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Abstract

Over the past few years, considerable progress has been made in the area of networked

robotic systems and mobile sensor networks. The vision of a mobile sensor network

cooperatively learning and adapting in harsh unknown environments to achieve a

common goal is closer than ever. In addition to sensing, communication plays a key

role in the overall performance of a mobile network, as nodes need to cooperate to

achieve their tasks and thus have to communicate vital information in environments

that are typically challenging for communication. Therefore, in order to realize the

full potentials of such networks, an integrative approach to sensing (information

gathering), communication (information exchange), and motion planning is needed,

such that each mobile sensor considers the impact of its motion decisions on both

sensing and communication, and optimizes its trajectory accordingly. This is the

main motivation for this dissertation.

This dissertation focuses on communication-aware motion planning of mobile net-

works in the presence of realistic communication channels that experience path loss,
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shadowing and multipath fading. This is a challenging multi-disciplinary task. It

requires an assessment of wireless link qualities at places that are not yet visited by

the mobile sensors as well as a proper co-optimization of sensing, communication

and navigation objectives, such that each mobile sensor chooses a trajectory that

provides the best balance between its sensing and communication, while satisfying

the constraints on its connectivity, motion and energy consumption. While some

trajectories allow the mobile sensors to sense efficiently, they may not result in a

good communication. On the other hand, trajectories that optimize communica-

tion may result in poor sensing. The main contribution of this dissertation is then

to address these challenges by proposing a new paradigm for communication-aware

motion planning in mobile networks. We consider three examples from networked

robotics and mobile sensor network literature: target tracking, surveillance and dy-

namic coverage. For these examples, we show how probabilistic assessment of the

channel can be used to integrate sensing, communication and navigation objectives

when planning the motion in order to guarantee satisfactory performance of the

network in realistic communication settings. Specifically, we characterize the perfor-

mance of the proposed framework mathematically and unveil new and considerably

more efficient system behaviors. Finally, since multipath fading cannot be assessed,

proper strategies are needed to increase the robustness of the network to multipath

fading and other modeling/channel assessment errors. We further devise such ro-

bustness strategies in the context of our communication-aware surveillance scenario.

Overall, our results show the superior performance of the proposed motion planning

approaches in realistic fading environments and provide an in-depth understanding

of the underlying design trade-off space.
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Chapter 1

Introduction

Over the past few years, considerable progress has been made in the area of robotic

and mobile networks [1–3]. The vision of a mobile network cooperatively learning and

adapting in harsh unknown environments to achieve a common goal is closer than

ever. Such mobile networks consist of a group of unmanned sensors/agents/robots,

equipped with sensing, processing and communication capabilities, that cooperate to

perform a task jointly. Mobile networks can have a tremendous impact in many differ-

ent areas, such as search and rescue [4,5], target tracking [6–12], surveillance [13–15],

exploration and field estimation [16–20], environmental monitoring [21, 22] and mil-

itary reconnaissance [23, 24]. Since each mobile sensor has a limited sensing and

communication capability, the group relies on a networked operation to accomplish

its task. Limited sensing and communication capabilities, distributed decision mak-

ing and other constraints, thus, make designing robust and efficient mobile networks

challenging.

Several different problems in designing mobile networks have been studied by

different communities in recent years. In robotics and control community, problems

such as motion planning and group coordination [25–33], cooperative task accom-
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plishment [6–21] and control over networks [34–42] have been extensively studied.

In the communication community, on the other hand, a rather different class of

problems such as cross-layer design [43,44], power management [45,46], cooperative

routing [47–49], diversity schemes [50,51] and capacity [52,53] have been considered.

In this dissertation, we are interested in communication-aware motion planning, a

problem that requires concepts from both communities. By communication-aware

motion planning, we refer to the co-optimization of sensing (information gathering)

and communication (information exchange) through proper trajectory design. This

is a very challenging task and requires 1) an assessment of wireless link qualities at

places that are not yet visited by the mobile sensors, and 2) a proper integration

of sensing, communication and navigation objectives such that each mobile sensor

chooses a trajectory that provides the best balance between its sensing and commu-

nication. While some trajectories allow the mobile sensors to sense the environment

and gather information extensively, they may not result in a good communication

performance. On the other hand, trajectories that optimize communication may

result in poor sensing. Proper motion optimization, thus, requires understanding

the underlying trade-offs and integrating sensing, communication and navigation ob-

jectives when planning the motion. Presenting such an integrative strategy to com-

munication, sensing and motion planning in mobile networks is the key novelty of

this dissertation. The proposed communication-aware motion planning approaches

of this dissertation plan the motion of the mobile sensors by designing proper in-

tegrated objective functions, and using a probabilistic assessment of realistic fading

channels to evaluate these objective functions at unvisited locations. The proposed

approaches can be used to optimize the trajectories of the mobile sensors (and pos-

sibly their transmission powers and rates along their trajectories) to accomplish the

sensing task of the network, while satisfying the constraints on the connectivity of

the mobile sensors (as well as their motion and energy constraints).

Specifically, we design our communication-aware motion planning approaches for
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a number of scenarios from robotic and mobile sensor network literature. The sce-

narios considered in this dissertation are as follows: target tracking, surveillance and

dynamic coverage. Communication plays a key role in the overall performance of the

network in all these cases, as mobile sensors need to communicate vital information

in environments that are typically challenging for communication. Each scenario is

studied in detail in a separate chapter, where we show the effects of realistic fad-

ing communication channels on the overall network performance and propose our

communication-aware motion planning strategies. To the best of our knowledge,

this is the first time that communication-aware motion planning strategies that con-

sider realistic fading communication channels are designed for these scenarios, as we

explain more throughout the dissertation.

1.1 Contributions of the Dissertation

In this section, we explain the organization of the dissertation and summarize its

contributions. Each chapter of this dissertation deals with a specific problem. Thus,

we explain the contributions of each chapter separately. Note that a more detailed

discussion on the contributions of each chapter is provided at the beginning of the

chapter.

Chapter 2: Probabilistic Assessment of Wireless Channels

and Motion Planning for Improving Channel Prediction Qual-

ity

In this chapter, we first review the probabilistic modeling of wireless channels and

propose a probabilistic channel assessment framework to predict the channel varia-

tions at unvisited locations, based on a small number of channel measurements. We

then show how to plan motion of a mobile sensor to collect channel measurements
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that improve its channel assessment performance. The probabilistic channel model

introduced in this chapter is the well-established multi-scale random field model from

the wireless communication literature. This model gives the distribution of the path

loss, shadowing and multipath fading components of the channel as well as their spa-

tial correlations. Our proposed probabilistic channel assessment framework is built

on this model and enables a mobile sensor to efficiently predict the channel along its

trajectory. In order to use the mobility of the mobile sensor to improve its channel

assessment performance, we then propose two motion planning approaches. In the

first approach, the trajectory of the mobile sensor is optimized to collect channel

measurements that improve its estimate of the underlying channel parameters (spe-

cially the path loss parameters). In the second approach, the trajectory is optimized

to collect measurements that directly minimize the channel assessment error variance

at the mobile sensor.

We use this channel assessment framework extensively throughout the rest of the

dissertation, when proposing our communication-aware motion planning approaches.

The results of this chapter are based on our journal papers [6,54] and the confer-

ence papers [7, 55, 56].

Chapter 3: Communication-Aware Target Tracking Using

Mobile Networks

In Chapter 3 of this dissertation, we study the problem of remotely tracking a moving

target in realistic communication environments. We consider the scenario where a

fixed remote station utilizes a number of mobile sensors for keeping track of the po-

sition of a moving target. The communication links between the mobile sensors and

the remote station are realistic wireless links that experience path loss, shadowing

and multipath fading. We first characterize the effects of realistic fading channels

and a packet-dropping receiver on Kalman filtering for estimating the target position
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at the remote station. By using an information-theoretic measure of uncertainty at

the remote station, we then propose local communication-aware motion planning ap-

proaches to minimize the estimation error covariance (maximize the received Fisher

information) of the target position at the remote station. Our novel motion plan-

ning approaches of this chapter properly integrate the sensing and communication

objectives to accomplish the sensing task of the mobile sensors, while maintaining

proper connectivity to the remote station. To the best of our knowledge, this is the

first time that such communication-aware motion planning approaches are proposed

for networked target tracking in realistic fading communication environments. This

is the key contribution of this chapter.

The results of this chapter are based on our journal paper [6] and the conference

paper [7].

