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Abstract

Side channel techniques have been developed in recent years to fulfill various tasks

in modern computer network measurements. However, due to their nature, these

techniques are typically limited in terms of both fidelity and their ability to be used on

the real Internet without raising ethical concerns because of packet rates. I propose

the next generation of TCP/IP side channel techniques that exploit information flow

in modern systems’ network stacks to overcome weaknesses in previous techniques.

The proposed work is novel, non-intrusive, and can carry out measurements with high

fidelity. I achieved this by deeply understanding the behaviors of modern systems’

network stacks and balancing the trade-offs (e.g. packet rate and fidelity) by applying

suitable mathematical models. My work comprises three novel tools which each solve

different challenges in current network measurement.

Firstly, I propose an Internet measurement technique for finding machines that

are hidden behind firewalls. That is, if a firewall prevents outside IP addresses from
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sending packets to an internal protected machine that is only accessible on the local

network, the technique can still find the machine. Secondly, I present an improved

off-path round-trip time (RTT) measurement technique based on [11] that can, with

high fidelity, measure the RTT between essentially any two machines (A and B) on

the Internet without having special access to A or B or having any presence in the

path between A and B. Finally, I proposed a new scanning technique that can perform

network measurements such as: inferring TCP/IP-based trust relationships off-path,

stealthily port scanning a target without using the scanner’s IP address, or detecting

off-path packet drops between two international hosts. The thesis statement of my

dissertation is: Previous side channel techniques can be improved and used to solve

new challenges in current network measurement based on deeply understanding the

modern systems’ network stack behavior and building corresponding mathematical

models to balance trade-offs between fidelity and ethical concerns related to packet

rates.
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Chapter 1

Introduction

Penetration testers and network researchers have a variety of tools they can use to

gather information about target networks or hosts, such as: traceroute to understand

routing information or nmap to scan open ports of a host. However, with the advent

of Software Defined Networking and increasing concerns about cybersecurity and

the ability to enforce policies on networks connected to the Internet, it is becoming

increasingly difficult to understand the structure of networks nowadays. Networks

are no longer defined by routing alone, but also by trust relationships, firewall rules,

and policies. Unfortunately, none of the existing tools are sophisticated enough to

address the aforementioned new challenges.

Imagine that a digital forensics expert needs to know information about a host

on a network of interest. Current tools, such as nmap, are totally blind to machines

behind the firewall which do not answer to any kind of TCP, UDP, or ICMP scans.

Therefore, the digital forensics expert has no way to clearly understand the full

topology of the network.

Also imagine that a network researcher wants to know the general network delay

between two countries in Africa (e.g. Niger and Chad), or to learn the trust rela-
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Chapter 1. Introduction

tionship between any two international nodes. However, he or she does not have

shell access to the operating systems on any hosts located in those countries, and it

is hard to find enough nodes for collecting data on these two continents using net-

work services such as Planetlab [21] and RIPE Atlas [5]. The rudimentary routing

measurement tool traceroute simply does not work in this case.

I propose the next generation of TCP/IP side channel techniques to assist pene-

tration testers, digital forensics experts, and general network researchers for modern

network measurements. The proposed techniques are novel, non-intrusive, and have

high fidelity compared to previous side channel techniques.

In Chapter 3, I present an Internet measurement technique for finding machines

that are hidden behind firewalls, a critical first step towards being able to measure

modern networks. That is, if a firewall prevents outside IP addresses from sending

packets to an internal protected machine that is only accessible on the local network,

it can still find the machine. The technique is based on the technique of Ensafi et

al. [28], but does not require the SYN backlog to be filled to infer information, and

SYNs are sent at a very low rate without causing denial-of-service. I also make no

assumptions about globally incrementing IPIDs, as do idle scans. Thus I was able

to carry out real measurements on the real Internet, as described in Chapter 3.

In Chapter 4, I present a technique to measure off-path round-trip time (RTT)

with high fidelity. Round-trip time measurement is an important staple of Internet

measurements and sees application in everything from IP geolocation to performance

analysis. The ability to measure RTTs completely off-path, i.e., to know the RTT

between virtually any given machines A and B on the Internet without having any

special access to A or B, would enable measurements in parts of the world where there

is not good measurement infrastructure (such as Africa, South America, and other

regions where there are not many machines to measure from such as PlanetLab [21]

nodes and RIPE Atlas [5]).

2



Chapter 1. Introduction

In chapter 5, I describe a new technique to map out off-path trust relationships

between two arbitary machines. Port scanning is a critical first step for penetration

testers to understand network structure, in which a measurement machine sends

probes to a target and, e.g., determines if a given port is open or closed based on

the received responses. The idle scan is a special kind of port scan that appears to

come from a third machine that is not under the control of the penetration tester,

called a zombie. Idle scans can be used to map out trust relationships in a firewall,

such as a client that has a port open to only a backup server, or other information

for planning attacks. Unfortunately, it assumes that the zombie has a discouraged

behavior called a globally incrementing IP identifier (IPID), meaning that its usage

is extremely limited and it is very rarely used in practice. The technique I propose

is based on a much more advanced and prevalent IPID generation scheme, that of

the Linux kernel. Although Linux’s IPID generation scheme is specifically intended

to reduce information flow, I show that using Linux machines as zombies to test

off-path trust relationship is still possible. The technique has 87% accuracy, which

is comparable to nmap’s implementation of the idle scan at 86%. Its much broader

choice of zombies will enable it to be a widely used technique which can fulfill various

network measurement tasks.

3



Chapter 2

Related Work

TCP/IP side channels are a nascent area of research, but there has been a con-

siderable amount of work. Antirez [12] first proposed the idle scan method in 1998.

Morbitzer [57] explores idle scans in IPv6. Qian et al. [63,64] infer the TCP sequence

number of a connection and perform off-path TCP/IP connection hijacking using a

firewall-based side channel. Some work uses global IPID fields to perform inference

for Internet measurement purposes. Chen et al. [20] explore new uses of the IPID to

infer the amount of internal traffic generated by a server, the number of servers in a

large scale server complex, and one-way delays to a target computer. Bellovin [16]

describes a technique to detect NATs and count the number of hosts behind them.

Kohno et al. [50] use the IPID to perform remote device fingerprinting. Knockel and

Crandall [48] demonstrated that it was possible in a previous iteration of the Linux

IPID generation algorithm to count packets sent to a specific destination by a remote

server, and subsequently Cao et al. [19] demonstrated that related techniques can be

used to interfere with connections completely off-path. Quach et al. [65] performed

a comprehensive measurement of the impact of the ACK limiting vulnerability. The

work of Gilad and Herzberg in this area is also notable. [35–37]
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Chapter 2. Related Work

Some work uses SYN backlogs as side channels to perform the network mea-

surement. Ensafi et al. [28] demonstrated that their SYN backlog TCP/IP side

channel could be used to determine open vs. filtered ports on certain hosts, but the

host-based firewall configurations that make this possible are not a common case.

Follow-on work [26,27] presented a hybrid method that combined the idle scan with

the SYN backlog idle scan to improve the results and determine in which direction

packets were being blocked by a firewall. The hybrid method still assumes that the

zombie has a globally incrementing IPID, and is intended for global-scale measure-

ments of national firewalls rather than port scans of local networks. Augur [60] is

a technique to measure reachability between two Internet locations based on [27].

Zhang et al. [73] showed that the SYN backlog side channel can be used to find

hidden machines behind firewalls, but did not attempt to make inferences about

open ports. SYN backlogs are used to measure off-path network latency in both

Alexander and Crandall [11] and Zhang et al. [74]. Spoofed return IP addresses and

side channel inferences [27, 28, 63] have been shown to be very useful for Internet

measurement, see, e.g., Chen et al. [20]’s inferences based on IPIDs, reverse tracer-

oute [47], or PoiRoot [44], or Flach et al. [30]’s use of spoofed IP addresses to locate

Destination-Based Forwarding rule violations.

Once a set of firewall rules are known, there is a body of work to reason about

those rules. Firmato [14], Fang [56] and Lumeta [71] are query-based firewall analysis

systems. They interact with users on queries about firewall rules. Liu et al. [53]

improves the query processing algorithm by using a tree representation. Other

work [15, 40, 41] also focus on developing high-level specification languages to spec-

ify firewall rules. Some firewall design methods have been proposed [13, 29, 38, 42].

These works focus on detecting every pair of conflicting rules in a firewall. Gouda and

Liu [38] use decision diagrams to reduce the size of a firewall’s configuration. Fire-

wall Policy Advisor [10] and FIREMAN [72] are techniques for detecting anomalies.

FIREMAN [72] is implemented by using binary decision diagrams (BDDs) which can

5



Chapter 2. Related Work

detect anomalies among multiple rules.

Port scanning is an active research area. Nmap’s FTP bounce Attack [1] is able

to make FTP servers port scan a target server. Modern FTP servers are configured

by default to prevent this. Staniford et al. [68] and Gates et al. [34] focus on large

enterprise network protection. Leckie and Kotagiri [51] use a probabilistic approach

to detect port scans. Treurniet [69] aims to detect stealthy scans using classification

schema. Muelder et al. [58] proposes a visualization for port scan detection. Jung et

al. [45] develop a fast port scanning detection method using the theory of sequential

hypothesis testing. Other work [18, 52, 67] use a neural network approach to detect

malicious port scanning. Gates [32, 33] and Kange et al. [46] consider stealthy port

scans that are based on using many distributed hosts. There has also been some

research on improving port scans, such as port scan techniques that increase the

speed of horizontal scans based on techniques that use the same principle as SYN

cookies [2, 6, 8, 9].

Traditional round-trip time (RTT) measurements use distributed servers to per-

form direct measurements. See, for example, IDMaps [31] or iPlane [55]. King [39]

estimates off-path round trip time by using recursive DNS queries to DNS servers

topologically close to each end point. Queen [70] uses a similar technique to mea-

sure packet loss rate. By contrast, the technique presented in Chapter 4 [74] and

the technique it is based on [11], assume only that one machine is a Linux server

with an open port and the other responds to SYN/ACKs with RSTs. Coordinate

systems [22, 43, 59, 75] are another approach to estimating the RTT between two

hosts, where the basic idea is for a given host to get a good estimate of latency to

other hosts from itself for performance reasons. By contrast, my technique [74] can

measure the RTT between two remote hosts that a scanner has no special control

over, using TCP/IP side channels.

6



Chapter 3

Finding Machines Hidden Behind

Firewalls

3.1 Introduction

With the advent of Software Defined Networking and increasing concerns about cy-

bersecurity and the ability to enforce policies on networks connected to the Internet,

it is becoming increasingly difficult to understand the structure of networks. Net-

works are no longer defined by routing alone, but also by trust relationships, firewall

rules, and policies. In this chapter we 1 propose a method for finding hidden ma-

chines behind firewalls, a critical first step towards being able to measure modern

networks.

In 1998, Antirez [12] proposed the idle scan method. An idle scan is a port

scanning technique that exploits TCP/IP side channels. In the idle scan, the mea-

surement machine spoofs the return IP address of probes so that the scan appears

1I use “we” instead of “I” in this chapter and next chapter since they are published
collaborative work.
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Chapter 3. Finding Machines Hidden Behind Firewalls

to be coming from another machine. Side-channel information is then used by the

measurement machine to infer how the target responded. Side channels are neces-

sary because the zombie, which is the machine used as the return IP address of the

probe, is not under the scanner’s control. Thus, the network scanner has no direct

way of knowing what packets the zombie receives from the target. By implementing

Antirez’s idle scan, a scanner can scan a target machine without sending a single

packet to the target using his or her own return IP address. However, Antirez’s

idle scan method requires the zombie machine to have a global IPID, which is rel-

atively rare. The scan also assumes that the zombie is idle, hence the name “idle

scan.” Internet-connected hosts are seldom idle. We further discuss Antirez’s idle

scan Section 5.2.3.

In 2010, Ensafi et al. [28] proposed a different TCP/IP side channel based on

information flow in the TCP/IP SYN backlog. Ensafi et al.’s technique’s main ad-

vantage over Antirez’s idle scan was that the measurement machine does not need to

send any packets at all (not even spoofed packets) to the target. Hence, if a firewall

prevents the attacker from reaching the target at all the attacker can still infer the

existence of the machine. However, Ensafi et al.’s technique cannot be used ethically

for Internet measurements because it fills the SYN backlog of the zombie by sending

SYN packets at a high rate, causing the possibility of denial-of-service. The SYN

backlog is a buffer that stores information about half-open connections where a SYN

has been received and a SYN-ACK sent but the ACK reply to the SYN-ACK has not

been received. Ensafi et al.’s technique fills this backlog with spoofed SYNs (that

have the return IP address of the target) and SYNs with the return IP address of the

measurement machine, and infers whether the target is responding to the zombie’s

SYN-ACKs with RSTs based on whether the SYNs from their machine are responded

to with SYN cookies. SYN cookies [7, 17] are a type of SYN-ACK that require no

state to be kept and are only ever transmitted once. They are used when the SYN

backlog is full to mitigate SYN flooding denial-of-service attacks. Most SYN cookie

8



Chapter 3. Finding Machines Hidden Behind Firewalls

implementations do not allow for a scaled flow control window, and filling the SYN

backlog requires a high rate of SYN packets to be sent, thus Ensafi et al.’s technique

cannot be used ethically for Internet measurement purposes.

