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WAVES 

 

by 

 

Angela C. Montoya 

 

B.S., Physics, University of New Mexico, 2002 

M.S., Civil Engineering, University of New Mexico, 2010 

 

ABSTRACT 

 

The intention of the Air Force‘s Responsive Space Initiative Project is to develop 

procedures and technologies necessary to produce a satellite within six days from the 

initial order.  Modular satellite designs have been proposed to help streamline the process 

of preparing a satellite for deployment.  These designs would save time by allowing 

panels with common functions to be manufactured and tested long before a new satellite 

is needed.  Prior to launch, the integrity of the panel-to-panel connections would need to 

be tested for quality in order to show that the craft is flight worthy.  The experimental test 

method presented in this thesis performs a targeted quality assessment of the connections 

between satellite panels.  The test method is intended for responsive satellites designed 

with prefabricated and pretested panels for which traditional vibration testing would be 

redundant.  A first investigation of the feasibility of using transmitted wave energy for 

joint quality assessment was conducted at the University of New Mexico using a simple 

bolted connection between two aluminum plates.  Comparisons were made between wave 
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energy transmission and a mechanical assessment of the joint rigidity.  Results show a 

correlation between joint rigidity and energy transmission, demonstrating the feasibility 

of the using wave energy transmission amplitudes to inspect aluminum-to-aluminum dry 

connected joints.  Later experiments were conducted at Air Force Research Laboratory 

facilities on a fully functional satellite and detached satellite panels.   These experiments 

showed that the test method is able to detect faulty connections with higher fidelity than 

current satellite testing methods.  The experimental setup and methods for each set of 

experiments is presented along with an overall assessment of the utility of the test method 

for use with responsive satellites. 
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CHAPTER 1:  INTRODUCTION 

 

1.1. Responsive Space initiative  

The intention of the Air Force‘s Responsive Space initiative is to develop 

procedures and technologies necessary to produce a satellite within six days from the 

initial order.  Currently, the process for a satellite to reach deployment from conception 

may take months to years (1).  This prolonged length of time can undermine a time 

dependent mission or render the system technologically obsolete prior to launch.  As a 

result, current trends in satellite design are tending towards more efficient, modular 

forms.  Spacecraft must be proven flight worthy with a battery of tests before deployment 

(2).  Modular designs save time by pre-assembling and pre-testing body panels with 

generic functions, like the panel shown in Figure 1, before the satellite is ordered for 

service.   

 

Figure 1:  Image of a satellite panel with embedded components.  Panels such as 

these would have generic functions that most satellites would need. 
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Prior to launch, the integrity of the panel-to-panel connections would need to be 

tested in order to show that the craft is flight worthy.  

 

1.2. Background 

As discussed by B.B. Arritt et al. in their paper ―Responsive Satellites and the 

Need for Structural Health Monitoring‖(1), the fields of Structural Health Monitoring 

(S.H.M.) and Non-destructive Evaluation (N.D.E.) contain many promising techniques 

for use as a panel-to-panel evaluation method.  Any panel-to-panel test suggested should 

improve the existing pre-flight testing process.   

 

1.2.1. Traditional satellite testing methods 

Current structural assessments of satellites are done by shock and random 

vibration testing.  The primary purpose of these tests is to assess the connections and 

verify the fundamental frequency of the craft (2).  Panel-to-panel connections are 

designed with redundant fasteners.  Unfortunately, vibration testing cannot detect a loose 

connection that does not affect the global stiffness of the craft, so a single loose fastener 

could go unnoticed with traditional shock and vibration testing (1).  If a loose connection 

is detected by vibration testing, the loose connection is made evident as some change in 

the global response to vibration.  Since the location of damage is unspecified, the testing 

engineers have no way of knowing where the loose connection is located.  Often the craft 

has to be completely disassembled and then reassembled to fix the damage (1).  While an 

additional test adds to the existing testing regime, quickly finding a loose connection is 

valuable.   
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1.2.2. Current state of the art 

A variety of techniques exists in the fields of Non-Destructive Evaluation and 

Structural Health Monitoring for aerospace structures with guided ultrasonic waves (3).  

Most research has concentrated on finding fatigue cracks in panel interiors.  

Investigations done on joints are primarily lap-style joints that are made by an adhesive 

bond between two pieces of material such as work done by Challis et al. and Puthillath et 

al. (4), (5) or machined out of a solid piece of material such as the work done by Song, 

Rose and Galan (6).  Doyle et al. (7) and Lovell et al. (8) have investigated joints by 

observing changes in phase in a wave propagating parallel to the joint interface due to 

changes in the elastic properties of the medium.  The literature review for this thesis 

concentrates on previous research into ultrasonic measurements of dry connections.  For 

the purposes of this thesis, a dry connected joint is defined as a joint that does not have 

any kind of adhesive or acoustic couplant between members.  Solutions for ultrasonic 

wave transmission problems require fully specified boundary conditions (3).  Loose or 

roughly connecting interfaces in joints are poorly defined boundaries by definition; 

making evaluation of these interfaces by wave transmission problematic.  Yet, there have 

been several attempts using various analytic models for the rough connection.  Dryer-

Joyce et al. (9) used ultrasound to investigate a roughly contacting interface in the context 

of detecting cracks.  The model they used was the quasi-static ‗spring model‘ developed 

by Baik and Thompson (10).  Dryer-Joyce et al. was able to show a correlation between 

contact stiffness and the reflection coefficient two to three orders of magnitude more 

sensitive than from load deflection measurements.  Similar research by Lavrentyev and 
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Rokhlin (11) in the field of contact mechanics shows reflected wave amplitudes from 

rough interfaces decreasing with decreased stress at the interface.   

Guided waves are popular in Structural Health Monitoring because they have 

lower attenuation rates than other types of waves (3).  However, guided waves scatter and 

undergo complicated mode conversion at any discontinuity encountered in the medium 

(6).  Actual aerospace structures like satellite panels contain many bolt holes, voids, and 

changes in thickness.  For this reason, Dalton et al. (12) suggested that guided wave 

analysis of more complicated aerospace structures, such as joints, are most effective 

when used with a short range.  By testing the interface locally, some of the complexity of 

the surrounding panels may be disregarded, and the need to locate damage by 

triangulating signals becomes unnecessary.  Additionally, by testing a range of 

frequencies, mode conversions and other guided wave frequency dependent phenomena 

may be accounted for. 

 

1.3. Motivation for this thesis 

A targeted quality assessment of the panel-to-panel connections would be able to 

detect faulty connections with higher fidelity than current methods and signal the location 

of a faulty connection to test engineers.  Another important consideration is the need to 

use lightweight sensors.  Sensors that could be approved for space flight or used for other 

types of ultrasonic testing are ideal.  Being lightweight, the sensors would have very little 

impact on the design.  Having the versatility to be used for a variety of tests or as in situ 

monitoring devices further reduces the number of sensors on the craft.  Satellite joints are 

often complex and vary greatly in design.  An assessment method would also need to be 
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easily adaptable to different joint geometry.  In summary, the assessment method should 

target a specific area for a loose connection, be versatile enough to detect damage with 

different configurations of joints, and be as unobtrusive as possible.   

Ultimately, the goal is to eliminate the need for vibration testing by providing a 

targeted assessment of panel-to-panel connections in a satellite with a modular design.  

To reach this goal, the ultrasonic joint assessment developed in this thesis utilizes a range 

of frequencies to account for complicated guided wave scattering and compiles the results 

into a single parameter that is proportional to the stiffness of the joint.  For all 

experiments, a single pair of piezoelectric wafers are used alternately as transducer and as 

receiver.  They are to opposite panels across a joint in order to assess the joint as a whole.  

Three sets of experiments are used in the design and evaluation of this assessment 

method. 

 

1.4. Scope of this thesis 

Before presenting the experiments, background information is given in Chapter 2. 

Some aspects of guided wave behavior are discussed and a brief description of the 

piezoelectric sensors used in the experiments is included.  The last part of Chapter 2 

discusses previous research done with guided waves and joint-like interfaces.   

Chapter 3 reports on the initial proof of concept experiment done to test feasibility 

of using transmitted wave energy for joint quality assessment.  Experiments were 

conducted on a joint consisting of a dry aluminum-to-aluminum connection, similar to 

possible panel-to-panel connections that could be used as part of a modular satellite 
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design.  Comparisons were made between wave energy transmission and a mechanical 

assessment of the joint rigidity.  Results for five tests cases are presented and discussed. 

Chapter 4 describes and discusses experiments performed on a functional satellite, 

designated PnP 1 (Plug ‗n Play 1), at Air Force Research Laboratory facilities.  

Experiments conducted on a functional satellite were intended to test, in part, the 

feasibility of deploying this test method under realistic circumstances.  An assessment of 

the method including repeatability of the method is discussed. 

Chapter 5 describes and discusses experiments performed on detached satellite 

panels, designated PnP 2 (Plug ‗n Play 2), at Air Force Research Laboratory facilities.  

This chapter discusses the results of experiments intended to determine the range of the 

test method, and sensitivity to different parameters. 

Finally, chapter 6 concludes this thesis with a summary of results and comments 

on future work needed to meet the ultimate goals of the Responsive Space Initiative 

Project.
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CHAPTER 2:  BACKGROUND 

 

The purpose of this chapter is to discuss previous research that provided some of 

the motivation for the joint evaluation technique that was developed for this thesis.  The 

first part of this chapter briefs the reader on specific aspects of physical phenomena 

involving ultrasonic measurements.  The second part of this chapter is a review of current 

and past research that highlights physical phenomena that could be used in joint 

evaluation and research that outlines the problems associated with certain methods. 

 

2.1. Classification and behavior of ultrasonic waves 

Horace Lamb (13) was the first to describe elastic waves that propagate with a 

wavelength comparable to the thickness of the medium as Rayleigh or Lamb waves.  The 

longitudinal and shear modes for these waves are coupled, and the wave speeds are 

different from that of bulk waves.  These types of waves are often referred to as guided 

waves, because the surfaces of the medium confine the waves to the geometry defined by 

the surface (3).  Rayleigh waves propagate along the surface, confined to within a 

wavelength of the surface, while Lamb waves propagate in the interior of the plate, 

confined between the top and bottom surfaces.  Lamb waves are popularly used in 

Structural Health Monitoring because they have a very low attenuation rate.  

Fundamentals and Applications of Ultrasonic Waves by Cheeke (3) lists the frequency 

range for guided wave applications as being 10
5
 to 10

6
 Hz for thin plates, rods, and shells.   

The experiments described in this thesis all generate waves in thin aluminum 

plates in the guided wave frequency range.  Rayleigh and Lamb wave modes are likely to 
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be present, so it is useful to know some of their unique characteristics.  These 

characteristics are best understood in the context of their mathematical formulation.   The 

following sections provide the problem statement, boundary conditions, and solutions for 

Rayleigh and Lamb waves.  Table 1 lists material data used to calculate the waves speeds 

derived in the next sections.   

Table 1:  Material values for 6000 series aluminum. 

Constant Value 

Poisson‘s ratio 0.33 

Lamé constant λ  50.4 GPa 

Lamé constant μ (Shear Modulus)  25.9 GPa 

Elastic modulus 69 GPa 

Density  2.7 g/cc 

Ct (transverse wave speed, or speed of sound for shear waves) 3097 m/s 

Cl (longitudinal wave speed, or speed of sound for pressure waves) 6153 m/s 

 

The values for the Elastic modulus, density, and Poisson‘s ratio in Table 1 are an 

average of values taken from www.matweb.com (14) for 6000 series aluminum.  All 

other values were calculated from formulas obtained in Cheeke‘s text: Fundamentals and 

Applications of Ultrasonic Waves (3). 

 

2.1.1. Rayleigh waves 

Rayleigh waves and Lamb waves have coupled longitudinal and shear 

components.  I.A. Viktorov (15) gave a detailed description of the two-dimensional 

mathematical formulation for both Rayleigh and Lamb waves.  Only a brief account of 

that description will be here.  As shown in Figure 2, a plate is considered infinite in the 

direction of propagation, x.  The plate has a finite thickness, 2d, in the z direction. 
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Figure 2:  Two-dimension plate with thickness 2d. 

 

The vector displacement of a particle, V, is written in terms of a scalar potential 

function, φ, and a vector potential function, ψ.   

𝑽 = 𝑔𝑟𝑎𝑑 𝜑 + 𝑐𝑢𝑟𝑙 𝝍 1 

Equation 1 is from the Fundamental Theorem of Vector Analysis (16).  Viktorov 

(15) then assumes that the wave is a plane wave thus the curl of the vector potential 𝝍 is 

non-zero in the y direction only.  This changes the vector potential to a scalar potential; 

denoted from this point on by 𝜓.   

The potentials must satisfy wave equations in the longitudinal and transverse 

modes. 

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2
+ 𝑘𝑙

2𝜑 = 0,  

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑧2
+ 𝑘𝑡

2𝜓 = 0 2 

Here, kl and kt are the wave numbers for the longitudinal and transverse bulk 

wave modes, respectively.  Writing the displacements U and W in terms of the partial 

derivatives of the potentials leads to expressions for the stress components in terms of the 

potentials.   

𝑈 =  
𝜕𝜑

𝜕𝑥
−

𝜕𝜓

𝜕𝑧
,    𝑊 =  

𝜕𝜑

𝜕𝑧
+

𝜕𝜓

𝜕𝑥
 3 
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𝜎𝑥𝑥 =  𝜆  
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2
 + 2𝜇  

𝜕2𝜑

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑥𝜕𝑧
 ,  

𝜎𝑧𝑧 =  𝜆  
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2
 + 2𝜇  

𝜕2𝜑

𝜕𝑧2
+

𝜕2𝜓

𝜕𝑥𝜕𝑧
 ,  

 𝜎𝑥𝑧 =  𝜇  2
𝜕2𝜑

𝜕𝑥𝜕𝑧
+

𝜕2𝜓

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑧2
  4 

To solve for the Rayleigh wave mode, one assumes the solution is a plane 

harmonic wave traveling in the x direction.  The boundary conditions specify that σzz and 

σxz are zero on the top surface of the plate. The solutions for the scalar potentials in terms 

of the Rayleigh wave number k, longitudinal wave number kl, transverse wave number kt, 

frequency w, and an arbitrary constant A, are given in Equation 5. 

𝜑 = −𝐴𝑒
𝑖 𝑘𝑥−𝑤𝑡  −  𝑘2−𝑘𝑙

2 𝑧
, 

 

𝜓 = 𝑖𝐴

2𝑘   𝑘2 − 𝑘𝑙
2 

2𝑘2 − 𝑘𝑡
2 𝑒

𝑖 𝑘𝑥−𝑤𝑡  −  𝑘2−𝑘𝑙
2 𝑧
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The characteristic equation for finding k reduces to the following form given by 

Viktorov: 

𝜂6 − 8𝜂4 + 8 3 − 2𝜉2 𝜂2 − 16 1 − 𝜉2 = 0 6 

𝑊𝑕𝑒𝑟𝑒 𝜂 =  
𝑘𝑡

𝑘
 , 𝑎𝑛𝑑 𝜉 =  

𝑘𝑙

𝑘𝑡
  

 

There is only one root, and it only depends on the value of Poisson‘s ratio (𝜈). 