Chapter 4: Communication-Aware Surveillance Using Mobile

Networks

In Chapter 4 of this dissertation, we build on Chapter 3 to consider the case where

the information is generated in a more complex manner in the environment. More

specifically, we consider a networked surveillance operation where a number of mobile

sensors are deployed to survey an environment, detect an unknown number of static

targets, and inform a remote station of their findings. The mobile sensors detect

the targets along their trajectories, using their collected sensory data. To inform

the remote station, they send fixed-size binary vectors, referred to as target maps,

to the remote station. In a target map, a one (zero), at any element, indicates that

the mobile sensor has detected a target (or not) in the corresponding cell of the

discretized version of the environment. The remote station then fuses the target

maps received from the mobile sensors and builds a more reliable map of targets

over the entire environment.
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In this chapter, we start with analyzing the impact of the trajectories of the mobile

sensors and the resulting sensing and communication qualities on the probability of

target detection error at the remote station. We then propose a communication-aware

motion planning framework that can guarantee, under certain assumptions, that

each sensor explores the environment and gathers as much information as possible

regarding target locations, while maintaining the required connectivity to the remote

station. The proposed framework consists of two decentralized switching approaches

to satisfy the requirements on the connectivity of the mobile sensors to the remote

station: communication-constrained and hybrid. Our communication-constrained

approach plans the motion of each mobile sensor such that it explores the workspace

while maximizing its probability of connectivity to the remote station during the

entire operation. This approach is appropriate for the case where the remote station

needs to be constantly informed of the most updated map of the targets, which

puts a constraint on the motion of the mobile sensors to constantly maintain their

connectivity. Constant connectivity, however, is not required if the mission is such

that the remote station only needs to be informed of the map of the targets at

the end of a given operation time. In this case, the mobile sensors can explore the

environment with less connectivity constraints, provided that they get connected to

and inform the remote station at the end of the given operation time. Our hybrid

motion planning approach is then appropriate for this case. This approach builds on

our communication-constrained one and allows the mobile sensors to explore the area

more extensively than the communication-constrained approach, while maximizing

their probability of connectivity at the end of the operation. Both approaches make

use of the probabilistic channel assessment framework of Chapter 2 to predict the

path loss and shadowing components of the channel at unvisited locations, based on

a small number of channel samples that are collected online or a priori. Proposing

these two approaches is the main key contribution of this chapter. Another important

contribution of this chapter is proposing strategies to increase the robustness of
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our communication-constrained and hybrid approaches to multipath fading. Such

strategies are specially desired since multipath fading cannot be predicted efficiently

based on the sparse sampling of the channel and, therefore, is a source of uncertainty.

The results of this chapter are based on our journal paper [13] and the conference

papers [14, 16].

Chapter 5: Communication-Aware Dynamic Coverage of Time-

Varying Environments Using Mobile Networks

Chapter 5 of this dissertation is dedicated to the problem of communication-aware

dynamic coverage of time-varying environments. We consider the problem where a

number of mobile agents,1 with limited energy budgets and sensing/actuation ca-

pabilities, are deployed to cover a set of point of interests (POIs) in a time-varying

environment. By a time-varying environment, we refer to an environment where a

quantity of interest that needs to be controlled at the POIs is time-varying and in-

creasing in time at every POI that is not in the effective range of any mobile agent.

Several real-world applications can be modeled as a dynamic coverage problem. Ex-

amples include surveillance of a time-varying environment, information collection

from a set of data logging devices distributed over a spatially large environment,

collecting hazardous materials from a set of POIs, distributed task accomplishment,

and mobility-on-demand systems. In this chapter, we also consider a communication-

oriented scenario where the mobile agents are required to communicate to a fixed

remote station in order to complete their coverage task. The goal is then to plan the

motion and communication policies of the mobile agents in order to guarantee the

boundedness of the quantity of interest at all the POIs, while meeting the constraints

on the connectivity of mobile agents to the remote station, the frequency of covering

the POIs, and the total energy budget of the mobile agents. Note that since the

1In this chapter, we intentionally use the term “mobile agents” as opposed to “mobile
sensors” to emphasize that the nodes may be active nodes that are able to actuate or
change the environment.
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quantity of interest is continuously increasing at the POIs, periodic trajectories need

to be devised for the mobile agents in order to repeatedly cover the POIs. Next,

we explain our communication-aware approach for dynamic coverage of time-varying

environments in more detail.

We consider a linear dynamics for the time-variation of the quantity of interest at

the POIs.2 We then propose motion and communication policies for the mobile agents

to minimize the total energy consumption of the mobile agents in each period, while

guaranteeing that the quantity of interest at the POIs remains bounded, and the con-

straints on the connectivity of the mobile agents, the frequency of covering the POIs,

and the total energy budget of the mobile agents are satisfied. We start with the

case where the sensing/actuation range of the mobile agents is small such that each

agent is required to move to the position of each POI and stop there for some time

to sense/service it (this assumption is then relaxed at the end of the chapter). We

also assume a limited total energy budget for the mobile agents. To keep our frame-

work general, we consider two variants of the problem: communication-intensive and

communication-efficient. Communication-intensive case refers to the case where the

mobile agents are required to be connected at all the POIs they visit, in order to

send their collected information to the remote station in real-time. Communication-

efficient case, on the other hand, refers to the case where the mobile agents are

only required to connect to the remote station once along their trajectories, decreas-

ing the communication burden considerably. In both communication-intensive and

communication-efficient cases, we show how to optimally find the trajectories of the

mobile agents, as well as their stop times and transmission powers at the POIs,

using mixed-integer linear programs (MILPs). The properties of the optimal solu-

tions of the MILPs, as well as their asymptotic properties, are also characterized

2While the dynamics of the quantity of interest in the aforementioned problems could
be nonlinear, a linear approximation may be a close enough approximation depending on
the system parameters.
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mathematically.

We next continue with extending our framework by considering a non-zero range

for the sensing/actuation device of the mobile agents and adapting their velocities

and transmission rates (in addition to their transmission powers) along their trajec-

tories. Unlike the previous case, here we take into account the amount of information

(the number of information bits) that is transmitted to and correctly received by the

remote station along the trajectories of the mobile agents. For the sake of simplicity,

however, we consider only one mobile agent. We then show how the trajectory of

the mobile agent, as well as its transmission power, transmission rate and velocity,

can be optimally found using an MILP. Finally, the solution of the proposed MILP

in this case is characterized mathematically.

To the best of our knowledge, this is the first time that dynamic coverage is solved

optimally, in the presence of realistic communication channels, and under several con-

straints on the connectivity and total energy consumption of the mobile agents. Also,

there is no existing work that mathematically analyzes the dynamic coverage prob-

lem, as we do so in this chapter. We should emphasize that the proposed dynamic

coverage framework of this chapter is quite general. Several communication-oriented

dynamic coverage scenarios can be solved using the dynamic coverage strategies pro-

posed in this chapter. A more detailed discussion can be found at the beginning of

the chapter.

The results presented in this chapter are based on our recently submitted journal

paper [57] and the conference paper [58].

1.2 Related Work

In this section, we review the current literature as related to different parts of this

dissertation. This further highlights the contributions of the dissertation explained
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in the previous section.

1.2.1 Probabilistic Assessment of Wireless Channels andMo-

tion Planning for Improving Channel Prediction Qual-

ity

The probabilistic channel model utilized in Chapter 2 is the well-established multi-

scale random field model proposed in the wireless communication literature [54, 59,

60]. This model gives the distribution of the path loss, shadowing and multipath

fading components of the channels and their spatial correlations. We then use this

model to propose our channel assessment framework in Chapter 2, based on concepts

from Gaussian random fields. Our channel assessment framework can also be thought

of in the context of krigging and active sensing of a general 2D field [19–21, 61–64].

For the implication of this framework for other applications not considered in this

thesis, such as robotic routers, readers are referred to [65]. For more on transmitter

position localization based on a probabilistic modeling of the channel, the readers

are referred to [64, 66].

In Chapter 2, we also propose a motion planning framework for improving channel

predictability in robotic/sensor networks.

1.2.2 Target Tracking Using Mobile Networks

Target tracking have been explored extensively in the robotics, control and mobile

sensor network community [8–12,67]. The techniques that are based on optimizing an

information-theoretic objective function are the most related to the target tracking

approach of Chapter 3. Such techniques are often referred to as active sensing in the

literature. In active sensing, the idea is to use a distributed sensor fusion technique,

based on a Kalman filter, and then find the trajectories of the mobile sensors to
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optimize an information-theoretic objective function that is designed to improve

the overall sensor fusion performance. For instance, the authors in [9–11] propose

analyzing the effects of possible motions or configurations of mobile sensors on the

performance of Kalman filtering. To improve the performance, they then consider

choosing the best local motion at each step [10,11] or navigating the mobile sensors to

the optimal configuration asymptotically [9]. In these works, the resulting objective

functions are nonlinear functions of the positions of the mobile agents at each step

and are optimized using gradient-based, greedy or receding horizon techniques when

planning the motion. Motion planning approaches based on vector fields have also

been proposed [12]. Note that the communication links between the mobile sensors

and the fusion center are assumed ideal in the aforementioned works. Recently a

number of papers started to consider the effect of realistic communication links on

the performance of Kalman filtering over wireless links. In [68,69], the authors study

the problem of Kalman filtering over packet-dropping links. Kalman filtering in

the presence of fading channels is also studied in [41], where the authors analyze

the effect of SNR-dependant packet drops and communication noise on the filtering

performance.3

The first attempts to consider realistic communication channels when tracking a

moving target appeared in [70–72]. The proposed method in [70] considers a distance-

dependant probability of drop for the mobile sensors and uses that to formulate the

average Fisher information at the remote station. Also, in [71, 72] path loss models

are used to find the overall observation error covariance (the summation of sensing

and communication noise covariances) at the remote station. Greedy motion plan-

ning approaches are then used to minimize the total estimation error covariance of a

best linear unbiased estimator (BLUE) of the remote station to estimate the target

3Note that Kalman filtering over packet-dropping links falls in the category of the net-

worked control systems [34–39,69]. In the networked control systems, the goal is to consider
the effect of communication links on the performance and stability of the estimation/conrol
of a dynamical system over wireless links.

