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Abstract

This dissertation presents a compilation of five stand-alone manuscripts (Chapters 2

through 5 and Appendix A). Chapters 2 through 5 present hydrogeological analysis

approaches, while Appendix A is utilized within the dissertation introduction as an

example of a non-physically based modeling approach, albeit demonstrated on a

non-hydrogeologically based application. Chapter 2 presents an inverse approach to

decompose pumping influences from water-level fluctuations observed at a monitoring

location. Chapter 3 presents an inferencing approach to identify effective aquifer

properties at the interwell scale that can be applied to highly transient datasets.

Chapter 4 introduces the use of a Markov-chain model of spatial correlation to an

automated geostatistical inverse framework, demonstrating the approach on a 2-

D two-stratigraphic-unit synthetic aquifer. Chapter 5 utilizes the inverse framework
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introduced in Chapter 4 to develop a stochastic analysis approach to identify the most

plausible geostatistical model given the available data. The dissertation introduction

reconciles these hydrogeological engineering approaches within the context of the

current hydrogeological perspective, discussing where these approaches fit within the

often conflicting goals of providing operational decision support based on modeling

and advancing the science of hydrogeology beyond its current limitations.
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Chapter 1

Dissertation Introduction

The science of hydrogeology appears to be at a crux. Equipped with mathematical

models that fail to adequately represent physical processes at a scale of hydrogeolog-

ical interest, and measurement techniques that can at best provide extremely sparse

samplings of state properties, the best science that hydrogeology can offer at present

is the calibration of a theoretically inadequate model that will provide a behaviorally

adequate simulation of observations when given details of a particular site and nature

of system forcings. Therefore, the hydrogeologist often assumes the role of a calibra-

tionist, unclear or unconcerned about the relationship between the adjustable model

parameters and the system properties they are intended to represent. This lack of

hydrogeological knowledge and information hinders the application of hydrogeologi-

cal science in the development and use of technological methods needed to provide

decisions for pressing water resources problems. The necessity to develop techniques

to provide modeling support to urgent water resources problems has left the hydro-

geologist with a collection of disconnected technological approaches, many lacking

a strong basis in hydrogeological knowledge (Klemes , 1988). As a result, we have

multiple perspectives on hydrogeology, providing partial, and sometimes conflicting,

explanations of hydrogeological phenomena.
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Chapter 1. Dissertation Introduction

A comprehensive solution to the current state of affairs in hydrogeological sci-

ence is not currently evident, while the need for informed and defensible decisions

based on models is becoming increasingly important for water resource management.

Therefore, results of hydrogeological investigations utilizing current approaches must

be tempered with the recognition of the limited quantity and quality of information

that can be expected, given the existing theoretical and data collection limitations.

Furthermore, researchers must be cognizant of these limitations and forthright in the

dissemination of this information. In this chapter, I will discuss the current state of

hydrogeology, reconciling the approaches developed in Chapters 2 through 5 within

the context a current hydrogeological perspective.

1.1 Hydrogeological models

The current theoretical, computational, and measurement limitations in hydroge-

ology have led to the development of a multitude of modeling approaches. These

approaches can be classified into methods that employ (1) physically-based models

and (2) black-box models. The current use of a physically-based model in a hydroge-

ological investigation is typically associated with the inference of system properties

that cannot be directly measured. Black-box models provide an efficient framework

to calibrate simulations to observations, lacking a physical representation of the sys-

tem (Ross , 2004). As the approaches discussed in Chapters 2 through 5, belong

to the former category, this type of approach will be discussed here. Appendix A

presents an example of the latter approach with a non-hydrogeological application

(i.e. structural bond strength of masonry) using a fuzzy-rule base.

The basis of the current physically-based, hydrogeological model is the Navier-

Stokes equation, derived to describe physical processes at the pore scale. Current,

widely-used hydrogeological models present an attempt to upscale (average) these

2



Chapter 1. Dissertation Introduction

small-scale processes to hydrogeologically relevant scales. To address this upscaling in

a direct manner would require the specification of the pore-scale boundary conditions,

an impractical task for even the smallest hydrogeological investigation (Beven, 2002).

This has led to the representation of fluid as a continuum, employing Darcy’s equation

in an attempt to integrate pore-scale processes over a representative elementary

volume (REV) (Bear , 1972).

This framework is popular as it provides a compact, elegant description of fluid

flow through porous media. However, it has been criticized as it neglects large-scale

processes resulting from fluid flow in heterogeneous media (Klemes , 1988; Grayson

et al., 1992; Beven, 1993; Kirchner , 2006; McDonnell et al., 2007). The physics of

these large-scale processes cannot be captured in the current models as they are

dependent on nonlinear and emergent properties, such as threshold behavior and

competitive feedbacks, that manifest themselves only at a sufficiently large scale that

incorporates the collective behavior of multiple pores and heterogeneities (McDonnell

et al., 2007). As a result, the calibration process of hydrogeological models attempt to

fit observations made at large scales by estimation of parameters designed to describe

pore-scale processes, creating ambiguous relationships between model parameters

and the system properties they are intended to represent.

Physically-based models can be classified into analytical versus numerical mod-

els. An analytical model implies that a closed-form solution of the groundwater

flow equation exists to define the model, while a numerical model implies that a nu-

merical approximation scheme (e.g. finite difference method, finite element method)

is utilized to solve the groundwater flow equation, allowing analytically intractable

boundary conditions and distributed-parameter specifications (parameterizations) to

be considered. Chapters 2 and 3 present examples of the use of an analytical model,

while Chapters 4 and 5 present examples utilizing a numerical modeling approach.

3



Chapter 1. Dissertation Introduction

1.1.1 Analytical models

Theis (1935) presented the general equation for transient flow in a porous media,

based on a solution for heat conduction, for a fully-penetrating well in a confined,

homogeneous aquifer of infinite extent. Chapter 2 utilizes the Theis solution to

decompose pumping influences at monitoring locations utilizing hydraulic influence-

response data. The approach is demonstrated to be useful in identifying cross-hole

connections within an aquifer in the presence of spatially and temporally variable

pumping influences. Parameter estimates provide cross-hole hydraulic character-

istics, however, they cannot be considered to directly represent aquifer properties

within the context of the Theis solution.

Cooper and Jacob (1946) present an approximation to the Theis solution valid at

late times when pressure gradients have become steady, although pressures remain

transient. This approximate solution has been found to be useful in the inference of

aquifer properties (Cooper-Jacob method) as early-time portions of the drawdown

curve, which are affected by pumping rate variance, well storage, well skin, and inter-

well heterogeneities, are omitted from consideration. One of the limitations of this

approach is that it requires an adequate drawdown record after quasi-steady state

conditions have developed.

Chapter 3 presents an approach to infer aquifer properties from hydraulic influence-

response data irregardless of whether quasi-steady state has been reached by account-

ing for the early-time behavior of Theis solution parameters. The parameter values

can be considered estimates of effective aquifer properties at the inter-well scale sub-

ject to the assumptions implicit in the use of the Theis solution. As discussed above,

the use of the governing groundwater flow equation implies a continuum approach

based on the description of small-scale processes with modeling assumptions that are

generally not valid in applications. As a result, the significance of the parameters

4
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must be cast within the context of the Theis solution. Within this context, Chap-

ter 3 demonstrates that the parameter estimates provide information on the effective

transmissivity at the inter-well scale and indications of inter-well connectivity.

1.1.2 Numerical models

The two most common numerical schemes applied to solve the groundwater flow

equation are the methods of finite differences and finite elements. The method of

finite differences approximates the groundwater flow equation using an analog where

the approximation error can be reduced by refining the spatial and temporal dis-

cretization (Bear , 1972). The method of finite differences, while easily implemented,

is limited to orthogonally structured grids, limiting its ability to represent com-

plicated boundary conditions and parameterizations. Alternatively, the method of

finite elements solves the groundwater flow equation using concepts from the calcu-

lus of variations, associating a functional with the groundwater flow equation (Bear ,

1972). The method of finite elements allow the use of unstructured grids, enabling

the representation of complicated geometries in the boundary conditions and param-

eterizations.

Chapters 4 and 5 utilize a control volume finite element (CVFE) approach (Zyvoloski ,

2007). However, as the grids are orthogonally structured in both papers (2-D in

Chapter 4; 3-D in Chapter 5), the CVFE approximation degenerates to an equiva-

lent finite difference approximation.

1.2 Measurement scale and sampling sparsity

Grayson et al. (1992) stated that given the limitations in measurement techniques,

hydrologists are currently unable to appropriately design, operate, and verify their
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models. Unfortunately, approaching two decades later, many of these limitations still

exist. Many of the current practical limitations in hydrogeological modeling stem

from an inability to adequately and properly characterize hydrogeological phenom-

ena. The lack of our ability to properly measure system properties at a hydroge-

ologically relevant scale is the reason model calibration is performed, resorting to

the estimation of properties based on data that can be measured (e.g. water-level

elevations). Ideally, system properties at hydrogeologically relevant scales would be

measured directly from the field for input into a model, thereby allowing truly incisive

testing of the model assumptions free of the inherent model uncertainty associated

with parameter estimation. However, the relatively short duration of hydrogeological

tests versus the inherently slow speed of hydrogeologic processes suggest that this

may be an intrinsic limitation to hydrogeological investigations. Therefore, the in-

ference of system properties by parameter estimation will be an integral component

to hydrogeological investigations for the foreseeable future.

In the data-limited field of hydrogeology, methods that can extract the avail-

able hydrogeologic information from existing data are imperative. The approaches

presented in Chapters 2 and 3 demonstrate the ability to identify and decompose

pumping influences at monitoring locations and infer aquifer properties from existing

pumping and water-level records. The use of these existing datasets can alleviate the

burden and/or expense of collecting data solely for hydrogeological analysis. Existing

datasets collected from water-supply networks are often neglected as the water-level

fluctuations can be highly transient due to the spatial and temporal variations in

pumping influences. Chapters 2 and 3 present approaches that allow the utilization

of such datasets by considering water-level fluctuations as the cumulative effect of the

existing temporally and spatially transient pressure-influence sources (e.g. a cycling

pumping well network).

In order to deal with the sparseness of data in hydrogeology, geostatistical meth-
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ods are often employed to provide a probabilistic assessment of spatial variabil-

ity of aquifer properties. Geostatistical methods are generally formulated using a

covariance-based set of normal equations (Deutsch and Journel , 1992). The defini-

tion of the variogram of an aquifer property provides perhaps the earliest means to

consider that a pattern may exist in the heterogeneity of an aquifer (de Marsily et al.,

2005). A stratigraphic representation of spatial variability can be accommodated in

geostatistics using indicator functions. This approach has utility in cases where a

stratigraphic layering of soil and/or rock types is assumed or observed.

The pilot-point approach (de Marsily et al., 1984) has been perhaps the most

widely applied inverse geostatistical approach to numerical groundwater flow mod-

els. This approach designates the value of an aquifer property (typically hydraulic

conductivity) at specified locations throughout the model as adjustable parameters,

referred to as pilot points. The spatial variation of the field is determined by kriging

the pilot points and any observed values that may exist. By systematically adjusting

these pilot points, the plausibility of various parameterizations can be evaluated by

comparing flow simulations to observed hydraulic data. This approach is flexible as

the number and location of pilot points can be adjusted, however, the dimensionality

of the problem can hinder the inversion as each pilot point introduces an additional

dimension to the parameter space. Regularization methods have been introduced

to increase the mathematical tractability of over-parameterized inverse problems, a

typical result of the pilot point approach (Doherty , 2003). While this approach may

enable the inversion to reduce residuals, it does not address the issue that the avail-

able information may not be able to constrain the degrees of freedom introduced by

the pilot points. This approach is also restricted in an automated inverse framework

as the nature of spatial variations must be designated a priori by a variogram type.

Markov-chain-based geostatistics present an alternative formulation of the geo-

statistical normal equations using auto- and cross-transition probabilities of strati-
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graphic units (Carle and Fogg , 1996). A transition-probability framework emphasizes

the sequential juxtapositioning of stratigraphic units, whereas the variogram empha-

sizes the statistical tendency of a system property value to deviate with distance.

Although the incorporation of indicator functions has made covariance-based geo-

statistics amenable to modeling discrete zones, the fact that the underlying basis

of this approach is designed for continuous variations of properties limits its abil-

ity to represent stratigraphic representation. For example, a Markov-chain-based

geostatistical approach has the following advantages over covariance-based indicator

geostatistics: complicated facies juxtapositional tendencies (e.g. asymmetric spatial

correlations), such as those produced by depositional processes, are easily repre-

sented; the representation of the transition probability function by a sum of expo-

nentials allows significant variability in spatial correlations, eliminating the need to

define the spatial-correlation functional form a priori ; model parameters are geomet-

rically/geologically interpretable; and stratigraphic sequences observed in well-bore

logs lend themselves to interpretation by transition probabilities. Markov-chain-

based geostatistics are limited to cases where exhaustively defined, mutually exclu-

sive stratigraphic units can be identified (Carle and Fogg , 1996).

Chapters 4 and 5 present an alternative to the pilot point approach, designating

geostatistical parameters from a Markov-chain model of spatial variability as ad-

justable parameters. Chapter 4 presents an inverse framework for identifying aquifer

structure and stratigraphic unit conductivities using pressure and flow data as cali-

bration targets and well-bore logs for geostatistical conditioning data. The approach

utilizes a single stochastic realization to represent the spatial variability for each

combination of Markov-chain model parameters. The approach is demonstrated on

a 2-D synthetic aquifer composed of two stratigraphic units with uniform hydraulic

conductivities where the vertical and lateral Markov-chain model parameters and

stratigraphic unit hydraulic conductivities are set as adjustable parameters. The use

of this approach is contingent on the existence of spatially and temporally distributed
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water-level elevation observations and geologic conditioning data, such as well-bore

logs. Issues with over-parameterization are not expected to be as prevalent with this

approach as with the pilot point approach as the adjustable structural parameters

are limited to the Markov-chain model parameters. Of course, it is also expected

that this approach will not be as flexible as the pilot point approach, however, it is

theoretically possible to extend the flexibility of the approach by introducing pilot

points in the conditioning data and adjustable parameter set. The availability of

conditioning data to constrain the inversion will have a significant impact on the

approach.

Stochastic simulation can be used to produce an infinite set of geostatistically

equally-probable realizations of spatial variability. The hydrogeological character-

istics and uncertainty associated with a given geostatistical model can be explored

by performing flow simulations on these realizations. This provides a framework for

performing a stochastic analysis of the plausibility of various geostatistical models

based on hydraulic and geologic data. Chapter 5 extends the approach presented in

Chapter 4 to fully utilize stochastic simulation within the inverse framework. The

approach characterizes the hydraulic response of a geostatistical model, associated

with a combination of Markov-chain model parameters, using convergent statistical

averages of pressure and flow predictions from a set of realizations. In this case,

the stochastic inversion searches for the most hydraulically plausible Markov-chain

model constrained by observed geology. This approach recognizes that the available

information in typical hydrogeological investigations is not sufficient to constrain a

geostatistical inversion to a single stratigraphy, and that a more realistic approach

is to constrain the set of solutions to characteristics (statistical, or otherwise) de-

scribing the stratigraphy. The cost of this enhanced recognition of hydrogeological

uncertainty is the computational effort required to sufficiently characterize each geo-

statistical model.
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1.3 Hydrogeological inverse modeling

The method of inverse modeling can be described as an effort to reduce residuals by

adjusting model parameters. When inverting physically-based models, the process

becomes more than mere calibration, as the models are derived under the expecta-

tion that the parameters represent system properties. Therefore, inverse modeling

can provide the ability to evaluate the conceptual basis of models, including theoret-

ical underpinning, boundary conditions, parameterizations, etc. As the capacity to

develop complex models has increased with advances in computational capabilities,

so has the necessity to recognize certain pitfalls in the application and interpretation

of results in inverse modeling. This section will discuss the inverse approaches pre-

sented in Chapters 2 through 5 in the context of the available inverse approaches,

indicating the potential pitfalls.

Prior to the development of inverse methods, parameter estimation was carried

out by trial and error, where parameter values are substituted into a model until

an adequate fit between observations and simulations is achieved. Charles Theis

was perhaps the first hydrogeologist to develop a tool (i.e. the Theis-type curve

approach) for parameter estimation with a graphical approach utilizing the Theis

solution (Theis , 1935) described in Jacob (1940). The concept of inverse modeling

to obtain parameter estimates emerged with the introduction of direct inverse meth-

ods, where a formal boundary value problem is derived with the model parameters

as spatially dependent variables, as classified by Neuman (1973). Direct inverse

methods require head variations and derivatives at all locations for input into the

groundwater flow equation, thereby creating a partial differential equation where

model parameters are spatially dependent variables. Given the typically sparse col-

lection of head observations at a site, unsampled locations within the model domain

must be interpolated. Errors associated with the interpolated head values, as well as

the measurement error of the head observations, introduces significant uncertainty
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in the parameter estimation (Carrera et al., 2005).

A more recent inverse approach is the use of indirect inverse methods defined by

Neuman (1973) as methods that approach the inverse problem with the concept of

minimizing residuals between available observations and their corresponding model

predictions by adjusting model parameters. In this way, knowledge of the pressure

response of the aquifer at locations without observations is not assumed. While indi-

rect methods do provide a more realistic approach considering the uncertainty due to

the sparsity of information, these methods often require a substantial computational

effort to deal with nonlinearities and nonconvexities (Yeh, 1986). As the approaches

presented in Chapters 2 through 5, as well as Appendix A, all utilize indirect inverse

methods, the rest of this section will focus on these methods.

The application of indirect inverse methods to hydrogeological models presents

certain challenges as these models can be composed of large systems of equations, con-

sideration of transients is often essential, knowledge of heterogeneities and boundary

conditions is typically limited, important parameters (other than hydraulic conduc-

tivity for example) are often neglected in order to simplify the problem, hydrogeologic

properties are scale dependent, and model parameters often have low sensitivity to

state variables (e.g. pressures) (Carrera et al., 2005). These difficulties often result

in poor matches between observations and simulations.

When a model is found to be unable to provide a sufficient fit to observations,

it has become common practice to add more parameters to provide the model with

more degrees of freedom. At some point, as the degrees of freedom increases, it

becomes inevitable that a mathematical model will be produced with the ability to

behaviorally simulate the observations. This does not necessarily indicate that the

model is providing a realistic representation of the system, but merely demonstrates

that a mathematical model with enough degrees of freedom can be fitted to a set of

observations (Beven, 2006; Grayson et al., 1992). In other words, the sophistication
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of measurement techniques and development of hydrogeological theory has not kept

pace with our ability to produce complicated, distributed-parameter models (Beven,

2000).

While over-parameterized models often demonstrate the ability to simulate the

behavior of a given set of observations, their inability to provide information on

the physical properties of a system is evident by the number of parameter sets that

provide a behavioral fitting. The non-uniqueness, or equifinality (Beven, 1993), of

solutions is often considered an algorithmic challenge caused by the ill-posedness of

the calibration that must be overcome in order to obtain the “correct” solution, and

thereby identify the “true” properties of the system. It should be realized that in-

stead, equifinality is an intrinsic characteristic of over-parameterization as the num-

ber of degrees of freedom cannot be constrained by current calibration data sets.

Additional causes of equifinality are the inappropriate theoretical underpinnings of

current models (Kirchner , 2006) and the lack of ability to sufficiently define the

system within the model (e.g. boundary conditions) (Klemes , 1988).

Hydrogeological investigations that use models that cannot fail lack a framework

for testing hypotheses about a system, instead providing a black-box representation

of a system that is limited to simulation and possibly prediction of behavior given

similar system forcings. If this is the goal of the investigation, it may be more

efficient to simply use a model that is designed as a black box, such as an artificial

neural network (Ross , 2004), where the number of nodes and layers, which have no

pretense to represent system properties, can be increased to provide a behavioral

model. While this black box approach, whether intentional or not, may be a valid

approach to solve a particular problem at hand, it will not provide insights into the

intrinsic properties or underlying physics of the system. Appendix A provides an

example of this type of approach with the application of modeling the bond strength

of masonry.

12



Chapter 1. Dissertation Introduction

When acquiring knowledge about the processes within a system is a research

objective, the use of models that can fail, and therefore provide information on the

validity of model assumptions, must be considered. In general, the less parameterized

a model is, the less immune it is to being proven wrong (Kirchner , 2006). Therefore,

minimally parametrized models can provide the means to reject hypotheses based

on the available observations, even if the parameterization reduces the model to

an extreme simplification of the system. In this way, model complexity can be

added stepwise, subject to the validity of assumptions that are verified by comparing

observations to simulations from models of reduced complexity.

The approaches presented in subsequent chapters can be evaluated with respect

to their ability to deal with the equifinality of hydrogeological models. Chapter 2 and

3 utilize a minimally parameterized model in the form of an analytical solution to

the groundwater flow equation. The use of an analytical model provides a simple and

efficient characterization of the system, although it requires the use of assumptions

that are not valid in typical applications, as discussed in Section 1.1. The use of this

model provides the means to incisively test the conceptual basis of the model and the

information content of the data as issues of equifinality are minimized. However, this

approach cannot consider details of the heterogeneity of the system, and is therefore

limited to exploring the general characteristics of the system.

Chapters 4 and 5 provide examples of inverse modeling approaches designed to

identify details of the system heterogeneity. In Chapter 4, the strategy of the ap-

proach is to identify an optimal hydrostratigraphy, while in Chapter 5, the goal is to

identify the most plausible statistical description of the hydrostratigraphy.

Chapter 4 presents an approach to identify an optimal (in a least squares sense)

hydrostratigraphy by modifying geostatistical model parameters and considering a

single stochastic realization. This approach is perhaps slightly less prone to issues

of equifinality than the pilot point approach as geostatistical model parameters are
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being modified, as opposed to a spatially distributed collection of aquifer property

values. The approach presented in Chapter 5 provides a more explicit consideration

of equifinality, attempting to identify the most plausible geostatistical model by char-

acterizing each geostatistical model with hydraulically convergent sets of stochastic

realizations. The fact that the possible hydrostratigraphies are grouped into sta-

tistical characterizations defined by geostatistical model parameters constrains the

inversion, reducing issues of equifinality while acknowledging the potential limita-

tions in the amount of information available from observations.
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Chapter 2

Identification and Analysis of

Long-Term Water-Level

Fluctuations Due to Spatially and

Temporally Variable Water-Supply

Pumping1

Abstract

Identification of the pumping influences at monitoring wells caused by spatially and

temporally variable water-supply pumping can be a challenging, yet important hy-

drogeological task. The information that can be obtained can be critical for con-

ceptualisation of the hydrogeological conditions, identification of aquifer properties,

1Submitted for publication in Ground Water: Harp, D.R. and V.V. Vesselinov (2009),

Identification and Analysis of Long-Term Water-Level Fluctuations Due to Spatially and

Temporally Variable Water-Supply Pumping, Manuscript submitted for publication.
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and estimation of the zone of influence of the individual pumping wells. However,

the pumping influences are often intermittent and small in magnitude with variable

production rates from multiple pumping wells. Further complications can be caused

by water level fluctuations caused by other hydrogeologic mechanisms (e.g. baromet-

ric pressure, recharge, poroelastic effects, etc.). While these difficulties may support

an inclination to abandon the existing dataset and conduct a traditional cross-hole

pumping test, that option can be challenging and expensive to coordinate and ex-

ecute. This chapter presents a method that utilizes a simple analytical modeling

approach for analysis of a long-term water-level record to identify pumping wells

influencing the water-level fluctuations and identification of the effective cross-hole

aquifer properties associated with pumping and observation wells. Thus the anal-

ysis provides an efficient and cost-effective alternative to designed and coordinated

cross-hole pumping tests. We demonstrate this method on a dataset from the Los

Alamos National Laboratory site. Our analysis also provides (1) an evaluation of

the information content of the transient water-level data, (2) indications of potential

large-scale structures of the aquifer heterogeneity, and (3) guidance for the devel-

opment of more complicated models requiring detailed specification of the aquifer

heterogeneity.