𝜂𝑅 =
0.87 + 1.12𝜈

1 + 𝜈
 7 

For Poisson‘s value of 0.33 (aluminum), this value corresponds to a wave speed 

of 2987 m/s.  This is about 93% of the transverse bulk wave speed.   
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2.1.2. Lamb waves 

Starting with Equations 1 to 5, Lamb wave modes are found by setting the 

boundary conditions σzz and σxz to be zero at the top and bottom surfaces of the plate.  

Then, the assumed solution takes the form given in Equation 8.  

𝜑 = 𝐴 cos  𝑘2 − 𝑘𝑙
2𝑧 𝑒𝑖𝑘𝑥 + 𝐵 sin  𝑘2 − 𝑘𝑙

2𝑧 𝑒𝑖𝑘𝑥 ,    

𝜓 =    𝐶 cos  𝑘2 − 𝑘𝑡
2𝑧 𝑒𝑖𝑘𝑥 + 𝐷 sin  𝑘2 − 𝑘𝑡

2𝑧 𝑒𝑖𝑘𝑥  
8 

This leads to a pair of characteristic equations that determine the value of k given 

by Viktorov in the following dimensionless form.   

𝑓𝑜𝑟 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑠   
tan  1 − ζ2 d 

tan  ξ2 − ζ2 d 
= −

4ζ2  1 − ζ2   ξ2 − ζ2 

 2ζ2 − 1 2
,  

𝑓𝑜𝑟 𝑎𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑠: 
tan  1 − ζ2 d 

tan  ξ2 − ζ2 d 
=

− 2ζ2 − 1 2

4ζ2  1 − ζ2   ξ2 − ζ2 
 9 

The following identities apply:  d  =  ktd, ζ2 =  
ct

2

c2, and ξ2 =
ct

2

c l
2 .  The values ξ and 

ζ are given in terms of the Lamb wave phase speed c, the bulk transverse wave speed ct, 

and the bulk longitudinal wave speed cl.  The first equation corresponds to modes that 

propagate in a symmetric fashion relative to the central axis in the x direction.  The 

second equation corresponds to modes that propagate in an anti-symmetric fashion 

relative to the central axis in the x direction.  Figure 3 shows exaggerated symmetric and 

anti-symmetric lamb wave modes propagating in a two-dimensional plate.  For both 

mode shapes, motions in the longitudinal and transverse directions are coupled.  In the 

literature, these modes are usually abbreviated with an ‗S’, for symmetric modes, or an 

‗A’, for anti-symmetric modes, followed by the number of the mode. 
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Figure 3: Mode shapes for symmetric and anti-symmetric lamb waves. 

 

From these characteristic equations, the dispersion relations, a plot of the 

frequency thickness product d , and the phase speed normalized to the bulk transverse 

phase speed (
𝑐

𝑐𝑡
) can be generated.  For any given value of d  only a certain number of 

symmetric and anti-symmetric modes, exist (13).  Figure 4 shows the first and second 

symmetric (S0 and S1) and first and second anti-symmetric (A0 and A1) Lamb wave 

modes for aluminum.  For a sufficiently thin plate, second order modes will only appear 

at higher frequencies.  The first experiment described in this thesis never exceeded a 

frequency-thickness product of 1.67.  Later experiments had geometry with varying 

thicknesses that resulted in frequency-thickness products up to 5.0.   
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Figure 4:  Dispersion curves for the first and second symmetric and anti-symmetric 

Lamb wave modes. The data points for the plot were generated by code written in 

Mathematica™, which can be found in Appendix 1.    

 

2.2. Use of piezoelectric materials to excite and sense guided waves 

Materials that exhibit the piezoelectric effect generate current under applied 

stress.  Conversely, they generate strain (change shape) when exposed to an electric field 

(16).  Piezoelectric materials are used extensively for ultrasonic transducers and stress 

sensors in a variety of shapes and sizes (17).   

 

2.2.1. Method of excitation 

The method used in the experiments described in this thesis uses periodic shearing 

perturbation of a finite region on the plate surface.  A wafer made of piezoelectric 

material is bonded to the surface of a plate as shown in Figure 5.  The piezoelectric 

materials are described as wafers in this case because they are much thinner than the thin 
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plates guided waves propagate in.  The bottom surface of the piezoelectric wafer is 

grounded.  Current is applied to the top surface of the piezoelectric wafer resulting in a 

change in voltage or electric potential.  The change in voltage creates an electric field in 

the piezoelectric wafer causing the material to deform by the converse piezoelectric 

effect.  Assuming the bond between the piezoelectric wafer and the plate beneath it is 

perfect, the deformation induced in the wafer results in elastic surface perturbations in the 

plate.  If the change in voltage is oscillating, as it would be under and alternating current, 

the resulting elastic perturbations will also oscillate and form an elastic wave in the plate.   

 

 

 

This method of exciting elastic waves in plates produces all possible modes for a 

given frequency (15).  Other methods exist that selectively excite specific modes, but are 

more cumbersome to use.  The wedge method, for example, requires an ultrasonic beam 

to strike the surface at an angle.  The angle must be carefully calibrated to get the desired 

results (15).  This method, however, only requires a piezoelectric wafer bonded to the 

surface of the plate with two wire leads attached to it.  The result is a very compact and 

lightweight transducer or sensor.  However, producing all possible wave modes could be 

a drawback for ultrasonic testing techniques that use features of the signal that are wave 

mode-specific, such as wave speed. 

z 

x 
ΔV 

Figure 5:  A change in voltage across the piezoelectric wafer results in shearing 

perturbations that produce guided waves. 
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Wave modes are usually identified in the signal by arrival times, or wave speed.  

However, if the distance from source to receiver is short, resolving Rayleigh and Lamb 

modes may not be possible.  Viktorov describes a quasi-Rayleigh wave mode that exists 

near the source of perturbation.  In this case, the first symmetric and anti-symmetric 

Lamb modes interfere and produce a wave that is a hybrid Lamb and Rayleigh wave 

mode.  This wave moves between the top and bottom surfaces of the plate traveling at 

speeds somewhere between Rayleigh and Lamb mode speeds until the symmetric and 

anti-symmetric Lamb modes separate sufficiently.  The equation used to estimate the 

distance required for the modes to separate by 180 degrees is given below from 

Viktorov‘s text.  According to the text, Equation 10 is accurate to within 10%. 

𝐿 =   
1

4
+

1

8 1 − 𝜂𝑅
2 

+
1

8 1 − 𝜂𝑅
2𝜉2 

−
1

2 − 𝜂𝑅
2  𝑒

2𝑘𝑅𝑑 1−𝜂𝑅
2
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𝐹𝑟𝑜𝑚 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2.1.1,   𝜉 =  
𝑘𝑙

𝑘𝑡
 =  

𝑐𝑡

𝑐𝑙
 =  

3097 m/s

6153 m/s
 = 0.50333 𝑎𝑛𝑑 𝜂𝑅 = 0.93203. 

The quantity 𝑘𝑅𝑑 reduces to 
𝑘𝑡𝑑

𝜂𝑅
, where 𝑘𝑡𝑑 is the frequency-thickness product 

from the Lamb wave dispersion relations.  For aluminum, the distance it takes for the 

modes to separate by 180 degrees (L) is 1.04 m at a frequency-thickness product of 1.0 

MHz mm.  Viktorov points out that any method used to produce Lamb waves by surface 

perturbations will also produce a quasi Rayleigh wave, so choosing a different excitation 

method would not have made a difference in this respect. 

Despite these apparent complications to the signal, several researchers (Doyle et 

al. (7), Giurgiutiu and Cuc (18), Greve et al. (19), Nieuwenhuis (20), and Gomez-Ullate 

et al. (21)) have used piezoelectric wafers to excite and resolve Lamb wave in thin plates 

successfully.  Most of these researchers were easily able to resolve the first symmetric 
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and anti-symmetric lamb wave modes at distances around 20 cm, at frequency-thickness 

products near or less than one MHz-mm.  Viktorov briefly mentioned a dependence of 

Lamb mode amplitudes on the size of the transducer (15).  In 2003, Giurgiutiu (22) went 

on to show that the dependence on amplitude with sensor dimensions could be exploited 

to select a preferred mode.  Niewenhuis et al. (23) confirmed Dr. Giurgiutiu‘s work with 

a full multi-physics simulation.  All of the experiments done for this thesis use transducer 

and plate dimensions similar to what was used in the research just described.  In light of 

the findings from this research, it is likely that just one or two of the many possible 

modes dominate the signal.  However, determining the modes from the signal in the time 

domain may be difficult, but not impossible.  The distances between sensors in the 

experiments described in this thesis are approximately six cm.  According to Equation 10, 

all of the signals used in the experiments in this thesis contain a quasi-Rayleigh wave 

mode.   

 

2.2.2. Reception of guided waves 

Piezoelectric sensors are typically used in either a pitch-catch or a pulse-echo 

configuration (24).  The pulse-echo configuration uses the same sensor to receive a signal 

as it does to send it.  Usually, this configuration is used for reading the reflected portion 

of a transmitted wave.  A pitch-catch configuration was used for all of the experiments in 

this thesis.  This configuration uses two sensors, one for sending the wave and another for 

receiving it.  The pitch-catch configuration was chosen for the experimental joint 

assessment method so that multiple interfaces in the joint could be assessed with the 

transmitted signal rather than the reflected signal.   
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The way guided waves are sensed by piezoelectric sensors is, generally, similar to 

the way the waves are created (3).  Strain in the plate due to a passing wave is 

mechanically transferred to the piezoelectric material by the bond between the sensor and 

the plate.  The piezoelectric effect converts the strain energy into electrical energy.  An 

investigation into exactly how this process works with Lamb and Rayleigh waves was 

performed by Di Scalea et al. (25).  They found that the response is dependent on sensor 

dimensions, frequency, and mode of wave incident to the sensor.  The analytic model was 

found by solving for the voltage output in terms of the in plane strains and matching these 

strains with strains generated by the waves.  This model was verified by experiment.  

They reported on a narrow band (tone burst) response and a broadband (harmonic) 

response.  For the purposes of the research for this thesis, both narrow band and 

broadband are of interest.  Di Scalea et al. reported that the narrow band response 

maxima were near the broadband for lower frequencies but diverged for higher 

frequencies.  This suggests a difference in the way piezoelectric materials are able to 

detect Lamb and Rayleigh waves in both narrow and broadband signals.  In addition, the 

corresponding maximum response was different for Lamb and Rayleigh wave modes.   

 

2.3. Reflection and transmission of guided waves 

Reflection of guided waves by scattering off discontinuities in the medium is an 

important topic in Non-destructive Evaluation.  Most Non-destructive evaluation 

techniques rely on some feature of a reflected wave (24).  Wave scattering is a well 

understood phenomena, but the dispersive nature of Lamb waves creates a high degree of 
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complexity.  If not complex enough, wave reflection and transmission at rough interfaces 

is complex for another reason. 

 

2.3.1. Current research in wave scattering 

Reflection and transmission of guided waves occurs at any discontinuities in the 

medium.  Changes in the wave, if detectable, have been used to find cracks (19),(26), 

changes in thickness (27), and changes in elastic properties due to applied load (7).  

Reflection and transmission coefficients are solved for specific modes, so different modes 

have to be identified in the received signal.  This can be difficult with Lamb modes, as 

they can sometimes interfere and worse, they undergo mode conversion at interfaces that 

is highly dependent on frequency as shown in work done by Galan (28), Song et al. (6), 

and Morvan et al. (29).  Complicated models of Lamb mode reflection at the free edge of 

a plate using a hybrid of boundary element and finite element methods have been tested 

with agreeable results in a couple of papers by Rose et al. (30), (27).  Those models 

concentrated on the dependence of amplitude with frequency, so they were of particular 

interest to this research.  Other researchers have formulated numeric models that 

highlighted other properties of Lamb waves.  One by Lenoir and Duclos (31), in 

particular, highlighted the specific dependence of reflected Lamb modes on frequency by 

basing the model on phase derivatives, which use frequency as the dependent variable. 

 

2.3.2. Wave interaction at poorly defined interfaces 

Wave interaction at an interface for normal incidence is normally formulated in 

terms of acoustic impedances of the materials that make up the interface.   The reflection 
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(R) and transmission (T) coefficients of a perfect interface between two materials are 

given as the following (3): 

𝑇 =  
2𝑍2

𝑍1 + 𝑍2
,  

𝑅 =  
𝑍2 − 𝑍1

𝑍1 + 𝑍2
 11 

The acoustic impendence is represented with the letter Z and a subscript for 

material one and material two.  The incident wave is from material one, by convention. 

If the material is the same on either side of the interface, the coefficients reduce to 

T = 1 and R = 0.  In this case, there is no reflection and the wave is completely 

transmitted across the interface.  Situations involving an acoustic couplant or epoxy are 

often modeled with a layer of the couplant or epoxy between two areas of the same 

material.   Following directly from Equation 11, the reflection coefficient is (3): 

𝑅 =  
𝑍𝑙𝑎𝑦𝑒𝑟 − 𝑍1

𝑍𝑙𝑎𝑦𝑒𝑟 + 𝑍1
 12 

f the layer is air and the surrounding material is aluminum, the reflection 

coefficient is calculated using values from Cheeke‘s text:  Fundamentals and 

Applications of Ultrasonic Waves (3). 

𝑅 =  
0.4286 − 17.33

0.4286 + 17.33
=  −0.95173 = 95% 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

This means that only 5% of the wave energy is transmitted into the air layer.  The 

same ratio applies at the air to aluminum interface leaving only 0.25% final energy 

transmission.  This value is far lower than observed results (32) without taking into 

account the thickness of the air layer or the effect of a variable contact force.   These 

other variables must be taken into account. 
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These formulas were developed for a well-defined interface between two 

materials.  To be a well-defined interface, the interface must be perfectly in contact with 

both materials and have no net stress on the interface (3).  A well-defined interface 

ensures that ―continuity of normal and tangential components of stress and displacement 

(3)‖ can be used in the boundary conditions.  This is necessary in order to use any of the 

mathematical tools developed for wave transmission across an interface.  The easiest way 

to ensure the interface is well defined is to assume the interface is made of two perfectly 

flat surfaces.  In reality, there is no such thing as a perfectly flat surface.  When modeling 

a connection with an acoustic couplant, the couplant fills the tiny imperfections on the 

surface of each plate resulting in a couplant layer of varying thickness.  Differences in 

thickness of the couplant layer do not come into the calculation, so the surfaces can be 

approximated to be flat.  This approximation works especially well if the acoustic 

mismatch between the transmitting mediums and the couplant is not large.  Then the 

dominate method of wave transmission is most likely the one given by the reflection and 

transmission coefficients of Equations 11 and 12.  However, for a dry (no acoustic 

couplant or adhesive), roughly connecting surfaces, the model must be adjusted, as 

described in the next section.   