In this chapter, we describe our work on finding machines that are hidden behind

firewalls. That is, if a firewall prevents outside IP addresses from sending packets to

an internal protected machine that is only accessible on the local network, our tech-

nique can still find the machine. We employ a novel TCP/IP side channel technique

to achieve this. The technique uses side channels in “zombie” machines to learn

information about the network from the perspective of a zombie. Unlike previous

TCP/IP side channel techniques, our technique does not require a high packet rate

and does not cause denial-of-service. We also make no assumptions about globally

incrementing IPIDs, as do idle scans.

Our work addresses two key questions about our technique: how many machines

are there on the Internet that are hidden behind firewalls, and how common is ingress

filtering that prevents our scan by not allowing spoofed IP packets into the network.

We answer both of these questions, respectively, by finding 1,296 hidden machines

and measuring that only 23.9% of our candidate zombie machines are on networks

that perform ingress filtering.

We summarize our major contributions as follows:

1. We present a novel scan that uses a TCP/IP side channel to find hidden ma-

chines behind firewalls without causing denial-of-service. Our method also does

not require a global IPID on the zombie machine, nor does it assume that the

measurement machine can send packets to the target. We demonstrate our

scan’s effectiveness by discovering 1,296 hidden machines.

2. We propose a comprehensive direct host discovery scan which is comprised of

five scans: SYN scan, SYN-ACK scan, UDP scan, ICMP scan, and ICMP

9
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fragmentation scan. The new scan we implemented was used to compare with

our SYN backlog scan, meanwhile it could find more hosts up than the Nmap

host discovery scan.

3. We present a novel method for testing whether the network that a machine is

on performs ingress filtering to prevent spoofed IP packets from entering the

network with return IP addresses within the network. Using this method, we

determined that only 23.9% of networks we attempted to measure perform this

kind of filtering, meaning that our novel TCP/IP side channel scan is widely

applicable.

The rest of this chapter is organized as follows. Section 3.2 gives some background

information that is necessary for understanding our scan. Section 3.3 describes the

implementation of our technique. We then describe our experimental methodology

for assessing the effectiveness and applicability of our technique in Section 3.4, and

how we perform quantitative analysis of the raw results in Section 3.5. Results are

presented in Section 3.6, followed by discussion in Section 3.7 and the conclusion in

Section 3.8.

3.2 Background

In this section, we briefly review TCP basics and give some background information

about different port scanning techniques which we use in this chapter.

3.2.1 TCP basics

There are some rules that TCP follows [23], which are exploited by our scan:
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1. A SYN packet sent to an open port will be accepted and replied to with a

SYN-ACK.

2. A SYN packet sent to a closed port will be dropped, and a RST-ACK will be

sent back.

3. A FIN packet sent to an open port will be dropped.

4. A FIN packet sent to a closed port will be answered a RST.

5. A SYN-ACK packet will be dropped by a machine if that machine did not send

the original SYN, and a RST response will be sent back.

3.2.2 Port scan methods

Various methods can be used to implement port scanning. Generally, port scanning

techniques can be classified into two types: vertical scans and horizontal scans. The

former means scanning some or all ports on a single host, the latter means scanning

a specific type of service in a range of IP addresses. In this section, we will discuss

the most popular scans. Some of the definitions are from De Vivo et al. [23] and

Lyon [54].

TCP SYN scan

In a TCP SYN scan [23], the scanner sends SYN packets to a certain port of the

target machine. If the target machine replies with a SYN-ACK, it means that port

is open. If the scanner receives a RST response, this means the port is closed. In

this way, the scanner can learn the status of a given port. The advantage of this

scan is that it does not need to establish a full TCP connection. Because of this

feature of SYN scanning, it is also called half-open scanning. The disadvantage is

11
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the scanner has to use its own return IP address and has to be able to send a packet

to the target, which might be prevented by a firewall.

SYN-ACK scan

In the TCP SYN-ACK scan [54], the scanner sends SYN-ACK packets to the target

machine. If the target machine replies with RSTs, that means the target machine is

up. This scan is often used to detect firewalls.

FIN scan

The FIN scan [23] is rarely logged (e.g., by an intrusion detection system) compared

to the original SYN scan because it does not consist of a normal TCP 3-way hand-

shake. As mentioned above, a FIN packet arriving at a closed port will get a RST

back; if a FIN packet arrives at an open port, it is dropped.

Xmas Tree, Null scan

Xmas Tree and Null scanning [23] are variations of FIN scanning. The same behavior

that FIN scanning observes can also be seen with all FIN/PSH/URG flags enabled

(Xmas Tree scan) in a TCP segment or no flags turned on (Null scanning). Certain

firewalls focus on preventing FIN scanning but are susceptible to these two kinds of

scans.

UDP scan and ICMP scan

The UDP scan [54] is a very different scanning method used to detect UDP open

ports. It uses the fact that when a UDP packet arrives at a closed port, an ICMP
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unreachable message will be sent back. An ICMP scan [54] is implemented by sending

an ICMP echo or timestamp request and waiting for the ICMP reply packet.

Fragment scan

In this chapter, we introduce a scan called a Fragment scan. Hosts typically store

fragments in a data structure called a fragment cache so that a fragment’s datagram

can be reassembled after the rest of its fragments arrive. Fragment scanning utilizes

the notion that many hosts will send ICMP “reassembly time exceeded” messages

when they evict entries from their fragment cache. To perform the scan, we send

an IP address the first fragment of a large ICMP echo request. We then wait up to

120 seconds for it to expire from a host’s fragment cache and to receive an ICMP

error message. We found that, although the Windows Firewall filters the previously

mentioned scan techniques, on Windows Vista and later, the default firewall settings

still permit “reassembly time exceeded” messages to be sent unfiltered. Thus, this

scan is useful for detecting Windows machines even if they are running the Windows

Firewall.

3.3 Implementation

In this section, we describe the implementations of our indirect and direct scans.

3.3.1 Our backlog scan

In this subsection, we present the details of our SYN backlog scan in three parts:

First we give a brief description about the SYN backlog and how it is implemented in

Linux, in particular how it behaves as the number of half open connections increase.

13
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Then we explain what we do to infer the SYN backlog size of a Linux machine.

Finally, we give the details of our SYN backlog scan based on the understanding of

the previous two parts.

SYN backlog preliminaries

Our scan relies on a TCP/IP side channel in the SYN backlog to make inferences. The

SYN backlog is a buffer to store half open connections. The status when a machine

receives a SYN and answers with a SYN-ACK, but has not received an ACK reply

to its SYN-ACK to finish the “TCP three way handshake”, is called “half open”. A

half-open connection stays in the SYN backlog until it receives an ACK to complete

the normal handshake process or a RST, ICMP error, or ARP timeout to drop the

connection. If no answer comes back, the SYN-ACK is retransmitted some fixed

number of times (typically between 3 and 5 times) until the half-open connection

times out (typically between 30 and 180 seconds) and is then aborted.

In the Linux kernel versions 2.3 and later, if the SYN backlog is more than half

full, some of the older entries in the backlog will be evicted to reserve half of the

backlog for the young requests. A young request is a request that has not been

retransmitted yet. The idea of SYN backlog management is to “keep most of the

young entries and remove old ones from the queue which have been there for quite

some time and have not yet been accepted or acknowledged” [66]. This feature causes

information flow before the resource is exhausted, so that we can make inferences

without causing denial-of-service.

Inferring SYN backlog size

The first inference we make based on information flow in Linux is about the backlog

size of a Linux machine. Below we will talk about how to calculate the possible
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SYN backlog size of a Linux machine. Then we will give a method to infer the SYN

backlog size based on the range obtained from the previous calculation.

The Linux SYN backlog size depends on three kernel variables:

1. The “backlog” argument of the listen() system call

2. The kernel variable net.core.somaxconn

3. The kernel variable net.ipv4.tcp max syn backlog

To calculate the backlog size, the kernel takes the first variable (an argument

passed to the listen() call), adds 1 and then picks the next power of two, which is

the final backlog size. The lower bound of this variable is hard coded to 8 in the

kernel, and the upper bound depends on the minimum value of the second and third

variables. Although Linux sets tcp max syn backlog based on the memory of the

system (minimum is 128), the default value of somaxconn is 128. Thus, the typical

range for the SYN backlog size of a Linux system is 16 to 256.

To implement our inference technique to find out the backlog size of a given

machine on the Internet, we make the assumption that “the SYN backlog size of the

machine is x” and iteratively increase x. We start from the smallest possible size

(16) and work up from there, to be non-intrusive. We send 3/4 · x SYN packets,

without answering ACKs to SYN-ACKs from the machine. If the machine’s backlog

size is x, more than half of it is full and some of SYNs we sent will be evicted. If the

backlog size is greater than x, no eviction behavior will be observed, so the guessed

size of the backlog is doubled to 2x and we repeat the test. The experiment is run

until it successfully returns the backlog size of the Linux machine or it reaches the

threshold 256 (typically the largest size of the backlog). If the backlog size appears

to be greater than 256, we abort and do not use that machine as a zombie.
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Below we explain a method to test whether an entry stayed in the SYN backlog

or not. For every original SYN packet that we send, we create another duplicated

SYN. The duplicated SYN has the exact same information (source and destination

port, source and destination IP address) corresponding to the original SYN, except

it has a different sequence number that is less by one. For Linux, the duplicated

SYN we send may have two kinds of answers:

1. If the original SYN still stays in the SYN backlog, an ACK packet will be

answered to it.

2. If the original SYN has been evicted, an SYN-ACK packet will be answered to

the newly arrived duplicated SYN.

Therefore we can find out the status of previously sent SYN packets by observing

the machine’s answers to duplicated SYN packets.

Implementing the backlog scan

Now we talk about how to exploit the SYN backlog side channel and use it to find

hidden machines on the Internet.

Our backlog scan also involves a third machine called a “zombie”. The procedure

of our scan is as follows. We assume that we have already performed the scan from

the previous subsection and we therefore know the zombie’s backlog size s. We then

fill 3/4 of the zombie’s backlog again. However, this time the packets contain two

parts: 1. Spoofed SYN packets sent to the zombie which use the target machine’s

IP address as the source IP address. 2. SYN packets from our scan machine to the

zombie, using the return IP address of the scan machine, and we call these packets

canaries. Spoofed SYN packets and canaries are mixed and shuffled to be sent in

a completely random order, and then sent at a rate of 5 packets per second to the
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zombie machine. Three quarters of the zombie’s SYN backlog are now filled by

an even number of spoofed SYNs and canaries, so each of them has a number of

packets equal to 3/8 of the zombie’s SYN backlog size. In order to ensure that the

Linux kernel evicts SYNs independently and without treating canaries and probes

differently, we use random (without replacement) source port numbers for all SYN

packets created.

Next we send duplicates of the canaries to test their status in the backlog. We call

these duplicates probes. As discussed above, probes are the exact same as canaries,

except the sequence number of each corresponding packet is smaller by 1. Two kinds

of answers may come back, as shown in Figure 3.1:

1. If the target machine does not exist, the SYN backlog is filled with spoofed SYN

packets and canaries. Some of the canaries will be evicted. We will therefore

observe SYN-ACKs as answers to probes.

2. If the target machine exists, it sends RSTs to SYN-ACKs from the zombie.

The SYN backlog is less than half full because only the canaries stay. We will

therefore observe ACKs as answers to canaries.

Two special cases may affect the result of our technique when the target machine

does not exist.

1. Tested target is in the same subnet with the zombie: In this case the zombie

will send an ARP request to the target. Spoofed SYNs will be removed from

zombie’s SYN backlog because of the ARP request timeout. Thus the SYN

backlog will be less than half full. However, with Linux versions 3.2 and earlier,

this behavior is rate-limited to 1 per second. With this rate limitation, our scan

can still fill more than half of the backlog at a rate of 5 packets per second

when using these zombies with SYN backlog sizes of at least 256.
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Figure 3.1: Two cases in our scan.

2. Tested target is not in the same subnet with the zombie: Some gateway routers

may send ICMP host unreachable messages back to the zombie. The SYN

backlog of the zombie will thus be less than half full. There is typically a

rate-limit for sending this type of ICMP message of 1 per second.

3.3.2 Nmap direct scan

We implemented Nmap’s host discovery scan [3] via “nmap -n -sn”. These options

let Nmap run its built-in host discovery scan without resolving DNS. We execute
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this command using a privileged account on the measurement machine. By default,

nmap sends an ICMP echo request, an ICMP timestamp request, a TCP SYN to

port 443, and a TCP ACK to port 80 on each machine.

3.3.3 Our own direct scan

We also implemented a new comprehensive direct scan. This scan is a hybrid scan

to test the liveness of an IP address. It is comprised of six types of scans: TCP

SYN Scan, TCP SYN-ACK Scan, UDP Scan, ICMP Echo Scan, ICMP Timestamp

Scan, and Fragment Scan. In the TCP SYN Scan and SYN-ACK Scan, we target

more ports (21, 22, 80, 135, 139, 443, 445, 631) than Nmap’s host discovery scan.