2.1 Introduction

Identification of the pumping influences at a monitoring well due to pumping at

water-supply wells and respective estimation of the aquifer properties are typically

performed by analysis of a series of coordinated cross-hole pumping tests. However,

the planning and execution of these tests can be expensive and challenging. For

example, it is often difficult to exclude, or take into account, all the potential hydro-

geological factors influencing the pressure transients during the test (e.g. Neuman
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and Witherspoon (1972); Walthall and Ingram (1984); Dawson and Istok (1991);

Rasmussen and Crawford (1997); McLin (2005, 2006a,b)). Also in many cases, it is

logistically infeasible to cease water-supply pumping in the entire aquifer to conduct

a traditional pumping test (which includes pre- and post-pumping recovery periods)

to eliminate influences from nearby water-supply wells. As advocated by Yeh and

Lee (2007), existing datasets from monitoring well networks recorded during long-

term pumping of water-supply wells provide an alternative to datasets generated

by traditional pumping test. Such datasets are frequently collected in monitoring-

well networks established near contamination sites and municipal water-supply wells

(Barnett et al., 2003; Gross , 2007; Mason et al., 2005; Hix , 2007; Koch and Schmeer ,

2009). However, the pumping influences are often intermittent and small in magni-

tude with water level fluctuations caused by other hydrogeologic mechanisms (for ex-

ample, recharge transients), causing the identification of the pumping influences due

to a complex spatially and temporally variable water-supply pumping regime to be

difficult. The analysis may require the use of complicated computational models and

involve large data sets that are challenging to process. Nevertheless, when compared

to traditional pumping tests, this approach provides some important advantages.

First, the collected data are representative of the aquifer properties during exist-

ing water-supply conditions, while the aquifer properties obtained by pumping-test

interpretations may need to be upscaled to be applied for simulation of the flow con-

ditions under water-supply pumping. Second, the aquifer is typically stressed more

intensively with pressure influences affecting larger areas, providing better identifi-

cation of pumping influences with small magnitudes. Third, measurement errors in

the collected water levels and pumping records have the potential to be reduced due

to the large number of observations and by repeated pumping cycles often present

in the long-term data record; as a result, the uncertainties in the estimated aquifer

parameters are also expected to be reduced. Last, interpretation of transient water-

level data at multiple monitoring wells influenced by transient pumping at multiple
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water-supply wells may provide information about the large-scale aquifer structures;

furthermore, the analyses can be extended to provide a tomographic characterization

of aquifer properties (e.g. Neuman (1987); Vesselinov et al. (2001); Straface et al.

(2007)). The identification of the pumping influences at the monitoring wells can

also be critical for conceptualization of the hydrogeological conditions at the site, and

provide indications of the extent of the zone of influence of the individual pumping

wells.

The decomposition of pressure influences requires a model with the ability to

characterize the hydraulic response at a monitoring well due to transient pumping

at the water-supply wells. Adequate characterization of the water-level transients

requires calibration of the model in the form of parameter estimation. If the model

is complicated with a large number of adjustable parameters, the calibration can

become computationally demanding. As a result, the optimal parameter estimates

may be difficult to identify and the parameter estimation may not have a unique

solution (i.e. the inverse problem can become ill-posed) (Carrera et al., 2005). To

avoid this, we attempt to use the simplest possible model that can be satisfactorily

applied. We choose to use analytical methods here for simulating pumping influ-

ences at the observation wells. The use of analytical methods makes the analysis

consistent with pumping-test interpretations where analytical type-curve methods

are commonly applied (Freeze and Cherry , 1979). The adjustable model parame-

ters of analytical models represent the hydrogeologic properties of the aquifer. As

a result, the use of an analytical solution for pressure influence decomposition can

provide additional hydrogeologic insights.

Theis (1935) introduced an analytical solution of the general equation for flow of

a Newtonian fluid in porous media for non-steady conditions (Theis solution), such as

those encountered as a result of pumping an aquifer. The Theis solution is valid for

simplified hydrogeologic scenarios assuming a constant pumping rate, horizontal flow,
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transmissivity and storativity homogeneity, uniform thickness, and infinite lateral

extents of the aquifer. The Theis type-curve method (Theis method), developed

by Theis and described by Jacob (1940), was developed from this work as a means

to graphically infer hydrogeologic properties from pumping test data. Cooper and

Jacob (1946) simplified this approach using an approximation to the Theis solution

valid at late pumping times when a quasi-steady state regime is established (Jacob’s

method), eliminating the use of a Theis type curve. At quasi-steady state (also

referred to as steady-shape), pressure gradients are spatially and temporally steady,

while pressures remain transient as second order terms become insignificant.

Wu et al. (2005) investigated the behavior of effective property estimates (Theis

solution hydrogeologic parameters), concluding that effective parameters will be time

dependent at early times. Based on numerical experiments using Gaussian transmis-

sivity and storativity fields, Wu et al. (2005) demonstrate that the effective transmis-

sivity will be time dependent at early times, with estimates from different locations

converging (decreasing from larger values) towards a similar value at late times.

They also demonstrate a time dependency for effective storativity, with values con-

verging (increasing at some locations, decreasing at others) towards distinct values

relatively quickly. This late-time convergent behavior corresponds with research by

Meier et al. (1998) and Sanchez-Vila et al. (1999), who investigated the meaning of

hydrogeologic parameter estimates obtained from Jacob’s method numerically and

analytically, respectively. Straface et al. (2007) evaluated hydrogeologic parameter

inference methods using the Theis solution on a dataset from Montalto Uffugo Alto,

Italy. Based on their results, they question the validity of hydrogeologic property

inference based on the Theis solution. However, they do state that the Theis solution

parameter estimates can be used as first estimates of hydrogeological parameters for

a tomographic analysis.

We employ the Theis solution as our groundwater model in order to maintain a
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simple and efficient pressure-source identification approach. In doing so, we recog-

nize that the parameter estimates will be affected by the early-time pre-stabilization

period, and cannot be considered as accurate estimates of effective hydrogeologic

properties. Instead, these estimates can be considered as effective cross-hole pa-

rameters that characterize the hydraulic response at a monitoring location due to

pumping a well, analogous to parameters that would be obtained from standard

cross-hole pumping tests often used to characterize the hydrogeology of an aquifer.

This chapter presents an approach to (1) fingerprint transient water-level varia-

tions to the pumping regime of individual water-supply wells and (2) estimate hy-

drogeologic parameters using a computationally efficient analytical approach. Inter-

pretation of the quantitative results from this approach can provide (1) indications

of the large-scale structure of the aquifer heterogeneity, (2) an evaluation of the in-

formation content in the calibration data, and (3) guidance for the development of

more complicated and less computationally efficient models possessing the ability to

explicitly consider heterogeneity. If the development of a simple analytical model

is successful, the calibrated model can be used to predict future water-levels under

different pumping scenarios. The calibrated model can be applied to address mea-

surement uncertainties; for example, substantial deviations between model predicted

and observed water-levels may indicate technical problems in the data collection.

As computational resources have become increasingly more powerful, the com-

plexity and computational demand of models has proportionally increased. The con-

cept of model parsimony, as the principle of Occam’s razor proposes, is often lost or

neglected in the quest to develop elaborate models that capture increasingly refined

details of complexity. While complex models are required in certain applications,

in other cases, this approach can mask fundamental insights that become obvious

when the data are analyzed with models of minimal complexity. An example of this

is the estimation of effective porosity as an indicator of transport connectivity as
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described by Trinchero et al. (2008), where a full or partial specification of porosity

heterogeneity would embed the transport connectivity information in the distributed

parameter. The research presented here demonstrates an analysis of pumping and

water-elevation records using a relatively simple model that provides fundamental

insights into the aquifer pressure response and is a first step toward development

of more complicated aquifer models that aim to characterize the groundwater flow

complexity and aquifer heterogeneity utilizing the same data.

We demonstrate the proposed method using some of the pressure and water-

supply pumping records from the regional aquifer at the Los Alamos National Lab-

oratory (LANL) site located in north-central New Mexico, U.S.A.

2.2 Methodology

The two major goals of the analysis are to (1) fingerprint transient water-level vari-

ations to the transients in the pumping regime of individual water-supply wells and

(2) estimate effective cross-hole aquifer properties. To do this, we need a model that

can simulate potential pumping influences at the monitoring wells. The simplest

model that can be applied is the Theis solution, defined as

ŝ(t) =
Q

4πT
W (u) =

Q

4πT
W

(
r2S

4Tt

)
(2.1)

where ŝ(t) is the predicted drawdown at time t since the pumping commenced, Q is

the pumping rate, T is the transmissivity, W (u) is the negative exponential integral

(
∫∞
u
e−y/y dy) referred to as the well function, u is a dimensionless variable, r is

radial distance from the pumping well, and S is the storativity. The assumption of

homogeneity implicit in the Theis solution, discussed above, is apparent by the con-

stant hydrogeologic parameters, T and S, in equation (2.1). It is important to note
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that more complicated analytical solutions accounting for partial well penetration,

leakage effects, or three-dimensional flow could have been applied in our analyses as

well, if the Theis solution had failed to reproduce the observed water-level data.

In order to include multiple pumping wells and variable rate pumping periods in

the Theis solution, the principle of superposition is invoked as

ŝ(t) =
N∑
i=1

Mi∑
j=1

Qi,j −Qi,j−1

4πTi
W

(
r2
i Si

4Ti(t− tQi,j)

)
(2.2)

where N is the number of pumping wells (sources), Mi is the number of pumping

periods (i.e. the number of pumping rate changes) for pumping well i, Qi,j is the

pumping rate of the ith well during the jth pumping period, and tQi,j is the time

when the pumping rate changed at the ith well to the jth pumping period. The

drawdown calculated by equation (2.2) represents the cumulative influence of the

N pumping wells at a monitoring well. Note that Ti and Si are effective cross-hole

properties of the aquifer that characterize the influence of the ith pumping well at

the observation well. It is important to note that if traditional pumping tests were

conducted at each of the pumping wells separately, and the drawdowns are monitored

and analyzed at the observation well, the interpretation of the cross-hole test data

will produce estimates that are theoretically equivalent to Ti and Si in equation (2.2).

As the calibration targets in the model inversions presented here are water eleva-

tions as opposed to drawdowns, we define the predicted water elevation ĥ(t) at time

t as

ĥ(t) = ĥo − ŝ(t) (2.3)

where ĥo = ĥ(0) and is defined as the initial predicted water elevation at the obser-
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vation well at the time the pumping begins.

Model calibration is performed using a Levenberg-Marquardt approach (Leven-

berg , 1944; Marquardt , 1963) where the objective function is defined as

Φ(θ) =
n∑
i=1

[h(ti)− ĥ(ti)]
2 (2.4)

where θ contains the cross-hole estimates of T and S associated with each pumping

well and ĥo associated with the monitoring location, and n is the number of head

observations, h(ti), included as calibration targets where i is an observation time

index.

The simulation of the drawdowns is performed using the WELLS code (written

by V.V. Vesselinov, 1992), which implements equation (2.2). The calibration is

performed using PEST (Doherty , 2004).

2.3 Site Data

Due to concerns related to the migration of potential LANL-derived contaminants in

the subsurface, a complex monitoring network is established in the regional aquifer

beneath LANL. The network includes 92 regional monitoring wells with a total of 336

monitoring screens (Allen and Koch, 2008). At each screen, water-level fluctuations

are automatically monitored using pressure transducers. In addition, water samples

are collected for geochemical analysis. The aquifer beneath LANL is an important

source of water for LANL and neighboring municipalities. There are 7 water-supply

wells in close vicinity to the study area; 18 more water-supply wells are located

nearby. The ultimate goal is to incorporate all these data in the development and

calibration of the regional aquifer model. Here we analyze only a subset of the data.
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The pressure and water-supply pumping records considered here are collected from 3

monitoring wells (R-11, R-15 and R-28) and 7 water-supply wells (PM-1, PM-2, PM-

3, PM-4, PM-5, O-1, and O-4) located within the LANL site. Figure 2.1 displays

a map of the spatial location of the wells and Table 2.1 tabulates the distances

between monitoring and water-supply well pairs. Figure 2.2 presents the pressure

and production records for the monitoring wells and water-supply wells, respectively.

The regional aquifer beneath the LANL site is a complex stratified hydrogeo-

logic structure which includes unconfined zones (under phreatic conditions near the

regional water table) and confined zones (the deeper zones) (Vesselinov , 2004a,b).

The three monitoring wells considered in this analysis are screened near the top

of the aquifer with an average screen length of 11 meters. The water-supply wells

partially penetrate the regional aquifer with screens that begin near the top of the

aquifer, but penetrate deeper with an average screen length of 464 meters. Neverthe-

less, field tests demonstrate that most of the groundwater supply is produced from

a relatively narrow section of the regional aquifer that is about 200-300 m below the

regional water table (Los Alamos National Laboratory , 2008a). Implicit in the use

of the Theis solution is that the groundwater flow is confined and two-dimensional.

We assume that this is a justifiable assumption here given the small magnitude of

observed drawdowns (less than 1 m at the monitoring wells and less than 20 m at

the water-supply wells), the relatively long distances between supply and monitoring

wells (more than 1 km; Table 2.1) compared to the effective aquifer thickness (about

200-300 m). Future analyses will address the three-dimensionality of the groundwater

flow and complex hydrostratigraphy of this aquifer.

The water-level observation data considered here span approximately three years,

commencing on or shortly after the date of installation of pressure transducers (May

4, 2005 for R-11; December 23, 2004 for R-15; January 7, 2005 for R-28), includ-

ing records up to November 29, 2007. An additional year of data, terminating on
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November 18, 2008, is utilized here for subsequent analysis to evaluate forward model

predictions and parameter uniqueness and convergence. The barometric pressure

fluctuations are removed using constant coefficient methods with 100% barometric

efficiency (Los Alamos National Laboratory , 2008b) for all monitoring wells. Al-

though the pressure transducers collect observations every 15 minutes, this dataset

is reduced to single daily observations by using the earliest recorded measurement

for each day. Some daily observations have been excluded due to equipment failure.

The barometric-corrected water levels fluctuate over the initial three year period ap-

proximately 0.8 meters for R-11 (940 daily records), 1.7 meters for R-15 (1072 daily

records), and 1.0 meters for R-28 (1045 daily records). Seasonal trends are apparent

in the water level data showing a general increase in the rate of decline during the

summer months and recovery during the winter. Similarities are evident for water-

level observations at R-11 and R-28 providing an initial indication that there is a

region of similar hydrogeological properties around these two monitoring wells.

Considered pumping records for all pumping wells begin on October 8, 2004 and

terminate on November 29, 2007. This record is extended to November 18, 2008

for a subsequent analysis, as discussed above for the water-level observations. The

pumping record precedes the water-level calibration data to account for water-level

transients due to pumping variations before the water-level data collection com-

menced. The number of pumping-rate changes for each well are: PM-1 – 1809;

PM-2 – 1720; PM-3 – 1141; PM-4 – 164; PM-5 – 1615; O-1 – 39; and O-4 – 2035.

The dominant water producers are PM-2, PM-5, and O-4, with significant seasonal

pumping for PM-3 and intermittent pumping for PM-4 (refer to Figure 2.2).

Drawing correlations between pressure and pumping transients from a visual

comparison of the plots in Figure 2.2 is difficult, except perhaps an apparent influence

of PM-4 pumping on monitoring well R-15. Therefore it is essential to fingerprint

the water level transients to the pumping records in order to determine the hydraulic
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PM-1 PM-2 PM-3 PM-4 PM-5 O-1 O-4
R-11 2399.8 2902.7 803.6 1929.9 2439.5 3007.2 1367.7
R-15 3787.7 2434.7 2252.2 1081.0 986.0 4460.3 1566.7
R-28 2666.7 2522.4 1154.3 1506.3 2103.8 3384.8 1500.2

Table 2.1: Distances between pumping and monitoring well pairs in meters, where
the row headings indicate the monitoring wells and column headings indicate the
pumping wells.

connections within the aquifer.

In the applied computational framework, forward model run times for predicting

water elevations at R-11, R-15, and R-28 for approximately four years (from October

8, 2004 to November 18, 2008) are each approximately 9 seconds on a 3.0 GHz Intel

processor. Inversions initiated with uniform initial parameter values require approxi-

mately 600 model runs and, using a single processor, are performed for approximately

1 hour and 40 minutes. Inversions initiated with best parameter estimates from pre-

vious inversions require approximately 250 model runs and, using a single processor,

are performed for approximately 35 minutes. The water-supply pumping records

(i.e. the recorded daily volumetric production), pumping well rates (i.e. the flow

rate capacity of each water-supply well), water elevations, temperatures, barometric

pressures, well coordinates, and well radii for a desired time interval necessary for

each model inversion are extracted from a MySQL R© database and output into model

and inversion input files automatically using a preprocessor.

2.4 Results and Discussion

Superposition is used to include pressure influences from all pumping wells to pre-

dict the pressure transients at a single monitoring well (refer to equation (2.2)).

The resulting calibrated pressure transient predictions from the model inversions are
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Figure 2.1: Map of observation wells (circles) and water-supply wells (stars) included
in the analysis. Locations of newly completed and planned monitoring wells are
indicated by open diamonds.

presented along the diagonal of the matrix of plots presented in Figure 2.3. The off-

diagonal plots present pressure transient predictions utilizing parameters estimated

from model inversions on one monitoring well (diagonal plots) to predict pressure

transients at an alternate monitoring well. The row headings denote the monitor-

ing well where pressure transients are being predicted, while the column headings

denote the monitoring well associated with the parameter estimates applied in the

model. For example, the plot on the row labeled “R-28” and column labeled “R-28”,

presents pressure transient predictions for R-28 using parameter estimates obtained

by inverting the R-28 model. In contrast, the plot on row labeled “R-11” and column

labeled “R-28”, presents pressure transient predictions for R-11 using parameter es-

27



Chapter 2. Identification and Analysis of Water-Level Fluctuations

timates obtained by inverting the R-28 model. In other words, the diagonal plots are

calibration results, while the off-diagonal plots demonstrate the appropriateness of

utilizing one well’s calibrated parameters to predict an alternate well’s pressure tran-

sients. The numbers of calibration targets in each inversion are equal to the number

of water elevation observations for each monitoring well (i.e. R-11 – 940; R-15 – 1072;

R-28 – 1045). In this case, each model inversion has 15 adjustable parameters as it

includes two parameters associated with the cross-hole transmissivity and storativity

characterizing hydraulic connection between the respective monitoring well and each

of the seven pumping wells and the initial water elevation of the monitoring well.

The diagonal plots in Figure 2.3 demonstrate the model’s ability to simulate

the hydraulic responses at the monitoring locations. The off-diagonal plots indicate

that there is likely some large-scale aquifer zone with similar aquifer properties in

the area between R-11 and R-28 as hydrogeologic parameters estimated for one of

these wells predict pressure transients reasonably well for the other well. However,

it is apparent that aquifer properties change to the west of R-11/R-28 near R-15 as

parameter estimates for R-11 and R-28 over predict water-level observations at R-15.

Figures 2.4, 2.5, and 2.6 present the decomposed drawdown contributions from

the water-supply wells predicted in the calibrations presented in Figure 2.3 (diagonal

plots) for monitoring wells R-11, R-15, and R-28, respectively. The associated water-

supply pumping record is plotted along with each drawdown contribution to illustrate

the predicted pressure influence at the monitoring wells attributed to each water-

supply well. The observed and predicted pressure transients from Figure 2.3 for the

associated monitoring well are re-plotted along the top of Figures 2.4, 2.5, and 2.6

for reference.

The model identifies a temporal trend of groundwater decline for wells R-11

and R-28 presented in Figures 2.4 and 2.6, respectively. This declining trend is

needed in addition to the drawdown contributions from the individual supply wells
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to adequately predict the overall drawdown at wells R-11 and R-28. The cause of this

temporal trend has not been identified, but it may be related to factors not directly

related to the water-supply pumping (e.g. reduction in infiltration recharge). It is

apparent that the inversions identify, or fingerprint, the pumping records from PM-

2, PM-3, and PM-4 as influencing the water elevation observations at each of the

monitoring wells, while in Figure 2.5, PM-5 pumping record is identified to influence

R-15. In addition, even though PM-3 is located about two times closer to R-11/R-28

than R-15 (refer to Figure 2.1 and Table 2.1), the magnitude of PM-3 drawdowns

are about two times larger at R-15 than at R-11/R-28. These differences between

R-11/R-28 and R-15 pumping transients suggest contrasting aquifer properties in the

zones near R-15 and R-11/R-28 and a complex structure of the three-dimensional

aquifer flow.

This analysis also suggests that there is a lack of pumping influence of O-4 on

the monitoring wells. This is somewhat surprising considering the well locations and

the substantial water production at O-4. This indicates a large-scale heterogeneous

aquifer structure: either (1) a hydraulic barrier between O-4 and the monitoring

wells that obstructs propagation of pumping transients or (2) a highly transmissive

aquifer zone in the vicinity of O-4 that diminishes the pressure influence of pumping

transients. It appears that similar hydrogeologic conditions may exist to the east

of PM-3, given the lack of pressure influence attributed to PM-1. In contrast, the

substantial drawdown contribution attributed to PM-2 at the monitoring wells pre-

dicted by the models when compared to other closely located pumping wells (refer

to Figure 2.1 and Table 2.1) indicates that a large highly-permeable north-south

aquifer structure is plausible. This conclusion is also supported by relatively high

hydraulic diffusivity estimates between PM-2 and the monitoring wells (see discus-

sion below). These conclusion are symbolically illustrated on a map of the well

locations in Figure 2.7. These aquifer features will be investigated further with more

complex models capable of explicitly considering spatial aquifer heterogeneity and
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three-dimensionality of groundwater flow. Nevertheless, our analyses provide impor-

tant insights about the zone of influence and the zone of capture of the individual

pumping wells.

Table 2.2 contains the parameter estimates for the log (base 10) effective cross-

hole transmissivity and log (base 10) effective cross-hole storativity obtained from

the calibrations presented in Figures 2.3, 2.4, 2.5, and 2.6. As already discussed in

the previous section, parameter estimates represent cross-hole effective properties be-

tween pumping and monitoring wells. Similar estimates are expected to be obtained

if dedicated cross-hole pumping tests were conducted pumping each water-supply

well separately. The calculated log (base 10) effective hydraulic diffusivity is also

tabulated. The sample (arithmetic) mean and sample variance for each parameter

are tabulated as well. Since the parameters are log-transformed, the arithmetic mean

represents the geometric mean of the untransformed parameter values.

To capture the information about aquifer connectivity from both the effective

cross-hole transmissivity and storativity estimates, the effective cross-hole hydraulic

diffusivities are calculated. By inspecting Tables 2.2 and 2.3, it is apparent that the

diffusivities are the highest for R-15 with respect to the monitoring wells, indicating

that R-15 has a higher level of connectivity to the pumping wells than R-11 and

R-28. This result is due to the higher drawdowns at R-15 when compared to R-11

and R-28, as evident in Figure 2.2. With respect to the pumping wells, PM-2 has

the highest diffusivity, indicating that it has a higher level of connectivity to the

monitoring wells than the other pumping wells. This result is due to the significant

drawdowns predicted to be produced by PM-2 at the monitoring wells, as presented

in Figures 2.4, 2.5, and 2.6.