 

2.3.2.1. Spring interface model 

A popular model for dry or rough connections is to model the interface with a 

series of springs.  Baik and Thompson (10) first showed the effectiveness of this kind of 

model with ultrasonic waves.  Others (9), (11), (33) have since verified and made use of 

the spring interface model for ultrasonic or guided waves.  Statistical approaches (34), 
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(35) and rheological models have also been studied (36), (37), (38), (39).  For the spring 

models, the interface is conceptualized as a series of cracks or small inclusions.  The 

stiffness of the interface is related to the size of the inclusions and the density of the 

medium filling the inclusions (33).  This model creates fully specified boundary 

conditions by ensuring continuity of stresses across the boundary.  It also creates 

conditions that are dependent on properties of the boundary, which is useful conceptually.  

Spring models have been shown to work well with rough interfaces between different 

media as well (40).  Researchers in the field of acoustics model similar structures at 

larger length scales than the ultrasonic length scale, like the air gap between panels used 

for soundproofing, as a spring (41).   

The quasi-static reflection and transmission coefficients for a single material, as 

reported by Baik and Thompson in 1984, are:   

          𝑅 =  
𝑗𝜔 𝑍 2𝜅 − 𝑚

2𝑍  

 1 − 𝑚𝜔2

4𝜅  + 𝑗𝜔 𝑍 2𝜅 + 𝑚
2𝑍  

   𝑎𝑛𝑑  

𝑇 =  
 1 + 𝑚𝜔2

4𝜅  

 1 − 𝑚𝜔2

4𝜅  + 𝑗𝜔 𝑍 2𝜅 + 𝑚
2𝑍  

  . 13 

Here, j is the mode number, m is the mass per unit area, ω is the angular 

frequency of the incident wave, Z is the acoustic impedance of the material, and κ is the 

interfacial stiffness defined as stress (applied in tension) and the local deformation near 

the interface due to cracks or pores.  Figure 6 shows κ in terms of the additional stretch 

due to applied stress. 
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Figure 6:  Definition of interfacial stiffness from Baik and Thompson.  Side a shows 

a material under stress elongating by an amount Δp under stress σ.  Side b shows the 

same material under the same stress with the addition of inclusions (depicted by 

small ovals).  This material elongates by (p + Δi).  Interfacial stiffness, κ, is then 

given by σ/ Δi. 

 

These approximate values for R and T are highly dependent on frequency, which 

has been verified by all the researchers mentioned in this section—including Xin, Lu, and 

Chen (41) with their work on double panel partitions.  According to this model, the 

reflection and transmission of ultrasonic waves is dependent on the material properties, 

the frequency if the incident wave, and the roughness of the interface. 

 

2.4. Current research into ultrasonic inspection of rough interfaces and joints 

The previous sections discussed physical phenomena related to excitation and 

reception of guided waves.   The following discussion relates to research that utilizes that 

physical phenomena in different ways to inspect rough interfaces and joints in aerospace 

structures.  The research found in the literature concerning rough interfaces is generally 
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not in the field of aerospace inspection.  For this reason, it is presented in a separate 

section.  For each section, information is presented in order of increasing complexity.   

 

2.4.1. Rough interfaces 

The frequency range used in the following studies is much higher than the range 

used in the experiments described in this thesis.  The reason is often that the researchers 

are focused on finding small cracks in the panel that have closed due to external 

compressive forces.  However, many of the concepts still apply to the research presented 

in this thesis.   

As mentioned in the introduction, Dryer-Joyce et al. (9) used ultrasound to 

investigate a roughly contacting interface in the context of detecting cracks.  They were 

able to show a correlation between contact stiffness and the reflection coefficient two to 

three orders of magnitude more sensitive than by using load deflection measurements.  

These findings are of particular importance to this thesis, as this demonstrates a direct 

correlation between the reflection of waves (and thus transmission) and the contact 

pressure at the interface.  The same researchers went on to extend this principle to 

machined parts.  They were able to show good agreement between an analytic model and 

experiments.  The model is easy to follow conceptually, using the Baik and Thompson 

quasi-static boundary conditions and principles of Hertzian contact.  Hertzian contact is 

the classic problem involving elastic deformation of solids due to external pressure that 

leads to an increased surface area (42).  By this model, increased pressure leads to 

increased surface area.  Increased surface area implies that wave transmission would 

increase.   
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Liaptsis et al. (43) showed empirical data correlating contact pressure and the 

reflection of ultrasonic waves could be used to determine the contact pressure at an 

interface.  He used the same data to validate the quasi-static spring model for ultrasonic 

frequencies lower than 4 MHz.   

In 1995, Pecorati et al. (34) published a two-part study on ultrasonic waves 

reflecting off rough surfaces.  They found that the quasi-static boundary conditions given 

by Baik and Thomson (10) could be extended from flat imperfect boundaries to imperfect 

boundaries with irregular profiles.  They were able to do this by considering the stiffness 

in the tangential and normal directions separately.  This implies that the frequency 

dependent spring interface model is still valid even if the connecting surfaces are very 

rough or are warped, so the same transmission or reflection behavior can be expected 

even in extreme cases. 

Together, the work of Dryer-Joyce et al. and Liaptsis et al. give good evidence for 

the utility of inspection of rough surfaces by studying the reflected amplitudes of 

ultrasonic waves.  In light of this work, the reflection and transmission of ultrasonic 

waves across a rough interface is dependent on the material properties, the frequency of 

the incident wave, the roughness of the interface, and the applied stress to the interface.  

According to Pecorati et al., this behavior should persist even in more extreme cases of 

roughness. 

 

2.4.2. Joint inspection in aerospace structures 

A lot of the ultrasonic inspection research done specifically for aerospace 

structures is done using lap joints.  These investigations, like the rough surface 
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investigations above, usually concentrate on a simple geometry with one interface or one 

feature that causes scattering.  Song et al. (6) did a study on the reflection of the A0 (first 

anti-symmetric) Lamb wave mode on a lap joint.  The joint in this experiment was 

machined from a single piece of steel, and therefore it did not contain an interface.  

Despite this simple geometry, many important things were learned from the reading of 

this paper.  The numeric model used in this paper was a hybrid boundary element and 

finite element program that simulated the scattering of a single Lamb wave mode.  

Complicated mode conversion phenomena was predicted in the simulation and observed 

experimentally.  In addition to mode conversion, the transmission amplitudes were highly 

dependent on frequency and plate dimensions.  This complexity exists despite the 

absence of a rough connection or other wave modes. 

Stepping up the complexity, several researchers have done similar studies with 

joints that contain adhesive.  A perfectly bonded adhesive joint has well defined 

boundaries.  However, it can be tricky to tell if changes in the signal are due to break 

down of these boundaries or some other type of damage (like creep in the adhesive).  

Puthillah et al. (5) addressed several different types of damage to adhesively bonded lap 

joints.  Challis et al. (4) used an intelligent signal processing in the form of an artificial 

neural network to process the data. 

Ultrasonic investigations of bolted structures must also consider scattering due to 

the presence of the bolt itself.  Miller et al. (44)  did an analysis of scattering in a plate 

due to a single bolt.  They found that the scattering amplitudes decrease as the bolt moves 

out of the plate, suggesting that applied torque appears to increase damping in the signal.  

They also presented evidence that an effective domain exists for detecting loose bolts.  
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Signals traveling in regions farther from the bolt are not affected by it.  Doyle, Zagrai, 

Arritt, and Çakan (7) found that signals in the presence of a bolt with pre-load have a 

phase shift.  This effect was exploited to examine plates without having to deal with 

properties of reflected waves and the necessary boundary conditions.  Lovell and Pines 

(8) did a study focusing on the nonlinear joint dynamics of bolted single lap joint.  Loss 

of preload in the bolt was correlated with an ultrasonic scattering matrix.  From this 

information, they were able to find an effective joint stiffness. 

Francoeur et al. (45) dealt with the increasing complexity of the problem with a 

system that estimated unknown parameters.  The method was able to show the 

progression of damage with the use of a baseline.  In this case, roughness in the interface 

was not considered.  The highest level of complexity involves taking the rest of the 

structure into account.  Champaney et al. (46) proposes using a multi-analysis 

computation strategy for solving contact problems in the context of the larger aerospace 

structure.   

 

2.5. Summary 

The method used to produce guided waves for the purpose of joint inspection was 

chosen because it is compact and lightweight.  However, the signal it produces is a 

complicated mix of guided wave modes that cannot reasonably be resolved into separate 

modes at close distances.  Therefore, testing techniques that involve mode-specific 

features are not practical.   

Reflection or transmission amplitudes are not mode-specific features.  However, 

reflection and transmission amplitudes are dependent on several variables.  Scattering of 
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guided waves occurs at any discontinuities in the medium.  They also undergo mode 

conversion at interfaces that is highly dependent on the frequency of the incident wave. 

According to spring interface model, the reflection and transmission of ultrasonic 

waves is dependent on the material properties, the frequency if the incident wave, and the 

roughness of the interface (even if that interface is very rough).  Additional research has 

shown that reflected amplitudes are also a function of the applied stress to the interface.  

This means that, knowing the basic material properties and the frequency of the incident 

wave, the amplitude of the reflected wave could be used to gauge roughness or applied 

stress to the interface.   

In an actual joint, scattering could take place off bolts as well as changes in 

thickness and dry connections.  This increases the complexity of the problem.  Research 

suggests a difference in the way piezoelectric materials are able to detect Lamb and 

Rayleigh waves in both narrow and broadband signals.  The testing method would need 

to consider this possibility.  Use of a baseline may help eliminate some of these extra 

variables.   
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CHAPTER 3:  PROOF OF CONCEPT EXPERIMENT 

 

This is the first of three experiments conducted for this thesis.  All tests described 

in this chapter were conducted at the University of New Mexico.  The intent and goals of 

this experiment are basic in scope.  The lessons learned in this experiment were applied 

to later tests. 

 

3.1. Intent and goals of the experiment 

This experiment was intended to simulate a very simple panel-to-panel connection 

in a satellite.  The first goal was to show that wave energy could be transmitted and 

received by piezoelectric sensors across a rough, dry connection.  Once that was 

achieved, the second goal was to correlate changes in joint rigidity with transmitted wave 

energy.  From the literature review and by initial investigation, wave amplitudes were 

known to be frequency dependent.  Therefore, a range of frequencies was considered.  To 

simplify the data set, a single parameter based on transmitted wave energy was devised.   

 

3.2. Sample joint 

A simplified version of a panel-to-panel connection in a satellite was made using 

two Aluminum (Al 3003) plates, 15.2 cm x 15.2 cm x 0.165 cm, joined by two 90 degree, 

2.5 cm zinc-plated steel brackets, as shown in Figure 7.  The brackets were bolted at the 

edges of the plates, leaving the center section of the joint free of support.  This was done 

to minimize wave reflections from the bolts.  Pan-head, slotted, machine screws (M6-

1.00 x 30) were used with hex nuts to bolt the brackets to the aluminum plate.  No 
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attempt was made to smooth or sand the plate edges after the plates were cut, and no glue 

or any kind of acoustic couplant was applied to the joint.  

 

Figure 7:  Back and side view of the sample joint showing size of plates and 

placement of brackets. 

 

3.3. Sensors 

Four piezoceramic sensors (PiezoSystems Woburn, MA, model: PSI-5A4E) were 

used in this experiment.  They were each 8 mm by 8 mm by 2 mm, custom-cut from the 

same sheet of material by the manufacturer.  Electrical and Mechanical properties of 

these sensors can be found in Appendix 2. 

 

3.3.1. Placement of the sensors 

The four piezoceramic sensors were placed on the joint as shown in Figure 8.  The 

piezoceramic plates attached to the vertical aluminum plate were designated V1 and V2.  

Likewise, the piezoceramic sensors attached to the horizontal aluminum plate were 

designated H1 and H2.  All tests were conducted between pairs of sensors located across 
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the joint from one another.  From this point, all references to a sensor pair are formatted 

with the transducer first receiving sensor second.  (Example: V1 H1.)   

 

 

Figure 8:  Front and side view of the sample joint showing the placement of the 

sensors. 

 

Figure 9 shows the bonding and wiring method used on the piezoelectric sensors.  

The bottom of each piezoceramic sensor was bonded to the surface of the aluminum plate 

with conductive epoxy.  A 20 AWG solid copper wire was soldered to copper foil, than 

bonded to the top of the piezoceramic plates with the same conductive epoxy.   Each 

aluminum plate was connected to ground using the ground wire leads connected to the 

National Instruments PXI system.  The PXI system, explained in more detail in a later 

section, was the equipment used to create and acquire high frequency voltage signals. 
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3.3.2. Dynamic behavior and resonance of piezoelectric sensors 

The behavior of a piezoelectric element in categorized into two groups:  static to 

near static behavior and dynamic behavior.   Static to near static behavior is characterized 

as having an input frequency far below resonance.   Dynamic behavior is characterized as 

having an input frequency higher than the natural resonance frequency of the crystal (47).  

A wide range of frequencies was used for this experiment, so dynamic behavior in the 

sensors was expected. 

With dynamic behavior, the crystal is in a state of forced vibration.  Like most 

forced vibration systems, the piezoceramic plate will resonate at the input frequency but 

most readily near its natural frequencies and their overtones (16).   The natural 

frequencies and overtones of a rectangular parallelepiped may be found by the following 

approximate relationship provided in the text: Piezoelectricity; an introduction to the 

theory and applications of electromechanical phenomena in crystals by Walter Cady. 

(16): 

Figure 9:  Bonding of the sensors to the plate 

1. 15.2 cm by 15.2 cm. 3003 aluminum plate, 1.65 mm thick. 

2. CircuitWorks® Conductive Epoxy.   

3. 0.15 mm thick copper foil. 

4. 8 by 8 mm piezoceramic plate with PiezoSystems' 

Designation PSI-5A4E, 2 mm thick. 

To PXI System 

1. 2. 
3. 

4. 

To PXI System 
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𝑓𝑕 ≈ 
𝑕 

2 𝐿
 
𝑞

𝜌
  

14 

The factor h is the order of the overtone, L is the length in the direction of wave 

propagation,  𝜌 is the density, and q is the effective stiffness factor.  The factor q may be 

approximated by using Young‘s modulus (16).    

 

3.3.2.1. Estimation of the natural frequency 

The following values were calculated from Equation 14 for the piezoceramic 

materials used in the proof of concept experiment that is described in the next chapter. 

Values for Young‘s modulus and density were obtained from the manufacturer (see 

Appendix 2): 

For an 8 x 8 x 2 mm piezoelectric ceramic used in the experiment, the first 

resonance frequency in the 1-1 direction (and the 2-2 direction) was calculated to be 

181.805 kHz. 

1 

2 (0.008 𝑚)
 

6.6𝑥1010𝑁/𝑚2

7800 𝑘𝑔/𝑚3
= 181805 𝐻𝑧    

The first overtone for the 1-1 direction should be around 363.609 kHz.  

2 

2 (0.008 𝑚)
 

6.6𝑥1010𝑁/𝑚2

7800 𝑘𝑔/𝑚3
= 363609 𝐻𝑧    

The first resonance frequency for the 3-3, or thickness, direction was calculated to 

be 645.497 kHz. 