In the UDP Scan, we choose the probably unused port 5000 and wait for an ICMP

Port unreachable error. In the Fragment Scan, we send only the first fragment of an

ICMP Echo request and then wait for the reassembly timeout ICMP error message as

a response. This is effective for windows machines because some Windows versions

have a firewall that blocks SYNs but still allows the reassembly timeout message to

pass.

3.3.4 Ingress filtering

Many zombies are on networks subject to ingress filtering, i.e., they are on networks

that filter incoming packets from outside their network if those packets have a source

address from inside their network. Since our scanning technique relies on spoofing

packets from other hosts on the zombie’s network, if the zombie’s network performs

ingress filtering, our scan will not work and will spuriously report all hosts on the

zombie’s network as alive.

To test if a zombie’s network performs ingress filtering, we use the zombie’s
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fragment cache as a side channel to determine if packets spoofed from other hosts

on the zombie’s network are reaching the zombie. Since our zombies are all Linux

machines, we adapt our test to Linux’s fragment cache implementation. Namely, we

use the time it takes to fill Linux’s fragment cache to determine if there is ingress

filtering.

Linux limits the size of the fragment cache according to the number of bytes

used for storing fragments. When the cache is full and the storage of an incoming

fragment would exceed its maximum size, the kernel begins pruning fragments from

its cache in FIFO order, typically until 1/4 of the cache is free, although this number

is configurable.

Our test begins by performing a fragment cache size measurement by measuring

the maximum number of 1420-byte fragments that fit into the target Linux machine’s

fragment cache. We will call this number the size of the fragment cache. We perform

this measurement by sending large TCP SYN datagrams to the open port of the

zombie that we fragment into two halves. As Linux ignores extraneous TCP payloads

in SYN datagrams, once these datagrams are completed in the zombie’s fragment

cache, the zombie will respond with the appropriate SYN-ACK.

One might naively measure the number of fragments the Linux fragment cache

can hold by splitting each datagram di of n datagrams d1, . . . , dn into two fragments,

a first-half fragment fi and a second-half fragment si, and then sending f1, . . . , fn

followed by sn, . . . , s1, for some n larger than the fragment cache size. To avoid

quickly kicking out any fragments that might be in the zombie’s fragment cache,

we might send these packets out evenly over an up to 30 second interval, as after

30 seconds, Linux times out fragment cache entries, evicting them. However, the

number of SYN-ACKs received from this method would not be the size of the cache.

Rather, it would be the number of fragments remaining in the cache after the kernel

prunes its entries.
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Thus, instead we, over the span of 29 seconds, send fragments from 2n different

datagrams and in a different order than before. We send f1 and f2, then s1, followed

by f3 and f4, then s2, and so on, until we have sent all of f1, . . . , f2n and s1, . . . , sn.

Thus, we take turns between placing two new datagram entries in the fragment cache

and attempting to complete the oldest datagram we have not tried completing by

sending its missing second-half fragment. When the kernel prunes its fragment cache

for the first time, any future second-half fragments will only try to complete fragments

that were already evicted, and so we will cease receiving any more SYN-ACKs from

the host. At this moment, the number of entries that were in the fragment cache

will equal the number of SYN-ACKs that we have received.

To then measure if fragments spoofed from some address are reaching the zombie,

we perform a modified version of the fragment cache size measurement we call the

spoofed size measurement. This measurement is similar to the fragment cache size

one, except every time we send either a first-half or second-half fragment from us,

we also send an analogous one from the spoofed host. If our spoofed packets from

that host are reaching the zombie, then the fragment cache will fill twice as quickly,

and we will measure the fragment cache to be half of its size.

To test if the network filters a certain address, we perform a filtering test. In

a filtering test, we alternatively perform both the fragment cache size and spoofed

size measurements 10 times. Let x̄ be the average result of the fragment cache size

measurements and ȳ be the average result of the spoofed size measurements. If

ȳ < 0.55x̄, then we conclude that incoming packets from the spoofed address are

filtered. If ȳ > 0.95x̄, then we conclude that they are not. Otherwise, we consider

the result inconclusive.

To decide if there is ingress filtering on a zombie’s network, if the zombie’s address

is a.b.c.d, we perform the filtering test to determine if a.b.c.(d ⊕ 0x01) and a.b.c.(d ⊕

0x80) are filtered on the zombie’s network. These two tests effectively test whether
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the zombie is on a subnet of size /31 or larger that performs ingress filtering and

whether the zombie is on a subnet of size /24 or larger that performs ingress filtering,

respectively.

Thus far, we have assumed that we know some appropriate value of n to use

larger than the fragment cache size. Although we could use some very large value

of n surely larger than any fragment cache size, if n is too large, we will be sending

packets and filling the zombie’s fragment cache at an unnecessarily high rate. Thus,

to find an appropriate value of n, we first perform a fragment cache size measurement

with n = 11, and we continue doubling n until we find an n such that the measured

fragment cache size is less than 9n/10, and then we use that value of n for all future

measurements on that zombie.

3.4 Experimental Setup

All of the measurement machines we used were Linux machines running Ubuntu

14.04. To avoid the influence of ARP timeouts as discussed in Section 3.3, we chose

Linux machines with kernel version 3.2 and earlier as zombies. In this section we

describe how we selected zombies and ran experiments. The two main purposes of

our experiments were:

1. Demonstrate the efficacy of our technique by locating hidden machines, i.e.,

machines that a very comprehensive direct scan cannot find.

2. Determine how common ingress filtering is, to assess the applicability of our

technique.

One measurement machine was used to generate random IP addresses. We sent

SYNs to ports 21, 22, 80, 443, and 631 of each randomly generated IP and sniffed
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for the response for 3 seconds. IP addresses which responded with SYN-ACKs were

recorded. Then we took the IP addresses collected in the first step as input and

removed duplicates. We ran “nmap -O” (Nmap Operating System Detection) [4]

with a timeout of 60 seconds to all these IP addresses. Basically, Nmap sends TCP

and UDP packets and tests TCP Initial Sequence Number (ISN) sampling, TCP

option support and ordering, IPID sampling, initial window size check, etc., and

then compares the results with its own operating system database to see if there

is a match. IP addresses determined to be running the Linux operating system

were recorded. Some answers returned by Nmap were not accurate, so we discarded

those answers and only recorded answers with 100% certainty from Nmap that the

machine was a Linux machine. We wanted to find Linux machines with versions

earlier than 3.3. We found that Linux version 3.0 and earlier has its TCP timeout

period (the amount of time it takes for a SYN to time out and be removed from

the SYN backlog) hardcoded to 3 times longer than version 3.1 and later. We used

this feature to fingerprint Linux machines with kernel version 3.0 and earlier (thus

ensuring they were older than 3.3) by testing TCP timeout periods. After collecting

all the Linux zombie candidates, we tested their SYN backlog sizes using the method

described in Section 3.3.

For each zombie machine we chose, the machines in the same /24 subnet were

considered target machines for us to try to discover the liveness of with both direct

and indirect scans. Before scanning, we queried reverse DNS entries and looked up

all the domain names for all target machines. Then we ran our SYN backlog scan,

the Nmap host discovery scan, and our comprehensive direct scan on every target

machine. we re-ran the SYN backlog indirect scan three times for each experiment to

minimize the effects of bursty packet loss. After finishing testing all machines in same

/24 subnet with a zombie, we ran the ingress filtering test on that zombie. The scans

ran on six measurement machines using multiprocessing. The whole scan period was

about 15 days in length. In Section 3.3 we discussed two possible cases that may affect
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our scan. To ensure that there are enough SYN’s in zombie’s backlog to withstand

those removed via linux’s arp timeout behavior and any possibly removed via rate-

limited ICMP host unreachable errors, we selected our final data from zombies with

a minimum backlog size of 256.

3.5 Analysis

We use statistical hypothesis testing to determine whether a target address is alive

on the zombie’s network, using as our null hypothesis and our alternative hypothesis

H0 : the address was never alive during our test

Ha : a machine at that address reset some SYN-ACKs.

If we are able to reject the null hypothesis and accept the alternate hypothesis with

high statistical significance, then we can safely assume that the target machine is

up, i.e., alive.

We send both spoofed SYNs and canaries to fill 3/4 of the SYN backlog of a

zombie machine. When the null hypothesis is true, then no machine answers at the

target address with any RST in response to any of the zombie’s SYN-ACKs. The

SYN backlog is more than half full and some old entries are evicted because half of

the SYN backlog is reserved for young entries. When the null hypothesis is false,

then that address is alive and, in an ideal case, its machine responds to every one

of the zombie’s SYN-ACKs with RSTs and our experiment would show no evicted

old entries. However, in practice, machines may not be consistently up and there

is the possibility of packet loss in all directions of links and machines. Moreover,

sometimes packet loss changes the number of evicted canaries that we measure. It

might be obvious to say a machine is up when our evicted number is, for example,

0. But for numbers such as 4 or 5, it may not be clear how to decide whether we
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can assume that the machine is up, which is why we apply a hypothesis test. We

need to calculate the point at which we can consider the machine to be up, which

is the critical number, c. Meanwhile, we also need to decide how critical we will be,

i.e., how much statistical significance we will require to assume that the machine is

up. For example, in this case, c = 0 is more critical than c = 5. In other words,

the decision we make on c determines how often we would falsely reject the null

hypothesis (Type 1 error). In our experiment, we selected the maximum acceptable

probability of Type 1 error (also called the significance level) α = 0.05. We calculate

critical value c depending on this significance level.

As discussed above, if we assume that the null hypothesis is true, some entries

in the SYN backlog will be evicted because more than half of it is full. Whether

a specific entry is evicted or not is based on the location it is hashed to in the

SYN backlog hash table. The spoofed SYN packets and canaries we created have

random source port numbers; therefore, the whole process of evicting packets can be

simulated by randomly selecting entries from all SYN packets in the SYN backlog.

The evicting process stops after the number of entries in the SYN backlog drops

under half. By sending probes, we can know how many canaries are evicted.

When n draws are taken, without replacement, from a finite population size of

N that contains exactly K successes and where each draw is either a success or a

failure, the probability of k successes has a hypergeometric probability distribution.

Thus, the number of evicted canaries is hypergeometrically distributed. More specif-

ically, the number of evicted canaries k (the test statistic) follows a hypergeometric

distribution. If we define s to be the zombie machine’s SYN backlog size, then the

number of successes statistic K in the population is simply the number of canaries

that arrived at the zombie machine,

K = C − LC = 3/8 · s− LC ,

where C is number of canaries we sent and LC is the number of these canaries that
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were lost due to packet loss.

The population size N is all of the spoofed SYNs and canaries that arrived at

zombie machine. In this case, we cannot observe the number of packets lost for

spoofed SYNs LS, because answers to spoofed SYNs are off-path. We estimate that

LS = LC because spoofed SYNs and canaries are sending aggregately in the same

time period and because in our experiment C = S, where S is the number of spoofed

SYNs we sent. So for our population size, we have

N = (C − LC) + (S − LS) = 2 · (C − LC) = 2 ·K.

The number of draws n is how many entries are evicted. As we discussed above,

the evicting process stops when the total number of entries in the backlog drops

under half, and it does not necessarily stop when it reaches exactly half the size of

the SYN backlog. In other words, it might drop even more SYNs after it reaches the

half-full threshold. And so we have

n ≥ N − 1/2 · s.

The number of successes k is simply the number of evicted entries that we ob-

served for canaries. We measure the packet loss of evicted canaries by counting

answers to probes. If the number of probes answered is fewer than the number of

probes we sent, then there is packet loss. There are two types of answers: ACKs for

canaries (meaning that the canary stayed in the SYN backlog) and SYN-ACKs for

probes (meaning that the canary was evicted). Packet loss could occur in the probes

we sent or in the two types of answers we get. Without making guesses about where

exactly the packet loss happened, we want to be conservative and bias the result to

H0. That is to say, we assume that the answers that get lost are always SYN-ACKs

for probes. This way we count more evicted canaries, which makes it harder to reject

H0. This can only make the result more statistically significant. So we calculate k
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as

k = R− A,

where R is the number of probes sent and A is the number of ACKs received from

our probes.

Here the p-value, or probability of seeing data at least as extreme as what we

measured, is simply P (x ≤ k). Since k is geometrically distributed, our p-value is

P (x ≤ k) =
k∑

x=1

(
K
x

)(
N−K
n−x

)(
N
n

) .

We chose the possible smallest value of n, which is n = N − 1/2 · s, because we

want to be conservative about H0, and a smaller n results in a bigger P value, which

makes it harder to reject H0.

As we discussed in section 3.4, each experiment is repeated 3 times to avoid the

influence of packet loss. When selecting the results, there are two cases:

1. At least one of the three results does not have packet loss in the traffic we can

observe.