11



Chapter 1. Introduction

position. The communication-aware motion planning approaches of Chapter 3 can

be considered as extensions of the motion planning approaches of [70–72] to the case

that 1) the communication links are realisitic channels that experience path loss,

shadowing and multipath fading, 2) the mobile sensors utilize a probabilistic assess-

ment of wireless channels using the channel measurements they gather along their

trajectories, and 3) sensing and communication goals are integrated in the design of

the motion planner. By designing novel integrated sensing and communication ob-

jectives and using the channel assessment framework of Chapter 2, we can guarantee

a large improvement in the target estimation performance in the presence of realistic

fading channels, as we show in Chapter 3.

1.2.3 Surveillance, Exploration and Field Estimation Using

Mobile Networks

The results of Chapter 4 are related to the current results on robotic surveillance,

exploration, coverage, field estimation and environmental monitoring. For instance,

in [15], the authors consider a surveillance scenario, using a team of unmanned aerial

vehicles (UAVs) and unmanned ground vehicles (UGVs), for detecting and localiz-

ing an unknown number of features within a given search area. They then design

an information-theoretic framework for coordination of the UAVs and UGVs, which

maximizes the mutual information gain for target localization. However, only sens-

ing objectives are considered for coordination. In the robotic exploration/coverage

context, related works are [17, 18, 73, 74], where the authors propose gradient-based

controllers to navigate the robots along trajectories that provide the best sensing

coverage performance [73, 74] or guarantee exploration of the entire environment

asymptotically [17, 18]. Motion planning for field estimation has also been stud-

ied by several works such as [19, 20]. In [19], a distributed kriged Kalman filter is

used to estimate the spatio-temporal variations of a field. The author then pro-
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poses a gradient-based motion controller to find the maxima of the field. A similar

field estimation approach, based on kriging, is also considered in [20]. The authors,

however, consider solving a dynamic program to find the optimal trajectories. In

the environmental monitoring context, the authors in [21] address the problem of

adaptive exploration for an autonomous ocean monitoring system. Feedback control

laws are then derived to coordinate the robots along the trajectories that optimize

a predefined exploration performance metric.

The aforementioned works, however, are not concerned with communication is-

sues. In other words, the authors effectively consider the sensing objectives, i.e., goals

that are aimed at maximizing the exploration and coverage performance of the robots

when planning the motion. Although, proper communication objectives, i.e., goals

that are aimed at maximizing the probability of connectivity to the remote station,

are not taken into account [15,17–21,73–75]. Considering both objectives requires a

new design paradigm as new challenges arise. Our proposed communication-aware

framework addresses these challenges by properly co-optimizing sensing, communi-

cation and navigation objectives. This is not possible using the existing approaches

in the literature.

1.2.4 Dynamic Coverage of Time-Varying Environments Us-

ing Mobile Networks

The existing literature related to the dynamic coverage problem of Chapter 5 is

categorized based on the type of the environment (time-invariant or time-varying)

and motion planning approach (analytical or algorithmic). For instance, the explo-

ration strategies of [17, 18] can be considered dynamic coverage strategies used to

cover a time-invariant environment based on analytical motion planning approaches

(gradient-based approaches). The algorithmic motion planning approaches of [76–78]
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can also be used for dynamic coverage of a time-invariant environment. In these

works, the authors determine the paths that pass through a set of points or cells in

a known [76] or unknown [77] environment. Their proposed approaches involve cel-

lular decomposition for known environments and Morse decomposition for unknown

ones, as well as devising heuristic and exact algorithms to achieve coverage. In their

more recent work in [78], the authors also extend their algorithmic approach to the

case of sensing ranges that go beyond the size of the robot. These works, however,

do not consider planning periodic trajectories for dynamic coverage of time-varying

environments. Furthermore, none of these works consider realistic communication

and energy constraints when planning the motion of the mobile agents.

In terms of the class of the trajectories considered, the proposed approaches of

Chapter 5 are related to current literature on sweep coverage and patrolling [79–83]

and persistent monitoring [84, 85], where periodic trajectories for the mobile agents

are planned to repeatedly cover a set of POIs in the environment. The approaches

of [79–84] are based on designing heuristic near-optimal algorithms for covering the

POIs (under a constraint on the frequency of visiting the points or by maximiz-

ing the frequency of the visits). The authors, however, do not consider a time-

varying environment and realistic communication and energy constraints. The au-

thors in [85] propose a trajectory planning algorithm, based on a constrained version

of the Bellman-Ford algorithm, to persistently visit a set of cells in a discretized

version of the environment. Their goal is to maximize a reward function and meet

the constraint on the maximum allowable time for an agent to complete a cycle,

without considering the communication and energy issues. Realistic communication

links are considered in [86], where the authors propose on-line adaptation of the

velocity of a single mobile agent to the channel quality (along a fixed trajectory).

However, they do not consider path planning, sensing objectives, link prediction, or

energy issues. The formal definition of a time-varying environment that we utilize

in this chapter is first presented in [75], where the authors introduce the dynamics

14



Chapter 1. Introduction

of the quantity of interest at the POIs. In order to stabilize the dynamic coverage

task, they then propose strategies to adapt the velocities of the mobile agents along

predefined periodic trajectories. Similarly, no communication or energy constraint

is considered in [75]. In Chapter 5, we extend the previous work on multi-agent

coverage to a time-varying environment and in the presence of communication, time

and energy constraints. More specifically, we consider a generalized version of the

linear dynamical model of [75] to capture the time variations of the quantity of in-

terest in the presence of realistic fading channels. We then propose optimal motion,

transmission power and transmission rate policies for the mobile agents to stabilize

the dynamic coverage task, while meeting the constraints on the connectivity of the

mobile agents along their trajectories, the frequency of covering the POIs, and the

total energy consumption of the mobile agents. Our proposed approach enables net-

worked multi-agent dynamic coverage in realistic communication settings and in the

presence of energy constraints, which is not possible using the current methods.

1.3 Notations

Throughout this dissertation, the following common notations are used:

• The dependency of a quantity f to any quantity x is shown by f(x) when the

x is continuous and by fx when x is discrete. For instance, if a quantity f at

mobile sensor k is a continuous function of time t and position q, we show this

dependency by fk(q, t).

• We use calligraphic letters (X , Y , · · · ) to show finite or infinite sets. Then, the

notation |X | denotes the number of elements (cardinality) of X if X is finite,

while it shows the volume of X if X is a subset of RN .

• We traditionally assume that if I = ∅, then 1)
∏

i∈I xi = 1, 2)
∑

i∈I xi =

0 and 3)
⋃

i∈I Xi = ∅, where xi and Xi denote arbitrary numbers and sets,

respectively.
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Chapter 2

Probabilistic Assessment of

Wireless Channels and Motion

Planning for Improving Channel

Prediction Quality

Consider a spatially-distributed sensing operation, in a workspace W ⊂ R
2, where a

a number of mobile sensors1 need to maintain their connectivity to a fixed remote

station while accomplishing their sensing task. A fundamental parameter that char-

acterizes the performance of the communication channel from a mobile sensor to the

remote station is the instantaneous channel power or equivalently the received signal

power or the received signal-to-noise ratio (SNR).

In the wireless communication literature [59, 60], it is well established that the

channel power (or the received signal power or the received SNR), can be modeled

1In this dissertation, we use terms “mobile sensor”, “mobile agent” and “robot” inter-
changeably.
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as a multi-scale non-stationary random field with three major dynamics: path loss,

shadowing (or shadow fading) andmultipath fading. Fig. 2.1 shows the received signal

power across a route in the basement of the Electrical and Computer Engineering

(ECE) building at the University of New Mexico (UNM). The three main dynamics of

the received signal power are marked on the figure. Path loss is the slowest dynamic

which is associated with the signal attenuation due to the distance-dependent power

fall-off. Depending on the environment, blocking objects may result in a faster

variation of the channel power referred to as shadowing. Finally, multiple replicas

of the transmitted signal can arrive at the receiver due to the reflection from the

surrounding objects, resulting in even a faster variation in the channel power called

multipath fading.