Jacob’s approximation is only valid at a sufficient length of time after commence-

ment of the pumping. Since pumping regimes are highly transient, we find that the

Jacob’s constraint (r2S/4Tt < 0.03) is not dominating our analyses in spite of the
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long-term water-level records. As a result, the hydrogeological parameter estimates

presented here cannot be interpreted strictly according to the methodology presented

in Meier et al. (1998) and Sanchez-Vila et al. (1999). Our estimates are optimal pa-

rameters considering both late-time and early-time drawdown, describing the behav-

ior of the drawdown during both steady- and non steady-shape regimes. Consistent

with existing theory and previous analysis (Meier et al., 1998; Sanchez-Vila et al.,

1999), the transmissivity estimates are less variable than the storativity estimates

(Table 2.3). Still, the variability of the transmissivity estimates is not negligible. De-

viations from the domain of a valid Jacob’s approximation at least partially explain

the larger transmissivity variance and smaller storativity variance obtained here. In

our case, the transmissivity estimate must accommodate both early- and late-time

drawdown, requiring it to contain not only information about the large-scale (i.e. in

the general area affected by the water-supply pumping) effective properties of the

regional aquifer, but also information on the small-scale heterogeneity structures con-

trolling hydraulic connectivity between the water-supply and monitoring wells. As

a result, it can be expected that the variability in the storativity estimates may not

only be indicative of local heterogeneities in the transmissivity field (as in the case of

a purely steady-shape flow regime) but may also be affected by other complexities of

the regional aquifer (e.g. mixture of unconfined and confined flow conditions, leakage

from the deeper sections of the regional aquifer, three-dimensionality of groundwater

flow, etc.). Future analyses will further investigate the information about the large-

and small-scale aquifer heterogeneities in this dataset.

2.5 Model testing

The individual calibrated models for R-11, R-15, and R-28 (using parameter esti-

mates from Table 2.2) are applied to make blind forward predictions of pressure
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transients past November 29, 2007 to November 18, 2008. Figure 2.8 presents these

predictions along with the calibrated pressure transients (until November 29, 2007;

calibrations were presented previously in Figure 2.3). Figure 2.8 also shows the ob-

served water-level data. It is clear that the models successfully predict major features

in the water level transients caused by changes in pumping regimes. Still, the model

predictions do not provide perfect representations of the data; the models slightly

underpredict the drawdowns at R-15 (by 0.2 m), and deviate by less than 0.1 m

from the R-11 and R-28 water levels. Recalibrating the models including the addi-

tional data (from November 29, 2007 to November 18, 2008) substantially improves

the model predictions, as demonstrated by the calibration results presented in Fig-

ure 2.9. Table 2.3 lists the updated parameter estimates from these calibrations. By

comparing Tables 2.2 and 2.3, it is apparent that there is minimal differences in the

overall parameter estimates, although individual cross-hole properties differ in some

cases. The means of the parameter values are unchanged, with the single difference

being a reduction in the variance for the log storativity. These small differences are

likely due to the pre-stabilization time dependency of the transmissivity and stora-

tivity parameters. By referencing Table 2.2 with respect to Figure 2.8 and Table 2.3

with respect to Figure 2.9, it is evident that small changes to the cross-hole parame-

ter estimates allow the model to characterize the transient records more accurately.

In this way, the calibrated models have been successfully applied to identify mea-

surement errors in new water-level data by comparison to forward model predictions

(not presented here). A model calibrated against water-level transients at particular

monitoring well can be successfully applied to predict the water-levels in the same

well; however, the calibrated model is not expected to be able to predict the water

levels at other observation points in the aquifer.
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2.6 Conclusions

The approach described in this chapter allows the identification and decomposition

of pressure-influence sources at a monitoring location utilizing existing long-term

pumping and water-elevation records. This type of dataset is often available from

monitoring-well networks established near municipal water-supply well fields. The

approach provides (1) fingerprinting of pumping influences in pressure transients

to identify drawdown contributions from individual water-supply wells (2) the es-

timation of effective cross-hole hydrogeological properties between the respective

pumping and observation wells, and (3) information about the zone of influence of

individual pumping wells. The presented analysis is computationally efficient due

to the utilization of a simple analytical model, which facilitates the processing of

large amounts of data associated with long-term records. The same analysis will be

computationally very demanding and potentially not effective using more complex

models representing details of the aquifer heterogeneity. Utilization of such datasets

provides several advantages over conducting traditional cross-hole pumping tests,

including the ability to consider long-term records with multiple variable pumping

regimes. Interpretation of the results can allow (1) the identification of large-scale

hydrogeologic structures within the aquifer, (2) an evaluation of the information con-

tent in the calibration data, (3) guidance for the development of more complicated

models requiring detailed knowledge of aquifer heterogeneity.

The estimates of the aquifer properties characterize the hydraulic response at

an observation well due to pumping of a well, and do not represent the effective

properties of the entire aquifer. Similar estimates of aquifer properties could be

obtained, if a series of coordinated cross-hole pumping tests were conducted between

each pumping and observation well pairs. A model calibrated against water-level

transients at a particular monitoring well can be successfully applied to predict the

water-levels in the same well; however, the calibrated model is not expected to be
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able to predict the water levels at other observation points in the aquifer.

Utilizing this approach on a dataset from the LANL site has indicated that (1)

relatively small magnitude water-level transients (less than 1 m) do not preclude our

ability to identify the pumping influences associated with individual wells, (2) water-

levels at some of the wells exhibit a temporal trend that cannot be directly attributed

to any of the pumping wells, (3) the regional aquifer appears to be highly hetero-

geneous. Future work will include more complicated analytical solutions that can

account for partial penetration of pumping and observation wells, aquifer anisotropy,

flow three-dimensionality, and leakage from overlying strata. Future work will also

include data from additional monitoring wells, coupled inversions (i.e. inversions

including data from multiple monitoring wells simultaneously), spatial analysis of

aquifer heterogeneity based on tomographic techniques, and characterization of the

three-dimensional structure of groundwater flow.

The results also provide guidance for development of more complicated numerical

models of the site. Our analyses suggest that numerical models characterizing the

aquifer heterogeneity will benefit substantially if the long-term pumping and water-

level records are incorporated in the calibration process. The spatial representation of

the aquifer heterogeneity should be (1) capable to represent the identified large-scale

aquifer structures and (2) with resolution sufficient to represent the differences in the

water-level transients at R-15 and R-11/R-28. The model should also be capable of

accounting for water-level declines that may not be directly associated with pumping

transients. The results show that it is critical to account for the three-dimensional

structure of the groundwater flow.

34



Chapter 2. Identification and Analysis of Water-Level Fluctuations

1 7 7 9 . 0
1 7 7 9 . 5
1 7 8 0 . 0

1 7 8 3 . 0

1 7 8 4 . 0

1 7 7 9 . 5
1 7 8 0 . 0

0 . 0
2 0 . 0
4 0 . 0

0 . 0
2 0 . 0
4 0 . 0

0 . 0
2 0 . 0
4 0 . 0

0 . 0
2 0 . 0
4 0 . 0

0 . 0
2 0 . 0
4 0 . 0

0 . 0
2 0 . 0
4 0 . 0

2 0 0 5 J a n - 2 0 0 5 J a n - 2 0 0 6 J a n - 2 0 0 7
0 . 0

2 0 . 0
4 0 . 0

 R a w  d a t a
 B a r o  c o r r e c t e d 

R - 1 1
Ele

va
tio

n, 
m

R - 1 5

R - 2 8

P M - 1

P M - 2

P M - 3

Da
ily 

pro
du

ctio
n v

olu
me

s, 
m3

P M - 4

P M - 5

O - 1

O - 4

Figure 2.2: Water elevations at monitoring wells and production records for water-
supply wells.
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R-15
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R-28

Figure 2.3: Water elevation predictions (gray) using parameters from uncoupled
calibrations (considering a single monitoring well and all pumping wells). Observed
water elevations (black) are included for reference. Row headings denote the well
associated with the water elevation predictions in each plot, while column headings
denote the well associated with the model inverted to obtain the hydrogeological
properties.

36



Chapter 2. Identification and Analysis of Water-Level Fluctuations

1 7 7 9 . 2
1 7 7 9 . 4
1 7 7 9 . 6

 Ele
va

tio
n, 

m

 O b s e r v e d
 C a l i b r a t e d

0

2 0

4 0

 

 

 

P M - 2

0 . 2
0 . 1
0 . 0

0

2 0

4 0

 

 

Pro
du

ctio
n, 

m3 /da
y P M - 3

0 . 2
0 . 1
0 . 0

0

2 0

4 0

 

 

 

P M - 4

0 . 2
0 . 1
0 . 0

Drawdown, m

J a n - 2 0 0 6 J a n - 2 0 0 7
0

2 0

4 0

 

 D a t e

 

T e m p o r a l  t r e n d

0 . 2
0 . 1
0 . 0

Figure 2.4: Top plot: predicted (black) and observed (gray) water elevations for R-11
model inversion. Bottom plots: predicted drawdown contributions (black lines) from
individual pumping wells, plotted with their associated pumping record (gray bars),
and temporal trend required to reproduce the total predicted drawdown at R-11.
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Figure 2.5: Top plot: predicted (black) and observed (gray) water elevations for R-15
model inversion. Bottom plots: predicted drawdown contributions (black lines) from
individual pumping wells, plotted with their associated pumping record (gray bars),
required to reproduce the total predicted drawdown at R-15.
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Figure 2.6: Top plot: predicted (black) and observed (gray) water elevations for R-28
model inversion. Bottom plots: predicted drawdown contributions (black lines) from
individual pumping wells, plotted with their associated pumping record (gray bars),
and temporal trend required to reproduce the total predicted drawdown at R-28.
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Figure 2.7: Map of observation wells (circles) and water-supply wells (stars) included
in the analysis, along with symbols to illustrate the analysis conclusions. Dashed lines
indicate locations of apparent hydrogeologic barriers, separating O-4 and PM-1 from
the monitoring wells. The arrow illustrates the strong hydraulic connection between
PM-2 and the monitoring wells. The grey-filled oval illustrates the apparent existence
of a region of similar hydrogeologic properties around R-11 and R-28. Locations of
newly completed and planned monitoring wells are indicated by open diamonds.
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Figure 2.8: Blind forward water-elevation predictions (Predicted) using calibrated
parameters from Table 2.2. The best-fit water elevation predictions (Calibrated) as-
sociated with the parameters in Table 2.2 are presented also, along with the observed
water elevations (Observed).
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Figure 2.9: Best-fit water-elevation predictions (Predicted) associated with the pa-
rameters from Table 2.3 plotted along with the observed water elevations (Observed).
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Chapter 3

Hydrogeologic Property Inference

Accounting for Early-Time

Behaviour of Theis Solution

Parameter Estimates

Abstract

It has been demonstrated that during a pumping test in heterogeneous media, draw-

down data from different time periods collected at a single location produce different

estimates of aquifer properties (e.g. early-time Theis type-curve vs late-time Copper-

Jacob methods) and that Theis type-curve inferences are more variable than late-time

Cooper-Jacob inferences. This suggests that as the cone of depression from a well

propagates towards an observation location, drawdown behavior is affected by many

factors (e.g. skin effects, wellbore storage, well friction, and interwell heterogeneities),

while after the cone of depression has passed the observation location and quasi-

steady state drawdown has been established, convergent hydrogeologic parameters
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can be inferred. It has been demonstrated that transmissivity inferences from early-

time drawdown data produce time-dependent results, while late-time data inferences

are typically found to converge towards a single value. In order to obtain estimates

of hydrogeologic properties from highly transient drawdown data at a stationary

location, it is necessary to account for the temporal dependency of hydrogeologic

parameters. We present an approach that accounts for these effects by proposing

an exponential functional representation of the potential temporal dependencies.

This is a novel approach for aquifer property inference utilizing transient drawdown

data. To better characterize temporal dependency of stationary inferences, we uti-

lize a multi-year dataset containing multi-well transient water-level observations due

to transient water-supply pumping; the long-term highly-transient record produces

multiple drawdown responses consistent with early-time (transient) and late-time

(quasi-steady state) regimes. It is demonstrated that adequate drawdown calibra-

tions can be achieved for multiple monitoring wells considering pressure influences

from multiple pumping wells by superposition of the Theis solution using exponential

hydrogeologic parameter functions which converge to a single value for transmissiv-

ity and are allowed to converge to distinct values for storativity. The convergent

transmissivity parameter provides a first estimate of the effective transmissivity of

the aquifer, while the distinct values for the late-time convergent storativities provide

indicators of inter-well connectivity.

3.1 Introduction

Hydrogeologic property inferences obtained using the Theis type-curve method (Ja-

cob, 1940) (Theis method) and the Cooper-Jacob straight-line approximation method

(Cooper and Jacob, 1946) (Cooper-Jacob method) at a given location have been ob-

served to differ (Ramey , 1982; Butler , 1990). More recent investigations into this
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phenomenon have found that Theis solution parameters (Theis , 1935) estimated at

a stationary location at various times during a pumping test have been observed

to vary at early times converging to stable values at late-times (Wu et al., 2005;

Straface et al., 2007). This implies that at early times while the cone of depression is

approaching the observation location, the drawdown is affected by many factors, such

as: skin effects; well losses; and heterogeneities encountered as the cone of depression

extends laterally (Butler , 1990), complicating the estimation of stable parameters.

However, at late times when quasi-steady state conditions have developed (i.e. when

pressure gradients have reached steady state but pressures are transient), the sta-

ble parameter estimates are consistent with hydrogeologic property inferences that

would be obtained using the Cooper-Jacob method. This implies that the late-time

parameter estimates provide “effective” hydrogeologic properties representative of

the support scale defined by the distance between the pumping and monitoring wells

(Neuman, 1990; Neuman and Di Federico, 2003).

Variable model parameters indicate the inadequacy of a model to represent the

observed phenomenon, as parameters are intended to represent invariant intrinsic

properties of the system (homogeneous transmissivity and storativity in the case of

the Theis solution). The inadequacy of applying the Theis solution to model typical

pumping tests is not a matter of debate, as its limitations are readily apparent by

the assumptions required in its derivation (Theis , 1935) (e.g. fully penetrating well,

infinite lateral extents, homogeneous properties, unperturbed initial conditions, con-

fined aquifer). Recognizing these limitations, the question becomes whether or not

the model is useful. We agree with previous researchers that the Theis solution is

useful for obtaining apparent hydrogeologic properties that characterize the ground-

water transport if late-time drawdown data is used consistent with the Cooper-Jacob

method (Butler , 1990; Meier et al., 1998; Sanchez-Vila et al., 1999; Knudby and Car-

rera, 2006; Trinchero et al., 2008). As noted by Butler (1990) in reference to the

use of the Cooper-Jacob method, the advantage of drawing inferences from late-time

47



Chapter 3. Hydrogeologic Property Inference

drawdown data is that the estimated parameters will be independent of the numerous

early-time effects that can influence the drawdown at the initial stages of expansion

of the cone of depression.

Making late-time hydrogeologic inferences is not always possible, however, as

it may not be feasible to continue a pumping test for a sufficient duration to allow

quasi-steady state conditions to develop. Or, in cases where an existing water-supply

and water-level elevation dataset is available from a municipal water supply network,

quasi-steady state may not be reached due to a high frequency of cycling multiple

supply wells on and off to: meet shifting demand; to take advantage of lower cost

off-peak electrical rates; and perform well maintenance and/or repair. In this paper,

we present an approach that allows late-time quasi-steady state inferences to be

obtained from transient drawdown datasets by considering the behaviour of Theis

solution parameters at early times.

The proposed approach is demonstrated on a long-term highly-transient draw-

down record collected at the Los Alamos National Laboratory (LANL) site where the

water-level transients result from multi-well municipal water-supply pumping. The

pumping regimes are highly transient, cycling diurnally and seasonally, including

variations due to maintenance, repair, and shifting supply loads within the network.

As a result, the drawdown at monitoring wells within the network cannot fully attain

quasi-steady state as new pressure influences (cones of depression and impression)

begin to propagate through the aquifer as the pumping wells cycle on and off (Harp

and Vesselinov , 2009). The use of a long-term dataset containing multiple pressure

influence cycles has certain advantages, such as: reduction of measurement errors;

improved characterization of the hydraulic response allowing the refinement of hy-

drogeologic inferences; and the lack of the expense and coordination of a conventional

pumping test. We demonstrate the inference of hydrogeologic properties from this

dataset by considering the transient early-time behaviour of Theis solution parame-

48



Chapter 3. Hydrogeologic Property Inference

ters.

As the approach presented here relies on observations, numerical experiments,

and analytical investigations of many previous researchers, a review of these bodies

of research will be presented in the background section. The proposed approach for

accounting for early time parameter variations will be presented in the methodology

section. The approach will be demonstrated on the LANL dataset in the results

section.

3.2 Background

Theis (1935) introduced the inference of hydrogeologic properties from transient

drawdown observations using an analytical solution derived by applying the analo-

gous concepts of heat conduction to groundwater flow. The Theis type-curve method

(Theis method), postulated by Theis and described by Jacob (1940), was developed

from this work. Cooper and Jacob (1946) simplified this approach using an approxi-

mation to the Theis solution valid at late times when a quasi-steady state regime is

established (Cooper-Jacob method), eliminating the use of a Theis type curve.

It has been recognized that hydrogeologic property inferences based on the Theis

method and Cooper-Jacob method differ (Ramey , 1982). This is due to the fact that

the inference methods emphasize properties in different regions of the aquifer. The

Theis method considers the entire drawdown curve, often causing the inadvertent

emphasis of the interval of greatest curvature located during early times. As indi-

cated by Butler (1990), drawdown at early times can be affected by many factors,

including local heterogeneities near the pumping well and well skin and pumping

storage affects, creating greater variability in Theis method inferences. The Cooper-

Jacob method ignores early times, providing information on the properties of the

aquifer within a ring formed by the outward moving front of the cone of depression

49



Chapter 3. Hydrogeologic Property Inference

during the time interval under consideration. At late time, when the Cooper-Jacob

approximation is valid, the region included in this ring can be large. Butler (1990)

demonstrates that the difference between inferences obtained from the Theis and

Cooper-Jacob methods depend on the level of aquifer heterogeneity and the distance

between the pumping well and the observation location. The inferences become more

similar as the level of heterogeneity decreases and the distance increases.

Meier et al. (1998) explore the use of the Cooper-Jacob approximation to infer

effective transmissivity (Teff ) from the estimated transmissivity parameter T̂ and

provide indications of hydraulic connectivity by evaluating the estimated storativity

parameter Ŝ in heterogeneous aquifers. Consistent with theoretical findings of Butler

(1990), Meier et al. (1998) present cases where field data demonstrate that although

small-scale (point) estimates of transmissivity T are highly variable, values of T̂

obtained from the Cooper-Jacob method are relatively constant. Furthermore, Meier

et al. (1998) demonstrate that corresponding values of Ŝ are typically highly variable,

even though the storativity in the field is believed to be relatively constant. Meier

et al. (1998) investigate this phenomena by performing numerical experiments with

heterogeneous transmissivity fields and homogeneous storativity fields, producing

similar values for T̂ and variable values for Ŝ consistent with the field cases.

The reason for this paradoxical result can be explained by examining the equation

for estimating T from the Cooper-Jacob method; T̂ = 2.3Q/4πI, where Q is a

constant pumping rate and I is the slope of the late-time drawdown with respect to

the (base 10) log of time (i.e. I = (s2−s1)/(log t2− log t1), where s is drawdown and

t is time). This equation demonstrates that T̂ is dependent on the rate of drawdown

decline, which is dependent on the choice of t2 and t1. Considering only the late-

time drawdown where the data approximate a straight line with respect to log time,

in accordance with the Cooper-Jacob method, means that T̂ will approximate Teff

described by the rate of drawdown after the drawdown cone of depression has passed
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the monitoring well. Storativity estimates using the Cooper-Jacob method (defined

as Ŝ = 2.25Tt0/r
2, where r is the distance from the pumping well to the observation

point and t0 represents the time-axis intercept of a line drawn through the late-time

drawdown), on the other hand, are dependent on the variability of T between the

pumping well and the front of the cone of depression. Although the heterogeneity

between the pumping and monitoring well does not affect the slope of the late-time

drawdown used to determine T̂ , it can affect Ŝ as the time-axis intercept (t0) is

dependent on the arrival of the cone of depression at the monitoring well. If a

region of high T connects the monitoring well and the pumping well, the value of

t0 will be relatively small and vice-versa. As noted by Sanchez-Vila et al. (1999),

the Cooper-Jacob method interprets an early/late arrival of a drawdown cone of

depression as low/high storativity. This explains the high variability of Ŝ in the

presence of T heterogeneity between the pumping well and the monitoring well, even

in cases where S is known to be constant.

Research by Meier et al. (1998) demonstrate from a numerical analysis that T̂

estimated from a simulated pumping test (radial flow) is close to Teff for parallel flow

for an area of influence for multilognormal stationary (geostatistically homogeneous)

T fields (the S field is assumed uniform in all cases). While Meier et al. (1998) also

demonstrated that this can be true for nonmultigaussian fields, Sanchez-Vila et al.

(1996) demonstrate that this is not true in general. Similar to findings by Butler

(1988), who demonstrated that Ŝ depends on transmissivities between the pumping

well and the front of the cone of depression, Meier et al. (1998) find that Ŝ depends

on transmissivities between and nearby the well and the observation point.

Sanchez-Vila et al. (1999) verify these conclusions using an analytical approxi-

mation to the groundwater flow equation. They demonstrate analytically that T̂ is

independent of spatial location. They also demonstrate that storativity estimates

will provide an indication of the local deviations of T from its large-scale geometric
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mean (denoted as TG) representing the equivalent geostatistically homogeneous T

field. If T in a specific location is less than TG, Ŝ will be larger than the true value of

S and vice-versa. They also show that the geometric mean of Ŝ values is an unbiased

estimator of S.

Recognizing that individual values of Ŝ estimated using the Cooper-Jacob ap-

proximation are not representative of S, Knudby and Carrera (2006) refer to the

value as apparent storativity, Sa. They demonstrate that the apparent diffusivity,

defined as Da = T̂ /Sa, is affected in a similar way as Sa to aquifer heterogeneity and

contains information on general characteristics of the system due to its dependence

on T̂ . Furthermore, Knudby and Carrera (2006) demonstrate that Da correlates well

with indicators of flow and transport connectivity, thereby encapsulating information

on these two process dependent forms of connectivity in a single parameter.

Trinchero et al. (2008) explored the relationship between the flow and transport

connectivity indicators described by Knudby and Carrera (2006), deriving an ana-

lytical relation between the estimated effective homogeneous porosity φ̂ (transport

connectivity indicator) and Ŝ (flow connectivity indicator) of a heterogeneous T field.

They determined that φ̂ depends on a weighted function of actual transmissivity T

and the estimated storativity parameter Ŝ along the flow line.

In contrast to Meier et al. (1998), Sanchez-Vila et al. (1999), Knudby and Car-

rera (2006), and Trinchero et al. (2008), Wu et al. (2005) explore the effect of the

homogeneity assumption of the Theis solution on parameter estimates at both early

and late times for cases with both heterogeneous T and S fields. Conceptualizing T

and S as spatial stochastic processes in the equation of flow, Wu et al. (2005) derive

the mean flow equation of a heterogeneous aquifer as

Teff∇2h = Seff
∂h

∂t
(3.1)
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where h is the ensemble mean head, t is the time, Teff is the ensemble effective

transmissivity defined as

Teff = T + E〈T ′∇h′〉[∇h]−1, (3.2)

and Seff is the ensemble effective storativity defined as

Seff = S + E〈S ′∇h′〉[∇h]−1. (3.3)

where the over bar and prime denote the mean and perturbation of the variable,

respectively. Teff and Seff are denoted as ensemble effective parameters as they will

produce the ensemble mean head h as a convergent average for a set of realizations

of heterogeneity based on the stochastic parameters T = T + T ′ and S = S + S ′.

As indicated by Wu et al. (2005), in order for the ensemble mean head to equal

the spatially averaged head of a single realization of heterogeneity, the field must

contain an adequate sampling of the heterogeneity (i.e. the field must be ergodic).

As traditional pumping tests typically estimate Teff and Seff based on one or a small

number of point estimates of head, which will not equal the spatially averaged head

in general, T̂ and Ŝ will not provide estimates of effective properties in an ensemble

sense in general.