2. All the three results have packet loss in the traffic we can observe.

For case 1, we would select one result that is without packet loss. If there is more

than one result which does not have packet loss, we chose the result with the highest

evicted number of canaries k, to remain conservative and bias us towards H0. For

case 2, we would select the one result which has the smallest packet loss rate, so as

to minimize the influence of packet loss. If the one we select still has a high packet

loss rate, (greater than 30% in this case, because it would cause population of less

than half of the SYN backlog size) we throw out the data and return a failure error

message for this target machine.
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In Section 3.3, we discussed two cases that may affect our scan. To give allowance

of our model to handle these cases, we adjusted certain variables in our model. The

zombie’s SYN backlog size is always 256 for the results presented in this chapter. At

a rate 5 packets per second, our experiment takes less than 40 seconds to fill 3/4 of

backlog. Assuming the target does not exist, the maximum number of evicted SYNs

due to ARP request timeouts or ICMP unreachable messages is 40. Therefore, we

subtracted both the number of successes statistic K and number of draws n by 40,

respectively.

3.6 Results

In this section we describe the results of our experiments.

3.6.1 Ingress filtering results

We were able to collect data from 289 zombie machines with backlog size 256 during

a 15 day experiment. We scanned machines in the same /24 subnet for each zombie.

After collecting the scan results, we performed the ingress filtering test on each

zombie machine. We found that 69 (23.9%) of the zombies had ingress filtering.

Among them, 55 (79.7%) had ingress filtering on a /24 or larger network; 14 (20.3%)

experienced ingress filtering on a /31 or larger network (e.g., /27) but not on a /24

or larger network. Their backlog scan results for the /24 showed almost no evicted

canaries in some smaller subnet. 176 (60.9%) of the zombies did not have ingress

filtering on a /24 or larger network, and 44 (15.2%) of the zombies’ ingress filtering

status could not be determined. The results show that since most (60.9%) of zombie

machines we selected do not have ingress filtering on their network, our technique is

widely applicable on the Internet.
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Figure 3.2: Distribution of the number of hidden machines per subnet.

3.6.2 Indirect scan result

For the 176 zombies we found that did not experience ingress filtering, we ap-

plied statistical analysis to the results and calculated a p-value for each individual

experiment. There are 14,503 addresses for which we rejected the null hypothesis,

which means that these addresses were alive. Comparing to our direct scan, we found

1,351 more machines that were hidden to direct scans. Finally, we removed hidden

machines if there are ICMP unreachable error message collected by our direct scan.

The number of hidden machines we found is 1,296, distributed across 84 different

subnets out of the 176 tested. Figure 3.2 shows the distribution of those 1,296 ma-

chines in terms of how many such machines existed on each subnet. The x axis is

the different subnets sorted by the rank of how many hidden machines were found

on that subnet, and the y axis is the number of hidden machines found. From the

figure, we can see the variety in the number of hidden machines found in different
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Table 3.1: Additional hosts found versus Nmap via direct scan by direct scan type
Scan method Additional hosts found Percentage
SYN 569 55.7%
SYN-ACK 233 22.8%
ICMP-ECHO 25 2.45%
ICMP-TS 32 3.13%
ICMP-FRAG 351 34.4%
UDP 173 16.9%

subnets (which ranges from 1 to 245). Most subnets (about 74%) had less than 10

hidden machines.

3.7 Discussion

In the previous section, we demonstrated the efficacy of our indirect scan technique,

based on a TCP/IP side channel in the Linux SYN backlog. In this section, we discuss

how our direct scan compares to Nmap’s direct scan, and present some limitations

of both our indirect and direct scan techniques. We also discuss how we informed

network operators of our experiments and gave them the ability to opt out.

3.7.1 Nmap vs. our direct scan

We compared the results of our comprehensive direct scan with Nmap’s host discovery

scan. Our direct scan found 39,163 machines that were up, while the Nmap host

discovery scan found 38,252 machines. There are 1,131 differing results between our

direct scan and Nmap’s host discovery scan, 1,021 (90.3%) of them are reported as

“up” only by our direct scan, and only 110 (9.7%) are reported as “up” only by

Nmap’s host discovery scan. Table 3.1 shows details in terms of the percentage of

each technique to help find hosts which were blind to Nmap’s host discovery scan.
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Because a machine could be found by multiple scans, the sum of the percentages in

the table is above 100%.

3.7.2 Limitations of our SYN backlog scan

There are limitations of our technique. First, our technique to exploit the Linux

SYN backlog side channel is non-intrusive if the zombie we scan is in a normal

status. However our current technique does not consider the case that the zombie is

scanned by other scanners at the same time. Our technique requires sending at a rate

5 packets per second for about 60 seconds. If a scanner scans the same machine at the

same time using our technique, the packet rate will reach up to 10 packets per second.

Based on the result of a simulation experiment we set in a virtual environment, any

packet rate faster than 9 packets per second will fill the Linux SYN backlog because

the kernel will not be able to drop old entries as fast as the SYN backlog is filling.

Therefore, in this case the machine’s backlog will be totally full and the server will

send SYN cookies. SYN cookies still allow other clients to connect to the server,

but the Linux implementation of SYN cookies does not support window scaling so

the flow control of the connection may be more limiting. This is a rare case, and

Internet hosts typically have their bandwidth limited by congestion control rather

than flow control. Nonetheless, in future work we plan to develop an adaptive scan

that backs off if it is detected that others are also sending SYNs to the zombie and

leaving them in a half-open state. Second, although our statistical hypothesis model

has allowance for some special cases (that SYNs could be removed because of ARP

request timeouts or ICMP unreachable error messages when a target machine does

not exist), we have not thoroughly tested the assumptions we made about applicable

rate limits for a variety of operating systems and versions for the host and gateway

router.
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Another two limitations are worth noting for our comprehensive direct scan. Our

direct scan targets a limited number of popular ports in the SYN scan and SYN-ACK

scan. However, some other ports might be open in a target machine and a firewall

is preventing outside connections except on that open port. For example, we found

one target machine with port 25 open for an SMTP service, which appeared to be

down to our direct scan but was found by our indirect scan. Furthermore, we did

not implement multiple experiments in our direct scan, which makes it susceptible

to packet loss. This can be seen in the comparison of our direct scan with Nmap’s

host discovery scan. Although all the techniques used in Nmap’s host discovery

scan are included in our direct scan, Nmap still found 110 (9.7%) machines to be

up which appeared to be down according to our direct scan. Because of these two

limitations, some of the machines not located by our direct scan that were located

by our indirect scan may not be “hidden” in the sense that they are completely

invisible from outside the firewalled network, but note that our direct scan is more

comprehensive than existing direct scans and still such machines cannot be found via

our direct scan. Also, our direct scan includes a SYN-ACK scan while our indirect

scan is based on the target replying to unsolicited SYN/ACKs, meaning that with

respect to SYN-ACKs the target is definitely hidden behind a firewall.

3.7.3 Opting out of measurements

During our scans, the scanning machines all were serving web pages with an expla-

nation of our scan and contact information for network operators who wanted us to

exclude their networks from our experiments. At no time during our experiments

were we contacted by any network operators about our experiments. Because of the

low rate at which we send SYN packets, our technique is non-intrusive.

32



Chapter 3. Finding Machines Hidden Behind Firewalls

3.8 Summary of this Chapter and Future Work

In this chapter, we presented a new Internet measurement technique that uses

TCP/IP side channels to find machines hidden behind firewalls. Our technique

can find machines which are behind a firewall that prevents outside IP addresses

from sending packets to the internal network. Our technique was shown to be widely

applicable on the Internet by our novel ingress filtering test, and is also resistant to

packet loss due to the use of our statistical analysis model. The results show the

existence of hidden machines on the Internet by comparing with our comprehensive

direct scan. Planned future work includes using a slower packet rate to implement

our technique, to make it non-intrusive even when there are other scanners scanning

the same machine. Also the direct scan can be improved by targeting more common

ports and doing multiple experiments to be robust to packet loss.

With respect to Internet measurement, our proposed technique is a first step

towards being able to measure firewall rules, trust relationships, and all of the com-

plexities that define today’s Internet.
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High Fidelity Off-Path Round-Trip

Time Measurement

4.1 Introduction

In this chapter, we describe our work on improving existing off-path round trip time

measurements via TCP/IP side channels.

Off-path round-trip time (RTT) measurement has many potential applications,

including: improved geolocation capabilities, measuring the performance of parts of

the Internet where there is not much measurement infrastructure (e.g., PlanetLab),

and providing data plane measurements to better understand global Internet routing.

Off-path means that the measurement machine is not on the path being measured.

More specifically, we can measure the RTT between essentially any two machines

(A and B) on the Internet without having special access to A or B or having any

presence in the path between A and B. Instead, we use packets with spoofed return

IP addresses (i.e., appearing to be from A to B or from B to A) and TCP/IP side

channels that infer information about the state of either machine’s network stack.
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In 2002, Gummadi et al. [39] proposed King, a method to measure RTT off-

path. Their technique was based on the DNS system and therefore was relatively

limited in terms of what machines or networks it could measure between. In 2015,

Alexander and Crandall [11] proposed a technique that is based on TCP/IP side

channels and therefore can be applied between any Linux server and any client that

responds to SYN-ACKs with RSTs. Thus, their technique is widely applicable across

many parts of the Internet. However, the accuracy of their technique was greatly

reduced when either the RTT being measured was low or the packet loss rate during

the measurement was high. In this chapter, we propose an improved technique that

overcomes both of these limitations.

Our new technique is shown to have 82.95% of the RTT measurement results

within 10% of the actual RTT, and 91.18% of the results within 20% of the actual

RTT; while the previous technique by Alexander and Crandall only had 60.7% of

the results within 10% and 81.33% of the results within 20%.

We summarize our major contributions as follows:

1. We propose a significantly improved off-path TCP/IP side channel RTT mea-

surement technique via active probing. Our technique is more robust to packet

loss and more accurate across different RTT ranges compared to previous off-

path RTT measurement techniques. Overall, 91.18% of our RTT measurement

results are within 20% of the actual RTT, while the previous techniques of

Alexander and Crandall [11] and Gummadi et al. [39] achieved 81.33% and

75%, respectively.

2. We perform a detailed analysis of sources of error across different RTT ranges

when using our TCP/IP side channel off-path RTT measurement technique,

and discuss certain challenges in our work as well as directions for future im-

provement.
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4.2 Background

Next, we briefly outline TCP behavior specified by RFC 793 [61] relevant to our

technique. Then we describe Linux’s TCP/IP implementation and summarize the

off-path measurement technique by Alexander and Crandall [11].

4.2.1 TCP behavior

Our technique utilizes the following TCP behavior:

1. When a client sends a SYN packet to a server, this creates a half-open connec-

tion in the SYN SENT state on the client to the server.

2. When a SYN packet is received from a client on an open port on the server, it

will create a half-open connection in the SYN RCVD state on the server to the

client, and a SYN-ACK will be sent in response.

3. A SYN-ACK packet received by a machine with no corresponding half-open

connection will respond with a RST.

4. A RST received by a machine in response to a SYN-ACK will close the corre-

sponding half-open (SYN RCVD) connection.

4.2.2 Linux’s TCP/IP implementation

On Linux, each listening socket has its own SYN backlog, a data structure that stores

that socket’s half-open (SYN RCVD) connections. The SYN backlog can only store a

finite number of entries, and its maximum capacity is determined by three variables:

1. The backlog argument of the listen() system call
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2. The runtime kernel parameter net. core. somaxconn

3. The runtime kernel parameter net. ipv4. tcp_ max_ syn_ backlog

We represent the above three variables by m1, m2, and m3, respectively. Linux

determines maximum backlog capacity m as

m = 2⌈log2(max(8,min(m1,m2,m3))+1)⌉.

Argument m1 is large in most programs. Parameter m2 is by default 128, and

parameter m3 is, by default, determined by the memory of the system but typically

≥ 128. Thus, m is commonly 256.

To compensate for packet loss, for each SYN still in the SYN backlog, Linux will

send five SYN-ACK packet retransmissions, waiting 2i−1t seconds after the previous

transmission to send the ith retransmission, where t is the initial timeout for sending

the first retransmission. On Linux kernels < 3.1, t = 3, and so these timeouts are 3,

6, 12, 24, and 48 seconds; and on Linux ≥ 3.1, t = 1, and so these timeouts are 1, 2,

4, 8, and 16 seconds.

To maintain service under high load or during a denial of service attack, Linux

≥ 2.3.41 employs an additional mechanism to evict entries from the SYN backlog

to prevent it from completely filling. Linux distinguishes between young entries,

or entries whose SYN-ACKs have yet to be retransmitted, and mature entries, or

entries whose SYN-ACKs have been retransmitted. Every 200ms, Linux checks if

the backlog is at least half-full. If it is, it first determines a threshold number T as

T =

max(2, 5− ⌊log2⌊n/y⌋⌋) when y > 0

2 otherwise

where y is the number of young entries in the backlog and n is the number of entries

currently stored in the backlog. It will then remove up to
⌊
2m
5t

⌋
entries whose SYN-

ACKs have been retransmitted at least T times, where t is again the timeout in
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seconds before retransmitting the first SYN-ACK and m is the size of the SYN

backlog. The intuition here is that the more mature entries there are in the backlog,

the more room Linux will make for young entries.

