYCO Thread Model

As the power changes travel along the power distribution lines, the receiving com-

promised PLC listens and captures these power changes. The power changes are

transferred to bits 1 and 0. In order to coordinate an attack, PHYCO uses the power

flow equations to calculate potential effects. Since steady state power systems obey

the law of conservation of power in any given network, we use these equation with

42

the set of collected bits data to determine the set of voltages and angles that satisfy

power balance. We write the system state as f(x, u) = 0 which is a vector repre-

senting the injection at each node in the system that could be performed to cause

a terrible breakdown of the entire system using the programmable logic controller.

x = [V, θ] where V, corresponds to a vector of voltage angles. We take as a vector of

real power loads and the vector of reactive power loads is Qi The generator control

specifications which define the limit of operation are also collected as the vector of

controls, U. The power flow problem is then transformed to The function f(x, u) can

then be represented as

fp
i = −P g

i + P l
i +

∑
k∈C

|Vi‖Vk|(Gik cos θik +Bik sin θik) (1)

f q
i = −Qg

i +Ql
i +

∑
k∈C

|Vi‖Vk|(Gik sin θik −Bik cos θik) (2)

The equations represent the nonlinear problem which is referred to as power flow

equations.

6.3.1 Message Transfer

Messages transmitted by the sender depend on the available actuators. We have

two categories of the events that could result into creating a message. A sender hs,

could cause changes in the power topology updates such as opening and closing a

relay or a transformer tapping ratio modification. These actions modify the inter-

connectivity of the power system components, and thereby modify the power flow

equations. A second alternative is the sender hs, could change the values of the

power parameters and control variables making it possible for the receiver to keep

track of the modifications. These actions however do not change the power system

43

but do bring a change in some parameters. To satisfy the power flow equations,

other parameters of the system will change as well and the message delivery will be

accomplished if the receiving party hr happens to be measuring one of the indirectly

updated system parameters.

6.3.2 Message Reception

The host hr on the receiving side of PHYCO would be in charge of reception and

interpretation of the delivered signal. Considering the set of actions available for

the sender, any action taken by hs, the received signal by the receiver depends on

what point of the underlying power system resides as well as the parameter that it

measures.

The receiver hr, initially needs to know the local effect of each action taken by the

sender hs. During an offline phase before the message transfer, hr emulates each ac-

tion in the current power system state and solves the power flow equations (Equations

(1) and (2)) to find out how each possible action would impact the power parame-

ter measured by hr. The whole procedure resembles the power system contingency

analysis [39] that the control centers often perform every few minutes. However, the

emulation involves the action set instead of the contingency list.

6.4 Data Transfer Reliability

As the sender sends data to the receiver hr, PHYCO ensures that the data is not

corrupted by any noises. To achieve this, we utilize a periodic slice in which the

sender sends data. The receiver will only be required to detect the interval slices

that contain the data. For this approach to yield good performance, we need to set

44

the time lapse (T∆) between the consecutive communications at a good threshold.

A very small or very large value of T∆ could increase the noise level making the

data exchange hard. In order to ensure reliability of the covert channel during the

communications, we utilize the Reed-Solomon forward error correction approach [40].

To do this, we introduce redundancy in the sent messages and measure the errors

received at the receiver side. With this approach, we enable the receiver to detect a

given number of errors and also perform error correction.

Figure 6.2: Power System Topology.

Figure 6.2 shows the power System that we used for our experiments. The compro-

mised PLC were placed on different buses of this power system. In this set up, there

45

Figure 6.3: Received signal affection for decoding.