0.8 0.9 1 1.1 1.2 1.3log10(d) (dB)
 

 

Path loss

Multipath fading
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we
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Figure 2.1: Underlying dynamics of the received signal power across a route in the base-
ment of the ECE building at UNM. d is the distance to the transmitter.

In this chapter, we first summarize the well-established multi-scale probabilistic

modeling of wireless channels and develop a channel prediction/assessment frame-

work based on that. We then show how to plan the motion of a mobile sensor to

improve its channel assessment performance. Using our probabilistic channel assess-

ment framework a mobile sensor can assess the channel along its trajectory well,

given only a small number of a priori channel measurements. In the following chap-
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ters, the proposed channel assessment framework of this chapter is integrated with

motion planning in order to maintain the connectivity of the mobile sensors while

accomplishing their sensing task.

The rest of this chapter is organized as follows. In Section 2.1, we summarize the

multi-scale probabilistic modeling of wireless channels, as discussed in the wireless

communication literature. We introduce our probabilistic channel assessment frame-

work in Section 2.2, where we explain how to estimate the channel parameters and

predict the spatial variations of the channel power at unvisited locations. In Section

2.3, we analyze the sensitivity of our channel assessment approach to errors in the

estimation of channel parameters and show that it is more sensitive to the estimation

errors of the path loss parameters. In Section 2.4, we propose a framework for plan-

ning the motion of a mobile sensor to improve its channel assessment. A summary

of the results of the chapter is provided in Section 2.5.

2.1 Probabilistic Modeling of Wireless Channels

The probabilistic modeling of wireless channels characterizes the distribution of a

sample of the channel as well as its spatial correlation. In this section, we briefly

explain a probabilistic model of wireless channels as discussed in the the wireless

communication literature [54, 56, 59, 60]. Let G(q) denote the channel power in the

transmission from a mobile sensor at position q ∈ W to a remote station at position

qb ∈ R
2. By using the multi-scale non-stationary random field model of wireless

channels [59, 60], we have the following characterization for G(q):

G(q) = GPL(q)GSH(q)GMP(q), (2.1)

where GSH(q) and GMP(q) are random variables representing the impact of shad-

owing and multipath fading components respectively, and GPL(q) =
KPL

‖q−qb‖nPL
is the
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distance-dependent path loss. In this model, the multipath fading term, GMP(q), has

a unit average. Let GdB(q) , 10 log10
(
G(q)

)
represent the channel power in dB. We

have

GdB(q) = KdB − 10 nPL log10
(
‖q − qb‖

)
+GSH,dB(q) +GMP,dB(q), (2.2)

where KdB , 10 log10(KPL) + GMP,dB, GMP,dB , 10E
{
log10

(
GMP(q)

)}
is the av-

erage of the multipath fading term in dB, GSH,dB(q) = 10 log10
(
GSH(q)

)
is a zero-

mean random variable representing the shadowing effect in dB, and GMP,dB(q) =

10 log10
(
GMP(q)

)
−GMP,dB is a zero-mean random variable, independent ofGSH,dB(q),

which denotes the impact of multipath fading in dB. Note that the average of the

multipath fading term in the dB domain has been moved to KdB in order to make

the mean of GMP,dB(q) zero.

In the communication literature, the distributions of GSH(q) and GMP(q), or

equivalently GSH,dB(q) andGMP,dB(q), are established based on empirical data [59,60].

As for the shadowing component, log-normal is shown to be a good match for the

distribution of GSH(q), resulting in the following probability density function (pdf)

for GSH,dB(q): fGSH,dB,norm(x) =
1√
2πϑ

e
−x2

2ϑ2 , where ϑ2 = E
{
G2

SH,dB(q)
}
is the variance

of the shadow fading variations of the channel power around the path loss component

in the dB domain. Distributions such as Rayleigh, Rician, Nakagami and log-normal

are also shown to match the pdf of GMP(q).
2 Rayleigh distribution is a good match

when the channel has no line-of-sight (LOS) component. In this case, the pdf of

GMP(q) is given by fGMP,Ray(x) = e−x. If the channel has a LOS component, Rician

distribution is shown to be a better match than Rayleigh. The pdf of GMP(q) in

this case is given by fGMP,Ric(x) = (Kr + 1)e−Kr−(Kr+1)xI0
(
2
√
xKr(Kr + 1)

)
, where

I0(.) is the zeroth-order modified Bessel function and Kr is the Rician K-parameter,

that determines the ratio of the power of the LOS component to the power of the

non-LOS component of the channel. Note that Rayleigh fading is a special case

2We assume narrowband fading channels [59,60] throughout this dissertation.
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of the Rician fading for Kr = 0. Nakagami is the most general distribution for

multipath fading, which is shown to be a good match in several environments [59].

The pdf of GMP(q) in case of a unit-average Nakagami multipath fading is given

by fGMP,Nak(x) = mm

Γ(m)
xm−1e−mx, where Γ(.) represents the Gamma function and

parameter m is referred to as the fading figure. For m = 1, Nakagami distribution

reduces to Rayleigh, and for m = (Kr+1)2

2Kr+1
it approximately reduces to Rician. Note

that for Rayleigh, Rician and Nakagami multipath fading, the pdf of GMP,dB(q) can

be calculated by a simple change of variable, using the pdf of GMP(q). Finally, some

experimental measurements have shown log-normal to be a good enough yet simple

fit for the distribution of GMP(q), in which case the pdf of GMP,dB(q) is given as

follows: fGMP,dB,norm(x) =
1√
2πω

e
−x2

2ω2 , with ω2 = E
{
G2

MP,dB(q)
}
denoting the power of

the multipath component in the dB domain.

Characterizing the spatial correlations of GSH,dB(q) and GMP,dB(q) is also im-

portant, specially for channel prediction purposes. As for the spatial correlation of

multipath fading, there is no single model that can be a good match for different

environments.3 Due to the lack of a general model, in this paper we assume in-

dependent multipath fading components, i.e., for any two q1, q2 ∈ W, if q1 6= q2

then GMP,dB(q1) and GMP,dB(q2) are taken independent (and therefore uncorrelated).

The spatial correlation of shadowing is more important as it stays correlated over

larger distances. In the communication literature, this correlation is typically mod-

eled with an exponential function [59]: E
{
GSH,dB(q1)GSH,dB(q2)

}
= ϑ2e−

‖q1−q2‖
β , for

all q1, q2 ∈ W. Here, the decorrelation distance, β, controls how correlated the chan-

nel is spatially. In the wireless communication literature, the value of β is reported

between 10 m and 50 m for outdoor environments [59]. A typical range for ϑ, on the

other hand, is between 4 dB and 13 dB [59].

3If the environment is rich in scatterers and the antenna has an isotropic angle of
arrival, for instance, the Fourier transform of the auto-correlation function of multipath
fading, GMP(q), will have a form that is referred to as Jakes’ spectrum [59].

20



Chapter 2. Probabilistic Assessment of Wireless Channels

It is important to note that the probabilistic models introduced for channel power

is readily applicable to received SNR too. This is due to the fact that the instan-

taneous received SNR in transmission from a mobile sensor at position q ∈ W to

the remote station is given by SNR(q) = PTX(q)G(q)
BN0

, where PTX(q) is the transmission

(TX) power of the mobile sensor at position q ∈ W, B is the transmission bandwidth

and N0

2
is the power spectral density (PSD) of the thermal noise at the receiver of the

remote station. Since BN0 is fixed, for a given transmission power the probabilistic

models of SNR(q) and G(q) are the same.

Next, we show how each mobile sensor can probabilistically assess/predict the

spatial variations of the channel power at unvisited locations, using a small number

of channel power measurements.4 Note that since the channel to the remote station

is time-invariant, the delay in the communication among the mobile sensors, in the

case of cooperative channel assessment, does not make the communicated information

obsolete. Also, we emphasize that we are not suggesting that a wireless channel is

fully predictable, as it is not. That is why instead of trying to capture and learn

all the underlying dynamics of the channel, our proposed framework is aimed at

probabilistically assessing the channel. As a result, our assessment of channel spatial

variations is not going to be perfect, unless several measurements are gathered, but

will be informative for the communication-aware motion planning, as we will see in

next chapters.

4In this dissertation, we assume symmetric uplink and downlink channels, i.e., the
channel from a mobile sensor to the remote station is taken identical to the one from the
remote station to the mobile sensor. This is the case, for instance, if both transmissions
occur in the same frequency band and are separated using Time Division Duplexing (TDD).
If uplink and downlink use different frequency bands, then we assume that a few uplink
channel measurements are sent back to the mobile sensor, using a feedback channel, as is
common in the communication literature [59]. These uplink measurements then form the
basis of uplink channel assessment.
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2.2 Probabilistic Channel Assessment Based on a

Small Number of Channel Measurements

In this section, we show how each mobile sensor can predict the spatial variations of

the channel at unvisited locations based a small number of channel measurements.