Wu et al. (2005) performed numerical experiments using synthetic aquifers with

multilognormal heterogeneous T and S fields. They observe that at early time, T̂

estimates at different locations are highly variable, while at large times (when the

Cooper-Jacob approximation is valid) values of T̂ converge to a value close to TG as

the cone of depression expands for the multilognormal fields considered. The late-

time convergent values of T̂ presented by Wu et al. (2005) are consistent in character
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with Cooper-Jacob transmissivity estimates presented by Butler (1990), Meier et al.

(1998), and Sanchez-Vila et al. (1999). As the considered transmissivity field in

Wu et al. (2005) is multilognormal, TG = Teff . In cases where the transmissivity

is nonmultigaussian, the significance of T̂ is less certain (Sanchez-Vila et al., 1999),

however, we assume that it is a good first estimate of Teff . Values of Ŝ do not

converge to a single value, but stabilize relatively quickly to values predominantly

dependent on the heterogeneity between the pumping well and the given monitoring

location. These distinct late-time convergent values for Ŝ are consistent with the

variable Cooper-Jacob estimates presented in Meier et al. (1998) and Sanchez-Vila

et al. (1999). As the late-time convergent values for T̂ and Ŝ presented by Wu

et al. (2005) are equivalent to values that would be obtained by the Cooper-Jacob

method and are consistent with the behavior of Cooper-Jacob property estimates

presented in Meier et al. (1998) and Sanchez-Vila et al. (1999), these values can be

interpreted based on the discussions of Meier et al. (1998) and Sanchez-Vila et al.

(1999) summarized above.

Utilizing a cross-correlation analysis, Wu et al. (2005) determine that at early

times, the head at a monitoring location will be strongly correlated to S between the

monitoring location and the pumping well, and only weakly negatively correlated

to the T in the same region. Furthermore, at late times, the spatial distribution

of observed head and S correlation is similar, albeit greatly diminished, while the

correlation between T and observed head is greatly increased throughout the domain,

with the largest (positive) correlations in regions behind the monitoring location and

pumping well (Wu et al., 2005, Figure 10). This indicates that it is likely that T̂ at

late times can be affected by anomalies and boundaries.

In contrast to the four field cases discussed by Meier et al. (1998) (i.e. Grimsel

test site, Switzerland (Frick , 1992); El Cabril site, Spain (Bureau de Recherches

Géologiques et Miniéres); Horkheimer Insel site, Germany (Schad and Teutsch, 1994);
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and Columbus Air Force Base, U.S.A. (Herweijer and Young , 1991)), Straface et al.

(2007) observe a lack of similar slope for drawdown vs log time at late times from

pumping tests near Montalto Uffugo Scalo, Italy, indicating that the Cooper-Jacob

straight-line approximation for late-time drawdown will not be valid in all cases.

Based on their analysis of these pumping tests, Straface et al. (2007) question the

validity of using traditional pumping tests to estimate meaningful hydrogeological

parameters, but do acknowledge that these results can provide quick inexpensive

first estimates. Furthermore, they suggest that these first estimates can be useful as

starting parameters for a tomographic inversion of the same dataset.

Harp and Vesselinov (2009) demonstrate an approach to identify and decompose

the pressure influences at a monitoring location using the Theis solution. Their

approach is demonstrated on the same dataset as in the current research. As the

objective of the research in Harp and Vesselinov (2009) is the decomposition of pres-

sure influences, attempts are not made to account for early time behaviour of the

Theis solution parameters, and constant and distinct values are applied to pump-

ing/monitoring well pairs. Therefore, the parameter estimates are not considered

representative of the hydrogeologic properties of an aquifer, but are considered to

characterize the hydraulic response at a monitoring location due to pumping a single

well, analogous to parameter estimates that would be obtained from conventional

pumping tests. Therefore, constant and distinct interwell Theis solution parameters

are estimated concurrently in a model inversion.

The current research has extended the inverse framework presented in Harp and

Vesselinov (2009) for the purpose of inferring late-time hydrogeologic properties con-

sidering the extensive body of research presented above. While the current approach

is demonstrated on the long-term dataset from the LANL site, providing the de-

composition of pressure influences similar to the approach presented in Harp and

Vesselinov (2009), the current approach could also be applied to a conventional
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pumping test to more appropriately account for the early time behaviour of the

Theis solution parameters. Furthermore, this could be particular useful to obtain

late time hydrogeologic inferences from conventional pumping tests that were not

conducted for a sufficient length of time to establish quasi-steady state conditions.

3.3 Methodology

We develop the proposed approach here considering the existence of multiple pump-

ing wells influencing multiple monitoring wells within an aquifer. In this way, the

methodology applies the to application presented here utilizing the LANL dataset. In

more simplified cases (e.g. a conventional cross-hole interference test), the presented

equations will reduce to simplified non-superposed solutions.

We begin with the Theis solution of the flow equation (T∇2h = S∂h/∂t), defined

as

s(t) =
Q

4πT
W (u) =

Q

4πT
W

(
r2S

4Tt

)
, (3.4)

where s(t) is the predicted drawdown at time t since the pumping commenced (i.e.

h(t) − h(0)), Q is the pumping rate, T is the transmissivity, W (u) is the negative

exponential integral (
∫∞
u
e−y/y dy) referred to as the well function, u is a dimension-

less variable, r is radial distance from the pumping well, and S is the storativity.

Multiple pumping wells and variable rate pumping periods can be included in the

Theis solution by employing the principle of superposition as

s(t) =
N∑
i=1

Mi∑
j=1

Qi,j −Qi,j−1

4πT
W

(
r2
i S

4T (t− tQi,j)

)
, (3.5)
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where N is the number of pumping wells (sources), Mi is the number of pumping

periods (i.e. the number of pumping rate changes) for pumping well i, Qi,j is the

pumping rate of the ith well during the jth pumping period, and tQi,j is the time when

the pumping rate changed at the ith well to the jth pumping period. The drawdown

calculated by equation (3.5) represents the cumulative influence at a monitoring

location of the N pumping wells at distances ri, i = 1, . . . , N from the monitoring

location.

Equations (3.4) and (3.5) are only valid under the assumption of homogeneity. If

a system is homogeneous, then T and S in equations (3.4) and (3.5) will be equivalent

to Teff and Seff , respectively. If the system is heterogeneous, this will only be true

in an ensemble mean sense. In this case, the Theis solution can be expressed as

s(t) =
Q

4πTeff
W (u) =

Q

4πTeff
W

(
r2Seff
4Teff t

)
(3.6)

which is the solution to equation (3.1) (Wu et al., 2005) where s(t) is the ensemble

mean drawdown. Invoking superposition with equation (3.6), an ensemble mean

drawdown equation analogous to equation (3.5) can be expressed as

s(t) =
N∑
i=1

Mi∑
j=1

Qi,j −Qi,j−1

4πTeff
W

(
r2
i Seff

4Teff ∗ (t− tQi,j)

)
. (3.7)

As water elevations recorded at monitoring wells in an aquifer system are merely

point samples from a single realization of heterogeneity, and not ensemble mean

values of multiple realizations or spatial averages of an ergodic field, application

of equations (3.6) and (3.7) are invalid for cross-hole interference tests. Recogniz-

ing this theoretical limitation of applying the Theis solution (or the Cooper-Jacob

approximation) to heterogeneous fields to infer representative effective properties,
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researchers have investigated what information is contained in the hydrogeologic pa-

rameter estimates (Meier et al., 1998; Sanchez-Vila et al., 1999; Wu et al., 2005;

Knudby and Carrera, 2006; Trinchero et al., 2008). We propose that although the

Theis solution parameters will not provide precise representations of hydrogeolog-

ical properties, the analytical framework of the Theis solution can provide initial

estimates of the effective transmissivity and indications of connectivity.

Recognizing that datasets containing early-time drawdown outside of the Cooper-

Jacob domain require consideration of the behaviour of parameter estimates at early

times, we define an estimated drawdown ŝ(t) as

ŝ(t) =
N∑
i=1

Mi∑
j=1

Qi,j −Qij−1

4πT̂i
W

(
r2
i Ŝi

4T̂i ∗ (t− tQi,j)

)
, (3.8)

where we propose an exponential functional form for T̂i and Ŝi to account for the

early-time behavior of Theis solution parameters as

T̂i(t) = Tae
cT,i/(t−tQi,j ) cT ≥ 0, (3.9)

and

Ŝi(t) = Sa,ie
cS,i/(t−tQi,j ), (3.10)

where Ta is the apparent transmissivity, providing a first estimate for Teff , Sa,i is the

apparent storativity associated with the ith pumping well providing an indication

of connectivity between the ith pumping well and the monitoring location (Knudby

and Carrera, 2006), and cT,i and cS,i are constants describing the time dependent
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slope of the transmissivity and storativity functions, respectively, with respect to

the ith pumping well. Ta and Sa provide late time inferences consistent with val-

ues that would be obtained using the Cooper-Jacob method. Based on results of

numerical experiments performed by Wu et al. (2005), we constrain cT ≥ 0, indi-

cating that T̂ values from early time portions of drawdown data are expected to be

higher than late time convergent values. This may be explained by the early-time

negative correlation between head and transmissivity (Wu et al., 2005) and/or the

existence of high conductivity interwell pathways as described by Herweijer (1996).

Other possible explanations for the need for time-dependent hydrogeologic parame-

ters are well-bore storage and leakage effects known to exist at the site (McLin, 2005,

2006a,b). We demonstrate in this Chapter that the exponential functional forms for

T̂ and Ŝ proposed here in equations (3.9) and (3.10) provide adaquate calibrations of

model simulations to observed water levels and can provide late-time Cooper-Jacob

parameter estimates from highly transient datasets.

Substituting equations (3.9) and (3.10) into equation (3.8) produces

ŝ(t) =
N∑
i=1

Mi∑
j=1

Qi,j −Qij−1

4πTae
cT,i/(t−tQi,j )

W

(
r2
i Sa,ie

cS,i/(t−tQi,j )

4Tae
cT,i/(t−tQi,j ) ∗ (t− tQi,j)

)
, (3.11)

As the calibration targets in the model inversions presented here are water eleva-

tions as opposed to drawdowns, we define the predicted water elevation ĥ(t) at time

t as

ĥ(t) = ĥo − ŝ(t) (3.12)

where ĥo = ĥ(0) and is defined as the initial predicted water elevation at the mon-

itoring well. As defined by the Theis solution, ho is the head at the time that a
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perturbation commences. As pumping of the regional aquifer began at the LANL

site over 50 years ago, it is reasonable to assume that the influence of the earlier

pumping has propagated through the system and/or dissipated. However, more

recent pumping rate changes preceding pressure transient records at monitoring lo-

cations need to be considered. In order to account for residual effects of pumping

prior to monitoring, simulations are started in advance of pressure transient records,

thereby setting t = 0 at the beginning of the simulation, and not when monitoring

commenced.

Model calibration is performed using a Levenberg-Marquardt approach (Leven-

berg , 1944; Marquardt , 1963) where the objective function can be defined as

Φ =
m∑
i=1

ni∑
j=1

[hi(tj)− ĥi(tj)]2 (3.13)

where m is the number of monitoring wells considered, ni is the number of head

observations for the ith monitoring well, and hi(tj) are the head observations for the

ith monitoring well included as calibration targets where j is an observation time

index.

The simulation of the drawdowns is performed using the WELLS code (written

by V.V. Vesselinov, 1992), which implements equation (3.11). The calibration is

performed using PEST (Doherty , 2004).

3.4 Site Data

The regional aquifer beneath the LANL site is a complex stratified hydrogeologic

structure which includes unconfined zones (under phreatic conditions near the re-

gional water table) and confined zones (deeper zones) (Vesselinov , 2004a,b). The

60



Chapter 3. Hydrogeologic Property Inference

three monitoring wells considered in this analysis are screened near the top of the

aquifer with an average screen length of 11 meters. The water-supply wells partially

penetrate the regional aquifer with screens that also begin near the top of the aquifer,

but penetrate deeper with an average screen length of 464 meters. Nevertheless, field

tests demonstrate that most of the groundwater supply is produced from a relatively

narrow section of the regional aquifer that is about 200-300 m below the regional wa-

ter table (Los Alamos National Laboratory , 2008a). Implicit in the use of the Theis

solution is the assumption that groundwater flow is confined and two-dimensional.

We assume that this is a justifiable assumption here given the small magnitude of

observed drawdowns (less than 1 m at the monitoring wells and less than 20 m at

the water-supply wells), the relative long distances between supply and monitoring

wells (more than 1 km; Table ) compared to the effective aquifer thickness (about

200-300 m).

Water-level fluctuations (pressure transients) are automatically monitored using

pressure transducers. The pressure and water-supply pumping records considered

here are collected from 3 monitoring wells (R-11, R-15 and R-28) and the 7 water-

supply wells (PM-1, PM-2, PM-3, PM-4, PM-5, O-1, and O-4) located within the

LANL site. Figure 3.1 displays a map of the location of the wells. Figure 3.2 presents

the pressure and production records for the monitoring wells and water-supply wells,

respectively.

The water-level observation data considered here span approximately four years,

commencing on or shortly after the date of installation of pressure transducers (May

4, 2005 for R-11; December 23, 2004 for R-15; January 7, 2005 for R-28), all terminat-

ing on November 18, 2008. The barometric pressure fluctuations are removed using

constant coefficient methods using 100% barometric efficiency for all monitoring wells

(Los Alamos National Laboratory , 2008b). Although the pressure transducers collect

observations every 15 minutes, this dataset is reduced to single daily observations by
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using the earliest recorded measurement for each day. Some daily observations have

been excluded due to equipment failure. Considered pumping records for all pumping

wells begin on October 8, 2004 and terminate on November 18, 2008. The pumping

record precedes the water-level calibration data to account for water-level transients

due to pumping variations before the water-level data collection commenced. For

additional information on the site and dataset, refer to Harp and Vesselinov (2009).

In the applied computational framework, forward model run times for predict-

ing water elevations at R-11, R-15, and R-28 for approximately four years (from

October 8, 2004 to November 18, 2008) are each approximately 9 seconds on a 3.0

GHz Intel processor. Inversions initiated with uniform initial parameter values re-

quire approximately 600 model runs and, using a single processor, are performed for

approximately 1 hour and 40 minutes.

3.5 Results and Discussion

Figure 3.3 presents the calibrated drawdown from the water-supply wells for moni-

toring wells R-11, R-15, and R-28. These plots indicate that adequate calibrations

can be achieved by accounting for the early time behaviour of parameter estimates

using exponential functional forms, conceptually consistent with numerical investiga-

tions by Wu et al. (2005) and parameter inferences from field collected hydrographs

by Straface et al. (2007).

Figure 3.4 presents the percentage of superposed drawdown calculations per-

formed within the Cooper-Jacob domain as the length of the data record increases.

In this way, each superposed calculation is weighted equally in the determination

of the percentage. The Cooper-Jacob approximation is assumed to be valid when

u < 0.03, or when the approximation error is less than 1%. This figure demonstrates

that as the data record length increases, the percentage of the superposed drawdown
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Figure 3.1: Map of monitoring wells (circles) and water-supply wells (stars) included
in the analysis. Locations of newly completed and planned monitoring wells are
indicated by open diamonds.

calculations performed within the domain of a valid Cooper-Jacob approximation is

generally increasing as longer time intervals since the initiation of pumping perturba-

tions are included in the superposed drawdown calculation. By inspecting Figure 3.4,

it is apparent that the R-15 superposed drawdown calculations are dominated by

late-time drawdown data, while R-11 and R-28 are still dominated by calculations

outside of the Cooper-Jacob domain. We can therefore conclude that it is necessary

to consider the early-time pre-stabilization of the hydrogeologic parameters, espe-

cially for R-11 and R-28. This could have also been evaluated as the percentage

of superposed drawdown calculated within the Cooper-Jacob domain, however, this

would apply heavier weight to the calculations within the Cooper-Jacob domain, as
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larger drawdowns occur at later times. As each component of the superposed draw-

down calculation will affect the parameter estimation, irregardless of the magnitude,

basing the percentage on the number of superposed calculations is appropriate.

Figure 3.5 presents the estimated transmissivity functions (equation (3.9)) for

R-11, R-15, and R-28. The functions are plotted for values slightly greater than four

years to include parameter values used in the model runs. It is apparent that for all

three monitoring wells, T̂ (t) estimates are converging towards a single value, Ta, as

constrained by the inversion. Figure 3.6 presents the estimated storativity functions

(equation (3.10)) on a single plot. It is apparent that in general the storativity

functions converge quickly to distinct values.

Table 3.1 presents the estimated parameters associated with the transmissivity

and storativity functions plotted in Figures 3.5 and 3.6. As the apparent transmissiv-

ity and storativity values are equivalent to late-time Cooper-Jacob estimates, they

can be interpreted by methods discussed in Meier et al. (1998) and Sanchez-Vila

et al. (1999). As constrained in the inversion, all transmissivity functions converge

to a single value (1 × 103.57 m/d), which can be considered a first estimate of Teff

(Meier et al., 1998; Sanchez-Vila et al., 1999; Wu et al., 2005). This value is simi-

lar to the average of the transmissivity estimates (1 × 103.5 m/d) obtained in Harp

and Vesselinov (2009). While previous pumping tests were performed at PM-2 and

PM-4 (McLin, 2005, 2006b), cross-hole transmissivity estimates were not obtained as

pressure influence was not observed at R-11, R-15, or R-28 during these tests. This

may have been due to the duration of the PM-2 and PM-4 pumping tests, 25 and 21

days, respectively, and the shallow penetration of the monitoring wells compared to

the deeper penetration of the pumping wells considering the leaky-confined nature

of this aquifer. As a result, we are unable to compare our parameter estimates with

cross-hole pumping test estimates.

Values of Sa indicate the level of connectivity between the monitoring and pump-
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ing well (Meier et al., 1998; Sanchez-Vila et al., 1999). Large/small values of Sa

indicate a connected path or region of relatively low/high transmissivity between

the monitoring and pumping wells. This is evaluated further by calculating the time

of arrival of the cone of depression at the monitoring well, t0, from the Cooper-Jacob

storativity estimation equation, also tabulated in Table 3.1. Values of t0 provide

indications of interwell connectivity that are not normalized by interwell distance.

These values indicate the quick pressure response of R-15 to PM-2, PM-4, and PM-5,

further demonstrating the high level of connectivity between these wells.

As expected, we find values of Sa to be more similar for R-11 and R-28 than for

R-15 given the relative locations of these monitoring wells. This is consistent with

the findings of Harp and Vesselinov (2009), based on an evaluation of constant cross-

hole parameter estimates from a related approach. Figure 3.6 and Table 3.1 indicate

that the highest connectivity is between R-15 and PM-2, and R-15 and PM-4. This

is similar to the findings of Harp and Vesselinov (2009), where high connectivity

paths were indicated between the monitoring wells and PM-2. Values of Sa for PM-

3 decrease with distance, suggesting that connectivity increases with distance in a

generally westerly direction from PM-3. A map with schematic representations of

these conclusions is presented in Figure 3.7.

A decomposition of the pressure influences from the pumping wells at the mon-

itoring wells also resulted from this research. These results are similar to the de-

composition analysis of this dataset presented in Harp and Vesselinov (2009), and

therefore are not presented.

3.6 Conclusions

This paper demonstrates an approach to obtain late-time hydrogeologic property

inferences consistent with the Cooper-Jacob method from transient datasets by uti-
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lizing exponential parameter functions. The methodology is motivated by numeri-

cal experiments by Wu et al. (2005) and analysis of field-collected hydrographs by

Straface et al. (2007). The hydrogeologic inferences are evaluated based on a large

body of research into the meaning of late-time hydrogeologic property inferences

(Butler , 1990; Neuman, 1990; Meier et al., 1998; Sanchez-Vila et al., 1999; Neuman

and Di Federico, 2003; Wu et al., 2005; Knudby and Carrera, 2006).

Utilizing this approach on a dataset from the LANL site has indicated that ade-

quate water-level calibrations can be achieved within the constraints of the inversion:

a single value of Ta is applied to all pumping/monitoring well pairs; T̂ (t) decreases

towards a constant value (cT > 0); Sa is allowed to take distinct values and is allowed

to increase or decrease towards convergent values. Ta provides an initial estimate

of the effective transmissivity at the support scale characterized by the distances

between the pumping and observation wells (Neuman, 1990; Neuman and Di Fed-

erico, 2003). In accordance with Meier et al. (1998), Sanchez-Vila et al. (1999), and

Knudby and Carrera (2006), Sa is recognized as an indicator of interwell connectivity,

indicating the degree in which pumping and monitoring well pairs are hydraulically

connected.
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Figure 3.3: Top plot: calibrated (black) and observed (gray) water elevations for R-
11 model inversion. Bottom plots: simulated drawdown contributions (black lines)
from individual pumping wells, plotted with their associated pumping record (gray
bars), and temporal trend required to reproduce the total predicted drawdown at
R-11.
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increases.
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in the analysis, along with symbols to illustrate the analysis conclusions. Dashed
lines indicate locations of apparent hydrogeologic barriers, separating O-4 and PM-
1 from the monitoring wells. The arrow size indicates the level of connectivity;
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Chapter 4

Aquifer Structure Identification

Using Stochastic Inversion1

Abstract

This study presents an inverse method for aquifer structure identification using sparse

geophysical and hydraulic response data. The method is based on updating struc-

ture parameters from a transition probability model to iteratively modify the aquifer

structure and parameter zonation. The method is extended to the adaptive parame-

terization of facies hydraulic parameters by including these parameters as optimiza-

tion variables. The stochastic nature of the statistical structure parameters leads

to nonconvex objective functions. A multi-method genetically adaptive evolutionary

approach (AMALGAM-SO) was selected to perform the inversion given its search

1An edited version of this paper was published by AGU. Copyright 2008 American

Geophysical Union: Harp D.R., Z. Dai, A.V. Wolfberg, J.A. Vrugt, B.A. Robinson, and

V.V. Vesselinov (2008), Aquifer Structure Identification Using Stochastic Inversion, Geo-

physical Research Letters, 35, L08404, doi:10.1029/2008GL033585. To view the published

open abstract, go to http://dx.doi.org and enter the DOI.
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capabilities. Results are obtained as a probabilistic assessment of facies distribution

based on indicator cokriging simulation of the optimized structural parameters. The

method is illustrated by estimating the structure and facies hydraulic parameters of

a synthetic example with a transient hydraulic response.

4.1 Introduction

Determining field-scale parameters in sufficient detail to capture aquifer hetero-

geneities is one of the greatest challenges for predicting flow and contaminant trans-

port in large-scale subsurface systems. Uncertainty in the form of conceptual model

bias can be introduced in modeling groundwater flow and contaminant transport

when aquifer structure is fixed based on sparse or incomplete geophysical data (Chen

and Rubin, 2003). Once the structure has been identified in this way, focus is placed

on model calibration of zoned parameters through parameter estimation. This type

of inverse method has been applied in many instances to estimate flow and trans-

port parameters at various spatial scales (e.g. Cooley (1983); Carrera and Neuman

(1986); Doherty (1994); Kitanidis (1996); Dai and Samper (2006)). Ye et al. (2004)

indicate that using a predefined, deterministic aquifer structure can introduce larger

bias and uncertainty into a model than an inappropriate choice of facies hydraulic

parameters. Therefore, it may be more appropriate to assume reasonable values for

hydraulic parameters (e.g., permeabilities), and allow the geometry of the aquifer

structure to be evaluated during the inverse process.