1 

2 (0.002 𝑚)
 

5.2𝑥1010𝑁/𝑚2

7800 𝑘𝑔/𝑚3
= 645497 𝐻𝑧 
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These numbers are about 50 kHz lower than the location of the maximum peaks 

observed in the experimental data (shown in the results section).  This is somewhat 

expected as using Young‘s modulus for q (q is a slightly larger number) should make the 

approximation lower than observed values.  There should also be some difference due to 

the copper loading on the top of the piezoelectric plate and to imperfect glue bonding 

with the aluminum sample.   According to Cady (16), the accuracy of Equation 14 further 

degrades at the overtones. 

 

3.4. Mechanical assessment of joint rigidity 

A quantifiable mechanical assessment of the joint rigidity was needed to make a 

valid comparison with the energy transmission amplitudes obtained in the experiment.  

For this geometry, the contact force produced by the bolts is not in line with the contact 

the plates make with each other.  However, the torque applied to the connecting bolts 

between the vertical plate and the bracket affect the rigidity of the joint.  When the bolts 

are loosened, the decrease in contact between the bracket and the plate will result in 

increased movement inside the joint, making the joint loose.  At the same time, the 

alignment of the plates with respect to one another can change.  While reducing tension 

in the bolts should make the joint loose, possible shifting of the plates can either decrease 

or increase connectivity in the joint.  Therefore, bolt tension alone is not an accurate 

measure of the joint rigidity, so a more direct measurement of the joint quality was 

chosen. 
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3.4.1. Characterization of the joint between two extreme cases 

This method of joint characterization first idealizes the model joint as a thin beam 

with one end attached to a support and the other end free.  The free end is subject to a 

load perpendicular to the beam as shown in Figure 10. 

 

Figure 10:  Idealization of model joint. 

 

If the supported end of the beam in the idealization of the joint is pinned, or has 

no resistance to rotation, then the beam will undergo rigid body rotation under any load, 

as shown in Figure 11.   

 

Figure 11:  A beam with one end pinned will have the same rotation value at point 1 

and point 2. 
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The rotation away from the original vertical position, φ, at any point will be the same.  

Therefore, the ratio of φ between any two points will always be one.    

If the supported end of the beam is fixed, as shown in Figure 12, then no rotation 

at the joint is allowed and the beam will bend under load.  Euler-Bernoulli bending can 

be used to describe the bending of the beam.   

 

Figure 12:   A beam with one end fixed will bend.  The rotation values for point 1 

and point 2 will be different. 

 

With the load applied at the top of the plate, the rotation (φ) at a point if given by 

the following well-known relationship for a cantilever beam (48):  

𝜑 =  
𝑃

2𝐸𝐼
 𝑥2 − 2𝐿𝑥  

15 

P is the load, E is the Modulus of Elasticity, I is the second moment of area about 

the axis perpendicular to the bending motion, L is the length of the plate in the direction 

of bending, and x is the distance from the fixed joint to the point in the direction of 

bending.  The angle of rotation, φ, is the angle the tangent makes with the unbent 

position.  The ratio of φ for the actual model joint will fall between two extremes:  1.0 is 

the lower bound and the upper bound is given by Equation 16.  
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𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  
𝜑𝑝𝑜𝑖𝑛𝑡  1

𝜑𝑝𝑜𝑖𝑛𝑡  2
=

 𝑥𝑝𝑜𝑖𝑛𝑡  1
2 − 2𝐿𝑥𝑝𝑜𝑖𝑛𝑡  1 

 𝑥𝑝𝑜𝑖𝑛𝑡  2
2 − 2𝐿𝑥𝑝𝑜𝑖𝑛𝑡  2 
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The actual joint is supported only at the edges by two brackets.  The boundary 

conditions are not the same all the way across the joint.  To minimize deflections that 

were not accounted for by the idealized model, measurements were only taken on the 

vertical line in the center of the vertical plate, directly under the applied load.  The 

support at the joint is also much closer to a pinned condition than to the fixed condition.  

It is not expected that any measurements made on the model joint will be close to the 

upper bound.   

 

3.4.2. Deflection measurement set-up 

The entire model joint was attached to a heavy steel plate by securing the 

horizontal plate to elevated steel supports as shown schematically in Figure 13.  This was 

done to minimize deflections in the horizontal plate and to counter the applied load.   

 

Figure 13:  Back and Side view of joint attached to a steel plate. 
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A 1.6 mm diameter steel cable was attached to the vertical plate and a strung over 

a pulley.  In Figure 13, the bolts at location A were periodically adjusted, bolts at location 

B were tightened and left alone, and one inch C-clamps were used to secure the far edge 

of the horizontal plate.  A flat piece of steel that was the same thickness as the angled 

bracket making the joint was inserted between the support and the horizontal plate at the 

far end from the joint in order to ensure the horizontal plate was level. 

Deflections in the vertical plate, with respect to the horizontal plate, were made 

by observing changes in a laser beam reflected off the back of the vertical plate.  Special 

polishing paper of increasingly high grit (up to 3000 grit) was used to wet sand the back 

of the vertical plate to a high shine to reflect a low level-laser beam as seen in Figure 14.   

 

Figure 14:  Photograph of the back view of the test subject secured to a heavy steel 

plate.  The back of the vertical plate was polished to reflect a low-level laser beam. 
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The entire apparatus was situated on a workbench.  The horizontal plate was 

leveled so that it sat in the plane of the workbench.  This was done so that the vertical 

plate could be rotated in reference to the horizontal plate and all subsequent 

measurements could be made in reference to the plane of the workbench.  Figure 15 

shows a top down view of the test setup. 

 

Figure 15:  Top down view of the experiment. 

1) Source:  A class 3a, 5mW red laser beam. 

2) The beam is split into two beams, both parallel to the workbench. 

3) The beams strike the plate at 30 degrees to the normal of the plate in the 

horizontal plane at point 1 and point 2.  The beams reflect at –30 degrees 

from the normal toward the screen. 

4) Applied force causes the plate to pivot about the joint.  The initial load is 

zero; the vertical plate makes a right angle with the workbench. 

5) The screen makes a right angle with both beams.  The initial location of the 

beams (with zero applied load) is recorded as the origin.  As the plate is 

deflected, the beams change position on the screen. 
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All measurements and leveling of the beam were done by hand.  The workbench 

used was coved with paper so that the angles and positions for the test setup could be 

measured with a ruler and protractor.  Two-millimeter graph paper attached to a sheet of 

foam core was used for the screen.  The laser beam was a common laser pointer.  The 

beam was leveled by comparing the vertical distance on a screen placed at several 

horizontal distances up to 2.7 m.  A level and square were used to ensure the screen was 

perpendicular to the floor and the workbench was level with the floor.  To reduce the 

beam size, an opaque white label sticker with a pinhole in it attached to the end of the 

pointer.   The spread in the laser beam was tested at various distances.  At 2.7 m, there 

was no visible beam spread.  However, the polished surface of the aluminum plate was 

not perfect, and the reflected beam spread to 1 mm in diameter at a screen distance of 

4.31 cm from the vertical plate.  This was acceptable because the 2 mm grid on the screen 

determined the smallest increment that could be measured. 

 

3.4.3. Deflection measurement procedure 

The force described in Figure 15 was applied using a 1.6 mm diameter steel cable 

attached to the top of the vertical plate and extended over a pulley.  This cable was used 

to suspend a known mass over the floor, thereby applying a horizontal load to the vertical 

plate.  For the test, mass was added to a platform attached to the cable in increasing 

amounts of about 100g.   

After the initial positions of both beams on the screen were recorded, load was 

added in approximately 100g increments.  Each change in mass bent the vertical plate, 

and the reflected beam changed position on the screen.  This change was recorded as Δx 
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for the horizontal direction and Δy for the vertical direction.  The geometric relationship 

between Δx, Δy, and φ was derived by considering the motion of the plate in the vertical 

plane and the horizontal plane separately.  The derivation of the following equations is 

included in Appendix 3. 

𝜑 =
1

2
tan −1

∆𝑦

431 +∆𝑥
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𝐽𝑜𝑖𝑛𝑡 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝜑𝑝𝑜𝑖𝑛𝑡  1

𝜑𝑝𝑜𝑖𝑛𝑡  2
 18 

 

3.5. Measurement of wave energy transmission 

Most of the tests were conducted in the span of a few days to try to limit changes 

in temperature and humidity from affecting the test results.  Once the bolts were adjusted, 

friction on the bolt threads, friction in the joint itself, and plasticity effects from over-

tightening the bolts made each adjustment unique.  The laser that was used to measure the 

deflection was kept on to monitor the position of the plate during all tests.  

 

3.5.1. Equipment and LabView™ programming 

Signals were generated and received with a National Instruments PXI system.  

The system included LabView 8.5 (and later 8.6) which was run on a Dell SPS M1330 

laptop, a PXI 1033 chassis, PXI 5102 High-Speed Digitizer, and a PXI 5402 Signal 

Generator.  The signal generator has a maximum output voltage of +/- 5 V and a 

maximum sample rate of 400 MS/s for the type of function generated in these 

experiments.  Neither of these limits was exceeded.  The digitizer has a maximum sample 

rate of 20MS/s, which was the rate used to collect all data.   
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Virtual Instrument (vi) programs written in LabView 8.5 (and later 8.6) controlled 

the equipment and wrote the collected data to a text file for later analysis.   The programs 

automated the data collection process so that input by the user was only needed when 

sensors or variables relating to the test subject needed adjustment or change.  

Documentation for these programs is located in the appendix.   

 

3.5.2. Procedure 

The function generator induced a single tone at a constant excitation voltage at a 

transducer for 0.01 seconds.  While the function generator was running, the amplitude of 

the output wave at a sensor, located across the joint from the transducer, was recorded 

with the digitizer.  A virtual instrument program (vi) was written as a sub-routine to 

automatically collect a series of these single tone measurements for a range of 

frequencies from 100 kHz to 1000 kHz in 1.0 kHz increments.  The master program used 

this sub-routine to automate the data collection for input voltages of 1.0, 2.0, and 3.0 

volts with three trials each and store the data in a text file for later analysis.  Each 

measurement made with this program resulted in nine files of data.  Appendix 3 contains 

diagrams of these programs. 

With the vertical plate under zero load, measurements were performed with each 

of the four piezoceramic wafers acting alternately as sensor and transducer.  The entire 

procedure was repeated after each bolt adjustment and subsequent rigidity 

characterization by the mechanical assessment method described previously. 
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Noise levels were recorded for each sensor on each day of testing.  This was done 

by running the experiment with no transducer connected.  For all days tested, the average 

noise level recorded for all four sensors was 0.03 volts. 

 

3.5.3. Calculation of energy parameter Ej 

A plot of the raw data from each frequency sweep measurement shows voltage on 

the ordinate and frequency in kHz on the abscissa is shown in Figure 16. 

 

 

Figure 16:  Raw data collected at sensor pair H1V1 with an excitation voltage of 3.0 

volts.  The large peak near 220 kHz corresponds to the resonance frequency of the 

piezoceramic sensor. 

 

Each voltage value corresponds to a maximum output reading for a wave sent at the 

specific frequency listed on the plot.  The largest peaks correspond to the resonance 

characteristics of the piezoceramic sensors used to excite and sense the signal.  The 
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transducer will send a stronger signal at resonance and the sensor will be more sensitive 

at resonance.  Although the piezoceramic wafers used were the same material and cut to 

very close to the same size, differences in the solder joints and bonds to the aluminum 

affect the resonance frequency.  Consequently, the results obtained from a specific 

pairing of sensors will be different from other pairings  An estimation of the resonance 

frequency for the piezoelectric wafers used was given in Section 3.3.2.1. Estimation of 

the natural frequency.  This value was 182 kHz, which was explained to be a low 

estimate. 

The data collected is not a Fourier Transform of a single signal.  It is a collection 

of largest amplitudes for multiple signals sent at a range of frequencies.  In addition, each 

signal was altered by passing through the joint.  Never the less, the raw data was analyzed 

using the same methods that are commonly used to analyze a single signal in the 

frequency domain.  First, the amplitude values were normalized to the excitation voltage 

and then squared to transform the data so that a Power Spectral Density plot could be 

made.  The energy contained in the largest peak was obtained by integrating from 200 to 

300 kHz.  A trapezoidal rule was used to do the integration on the discrete data set.  The 

resulting value was divided by the bandwidth (assumed to be 1 kHz) to result in units of 

normalized amplitude
2
, a value proportional to the energy in the signal.  The resulting 

energy parameter, Ej, characterizes the energy transmitted across the joint in a single 

value.  Normalization ensures that perfect transmission at all frequencies between 200 

and 300 kHz would give an Ej value of 1.0; a value of zero would indicate no 

transmission.  The process is summarized in Equation 19.   
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𝐸𝑗 =  
  𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 [𝑣𝑜𝑙𝑡𝑠] ∗

1 
𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 [𝑣𝑜𝑙𝑡𝑠] 

300 [𝑘𝐻𝑧 ]

200  [𝑘𝐻𝑧 ]

2

𝑑𝑓

1[𝑘𝐻𝑧]
 19 

 

3.6. Results and analysis 

Programs written in LabView were used to calculate all Ej values reported in this 

section.  Documentation for these programs is contained in Appendix 3.   

 

3.6.1. Results of the mechanical joint assessment 

The two points on the vertical plate chosen to be points of interest measured 106 

mm and 62 mm, respectively, from the joint.  Using these values for xpoint1 and xpoint2 in 

Equation 16, the upper bound is 1.4.  Therefore, the ratio of the values measured at 62 

mm and 106 mm should fall between 1.0 and 1.4, with the larger values representing test 

cases with a more rigid joint than the lower values.   

At each mass increment, the rotation values, φ106 mm and φ62 mm, were calculated 

from the corresponding change in location of the reflected laser beam on the screen by 

Equation 17.  The error associated with the deflection measurement is +/- 2.0 mm in both 

the x and y directions.  The ratio of the rotation values (Equation 18) at 16 different mass 

increments (starting at about 0.9 N and ending at 14.7 N) for each joint rigidity case 

tested was tabulated.  Of these, only the last 13 values were averaged.  The first three data 

points were determined to be less reliable because the method used to detect curvature in 

the plate was not sensitive enough to detect the small changes in curvature that resulted at 

these lower loads.  Two of the test cases have overlapping intervals, because the 

measured joint quality of these cases was very close.  They were included in the 

correlation test as points of interest. The resulting values for the five test cases presented 
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have a 95% confidence level for each at about +/- 0.01.    The values and confidence 

intervals are presented in Table 2.   

Table 2:  Mechanical assessment of the joint after the bolts joining the brackets to 

the vertical plate were adjusted five times.  The joint rigidity ratio and confidence 

levels are reported. 