Let Mk,t =
{
qk,t,ℓ

}mk,t

ℓ=1
, for mk,t = |Mk,t|, denote the (possibly time-varying) set

of the positions corresponding to the small number of channel power measurements

available to the kth mobile sensor at time instant t. These measurements can be

gathered by the mobile sensor along its trajectory during the operation, gathered

and communicated to it by other sensors (with similar receivers) operating in the

same environment, or collected a priori. Consider negligible receiver thermal noise

power, as compared to the received signal power, such that a mobile sensor can

measure the received channel power with good accuracy. The stacked vector of the

received channel power measurements (in dB), available to the kth mobile sensor at

time instant t, can then be expressed by

Yk,t =




1 −10 log10
(
‖qk,t,1 − qb‖

)

...
...

1 −10 log10
(
‖qk,t,mk,t

− qb‖
)




︸ ︷︷ ︸
Hk,t

θ +




GSH,dB(qk,t,1)
...

GSH,dB(qk,t,mk,t
)




︸ ︷︷ ︸
Ξk,t

+




GMP,dB(qk,t,1)
...

GMP,dB(qk,t,mk,t
)




︸ ︷︷ ︸
Ωk,t

,

(2.3)

where θ = [KdB nPL]
T denote the vector of path loss parameters. Based on the

introduced log-normal distribution for shadow fading and its exponential spatial

correlation, Ξk,t is a zero-mean Gaussian random vector with the covariance matrix

Rk,t ∈ R
mk,t×mk,t , where

[
Rk,t

]
ℓ1,ℓ2

= ϑ2 exp
(
− ‖qk,t,ℓ1−qk,t,ℓ2‖

β

)
, for 1 ≤ ℓ1, ℓ2 ≤ mk,t.

We also assume log-normal multipath fading and a resulting Gaussian distribution for

Ωk,t. Note that Rayleigh, Rician and Nakagami provide a better fit than log-normal in

general. However, mathematical derivations of online channel assessment are easier
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with a log-normal distribution. This over-simplification, however, is only for our

modeling and assessment purposes. When we present our results in the subsequent

section, multipath component of the considered channels has a Rician (or Nakagami)

distribution. We also take the elements of Ωk,t to be uncorrelated due to the following

reasons. First, there is no one good model that characterizes the correlation of

multipath fading in all the environments since its correlation depends on the angle

of arrival as well as receiver antenna pattern. Second, multipath component typically

decorrelates very fast, making adaptation to its changes infeasible. As a result, we

take Ωk,t to be a zero-mean Gaussian random vector with the covariance ω2Imk,t
,

where ω2 is the power of multipath fading component (in dB) and Imk,t
is the mk,t-

dimensional identity matrix.

The first step in our probabilistic channel assessment is to estimate the parameters

of the underlying model (θ, ϑ, β and ω), based on the available measurements. We

have the following theorem [6]:

Theorem 2.2.1. Define α , ϑ2 +ω2. Then, the least-square (LS) estimation of the

channel parameters, at the kth mobile sensor and at time t, are given as follows:

θ̂k,t =
(
HT

k,tHk,t

)−1
HT

k,tYk,t,

α̂k,t =
1

mk,t

Y T
k,t,cYk,t,c,


log(ϑ̂

2
k,t)

β̂−1
k,t


 =

(
XT

k,tWk,tXk,t

)−1
XT

k,tWk,tx̂k,t,

ω̂2
k,t = α̂k,t − ϑ̂2k,t, (2.4)

where Yk,t,c =
(
Imk,t

− Hk,t(H
T
k,tHk,t)

−1HT
k,t

)
Yk,t represents the centered version of

the measurement vector, r̂k,t(d) = log
(

1
|Ak,t(d)|

∑
(ℓ1,ℓ2)∈Ak,t(d)

[
Yk,t,c

]
ℓ1

[
Yk,t,c

]
ℓ2

)
, for

non-empty Ak,t(d) =
{
(ℓ1, ℓ2)

∣∣ qk,t,ℓ1, qk,t,ℓ2 ∈ Mk,t, ‖qk,t,ℓ1 − qk,t,ℓ2‖ = d
}
, denotes

the log of the numerical estimate of the spatial correlation at distance d, Bk,t =
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{
d1, · · · , d|Bk,t|

}
=
{
d |0 < er̂k,t(d) < α̂k,t

}
, Xk,t =




1 −d1
...

...

1 −d|Bk,t|


, x̂k,t =




r̂k,t(d1)
...

r̂k,t(d|Bk,t|)


,

Wk,t = diag
{
w(d1), · · · , w(d|Bk,t|)

}
, and w(d) is an associated weight that can be

chosen based on the assessment of the accuracy of the estimation of r̂k,t(d).

Proof. It is straightforward to confirm that θ̂k,t minimizes ‖Yk,t − Hk,tθ‖2. The LS

estimate of α is then given by 1
mk,t

(
Yk,t−Hk,tθ̂k,t

)T(
Yk,t−Hk,tθ̂k,t

)
, which can be easily

confirmed to be α̂k,t =
1

mk,t
Y T
k,t,cYk,t,c. Then, ϑ and β can be estimated by minimizing

the square error between the log of the estimated spatial correlation (r̂k,t(d)) and the

modeled spatial correlation (ϑ2e−d/β):

[ϑ̂2k,t, β̂k,t] = argmin
ϑ2,β>0

∑

d∈Bk,t

w(d)
(
log
(
ϑ2e−d/β

)
− r̂k,t(d)

)2
. (2.5)

Using the definition of Xk,t, x̂k,t and Wk,t, we can write this optimization problem as

follows:

[ϑ̂2k,t, β̂k,t] = argmin
ϑ2,β>0



Xk,t



log(ϑ
2)

β−1



− x̂k,t




T

Wk,t



Xk,t



log(ϑ
2)

β−1



− x̂k,t



 . (2.6)

It can then be easily confirmed that


log(ϑ̂

2
k,t)

β̂−1
k,t


 =

(
XT

k,tWk,tXk,t

)−1
XT

k,tWk,tx̂k,t

minimizes the objective function of (2.6). Finally, given α̂k,t and ϑ̂2k,t, we have

ω̂2
k,t = α̂k,t − ϑ̂2k,t.

It should be noted that if the location of the fixed remote station is not known,

path loss parameters can be estimated by finding the best line fit to the log of the

received measurements. Then, α can be estimated by calculating the deviation from

the estimated path loss curve, followed by estimating ϑ, β and ω as described in

Theorem 2.2.1. Alternatively, the location of the remote station can also be added

to the set of unknown parameters and jointly estimated.
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Once the underlying channel parameters are estimated, the kth mobile sensor can

probabilistically assess the channel power, at an unvisited location, as given by the

following theorem [6]:

Theorem 2.2.2. Conditioned on the channel parameters (θ, β, ϑ and ω), a Gaussian

distribution with mean ĜdB,k,t(q) = E
{
GdB(q)

∣∣Yk,t, θ, β, ϑ, ω
}
and variance σ2

k,t(q) =

E

{(
GdB(q)− ĜdB,k,t(q)

)2 ∣∣ Yk,t, θ, β, ϑ, ω
}
can best characterize the channel power at

an unvisited position q ∈ W \Mk,t, based on the measurements available to the kth

mobile sensor at time t. We then have

ĜdB,k,t(q) = hT(q) θ + φT
k,t(q)U

−1
k,t

(
Yk,t −Hk,tθ

)
,

σ2
k,t(q) = ϑ2 + ω2 − φT

k,t(q)U
−1
k,t φk,t(q), (2.7)

where φk,t(q) =
[
ϑ2 e−‖q−qk,t,1‖/β · · · ϑ2 e−‖q−qk,t,mk,t

‖/β
]T

, h(q) =
[
1 − 10 log10

(
‖q −

qb‖
)]T

and Uk,t = Rk,t + ω2 Imk,t
.

Proof. Consider variables z1 ∈ R
d1 and z2 ∈ R

d2 that are jointly Gaussian, with

mean vectors µz1 and µz2 , covariance matrices Σz1 and Σz2 , and cross covariance

matrix Σz1,z2. Then the conditional distribution of z1 given z2 is also Gaussian with

mean vector µz1 + Σz1,z2Σ
−1
z2
(z2 − µz2) and covariance matrix Σz1 − Σz1,z2Σ

−1
z2
ΣT

z1,z2

[87]. Setting z1 = GdB(q), for q ∈ W \ Mk,t, and z2 = Yk,t completes the proof.

Note that ĜdB,k,t(q) represents the minimum mean-square error (MMSE) estimate

of GdB(q).