Given uncertainty in both structure and parameters, Sun (2005) suggested “adap-

tive parameterization” to couple structure identification and parameter estimation

in contaminant transport model calibration. This provides a more complete inver-

sion of the model, allowing the optimization to explore combinations of structure

geometry and hydraulic parameters. Sun and Yeh (1985) considered this approach
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theoretically, posing the problem as a combinatorial optimization problem. Eppstein

and Dougherty (1996) modified the extended Kalman filter to dynamically determine

and refine structure. Heredia et al. (2000) proposed the refinement of an initial pat-

tern using available prior information. Ben Ameur et al. (2002) presented a method

to adaptively identify structure by iteratively determining whether a zone should be

refined or coarsened. The use of Voronoi tessellation and Delaunay triangulation

in a natural neighbor interpolation was proposed by Tsai et al. (2005) to perform

adaptive parametrization. Lu and Robinson (2006) presented the level set method

for identifying zones of high or low permeability by updating level set functions

used to characterize zonal boundaries. The previously mentioned studies usually

assume that the aquifer parameter zonations are randomly distributed. However,

recent geological and geostatistical studies indicate that aquifer facies distributions

are spatially correlated (Carle and Fogg , 1997; Ritzi et al., 2004).

We propose a structure identification method that accounts for spatial correlation

by means of a stochastic inversion of a transition probability model, in an analytical

framework (Dai et al., 2007), describing facies volume proportions, mean lengths,

and juxtapositioning. The transition probability model provides a nonparametric,

Markov chain approach to indicator geostatistics that is well suited to applications

with sparse information (Carle and Fogg , 1997). The analytical solution allows struc-

ture identification to be cast as a conventional inverse modeling problem, using sta-

tistical structure parameters (such as facies volume proportions and mean lengths)

to iteratively update the transition probability model. The facies proportions and

mean lengths define the transition probability matrix. Indicator cokriging simulation

produces the aquifer facies distributions, ensuring the statistical properties defined

by the transition probability model are maintained. In this way, the aquifer structure

is updated in the inversion, while the information provided by the conditional data

(the sparse geological and geophysical data used to describe the facies distribution

in boreholes) is honored. The optimization of the model inversion is performed using
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a genetically-adaptive multimethod search algorithm called AMALGAM-SO. This

method was chosen as it combines the strengths of several different evolutionary

search approaches and has been shown to achieve good efficiency across a range of

difficult synthetic benchmark problems (Vrugt et al., 2008). While other optimiza-

tion algorithms could potentially be implemented to drive the stochastic inversion,

AMALGAM-SO was selected to illustrate the stochastic inversion methodology, with-

out comparing its performance to other optimization algorithms. This decision was

partly based on the assumption that, although an analytical solution of the transi-

tion probability model is utilized here, gradient-based methods would still have dif-

ficulty given the stochastic nature of the structural variables, which serve as inputs

to the stochastic simulation. The analytical solution of the transition probability

model provides the computational efficiency necessary for the large number of model

evaluations required by the stochastic inversion. The combination of the analytical

solution of the transition probability model and AMALGAM-SO provides a robust,

computationally efficient model inversion with the ability to deal with complex fit-

ness response surfaces. While in the past, the stochastic inversion described here

was not possible due to computational and algorithmic limitations, we show that

through the use of modern computers and analytically derived structure parameters

(Dai et al., 2007), this type of inversion can be realized.

4.2 Facies Transition Probability Model

Transition probability models have been used by geologists to describe sediment

facies distributions for a few decades [e.g. Agterberg (1974); Carle and Fogg (1997)].

Recently, Ritzi et al. (2004) and Dai et al. (2005) incorporated the work of Carle and

Fogg (1997) to relate the structure of the indicator random variables to proportions,

geometry, and pattern of the aquifer facies. Dai et al. (2005) derived an analytical
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solution for the transition probability model using two assumptions: (1) the cross-

transition probabilities depend on facies volumetric proportions only, and (2) the

juxtapositional tendencies between categories k and j are assumed symmetric in the

direction φ. This solution can be expressed as

tki(hφ) = pi + (δki − pi)e
−

hφ
λI (k, i = 1, N), (4.1)

where tki(hφ) is the probability of transitioning from facies k to facies i in lag distance

h in direction φ, pi is the proportion of facies i, δki is the Kronecker delta, λI is the

indicator correlation length, and N is the number of facies. By taking the partial

derivative of the auto-transition probability (equation (4.1) with k = i) with respect

to h, the mean length (Lk,φ) can be related to λI as (Dai et al., 2007)

∂tkk(hφ)

∂hφ

∣∣∣∣
hφ→0+

= − 1

λI
(1− pk) = − 1

Lk,φ
. (4.2)

Equation (4.2) defines the relationship between indicator correlation length and the

statistical parameters of facies proportion and mean lengths. Using equations (4.1)

and (4.2), the continuous-lag transition probability matrix T in direction φ can be

defined by the facies proportions and mean lengths as T(hφ) = (tki(hφ))N×N . The

transition probability matrix can be used for indicator simulation of aquifer facies

using the indicator cokriging method (Carle and Fogg , 1997).

4.3 Stochastic Inverse Method

The transition probability model establishes a bridge between aquifer statistical pa-

rameters and aquifer facies distributions. By estimating these statistical parameters,
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we are able to formulate a model inversion to identify aquifer structure. A flow

diagram of the stochastic inversion method is presented in Figure 4.1.

The transition probability model is updated by calculating the transition proba-

bility matrix, using values of facies lengths and proportions generated as offspring of

the previous generation of solutions. The structure is updated by indicator cokriging

simulation using the updated transition probability model, where a single realiza-

tion is used to represent the collection of equally probable realizations of the given

transition probability model. Updated facies hydraulic parameters are applied to the

structure zonation. Flow simulation is performed using the Finite Element Heat and

Mass transfer (FEHM) code (Zyvoloski et al., 1997), employing observed or assumed

flow and boundary conditions, producing simulated transient head data.

The inverse modeling is performed with the goal of minimizing residuals of hy-

draulic head, where the objective function, J , can be defined as

J = min
β∈B

M∑
i=1

(ĥi(β)− hi)2, (4.3)

where ĥ(β) is an estimated head using parameter values in the vector β constrained

by B, which is defined by the upper and lower parameter bounds, where B ⊆ <p,

p being the number of parameters, h is a measured head, and M is the number of

measured heads.

Equation (4.3) defines the fitness function optimized with AMALGAM-SO (Vrugt

et al., 2008). In general, AMALGAM-SO allocates the number of offspring at each

population size, N l = {N l
1, . . . , N

l
q}, to q algorithms using a weighting scheme based

on each algorithm’s previous performance, where l is the population size index. In

this way, AMALGAM-SO is able to exploit the individual strengths of selected algo-

rithms at various stages of the optimization. AMALGAM-SO employs a population
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incrementing restart strategy as its basis for collecting algorithm performance infor-

mation used to update the offspring allocation (Vrugt et al., 2008). This method

has the advantage of combining individual algorithm strengths by allowing algo-

rithms to exchange search information, and by adaptively distributing preference to

algorithms exhibiting superior performance. In the current study, Covariance Ma-

trix Adaptation (CMA), Genetic Algorithm (GA), and Particle Swarm Optimization

(PSO) strategies were selected for the q = 3 optimization algorithms, as this combi-

nation has shown improved performance over other combinations (Vrugt et al., 2008).

The sequence of population sizes used in the current research was l = 5, 10, 15, 20.

For more details on the settings of AMALGAM-SO, refer to Vrugt et al. (2008).

The uncertainty associated with the resulting optimized transition probability

model is evaluated using conditional simulation and presented as the final result in

the form of a structural probability map, which in the present case defines the shape

and location of clay facies within a background of sand. A map of clay probability

is produced by approximating the one-location marginal probabilities for clay by

the sample mean of the clay indicator spatial function Iclay(x) with respect to the

optimized structure parameters as

pclay(x) = Pr{Iclay(x) = 1} =
1

R

R∑
i=1

Iclay,i(x), (4.4)

where R is the number of realizations.

4.4 Synthetic Example

The stochastic inversion method is illustrated by means of a synthetic example of a

confined aquifer with conditional geophysical data and transient head measurements
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from a synthetic pump test. The distribution of clay and sand in cross-section, where

clay facies are embedded within a background of sand, is illustrated in Figure 4.2.

In this example, the permeability of sand is 10−10m2 and the permeability of clay

is 10−13m2. The synthetic structure was generated by conditional simulation using

prespecified structure parameters. The proportion of sand (ps) in the synthetic

example is set at 0.7, while the proportion of clay (pc) is 0.3. The mean lengths of the

clay in the x (length) and y (thickness) directions are 300m and 20m, respectively.

Conditional data, which comprises the indicator data of the facies distribution, is

collected as continuous bore log data from observation wells defined along the transect

at x = 0, 250, 500, 750, and 1000m indicated by the vertical lines in Figure 4.2. The

well at x = 500m is set as the pumping well with a constant flow rate ofQ = 10.2kg/s.

The boundaries at x = 0m and x = 1000m are set as constant head boundaries with

heads of 100m and 95m, respectively. The top and bottom boundaries at y = 0m

and y = 200m are no-flow boundaries for this confined model formulation. Measured

transient heads were collected at 20 discrete times over a one year simulation, where

the size of the time step increased over the simulation. The measurements were

collected at 8 locations along the three central wells indicated by white dots in

Figure 4.2, where it has been assumed that the pumping well has the ability to

measure pressures while pumping.

This synthetic example was constructed to emulate typical applications encoun-

tered in practice, while still allowing a complete evaluation of the robustness and

efficiency of the stochastic inversion with respect to a known structure and parame-

terization.
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4.5 Results and Discussion

Figure 4.3(a) presents a plot of the objective function as a function of the number

of model evaluations, where it is apparent by the step-like decreases in the objective

function that AMALGAM-SO continues to locate improved solutions throughout

the inversion. Figures 4.3(b) and 4.3(c) present the distributions resulting at the

lower and upper bounds of the parameters, respectively, defined in the first two

rows of Table 4.1. These two scenarios represent two points along the convex hull

of the solution space B ⊆ <p that the stochastic inversion is required to explore.

Inspection of these two plots indicates the diversity of structures considered in the

inversion. Figures 4.3(d), 4.3(e), and 4.3(f) present distributions at key points during

the progression of the inversion, while Figure 4.3(g) presents the distribution of the

optimal parameters. By inspecting these distributions, the transformation towards

the synthetic distribution is apparent. These stages of the optimization are indicated

in Figure 4.3(a) by their subfigure letter.

Corresponding tabular information on these distributions, and the synthetic dis-

tribution (Figure 4.2), are presented in Table 4.1, including iteration number, pa-

rameter values, and objective function values. By inspecting the decrease of the

objective function plotted in Figure 4.3(a) and listed in Table 4.1, it is apparent that

dramatic improvements are made during the course of the optimization, resulting in

an extremely small objective function value for the optimized solution. This indicates

that an estimate of the aquifer structure has been obtained that closely mimics the

hydraulic response of the aquifer. Although an excellent fit to the observed aquifer

response has been achieved, it is apparent in Table 4.1 that there is some discrepancy

between the parameters used to generate the synthetic aquifer response, and those

estimated with AMALGAM-SO. This is explained by the stochastic nature of this

inverse problem. Multiple realizations for the same parameter combination result in

widely varying values of the objective function. For instance, when evaluating 100
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realizations generated using the optimized parameters, objective function values are

obtained that vary between 0.5 and 200, with one outlier around 600. The standard

deviation of these objective function values is approximately 68.9. This stochasticity

allows different parameter combinations to generate nearly similar responses of the

aquifer. The interest is therefore not so much in the exact values of the parameters,

but on the optimized structure that has been identified. The latter has been success-

fully achieved, considering the very small value of the objective function, and the

close similarity between the true and inversely estimated facies distribution. Fur-

thermore, 95.5% of the optimized facies grid is assigned to the correct facies with

respect to the synthetic example.

The final result is presented in a probability map of clay facies distribution in

Figure 4.3(h) where the estimated one-location marginal probabilities of clay (equa-

tion (4.4)) were calculated from 100 realizations based on the optimized structure

parameters. While this does provide the uncertainty of the structure based on the

optimized transition probability model, it does not indicate the uncertainty of the

structure with respect to the aquifer response. Future work will expand this uncer-

tainty analysis by identifying the set of plausible structures with regard to aquifer

response. It is apparent from a comparison of the true distribution (Figure 4.2) and

the resulting clay probability map (Figure 4.3(h)) that the large structural features

are captured in the analysis. These results demonstrate that the stochastic inversion

is able to reduce the objective function to a reasonably low value (indicating that

the response of the aquifer is modeled accurately) and that the large structural fea-

tures of the aquifer are identified adequately given the limited amount of information

provided in the synthetic data.
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4.6 Conclusions

A method has been presented for aquifer structure identification using stochastic in-

version. The method is based on updating structure parameters of a facies transition

probability model to identify aquifer structure. This approach allows the problem to

be formulated in an inverse modeling framework that can be extended to adaptive

parameterization of facies hydraulic parameters by taking advantage of the efficiency

in model evaluations with the analytical solution of the facies transition probability

model. The inversion is driven by a multi-method genetically adaptive evolutionary

optimization approach (Vrugt et al., 2008), providing a robust inversion capable of

traversing the complicated fitness landscape. Results are obtained as a probabilistic

estimate of the existence of facies at a particular location given the optimized sta-

tistical structure parameters. This method can be applied to pump-test datasets,

where some geophysical data are available, to provide probabilistic estimates of the

facies distributions based on the hydraulic responses of the aquifer.
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Figure 4.1: Stochastic inversion flow diagram.
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Figure 4.2: Synthetic distribution where light grey represents sand and dark grey
represents clay. The black vertical lines indicate observation and pumping wells,
as well as locations where facies indicator data has been collected. The white dots
indicate head observation locations.
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Figure 4.3: A plot of the objective function versus the number of model evaluations is
presented in subfigure (a). The aquifer structure as different stages of the stochastic
inversion are presented in subfigures (b) through (g), where their corresponding
locations are noted in subfigure (a). Refer to Table 4.1 for detailed information on
these aquifer structures. Subfigure (h) presents the clay probability map produced
by stochastic simulation of the optimized structural parameters.
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Chapter 5

Stochastic Inverse Method for

Estimation of Geostatistical

Representation of Hydrogeologic

Stratigraphy Using Borehole Logs

and Pressure Observations1

Abstract

An approach is presented for identifying statistical characteristics of stratigraphies

from borehole and hydraulic data. The approach employs a Markov-chain based geo-

statistical framework in a stochastic inversion. Borehole data provide information on

1Submitted for publication in Stochastic Environmental Research and Risk Assessment:

Harp, D., V.V. Vesselinov (2009), Stochastic Inverse Method for Estimation of Geosta-

tistical Representation of Hydrogeologic Stratigraphy Using Borehole Logs and Pressure

Observations, Manuscript submitted for publication.
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the stratigraphy while pressure and flux data provide information on the hydraulic

performance of the medium. The use of Markov-chain based geostatistics as opposed

to covariance-based geostatistics can provide a more easily interpreted model geo-

logically and geometrically. The approach hinges on the use of mean facies lengths

(negative inverse auto-transition rates) and mean transition lengths (inverse cross-

transition rates) as adjustable parameters in the stochastic inversion. Along with

an unconstrained Markov-chain model, simplifying constraints to the Markov-chain

model, including (1) proportionally random and (2) symmetric spatial correlations,

are evaluated in the stochastic inversion. Sensitivity analyses indicate that the sim-

plifying constraints can facilitate the inversion at the cost of spatial correlation model

generality. Inverse analyses demonstrate the feasibility of this approach, indicating

that despite some low parameter sensitivities, all adjustable parameters do converge

towards their “true” values during the inversions for all models (proportionally ran-

dom, symmetric, and unconstrained).

5.1 Introduction

Aquifers are often comprised of stratigraphic units with distinct geologic properties

and compositions. In cases where the effective hydrogeologic properties of these

stratigraphic units are distinct as well (e.g. LaBolle and Fogg (2001)), information

pertaining to the stratigraphy can be inferred from the hydrogeologic behavior of the

aquifer. If the stratigraphy is known at some locations (e.g. based on borehole logs

or outcrops), this information can be used to constrain the set of possible aquifer

structures using various geostatistical techniques (e.g. covariance-based (Deutsch and

Journel , 1992) and Markov-chain-based (Carle and Fogg , 1996) indicator co-kriging).

However, given the typically sparse hydraulic and geologic observations available

from most aquifers, the number of possible structures concurrent with the available
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data and the applied geostatistical model is generally large. Therefore, estimation

of the stratigraphy must be posed in a stochastic framework. A set of geologically-

equally-probable stratigraphies can be represented by a single geostatistical model

of spatial variability. This allows the problem of aquifer structure identification to

be simplified to the identification of a set of structures exhibiting highly-probable

hydraulic characteristics conditioned on the available data.

In order to model the aquifer structure as a composition of distinct hydrostrati-

graphic units, we employ a multidimensional continuous-lag Markov-chain model of

the spatial variability of categorical variables. In this case, aquifer heterogeneity is

assumed to be composed of spatially-discontinuous structures characterized by dis-

tinct hydrostratigraphic units with uniform properties. The Markov-chain model

is represented in a transition-probability framework describing the auto- and cross-

transition probabilities of the categorical variables at specific lag distances (Carle

and Fogg , 1997).

This approach contrasts the use of geostatistical techniques that model hydroge-

ologic heterogeneity as spatially continuous. This continuous approach has proven

to be useful in many applications (de Marsily et al., 1984; LeVenue et al., 1995; Ra-

marao et al., 1995; Vesselinov et al., 2001; Doherty , 2003). We propose that these

two approaches are each well suited for different hydrogeologic scenarios; distinct

hydrostratigraphic units with contrasting hydrogeologic properties in one case and

smooth continuous transitions in the aquifer heterogeneity in the other. For cases in

between these two extremes, hybrids of these approaches have been proposed (Gégo

et al., 2001; Lu and Zhang , 2002).

A given geostatistical model defines spatial characteristics of a stratigraphy using

statistical parameters. Therefore, any geostatistical model defines an infinite set of

stratigraphies exhibiting defined statistical spatial characteristics. Equally-probable

realizations of this infinite set of stratigraphies can be generated using conditional
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simulation. While the equally-probable realizations of a geostatistical model may

exhibit deviations from the defined spatial characteristics, statistical inference of a

given characteristic are expected to converge to the defined parameter values at a

sufficiently large set of realizations. Similarly, we demonstrate that convergent sta-

tistical inferences can be obtained that define the hydraulic response of an aquifer

given a prescribed geostatistical model. This is fundamental to the structure iden-

tification approach presented here, providing a necessary link between stratigraphic

spatial correlation and aquifer hydraulic response. We utilize this link to calibrate

observed hydraulic responses to geostatistically inferred hydraulic responses.

If the available geological data from an aquifer is obtained from vertical boreholes,

characteristics of the vertical spatial correlation of stratigraphic units (e.g. juxtaposi-

tional tendencies and mean lengths) can be estimated directly (Zhang and Li , 2008).

However, given the sparse and discontinuous nature of such data in the horizon-

tal plane, direct computation of the horizontal juxtapositional tendencies and mean

lengths is not always possible (Weissmann and Fogg , 1999). While mean lengths

can be estimated indirectly by inference based on discontinuous geologic observa-

tions, these estimates can be highly uncertain. Recognizing this situation, we have

conducted an analysis assuming that the vertical spatial correlation model is known,

focusing on demonstrating the ability to complete the spatial-correlation model by

inferring the horizontal spatial correlation using hydraulic data.

Carle et al. (1998) demonstrate the use of a trial-and-error approach to mod-

ify cross-transition rates for horizontal Markov-chain spatial correlation models to

obtain geologically-plausible juxtapositional relationships. The calibration of a con-

ditional Markov-chain model to hydraulic data was proposed by Zhenxue Dai in a

personal communication in 2007. This proposal provided the impetus for the re-

search presented in Harp et al. (2008), where a two-dimensional two-stratigraphic

unit aquifer was analyzed utilizing the concept of a representative realization of a
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spatial correlation model. Harp et al. (2008) inverted structural parameters from a

two-dimensional two-stratigraphic unit Markov-chain model (e.g. facies mean lengths

and volumetric facies proportions) obtaining head predictions from a single realiza-

tion for each Markov-chain model. It was assumed that the hydraulic response

from the realization is representative of the hydraulic response for the infinite set of

geologically-equally-probable realizations for the Markov-chain model.

In contrast, the current research considers a three-dimensional three-stratigraphic

unit aquifer utilizing the concept of representative hydraulic sample statistics of a

spatial correlation model. In this case, a flow simulation is performed on a con-

vergent set of geologically-equally-probable stratigraphies from the current Markov-

chain model and averaging is performed on the model-predicted hydraulic charac-

teristics (i.e. pressures and fluxes). This provides a true characteristic hydraulic

response of the current Markov-chain model, improving the inversion performance

as averaging the hydraulic response of a set realizations provides smoother variations

with changes in structural parameters than the use of a single representative realiza-

tion. This paper demonstrates the feasibility of the proposed structure identification

approach utilizing a three-dimensional three-stratigraphic unit synthetic model by

(1) a sensitivity analysis of the adjustable parameters defining spatial correlation

and hydraulic properties and (2) example model inversions demonstrating the per-

formance of a gradient-based (Levenberg-Marquardt) optimization on this inversion

framework.
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5.2 Theoretical Discussion of Stochastic Repre-

sentations of Stratigraphy

Boolean models present the earliest approach for modeling discontinuous spatial vari-

ability (Matheron, 1967), providing the ability to model adjacently-located distinct

stratigraphic units. While Boolean models presented an advantage over continuous

geostatistical approaches in considering aquifer connectivity, it is difficult to honor

conditional data in this framework and the Boolean object geometries must be de-

fined a priori (de Marsily et al., 2005). The introduction of the indicator kriging

approach by Journel (1983) provided an alternative to Boolean models, modeling

distinct stratigraphic units using indicator functions in a geostatistical framework.

Indicator kriging is easily conditioned to observed geologic data and produces more

realistic structures based on an inferred or imposed covariance model as opposed to

assumed geometric objects utilized in Boolean models.

Carle and Fogg (1997) extended 1-D Markov-chain models, previously demon-

strated to successfully model embedded occurrences of individual strata (Vistelius ,

1949), to multidimensional continuous-lag Markov-chain models by interpolation of

transition-rate matrices defining the 1-D Markov-chain models. The multi-dimensional

Markov-chain model provides an alternative representation of spatial correlation to

the indicator cross-covariance (or cross-variogram) conventionally used in indicator

geostatistics.

Transition probabilities can be inferred from a sufficient number of geologic ob-

servations by determining the relative frequency of stratigraphic unit transitions at

various lag distances. A transition-probability based representation of a Markov-

chain model can then be empirically derived by determining transition rates that

optimally relate transition probabilities to distance (h [L]) according to the following
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matrix exponential functional form:

T(h) = exp(Rh), (5.1)

where T(h) is a transition-probability matrix defined as T(h) = (tij(h)), i, j =

1, . . . , N and R is a transition-rate matrix defined as R = (rij), i, j = 1, . . . , N ,

where N is the number of mutually-exclusive exhaustively-defined stratigraphic units

(categories) considered in the Markov-chain model. Equation (5.1) cannot be evalu-

ated component-wise (i.e. tij(h) 6= exp(rijh)), but can be exactly determined using

an eigensystem analysis as

T(h) =
N∑
k=1

Zk exp(λkh) (5.2)

where λk is the kth eigenvalue and Zk is the kth spectral component matrix of R

(Carle, 1999) (alternatively, equation (5.1) could be approximated using the infinite

series definition of an exponential). In this way, individual transition probability

functions can be empirically derived by fitting measured transition probabilities at

discrete lag distances to the following functional form:

tij(h) =
N∑
k=1

zij,k exp(λkh), (5.3)

where zij,k is the ijth component of the kth spectral component matrix.

By inspecting equation (5.3), it is apparent that the functional form for the

transition-probability is a summation of N exponentials. As a result, a Markov-chain

model is not restricted to purely “exponential-looking” spatial correlation functions,

allowing the modeling of complex juxtapositional patterns.
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This empirical derivation of a spatial-correlation model is analogous to the infer-

ence of auto- and cross-variograms in covariance-based indicator geostatistics, dif-

fering in that a variogram relates a statistical tendency of deviation in property or

indicator values to separation distance, while the Markov-chain model relates prob-

abilistic stratigraphic juxtapositioning to separation distance (i.e. relative-locational

tendencies of stratigraphic units) (Carle and Fogg , 1996). Therefore, a Markov-chain

model can provide a more interpretable stochastic representation of a stratigraphic

distribution than the covariance-based approach.