4.2.3 Previous work

Below we summarize the previous off-path measurement technique by Alexander

and Crandall [11]. As mentioned earlier, this technique assumes that the server is a

standard Linux machine with an open port and the client responses to unsolicited

SYN-ACKs with RSTs. In general, to estimate the round-trip time between the

server and the client using an off-path measurement machine, they use a binary

search algorithm. In each round, a midpoint in the binary search is selected as a

new round trip time estimate (eRTT ). Then, a result about whether the eRTT is

too small or too large is obtained by running the below 3 steps.

1. Send SYN packets to the server, using the measurement machine’s own IP

address as the source IP address, without answering ACKs to complete the

three way handshake. Each SYN packet uses different source ports to ensure

that it is stored in a separate backlog entry. The total number of SYN packets

sent is close to half of the backlog size in the server.

2. Wait until all the packets sent in Step 1 become mature (see Section 4.2), then

send spoofed SYN packets to the server, using the client’s IP address as the

source IP address, at a specific rate determined as a function of the eRTT. The

server, after receiving these packets, will create an entry for each spoofed SYN

and then reply with SYN-ACKs to the client. The client machine will answer

with RSTs to the server to reset those spoofed SYNs.

3. Infer how many of the SYN packets in Step 1 were evicted by counting the SYN-
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ACK retransmission packets sent for them to the measurement machine. (If

a SYN entry is evicted from the backlog prematurely, it will have made fewer

transmissions.) Based on the number of evicted SYNs, the server’s backlog

status (whether half full or not) is inferred. The backlog status implies whether

the eRTT is too small or too large.

4.3 Implementation

In this section, we describe the steps to perform our off-path RTT measurement.

4.3.1 Pre-requisite

Selecting clients

To perform off-path RTT measurement between a server and a candidate client ma-

chine, we first need to determine whether the client machine meets the assumptions

of our experiment. As laid out in Section 4.2.1, we require that our client machines

reply to unsolicited SYN-ACKs with RSTs as per RFC 793 [61]. To determine this

behavior, we simply send SYN-ACKs to a candidate client machine using the server’s

open port as the source port (but with our measurement machine’s address as the

source address) to mimic as closely as possible the SYN-ACKs that will be sent

from server during the experiment. If we receive RSTs in response, we consider our

technique applicable to the machine.
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Determining SYN backlog size of a Server

Determining a Server’s SYN backlog size is another critical step before the off-path

RTT could be measured. We implement the technique as described in Section 3.3.

The advantage of active probing, comparing to the SYN-ACK retransmission

counting method used in [11], is that it is not influenced by SYN-ACK packet loss.

In the previous technique, if one of the five retransmitted SYN-ACKs accidentally

gets lost, the backlog would be falsely considered more than half full. While if

duplicate SYNs get lost, we can still resend them and make sure to get the status of

backlog.

4.3.2 Evaluating an estimated RTT

Now we will set out how we utilize the server’s SYN backlog as a side channel and

use it to measure the RTT between the server and the client. First, we will show

three steps to evaluate whether the RTT between a server and a client is less than

or greater than an estimated RTT. Then we will show how to use this evaluation to

measure the actual RTT.

In the first step, we fill the server’s backlog with SYNs (with the measurement

machine’s return IP address) to use as a side channel for testing an estimated RTT

between the server and the client. For simplicity, we call these SYNs canaries. We

nearly half-fill the backlog with c = m/2− (log2(m)− 2) canaries. We subtract out

a (log2(m)− 2) term as a buffer to make room for any connection requests from real

clients. We want this term to be at least two in order to be as accommodating as

possible no matter the size of the backlog, but we do not want the subtracted term

to be too large in order to minimize packet rates in the next step. Each of the c

canaries has a different source port and is sent three times to ameliorate possible
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packet loss. We send canary packets at 100 packets per second (pps).

In the second step, we wait to ensure the number of SYN-ACK retransmissions

for each canary is at least 2. Then we send spoofed SYNs to the server, using the

client machine’s IP address as the source address, at a rate of 3(c−1)/eRTT packets

per second for ten seconds. Each spoofed SYN has a unique source port and sequence

number. We multiply the rate by three because each packet is sent three times to

ameliorate packet loss. The server will reply to each SYN with a SYN-ACK to each

client machine. The client machine, after receiving from the server each unsolicited

SYN-ACK, will respond with a RST to the server. These RSTs will remove their

corresponding entries in the backlog. The time it takes for a RST to remove each

spoofed SYN from the backlog is the RTT between the server and the client machine.

If more than (log2(m)− 2) spoofed SYNs arrive before the first RST from the client

machine arrives, then the server’s backlog will become more than half full and Linux

will begin evicting mature entries.

In the final step, instead of counting SYN-ACK retransmissions for each canary

as in [11], we send “duplicate SYNs” that we call probes to test for the canaries’

presence in the backlog. These probes have the same TCP header values as the

original canaries, except each of their sequence numbers is the sequence number of

their corresponding canary minus one. Each probe is sent three times to ameliorate

possible packet loss. We send probe packets at the same rate as in step one. We

have two possible results, as illustrated in Figure 4.1:

1. In the case that, for every canary, we received ACKs in response to at least

one of the probes sent to test its presence in the backlog, none of the canaries

were evicted, and thus we conclude that the server’s backlog was never at least

half full because each spoofed SYN has been reset before up to (log2(m) − 2)

spoofed SYNs arrived. Therefore, the chosen estimated RTT is larger than the

actual RTT.
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Figure 4.1: Two cases in our estimated RTT evaluation.

2. In the case that at least one canary’s probes only responded with SYN-ACKs,

at least one canary was evicted, and so the server’s backlog was at some time

at least half full because up to (log2(m) − 2) new spoofed SYNs arrived to

the server’s backlog before the previous had been reset. Therefore, the chosen

estimated RTT is less than the actual RTT.

4.3.3 Determining the RTT

We will now show how to use our technique to evaluate an estimated RTT to deter-

mine the actual RTT between a server and a client. By performing binary search

over the estimated RTT [11], we can converge on the actual RTT. However, during

our experiments, we found that the actual RTT may vary. The problem of using

binary search is that once a bisection decision is made, it cannot be revisited. If a
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wrong decision is made in early stage, the influence can be severe.

We replace the binary search with a heuristic search algorithm so that it can

backtrack. Instead of testing the midpoint between the lower and upper bounds as

an estimated RTT, we perform a ternary search such that we test two estimated

RTTs, each evenly dividing the remaining search space into thirds. We also use two

stacks to keep track of the trace points on both sides. For the left (lower) point, if

the estimation is too small, the left point will be kept; if the estimation is too big, the

previous left point will be returned as a new left point. The case for the right (upper)

point is similar. This way we are able to backtrack when experiencing variations of

actual RTT. We keep iterating this algorithm until the distance between left point

and right point is less than 5ms.

4.4 Experimental Setup

We duplicated the experimental setup used by Alexander and Crandall in order to

make a direct comparison with their results. The measurement machine we used

ran Ubuntu Server 14.04 with Linux kernel 3.13 installed. It was directly connected

to an Internet backbone without any stateful firewall or egress filtering in between.

We selected 15 PlanetLab nodes as our servers, evenly distributed in Asia, North

America, South America, Europe, Australia, three nodes for each continent. We

used PlanetLab nodes as servers in order to directly compare our off-path RTT

measurement results with on-path RTTs recorded on the servers themselves; however,

we did not use the servers to assist in our off-path RTT measurement technique–

they are only used to verify results. The PlanetLab servers that we selected were

all running Linux with kernel 2.6.x. We opened an unprivileged TCP port 15216 on

every Planet lab node and confirmed that every backlog size was 256 before running

our off-path RTT scan.
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Once an off-path RTT measurement began, the measurement machine first copied

necessary scripts to every PlanetLab server. We used these scripts to record on-path

RTTs which serve as a ground truth to verify our off-path technique results. Then our

measurement machine sent a remote ssh command to activate the server program to

listen on port 15216 on each PlanetLab server. We used an unprivileged port 15216

to help setup tcpdump filters and also to avoid conflicts with other PlanetLab users.

After that, the measurement machine created multiple threads, each using one of

our PlanetLab servers to perform our off-path measurement.

Each thread first tested if a randomly generated IPv4 address replied to SYN-

ACKs with RSTs. Then it activated previously copied scripts on its corresponding

PlanetLab server to:

1. Start a tcpdump to record traffic between the server and the client

2. Run traceroute to the client during the experiment

The tcpdump output was used to capture the SYN-ACKs and RSTs between

the server and the client. This traffic was created by our off-path technique, but

the purpose of keeping it was to directly compare with our off-path result. The

traceroutes were used to verify if there were any routing changes during our off-

path RTT measurement. After all the environmental setup was done, we executed

our off-path experiment. We used a search algorithm discussed in section 4.3 to

search the space between 0 and 3000ms. When a result RTT range was found, ssh

commands were sent to terminate tcpdump and any running traceroute. Each off-

path testing took about an hour to complete. We used tcpdump output to calculate

an average RTT between the server and the client during our off-path measurement,

and compared it with the mean of our off-path RTT result range.
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Dataset Within 10% Within 20%
Overall 82.95% (89.74%) 91.18% (96.92%)
RTT > 25ms 83.36% (90.6%) 91.39% (97.39%)
RTT < 25ms 42.86% (42.86%) 71.43% (71.43%)
RTT > 100ms 86.05% (93.15%) 92.77% (97.82%)
RTT < 100ms 63.92% (73.91%) 81.44% (92.75%)
25ms< RTT < 100ms 65.56% (77.42%) 82.22% (95.16%)

Table 4.1: Percent of measurements within given percent of actual round trip time.
Values for measurements with no packet loss are in parentheses.

Dataset Within 10% Within 20%
Overall 82.95% (60.7%) 91.18% (81.33%)
RTT > 25ms 83.36% (63.6%) 91.39% (83.7%)
RTT < 25ms 42.86% (18.0%) 71.43% (46.1%)
RTT > 100ms 86.05% (67.1%) 92.77% (87.2%)
RTT < 100ms 63.92% (35.5%) 81.44% (58.06%)
25ms< RTT < 100ms 65.56% (43.5%) 82.22% (63.5%)

Table 4.2: Percent of measurements within given percent of actual round trip time.
Previous measurement results are in parentheses.

4.5 Results

We ran off-path RTT measurement using a single measurement machine from 1

October 2015 to 6 October 2015. 728 round trip time estimates were collected during

this period. We determined by tcpdump output that 36 (4.5%) experiments showed

no RST traffic from the client to the server, so we excluded these experiments from

our analysis, leaving 692 data points. Using the method we discussed in Section 4.3,

we calculated the corresponding on-path RTT for each of our off-path RTT estimates.

Figure 4.2 shows the CDF plot for the estimated RTTs divided by actual RTTs.

Our technique has higher accuracy than previous off-path RTT measurement

techniques. 82.95% of RTT measurement results are within 10% of the actual RTT,
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Dataset Within 10% Within 20%
Overall 89.74% (68.87%) 96.92% (90.84%)
RTT > 25ms 90.6% (72.1%) 97.39% (92.7%)
RTT < 25ms 42.86% (16%) 71.43% (60.0%)
RTT > 100ms 93.15% (75.9%) 97.82% (96.0%)
RTT < 100ms 73.91% (39.3%) 92.75% (69.05%)
25ms< RTT < 100ms 77.42% (49.3%) 95.16% (72.9%)

Table 4.3: Percent of measurements within given percent of actual round trip time
with no packet loss. Previous measurement results are in parentheses.

and 91.18% of the results are within 20% of the actual RTT. In contrast, the previous

technique by Alexander and Crandall has 616 round-trip time estimates, 60% of them

within 10% and 81.33% of the results within 20%. Table 4.2 and Table 4.3 show a

direct comparison of our result to the previous technique developed by Alexander

and Crandall. King, another off-path latency estimation tool that used DNS, has less

than 20% of error in over three quarters (75%) of estimates and 10% of error in two-

thirds (67%) of the estimates. Below we investigate the accuracy of our technique

as well as analyzing the sources of error.

4.5.1 Performance for low RTTs and high RTTs

Figure 4.3 shows the accuracy of our estimates for actual RTTs less than 25ms. In this

RTT range, our measurement has 42.86% within 10% of actual RTTs, and 71.43%

within 20% of actual RTTs. Comparing with previous results, we have a 24.86% and

25.33% increase of accuracy, respectively. Our estimates for small RTTs are bounded

by 50% of actual RTTs, within an error less than 7.77ms. Meanwhile, our results

show the capability of measuring off-path RTTs accurately even for a RTT less than

10ms, e.g., the smallest RTT we measured had actual RTT 7.16ms, and our estimate

was 7.01ms. We found that 85.7% of our low RTT results overestimates the actual
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Figure 4.2: Overall accuracy of Off-Path RTT estimates.

RTTs. The reason for this is that the packet intervals in low RTT estimates are

usually small, and any small delay of RSTs (such as a packet loss of the SYN-ACK

or RST) may cause the server’s backlog to become more than half full unexpectedly.

As a result, the search algorithm will falsely believe that the estimate is too small,

and try a larger value in the next round.

Our technique performs better when the actual RTTs are greater than 100ms.