Note that Theorem 2.2.2 assumes perfect parameter estimation. The kth mo-

bile sensor then substitutes its estimated channel parameters of Theorem 2.2.1 to

calculate ĜdB,k,t(q) and σ2
k,t(q). Throughout this dissertation, φk,t,est(q), Uk,t,est,

ĜdB,k,t,est(q) and σ
2
k,t,est(q) indicate the k

th sensor’s assessment of φk,t(q), Uk,t, ĜdB,k,t(q)

and σ2
k,t(q) respectively, when the exact channel parameters are replaced by their
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estimated values. We consider the impact of parameter estimation error on the

performance of channel assessment in the next section.5

Fig. 2.2 shows the reconstruction of a channel using our proposed channel assess-

ment framework and based on a small number of a priori gathered measurements.

The original channel is simulated using our probabilistic channel simulator [54], with

the following parameters: θ = [−10 2.0]T, ϑ = 4.0 dB, β = 20 m, ω = 1.13 dB

(corresponding to a Rician distribution with parameter Kr = 30), and with uncor-

related multipath fading. A detailed description of this channel simulator can be

found in [54, 56]. The total number of a priori gathered channel samples is 515,

which is 0.5% of the grid size (the grid is 320× 320). These measurements are ran-

domly distributed over the workspace. The channel is then predicted in the rest of

the workspace based on these measurements. The predicted channel is the mean of

its probability distribution (ĜdB,k,t(q) in Theorem 2.2.2), which is the MMSE esti-

mate of the channel at an unvisited location. The average normalized mean-square

error (ANMSE) of channel reconstruction is −29.55 dB in this example, which is

calculated using the following formula at the kth mobile sensor and at time t:

ANMSEk,t =
1

|W|

∫

W\Mk,t

(
ĜdB,k,t,est(q)−GdB(q)

)2

G2
dB(q)

dq, (2.8)

for |W| denoting the area of the workspace. While the number of channel measure-

ments is considerably small, it can be seen that the trends of shadow fading and

path loss are correctly assessed. However, since we considered uncorrelated multi-

path fading, rapid variations of the channel due to multipath could not be assessed.

In order to show the performance of the proposed channel assessment framework

5As we pointed out in Chapter 1, our channel assessment approach in Theorem 2.2.2
is conceptually similar to field estimation approaches based on kriging [19,21,61]. Kriging
is a popular method for predicting the spatio-temporal variations of Gaussian random
fields [19, 21, 61]. Our channel assessment approach can be considered an application of
kriging for prediction of wireless channels.
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Figure 2.2: A simulated channel (left) and the mean of its probability distribution
(ĜdB,k,t(q) in Theorem 2.2.2) (right). The channel is simulated using our probabilistic
channel simulator, with the following parameters: θ = [−10 2.0]T, ϑ = 4.0 dB, β = 20 m
and ω = 1.13 dB (corresponding to a Rician distribution with parameter Kr = 30). The
total number of a priori gathered channel samples is 515, which is 0.5% of the grid size
(the grid is 320 × 320).

with real channels, Fig. 2.3 shows the reconstruction of two real channels using our

channel assessment framework. The left figure shows an outdoor channel measure-

ment across a street in downtown San Francisco (data is courtesy of Mark Smith [88])

with its reconstruction. The right figure, on the other hand, shows the reconstruction

of an indoor channel measurement along a route in our basement. For both cases,

the path loss parameters are estimated by finding the best line fit to the log of the re-

ceived measurements. After subtracting the path loss term, the channel parameters

are estimated using an approach similar to (2.4). The number of a priori channel

measurements used for parameter estimation and reconstruction is 5% of the total

samples for both channels. The channel observations are randomly distributed over

the workspace. It can be seen that the outdoor channel can be reconstructed with

a considerably better quality. This is expected as the indoor channel suffers from a

more severe multipath fading, as can be seen. Fig. 2.4 shows the reconstruction per-

formance as a function of the percentage of the measurements taken for the channels

of Fig. 2.3. It can be seen that channel estimation performance improves as more

measurements are collected.
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Figure 2.3: The received signal strength across a street in downtown San Francisco along
with its reconstructed version (left) and an indoor received signal strength along a route
in the basement of the ECE building at UNM and its reconstruction (right). The outdoor
data is courtesy of Mark Smith. In both cases, the reconstruction is based on only 5% a

priori channel measurements.
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Figure 2.4: Channel prediction quality for the outdoor (left) and indoor (right) channels
of Fig. 2.3, as a function of the percentage of the measurements gathered.

In the previous examples, we considered cases where the samples were randomly

distributed over the workspace. Next, we consider a more realistic case where each

mobile sensor measures the channel along its trajectory. Assume a scenario where

a number of mobile sensors are tasked with cooperatively building a map of the

spatial variations of a channel to a fixed remote station, as shown in Fig. 2.5. Each

mobile sensor measures the channel along its trajectory and shares its observations

with others for cooperative channel assessment (we assume each mobile sensor can

communicate its measurements with all the other sensors during the operation). Fig.

2.5 (left) shows the trajectories of the mobile sensors superimposed on a 2D map of

the channel power. The middle and right figures then show a snapshot of the true
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channel power map and its estimate respectively, for the case where the total number

of gathered samples is 350, which is 0.34% of the grid size (the grid is 320 × 320).

The original channel is taken to be the same as in Fig. 2.2. In this case, the ANMSE

of channel reconstruction is −25.3 dB, for all the mobile sensors.
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Figure 2.5: Performance of the channel assessment framework in a cooperative channel
assessment scenario – trajectories of the mobile sensors (left), a snapshot of the true channel
power map (middle) and the average of its probabilistic reconstruction using our framework
(ĜdB,k,t(q) in Theorem 2.2.2) (right). The empty circles and the filled ones in the left figure
show the initial and final positions of the mobile sensors respectively. The original channel
is the same as in Fig. 2.2. The total number of gathered samples is 350, which is 0.34% of
the grid size.

Having an assessment of the spatial variations of the channel can be consider-

ably valuable in maintaining the connectivity of the mobile sensors in a coopera-

tive operation. In the following chapters, we show how each mobile sensor can use

our proposed channel assessment framework in order to optimize its trajectory for

communication-aware task accomplishment. More detailed discussion on our pro-

posed channel assessment framework can be found in our recent paper [89].

2.3 Sensitivity of Channel Assessment to the Es-

timation Error of the Channel Parameters

In this section, we explore the impact of error in channel parameters on the overall

channel assessment performance. Assume that estimated parameters are used for
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the MMSE estimation of the channel in Theorem 2.2.2. For any q ∈ W \Mk,t, we

have

GdB(q)− ĜdB,k,t,est(q) = hT(q)θ̃k,t +GSH,dB(q) +GMP,dB(q) (2.9)

− φT
k,t,est(q)U

−1
k,t,estHk,tθ̃k,t − φT

k,t,est(q)U
−1
k,t,est

(
Ξk,t + Ωk,t

)
,

where θ̃k,t = θ − θ̂k,t. Let us define the following:

∆2
k,t(q) , E

{(
GdB(q)− ĜdB,k,t,est(q)

)2 ∣∣∣ θ, ϑ, β, ω, θ̂k,t, ϑ̂k,t, β̂k,t, ω̂k,t

}
. (2.10)

By conditioning on both the estimated and real parameters and using the fact that

E

{(
GSH,dB(q) +GMP,dB(q)

)(
Ξk,t + Ωk,t

) ∣∣∣ ϑ, β, ω
}
= φk,t(q),

E

{(
Ξk,t + Ωk,t

)(
Ξk,t + Ωk,t

)T ∣∣∣ ϑ, β, ω
}
= Uk,t,

E

{(
GSH,dB(q) +GMP,dB(q)

)2 ∣∣∣ ϑ, β, ω
}
= ϑ2 + ω2, (2.11)

we obtain:

∆2
k,t(q) = ϑ2 + ω2 − φT

k,t,est(q)U
−1
k,t,est

[
2φk,t(q)− Uk,tU

−1
k,t,estφk,t,est(q)

]
(2.12)

+
[
h(q)−HT

k,tU
−1
k,t,estφk,t,est(q)

]T
θ̃k,t θ̃

T
k,t

[
h(q)−HT

k,tU
−1
k,t,estφk,t,est(q)

]
.

Then, we have the following important question: which parameters have the most

impact on channel assessment? While we leave the proof of this to our future work,

we observed, from several channel assessments, that the channel assessment frame-

work is most sensitive to the error in path loss estimation (mainly the slope error),

which is also intuitive. Fig. 2.6 shows the impact of parameter estimation uncertainty

on the overall channel assessment quality, where the spatial average of ∆2
k,t(q), i.e.,∫

W ∆2
k,t

(q)dq

|W| is plotted at a sample mobile sensor and for an indoor channel with the

following parameters: θ = [−10 2.0]T, ϑ = 2.0 dB, β = 1.0 m and ω = 2.78 dB

(corresponding to a Rician distribution with parameter Kr = 5). The number of

available channel measurements is 0.1% of the total samples (102 measurements for
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a 320× 320 grid), with the measurements randomly distributed over the workspace.

For each curve, only one parameter is perturbed while the rest are assumed perfect.