Similar to covariance-based indicator geostatistics, tranisition-probability geo-

statistics are based on an assumption of stationarity. This implies that facies volu-

metric proportions should be spatially invariant. As such, this approach is best suited

to modeling aquifers, or portions of aquifers, which have developed from processes

that result in stationary stratigraphies, such as depositional processes.

As the Markov-chain approach directly models juxtapositional tendencies, asym-

metric spatial correlations, such as fining or coarsening cycles, are easily represented.

Additionally, given the necessary adherence to laws of probability concerning the

stratigraphic transitions requires the simultaneous calibration of the components of

the full transition-probability matrix, ensuring that the Markov-chain-model is inter-

nally consistent. This is not necessarily the case for the covariance-based approach

as individual auto- and cross-variograms are calibrated independently (de Marsily

et al., 2005).

Considering the previous discussion, the Markov-chain model presents certain

advantages to modeling categorical spatial variability, while still being amenable

to implementation into an indicator co-kriging interpolation scheme. While much

effort has been focused on developing inversion strategies for covariance-based spatial-

correlation models, little has been applied to the Markov-chain based approach (e.g.

Harp et al. (2008)). This paper presents a strategy that implements a Markov-chain
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spatial-correlation framework into a stochastic inversion.

5.3 Methodology

Computation of the model evaluated by the stochastic inverse method presented

here requires a multi-step approach: (1) generation of multiple geologically-equally-

probable realizations of hydrostratigraphy from a geostatistical model, (2) flow simu-

lation on the hydrostratigraphic fields assigning distinct uniform hydraulic properties

to the stratigraphic units, and (3) inference of hydraulic-response characteristics of

the geostatistical model. These steps are discussed in detail below along with a

discussion of the applied stochastic inverse approach.

5.3.1 Generation of Stratigraphic Realizations of a Markov-

Chain-Based Geostatistical Model

A 1-D continuous-lag Markov-chain model can be represented by a transition-rate

matrix (introduced in equation (5.1)) composed of auto- and cross-transition rates

as

R = (rij), i, j = 1, . . . , N, (5.4)

where rij is an auto-transition rate when i = j and a cross-transition rate when i 6= j.

As cross-transition rates are not as readily inferred from geologic observations as

cross-transition probabilities (Carle and Fogg , 1997), it is generally desirable to com-

pute the transition-rate matrix from an inferred discrete-lag transition-probability
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matrix T(∆h) as

R =
ln(T(∆h))

∆h
, (5.5)

where ∆h is a discrete lag (Carle and Fogg , 1997). If a stratigraphic pattern has

been identified in the Markov-chain model (i.e. in the transition probabilities), similar

results will be obtained for arbitrary selections of ∆h. As presented in equation (5.1),

the transition-rate matrix defines the continuous-lag transition-probability matrix

T(h).

Adherence to probability theory constrains the Markov-chain model as

0 ≤ tij(h) ≤ 1 ∀i, j; (5.6)

N∑
i=1

pi = 1; (5.7)

N∑
j=1

tij(h) = 1 ∀i; (5.8)

N∑
i=1

pitij(h) = pj ∀j, (5.9)

where pi is the one-location marginal probability or volumetric proportion of the ith

stratigraphic unit, commonly referred to simply as the proportion. Equation (5.6)
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ensures that t(h) remains within the bounds of a probability measure. Equation (5.7)

ensures that categories are mutually exclusive and exhaustively defined. Equa-

tion (5.8) indicates that an auto- or cross-transition must occur at lag h. Equa-

tion (5.9) requires that the summation of the probabilities of categories transitioning

to the jth category, weighted by their respective proportions, must sum to the pro-

portion of the jth category.

Using the definition of a transition rate (Carle and Fogg , 1997),

rij =
∂tij(0)

∂h
∀i, j, (5.10)

inequality (5.6) and equations (5.8) and (5.9) can be expressed as

rii ≤ 0 ∀i and rij ≥ 0 ∀i, j 6= i, (5.11)

N∑
j=1

rij = 0 ∀i, (5.12)

N∑
i=1

pirij = 0 ∀j, (5.13)

respectively.

Adherence to the equations and inequalities numbered (5.6) to (5.13) ensures that

the Markov-chain model is internally consistent and ergodic (i.e. limh→∞ tij(h) = pj

(Ross , 1993)). As a result, the auto- and cross-transition rates associated with one

of the stratigraphic units (i.e. rates along the row and column associated with a
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stratigraphic unit), usually denoted as the background category, can be automati-

cally determined from the other transition rates. Therefore, it is only necessary to

determine (N − 1)2 transition rates to define a transition-probability representation

of a Markov-chain model.

A Markov-chain model can be completely modified by adjusting the transition

rates comprised in a transition-rate matrix R (equation (5.4)). A two-category

Markov-chain model is completely defined by specifying a single transition rate,

assuming that the proportions are available, utilizing equations (5.12) and (5.13) as

R =

 r11 −r11

−p1/p2r11 p1/p2r11

 , (5.14)

where category two has been set as the background and r11 is the only transition

rate requiring specification (alternatively, category one could have been set as the

background, thereby only requiring the specification of r22). As proportions are in-

dependent of direction, proportions may be available with reasonable certainty from

continuous bore logs (assuming stationarity and lack of bias in borehole locations)

for use in directions with discontinuous data. It can be verified that the spatial

correlations represented in equation (5.14) are symmetric and random with respect

to proportions (proportionally random) (as will be discussed in more detail below).

Therefore, a two-category Markov-chain model is necessarily symmetric and propor-

tionally random.

When utilizing Markov-chain models with more than two categories, the spatial

correlations are not required to be symmetric or proportionally random, allowing

more diversity in the geostatistical model. A three-category transition-rate matrix
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(designating category three as background) illustrates this as

R =


r11 r12 −r11 − r12

r21 r22 −r21 − r22

−p1r11 − p2r21 −p1r12 − p2r22 p1(r11 + r12) + p2(r21 + r22)

 , (5.15)

where it is apparent that four transition rates (i.e. r11, r12, r21, and r22) require

specification.

It is possible to impose symmetry and proportional randomness on spatial cor-

relations within a Markov-chain model with greater than two categories either for

reference or when such simplifying assumptions are justified. For instance, for spatial-

correlation symmetry between two categories in a given direction, it is possible to

relate diagonally-opposing cross-transition probabilities of the two categories as

tij(h) =
pj
pi
tji(h). (5.16)

Using equation (5.10), equation (5.16) can be expressed in terms of transition rates

as

rij =
pj
pi
rji. (5.17)

Using the assumption of symmetry between non-background categories, a three-

category Markov-chain model requires the specification of three transition rates

(
∑N−1

i=1 i, in general), reducing the number of rates needing specification by one

(
∑N−2

i=1 i, in general). This is illustrated utilizing equation (5.17) to impose sym-
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metric spatial correlation in the non-background categories (categories 1 and 2) in

equation (5.15) as

R =


r11 r12 −r11 − r12

p1/p2r12 r22 −p1/p2r12 − r22

−p1r11 − p1r12 −p1r12 − p2r22 p1r11 + 2p1r12 + p2r22

 , (5.18)

where it is apparent that it is only necessary to specify r11, r12, and r22 (alternatively,

r21 could have been specified as opposed to r12).

If the occurrence of stratigraphic units is assumed to be proportionally ran-

dom for non-background categories (i.e. spatially uncorrelated juxtapositional ten-

dencies), specification of the Markov-chain model is simplified by assuming that

cross-transition probabilities of the non-background categories can be determined by

weighting the collective probability of any cross-transition (not including an auto-

transition) from a particular category by the relative proportion of the considered

transition category (Carle and Fogg , 1997) as

tij(h) = (1− tii(h))
pj

1− pi
for j 6= i. (5.19)

This can be expressed with respect to transition rates utilizing equation (5.10) as

rij = −rii
pj

1− pi
for j 6= i. (5.20)

The proportionally random assumption for non-background category spatial cor-

relations will reduce the number of transition rates needing specification for a three-

category Markov-chain model to two (N − 1, in general), as it is only necessary
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to specify the auto-transition rates, excluding the background auto-transition rate.

This is illustrated by utilizing equation (5.20) to impose proportional randomness in

the non-background categories in equation (5.15) as

R =


r11 −r11

p2
(1−p1)

r11

(
p2

1−p1 − 1
)

−r22
p1

1−p2 r22 r22

(
p1

1−p2 − 1
)

p1

(
r22

p2
1−p2 − r11

)
p2

(
r11

p1
1−p1 − r22

)
p1r11 + p2r22 − p1p2

(
r11

1−p1 + r22
1−p2

)
 ,

(5.21)

where it is apparent that it is only necessary to specify r11 and r22.

It is important to note that proportional randomness does not imply symmetric

correlations (Turk , 1982). In fact, spatial correlations are proportionally random

and symmetric only if

rii =
1− pi
1− pj

rjj for j 6= i, (5.22)

which can be derived by substituting equation (5.20) in equation (5.17). Equa-

tion (5.22) indicates that symmetric proportionally-random spatial correlations re-

quire that transition rates are related by their volumetric proportions. It can be

demonstrated that this is necessarily the case for a two-category Markov-chain model

as 1−p1 = p2 and 1−p2 = p1. Using these relations for a two-category Markov-chain

model and setting i = 2 and j = 1 in equation (5.22) results in r22 = p1/p2r11, which

is equivalent to the formula for r22 presented in equation (5.14), further demonstrat-

ing that 2-category Markov-chain models are necessarily composed of symmetric and

proportionally random spatial correlations.

As indicated by Dai et al. (2007), the eigenvalues of a symmetric proportionally-

random Markov-chain model will be η1 = 0 and ηi = (p1 − 1)/r11 for i = 2, . . . , N .

103



Chapter 5. Stochastic Inverse Method for Estimation of Stratigraphy

The numerical eigenvalue decomposition utilized in the current research requires the

computation of spectral component matrices Zi (Carle and Fogg , 1997) as

Zi =

∏
j 6=i

(ηjI−R)∏
j 6=i

(ηj − ηi)
∀i = 1, . . . , N (5.23)

where I is the N ×N identity matrix. As noted by Dai et al. (2007), it is apparent

that cases where ηi ≈ ηj will cause numerical instability in equation (5.23). We avoid

symmetric proportionally-random spatial correlations here as this case results in 2

repeating eigenvalues for a three-category Markov-chain model ((N − 1) in general).

Note that this issue is irrelevant for two-category Markov-chain models as there are

no repeating eigenvalues in this case (i.e. N − 1 = 1). Dai et al. (2007) presents an

analytical expression for transitional probability matrix coefficients tij as a function

of the lag distance. This expression is derived under the assumption of symmetric

proportionally-random spatial correlations and can be applied only for this special

case.

To facilitate a geometric representation of structures generated from a Markov-

chain model, facies mean lengths have been defined (Carle and Fogg , 1996) as

li = − 1

rii
=

[
∂tij(0)

∂h

]−1

(5.24)

where li is the facies mean length of the ith stratigraphic unit in a particular direc-

tion. We utilize inverse transition rates as the adjustable parameters in the stochastic

inversion as we have found they scale more appropriately in the inversion than tran-

sition rates. In order to facilitate the use of inverse transition rates, we extend

104



Chapter 5. Stochastic Inverse Method for Estimation of Stratigraphy

equation (5.24) to define mean facies lengths as

lii = − 1

rii
= −

[
∂tii(0)

∂h

]−1

(5.25)

and mean transition lengths as

lij =
1

rij
=

[
∂tij(0)

∂h

]−1

i 6= j (5.26)

where lii is equivalent to li in equation (5.24) and lij is the mean length of the ith

stratigraphic unit between transitions from the ith to the jth stratigraphic unit. To

clarify this linguistically,

lii =
total length of the ith unit

number of transition from the ith unit to any other unit
(5.27)

while

lij =
total length of the ith unit

number of transitions from the ith to the jth unit
i 6= j. (5.28)

In a two-category Markov-chain model, lii will be equivalent to lij as the number

of transitions from the ith unit to any other unit will equal the number of transi-

tions from the ith to jth unit. This is also apparent by inspecting equation (5.14)

considering equations (5.25) and (5.26), which can be expressed as

R =

 −1/l11 1/l11

p1/(p2l11) −p1/(p2l11)

 . (5.29)
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However, in a Markov-chain model with more than two categories, this will not

be the case, as the number of transitions from the ith unit to any other unit will

not equal the number of transitions from the ith to the jth unit. The relationship

between lii and lij can be understood by considering the individual lengths of the

ith unit identified along a column placed end for end, leaving indicators at locations

where transitions occur. The mean facies length will provide the mean length of all

segments, considering all transitions. However, the mean transition length will only

consider the i to j transitions, providing the mean length along the ith unit between

i to j transitions. For further details, refer to Appendix 5.A for derivations of lii and

lij.

Utilizing equations (5.25) and (5.26), we can express equations (5.15), (5.18), and

(5.21) in terms of mean lengths as

R =


− 1
l11

1
l12

1
l11
− 1

l12

1
l21

− 1
l22

1
l22
− 1

l21
p1
l11
− p2

l21

p2
l22
− p1

l12

p1
l12
− p1

l11
+ p2

l21
− p2

l22

 , (5.30)

R =


− 1
l11

1
l12

1
l11
− 1

l12
p1
p2l12

− 1
l22

1
l22
− p1

p2l12
p1
l11
− p1

l12

p2
l22
− p1

l12
− p1
l11

+ 2p1
l12
− p2

l22

 , (5.31)

and

R =


− 1
l11

p2
l11(1−p1)

1
l11

(
1− p2

1−p1

)
p1

l22(1−p2)
− 1
l22

1
l22

(
1− p1

1−p2

)
p1
l11
− p1p2

l22(1−p2)

p2
l22
− p1p2

l11(1−p1)
− p1
l11
− p2

l22
+ p1p2

l11(1−p1)
+ p1p2

l22(1−p2)

 , (5.32)
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respectively.

In the research presented here, we utilize equations (5.30), (5.31), and (5.32) to

demonstrate the performance of the stochastic inverse approach on spatial correla-

tion models with different levels of complexity using mean facies lengths and mean

transition lengths as adjustable parameters.

Geologically-equally-probable realizations of the Markov-chain models are gener-

ated using simulated quenching (Carle et al., 1998) utilizing initial fields (images)

generated by transition-probability based indicator co-kriging. The generation of

initial fields by transition-probability based indicator co-kriging is analogous to the

process of utilizing covariance-based indicator co-kriging in sequential indicator sim-

ulation (SIS) (Deutsch and Journel , 1992), except that the weighting coefficients

are determined using a transition-probability based co-kriging set of equations as

opposed to a covariance-based co-kriging set of equations (Carle, 1999). It is impor-

tant to note that while the methods for computation and inference of a Markov-chain

and indicator cross-covariance models are fundamentally different, Carle and Fogg

(1996) demonstrate that they are related as Cij(h) = pi(tij(h)− pj), where Cij(h) is

the indicator cross-covariance of the ith and jth indicator variables at lag h.

Simulated quenching randomly cycles through the nodes of a kriged field changing

the category of a node if this produces transition probabilities closer to the prescribed

transition probabilities defined by the Markov-chain model. In this way, simulated

quenching can be considered a zero-temperature form of simulated annealing, as the

most desirable category is always selected, as opposed to probabilistically accept-

ing some undesirable category changes (Carle et al., 1998). As the initial fields are

produced by transition-probability based indicator co-kriging, a full implementation

of simulated annealing is not required (Deutsch and Journel , 1992, p. 160). Nodes

with categories specified by conditional data are excluded from consideration. Ad-

herence of the realization to the prescribed Markov-chain model is evaluated using
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an objective function ΦSQ defined as

ΦSQ =
M∑
l=1

N∑
i=1

N∑
j=1

(tij(hl)− t̂ij(hl))2, (5.33)

where M is the number of specified lag vectors, hl is the lth lag vector, tij(hl) is

the transition probability from the ith category to the jth category at lag vector hl

prescribed by the given Markov-chain model, and t̂ij(hl) is the measured transition

probability from the ith to the jth category for the realization at lag vector hl.

Considered lag vectors are selected based on statistical closeness measured using

the determinants of the transition-probability matrices (Carle, 1999). Lag vectors

with greater statistical closeness (associated with transition probability matrices with

greater determinant values) than a prescribed determinant cutoff value are included.

The transition probability at a particular lag vector for a realization can be calculated

as

t̂ij(hl) =
pij(hl)

pi
, (5.34)

where pij(hl) is the two-location joint probability determined by calculating the his-

togram of occurrences of the ith and jth categories separated by hl (Carle and Fogg ,

1996). The simulated quenching is terminated when either the objective function is

decreased below a prescribed value or the prescribed maximum number of iterations

is exceeded. Equally-probable realizations are generated for a given Markov-chain

model by modifying the random number seed used to determine the cycling order of

the nodes in the simulated quenching.
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Figure 5.1: Block-centered finite difference grid with points representing nodes and
lines indicating the connectivity of the grid. Light grey cells denote observation
locations and black cells denote the screen of the pumping well. Constant head
boundaries are indicated on the plan view.

5.3.2 Steady-State Flow Simulation

We evaluate the feasibility of the proposed stochastic inverse approach utilizing three-

dimensional synthetic models. The models contain three substantially-contrasting

stratigraphic units with uniform hydraulic conductivities of K1 = 10−2, K2 = 10−5,

and K3 = 10−8 m/s, where the subscript denotes the stratigraphic unit. Note the

significant contrast in the facies conductivity; such a contrast is expected for facies

with significantly different hydrogeologic properties such as, for example, gravels,

silts, and clays. The flow equations are solved on a block-centered finite-difference

grid, presented in Figure 5.1, using FEHM (Zyvoloski et al., 1997) with 40 × 20 ×

25 nodes in the x, y, and z directions, respectively, where x and y are horizontal

directions and z is vertical. Node spacing is 50 m×50 m×20 m, resulting in model

dimensions of 2000 m×1000 m×500 m in the x, y, and z directions, respectively.
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The flow simulations are performed under steady-state conditions. The flow is

driven by a flow gradient in x direction and a well pumping at the approximate

horizontal center of the model. Constant-head boundaries are prescribed with a

head drop of 2m (hydraulic gradient of i = 0.1%) from x = 0 m to x = 2000 m.

No-flow conditions are assigned for the rest of the model domain boundaries. The

well is located at (x = 1025 m, y = 525 m) with a well screen depth, with respect

to the top of the model, from 320 m to 380 m. The well pumping rate, Qpump, is 0.9

m3/s. Pressure-head data are collected at three depths from 26 observation wells for

a total of 78 observation points within the model domain (refer to Figure 5.1). The

head data is defined as a drawdown from an initial hydrostatic water level (initial

head is hinit = 1000 m everywhere maintaining confined conditions).

It should be noted that since the flow direction is predominantly along the x-axis

and the model domain is elongated along the x-axis (which allows for better spatial

representation of the facies), it can be expected that in the sensitivity and inverse

analyses performed below, the transitional properties of the facies will be better

characterized along the x-axis rather than the y-axis.

5.3.3 Inference of Characteristic Hydraulic Response of a

Geostatistical Model

The proposed approach hinges on the assumption that alternate geostatistical models

of stratigraphy will produce distinct hydraulic-response characteristics in the simu-

lation model. To characterize hydraulic performance of a given Markov-chain model,

we generate a series of geologically-equally-probable realizations and perform flow

simulation on each realization. Then we compute representative statistics of hy-

draulic responses. This requires that the representative statistics converge by a rea-

sonable number of realizations. Given this consideration, we use the sample mean
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of the simulated drawdowns ∆h and the sample median of the model output flux

Qout, defined as Qout = Qin−Qpump (refer to Figure 5.1). We use the sample median

instead of the sample mean for Qout as it converges more quickly due to its insensi-

tivity to outlier values. We found that outlier values are not an issue with the ∆h

values, and that the sample mean converges as fast or faster than the sample median

in most cases for ∆h.

5.3.4 Stochastic Inverse Approach

The goal of the inversion is to identify model parameters that minimize residuals be-

tween calibration targets and model predictions. The predictions are inferred from

a set of equally-probable geostatistical realizations, and include the sample mean of

pressure response at the observation locations (∆h) and the sample median of the

down-gradient model output flux (Qout). The adjustable parameters are the required

mean facies lengths and mean transition lengths (lij,φ i, j = 1, . . . , N , where φ indi-

cates direction) defining the geostatistical properties of the realizations. Therefore,

the inversion attempts to identify the most plausible geostatistical model constrained

by observed geology concurrent with the available hydraulic data. Note that in the

inverse process presented here, we assume that the facies conductivities are perfectly

known.

The stochastic inversion described here utilizes a Levenberg-Marquardt optimiza-

tion strategy (Doherty , 1994) where the objective function is defined as

Φ(θ) =
M∑
i=1

(wi ∗ (si − ŝi(θ)))2, (5.35)

where M is the number of calibration targets (78 mean drawdown observations (∆h)

and the median output flux (Qout)), θ is a vector containing the current adjustable
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parameter values, wi is the weight associated with the ith calibration target, si is

the ith calibration target (observation), and ŝi is the ith predicted value given θ.

Weights are set proportional (scaled between 0 and 1) to the inverse of the variance

of the calibration target values from the n realizations for the “true” parameter values

in order assign greater weight to calibration targets with lower variance, as given a

particular model, pressure responses from certain locations will converge more slowly

than others, thereby introducing greater uncertainty in the model.

In order to easily evaluate the mathematical feasibility of the proposed inversion,

the calibration targets are collected as the sample mean and sample median of the

drawdown predictions and output flux, respectively. This facilitates an analysis of

the feasibility of the approach as a global minimum objective function value of zero

exists at the true parameters. This differs from an actual application, where the

calibration targets will be measurements from a single realization of a random field

and the global minimum cannot be as easily identified.

5.4 Facies Geostatistical Models

A model with proportionally random non-background spatial correlations and a

model with symmetric non-background spatial correlations were developed as “true”

stratigraphic distributions for the sensitivity analyses and model inversion runs. Each

model includes 3 facies. An unconstrained model was not developed, as the sym-

metrically constrained geostatistical model was used as the “true” stratigraphy in

this case. It is assumed that the behavior of the unconstrained model inversion will

behave similarly if the “true” stratigraphy contains symmetric or non-symmetric spa-

tial correlations, as symmetry is merely a special case of spatial correlation for the

unconstrained geostatistical model. Conditional data about the facies distributions

are assumed to be available from the pumping well and the 26 observation wells
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Figure 5.2: Proportionally random and symmetric conditional data and example
realization produced from the given geostatistical model and the conditioning data.
Stratigraphic units are identified by color indicated as K1 (= 10−2m/s) green, K2

(= 10−5m/s) tan, and K3 (= 10−8m/s) red. Conditioning data are presented in a
slightly lighter color than non-conditioning points. Axis labels are in meters.

(Figure 5.1). This produces 675 conditioning data points for each model (27 wells

× 25 cells in the vertical direction). For simplicity sake, the support scales of the

conditioning data and the finite-difference grid are equal. At the same 26 observation

wells drawdown data are collected from 3 depths in each observation well (Figure 5.1);

note that no drawdown is collected at the pumping well. The conditioning data were

collected from a representative realization produced from a geostatistical model with

the prescribed characteristics (e.g. proportionally random/symmetric spatial corre-

lations for non-background categories) and a reasonable hydraulic response. In order

to ensure that the pumping well screen is located in the high conductivity unit, the
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well screen was conditioned to K1 for the development of the representative realiza-

tion. Figure 5.2 presents the conditioning data for the proportionally random and

symmetric models along with example realizations produced from the given geosta-

tistical model and the conditional data in each case. A cutout at y = 500m of each

model is also included to display the model interior.