Among our RTT estimates, 86.05% are within 10% and 92.77% are within 20%,

compared to the previous results of 67.1% within 10% and 87.2% within 20%. Figure

4.4 shows the accuracy of our estimates for this RTT range. One major source of

error in our results is from the variations of actual RTTs. Large RTTs typically have

more variations than small RTTs. We found that for the 7.23% of results that are

beyond 20% of actual RTTs, 58.14% of them have a standard deviation of RTTs

25ms or larger; while for the 92.77% results that are within 20%, only 11.96% of
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Figure 4.3: Effects of packet loss on RTT estimates (actual RTT <25ms).

them have a standard deviation of RTTs 25ms or larger. For cases when a standard

deviation of RTTs is 250ms or more, only 10% of results are within 20%; while for

cases when a standard deviation of RTTs 25ms or less, 96.43% of results are within

20%. One possible reason for large variation in RTTs is route change. We found

in our data that, although route changes existed in many of our experiments, it

happened most frequently for large RTTs.

4.5.2 Effects of packet loss

We used active probing to ameliorate the influence of packet loss between the mea-

surement machine and server, as previously discussed. For the purpose of this chap-

ter, we are interested in packet loss between the server and client. Figures 4.2, 4.3,

4.4, 4.5 show a comparison between the full data set case and the case without packet
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Figure 4.4: Effects of packet loss on RTT estimates (actual RTT >100ms).

loss. The sample for our low RTT estimates is small and did not experience packet

loss, so in Figure 4.3, the no packet loss case shows the exact same pattern as a nor-

mal case. In other RTT ranges, the no packet loss case had an increase of accuracy

from about 5% to 12%. To understand how packet loss between server and client

influences our results, we consider a case where the server sent SYN-ACKs and the

RSTs from client are lost. As a result of that, the server’s backlog is more than

half full and it evicts canaries. From the measurement machine’s point of view, the

estimate is less than the actual RTT.

4.6 Discussion

For cases where actual RTTs are greater than 25ms and less than 100ms, our mea-

surement performs better than the case of small RTTs, with 65.56% within 10% and
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Figure 4.5: Effects of packet loss on RTT estimates (25ms <actual RTT <100ms).

82.22% within 20%, as shown in Figure 5. For comparison, Alexander and Crandall

had 43.5% within 10% and 63.5% within 20%. Note that about 10% of our results

in this range underestimate the actual RTTs. The reason for this is that the backlog

was completely filled by the first arrival of spoofed SYNs and refused any newly

arriving spoofed SYNs. At the same time, RSTs from the client reset the spoofed

SYNs currently in the backlog before the server’s eviction happened. That is to

say, this problem happens only when 1) The search algorithm makes an aggressive

move to the left, causing the server’s backlog to quickly fill; and, 2) The actual RTT

is less than 200ms (the SYN-ACK timer), which means RSTs could reset spoofed

SYNs before eviction happens. For large RTTs, the second requirement cannot be

met because RSTs come back after the server starts the eviction; for small RTTs,

the first requirement cannot be met because RSTs come back quickly enough and

the server’s backlog will not be full. Therefore, we saw these kinds of results in this
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Figure 4.6: Performance comparison between different RTT ranges.

range.

Our technique ameliorates packet loss by sending each packet three times. How-

ever, the two additional SYNs should not cause extra resource allocations since to-

gether they create at most one connection on the server. Each SYN packet’s size is 60

bytes, and the network burst of traffic created by our scan is less than 150 kilobytes

per second per server. During each round of the scan, the server’s SYN backlog could

only possibly be more than half full (but not completely full) for less than 200ms,

and so it should not cause denial of service. However, in some rare cases, as we

discussed above, the server’s backlog was full due to the search algorithm making an

aggressive move. To improve our technique, the search algorithm needs to be less

aggressive when testing RTTs less than 100ms.
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4.7 Summary of this Chapter and Future Work

We have presented an improved method for off-path RTT measurement that is more

robust to packet loss and more accurate for low RTTs than Alexander and Cran-

dall’s method. Opportunities for improvement to the technique include accounting

for Linux’s SYN backlog pruning timing, adapting the technique to a broader set of

server OSes, and decreasing the packet rate so that the traffic is not perceived as

invasive. Our results presented in this chapter show that managing SYN backlog en-

tries can enable significant improvements in accuracy over Alexander and Crandall’s

technique.
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Chapter 5

ONIS: Inferring TCP/IP-based

Trust Relationships Completely

Off-Path

5.1 Introduction

We briefly mentioned the idle scan in Section 3.1. The idle scan, although originally

intended for learning the status of a port, in general can be used to learn the trust

relationship between two arbitrary hosts that a network researcher does not con-

trol. For example, consider a network researcher in country X who wants to learn

if network traffic from a host in country Y can connect to a Tor server in country

Z. Performing this measurement off-path is necessary when vantage points (VPNs,

Planet Lab nodes, etc.) are limited or unavailable in some countries. Ensafi et al.

detail this off-path trust relationship testing by using the idle scan in [27]. Specif-

ically, they measured packet drops from clients to Tor directory servers by using

machines with global incrementing IPIDs as vantage points without those machines
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being under their control.

Unfortunately, use of the idle scan has two major issues.

1. It requires that the zombie has a globally incrementing IPID. Many modern

network stacks are specifically designed to prevent information flow through

IPIDs. One of the most advanced network stacks in this respect is Linux. The

Linux IPID generation algorithm is described in Section 5.2.4.

2. It also assumes that the zombie is idle, hence the name “idle scan”. Internet-

connected hosts are seldom idle. Ensafi et al. proposed using an autoregressive

moving average (ARMA) model to handle the noise on zombie machine in [27],

but sometimes the process of fitting an ARMA model to the data fails if the

zombie machine is often not idle (e.g., web servers).

Motivated by the goal of overcoming both of these drawbacks of the idle scan,

in this chapter we propose ONIS: ONIS is Not an Idle Scan, which uses an up-to-

date Linux machine as the zombie. ONIS extends the choices of zombies of the idle

scan, by using up-to-date linux machines as zombies. According to our estimate in

Section 5.6, 17% of web servers are potential zombies that can be used. Unlike an

idle scan, ONIS does not require the zombie to be completely idle. Although ingress

filtering prevents our scan by not allowing packets with spoofed IP addresses into a

network, only 23.9% of the networks on the Internet actually perform this [73].

We summarize our major contributions as follows:

1. We propose ONIS: a novel indirect scanning technique using TCP/IP side

channels. The idle scan requires a global incrementing IPID zombie machine,

which has been gradually phased out in many major OSes. ONIS uses Linux

machines with kernel 3.16 or later as zombies and does not require the zombie
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to be idle. ONIS achieves 87% accuracy, which is roughly as accurate as the

idle scan at 86%. In the meantime, it allows a much broader choice of zombies.

2. We propose a new technique to do IPv4/IPv6 alias resolution on Linux ma-

chines with kernel 3.16 or later.

3. We perform a detailed analysis of noise in our scan technique and propose an

effective model selection method to handle noise.

The rest of this chapter is structured as follows: Section 5.2 gives a review of what

an IPID is and how Linux generates IPIDs. Section 5.3 talks about the methodology

of ONIS, as well as a new technique to perform IPv4 and IPv6 alias resolution

and a model selection method called “AIC”. Section 5.4 describes the details of our

experimental setup. We provide a direct comparison of results between ONIS and

nmap implementation of the idle scan in Section 5.5. In Section 5.6 we discuss

the applicability of ONIS, ethics concerns and possible defenses against ONIS. We

present our conclusion in Section 5.7.

5.2 Background

In this section, we briefly review IP identifiers and then discuss Linux’s changing

approach to generating them in response to different attacks.

5.2.1 IP Identifiers

Every IPv4 packet contains a 16-bit field known an IP identifier (IPID). When an

IP datagram is too large to be transmitted over a link, a router can break it up into

smaller packets called fragments. The datagram’s final destination can reassemble

the original datagram by collecting each incoming fragment until all fragments have
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been received. The final destination uses each fragments’ IPID to determine which

datagram it belongs to.

IPv6 is different from IPv4 in this matter in that every IPv6 packet does not

necessarily have an IPID. If fragmentation of a datagram is required for it to reach

its final destination, then the original sender fragments the datagram, adding to each

fragment an IPv6 extension header containing a 32-bit identifier, a field 16 bits larger

than an IPv4 packet’s IPID.

5.2.2 Early Linux IPID generation

The Linux kernel originally determined each IPv4 datagram’s IPID by using a glob-

ally incrementing counter. Every time a host sends a datagram, the value of the

counter is incremented (mod 216) and then used as that datagram’s IPID.

In 1998, a technique called an idle scan was discovered to port scan machines off-

path by exploiting globally incrementing counters as a side-channel [12]. In response,

kernel developers switched to having a separate counter for each IP destination.

5.2.3 The idle scan

Ameasurement machine can use the idle scan technique to port scan a target machine

completely off-path by performing the procedure described in this section.

Before the scan, the measurement machine identifies a suitable zombie machine

with the following characteristics: the measurement machine can communicate with

the zombie, the zombie can communicate with the target, the zombie responds to

SYN-ACKs with RSTs, the zombie has a globally incrementing IPID counter, and its

network communication is idle, i.e., aside from the scan, it is not otherwise sending
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any datagrams.

The measurement machine first probes the current value of the zombie’s IPID

counter by sending it a SYN-ACK packet. The zombie responds with a RST packet

with the current value of its IPID counter. Next, the measurement machine sends a

SYN packet to the target with the source address spoofed to be that of the zombie.

If the destination port number of the spoofed SYN packet is open on the target, the

target will send a SYN-ACK to the zombie, and the zombie, not expecting the SYN-

ACK since it did not send the spoofed SYN, sends a RST to the target, incrementing

the zombie’s IPID counter. Otherwise, if the port on the target is closed, the target

sends a RST to the zombie, which does not cause the zombie to send any packets,

and so the zombie’s IPID counter is unaffected. Finally, the measurement machine

sends another SYN-ACK probe to the zombie to once again measure the current

value of its IPID counter. If the IPID of the responding RST packet is one greater

(mod 216) than that of the last probe, then the destination port of the spoofed SYN

must be closed on the target. However, if the IPID of the RST is two greater (mod

216) than that of the original probe, then the port is open, since the SYN-ACK the

target sent to the zombie incremented its counter in between the probes.

5.2.4 Recent Linux IPID generation

In 2014, in Linux 3.16, the kernel developers recognized performance issues with using

a separate counter for each IP destination [24]. Since having a globally increment-

ing counter was still undesirable, they adopted a hybrid approach consisting of 2048

globally incrementing counters. To determine which counter to use for an IP data-

gram, that datagram’s destination address is hashed with a secret value randomly

generated at system startup. The resulting hash (mod 211) is used to determine the

index of the counter. Each counter is 32 bits to accommodate IPv6, and for IPv4
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the IPID is taken from only the lower 16 bits of the counter.

During the same time, a side-channel technique was discovered that could count

the number of datagrams sent between machines off-path [48]. The technique worked

by inferring the values of per-destination IPID counters off-path but could also be

extended to work for the kernel’s new hybrid approach [25]. In response, the kernel

developers made additional changes to make each counter less predictable. Every

time a counter is used to assign an IPID, instead of incrementing it by one, the kernel

adds to it a number uniformly distributed between 1 and the number of system ticks

since the counter was last used.

In light of defending against machines being used as zombies in the idle scan,

this new hybrid approach was identified as partially having the problems of per-

destination counters and partially having the problems of a globally incrementing

counters [49]. It has the problems of per-destination counters in that the counters

would still partially isolate information about which hosts a zombie is sending packets

to, since the probability of any two destination machines hashing to the same counter

is only 1/2048. This means that a zombie need not necessarily be completely idle,

only the counter that it uses to send packets to the target need be idle. Moreover,

it partially has the problems of globally incrementing IPID counters in that, if a

measurement machine has an address hashed to the same counter on the zombie as

that of the target, then that counter shares information between the target and the

measurement machine the same way a single globally incrementing counter would.

However, the probability of this occurring between any one measurement machine

address and any one target machine address is only 1/2048.

The effort to make IPID counters less predictable by adding a value uniformly

chosen at random also makes the idle scan more difficult to perform due to the

random noise being added. The addition of this random noise results in the number

of datagrams the zombie sends no longer significantly affecting the expected value
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of the observed increase to its IPID counter. However, it has been noted [49] that,

although the expected value does not significantly change, the number of packets sent

by the zombie still changes the distribution by which the IPID counter is observed

to have increased. This is because, if U(a, b) is a discrete uniformly distributed

observation between a and b, then U(1, n), the observed increase when no datagram

from some counter has been sent in between IPID probes received n system ticks

apart, has a different distribution than U(1, n/2) + U(1, n/2), which would be the

approximate observed increase if one datagram were sent exactly in between the

two IPID probes having been received. Note that for large k and n,
∑k

i=1 U(1, n/k)

approximates a normal distribution due to the central limit theorem.

5.3 Implementation

In this section, we describe how ONIS works by using Linux machines with kernel

3.16 or later as zombies. We start by describing a general approach to perform

ONIS. Then we propose a new technique to do IPv4 and IPv6 alias resolution on

Linux machines with kernel 3.16 or later. Next, we introduce our implementation of

ONIS which uses dual-stack Linux machines as zombies. Finally, we talk about how

to process the result by using a model selection technique called “Akaike information

criterion” (AIC).