It can be seen that channel assessment is considerably more sensitive to path loss

parameters (specially the path loss exponent nPL). As such, it becomes important

to estimate the path loss parameters as accurately as possible. In the next section,

we show how to do so by designing a proper motion planning objective function that

is aimed at improving the estimation of path loss parameters.
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Figure 2.6: Spatial average of ∆2
k,t(q), as a function of the % of estimation error in θ̂k,t,

ϑ̂2
k,t, β̂k,t and ω̂k,t.

2.4 Motion Planning for ImprovingWireless Chan-

nel Assessment in Mobile Networks

In this section, we show how each mobile sensor can use its mobility to improve

its wireless channel assessment. Consider the case that a mobile sensor is assess-

ing the spatial variations of its channel to a fixed remote station, using the channel

measurements it collects along its trajectory, as discussed in the previous section.
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Since the mobile sensor measures the channel along its trajectory, its motion directly

impacts its channel assessment quality. In this section, we want to answer the fol-

lowing question: How should a mobile sensor plan its trajectory in order to improve

its channel assessment quality? We first show how a mobile sensor can plan its tra-

jectory in order to improve its estimate of the underlying channel parameters. This

is then followed by planning the motion of a mobile sensor to decrease its channel

assessment/prediction error variance.

Note that the motion planning approaches proposed in this section are greedy

approaches, i.e., they choose the locally optimal choice at each step. Generally, a

greedy approach does not guarantee finding the globally optimal solution which, in

case of our motion planning approaches, is the solution of a highly-nonlinear optimal

control problem. The reason we chose to use greedy approaches is twofold. First,

solving an optimal control problem, with a highly-nonlinear objective and over a long

time horizon, has a high computational complexity. Second, greedy approaches can

easily support adaptation. In other words, the objective function can be modified at

each step based on the newly gathered information. As shown in this section, such

adaptation is in particular useful for our motion planning approaches as the proposed

motion planning objective functions change based on the new channel measurements

that the mobile sensors gather along their trajectories (and possibly share among

each other).

2.4.1 Motion Planning for Improving the Estimation of the

Underlying Channel Parameters

Our model for the spatial variations of the channel depends on the parameters θ, ϑ,

β and ω, as discussed previously in this chapter. While the trajectory of a mobile

sensor can be optimized to improve the estimation quality of all these parameters,
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we saw in Section 2.3 that channel estimation is considerably more sensitive to the

accuracy of the estimation of θ than the rest of the parameters. Therefore, in this

part we devise a motion planning strategy that aims at improving the quality of the

estimation of θ, assuming that the estimation error of the rest of the parameters

is negligible. Consider the kth mobile sensor in a multi-sensor scenario. Assume

mk,t > 0 channel measurements are available to the kth mobile sensor at time instant

t, as discussed previously in this chapter. Then, the mobile sensor needs to plan its

trajectory such that the next channel measurement it gathers optimally improves its

estimation of θ, as characterized by the next theorem. In this theorem, we consider

the more challenging case of maximum likelihood (ML) estimation of the path loss

parameters. The result can be easily modified for the simpler case of LS estimation.

Theorem 2.4.1. Assume negligible error in the estimation of ϑ, β and ω. Let CML,k,t

denote the error covariance of the ML estimation of the path loss parameters at the

kth mobile sensor and at time t, conditioned on shadowing and multipath parameters.

Assume that the kth mobile sensor gathers one more channel power measurement

along its trajectory at time t+ 1. Then we have the following recursion for CML,k,t:

C−1
ML,k,t+1 = C−1

ML,k,t (2.13)

+

[
hT(ξk,t+1)− φT

k,t(ξk,t+1)U
−1
k,tHk,t

]T[
hT(ξk,t+1)− φT

k,t(ξk,t+1)U
−1
k,tHk,t

]

σ2
k,t(ξk,t+1)

,

where ξk,t+1 is the position of the jth mobile sensor at time k + 1.

Proof. Based on the probabilistic modeling of the previous section, the ML estima-

tion of θ and its corresponding estimation error covariance, using the channel power

measurements up to time t+ 1 and conditioned on ϑ, β and ω, are given as follows:

θ̂ML,k,t+1 =
(
HT

k,t+1U
−1
k,t+1Hk,t+1

)−1
HT

k,t+1U
−1
k,t+1Yk,t+1,

CML,k,t+1 =
(
HT

k,t+1U
−1
k,t+1Hk,t+1

)−1
, (2.14)
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where Uk,t+1 =



 ϑ2 + ω2 φT
k,t

(
ξk,t+1

)

φk,t

(
ξk,t+1

)
Uk,t



 and Hk,t+1 =
[
h(ξk,t+1) HT

k,t

]T
. Note that

we take ξk,t+1 6∈ Mk,t. By using matrix inversion lemma [90] for U−1
k,t+1 we have:

U−1
k,t+1 =




1
σ2
k,t

(ξk,t+1)

φT
k,t

(ξk,t+1)U
−1
k,t

σ2
k,t

(ξk,t+1)

U−1
k,t

φk,t(ξk,t+1)

σ2
k,t

(ξk,t+1)
U−1
k,t +

U−1
k,t

φk,t(ξk,t+1)φ
T
k,t

(ξk,t+1)U
−1
k,t

σ2
k,t

(ξk,t+1)


 (2.15)

where σ2
k,t

(
ξk,t+1

)
= ϑ2 + ω2 − φT

k,t

(
ξk,t+1

)
U−1
k,t φk,t

(
ξk,t+1

)
. By multiplying U−1

k,t+1

from left by HT
k,t+1 and from right by Hk,t+1, and by using the fact that C−1

ML,k,t =

HT
k,tU

−1
k,tHk,t, (2.13) is obtained.

Our proposed approach to minimize the estimation error covariance of θ in the

next step is to have the kth mobile sensor maximize the second term on the right

hand side of (2.13) at any time t. Consider the following discrete dynamical model

for the kth mobile sensor: ξk,t+1 = Υk(ξk,t, uk,t), where uk,t ∈ Uk is the control input

at time t, Uk is the set of admissible control inputs and Υk(., .) is a known function.

We then have the following next-step motion optimization problem, considering the

trace of the right hand side of (2.13):

u∗k,t = argmax
uk,t

JPL,k,t(ξk,t+1) ,

∥∥hT(ξk,t+1)− φT
k,t,est(ξk,t+1)U

−1
k,t,estHk,t

∥∥2

σ2
k,t,est(ξk,t+1)

s.t. 1) ξk,t+1 = Υk

(
ξk,t, uk,t

)
, 2) uk,t ∈ Uk, 3) ξk,t+1 ∈ W \ Ok,t, (2.16)

where φk,t,est(q), Uk,t,est and σ
2
k,t,est(q) are the estimates of φk,t(q), Uk,t and σ

2
k,t(q), with

the shadowing and multipath parameters replaced by their estimated values. Also,

Ok,t denotes the set of forbidden areas for obstacle/collision avoidance, estimated by

the kth mobile sensor at time t.

Note that we do not consider coordination among the mobile sensors when plan-

ning their motion in (2.16). However, the sensors can share their gathered channel

measurements and their positions as they move. The shared information can be used
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by each mobile sensor in two ways. First, it can can combine these measurements

with its own measurements to estimate the channel parameters and plan its motion

more efficiently. In this case, the set Mk,t includes the positions of the channel

measurements of the kth mobile sensor as well as the positions of the channel mea-

surements it has received from the other sensors up to time t. Second, the current

positions of the other sensors at time t (included in Mk,t) can be used to avoid

collisions with other sensors more efficiently by estimating more precise Ok,t. The

resulting motion planner, however, does not change its form when the channel mea-

surements are shared among the mobile sensors. More specifically, only the sets Mk,t

and Ok,t change.

Fig. 2.7 shows the performance of the motion planner of (2.16) in an indoor

environment that has obstacles (denoted by gray areas). A mobile sensor starts with

no a priori channel measurement in this environment. It then solves for its next

position by locally optimizing (2.16) in a small area around its current position. In

this example, the dynamical model of the mobile sensor is given by the first-order

system ξt+1 = ξt + ut, where ‖ut‖ ≤ 1.75 (1.75 is the radius of the local search area

which is the maximum velocity times the sampling time interval of the discretized

system). Here, we dropped index k since there is only one sensor. The left and

right figures show the trajectory of the mobile sensor and its normalized path loss

estimation error variance respectively. The indoor channel is simulated with the

same parameters of Fig. 2.6. Note that the ratio of the power of the uncorrelated

part of the channel (ω2) to the correlated part (ϑ2) is relatively high in this example,

in order to simulate a typical indoor environment that is rich in multipath. The right

figure also compares the performance with the case where the mobile sensor has a

random trajectory (the random case is averaged over 50 runs). It can be seen that

we gain considerably (around 10dB) by using the motion optimization framework of

(2.16). Next, we continue with proposing a motion planning approach for directly

improving the channel prediction error variance.
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Figure 2.7: Trajectory of a mobile mobile sensor in communication-aware motion planning
for improving path loss parameter estimation in an indoor environment (left) and the
corresponding normalized estimation error variance (right). The empty circle and the
filled one in the left figure denote the initial and final positions of the mobile sensor.