Test 

number 

Joint rigidity 

ratio 

95 % Confidence 

level 

Confidence 

interval, lower 

bound 

Confidence 

interval, upper 

bound 

1 1.20 0.01065 1.19 1.21 

2 1.08 0.01404 1.06 1.09 

3 1.14 0.00709 1.14 1.15 

4 1.19 0.01195 1.18 1.21 

5 1.24 0.01185 1.23 1.25 

 

 

3.6.2. Linearity of the system  

The tests were conducted at excitation voltages of 1.0, 2.0, and 3.0 volts.  This 

was done to test the linearity of the system to the excitation voltage.  If Ej is linear with 

respect to the excitation voltage, then Ej values obtained from different excitation 

voltages would be the same.  If not, then raw data from different excitation voltages 

could not be normalized as described in Equation 19 and compared.  It is possible that 

energy lost or gained from reflections in the panel or lost converting electrical energy to 

and from mechanical energy in the piezoceramic, sensors could have some non-linear 

influence on the transmission amplitude.  Linearity was expected, but checking was 

necessary.  For each test case and each sensor pairing, the output energy for each trial 

was found.  Output energy was found with a process similar to finding Ej, as given by the 

following equation. 
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𝐸𝑡𝑟𝑖𝑎𝑙  # =  
  𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 [𝑣𝑜𝑙𝑡𝑠] 

300  [𝑘𝐻𝑧 ]

200  [𝑘𝐻𝑧 ]

2
𝑑𝑓

1[𝑘𝐻𝑧]
 20 

The final value of the output energy was the median of these results.  Median 

values were used because a normal distribution could not be assumed with a very small 

sample size. 

The output energy was compared against the input energy for each test case 

and each sensor pairing in a least-squares analysis.  The same process as the 

output energy found the input energy, but in this case, the excitation voltage was 

constant for the entire frequency interval.  The resulting values for input energy 

are 1.0, 4.0 and 9.0 volts
2
 kHz/kHz.  The R

2
 values for each linear regression are 

reported in Table 3. 

Table 3:  R
2
 values for least-squares analysis performed on each test case and each 

sensor pairing. 

Joint rigidity ratio 

for each test case 
0.08 0.14 0.19 0.20 0.24 

Sensor pair: H1V1 0.9989 0.9999 0.9998 1.0 1.0 

Sensor pair: H2V2 0.9952 0.9995 1.0 0.9999 1.0 

Sensor pair: V1H1 0.9999 0.9999 1.0 1.0 0.9997 

Sensor pair: V2H2 0.9994 0.9994 0.9999 0.9998 1.0 

 

All R
2
 values are one or very close to one, showing that the output energy 

to the input energy is linear in all cases. 
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3.6.3. Correlation in Ej with the joint rigidity ratio 

Nine Ej values were computed for each test case (joint rigidity ratio) and each 

sensor pair.  This sample size was small, and again, a normal distribution could not be 

assumed.  The median value was plotted against the joint rigidity value in Figure 17.   

 

 

Figure 17:  Plot of Ej values against joint rigidity ratio values for each sensor pair.  

Each sensor pairing displays a positive correlation between Ej and the joint rigidity 

ratio. 
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In Figure 17, the vertical error bars represent a 95% confidence interval based off 

the median value.  These are not symmetric the way a standard confidence interval would 

be.  The horizontal error bars represent a standard 95% confidence interval, which is 

based off the mean.  The relationship between transmitted energy (Ej) and the stiffness in 

the joint (joint rigidity ratio) does not appear to be linear.  This could be due to the fact 

that the joint rigidity ratio is a scaled value from 1.0 to 1.4.  At 1.0, the transmitted 

energy should go to zero.  However, the actual joint is supported by brackets and unless 

the brackets are removed some energy will be transmitted across the brackets.  At 1.4, the 

transmitted energy should reach some maximum.  There is no reason to believe that as 

the joint becomes increasingly stiff, the transmitted energy will increase at a more and 

more rapid rate.  Therefore, it should be expected that at higher values of transmitted 

energy, the curve in Figure 17 could look more like an ‗S‘ curve. 

Some difference in values between sensor pairings is expected due to differences 

in the bond the sensor makes with the plates, the small differences in size, and the 

differences in solder material on top of the sensors.  The difference in Ej values by sensor 

pairing becomes more pronounced as more energy is transmitted.  This is likely not due 

to sources of systematic error like differences in sensor bonding.  Since sensitivity in the 

sensors is frequency dependent, changes in sensor sensitivity could be due to a frequency 

dependent dampening in the joint that increases as the joint becomes more ‗loose‘.  

Unfortunately, from this data it is not really possible to know if this effect is due to sensor 

characteristics, changes in joint stiffness, or both. 

To show the correlation between Ej and the joint rigidity ratio, some correlation 

statistics were computed.  In Figure 17, an exponential fit was done for each sensor 
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pairing.  Spearman‘s rank correlation ranks each variable and computes how well the 

rankings match.  The only sensor pair that did not get a 1.0 for Spearman‘s rank 

correlation was H2V2.  The discrepancy is at joint rigidity values 1.20 and 1.19.  This 

sensor pairing had a slightly higher Ej value for 1.19 than it did for 1.20.  It was 

mentioned before that these cases have overlapping confidence intervals, making the 

difference in joint rigidity unreliable.  The R2 values for the exponential fit, and two 

correlation metrics from the text: Statistical Analysis of Non-normal Data by Deshpande 

(49) are reported in Table 4.  

Table 4:  Correlation statistics by sensor pair between Ej values and joint rigidity 

ratios.  In all cases, a value close to 1 shows good correlation between variables. 

 Spearman's rank 

correlation 

Pearson's product-

moment correlation 

R
2
 value for the 

exponential fit 

H1V1 1.0 0.881494 0.9067 

H2V2 0.9 0.931849 0.9137 

V1H1 1.0 0.884706 0.8926 

V2H2 1.0 0.944084 0.8743 

 

Pearson‘s product-moment correlation coefficient ranges from -1 to 1 and shows 

how well the data can represent a line.  It is not a traditional linear regression, however.  

The values for this case are high, but there is little reason to think the data might be 

linear.  On the other hand, there is little reason to think that the data might be exponential 

either.  The R
2 

values for the exponential fit are as good as the Pearson‘s coefficient 

values.  In either case, the correlation between transmitted energy and the joint rigidity is 

clear. 
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3.6.4. Summary of results 

Wave energy was successfully transmitted across a joint with a rough, dry 

connection by piezoelectric sensors.  The excitation voltage was low, but the transmitted 

signals were well above the measured noise level for even the loosest joint tested.   

Transmitted energy across the joint correlated with measured joint rigidity very 

well.  The relationship appears to be non-linear.  The lowest value of Spearman‘s rank 

correlation coefficient for any of the sensor pairs was 0.9.  This shows very good 

correlation between transmitted energy and joint rigidity.   

The joint design did not allow for really tight test case.  This experiment showed 

more of a ‗worst-case‘ scenario with a joint by having very loose test cases.  Those cases 

showed that the wave energy could be transmitted and correlated with joint rigidity.  

However, behavior at the other end of the scale has yet to be established.  
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CHAPTER 4:  EXPERIMENTS CONDUCTED ON SATELLITE  

PNP 1 

 

This chapter describes the second experiment conducted for this thesis.  This 

experiment uses the evaluation method developed in the proof of concept on a functional 

satellite.  In this case, bolt tension is correlated with an energy metric based on the 

transmitted wave energy of a pulsed signal.  The new metric, Er, is similar to the energy 

metric Ej discussed in Chapter 3.  Er was developed for this experiment to accommodate 

specific testing circumstances at the Air Force Research Laboratory Space Vehicles 

Directorate on Kirtland Air Force Base.   

 

4.1. Goals of the experiment 

The experiment was conducted in two phases to assess the utility of the parameter 

Er as a joint quality metric.  Torque applied to the connecting bolts in a joint was varied 

while observing changes in the parameter Er in a stationary setting and in-between 

traditional vibration analysis tests.  The goal of the stationary phase was to assess the 

ability of the energy parameter Er to detect changes in joint integrity within acceptable 

error limits.  A secondary goal of the stationary experiments was to test the sensitivity of 

Er to experimental parameters.  Repeatability of measurements was also considered.  The 

goal of the second phase, conducted between vibration analysis tests, was to observe 

changes in the parameter Er with changes in joint quality that were known to be invisible 

to traditional vibration methods.  Traditional vibration analysis examines the structure as 

a whole (2), and can only detect changes in the structure that affect the global stiffness of 
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the craft.  A secondary goal of the second phase was to assess the sensitivity of the 

energy parameter Er to perturbation by vibration.  All tests were conducted on a 

functional satellite to gauge the feasibility of using this quality assessment method under 

realistic circumstances.  

 

4.2. Equipment and Test Subject 

The piezoelectric sensors used to generate and receive the elastic waves in the 

panels for the experiments conducted with the Air Force Research Laboratory Space 

Vehicles Directorate were American Piezo Ceramics (Mackeyville, PA) designation APC 

850, 7 mm circular wafers, 0.0254 mm thick.  Sensors were manufactured with the 

bottom electrode folded over to the top face so that the sensor could be properly bonded 

to the structure.  Sensors were placed approximately 1cm from the bracket edge as 

pictured in Figure 18.     

 

Figure 18:  Location of sensors and actuators on the spacecraft.  Sensor 1 was not 

used as an actuator; it was bonded to the panel with 2319 epoxy. 

 

Actuator/sensor 1T 

Sensor 1 

Actuator/sensor 

4T 
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Originally, all sensors were bonded with 3M 2319 epoxy.  However, the high voltage 

used to excite the actuating sensors posed a possible threat to sensitive electronics 

mounted on the satellite panel.  The actuating sensors were replaced with identical 

sensors bonded with cyanoacrylate glue on top of kapton tape.  The tape was applied to 

the panel before the sensors were glued down.  A number and the letter ‗T‘ label sensors 

bonded to the panel in this fashion.  This installation method protected the structure from 

electrical arcing.  Three sensor paths were used to collect data:  actuator 4T to sensor 1T 

(4T-1T), actuator 1T to sensor 4T (1T-4T), and actuator 4T to sensor 1(4T-1). 

A RITEC RAM 5000™ device was used to generate and receive signals at the 

piezoelectric actuators/sensors.  A National Instruments high-speed digitizer (NI 5102) 

was used to examine the output signal in the time domain.  Frequency sweep settings for 

the RITEC device were determined from the output signal in the time domain.   

 

4.3. Transmitted energy parameter Er  

 The experimental method used for the proof of concept experiment, 

described in the previous chapter, needed to be adapted for a more complex situation and 

different equipment.  Previously, the method read out the maximum amplitude from a 

transmitted wave sent continuously for a time interval of 0.01 seconds, and the sensors 

were excited at 1.0-3.0 volts.  The experiments conducted at Air Force Research 

Laboratory facilities on the satellite designated PnP1 (for Plug-in-Play 1) were to be 

conducted in conjunction with other experiments.  For logistic reasons all experiments 

used the same sensors and equipment.  In addition, it was suggested that the low voltage 

used in the proof-of-concept method might not have been able to produce a transmittable 
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signal across the more complex joint geometry.  The proof-of-concept method was never 

tested on the any of the satellite panels at AFRL, and it is unknown if different sensors 

and a lower voltage could produce satisfactory results.   

 

4.3.1. New experimental parameters 

The new smaller, thinner piezoceramic wafer sensors excited at voltages an order 

of magnitude larger than the voltage used in the proof-of-concept experiment.  These 

sensors were designed to send and receive discrete wave pulses rather than wave trains.  

The response of the piezoelectric sensor acting as a receiver from a pulse has complicated 

features in the time domain.  Figure 19 shows the received signal at sensor 1 from 

actuator 4T in the time domain. 

 

Figure 19:  The red line represents the input signal at actuator 4T.  The blue line is 

the response at sensor 1.  This is an example of the shape and character of the 

received signals. 

 

The signal in Figure 19 was taken with all bolts in the joint tightened to 

specification.  The input frequency used was 325 kHz, which is near the resonance 

frequency of the piezoelectric sensor.  Therefore, the signal should have a high amplitude 
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and clear features.  From the figure, the ‗first arrival‘ pulse lasting from 40 to 50 

microseconds is easy to see.  However, the remaining features in the signal are less 

defined.  Figure 19 shows an example of the signal under the best circumstances, and it is 

still not easy to see distinct modes beyond the first arrival.   

The dominate type of wave produced in thin plates at the frequencies used in 

these experiments are Lamb waves (15), which are dispersive.  Dispersion characteristics 

and reflections from obstructions in the panel are possible features in the received signal 

(3).  Although it is difficult to know for certain what features are due to reflections and 

what are due to Lamb wave (or other type of wave) behavior, because piezoceramic 

sensors excite waves in plates in a radial direction from the sensor and without preference 

to mode (15).  The amplitude of reflections is more likely due to internal interference of 

the waves, and not a result of loss of connectivity in the joint.  Frequencies present in the 

signal other than the excitation frequency may be due to noise or dispersion.  To be true 

to the original method, the received signal needed to be filtered to the excitation 

frequency and the magnitude of the first arriving wave be recorded.    

LabView could have controlled the reception and processing of the signals.  

However, LabView was not installed on the computer controlling the RITEC RAM 5000 

at the time experiments were run.  Therefore, the software that came with the RITEC 

device was used to collect the data.  All of the required features needed for the test 

method were already programmed into the frequency sweep function in the RITEC 

software.  As it performs a frequency sweep, it filters out the portion of the signal not at 

the excitation frequency.  Then, it uses an analogue integrator circuit to report the 

magnitude of a received pulse.  Appendix 2 summarizes this process.  For most 
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experiments, the reported magnitude was an average of five consecutive readings at the 

same frequency.  Only a portion of the signal was collected and processed.  That portion 

was determined by the choice of integrator gate delay and width.  It is unclear when 

reflections start appearing in the signal, as evidenced in Figure 19.  As a result, some 

experiments were repeated with different gate widths.  The gate delay and several gate 

widths were determined from viewing the signal in the time domain. 

Informal testing was done before experiments were conducted on PnP1 to make 

sure signals were correctly received and a change in the output of the sweep could be 

observed with a change in bolt tension. 

 

4.3.2. Equation 

The voltage output from a piezoelectric sensor is proportional to the amplitude of 

the ultrasonic stress wave traveling in the panel (3).  Therefore, the energy of the wave 

for a given frequency is proportional to the square of the amplitude.  The data collected 

for the test method consists of RMS voltages collected for a range of frequencies.  The 

value E is the area under the curve derived from RMS voltage data.  Each RMS value 

was squared and normalized to a bandwidth.  The method used to integrate the discrete 

data points was the trapezoidal method, and the bandwidth was assumed to be 1MHz.  E 

was used as a performance metric to compare the energy received at different actuator 

and sensor pairs in the Results and Discussion section. 

𝐸 =  
𝐴2

bandwidth
𝑑𝑓

𝑓2

𝑓1
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Taking a ratio of E values for the same range of frequencies for a baseline and a 

test case give the parameter Er.  Note that the bandwidth drops out. 
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𝐸𝑟 =
𝐸𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  𝑐𝑎𝑠𝑒

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑐𝑎𝑠𝑒
=

 𝐴2𝑑𝑓
𝑓2

𝑓1 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  𝑐𝑎𝑠𝑒

 𝐴2𝑑𝑓
𝑓2

𝑓1 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑐𝑎𝑠𝑒

 22 

Er is the energy ratio used to quantify the energy transmitted across a joint as the 

stiffness is changed by loosening bolts.  The baseline stiffness is defined as having all 

bolts at a torque meeting design specification.  Er values less than one would show a drop 

in transmission energy across the joint.  Er is similar to the energy parameter Ej, but 

different in that Ej was not a ratio in reference to a baseline but a portion of the excitation 

frequency.   