Action Set size Message length Block size Convert Encoding
8 3 7 1.18 (sec)
16 11 15 3.00 (sec)
32 27 31 6.65 (sec)
64 59 63 14.03 (sec)
128 123 127 29.6 (sec)

Table 6.1: Received signal affection for decoding.

is one sending party and two receivers. In particular, the sending party hs resides in

Bus 4 and controls and regulates the generation set-point of the corresponding gen-

erator. The receiver hr,1 sits on a near Bus 6, where it measures the power flow on

the transmission line that connects Bus 6 to Bus 4 of the power system. The receiver

hr,2 sits on a far Bus 1, where it measures the power flow on the transmission line

that connects Bus 1 to Bus 2 of the power system

Figure 6.3 illustrates the results of how the actions taken by sending party hs results

in power system variations sensed by the receiver hr. Figure 6.3(a)) shows the sensed

measurement updates on the near-bus receiver. The receiver hr,1 receives the signals

more clearly as the measurement modifications are higher due to the geographical

vicinity to the sender hs. In particular, for every 5 MW change due to the PHYCO

message transfer results in approximately 1 MW of change in the receiver-side power

46

flow measurements. On the other hand, the far-bus receiver hr,2’s signal reception is

not very clear due to the impact level on the receiver-end signal, i.e., the power flow

on Bus 1, is lower because of the distance between the sender hs and the receiver

hr. The received signal changes on average 0.4 MW for every subsequent action

pair by the sender hs. The changes on the receiver side are not linear (see Figure

6.3(b)); therefore, the receiver hr has to pre-calculate the received signal changes

before communicating through the covert channel.

Figure 6.4: PHYCO decoding time requirements.

The relatively low signal changes on the far-bus receiver encourages using PHYCO’s

error correction module. We implemented a prototype of the message encoding and

decoding scheme. Our implemented encoding scheme could tolerate any single sym-

bol transfer error. The toleration level could additionally be configured based on the

channels noise level. Table 6.1 shows the final results for encoding various action

47

set cardinalities, covert message lengths and PHYCO block lengths. According to

our results, the sender side hs, for a reasonable covert channel action set size of 32,

PHYCO takes approximately 7 seconds to complete encoding of a given message be-

fore its transfer. When the signals are received, they are decoded by the receivers.

Figure 6.4 shows the results of various number of codeword transfers. Decoding 1M

codewords takes the receiver in PHYCO less than 6 seconds that is very suitable for

practical uses of the proposed channel.

CHAPTER 7

Conclusion

In this thesis, we have presented a formal analysis and approach for modeling and

the verification of cyber-physical systems. The thesis has given a detailed review

on the current state of the cyber-physical systems. This review, involves a detailed

discussion of the cyber-physical system threats and the counter measures that have

been developed. In the work, we have specifically shown an example of a well tailored

stealth attack on the critical cyber-physical infrastructure. Using formal methods, we

have additionally shown how the core components of the cyber-physical infrastructure

can be presented as formal expressions. The main goal of the work is to provide tools

that could protect the cyber-physical infrastructure effectively.

7.1 Ongoing and Future Work

Due to the dynamic and smarter evolution of cyber-physical systems, there is

need for more and better security tools. The current growth of applications that are

integrated into the power grid make it more difficult to detect any malware intrusions

into the critical cyber-physical infrastructure. Our goal in this research is to enhance

48

49

the security of cyber-physical systems in such a way that the cost of tailoring an

attack becomes exponentially more expensive than the effects from the attack.

Bibliography

[1] S. Alexzander and I. Anbumalar, “Recent trends in power systems (wireless
power transmission system) and supercapacitor application,” in Sustainable En-
ergy and Intelligent Systems (SEISCON 2011), International Conference on,
July 2011, pp. 416–420.

[2] A. Teixeira, S. Amin, H. Sandberg, K. Johansson, and S. Sastry, “Cyber security
analysis of state estimators in electric power systems,” in Decision and Control
(CDC), 2010 49th IEEE Conference on, Dec 2010, pp. 5991–5998.

[3] A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 262–282, Feb 2000.

[4] E. Hrynkiewicz, A. Milik, and D. Polok, “Programmable logic controller
based on reconfigurable logic,” in Design and Technology of Electronics Pack-
ages,(SIITME) 2009 15th International Symposium for. IEEE, 2009, pp. 227–
231.