The transition rate matrix for the proportionally random constrained Markov-

chain model in both the x- and y-directions in inverse meters is

Rx,y;rnd =


−2.00× 10−3 1.00× 10−3 1.00× 10−3

3.33× 10−4 −1.83× 10−3 1.50× 10−3

6.67× 10−4 1.33× 10−3 −2.00× 10−3

 , (5.36)

in accordance with equation (5.21). The corresponding mean facies and transition

lengths in meters for the proportionally random constrained model are

Lx,y;rnd =


500 1000 1000

3000 545 667

1500 750 500

 , (5.37)

where L = (lij), i, j = 1, . . . , N . Due to the designation of category two as the

background category and the constraint of proportional randomness for the non-

background categories, equation (5.37) can be completely specified from two mean

lengths (refer to equation (5.32)).

The transition rate matrix of the symmetrically constrained Markov-chain model
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in both the x- and y-directions in inverse meters is

Rx,y;sym =


−2.00× 10−3 1.00× 10−3 1.00× 10−3

5.00× 10−4 −2.00× 10−3 1.50× 10−3

5.00× 10−4 1.50× 10−3 −2.00× 10−3

 , (5.38)

in accordance with equation (5.18). The corresponding mean facies and transition

lengths in meters for the symmetric model are

Lx,y;sym =


500 1000 1000

2000 500 667

2000 667 500

 . (5.39)

Due to the designation of category two as the background category and the con-

straint of symmetry for the non-background categories, equation (5.39) can be com-

pletely specified from three mean lengths (refer to equation (5.31), while in the

unconstrained case, four mean lengths must be specified (refer to equation (5.30)).

It is important to note the mean facies lengths (diagonal values in equations (5.37)

and (5.39)) are equal and approximately 1/4 of the x-direction model domain (2000 m)

and 1/2 of the y-direction model domain (1000 m). As a result, the x-direction spatial

correlations are more fully represented than the y-direction.

The vertical, or z-direction mean facies and transition lengths are not consid-

ered here, as it is assumed that the vertical Markov-chain model can be determined

directly from the borehole data. As the volumetric proportions are independent

of direction, it is assumed that they are available from the vertical Markov-chain

model, and are not included as adjustable parameters. For reference, the z-direction
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Markov-chain model transition rates for both models in inverse meters are

Rz =


−1.00× 10−2 5.00× 10−3 5.00× 10−3

1.67× 10−3 −9.17× 10−3 7.50× 10−3

3.33× 10−3 6.67× 10−3 −1.00× 10−2

 , (5.40)

while the corresponding mean facies and transition lengths in meters are

Lz =


100 200 200

600 109 133

300 150 100

 . (5.41)

5.5 Results and Discussion

5.5.1 Aquifer Response Statistical Convergence

The generation of realizations by simulated quenching constitutes a Monte Carlo

sampling of a spatial correlation model. While the realizations generated with re-

spect to a given spatial correlation model are equally probable geologically, this is

not necessarily the case hydraulically. Therefore, sample statistics from a set of real-

izations are used to characterize the aquifer response of a spatial correlation model.

An analysis of the convergence of these sample statistics is necessary in order to de-

termine the number of realizations (n) required for a desired or necessary precision.

Figure 5.3 presents ∆h at the 78 observation locations as n increases, where n is pre-

sented on a log scale as suggested by Ballio and Guadagnini (2004). Presenting n on

a log scale as opposed to a linear scale provides a better visualization of convergence

as the uncertainty associated with inferring a statistic decreases at a decreasing rate
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Figure 5.3: Convergence of drawdown from undisturbed conditions (water elevation
change) for the 78 observation locations as a function of the number of realizations
plotted on log scale.

as n increases. This is apparent by inspecting the root mean square (RMS) of the

sample mean of the drawdown predictions ∆h defined as

∆hRMS =

√√√√ 1

n

n∑
i=1

∆h
2

i , (5.42)

Equation (5.42) implies that the uncertainty associated with ∆h scales with 1/
√
n,

a trend that is more easily visualized on a log scale.

We find that values of ∆h obtained from the proportionally random spatial cor-

relation model fail the Shapiro-Wilks test for normality (R Development Core Team,

2005) at the 5% significance level at all observation locations. Therefore, a con-

servative estimate (over-estimate) of the confidence interval length for the expected

117



Chapter 5. Stochastic Inverse Method for Estimation of Stratigraphy

value of ∆h, E[∆h], from n realizations can be obtained considering the Chebyshev

inequality as

Pr

[
∆hn − k

σ√
n
≤ E[∆h] ≤ ∆hn + k

σ√
n

]
≥ 1− 1

k2
(5.43)

where σ is the standard deviation, and k is the number of standard deviations con-

sidered. The right hand side of inequality (5.43) underestimates the probability that

∆hn is k standard deviations from the E[∆h]. Therefore, an overestimate of the

confidence limit interval length |CL| can be obtained using the square root of the

sample variance
√
Sn to approximate σ as

|CL| = 2k

√
Sn
n
. (5.44)

Based on an approximation of σ by
√
S4000, the average 95% |CL| (k = 4.472) for

∆h for the 78 observation locations at n = 1000 is 0.0294 m with a standard deviation

of 0.0109 m. This indicates that we are inferring ∆h within precision typical for field

measurements of ∆h. This ensures that the stochastic inversion will be limited by the

precision of field measurements and not by the statistical inference of the hydraulic

response. A larger number of realizations will provide smoother gradients for the

objective function at the cost of computational efficiency. We have chosen n = 1000

in order to compromise between inference precision and computational efficiency.

A single forward model run (including facies structure generation and flow sim-

ulation) takes approximately 30 seconds on a 2.4 GHz AMD Opteron processor.

Therefore, a single evaluation of the objective function, or model call (1000 forward

model runs), takes approximately 20 wall clock hours on the same processor. As

the forward model runs can be performed independently, the model call computa-
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Figure 5.4: Sensitivity analysis for the proportionally random constrained model
where l11,x, l33,x, l11,y, and l33,y are plotted versus the objective function. The objec-
tive function has been evaluated at 25m intervals, half the model grid spacing.

tion time can be greatly reduced utilizing multiple processors to evaluate individual

forward model runs concurrently.

5.5.2 Sensitivity analyses

Sensitivity analyses for the proportionally random constrained, symmetrically con-

strained, and unconstrained model inversions are presented in Figures 5.4, 5.5, and

5.6, respectively. These figures contain plots of the adjustable parameters versus

the objective function Φ (equation (5.35)). The “true” parameter values, which are

indicated by vertical dashed lines in each plot, indicate the parameter values used to

generate the calibration targets. A subscript φ will be appended to the mean lengths

to indicate the direction of interest as lij,φ, where φ can be either x or y in the case

presented here.
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Figure 5.5: Sensitivity analysis for the symmetrically constrained model where l11,x,
l33,x, l13,x, l11,y, l33,y, and l13,y are plotted versus the objective function. The objective
function has been evaluated at 25m intervals, half the model grid spacing.

Figure 5.4 contains four plots, presenting the sensitivities of l11,x, l33,x, l11,y, and

l33,y. Due to the designation of category two as the background category and the

constraint of proportional randomness for the non-background categories, the 14

remaining mean lengths can be determined from these four mean lengths (refer to

equation (5.32)). By inspecting the plots in Figure 5.4, it is apparent that the x-

direction mean lengths are more sensitive than the y-direction mean lengths. As

discussed in the previous section this behavior was expected. This is due to the fact

that the x-direction is parallel to the flow direction and has better representation

in the model due to domain size. It is also apparent that the sensitivities appear

smooth at this discretization (half the grid spacing), implying that a gradient-based

optimization strategy will function well on this problem.

Figure 5.5 presents the sensitivities for the symmetrically constrained model.

Plots are included for l11,x, l33,x, l13,x, l11,y, l33,y, and l13,y. Due to the designation
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Figure 5.6: Sensitivity analysis for the unconstrained model where l11,x, l33,x, l31,x,
l13,x, l11,y, l33,y, l31,y, and l13,y are plotted versus the objective function. The objective
function has been evaluated at 25m intervals, half the model grid spacing.

of facies 2 as the background category and the constraint of symmetry on the non-

background categories, the 12 remaining mean lengths can be determined from these

six mean lengths (refer to equation (5.31)). By comparing the sensitivities for the

symmetrically constrained model (Figure 5.5) with those from the proportionally

random constrained model (Figure 5.4), it is apparent that while the mean facies

length parameters in the x-direction are still relatively smooth, the y-direction mean

facies length parameters are significantly less smooth, and the mean transition length

sensitivities are the least smooth.
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Figure 5.6 presents the sensitivities for the unconstrained model. Plots are in-

cluded for l11,x, l33,x, l13,x, l31,x, l11,y, l33,y, l13,y, and l31,y. As the symmetrically

constrained model is used as the truth for the unconstrained sensitivity analysis,

the sensitivity plots of l11,x, l33,x, l11,y, and l33,y (mean facies length parameters) in

Figure 5.6 are the same as in Figure 5.5 and are repeated in Figure 5.6 solely for

reference. By inspecting the other plots (mean transition length parameters) in Fig-

ure 5.6, it is apparent that the mean transition lengths for the unconstrained model

are relatively insensitive, especially l31,y.

The sensitivity analyses presented in Figures 5.4, 5.5, and 5.6 indicate that model

inversions will benefit from constraints on the Markov-chain model. In cases where

these constraints are not appropriate requiring the use of an unconstrained Markov-

chain model, the mean facies lengths are still relatively sensitive, while the mean

transition lengths exhibit low non-smooth sensitivities. In general the shape of sen-

sitivity curves are convex with relatively well defined minima at the “true” values.

This suggests that a gradient-based method for model inversion can be successfully

applied in these cases. In the next section, inverse analyses demonstrate the affect

of these sensitivities on the estimation of the mean lengths.

The sensitivity analyses were performed at half the horizontal grid spacing (25 m)

over a range of 1000 m, resulting in 41 model calls. Therefore, a sensitivity analysis

for a single parameter requires approximately 850 wall clock hours. As discussed

above, the computation time can be greatly reduced by parallelization of the model

calls.

5.5.3 Inverse analyses

Model inversion results for the proportionally random constrained model are pre-

sented in Figure 5.7. The initial values of the adjustable parameters were set to
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Figure 5.7: Proportionally random constrained model inversion results. Parameter
values and objective function are plotted as a function of the number of model calls.

250 m from their “true” values of 500 m. However, the sensitivities in Figure 5.4 im-

ply that the gradient-based optimization utilized here is expected to perform similarly

if the initial values are defined within explored sensitivity ranges. Future work will

address the effect of the initial values in the inverse process. As expected, the mean

facies length of the high permeability category in the x-direction (l11,x) approaches

the true value more quickly than the other mean facies lengths, followed by the mean

facies length of the low permeability category in the x-direction (l33,x). This corre-

sponds with the sensitivity analysis results presented in Figure 5.4, which indicate

that the x-direction mean facies lengths are more sensitive than the y-direction facies

mean lengths. To reiterate previous discussions, this is likely due to a combination of

factors including the longer x-direction distance compared with the y-direction and

the fact that the x-direction mean facies lengths are parallel to the direction of flow,
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Figure 5.8: Symmetrically constrained model inversion results. Parameter values
and objective function are plotted as a function of the number of model calls.

thereby affecting the hydraulic response of the aquifer by controlling the connectivity

in the flow direction.

As indicated in Figure 5.7, the lowest objective function was achieved at 343

model calls. This corresponds to 31 Levenberg-Marquardt optimization iterations,

which include multiple model calls for the calculation of derivatives and evaluation

of Marquardt parameters. It was determined that no further progress would be

achieved by 447 models calls, or 41 Levenberg-Marquardt optimization iterations.

Figure 5.8 presents the model inversion results for the symmetrically constrained

model, where the mean transition lengths l13,x and l13,y are included. The corre-

sponding diagonally-opposing mean transition lengths l31,x and l31,y are determined

by the symmetry constraint. The initial values of the mean facies lengths were set
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Figure 5.9: Unconstrained model inversion results. Parameter values and objective
function are plotted as a function of the number of model calls.

to 250 m from their true value of 500 m, and the mean transition lengths were set

to 1250 m from their true value of 1000 m. Based on Figure 5.5, it is apparent

that mean facies length sensitivities (e.g. l11,x, l33,x, l11,y, and l33,y) are more smooth

for values less than the truth in our synthetic example. This indicates that using a

low estimate of the mean facies lengths will benefit the model inversion. Using this

information, we have set the initial values of the mean facies lengths less than their

truth. Future work will address the effect of the initial values in the inverse process.

The lowest objective function for the symmetric model inversion was achieved at

678 model calls, corresponding to 49 Levenberg-Marquardt optimization iterations.

It was determined that no further progress would be achieved at 820 model calls, or

59 Levenberg-Marquardt optimization iterations.
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Figure 5.9 presents the model inversion results for the unconstrained model. As

indicated by equation (5.30), in this case it is necessary to specify 4 mean lengths

for the spatial correlation model in each direction. Therefore, there are eight mean

length parameters plotted in Figure 5.9. The initial values of the mean facies lengths

were set to 250 m from their true value of 500 m, while the mean transition lengths

are set to 1500 m from their true values of 2000 m (l31,x and l31,y) and 1000 m (l13,x

and l13,y). These model inversion results confirm the sensitivity analysis presented in

Figure 5.6. It is apparent that l11,x converges towards its true value more quickly than

the other parameters, as in the proportionally random and symmetrically constrained

model inversions. It is also apparent that the mean transition lengths from the low

conductivity to the high conductivity facies (l31,x and l31,y) converge to their true

values slower than the other parameters. This behavior is expected considering the

relatively low, erratic sensitivities for these parameters in Figure 5.9. It is important

to note that despite having poor sensitivities, these parameters do converge towards

the “truth” during the inversion.

The lowest objective function for the unconstrained model inversion was achieved

at 603 model calls, corresponding to 33 Levenberg-Marquardt optimization itera-

tions. It was determined that no further progress would be achieved at 780 model

calls, or 43 Levenberg-Marquardt optimization iterations.

5.6 Conclusions

While much effort has been directed towards geostatistical stochastic inversion meth-

ods utilizing covariance-based geostatistics, little effort has been spent on similar

approaches employing Markov-chain based geostatistics. This paper demonstrates

the feasibility of a stochastic inversion utilizing a Markov-chain model of spatial

variability. The approach hinges on the use of inverse transition rates as adjustable
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parameters, where inverse auto-transition rates are defined as mean facies lengths

and inverse cross-transition rates are defined as mean transition lengths.

The proposed approach has been developed using established software applica-

tions (e.g. PEST (Doherty , 1994), T-PROGS Carle (1999)), thereby, hopefully pro-

viding an easily interpretable approach for utilizing stochastic theory in hydrogeology

as suggested by Dagan (2004), Neuman et al. (2004), Sudicky (2004), and others.

Simplifying constraints to the Markov-chain model allowing reductions in the

number of adjustable parameters are explored within the stochastic inversion. These

simplifying constraints include proportionally random spatial correlations and sym-

metric correlations in non-background categories. In addition to these constrained

models of spatial correlation, an unconstrained Markov-chain model was evaluated

as well. Both constrained Markov-chain model inversions performed well, indicating

that these models can be useful in cases where these simplifications are expected to

be valid, or as references to be used in conjunction with an unconstrained analysis

to determine the level of deviation from these simplified spatial correlation models.

The unconstrained analysis demonstrates that it is not necessary to constrain the

Markov-chain model to obtain a successful inverse analyses. The lack of constraints

on the geostatistical model in the inverse process allows for characterization of wider

ranges of aquifer heterogeneities.

Using the Chebyshev inequality to provide an overestimate of the length of the

confidence limits of the sample mean of the drawdown predictions, we determine

that 1000 realizations provide adequate convergence for the drawdown predictions

at the scale of our synthetic models. In this way, we ensure that limitations are due

to measurement imprecision, not sample statistic inference imprecision. It is impor-

tant to note that a larger number of realizations is expected to produce smoother

sensitivities, however the cost will be computational efficiency.
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Sensitivity analyses indicate that the proportionally random model provides pa-

rameters with well-behaved sensitivities. The symmetrically constrained model pro-

duces decent sensitivities for all adjustable parameters, with the poorest sensitivities

in the mean transition lengths. The mean facies length sensitivities are also decent

for the unconstrained model, while significantly poorer sensitivities are observed for

the mean transition length sensitivities. Nevertheless in general the shape of sen-

sitivity curves are convex with relatively well defined minima at the “true” values.

This suggested that gradient-based method for model inversion could be successfully

applied in these cases. In general, the x-direction mean length parameters are more

sensitive than their corresponding y-direction mean length parameters. This is likely

the result that the x-direction is parallel to the flow direction and that the model

domain is longer in the x-direction than the y-direction. Both factors are expected

to provide better characterization of properties of the aquifer heterogeneities in the

x-direction.

The example inversion runs demonstrate that despite some low sensitivity ad-

justable parameters, all parameter do converge towards their true values for all mod-

els. This demonstrates the feasibility of a Levenberg-Marquardt optimization on a

Markov-chain based stochastic inversion. In contrast, previous analyses (Harp et al.,

2008) were performed using a stochastic global search method called AMALGAM

(Vrugt and Robinson, 2007) which allowed for more detailed search for optimal so-

lution, but at the expense of requiring a significant number of model calls. The

successful application of a gradient-based method is important for practical applica-

tions where computational efficiency is critical. Further research is needed to extend

this framework to allow variable and/or non-uniform hydraulic conductivity, greater

number of stratigraphic units, and transport information.
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CHAPTER APPENDIX

5.A Derivation of mean facies length and mean

transition lengths

As demonstrated by Carle and Fogg (1996), mean facies length can be derived con-

sidering two categories. In the following, we review their derivation and present the

derivation of the mean transition length for a 1-D Markov-chain model.

Considering the definition of an auto-transition rate, presented in equation (5.10),

and the definition of the mean facies length, presented in equation (5.25), the auto-

transition probability can be related to the mean facies length as

∂tii(0)

∂h
= rii = − 1

lii
. (5.45)

Using the definition of a derivative, equation (5.45) can be expressed as

lim
h→0

tii(h)− tii(0)

h
= − 1

lii
. (5.46)

Recognizing that tii(0) = 1 (i.e. probability of an auto-transition at lag 0 is 1) and

assuming a two-category Markov-chain model, tij(h) to be expressed as

tij(h) = 1− tii(h) = tii(0)− tii(h). (5.47)

To consider cases with greater than two categories, the jth category can represent
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the union of all categories other than the ith category. Substituting equation (5.47)

into equation (5.46) produces

lim
h→0

tij(h)

h
= − 1

lii
. (5.48)

The two-location joint probability pij(h) introduced in equation (5.34) can be defined

as

pij(h) =
Tij(h)

N(h)
(5.49)

where Tij(h) is the number of transitions encountered from the ith to the jth category

at lag h in a particular direction and N(h) is the total number of lag intervals.

Substituting equation (5.49) into equation (5.34) and dividing by h produces

tij(h)

h
=

Tij(h)

piN(h)h
(5.50)

As N(h) ∗ h is the total length, piN(h)h is the total length of the ith category.

Since categories i and j are assumed to be mutually-exclusive exhaustively-defined

categories, Tij(h) is equivalent to the number of embedded occurrences of the ith

category. Therefore, substituting equation (5.50) into equation (5.48) produces

lim
h→0

Tij(h)

piN(h)h
=

Number of embedded occurences of the ith unit

Total length of the ith unit
. (5.51)

Which leads to a linguistic definition of the mean facies length as

lii =
Total length of the ith unit

Number of embedded occurences of the ith unit
. (5.52)
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The mean transition length can be derived similarly starting from the cross-

transition rate definition presented in equation (5.10) and the definition of a mean

transition length presented in equation (5.26) as

∂tij(0)

∂h
= rij =

1

lij
. (5.53)

Using the definition of a derivative, equation (5.53) can be expressed as

lim
h→0

tij(h)− tij(0)

h
=

1

lij
. (5.54)

Recognizing that tij(0) = 0 (i.e. probability of a cross-transition at lag 0 is 0)

equation (5.54) can be expressed as

lim
h→0

tij(h)

h
=

1

lij
, (5.55)

where tij(h)/h has been defined in equation (5.50). This demonstrates that in a

2-category Markov-chain model, lii = lij, as presented in equation (5.29). However,

in the derivation of the mean transition length, we are not restricted to 2-category

Markov-chain models. Therefore, lij can be defined linguistically as

lij =
Total length of the ith unit

Number of transitions from the ith to the j th unit
. (5.56)

This indicates that lij is the mean length of the ith category between transitions

from the ith to the jth category. This should not be confused with the total length

between transitions from the ith to the jth category considering lengths of intervening
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segments (i.e. segments from units other than the ith category) as the lengths of

intervening segments are not considered in the mean transition length.
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Chapter 6

Dissertation Conclusions

Chapters 2 through 5 present hydrogeological developments that attempt to recon-

cile our current limitations to adequately model hydrogeological phenomena with

the operational demands of modeling decision support. These approaches present

hydrogeological engineering solutions based on current hydrogeological theory and

available data designed to provide technical understanding to support water man-

agement decisions. In the dissertation introduction, the approaches presented in

Chapters 2 through 5 are discussed within the context of the current hydrogeological

perspective. This section highlights the conclusions that can be attained from Chap-

ters 2 through 5 with respect to the issues discussed in the dissertation introduction.

Detailed conclusions for Chapters 2, 3, 4, and 5 are found in Sections 2.6, 3.6 ,4.6,

and 5.6, respectively, and therefore will not be repeated here.

The conclusions from this research include:

1. Chapters 2 and 3 demonstrate hydrogeological investigation approaches utiliz-

ing an existing dataset from a water-supply/monitoring well network. This type

of dataset is often neglected in hydrogeological investigations due to its highly

complex nature. Given the measurement limitations and expense associated
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with hydrogeological data collection, the use of methods to extract information

from available data presents a cost effective alternative to traditional methods

of pump tests.

2. Chapters 2 and 3 demonstrate inverse modeling approaches employing mini-

mally parameterized models in the form of an analytical solution to the ground-

water flow equation. Therefore, the inversions have restricted degrees of free-

dom compared to distributed-parameter models, enabling them to fail and

provide incisive conclusions on the validity of their assumptions.

3. The parameter estimation method described in Chapter 2 provide cross-hole hy-

draulic characteristics consistent with conventional cross-hole pumping test es-

timates. As distinct property values are allowed for individual pumping/monitoring

well pairs, inconsistent with the assumption of homogeneity implicit in the use

of the Theis solution, these estimates do not estimate properties within the

theoretical context of the Theis solution. Therefore, this approach presents a

hydrogeological engineering solution, providing the decomposition of pumping

influences at a monitoring location.

4. The parameter estimates obtained in Chapter 3 provide convergent, late-time

estimates of effective aquifer properties (i.e. effective transmissivity and con-

nectivity indicators) at inter-well support scale within the theoretical context

of the Theis solution.

5. Chapters 4 and 5 demonstrate approaches to reduce the ill-posedness of inver-

sions utilizing distributed-parameter models.

6. Chapters 4/5 introduce the use of Markov-chain-based geostatistics to iden-

tify/characterize hydrostratigraphies in an automated inverse framework uti-

lizing hydraulic and geologic data.
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7. Chapter 4 demonstrates the use of a single stochastic realization to repre-

sent the Markov-chain spatial correlation model in a geostatistical inversion.

While the single realization approach provides a constraint on the inversion,

and was successfully demonstrated in a 2-D, 2-stratigraphic unit model, issues

concerning the inability to adequately characterize the hydraulic response of

the geostatistical models or fully explore alternative, equally probable hydros-

tratigraphies within a geostatistical model are conceivable.