The formulation of Er is dependent on consistency in the data.  Care was taken to 

ensure that all equipment settings (integrator rates, frequency steps, and so on) were the 

same for the variable case and the baseline case and that all equipment was given time to 

warm up to help reduce hardware error. 

LabView programs were written to extract the text data obtained with the Ritec 

RAM 5000 and analyze it with the above methods.  Appendix 3 contains documentation 

on those programs. 

 

4.4. Procedure 

Data was taken for panel-to-panel connections tightened to specification at 2.7 

Nm and for values below specification (1.8, 0.9, and 0 Nm).  The experiment was 

conducted in two phases.  The first phase was conducted with the satellite in a stationary 

setting, and the second phase was done in conjunction with vibration tests.  The bolts that 

were loosened and retightened are described below in Figure 20.  The first phase of the 
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experiment loosened and tightened all three bolts evenly.  The second phase of the 

experiment only adjusted the bottom bolt. 

 

 

Figure 20:  The bracket assembly contained 13 bolts.  Only the three main 

connecting bolts shown were adjusted during the experiment. 

 

A RITEC RAM 5000™ device was used to generate and receive signals at the 

piezoelectric actuators/sensors.  An actuator was placed on one side of the panel-to-panel 

connection and the sensor on the other side (Figure 19).  The input pulse was a 3-cycle 

sine wave burst at 125 Volts (peak-to-peak) repeated at a rate of ten bursts per second.  

The RITEC device swept through a frequency range from 250 kHz to 450 kHz in 1.0 kHz 

steps.  Frequencies lower than 250 kHz tended to damage the sensors.  The dispersion 

curves for aluminum predict higher order modes occurring at a frequency and thickness 

product above one (15).  The frequency distance product for the panel ‗skin‘ at 450 kHz 

was 1.06.  Higher order modes would further complicate the signal, so we chose our 

Top main connecting bolt 

Middle main connecting bolt 

Bottom main connecting bolt 
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upper frequency limit to be 450 kHz.  At each frequency, the RMS voltage was 

measured.  The reported amplitude (RMS voltage) at each frequency step was an average 

of five consecutive readings.  The gate settings discussed next determined the integration 

time. 

The gate delay and widths for the integrator circuit were determined after 

analyzing the output from a National Instruments high-speed digitizer (NI 5102).  The 

integrator gate delay was set at 30 µs.  This was after the excitation but before any 

significant signal arrived at the sensor.  The gate widths were selected so that the sensor 

captured the first incoming signals but rejected signals that arrived much later.  Later 

signals were unwanted because they may incorporate reflections and other noise from 

features of less interest.  The ideal gate width was not known exactly, so three different 

widths were investigated:  20µs, 50µs, and 80µs.  The width with the greatest sensitivity 

to bolt torque changes was assumed to incorporate signals from the most relevant region 

of interest. 

 

4.4.1. First phase of the experiment: craft held stationary 

All measurements were taken while the satellite was secured to a workbench.  The 

bolts connecting the bracket were originally tightened to 2.7 Nm.  A full set of data 

constituted nine frequency sweeps collected on all three sensor paths, each with all three 

gate settings.  Data was collected after each of the following torque settings were applied 

evenly to the three main connecting bolts: 2.7 Nm (baseline), 0 Nm (loose), 0.9 Nm, 1.8 

Nm, and 2.7 Nm.  ‗Loose‘ or zero Nm is defined as loosening the bolts to the point where 

gapping initiates between the bolt head and the structure.  
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4.4.2. Second phase of the experiment: craft perturbed by vibration 

This experiment was done in conjunction with vibration tests.  The experiment 

took place while the satellite was seated on the vibration table in-between periods of 

perturbation by shaking.  The goal of this experiment was to see if one loose bolt could 

be detected by the method and if the results of the test would be affected by vibration.   

All three integrator gate settings were taken for one sensor pair:  sensor 4T-1.  

After the baseline data was obtained, the satellite was shaken at 2.0 grms (spectrum 

unknown) as part of a vibration test.  A second baseline was taken for repeatability.  The 

bottom bolt (of the three described in the first experiment) was loosened to zero Nm, and 

data was taken for the damaged case.  After the satellite was vibrated again with a loose 

bolt, more data was taken for the post-vibration damaged case to see any further changes 

to the Er value.  The final data set was collected when the bolt was re-tightened.  The 

post-vibration baseline was used as a reference, although either baseline would have 

given similar results. 

 

4.5. Results and discussion 

This section presents the results of both phases of the experiment, followed by a 

brief summary of the results. 

 

4.5.1. Phase one: craft held stationary 

Table 5 shows the Er values at a 2.7 Nm torque setting for all three sensor paths 

and all three gate duration settings.  All of these values should be nearly 1.0 to show that 

the transmission energy has returned to levels comparable to baseline levels.  The largest 
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deviation is 12.3%.  This indicates that a drop in Er less than 12.3% is not necessarily a 

valid indication of a loose joint.  This 12.3% deviation also provides a crude measure of 

the test repeatability.  However, this value is determined based on the results of sensor 

pair 4T-1.   

Table 5:  Er values after loosening and returning the bolts to design specification.  

The sensor pairs are given as “actuator, sensor”.  The largest deviation from 

baseline is 0.877, at sensor pair 4T-1 at the 20 μs gate duration.  This shows a 

repeatability of 12.3% at 20 μs, although the repeatability at 50 μs appears to 

improve to 5.7%. 

Width of time window 

(μs) 

Sensor path: 

4T-1T 

Sensor path:  

1T-4T 

Sensor path:  

4T-1 

20 0.9442 0.9778 0.8767 

50 0.9948 0.9476 0.9430 

80 0.9226 0.8995 1.069 

 

Sensor pair 4T-1 appears to be sensitive to the gate width when the bolt is tightened to 

specification (Table 5) but less sensitive at other torque settings as shown in Table 6.  

Additionally, this data was used to establish the best gate width.  At the 50 µs gate width, 

the crude repeatability would be 5.7%, based on the maximum deviation from Er = 1.0. 

Table 6:  Variation in Er by gate widths for the 1.8 Nm preload test-case at sensor 

pair 4T-1. 

gate width (μs) Er 

20 0.7474 

50 0.8228 

80 0.8282 

 

The repeatability may also be influenced by the torque measurement.  The error 

listed on the torque wrench used in the experiment was +/- 6%.  The actual error 

associated between torque values may vary from what is listed on the tool due to 
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influence of error from operator, tool alignment, thread resistance, etc.  One source listed 

the compound error associated with a torque wrench at +/- 25%(50). 

Table 7 shows Er values for the 50 µs gate width.  The drop in Er could be used to 

discern a 0.9 Nm applied torque from baseline for all three sensor paths.  However, 

sensor path 4T-1 is the only path with an Er value able to show a drop in transmission 

greater than 12.3% for a preload of 1.8 Nm.  The Er values for gate width settings 20 and 

80 µs (not shown) on sensor pairs 4T-1T and 1T-4T could not discern the 0.9 Nm torque 

setting from the baseline.  In contrast, sensor pair 4T-1 was successful in showing a drop 

in Er for a 1.8 Nm preload for all gate widths as presented in Table 6. 

Table 7:  Er values for all three sensor paths for a 50 μs gate setting.  All three sensor 

paths show a drop in transmission energy from baseline for the loose and 0.9 Nm 

test cases.  Only sensor path 4T-1 shows a significant drop in energy from baseline 

for a 1.8 Nm preload indicating that the sensor path is more sensitive to changes 

joint stiffness. 

Test-case 4T-1T 1T-4T 4T-1 

baseline 1.000 1.000 1.000 

0 Nm 0.003512 0.004608 0.0007427 

0.9 Nm 0.7633 0.7481 0.5794 

1.8 Nm 0.9519 0.9287 0.8228 

2.7 Nm 0.9948 0.9476 0.9430 

 

Er is always relative to the baseline taken for a specific sensor path, and not useful 

when comparing the performance of different sensor paths.  Instead, E (Equation 21) is 

used to compare the performance of each sensor pair.  These values, listed in Table 8, 

show a marked increase in energy for sensor pair 4T-1.  The larger energy values 

translated to greater test sensitivity as shown in Table 7.  The exact reason for the 

difference in performance is unknown.  It is possible that some unseen obstruction is 
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responsible for the difference in signal strength, but a more likely reason is the Kapton 

tape used under receiving sensors 4T and 1T, which is expected to absorb some energy of 

the elastic wave. 

Table 8:  Variation in baseline E values detected at sensors by time window width 

and sensor path.  The pattern repeats in other test cases.  The longer gate width 

captures more of the return signal, but in all cases sensor 1 detects greater 

transmitted energy.  The likely reason 4T is the bonding method used to fix the 

sensor to the panel.  The units are (RMS Voltage)
2
. 

Time window 

width (μs) 

4T-1T 1T-4T 4T-1 

20 3.982 4.046 13.26 

50 106.4 108.2 170.4 

80 180.3 183.2 462.6 

 

 

4.5.2. Phase two:  craft perturbed by vibration 

The following table presents data collected in the second phase of the experiment.  

These results show that a loose bolt was easily detected with an Er that was 40% of 

baseline.  The test technique measured the Er equally well before and after vibration and 

showed a return to normal readings when the bolt was re-tightened to specification.  The 

pre-vibe baseline was within 4.3% of the post-vibe baseline. 

Table 9:  Sensor pair 4T-1 with a 50 μs gate duration.  The post-vibration baseline 

was used in the calculation of Er.   

Test condition Er 

baseline pre-vibration 1.043 

baseline post-vibration 1.000 

loose bottom bolt pre-vibration 0.3953 

loose bottom bolt post-vibration 0.3951 

bottom bolt re-tightened 0.9748 
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From the values in Table 9, vibrating the joint between measurements has little 

effect on the value of Er.  We expected some change when the craft was shaken due to 

slight shifting from components and panel interfaces along with the possibility of the tape 

disbond underneath the sensors.  However, no such change was detected.  The 

redundancy in the design may keep the bracket from shifting during vibration even with 

one loose bolt.  Loosening the bottom bolt had no detectible effect on the global stiffness 

of the craft according to technicians, yet the test method clearly shows a drop in 

transmission energy of about 60%.  Although this level of damage may have insignificant 

influence on the control or stiffness of the structure, it shows the utility of this method for 

detecting minute changes in a spacecraft structure compared to a known good baseline.  

This system has the potential to rapidly assess the joint integrity of a spacecraft or 

spacecraft components before launch. 

 

4.5.3. Summary of results 

This research was one of the first structural health monitoring experiments on a 

functional satellite.  The test technique was able to detect loose bolts in a panel-to-panel 

connection with high fidelity.  Global stiffness measurements typically conducted on 

satellites as part of prelaunch testing were not able to detect the loose bolts. 

The first experiment showed a high correlation between relative energy 

transmission across the panel-to-panel connection and bolt torque.  The most sensitive 

sensor pair was able to distinguish an applied bolt torque 0.9 Nm less than specification.  

The other, less sensitive, sensor pairs transmitted lower amplitude values.  The bonding 

method used for the receiving sensors appears to decrease the measured energy.  Higher 
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excitation amplitudes or bonding the receiving sensors directly to the structure with 

epoxy may correct this.  The first experiment also showed that the gate width setting is 

important in improving the sensitivity and the repeatability of the measurement. 

The second experiment showed that the test could easily indicate if only one bolt 

was loose.  Results also showed that vibrating the spacecraft between measurements does 

not significantly affect the readings between identical configurations. 

Both experiments showed that the test technique was able to detect the relative 

torque on a bolt with repeatability of 5.7% when using an appropriate integrator gate 

width for the region of interest.  
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CHAPTER 5:  EXPERIMENTS CONDUCTED ON SATELLITE PNP2 

 

The previous experiment established that detecting loose bolts by measuring Er, a 

parameter based on wave energy, was possible.  This experiment attempts to determine 

the limitations of the test by investigating the repeatability and the range a single sensor 

pair. 

 

5.1. Goals of the experiment 

The experiment was conducted on two satellite panels, joined together by three 

brackets.  The panels did not have any hardware or other functional components attached 

to them.  These panels were a slightly different design than the panels used in the 

experiments described in Chapter 4 (PnP 1).  The bracket connecting the panels was 

larger, but less complicated.  The following experiment was intended to evaluate the 

utility of the ultrasonic test method developed in the previous chapter by finding the 

repeatability of the test and the range where the test is valid.   

 

5.2. PnP 2 panels and location of sensors 

The image in Figure 21 shows the panels designated PnP 2.  These were very 

similar to the panels used on satellite PnP 1, but they are larger and do not have any 

equipment or components attached to them.   
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Figure 21:  Panels designated PnP2. 

 

The smaller panel is joined to the larger panel by three brackets as shown schematically 

in Figure 22.  

  

Figure 22:  Diagram of the PnP 2 satellite panels showing the bracket layout on the 

panels. 

 

Like the panels on satellite PnP 1, the PnP 2 panels do not touch.  Wave 

transmission occurs through the brackets.  Only Bracket 1 from Figure 22 is used in this 

experiment.  Informal investigations conducted on these panels before offical tests began 

confirmed that adusting bolts on brackets 2 and 3 did not change the output wavefrom 

received at sensor 7 from sensor 4 to any degree.  Energy values (the metric Er from PnP 
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1 experiments) also did not show any change from the baseline case when bolts on 

brackets 2 or 3 were adjusted. 

The PnP 2 bracket design is far more simple than the design used for PnP 1, 

however, it is larger.  Figure 23 picutres bracket 1.  Bracket 1 contains 18 bolts.  Nine 

bolts connected the bracket to the Panel 2 and nine bolts connected the bracket to Panel 1. 

 

Figure 23:  Bracket one as seen from the back side of the panel. 

 

These bolts were numbered in order from top to bottom, left to right as shown in Figure 

24. 

 

Figure 24:  Bolt numbering scheme for Bracket one.   
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The bolts located in the corner of the bracket could not be adjusted without removing 

another bolt.  For the sake of continuity in some of the tests, only the bolts on the outside 

edges of the bracket were adjusted.  These bolts are colored green in Figure 24.  These 

panels were used for other experiments by other researchers; so many sensors were 

actually attached to the panel.  The sensors pictured above were the only sensors used for 

this experiment.  They are labeled S4 and S7, as pictured in Figure 25.  The sensor shown 

on Panel 1, attached to leads is S4.   

 

 

Figure 25:  Location of the sensors.  In all tests, S4 was used as the transducer and 

S7 was used as the receiving sensor. 

 

The following table lists the horizontal distance from the sensor path to each bolt.  

this was useful for determining the range of the sensors.  Additional information on 

Bracket 1 and the layout of the sensors is in Appendix 6. 

 

 

 

s7 

s4 
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Table 10:  Horizontal distance from each bolt to the sensors.  The sensors were 

located just to the right of bolt numbers 10 and 12. 