5.3.1 Overview of ONIS

ONIS requires that the zombie machine is running Linux with kernel version 3.16 or

later and replies to unsolicited SYN-ACKs with RSTs as per RFC 793 [61]. Similar

to the idle scan described in Section 5.2.3, there are also three steps for ONIS.

In the first step, the measurement machine sends a SYN-ACK packet to the zom-
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Figure 5.1: Scan of closed port on the target using ONIS.

bie machine, using the measurement machine’s IP address as its source IP address.

According to RFC 793 [61], the zombie will reply with a RST packet back to the

measurement machine, since the zombie did not send any SYN. Let the IPID in the

RST packet be x1 and the time in system ticks when the zombie generates x1 be t1.

After receiving the RST packet from the zombie, the measurement machine records

x1.

In the second step, the measurement machine sends a spoofed SYN packet to a

port of the target machine using the zombie machine’s IP address as the source IP

address. Depending on the status of the port (open, closed/filtered), the target will
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Figure 5.2: Scan of an open port on the target using ONIS.

respond differently.

1. In the case that the port on the target is closed (see Figure 5.1), the target

will reply with a RST packet to the zombie. The zombie will simply ignore the

RST and not send any packets in response. For a filtered port in the target,

the SYN packet spoofed from the zombie is silently filtered and thus there is no

traffic between the zombie and the target. The result is the same as a closed

port scenario, since the zombie will not generate any new IPIDs.

2. In the case that the port on the target is open (see Figure 5.2), the target will

reply with a SYN-ACK packet to the zombie. The zombie, which did not send
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any SYN to the target, will send a RST packet to reset the handshake. Let the

IPID in this RST packet be x2 and the time in system ticks it was generated

at be t2. Here we assume that x2 draws from the same Linux IPID counter as

x1, as we will later show how to ensure this, which we discuss in Section 5.3.2.

Then, according to the Linux behavior of generating IPIDs (see Section 5.2.4),

we have x2 = x1+U(1, t2−t1), where U(a, b) is a discrete uniformly distributed

random variable as before.

In the third step, similarly to step one, the measurement machine sends a SYN-

ACK to the zombie to collect x3, the IPID in the following RST. Let the time in

system ticks when the zombie generates x3 be t3. Then the distribution of x3 will

differ according to the status of the port of the target.

1. If the port is closed, the zombie only generates an IPID in the first and third

steps, thus yielding x3 = x1 + U(1, t3 − t1).

2. If the port is open, as seen in step 2, the zombie has an additional access to

the IPID counter in which case x3 = x2 + U(1, t3 − t2) = x1 + U(1, t2 − t1) +

U(1, t3 − t2).

Whether x2 is generated is not directly known to the measurement machine.

However, from repeated measures of the values of x1 and x3, it is possible to infer

the status of the port on the target by analyzing the distribution of their differences,

x3−x1. Figure 5.3 shows the contrast of two random number distributions generated

by U(1, 2n) and U(1, n) + U(1, n) where n = 50.

5.3.2 Finding dual-stack Linux machines

As described in Section 5.2.4, Linux 3.16 or later uses 2048 global counters to generate

IPIDs. The scan method we talked about in the previous section relies on the fact
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Figure 5.3: Distributions of observed IPID increases in two cases of ONIS.

that the measurement machine has an address that hashes to the same IPID counter

on the zombie as that of the target. It is possible to try differing measurement

machine addresses until a collision is found with the target’s IP address. Each time,

we have a possibility of 1/2048 for the hashes to collide. If we have 10,000 IP

addresses to try, the chance to have a collision of a certain IP address at least once

is more than 99%. (1− (2048−1
2048

)10000 ≈ 99.2%)

Such resources are usually within the capabilities of network researchers, espe-

cially considering how easy to obtain a /64 of IPv6 addresses nowadays (a /114 of

IPv6 addresses would be sufficient). In our experiment, we demonstrate how ONIS

works by using multiple IPv6 addresses in our measurement machine since the same

2048 IPID global counters are used by both IPv4 and IPv6.

Now we present a new technique to do IPv4 and IPv6 alias resolution on a Linux

machine with kernel 3.16 or later. Previous alias resolution techniques are either
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Figure 5.4: IPv4 and IPv6 alias resolution.

IPv4 or IPv6 only, and so our alias resolution technique is novel. We use a TCP/IP

side channel discussed above in Section 5.2.4 to achieve this, as shown in Figure 5.4.

Here we call the machine we perform IPv4 and IPv6 alias resolution on the “target”,

although for ONIS this target will become the zombie.

Given an IPv4 address and an IPv6 address, in each round we simultaneously

send an IPv4 SYN-ACK packet and a large IPv6 Echo Request to the target to

collect its IPv4 IPID and IPv6 fragment ID. We fill the IPv6 Echo Request’s body

such that the unfragmented size of the datagram is 2000 bytes and so the subsequent

reply will require fragmentation to reach the measurement machine, ensuring that

it will contain an IPv6 extension header containing an IPv6 fragment ID. Then, we

vary the source IPv6 address with another, and resend the same type of packets.

If an IPv4 address (a4) and an IPv6 address (a6) are aliases of the same Linux 3.16

or later machine, then it is possible to find a measurement machine IPv6 address that

hashes to the same IPID counter receiving probe replies from a6 as our measurement

machine’s IPv4 address does receiving probe replies from a4. We test 10,000 different

measurement machine IPv6 addresses. For each measurement machine IPv6 address

we would like to test, we generate ten IPv4 SYN-ACK probes and ten large, 2000

byte IPv6 Echo Requests, large enough so that the probed machine will need to
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Figure 5.5: Alias resolution result (not dual stack).

reply adding IPv6 fragment extension headers containing fragment IDs. We alternate

sending each IPv4 and IPv6 probe, waiting 0.05 seconds between sending each probe.

If xi stands for the ith result of the IPv4 probe, and yi stands for the ith result of

the IPv6 probe (mod 216), then if we have a strictly increasing sequence x1 < y1 <

x2 < y2 . . . xn < yn and yi − xi ≥ 1 and
∑n

i=1 yi −
∑n

i=1 xi > n, where n = 10, then

we conclude that the machine is dual-stacked. (In this analysis, we say that X < Y

if Y occurs in X’s upcoming half of the 16-bit sequence space.)

As shown in Figure 5.5, the values of xi and yi are incrementing irrespective of

each other, which means that they are hashed to different buckets. In contrast, in

Figure 5.6, the values of xi and yi take turns incrementing the same counter, which

means that the addresses being tested hash to the same IPID counter. Our novel

alias resolution technique which uses TCP/IP side channels is able to find Linux 3.16

or later IPv4 and IPv6 dual stack machines to be used as zombies in ONIS.
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Figure 5.6: Alias resolution result (dual stack).

5.3.3 Finding a collision with target’s IP address

In the previous section, we discussed a new technique to do IPv4 and IPv6 alias

resolution on Linux machines with kernel 3.16 or later. Assuming we will use an

IPv4 and IPv6 dual stack machine as the zombie machine in ONIS, we also need

to know the exact source IPv6 address that causes the collision with the target

machine’s IPv4 address. Similar to the previous method, we pick a source IPv6

address and send a 2000 byte IPv6 Echo Request to the zombie at t1. Then we send

a spoofed IPv4 SYN-ACK packet using the target’s return address to the zombie at

t2. Finally, we send another 2000 byte IPv6 Echo Request at t3.

We want our three probes to arrive in the order in which we sent them, but also,

to eliminate the random noise that Linux adds to its IPID counters, we want them

to arrive within one system tick from each other. This eliminates all noise because

when they arrive one tick after each other, the kernel will increase the IPID counter
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Figure 5.7: Efficient way to find collision on zombie.

by U(1, 1) = 1, but if they arrive within zero change of the system clock, the kernel

still increments by one. If we can have the packets arrive in order and within one

system tick of each other, then, for the open port case, we will observe an IPID

increase of 1 + 1 = 2 and for the closed port case, we will observe an IPID increase

of only one.

Naively, we might want to send the probes at t2 = t1 +0.5ms, and t3 = t1 +1ms.

(We choose milliseconds because, while the tick rate of the kernel is never faster than

one tick per millisecond, it may be slower.) However, often the round trip time (RTT)

between the measurement machine and the zombie are different for IPv4 versus IPv6

routes and so the order of IPv4 packets and IPv6 packets arriving at the zombie

might be at different times than we expect.

To overcome this, we first send IPv4 and IPv6 probe packets to the zombie to
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Figure 5.8: Scan of a closed port with a dual stack zombie using ONIS.

estimate the average RTT between the zombie and the measurement machine both

in IPv4 and IPv6. Let the measured IPv4 RTT be r4, the measured IPv6 RTT be

r6, and the difference between them δ such that r4 + δ = r6. By approximating the

path from the measurement machine to the zombie as half of the RTT, we divide δ

by two and use the adjustment t2 = t1 + 0.5 + δ/2, leaving t3 unchanged. This way

we can increase the chance that all three probes arrive within one system tick of each

other. Note than an IPv4-only version of ONIS would not face this challenge.

Figure 5.7 shows how this was implemented. If the IPID returned from the third

probe is at least two greater than that of the IPID returned by the first probe, we

conclude that the tested IPv6 address shares the same IPID counter as that of the

target. Otherwise, we conclude that it does not. (Here we say that Y > X if Y

occurs in X’s upcoming half of the 32-bit sequence space.)
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Figure 5.9: Scan of an open port with a dual stack zombie using ONIS.

5.3.4 An implementation of ONIS using dual-stack zombies

After discovering a source IPv6 address that shares an IPID counter with the tar-

get’s IPv4 address, we can adapt ONIS to use dual stack Linux machines as zombie

machines. In the first step, the measurement machine sends a fragmented IPv6 Echo

Request, whose unfragmented datagram is 2000 bytes, to the zombie and records

the IPID in the fragmented response. As before, a large request is used to ensure

that the response is fragmented, ensuring that the IPv6 fragmentation extension

header containing an IPID is included. The second step is exactly as before. In

the final step, the measurement machine queries the IPID again by sending another

fragmented IPv6 Echo Request. Figure 5.8 shows using ONIS when the target’s port

is closed. Figure 5.9 shows using ONIS when target’s port is open. After collecting

a group of IPIDs, we use the method in Section 5.3.5 to determine which model fits

the data.
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5.3.5 Model selection and noise handling

As mentioned in Section 5.3.1, in order to find out if a target’s port is open or

closed, we need to be able to distinguish between two distributions, U(1, t3 − t1)

and U(1, t2 − t1) + U(1, t3 − t2). Let t3 − t1 = 2n. Moreover, we will approximate

t2 − t1 = t3 − t2 = n. Now we need only distinguish between the distributions

U(1, 2n) and U(1, n) + U(1, n). We showed that it is trivial to distinguish simulated

cases. However, in the experiment we found noise on the network made such analysis

challenging. For example, the round trip time between the measurement machine

and the zombie changed in different rounds when collecting IPIDs. Thus in practice

we have U(1, 2n+ δ), where δ is a variant.

To overcome these issues, we use a model selection method which is resistant to

noise when collecting IPIDs called Akaike information criterion (AIC). Unlike the

null hypothesis testing approach, AIC does not give the quality of a single model

with respect to a null hypothesis, but rather estimates the relative quality of one

model with respect to another. Because of this, AIC is ideal for us to handle noise

in the scan.

We use AIC to select between U(1, 2n) and U(1, n)+U(1, n) for a given measure-

ment dataset of IPIDs. By definition, AIC is defined as

AIC = 2k − 2 ln(L̂) (5.1)

where L̂ is the maximum value of the likelihood function, and k is the number of

parameters in the model. In our case, k = 1. Thus, according equation 5.1, we wish

to find the model with larger maximum likelihood, L̂, in order to get a smaller AIC

value. Below we will show how to calculate L̂ in both of the cases of our scan.
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Case 1: Closed or filtered port

Assuming that an observed IPID increase was generated by U(1, 2n), the probability

density function is:

f(x) =


1
2n

for 1 ≤ x ≤ 2n

0 otherwise.
(5.2)

The likelihood function is:

L(n) =
k∏

i=1

f(xi) =


1

(2n)k
for 1 ≤ xi ≤ 2n for all i

0 otherwise.
(5.3)

where k is our sample size.

Note that the likelihood function defined in equation 5.3 may have maximum

value when 1 ≤ xi ≤ 2n for all i. Therefore, max{x1, . . . , xk} ≤ 2n, and n ≥

⌈max{x1,...,xk}
2

⌉. Note that in equation 5.3, 1
(2n)k

is monotonically decreasing when

n ≥ 1, i.e., when n = ⌈max{x1,...,xk}
2

⌉, the likelihood function L(n) in equation 5.3 gets

its maximum value.

Case 2: Open port

Assuming that an observed IPID increase is generated by U(1, n) + U(1, n), the

probability density function is

f(x) =


n−|x−(n+1)|

n2 for 2 ≤ x ≤ 2n

0 otherwise.
(5.4)

The likelihood function is:

L(n) =
1

n2k

k∏
i=1

(n− |xi − (n+ 1)|) (5.5)
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for 2 ≤ xi ≤ 2n, for all i.