8. Chapter 5 demonstrates the ability to infer hydraulic characteristics of a Markov-

chain geostatistical model to evaluate the plausibility of statistical hydrostrati-

graphic characteristics within an inverse framework. The approach is demon-

strated on a 3-D, three-stratigraphic unit model. This approach recognizes

information content limitations of current datasets, attempting to identify sta-

tistical characteristics of a hydrostratigraphy, as opposed to assuming that the

information content of typical datasets can constrain an inversion to identify a

single hydrostratigraphy.
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Appendix A

A Genetic-Fuzzy Approach for

Modeling Complex Systems with

an Example Application in

Masonry Bond Strength

Prediction1

Abstract

A genetic fuzzy learning from examples (GFLFE) approach is presented for deter-

mining fuzzy rule-bases generated from input/output datasets. The method is less

computationally intensive than existing fuzzy rule base learning algorithms as the

1An edited version of this paper was published by ASCE. Copyright (2009) American

Society of Civil Engineers: Harp, D.R., M. Reda Taha, and T.J. Ross (2009), A Genetic-

Fuzzy Approach for Modeling Complex Systems with an Example Application in Masonry

Bond Strength Prediction, Journal of Computing in Civil Engineering, 23 (3), 193-199.
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optimization variables are limited to the membership function widths of a single

rule, which is equal to the number of input variables to the fuzzy rule base. This

is accomplished by primary width optimization of a fuzzy learning from examples

(FLFE) algorithm. The approach is demonstrated by a case study in masonry bond

strength prediction. This example is appropriate as theoretical models to predict ma-

sonry bond strength are not available. The GFLFE method is compared to a similar

learning method using constrained nonlinear optimization. Our results indicate that

the use of a genetic optimization strategy as opposed to constrained nonlinear op-

timization provides significant improvement in the fuzzy rule base as indicated by

a reduced fitness (objective) function and reduced root-mean-squared-error of an

evaluation data set.

A.1 Introduction

Civil engineers are often confronted with systems of input/output data where the

relationships between inputs and output is not well understood. Often, the physical

basis of these relations are unknown or ambiguous. In other cases, the data may be

too imprecise, or the complexity might be too large, to extract the relationships in a

deterministic way. All too often, the situation is an unknown combination of these

factors. In these situations, fuzzy set theory can be used to handle the uncertainty

due to modeling ambiguity and/or data imprecision. Fuzzy set theory can be used

where information in the form of complex relationships between inputs and output

are extracted into a fuzzy rule-base. In order to extract a useful model in the form

of a fuzzy rule-base from a numerical dataset, a method is needed to learn the fuzzy

rule-base.

Genetic algorithms have been used to develop fuzzy rule-bases as well as to tune

existing fuzzy rule-bases (Cordón et al., 2004). The use of genetic algorithms to
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fully develop a fuzzy rule-base, generally called learning, is a challenging task (Ross ,

2004). Common approaches for general rule-base learning have been the Pittsburgh

approach (Smith, 1980), the Michigan approach (Holland and Reitman, 1978), and

iterative rule learning (Venturini , 1993). The Michigan approach and iterative rule

learning methods encode each rule as a chromosome, while in the Pittsburgh ap-

proach, an entire set of rules is encoded in a single chromosome (Castro and Ca-

margo, 2004). In this way, the Michigan approach and iterative rule learning are

more computationally efficient, however they have the disadvantage that the indi-

vidual rules are pitted against each other for survival to the next generation (Castro

and Camargo, 2004). In the Pittsburgh approach, a population of rule-bases compete

for survival, thereby allowing the collective synergism of the rules within a rule-base

to influence the fitness of a particular rule-base (Castro and Camargo, 2004). The

drawback of the Pittsburgh approach is the computational effort required to handle

the complexity of chromosome evolution.

Tuning an existing fuzzy rule-base entails optimizing the membership function

parameters of the rule-base. But tuning may also refer to adjusting the functions

used to scale the input and output variables (Cordón et al., 2004; Jang et al., 1997).

Although the process of tuning an existing rule-base is in general less complicated

than learning a rule-base, the optimization can be complicated by the number of

membership function parameters in the rule-base. The disadvantage of tuning an

existing rule-base is that the search will be limited to solutions possessing the pre-

specified structure. Learning algorithms, such as the one presented here, do not have

this limitation as the structure is not pre-specified, but derived from the training

data.

A methodology is presented here that allows the automatic extraction of the

relationships between the inputs and output into a fuzzy rule-base. Our proposed

method employs a genetic algorithm to optimize a modified learning from example
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(MLFE) approach after Passino and Yurkovich (1998) (referred to in general as fuzzy

learning from examples (FLFE) hereafter). The novelty of the proposed method lies

in its ability to significantly enhance the learning process by solely optimizing the first

rule developed by the FLFE algorithm. Existing learning algorithms that optimize

an entire fuzzy rule base will be computationally more expensive.

The membership function widths for the first rule developed by the FLFE ap-

proach are differentiated from the subsequent membership function widths by the

terms primary widths and secondary widths, respectively. This categorization is

useful as the determination of the primary and secondary widths differ during the

development of the fuzzy rule-base using FLFE. The primary widths must be spec-

ified to initiate the FLFE method, while the secondary widths are determined by

the method itself to allow overlap of adjacent MFs using a pre-specified weighting

factor (Ross , 2004). Varying the primary widths supplied to the FLFE method will

alter the resulting rule base. Primary width optimization exploits this property by

determining the most appropriate primary widths for the FLFE method.

The initialized rule base can be fine tuned by adjusting the output member-

ship function centers using a recursive least squares method (Ross , 2004). A more

complete fine tuning of the algorithm is possible using the gradient method (Ross ,

2004), where all membership function centers and widths are tuned. Genetic FLFE

(GFLFE) couples the computational efficiency of primary width optimization of the

FLFE method and recursive least squares method with a global search strategy able

to traverse the complicated fitness landscape of this optimization.

To illustrate the proposed methodology, an example civil engineering applica-

tion is presented. The application extracts a fuzzy rule-base to model the flexural

bond strength of masonry. While experimental research has indicated correlations

between several input variables and flexural bond strength of masonry, the complex

interactions of these various input variables are not well known (Sugo, 2000). We
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utilize the results of a sensitivity analysis by Reda Taha et al. (2005) to select the

most influential parameters for modeling flexural bond strength of masonry such as

brick strength, absorption, sorptivity index, cement content and relative humidity.

This application presents a case where the lack of knowledge about the complex in-

teraction between inputs and output, or modeling ambiguity, can be dealt with by

automatically extracting the relationships from the data into a fuzzy rule-base.

A.2 Methods

The following sections describe the rule base structure, discuss the fuzzy learning

from examples (FLFE) method used for learning physical phenomenon, present the

GFLFE approach to primary width optimization, and discuss the constrained non-

linear optimization method.

A.2.1 Rule base structure

The knowledge rule-base is comprised of a collection of if-then rules where the rules

are in the form of a premise clause and an associated consequence. This can be

considered a Mamdami system of deductive inference where the fuzzy linguistic terms

have been replaced with fuzzy values (Ross , 2004). Here, we assume Gaussian MFs

for the inputs described as

µ(x) = exp

[
−1

2

(
x− c
σ

)2
]

(A.1)

where x is the input variable, c is the center of the membership function, and σ is the

relative width of the membership function (Ross , 2004). It is important to note that
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the choice of Gaussian MFs does not imply the use of probabilistic distributions, but

were chosen as these MFs can be described by a single continuous equation. Delta

functions have been used for the output MFs. Other MF types can be used for input

and output MFs without greatly influencing the proposed method. The proposed

method implements the center-average defuzzification method.

The fuzzy knowledge rule-base implements a product t-norm for the premise as

µi(x) =
n∏
j=1

[
−1

2
exp

(
xj − cij
σij

)2
]

(A.2)

where µi(x) is the membership value of the input data-tuple x in the ith rule, cij

and σij are the center and width for the jth input of the ith rule, respectively, and

n is the number of inputs (Ross , 2004). Along with center-average defuzzification,

product implication is used for the output as

f(x|θ) =

R∑
i=1

biµi(x)

R∑
i=1

µi(x)

(A.3)

where θ is a matrix that contains the rule-base parameters ci, σi, and bi, where bi

defines the delta function for the output of the ith rule, and R is the number of rules

in the rule-base. By substituting Equation (A.2) into Equation (A.3), the output of
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the rule-base can be explicitly described by the rule-base parameters; c, σ, and b, as

f(x|θ) =

R∑
i=1

bi

n∏
j=1

[
−1

2
exp

(
xj − cij
σij

)2
]

R∑
i=1

n∏
j=1

[
−1

2
exp

(
xj − cij
σij

)2
] . (A.4)

Equation (A.4) is the numerical equivalent of a collection of R fuzzy rules which

employ Gaussian input (antecedent) MFs and delta function output (consequent)

MFs with center average defuzzification.

A.2.2 Automated fuzzy learning

Similar to most fuzzy rule-base development methods, a collection of training data-

tuples are required. The training data are separated into initialization and opti-

mization data. The initialization data is processed into a first approximation of the

rule-base using the FLFE method.

We start by assigning the values of the inputs for the first data-tuple in the

initialization dataset to the centers of the input MFs and the associated output

value to the delta function describing the output membership function for the first

rule. This leaves the designation of the input membership function widths to fully

describe the first rule. As there is no way to extract the values of these widths

directly from the data, optimization can be used to appropriately determine these

values. This is the basis of primary width optimization, and these are the MF widths

introduced previously as primary widths.

The proposed method then iterates through the remaining data-tuples in the

initialization dataset, determining that a new rule is necessary when the following
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inequality is violated:

εf ≤ |f(x|θ)− y| (A.5)

where εf is a specified test factor, f(x|θ) is the fuzzy rule-base output described

by Equation (A.4), and y is the measured output for the current data-tuple. If

inequality (A.5) is violated, a new rule is created by assigning the inputs of the

current data-tuple to the centers of the input MFs and the output of the current

data-tuple to the delta function for the output membership function for the new

rule. The membership function widths for each new rule, introduced as secondary

widths previously, are calculated to allow for the overlap of adjacent MFs specified

by the weighting factor w as

σs =
1

w
|c− cmin| (A.6)

where c is the center of the membership function in question, and cmin is the nearest

existing center to c (Ross , 2004). It is in this way that the FLFE method is able to

derive all MF parameters, except for the primary widths, directly from the training

data. Once the algorithm has iterated through the initialization dataset, the initial-

ized rule-base is passed to a recursive least squares method in order to fine tune the

output membership functions (Passino and Yurkovich, 1998).

A.2.3 Genetic fuzzy learning from examples (GFLFE)

Fig. A.1 presents a diagram of the primary width optimization method for fuzzy rule-

base development described below. The fitness function (referred to as the objective
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Figure A.1: Primary width optimization flow diagram.

function in the constrained nonlinear case) is defined as

min
β∈B

[
1

m

m∑
k=1

(f(xk|θ)− yk)2

]0.5

(A.7)

where β is a vector containing the primary widths constrained by B, m is the number

of data-tuples in the optimization dataset, f(xk|θ) is the fuzzy rule-base output

for the kth data-tuple xk of the optimization dataset, and yk is the kth measured

output in the optimization dataset. The use of a designated optimization dataset

as opposed to reusing the initialization dataset ensures that the fuzzy rule-base is

not over-trained. Over-training or over-fitting tends to produce systems with limited
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ability to generalize the phenomenon being learned (Haykin, 1998). By substituting

Equation (A.4) into Equation (A.7), the primary widths (σ1
j , j = 1, . . . , n) can be

expressed explicitly in the fitness function as

min
β∈B


1

m

m∑
k=1




R∑
i=1

bi

n∏
j=1

[
−1

2
exp

(
xk,j − cij

σij

)2
]

R∑
i=1

n∏
j=1

[
−1

2
exp

(
xk,j − cij

σij

)2
]
− yk


2

0.5

(A.8)

where xk,j is the jth input of the kth data-tuple of the optimization dataset. It is

important to note that primary width optimization is not simply the minimization

of Equation (A.8) by varying the primary widths. The optimization also includes the

FLFE learning algorithm, which, given different values of primary widths, will alter

the rest of the rule base further by influencing the selection of rules and altering the

secondary widths (σij, j = 1, . . . , n i = 2, . . . , R) and output membership function

centers (bi, i = 1, . . . , R), as described in section A.2.2.

A binary genetic algorithm is used in this research, where a population of possi-

ble solutions is converted to binary form for implementation of the genetic algorithm

(Haupt and Haupt , 2004). The population of possible solutions corresponds to a

collection of alternative sets of primary widths. The fitness of these solutions within

the population is determined using the fitness function (Equation (A.8)). A stochas-

tic uniform selection method is employed, where parents are laid out along a line

where their length is proportional to their scaled length based on their fitness. The

algorithm moves along the line in equal steps, selecting the parent it lands on at each

step. Crossover is performed using a random binary vector, where a value of zero

indicates the gene from one parent is passed to the offspring, while a one indicates

the gene from the other parent is passed to the offspring. The number of offspring

derived from crossover at each generation is set to 80%. Mutation is performed by
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selecting a random number from a Gaussian distribution with an initial variance

equal to two times the length of the range of the variable, specified by the upper and

lower bounds. The variance was decreased linearly until it reached zero at the last

generation. A single optimal solution, known as an elite, is guaranteed to survive

each generation. These methods emulate natural selection and are designed to allow

optimal solutions to evolve (Haupt and Haupt , 2004).

The initial population used in the optimization was created using a uniform dis-

tribution of values, where the values were restricted to provide realistic membership

function widths and numerical stability. A parametric study to identify GA popula-

tion size was performed. This parametric analysis is presented in Figure A.2, where

the number of function evaluations necessary to reduce the fitness function below

a designated value is evaluated 20 times for each population size from 20 to 200 at

increments of 20. By inspecting Figure A.2, it is apparent that a reduced number

of function evaluations and standard deviation are achieved at a population size of

120, without significant improvements at larger population sizes. Therefore, a popu-

lation size of 120 was selected for the GA optimization process. Similar results were

obtained from a parametric study of population size for a bare-soil evaporation case

study (not presented here), however, it is not verified that these results will apply to

all case studies.

Primary widths outside of the prescribed range are discouraged in successive

generations by penalizing the fitness function (Equation (A.8)). The number of

generations was set to 150 as this appeared to enable the optimization process to

converge to a stable solution.
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Figure A.2: Function (learning algorithm) evaluations versus genetic algorithm pop-
ulation size. The number of function evaluations necessary to reduce the fitness
function below 0.13 MPa is determined 20 times at each population size from 20 to
200 at increments of 20. The stars connected by a dotted line represent the mean
number of function evaluations, while the error bars indicate the standard deviation
about the mean at each population size.

A.2.4 Constrained nonlinear optimization

The GFLFE method is compared to a similar learning approach using constrained

nonlinear optimization (CNO) proposed by the authors previously (Harp et al.,

2007). The two methods are similar in that both learning methods attempt to

develop optimal knowledge rule bases by primary width optimization. This compar-

ison demonstrates the necessity of using a global optimization strategy as indicated

by the improved performance of the GFLFE method. Primary width optimiza-

tion by constrained nonlinear optimization is performed using Sequential Quadratic

Programming (SQP) here. The SQP method closely mimics the Newton method for

constrained optimization. As the calculation of exact derivatives is not possible given

the nature of the optimization, quasi-Newton methods must be used to approximate

their values. A quasi-Newton updating method is used at each major iteration to
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approximate the Hessian, or second derivatives, of the Lagrangian function (L(x, λ))

(Nocedal and Wright , 1999) defined as

L(x, λ) = f(x)− λici(x)− . . .− λncn(x) (A.9)

where f(x) is the objective function, ci is the ith constraint placed on the optimiza-

tion, λi is the ith Lagrange multiplier, and n is the number of constraints. This

approximation is used to generate a Quadratic Programming (QP) subproblem that

is used to form a search direction for a line search procedure.

A.3 Case Study

The case study involves the evaluation of masonry bond strength by testing masonry

prisms made of four types of mortar and four types of brick units under two curing

regimes. The masonry prisms were tested at three ages up to a year creating an

experimental database of 96 data tuples. Table A.1 presents the mix proportions of

four masonry mortars used in the experiments, while Table A.2 presents the proper-

ties of the brick units. Twenty-four, five-high stack bonded prisms were constructed

from each mortar type and brick unit. Each mix was tested at dry (20% relative

humidity (RH)) and moist (100% RH) airing conditions at 20◦C. Four prisms were

tested from each curing condition at 28, 180, and 360 days of age. The masonry bond

strength was examined using a bond wrench test apparatus as designed by Shrive

and Tillemann (1992). The top half of the brick is gripped between two neoprene

pads in a clamp and torque wrench is attached to the clamp such that the center-

line of the torque wrench arm is centered over the brick. The method complies with

the requirements of ASTM C1072-94 1994. Table A.3 presents the bond strength

database. Six input parameters were selected based on a ranking of significance
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Table A.1: Mix proportions by volume of the four masonry mortar used in the
experimental program.

Mortar Portland Hydrated Fly Ash Sand
Group Cement Lime Type (F)

A 1 0.5 0 4.5
B 1 1 0 6
C 0.8 0.4 0.3 4.5
D 0.8 0.8 0.4 6

Table A.2: Brick types and properties.

Group Compressive IRAa Total Sorptivity
Designation Strength (MPa) (kg/m2/min) Absorption% Index

1 43.9 3.67 8.11 2347
2 38.5 6.55 7.98 5781
3 59.2 2.40 8.32 1465
4 72.0 2.28 6.70 1216

aIRA (Initial rate of absorption)

performed by Reda Taha et al. (2005). These include: Portland cement volume,

masonry age, curing index, compressive strength, total absorption, and sorptivity.

A.4 Results and Discussion

A comparison of the performance of constrained nonlinear and genetic optimization

strategies in primary width optimization is presented. The comparison includes the

results of 20 sequential optimization runs using each strategy starting from random

initial values. A training data set of 72 data-tuples is separated into an initialization

data set (48 data-tuples) and an optimization data set (24 data-tuples). The resulting
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Table A.3: Bondstrength (MPa) for all brick and mortar types.

Mortar Mix Age, days
Brick Type

1 2 3 4
Wet Dry Wet Dry Wet Dry Wet Dry

A
28 0.59 0.47 0.37 0.35 0.39 0.46 0.48 0.45
180 1.42 1.16 0.72 0.6 .071 0.59 1.06 0.68
360 1.19 0.94 0.72 0.6 0.71 0.59 0.97 0.67

B
28 0.67 0.86 0.43 0.43 0.39 0.34 0.6 0.5
180 1.16 0.94 0.89 0.49 0.72 0.4 0.97 0.64
360 1.2 0.95 1.01 0.55 0.78 0.38 0.99 0.69

C
28 0.63 0.62 0.42 0.36 0.44 0.33 0.59 0.51
180 0.88 0.66 0.7 0.39 0.76 0.38 0.78 0.7
360 0.96 0.75 0.81 0.42 0.78 0.45 0.82 0.68

D
28 0.48 0.59 0.34 0.26 0.38 0.32 0.58 0.47
180 0.87 0.65 0.42 0.38 0.57 0.51 0.86 0.58
360 0.88 0.67 0.53 0.36 0.61 0.47 0.88 0.58

objective function values (although fitness value would be more appropriate for the

genetic algorithm case, objective function value will be used here for both the CNO

approach and GFLFE method, as the fitness and objective functions are equivalent

here) are presented in box and whisker plots in Figure A.3, where the horizontal

lines indicate the lower quartile, median, and upper quartile of the objective function

values and the whiskers indicate the extent of the remaining values. It is apparent in

this figure that the GFLFE method produces lower objective function values. The

GFLFE method runs result in a mean fitness value of 0.121 MPa with a standard

of deviation of 0.0072, while the CNO approach result in a mean of 0.138 with a

standard of deviation of 0.0073. This indicates a decrease of over 12% in the fitness

value using the GFLFE method with nearly equivalent standard deviation. The

average run time on a 2.80 GHz processor for the GFLFE method is 9.88 minutes with

a standard deviation of 0.86 minutes, while the average for the constrained nonlinear

optimization is 0.40 minutes with a standard of deviation of 0.28 minutes. While

151



Appendix A. A Genetic-Fuzzy Approach for Modeling Complex Systems

CNO GA
0.10

0.11

0.12

0.13

0.14

0.15

0.16

F
itn

es
s 

(o
bj

ec
tiv

e)
 fu

nc
tio

n 
(M

P
a)

Primary width optimization strategy

Figure A.3: Box and whisker plots comparing the ability of a constrained nonlinear
optimization (CNO) and a genetic algorithm (GA) to reduce the fitness (objective)
function in primary width optimization. The plot presents results for 20 runs using
each optimization strategy. The horizontal lines indicate the lower quartile, median,
and upper quartile values, while the whiskers indicate the extent of the remainder of
the results. In both cases, no outliers were identified.

this indicates that GFLFE run time was longer than that of the CNO approach,

it is important to realize that the CNO approach clearly converged to suboptimal

solutions. The relatively long run time for the GFLFE approach is expected as the

method relies on the evolution of optimal solutions, as opposed to a gradient-based

search utilized by the CNO approach. The advantage of the evolutionary approach is

the ability to escape local minima providing a strategy for locating globally optimal

solutions for complex objective functions.

Table A.4 presents the optimized primary widths for the run with the lowest

objective function value for both optimization strategies. It is apparent that there are
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significant differences in the optimized primary widths for the two cases. This is an

indication of the difficulty of primary width optimization, providing support for the

use of a global search strategy by GA as opposed to a local search strategy by CNO.

The input and output MFs corresponding to the GFLFE primary widths presented in

Table A.4 are presented in Figure A.5. Thirteen rules have been developed during the

learning algorithm resulting in an efficiency quotient (No. training data-tuples/No.

of rules) of greater than 5.5.

Finally, an evaluation data set, comprised of 24 data-tuples that are excluded

from the training data, is used to compare the ability of the developed fuzzy rule

bases to predict bondstrength. In both cases, the fuzzy rule base resulting from

the optimization run with the lowest objective function value is used to make the

predictions. Figure A.4 presents these results in predicted versus measured plots.

The root-mean-squared-error (RMSE) for the constrained nonlinear optimization

fuzzy rule base (Figure A.4(a)) is 0.637 MPa and for GFLFE (Figure A.4(b)) 0.610

MPa. This indicates a decrease of over 4% in RMSE using the GFLFE method.

A.5 Conclusions

A genetic algorithm-based approach for primary width optimization has been pre-

sented for creating fuzzy rule-bases from input/output datasets providing a consis-

tent modeling approach. The fuzzy rule-bases are used to describe linguistically the

knowledge rule-base of the input/output process. Such information cannot be de-

duced from other methods such as neural nets. This approach can be used to extract

inferences describing the relationships between inputs and an output for complex

systems. The most appropriate use for the GFLFE method is in the case where

modeling ambiguity and/or data imprecision exist, as is often the case in practice.

Existing methods for learning fuzzy rule-bases using genetic algorithms require
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significant computational effort, while existing tuning algorithms are limited in their

ability to find optimal solutions. We suggest that a genetic fuzzy learning from

examples method that targets primary width optimization can significantly reduce

the complexity of the optimization process.

A comparison of modeling masonry bond strength using the GFLFE approach

and a similar approach using CNO (Harp et al., 2007) is presented. This comparison

demonstrates the ability of the GFLFE method to reduce the objective function by

over 12% and enhance learning. GFLFE demonstrates good learning efficiency for

the case study with an efficiency quotient of over 5.5. While the increase in run time

for the GFLFE method is significant, we propose that the additional computational

effort is justified in most modeling scenarios given the improvements in the rule base

resulting in increased prediction accuracy.
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Figure A.4: Plots of measured versus predicted bond strength for an evaluation data
set using models developed by (a) nonlinear constrained primary width optimization
(CNO-FLFE) and (b) GFLFE.
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Figure A.5: Input and output MFs developed by GFLFE
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