Bolt numbers Horizontal 

distance from 

sensors 

10,12 0.03 

13,15 3.24 

7,9 3.31 

16,18 6.51 

4,6 6.68 

1,3 9.85 

 

5.3. Procedure 

The following tests targeted the repeatability and the range of the test in two 

phases.  Different torque wrenches were used for each phase.  The first phase used a 

torque wrench that released when the desired torque was reached.  The dial on this torque 

wrench is difficult to read and it has a high degree of error associated with it making the 

torque measurement inaccurate.  However, it was only adjusted once, so repeated 

applications of torque to the bolts were very precise.  Accuracy was more important in 

the second phase, so a digital toque wrench with a smaller error was used.  However, it 

did not release when the desired torque was reached, so some precision was lost.   

 

5.3.1. Repeatability tests 

The torque wrench (by Craftsman) that was used for the first set of experiments 

reports an error associated with the tool to be +/- 6%.  All other equipment is as described 

in Chapter 3.  The markings on the torque wrench are difficult to read, so multiple 
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adjustments could result in higher error.  This torque wrench was adjusted to 3.2 Nm only 

once, at the beginning of the experiment, in an effort to reduce error. 

All 18 bolts were preloaded to 3.2 N-m.  Tests were then taken to determine 

appropriate equipment settings.  The settings used for this phase of the experiment were a 

gate delay of 60μs, a 30μs gate width, and a frequency range of 250 to 350 kHz.  The 

frequency range was chosen after looking at output corresponding to 150 kHz to 500 

kHz.  The largest response was near 300 kHz.  After examining time domain signals 

taken at 250 and 350 kHz, the gate delay and width were chosen.   

After an initial measurement was taken at the above settings, Bolt 1 was loosened.  

As in previous chapters, a loose bolt is defined as a bolt loosened past the friction point 

so that it is able to rotate freely in the bolt-hole.  A measurement was taken while the bolt 

was loose.  The bolt was retightened to 3.2 N-m.  This process was repeated three times 

before moving onto the next bolt.  The bolts that were tested in this manner are numbers 

1,3,4,6,7,9,10,12,13,15,16, and 18.  From Figure 23 and Figure 24, bolts 2, 5, 8, 11, 14, 

and 15 were located on the innermost portion of the joint.  These bolts could not be 

adjusted without removing other bolts.  For the sake of continuity, testing of these bolts 

was omitted. 

 

5.3.2. Range tests 

For the range tests, the longer frequency range and a shorter time window were 

used.  The frequency range was 250-500 kHz, the time window started after a delay 50 μs 

and lasted for 30 μs.   
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For this test, a DTW 265i digital torque wrench was used to adjust the bolts.  The 

reported error associated with the tool was clockwise +/- 2.5%, counterclockwise +/- 

3.5%.  The resolution was 0.01 N-m.  The minimum setting, however, was only 1.6 N-m.  

Bolt preload values between this setting and loose were not tested.   

Before beginning tests on individual bolts, all 18 bolts were adjusted to 3.2 Nm.  

Data was collected, then all 18 bolts were adjusted to 2.9, 2.7, 2.3, 1.8, and 1.6 Nm.  Data 

was collected at each step.  This was done to test the response of the joint as a whole. 

Three trials at each of the following values of preload were tested:  3.2, 2.9, 2,7, 

2.3, 1.8, 1.6, and 0 Nm.  These values were tested at each bolt, one at a time.  Data was 

collected at each step.  

After a brief inspection of the results, the frequency range was changed from 250 

-500 kHz to 150-500 kHz, and the time window was returned to a 60 μs delay with a 30 

μs duration.   The test was repeated with one trial per bolt adjustment.   

 

5.4. Results and discussion 

This section reports on the data collected for both phases of the experiment.  

Some of the data was collected with different equipment settings.  All settings are 

reported with the accompanying description of the data to avoid confusion. 

 

5.4.1. Short-term repeatability 

How repeatable this joint assessment metric is will be determined by how well the 

metric returns to a baseline value after a variable is changed and then returned to its 

original state.  The variable tested, in this case, is bolt preload.  The metric to be 
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examined for repeatability is Er.  However, Er is in reference to a baseline.  Arbitrarily, 

the first data point could be used as a baseline for all subsequent measurements.  

However, this approach makes the data analysis more confusing.  Instead, the data 

analysis for this phase of the experiment uses energy values (E) first described in 

Equation 21.  These values have units of volt
2
.   

The following table lists values of E obtained at each bolt for three to four trials.  

In this table, the percent difference is used to show the similarity between energy values 

collected at each bolt.   

Table 11:  Energy values (E) for each bolt number.  The units for these values are 

volt
2
.  This data was collected with the following equipment settings:  frequency 

range of 250-350 kHz and a time window with a 60 μs delay and 30 μs duration. 

Trial bolt 1 bolt 3 bolt 4 bolt 6 bolt 7 bolt 9 

1 0.01277 0.0128 0.01278 0.01277 0.01268 0.01251 

2 0.01272 0.01282 0.01278 0.01263 0.01252 0.01199 

3 0.01275 0.01281 0.01272 0.01247 0.01255 0.01236 

4       

Median value 0.01275 0.01281 0.01278 0.01263 0.01255 0.01236 

% Difference 0.42% 0.20% 0.42% 2.36% 1.26% 4.25% 

Table 11:  Energy values (E) for each bolt number (continued). 

 

Trial bolt 10 bolt 12 bolt 13 bolt 15 bolt 16 bolt 18 

1 0.01232 0.01236 0.01125 0.01071 0.01066 0.01081 

2 0.01214 0.01181 0.01087 0.01055 0.01072 0.01101 

3 0.01218 0.01153 0.01089 0.01052 0.01084 0.01097 

4      0.01083 

Median value 0.01218 0.01181 0.01089 0.01055 0.01072 0.01097 

% Difference 1.45% 7.04% 3.47% 1.88% 1.67% 1.78% 
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The data set was small, so median values were used instead of averages.  The 

percent difference reported in Table 11 was computed by taking the difference of the 

minimum value from the maximum value and dividing it by the median.  The largest 

percent difference was 7.04%.  It is no surprise that it occurred at a bolt directly under the 

sensors.  Likewise, the smallest percent difference, 0.20%, occurs at a bolt located 

farthest from the sensor.  Proximity to the sensors should influence the sensitivity of the 

test.  This is shown again in the second phase of the experiment. 

A demonstration of repeatability for Bolt 13 is shown in Figure 26.  The 

repeatability for Bolt 13, as given by the % difference is 3.5%.  This plot demonstrates 

repeatability visually, by showing the output of the receiving sensor for each ‗tight‘ case 

and each loose case taken between tight cases.  The system returned to pervious 

conditions three times within a difference of 3.5%. 

 

Figure 26:  Repeatability for Bolt 13.  The above plot shows three trials at 3.2 Nm 

preload and the in between loose cases.  This data was collected with the following 

equipment settings:  frequency range of 250-350 kHz and a time window with a 60 

μs delay and 30 μs duration. 
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5.4.2. Long-term repeatability 

In all cases presented in Table 11, all of the bolts in the bracket are preloaded to 

3.2 Nm.  Therefore, they should be able to demonstrate some repeatability.  Figure 27 

shows the baseline energy values from Table 11 in the order they were taken.  The labels 

on the abscissa are a number followed by a letter.  The number indicates the bolt number 

and the letter is the trial number.  Trial 1 is a, 2 is b, 3 is c, and so on.   

 

Figure 27:  Values from Table 11 plotted in order taken.  The change in energy from 

the start of the test to the end is a 15% reduction. This data was collected with the 

following equipment settings:  frequency range of 250-350 kHz and a time window 

with a 60 μs delay and 30 μs duration. 

 

There is a distinct drop in E as the test progressed.  Overall, there was a 15% loss 

in energy.  It appears that there is a cumulative effect.  As bolts are adjusted, they are 

damaged.  As a result of this damage, or error in the way the bolt is adjusted (with the 

torque wrench or operator of the torque wrench), the bolts may not seat themselves in 

exactly the same location as before.  This can lead to small changes in the joint that could 
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result in an increase or decrease in transmitted wave energy.  Decreases are more likely 

because damage to the threads on the bolt would cause a loss in preload.   

Also, the plot in Figure 27 shows that the largest losses or gains in E values 

occurred at bolts closest to the sensor (bolts 7, 10, 12, and13).  After examining the 

values in Table 11, this is expected. 

This shows that the test is sensitive to small amounts of damage, but is therefore 

not repeatable in the long term.  However, the number of times the bolts in this bracket 

were adjusted is well outside what would be considered normal use for a satellite panel.  

Normal use might consist of adjusting the bolts one to three times in the course of 

assembly and testing for flight.  Therefore, being sensitive to small amounts of damage 

might be advantageous.   

More to the point, this data shows a trend that suggests that it is under the 

influence of another variable.  That variable is likely induced damage from multiple 

trials, but could also just be a function of the location of the bolts.  In any case, the values 

in Table 11 cannot all be averaged and used as a baseline for all tests conducted on that 

bracket.  This data shows that for the second phase of the experiment, the baseline chosen 

for each bolt adjustment should be a value obtained recently, and for that bolt number. 

 

5.4.3. Range 

Er values were calculated with the median of the three ‗loose‘ trials divided by the 

last baseline case tested.  For example, when all testing for Bolt 4 was completed, the bolt 

was returned to a 3.2 Nm load.  Data was taken before any adjustments to Bolt 6 were 
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made.  This value was used as a baseline for all measurements taken with Bolt 6 as a 

variable case.   

An Er value of 1.0 would indicate that the variable case is no different from 

baseline.  Figure 28 shows the difference of Er values and 1 for test cases where a single 

bolt was loose.   

 

Figure 28:  Change in energy (as shown by the difference in Er from 1) by a single 

loose bolt.  This data was collected with the following equipment settings:  frequency 

range of 250-500 kHz and a time window with a 50 μs delay and 30 μs duration. 

 

The largest change occurred at bolts close to the sensor.  Bolt 13 showed a 

dramatic increase in energy transmission when the bolt was loosened.  This is unexpected 

and contrary to the idea that loss in pre-load results in a loss in contact area which results 

in a loss in transmitted energy.  The increase is 30% over baseline, is not insignificant 

enough to discount as an anomaly.  The increase could be due to a change in stress 

distribution near the sensor as a result of loss in preload in a nearby bolt.  The internal 

roughness and contours of the bracket would certainly play a part in that case.  This could 
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also be due to wave scattering and subsequent constructive interference inside the 

bracket.   The increase in energy could be used as a valid indicator of joint integrity, but it 

is unknown what determines how a loose bolt will present itself in the data set.  There 

may be multiple factors, and therefore if a value above or below baseline is possible, a in-

between is possible also.  This would make the test unreliable. 

However, the results appear to be dependent on equipment settings.  Figure 29 

shows improved results with different equipment settings.  The longer frequency range, 

the shifted time window, or a combination of both is responsible for the improved results.   

 

Figure 29:  Energy change with loose bolts with the following equipment settings:  

frequency range of 150-500 kHz and a time window with a 60 μs delay and 30 μs 

duration. 

 

From Figure 29, the largest response to a loose bolt occurred at Bolt 9, followed 

by Bolt 12, and then Bolt 13.  The smallest response was for Bolt 4, Bolt 3, and Bolt 1.  
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The latter two are not shown as their response was negligible.  The last value in the plot 

is the final value recorded after Bolt 18 was returned to a 3.2 Nm preload.   

Although Bolts 6 to 18 all showed some drop in energy from baseline when 

loosened, a small change in energy may not be enough to signify a loose bolt.  When Bolt 

18 was re-tightened, the energy value went down slightly which is not expected.  This 

suggests that any change from baseline less than 5% may not be valid.  Previous tests 

suggested that the repeatability of the test might be a large as 7%, so this makes sense.   

To the left, Bolts 7 and 9 showed a response greater than 5%.  From Table 10, 

they are 3.31 cm away, horizontally, from the sensors.  To the right, Bolts 13 and 16 

showed a response greater than 5 %, but Bolt 15 did not.  Bolt 15 is located with Bolt 13 

at 3.2 cm away from the sensors.  Conservatively, this suggests that the sensor have only 

a maximum of a +/- 3 cm range in the horizontal direction.   

The next set of data is intended to show the range of the test in terms of variable 

preload.  Unfortunately, this data was collected with the same settings as the data 

presented in Figure 28.  This data is less reliable, but does show that a single bolt 

tightened to a value less than specification (3.2 Nm), but more than loose is detectable. 

Table 12:  Energy values for the bracket when all 18 bolts were adjusted to a 

variable preload.  The equipment settings for this data were:  frequency range of 

250-500 kHz and a time window with a 50 μs delay and 30 μs duration. 

Average bolt 

preload (Nm) 

Energy (volt
2
) Er Er -1 

0.6 7.53E-03 0.6847 -0.3153 

1.8 8.75E-03 0.7963 -0.2037 

2.3 1.12E-02 1.0159 0.0159 

3.2 1.10E-02 1.0 0 
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The sensors were able to detect a 1.4 Nm loss in preload when all bolts were 

adjusted equally.  Higher values were not detectable by this method at these equipment 

settings.  From these results, values of preload higher than 1.8 Nm were not expected to 

be detectable as less than 3.2 Nm for a single loose bolt. 

Table 13 shows the change in Er from 1 (Er-1) for each bolt as it was loosened to a 

variable torque, shown in the left column.   Bolt 12, highlighted in red, gave the most 

consistent response and showed a change in energy from baseline greater than 5% at 2.7 

Nm. 

Table 13:  Change in Er from 1 (Er-1) for each bolt as it was loosened to a variable 

torque.   The equipment settings for this data were:  frequency range of 250-500 kHz 

and a time window with a 50 μs delay and 30 μs duration. 

 bolt 4 bolt 6 bolt 7 bolt 9 bolt 10 bolt 12 bolt 13 bolt 15 

loose 0.05 -0.04 0.04 -0.08 -0.17 -0.38 0.35 -0.06 

1.6 0.01 -0.02 0.03 0.09 0.11 -0.20 0.02 -0.14 

1.8 0.01 -0.01 0.03 0.00 0.06 -0.16 0.00 -0.10 

2.3 0.01 0.00 0.00 0.02 -0.02 -0.09 0.01 -0.08 

2.7 0.00 0.00 -0.01 -0.03 -0.03 -0.02 0.01 -0.07 

2.9 0.01 -0.01 -0.02 -0.05 0.00 0.02 0.01 -0.06 

 

When the bolts were adjusted one at a time, the largest loss in preload was 0.05 Nm (at 

2.7 Nm).  This was better than expected, even with less than desirable equipment settings. 

 

5.4.4. Summary of results 

How repeatable this joint assessment metric is will be determined by how well the 

metric returns to a baseline value after a variable is changed and then returned to its 

original state.  For each bolt, the largest percent difference was 7.04% for three trials.  

This shows good repeatability for a small number of trials.  There is a distinct drop in E 
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as the test progressed.  Overall, there was a 15% loss in energy.  It appears that there is a 

cumulative effect.  As bolts are adjusted, they are damaged.  This shows that the test is 

sensitive to small amounts of damage, but is therefore not repeatable in the long term.  As 

large numbers of adjustments are outside of normal use for a satellite, being sensitive to 

small amounts of damage might be advantageous.   

This data shows a trend that suggests that it is under the influence of another 

variable.  These values could not be averaged.  The remaining tests were computed with 

the baseline obtained most recently 

The repeatability tests showed evidence of the sensitivity of the sensors being 

dependent on proximity to the bolt being tested.  The largest percent difference reported 

in Table 11 was for a bolt closest to the sensors.  Likewise, the smallest percent 

difference was for a bolt located farthest from the sensor.   