[5] M. Mollah and S. Islam, “Towards ieee 802.22 based scada system for future
distributed system,” in Informatics, Electronics Vision (ICIEV), 2012 Interna-
tional Conference on, May 2012, pp. 1075–1080.

[6] D. Gaushell and H. Darlington, “Supervisory control and data acquisition,” Pro-
ceedings of the IEEE, vol. 75, no. 12, pp. 1645–1658, Dec 1987.

[7] F. F. Wu, “Power system state estimation: a survey,” International Journal of
Electrical Power & Energy Systems, vol. 12, no. 2, pp. 80–87, 1990.

[8] C. A. Bejan, M. Iacob, and G. Andreescu, “Scada automation system labora-
tory, elements and applications,” in Intelligent Systems and Informatics, 2009.
SISY’09. 7th International Symposium on. IEEE, 2009, pp. 181–186.

[9] C. Patil, H. Sonawane, and K. Patil, “Overview of scada application in thermal
power plant,” International Journal of Advanced Electronics and Communication
Systems, 2014.

[10] R. K. Chauhan, M. Dewal, and K. Chauhan, “Intelligent scada system.”

50

51

[11] Y. Wang, “sscada: securing scada infrastructure communications,” International
Journal of Communication Networks and Distributed Systems, vol. 6, no. 1, pp.
59–78, 2011.

[12] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantic
Security Response, Tech. Rep., Oct. 2010.

[13] T. M. Chen, “Stuxnet, the real start of cyber warfare?[editor’s note],” Network,
IEEE, vol. 24, no. 6, pp. 2–3, 2010.

[14] U. De, “Smart grid cyber security: Vol. 2, privacy and the smart grid,” 2010.

[15] J. Gómez, C. Gil, N. Padilla, R. Baños, and C. Jiménez, “Design of a snort-based
hybrid intrusion detection system,” in Distributed Computing, Artificial Intelli-
gence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer,
2009, pp. 515–522.

[16] J. Safarik, P. Partila, F. Rezac, L. Macura, and M. Voznak, “Automatic classi-
fication of attacks on ip telephony,” Advances in Electrical and Electronic Engi-
neering, vol. 11, no. 6, pp. 481–486, 2013.

[17] J. E. Diaz-Verdejo, P. Garcia-Teodoro, P. Muñoz, G. Maciá-Fernández, and
F. De Toro, “A snort-based approach for the development and deployment of
hybrid ids,” Latin America Transactions, IEEE (Revista IEEE America Latina),
vol. 5, no. 6, pp. 386–392, 2007.

[18] G. Kurundkar, N. Naik, and S. Khamitkar, “Network intrusion detection using
snort,” International Journal of Engineering Research and Applications, vol. 2,
no. 2, pp. 1288–1296, 2012.

[19] J. Xiao, Z. Xu, H. Huang, and H. Wang, “A covert channel construction in
a virtualized environment,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 1040–1042. [Online]. Available: http://doi.acm.org/10.1145/
2382196.2382318

[20] A. Castiglione, A. D. Santis, U. Fiore, and F. Palmieri, “An asynchronous
covert channel using spam,” Computers & Mathematics with Applications,
vol. 63, no. 2, pp. 437–447, 2012. [Online]. Available: http://dx.doi.org/10.
1016/j.camwa.2011.07.068

[21] H. Khan, M. Javed, S. A. Khayam, and F. Mirza, “Designing a
cluster-based covert channel to evade disk investigation and forensics,”
Computers & Security, vol. 30, no. 1, pp. 35–49, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2010.10.005

52

[22] X. Miao, X. Chen, X.-M. Ma, G. Liu, H. Feng, and X. Song, “Comparing smart
grid technology standards roadmap of the iec, nist and sgcc,” in Electricity Dis-
tribution (CICED), 2012 China International Conference on, Sept 2012, pp. 1–4.