The monotonicity of the likelihood function in equation 5.5 cannot be determined

a priori. However, we know that to get the maximum likelihood, 2 ≤ xi ≤ 2n for all i,

i.e. max{x1, . . . , xk} ≤ 2n , and n ≥ ⌈max{x1,...,xk}
2

⌉. Therefore, we adopt a numerical

approach and enumerate multiple possible n such that n ≥ ⌈max{x1,...,xk}
2

⌉ to see

which n maximizes L(n) in equation 5.5. We try m such values from ⌈max{x1,...,xk}
2

⌉

to ⌈max{x1,...,xk}
2

⌉ + m, finding the n that gives the maximum L(n). The parameter

m is tunable, but we provide evidence that it is typically very low in Section 5.4.2.

5.4 Experimental Setup

In this section we describe the details of our experimental setup.

5.4.1 Zombie selection

The measurement machine we used ran Ubuntu server 16.04 with kernel version

4.4.0. The zombie machines we selected were IPv4 and IPv6 dual-stack Linux ma-

chines with kernel 3.16 or later. In the beginning, we collected a list of domains

from the Alexa top one million websites and sixy.cn. For each domain name, we per-

formed a DNS lookup to find its corresponding A record and AAAA record. Given

pairs of IPv4 and IPv6 address, we performed IPv4 and IPv6 alias resolution using

the method described in Section 5.3.2. The IPv4 and IPv6 resolution tests were

performed three times for every IPv4 and IPv6 pair to make sure it was a desired

zombie. The rate we created packets on the zombie’s network was about 30 packets

per second. Note that to compare IPIDs in IPv4 and IPv6, we used a 16-bit mask

to mask out the leftmost 16 bits of IPIDs in IPv6. We found 78 zombies which we

used in our implementation of ONIS.
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5.4.2 Performing the scan

To select a target that we want to perform the ONIS on, we randomly generated an

IPv4 address and started to send SYN packets to three commonly open ports (22,

80 and 443) at that address. Each packet was re-sent three times to avoid possible

packet loss. We recorded the IPv4 address as a valid target address if we received a

SYN-ACK response for any of the three ports.

Once the scan started, the measurement machine created multiple threads, each

randomly picking up a zombie machine from the pool and finding a valid target

address as discussed above to perform the scan on ports 22, 80, and 443. The

scanning methodology was described in Section 5.3. For each port on a target, we

collected 100 IPv6 IPID pairs, at a packet rate of three packets per second in the

zombie’s network. Each experiment takes about 20 minutes to finish. Then we

processed the IPID samples by using AIC (see Section 5.3.5).

In Section 5.3.5, we mentioned that in order to find the maximum likelihood

for the open port model, we had to enumerate the parameter n in m times. Each

time we added one to n and calculated the corresponding likelihood L. During our

experiment, we set m = 1000, as in practice we found out from our result that

most of the time the first few i, where 0 ≤ i ≤ m lead to the maximum likelihood.

Figure 5.10 shows the distribution of i which gives the maximum likelihood for model

U(1, n) + U(1, n). n is virtually always less than 1000.

To compare the accuracy of our results, we ran nmap’s built-in idle scan (nmap

-Pn) on the same targets that we performed ONIS on. Nmap implements the idle

scan technique by using zombies with globally incrementing IPIDs. To find machines

with globally incrementing IPIDs, we generated random IP addresses and tested to

see if the IPIDs were globally incrementing. After we got a list of zombies, we culled

the list for several rounds until all zombies appeared to be idle. We were able to

73



Chapter 5. ONIS: Inferring TCP/IP-based Trust Relationships CompletelyOff-Path

Figure 5.10: After trying m = 1, 000 different n, the distribution of iterations i it
took to find the n that maximizes the likelihood function while performing ONIS.

identify 175 machines with globally incrementing IPIDs. Both the nmap idle scan

results and ONIS results were compared with direct scan (SYN scan) results in order

to calculate the accuracy.

5.5 Results

We collected 1309 results using 78 zombies starting May 1, 2017 and ending May 12,

2017. Each result showed whether specific ports (22, 80, 443) on a target machine

were open or closed. We compared ONIS results with direct scan results and found

that 1141 out of 1309 are correct, with an accuracy of 87.2%. There were 145 false

negatives (failed to find an open port) and 23 false positives (reported a port as

open that was not) out of 168 incorrect results. One possible reason for more false
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positives might be due to the fact that we found an incorrect collision with target

IPv4 address using our IPv6 address before the scan. Thus once the scan started,

the IPIDs in the TCP flow were not hashed into the expected bucket.

For comparison, we also collected 175 zombies with global incrementing IPIDs.

To form a direct comparison between nmap results and ONIS results, we performed

nmap idle scan on the same 1309 results. The nmap idle scan had 86.4% accuracy,

with 1131 correct results and 178 incorrect results. 64 of the results were false

positive, 57 of the results were false negative. 57 of the results showed that the

zombie was too noisy to be used to perform the idle scan.

The resulting comparison of the two methods is shown in Table 5.1. We can

see that the overall accuracy of the two methods is comparable. Both scans have a

certain amount of false negatives. One reason for that might be the possible ingress

filtering in the target’s network which prevents the spoofed SYN packets from the

zombie. As a result, there is no subsequent traffic created. The zombie will not

generate an IPID in response to the client. Both scans falsely assume that the port

is closed in this case.

We also noticed that ONIS has more false negatives than the idle scan. We

believe that is due to the fact that the previous step of collision finding is very

sensitive to round trip time variations between IPv4 and IPv6. For example, route

changes of IPv6 can cause the round-trip time for IPv6 between the zombie and the

measurement machine to be larger. As a result, the second IPv6 echo fragments

arrive at the zombie later than 1 millisecond. In this case, it is possible that the

U(1, 1 + α) generates a number larger than 1, where α is a delay of the second IPv6

packet fragments.

Table 5.1 also shows that nmap has more false positives. Although we ensure

that zombies with global IPID on our list are all idle before the scan, it is possible
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Corret False Positive False Negative Failed
ONIS 1141 23 145 0
Idle Scan 1131 64 57 57

Table 5.1: Result Comparision of ONIS and the Idle Scan

that during the nmap idle scan the zombie is connecting with other hosts, causing

it to no longer be idle thus breaking the scan. As a result, nmap falsely thinks

that the target has an open port. We also noticed that during the nmap idle scan,

every zombie may become active at certain time. In order to get ideal results with

nmap’s current implementation, we need to cull the list such that the zombies were

noiseless right before we start the idle scan. Otherwise, the accuracy of results drops

significantly. While for ONIS, there is only a 1/2048 chance of interference with any

other host because of Linux’s 2048-bucket implementation.

5.6 Discussion

5.6.1 Scan applicability

ONIS allows a broader choice of zombies and it is more reliable compared to the idle

scan, which uses zombies with globally incrementing IPIDs.

The idle scan requires the zombie to be completely idle, while ONIS does not

because the chance of every other connection on the zombie with the same global

incrementing counter is just 1/2048. Machines on the Internet are seldom idle, so in

this sense, ONIS greatly improves on the reliability of the idle scan.

We set up experiments by using dual-stack zombies with Linux kernel 3.16 or

later. This is just one implementation of ONIS to show that it works. We also pro-
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vided a new technique to perform IPv4 and IPv6 alias resolution for Linux systems.

However, ONIS is not limited to use on IPv4 and IPv6 dual stack systems.

In applications where the zombie can be, e.g., from a specific large network (such

as a particular country) and need not be a specific machine, we can scan and get a

list of Linux machines with kernel 3.16 or later. Then for a randomly selected target,

we can try every zombie in our list until a collision is found. Each time there’s a

1/2048 chance that the measurement machine will share the same IPID counter on

the zombie as the target. For 10,000 zombies, there is more than a 99% probability

of finding a collision.

ONIS allows broader choices of zombies when inferring TCP/IP-based trusting

relationship off-path. We performed a IPv4 SYN-ACK scan on the Alexa top web

1 million machines and found 170,630 of them to have per-flow IPIDs (about 17%),

which are potential zombies that can be used in ONIS.

5.6.2 Ethical concerns

Compared to the idle scan, we perform an extra step to perform collision finding.

However, the packets we send in this step are only IPv6 echo fragments and IPv4

SYN-ACKs, which should not consume too much computation resources on zombies’

systems. Our IPv6 echo request is 2000 bytes long, and an IPv4 SYN-ACK is just

60 bytes. At a packet rate of 30 packets per second, we can create 40.6 kilobytes per

second per zombie. During the scan on the target, the packet rate is only 3 packets

per second. Since the spoofed SYNs to the target will end up reset by the zombie,

it will not cause any denial of service on the target.
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5.6.3 Defending against ONIS

One way that the Linux kernel could protect against being used as a zombie is

to switch to a different kind of IPID counter. However, it is unclear which kind

could protect widely against this sort of scan. Linux previously used per-destination

counters, but this exposed them to a side channel attack that could leak the number

of packets a machine sends another [48]. However, as the authors of that attack note,

RFC 791 [62] mandates that IPIDs must be unique for every in-flight path, and so

there will always be non-zero information flow in any shared sequence of numbers

that has restrictions on repetition.

A strategy that may help defend against the technique used in this chapter is to

use a Poisson distribution instead of a uniform distribution for generating IPID noise.

Our technique takes advantage of the fact that U(0, n) has a different distribution

than U(0, n/2) + U(0, n/2). However, the Poisson distribution does not have this

limitation. If P(λ) is a Poisson random variable parameterized by rate λ, then

P(λ) + P(µ) = P(λ + µ), and so P(λ) = P(λ/2) + P(λ/2). However, Poisson

random numbers are computationally expensive to generate, and so they may not be

suitable as a means to add noise to an IPID counter that may be accessed frequently.

5.7 Summary of this Chapter

We presented ONIS, a novel scanning technique which provides much broader choices

of zombies when performing off-path TCP/IP trust relationship measurement. The

accuracy of ONIS is comparable to nmap’s implementation. One caveat is that ONIS

requires access to many IP addresses for the measurement machine, but the scan is

flexible enough to enable different trade-offs in this sense, and IP addresses are easily

obtainable in various ways. We expect that ONIS will become an essential part of
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a network researcher’s toolbox and fulfill the practical potential for various network

measurement tasks.
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Chapter 6

Conclusion and Future Work

In summary, this dissertation has provided penetration testers, digital forensics ex-

perts, and general network researchers a set of new techniques to fulfill modern

network measurement tasks. We first presented a technique to find machines hidden

behind firewalls, which is a critical first step for penetration testers to understand

modern network structures. Then we presented an improved off-path round-trip time

measurement technique with high fidelity, which is important for network researchers

to learn IP geolocation information and understand global Internet routing, especially

when the availability of measurement infrastructure is limited. At last, we presented

a novel technique to detect the trust relationships between two arbitrary machines

off-path, which is essential to map out firewall rules, to measure international packet

drops, or to detect censorship.

Previous TCP/IP side channel research showed that information flow is unavoid-

able because modern operating systems have shared, limited resources. We showed

that there are better ways to utlize side channels in terms of reducing the costs on

the target sytems in order to be non-intrusive, as well as improving the fidelity of the

results by: (1) using mathematical models to reduce the influence of noise, and (2)
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deeply understanding the modern systems’ network stack behavior. We also showed

that new side channels can be discovered and utlized to overcome the limitations of

previous side channels as systems are changing their implementation, for example,

using per flow IPID instead of global IPID to reduce the noise by using side channels

in the newest Linux systems (kernel version 3.16 and later).

Side channel techniques were applied to perform some network measurement

tasks, which cannot be done by using traditional measurement tools. However, the

limitations of previous side channel techniques prevent them from becoming reliable

and widely applied network measurement tools for modern network measurement

tasks. The side channel techniques we proposed demonstrate better ways of using

old side channels, as well as possibilities of finding new side channels on modern sys-

tem kernels, to accomplish network measurement tasks ethically and efficiently. We

show a promising future for side channel techniques to help penetration testers, dig-

ital forensics experts, and general network researchers with various tasks of modern

network measurements.

For future work, there are three main directions:

1. One is to apply our set of tools to various network measurement tasks: e.g.

using the off-path round trip time technique to perform global IP geolocation,

which would be very helpful to improve the precision of current geolocation

databases; using ONIS to detect packet drops between a host and a Tor bridge.

This is important to the study of censorship because sometimes suitable vantage

points or access to certain services are not available to network researchers.

2. Second is to use a machine learning approach to automatically find side chan-

nels. Currently TCP/IP side channels are found by manually checking the ker-

nels’ source code. A tool which can automatically create and send layer 3 probes

to target systems and then find the corresponding side channels would greatly
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help system developers to find potential side channels much more quickly.

3. At last, there are also some improvements we can apply to the individual tech-

niques as mentioned in Sections 3.8, 4.7, and 5.7. For example, implementing

a back off scheme when detecting other scans performed on the same machine,

adopting the side channels to a broader set of server OSes, etc.
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