With a frequency range of 150-500 kHz, all loose bolts except numbers 1,3, and 4 

were detected.  Based on a drop in transmission greater than 5%, a conservative estimate 

for the maximum range for the sensors is +/- 3.0 cm.  This range is valid for this joint 

geometry and specific placement of sensors.  

An adjustment to Bolt 12 of 0.5 Nm less than baseline (3.2 Nm), which is directly 

under the sensors, was detectable by this assessment method.  This was better than 

expected, based on a test where all 18 bolts were adjusted evenly.  The equipment 

settings were less than optimal, suggesting that these results could be improved. 
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CHAPTER 6:  CONCLUDING REMARKS 

 

6.1. Proof of concept experiment allowed the project to move forward. 

The proof of concept experiment was successful in the respect that it was able to 

show a correlation between joint rigidity and energy transmission for sample joint cases 

with a range of measured rigidity values.  However, it was limited to the energy 

transmission due to harmonic excitation.  A methodology to experimentally determine the 

rigidity of a joint was developed and associated errors were discussed.  From this test 

design, the scope and complexity of the larger problem became apparent.  Despite a very 

complicated signal, transmitted energy across the joint correlated with measured joint 

rigidity very well.  The lowest value of Spearman‘s rank correlation coefficient for any of 

the sensor pairs was 0.9.  This shows very good correlation between transmitted energy 

and joint rigidity.  The relationship appears to be non-linear.  The lessons learned from 

this test were used in the next set of tests on real satellites.  

 

6.2. These Responsive Space Initiative Project goals were met by experiments 

done on PnP1 and PnP2. 

The experiment done on satellite PnP1 was one of the first structural health 

monitoring experiments performed on a functional satellite.  This shows the utility of the 

test under realistic conditions.  The test technique was able to detect loose bolts in a 

panel-to-panel connection with high fidelity, so the primary goal of designing a structural 

quality assessment was met. 
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For all of the loading conditions, the drop in energy transmitted across the joint 

correlated with a drop in measured joint rigidity.  A loss in transmission from a tight joint 

to a loose one is expected, but the presented results show the test method is capable of 

detecting an intermediate range of energy loss.  This means that the test method presented 

can detect how rigid a joint is.  Although different sensor pairings result in different 

values of the energy parameter Er, a single sensor pair could be used to show changes in 

joint rigidity.   

Results also showed that vibrating the spacecraft between measurements does not 

significantly affect the readings between identical configurations.  This is indicative of 

the targeted nature of the test.  Both PnP 1 experiments showed that the test technique 

was able to detect the relative torque on a bolt with repeatability of 5.7% when using an 

appropriate integrator gate width for the region of interest.  The first phase of the 

experiment also showed that the gate width setting is important in improving the 

sensitivity and the repeatability of the measurement.  Other factors that influenced the 

sensitivity of the test to indicate loose bolts included the method used to bond the sensors 

to the panel and different sensor paths.   

The Experiment conducted on the PnP2 panels showed that the test could detect a 

loss of preload as small as 0.05 Nm if that bolt was in the direct path of the transmitted 

wave.  The horizontal range for a single sensor pair was determined to be +/- 3 cm.  

Results also show that the assessment method is repeatable within 7% for a few bolt 

adjustments, but is not repeatable for larger numbers of adjustments.   

PnP 2 tests suggest that the quality assessment metric could be improved to have a 

higher fidelity with appropriate equipment settings.  Although repeatability was a 
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consideration and not a target of the experiments performed on PnP1, the lower 

repeatability values found in the PnP1 experiments are also indicative that improvement 

could be made.   

 

6.3. Future work 

Results of both PnP 1 and PnP 2 experiments indicate that, for a given structure, 

there is an optimum frequency range and time window.  Optimizing testing parameters 

would also go a long way to improving the repeatability and sensitivity of the test.  It 

would be useful to investigate the affect of test parameters on several different joint 

geometries.  An investigation into other factors that might influence the test result, like 

temperature and humidity changes, would also be useful.  

The repeatability studied in this research only considered tests conducted on one 

specimen.  In order to show that this assessment method is repeatable for assembly, the 

repeatability should be tested on several joint specimens with new bolts.  As a factor in 

the repeatability for newly assembled parts, an investigation into the correlation with 

roughness due to common machining techniques used in satellite production and wave 

energy transmission should be performed.  

An array of sensors placed near the joint would improve repeatability by 

providing a more complete picture of the joint by providing information at different 

angles and different locations across the joint.  As transducers, the sensors could be 

excited in different patterns of succession.   As sensors, the array could also further 

localize the source of damage.  Larger brackets like the ones on PnP2 would benefit from 

a larger coverage area. 
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APPENDIX 1:  Mathematica code used to produce Lamb wave 

dispersion curves 
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APPENDIX 2:  Material data for PiezoSystems PSI-5A4E (51) 

Piezo Systems' Designation 
  

PSI-5A4E PSI-5H4E 

Industry Designations 
  

Navy type II; 

Industry Type 

5A 

Navy type VI; 

Industry Type 5H 

Composition 
  

Lead Zirconate 

Titanate 

Lead Zirconate 

Titanate 

Relative Dielectric 

Constant (@ 1 KHz) 
K

T
3 

 
1800 3800 

 

Piezoelectric "d" coefficients relate the Strain Produced / Electric Field Applied or 

the Short Circuit Charge Density Produced / Stress Applied

d33 

meter/Volt or 

Coulomb/Newton 

390 x 10
-12

 650 x 10
-12

 

d31 

meter/Volt or 

Coulomb/Newton 

-190 x 10
-12

 -320 x 10
-12

 

 

Piezoelectric "g" coefficients relate the Open Circuit Electric Field Produced / 

Stress Applied or the Strain Produced / Charge Density Applied

g33 
Volt-meter/Newton 

or meter
2
/Coulomb 

24.0 x 10
-3

 19.0 x 10
-3

 

g31 
Volt-meter/Newton 

or meter
2
/Coulomb 

-11.6 x 10
-3

 -9.5 x 10
-3
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Electrical properties 

Coupling Coefficient k33 
 

0.72 0.75 

 
k31 

 
0.35 0.44 

Polarizing Field Ep Volt/meter > 2 x 10
6
 > 1.5 x 10

6
 

Initial Depolarizing Field Ec Volt/meter ~ 5 x 10
5
 ~ 3 x 10

5
 

Coercive Field Ec Volt/meter ~ 1.2 x 10
6
 ~ 8 x 10

5
 

 

Mechanical properties 

Density δ Kg/meter
3
 7800 7800 

Mechanical Q 
  

80 32 

Elastic Modulus Y
E

3 Newton/meter
2
 5.2 x 10

10
 5.0 x 10

10
 

 
Y

E
1 Newton/meter

2
 6.6 x 10

10
 6.2 x 10

10
 

 

Thermal properties 

Thermal Expansion 

Coefficient  
meter/meter °C ~ 4 x 10

-6
 ~ 3 x 10

-6
 

Curie Temperature 
 

°C 350 230 
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APPENDIX 3:  Documentation for LabView programs 

 

Proof of Concept Data Collection Programs: 

Run Auto_Frequency_Sweep V4.vi 

 

This program was used as the master routine.  It creates folders and names for data.  It 

runs a specified number of trials for each input voltage (1.0, 2.0, and 3.0 volts) and calls 

on Auto_Frequency_Sweep V4.vi for each trial. 

By A. Montoya October, 2008 

 

Auto_Frequency_Sweep V4.vi 

 

The primary purpose of this program is to loop through frequency values, and run FGen 

user defined modified.vi for each frequency value and save the resulting array to a text 

file.  This program will also output graphic displays of the output and calculate the 

maximum amplitude for the data set. 

By A. Montoya October, 2008 
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Fgen user defined modified.vi 

 

Function generator program from National Instruments.  It creates a sine wave train for a 

specified number of seconds and records the output at the digitizer with NI-Scope 

Express. 

Modified by A. Montoya July 2008 

Proof of Concept Data Analysis Programs 

Report avg area data on config number folder.vi 

 

This program gets a folder path that contains sensor path folders.  It calls Sensor Folder 

to avg area.vi and reports the results for each folder in a string. 

By A. Montoya January 2009 

 

Sensor Folder to avg area.vi 

 

This program takes the path to a Sensor folder and loops to find each file.  It calls on get 

average area data from folder.vi to get the average Ej value for each input voltage.  Then 

all (in this case 9) files are averaged.  It also computes the standard deviation for the 

folder.    
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By A. Montoya January 2009 

get average area data from folder.vi 

 

This program takes a folder path that contains files at the same input voltage. It parses out 

the file names and correctly passes the input voltage based on the name to ASCII Sweep 

Reader V2.vi. The resulting array of normalized Ej values is averaged and reported as 

―average area‖.  This program contains options to report the raw data without averaging 

and without dividing by the input voltage. 

By A. Montoya January 2009 

 

ASCII Sweep Reader V2.vi 

 

This program pulls data out of a text file, and reports the "Area Between 200 kHz and 

300 kHz" by calling on RMS energy method between limits.vi. Other functions of this 

program were intended to examine features of the data by hand. 

By A. Montoya January 2009 
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RMS energy method between limits.vi 

 

This program takes a data array that contains amplitudes and input frequencies.  Divides 

the amplitude by the input voltage, squares the result, divides by the bandwidth (in this 

case 1.0), and then integrates the resulting array with the specified rule.   

By A. Montoya January 2009 

 

PnP 1 and PnP 2 LabView Data Analysis Programs 

Get energy values for folder into string.vi 

 

This program was used as the master routine.  It took a folder containing data files and 

called RMSoverBandwith Area.vi for each file.  The resulting array was formatted into a 

string that matched the file name with the ―E‖ values associated with it. 

By A. Montoya August, 2009 
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RMSoverBandwith Area.vi 

 

This program took a data file and parsed the text into a string array by calling Ritec Data 

to String Array.vi.  The string arrays were then converted to data type ‗double‘.  The 

amplitudes for each frequency were squared, divided by the bandwidth (in this case 1), 

and integrated with the chosen integration method.  This program was also able to find E 

values for specific ranges in the data set.The output variable ―Area‖ is E. 

By A. Montoya August, 2009 

 

Ritec Data to String Array.vi 

 

This program parses the text file into string arrays.   

By A. Montoya August, 2009 
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APPENDIX 4:  Derivation of joint rigidity equation 

 

The motion in the vertical plane is depicted below in Figure 30.  For brevity, only 

one beam is shown.  The initial plate position (plate position 1) is vertical in reference to 

the floor.  The beam is level with the floor.  Initially, the beam strikes the plate and 

reflects onto the screen in the same vertical position.  This location is recorded on the 

screen.   

 

Figure 30:  View of the vertical plane.  The bend in the vertical plate moves the 

reflected beam from a horizontal position on the screen to some higher point.  The 

change in position is denoted Δy.   

 

When the plate is loaded, it will bend (plate position 2).  The beam will reflect off 

the normal at that location, according to the laws of reflection (52), at an angle equal to 

the incident angle φ.  As shown in Figure 30, this angle is also equal to the angle the 

tangent makes with the vertical.   Knowing Δy, D, and d, φ can be found.  Looking at 

Figure 30, a right triangle is formed by Δy and the distance to the point of interest.  That 

relationship is summarized in Equation 23. 
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tan 2𝜑 =
∆𝑦

𝑑 + 𝐷
 

23 

The values Δy and D are known.  All that remains is to extract d from Δx.  The 

horizontal motion of the plate is shown in Figure 31 and Figure 32. 

 

Figure 31:  Horizontal plane, top-down view.  As the plate changes position, the 

incident angle does not change.  However, the change in position shifts the reflected 

beam by some distance Δx. 

 

 

Figure 32:  Close in view of the horizontal plane.  Here, the geometry is more 

obvious. The outgoing beams are parallel, so the perpendicular distance between 

them is Δx, all along the length of the beams.  Choosing a distance Δx that intersects 

the origin of the original outgoing beam, a right triangle is created that contains the 

distance r.  The distance r is also contained in the right triangle that contains r and 

the distance between the plates d. 

 

From Figure 32, two right triangles are formed.  The first one contains r, d, and 

the angle of incidence 30°.  The beam is oriented at 60° from the horizontal (as viewed in 
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figure A.3.2).  It strikes the plate at an incident angle of 30°with respect to the normal.  

The resulting 30°/60° right triangle leads to the following relationship between r and d: 

 3

2
=

𝑑

𝑟
 24 

The second triangle contains Δx, r, and twice the incident angle.  The resulting 

60°/30° right triangle leads to the following relationship between Δx and r: 

 3

2
=

∆𝑥

𝑟
 25 

Combining Equations 24 and 25, leads to ∆𝑥 = 𝑑.  The incident angle of 30° was 

specifically chosen to maximize the relationship between Δx and d.  Substituting Δx for d 

in Equation 23, the final relationship between Δx, Δy, and φ is given by Equation 17. 
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APPENDIX 5:  Summary of Ritec documentation for the integrator 

circuit 

 

The RITEC RAM 5000™ uses a series of analogue circuits to filter and process 

high frequency, high voltage signals (53).  For each burst sent to the actuating sensor, a 

response is read into the RITEC RAM 5000 from the receiving sensor.  The response is 

filtered to the burst frequency and then passed through two circuits that split the signal 

into two orthogonal vector components (labeled D1 and D2 in the equations below).  A 

gate is specified by the user by a delay time and a length (or width).  The gate is used as 

the limits for the following integrations:  

𝐼1 = 𝑟 𝐷1 𝑡 𝑑𝑡
𝑡2

𝑡1

=  𝐴(𝑡) cos 𝜑
𝑡2

𝑡1

𝑑𝑡 26 

𝐼2 = 𝑟 𝐷2 𝑡 𝑑𝑡
𝑡2

𝑡1

=  𝐴(𝑡) sin 𝜑
𝑡2

𝑡1

𝑑𝑡 27 

The variable t is time, φ is the phase angle, A is the amplitude, r is the integrator 

rate, and the outputs are I1 and I2.  The amplitude is then found by combining the 

components I1 and I2. 

𝐴 =  𝐼1
2 + 𝐼2

2
 28 

The integration rate, r, is user specified.  This value is usually set high enough to get a 

decent response, but low enough not to overload the circuit.  It is important to note that 

the resulting amplitude is scaled by r.  In all experiments done for this thesis, care was 

taken to ensure that the same integrator rate was used for both baseline and variable 

cases.  This way, the integrator rate canceled out of the ratio Er.   
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For experiments described in Chapters 3 and 4 of this thesis, the reported 

amplitude at each frequency value is an average of at least three trials.  Five trials was 

tried first, but no appreciable difference in signals between 3 and 5 averages could be 

found after the equipment was allowed to warm up. 
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APPENDIX 6:  Panel and bracket dimensions for PnP 2 

 

Figure 33:  PnP 2 Bracket geometry 

 

 

Figure 34:  Sensors placed near bracket 1.  Red dots indicate sensors. 

 

Panel 2 

Panel 1 
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