[23] E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens, “Control for renew-
able energy and smart grids.”

[24] Y. Mo, T.-H. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli,
“Cyber-physical security of a smart grid infrastructure,” Proceedings of the IEEE,
vol. 100, no. 1, pp. 195–209, Jan 2012.

[25] T. Basso and R. DeBlasio, “Advancing smart grid interoperability and imple-
menting nist’s interoperability roadmap,” in Proc. NREL/CP-550-47000, Grid-
Interop Conf, 2009.

[26] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Exploiting open functional-
ity in sms-capable cellular networks,” in Proceedings of the 12th ACM conference
on Computer and communications security. ACM, 2005, pp. 393–404.

[27] Y. Zhang, C. Guo, R. Chu, G. Lu, Y. Xiong, and H. Wu, “Ramcube: exploit-
ing network proximity for ram-based key-value store,” in Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Ccomputing. USENIX Association,
2012, pp. 5–5.

[28] L. Garcia, H. Senyondo, S. E. McLaughlin, and S. A. Zonouz, “Covert
channel communication through physical interdependencies in cyber-physical
infrastructures,” in 2014 IEEE International Conference on Smart Grid
Communications, SmartGridComm 2014, Venice, Italy, November 3-6,
2014, 2014, pp. 952–957. [Online]. Available: http://dx.doi.org/10.1109/
SmartGridComm.2014.7007771

[29] D. Beresford, “Exploiting siemens simatic s7 plcs,” 2011.

[30] A. Clark, L. Bushnell, and R. Poovendran, “A passivity-based framework for
composing attacks on networked control systems,” in Communication, Control,
and Computing (Allerton), 2012 50th Annual Allerton Conference on. IEEE,
2012, pp. 1814–1821.

[31] G. Sandaruwan, P. Ranaweera, and V. Oleshchuk, “Plc security and critical
infrastructure protection,” in Industrial and Information Systems (ICIIS), 2013
8th IEEE International Conference on, Dec 2013, pp. 81–85.

[32] S. McLaughlin and P. McDaniel, “Sabot: specification-based payload generation
for programmable logic controllers,” in Proceedings of the 2012 ACM conference
on Computer and Communications Security, 2012, pp. 439–449.

[33] P. Lee and L. Lai, “A practical approach of smart metering in remote monitoring
of renewable energy applications,” in Power Energy Society General Meeting,
2009. PES ’09. IEEE, July 2009, pp. 1–4.

[34] A. Lunkeit, T. Voss, and H. Pohl, “Threat modeling smart metering gateways,”
in Smart Objects, Systems and Technologies (SmartSysTech), Proceedings of 2013
European Conference on, June 2013, pp. 1–5.

[35] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and privacy vulnerabilities of in-car
wireless networks: A tire pressure monitoring system case study,” in Proceedings
of the 19th USENIX Conference on Security, ser. USENIX Security’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929820.1929848

[36] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental
security analysis of a modern automobile,” in Proceedings of the 2010
IEEE Symposium on Security and Privacy, ser. SP ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 447–462. [Online]. Available:
http://dx.doi.org/10.1109/SP.2010.34

[37] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Proceedings of the 18th International Conference on Static
Analysis, ser. SAS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 95–111.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2041552.2041563

[38] V. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. Hancke,
“Smart grid technologies: Communication technologies and standards,” Indus-
trial Informatics, IEEE Transactions on, vol. 7, no. 4, pp. 529–539, Nov 2011.

[39] S. Varshney, L. Srivastava, M. Pandit, and M. Sharma, “Voltage stability based
contingency ranking using distributed computing environment,” in Power, En-
ergy and Control (ICPEC), 2013 International Conference on. IEEE, 2013, pp.
208–212.

[40] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their applications.
John Wiley & Sons, 1999.

53