2.4.2 Motion Planning for Reducing the Channel Assess-

ment Uncertainty

Once the parameters of the underlying model are estimated, the mobile sensor can

plan its trajectory in order to reduce its channel assessment/prediction uncertainty.

As characterized in Theorem 2.2.2, the error variance of the channel assessment at

the kth mobile sensor at time t is as follows: σ2
k,t(q) = ϑ2 + ω2 − φT

k,t(q)U
−1
k,t φk,t(q),

for any q ∈ W \ Mk,t and assuming negligible error in the underlying parameters.

Consider the case where a number of channel measurements are available to the kth

mobile sensor at time t. Then, the mobile sensor can plan its motion to go towards

the location with the highest channel assessment uncertainty, i.e., the largest σ2
k,t(q),

based on the available measurements.6 Define the following objective function:

JCH,k,t(q) , max
{
0, σ2

k,t,est(q)− σ2
TH

}
ψ
(
‖q − ξk,t‖

)
, (2.17)

where σ2
k,t,est(q) is the estimate of σ2

k,t(q), with the exact parameters replaced by

the estimated ones, σ2
TH is a fixed threshold and ψ(.) is a non-increasing function

6Alternatively, the mobile sensor can plan its motion in order to minimize the spatial
average of the channel assessment uncertainty over the entire workspace of interest [7].
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of its argument. By thresholding σ2
k,t,est(q), we remove the positions with negligible

channel assessment uncertainty. Then, ψ
(
‖q − ξk,t‖

)
weighs the remaining space

based on closeness to the current position, favoring less movement. Let q∗k,t denote

the maximizing argument of the JCH,k,t(q) over the workspace:

q∗k,t , argmax
q∈W\Mk,t∪Ok,t

JCH,k,t(q) (2.18)

Here, q∗k,t is an obstacle/collision free position with high channel assessment uncer-

tainty, that is also close to the current position of the mobile sensor. If motion cost

is not an issue, ψ can be chosen one. In our results, we take ψ(d) = e−ζd, for ζ ≥ 0.

The motion of the kth mobile sensor at time t (the corresponding control input) is

then the solution of the following optimization problem:

u∗k,t = argmin
uk,t

∥∥ξk,t+1 − q∗k,t
∥∥ for q∗k,t = argmax

q∈W\Mk,t∪Ok,t

JCH,k,t(q)

s.t. 1) ξk,t+1 = Υk

(
ξk,t, uk,t

)
, 2) uk,t ∈ Uk, 3) ξk,t+1 ∈ W \ Ok,t. (2.19)

As can be seen from (2.19), the motion of the kth mobile sensor is planned based

on its current estimate of the channel assessment error variance. Similar to motion

planning for improving the estimation of the channel parameters, sharing the channel

measurements and the positions of the mobile sensors can be useful in two ways.

First, each mobile can combine these measurements with its own ones to assess

the channel and plan its motion more efficiently. The extra channel measurements

prevent the mobile sensor from visiting previously-explored areas by other sensors,

which results in a much faster reduction in the overall channel assessment error

variance. Second, the current positions of the other sensors at time t can be used to

avoid collisions with other sensors by estimating a more precise Ok,t. However, the

form of the motion planner does not change by sharing the channel measurements

and positions among the mobile sensors.

Fig. 2.8 shows the performance of this motion planning approach for a single

mobile sensor in an outdoor environment with obstacles (denoted by gray areas),

37



Chapter 2. Probabilistic Assessment of Wireless Channels

where we assumed negligible error in the estimation of the modeling parameters. The

dynamical model of the mobile sensor is given by ξt+1 = ξt + ut, where ‖ut‖ ≤ 5.5.

The outdoor channel is simulated with the following parameters: θ = [−10 2],

ϑ = 4 dB, β = 10.0 m and ω = 2 dB (for a Rician distribution with Kr = 10).

Furthermore, σ2
TH = 4 and ζ = 0.02. The mobile sensor starts with 0.016% a priori

channel measurements, randomly chosen in the space (0.016% of the total number

of workspace samples, i.e., 16 measurements for a 320×320 grid). Fig. 2.8 (left) and

(right) show the trajectory of the mobile sensor and the time evolution of ANMSE

of the channel assessment respectively. For the sake of comparison, the right figure

also compares the performance with the case where the mobile sensor has a random

trajectory (the random case is averaged over 50 runs). It can be seen that channel

assessment uncertainty reduces considerably as the mobile sensor intelligently plans

its motion. In terms of computational complexity, solving the optimization problem

of (2.19) at each step, for a 320×320 grid, took 2.4 seconds (on average) on a desktop

with the Intel Core 2 vPro processor and 2 GB of RAM.
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Figure 2.8: Trajectory of a mobile mobile sensor in communication-aware motion planning
for reducing channel assessment uncertainty in an outdoor environment (left) and the
corresponding ANMSE (right). The empty circle and the filled one in the left figure denote
the initial and final positions of the mobile sensor.
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Finally, Fig. 2.9 shows the snapshots of the spatial variations of the channel

assessment error variance over the workspace and for four different time instants. It

can be seen that channel prediction improves considerably with time, as the mobile

sensor intelligently optimizes its motion accordingly.

Figure 2.9: Snapshots of the channel assessment error variance over the workspace (top
left for t = 0, top right for t = 50, bottom left for t = 100 and bottom right for t = 200)

2.5 Summary

In this chapter, we first showed how a mobile sensor can assess (predict) the spatial

variations of a wireless channel based on a small number of channel measurements.

We then showed how to plan motion of the mobile sensor to improve its channel

assessment performance. Our proposed probabilistic channel assessment framework
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is built on the well-established multi-scale model of wireless channels and enables

a mobile sensor to efficiently predict the channel along its trajectory. To improve

its channel assessment performance, the mobile sensor can then use one of the two

proposed motion planning strategies of this chapter to either improve its estimate of

the underlying model parameters or decrease the channel predication error variance.

In the following chapters, we show how the proposed channel assessment frame-

work of this chapter can be integrated with motion planning in order to improve the

connectivity of the mobile sensors while accomplishing their networked task.
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Chapter 3

Communication-Aware Target

Tracking Using Mobile Networks

In this chapter, we study the problem of networked target tracking in realistic com-

munication environments. We consider the scenario where a fixed remote station

utilizes a mobile sensor (or a number of them) for keeping track of the position of a

moving target. The communication links between the mobile sensor and the remote

station are realistic wireless link that experiences path loss, shadowing and multipath

fading. We first characterize the estimation error covariance of target position at the

remote station when 1) a realistic packet-dropping receiver is used at the remote

station which drops the received packets based on the instantaneous received SNR

and 2) a Kalman filter is used to fuse the received noisy sensory data at the remote

station. This error covariance depends on both the sensing quality of the mobile

sensors along their trajectories and the quality of their channels to the remote sta-

tion. We then propose novel decentralized communication-aware motion planning

approaches that integrate sensing and communication objectives to minimize the es-

timation error covariance of target position at the remote station. A schematic of

the networked target tracking scenario considered in this chapter is shown in Fig.
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3.1.

mobile sensor
remote station

moving 

target

wireless link

sensing

trajectory of the node

 sensor trajectory

Figure 3.1: A schematic of the networked target tracking operation considered in this
chapter.

Note that in order for the mobile sensors to assess the proposed objective functions

(or constrains) at positions that have not yet been visited by any mobile sensor, the

channel assessment framework of Chapter 2 is used. Also note that we do not consider

any coordination among the nodes for the purpose of target tracking. In other words,

each mobile sensor plans its motion individually. However, as explained in Section

2.4, the mobile sensors can still share their channel measurements and their positions

in order to assess the channel and avoid collisions more efficiently. Finally, similar

to the motion planning approaches of Section 2.4, the proposed motion planning

approaches of this chapter are greedy to avoid high computational complexity and

better facilitate adaptation.

The rest of the chapter is organized as follows. In Section 3.1, we describe our

system model and present the Kalman filtering equations for target tracking over

realistic communication links. In Section 3.2, we propose our communication-aware

motion planning approaches and mathematically analyze their performance. We

present our simulation and experimental results in Section 3.3, followed by a summary

of the chapter in Section 3.4.
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3.1 Problem Formulation

Consider the case where a fixed remote station utilizes n mobile sensors for keeping

track of a position of a moving target in a workspace W ⊂ R
2, which is assumed

to be closed and convex [91]. The overall goal is for the station to constantly have

a good assessment of the target position. The communication links between the

mobile sensors and the base station experience path loss, shadowing and multipath

fading. We consider a realistic packet-dropping receiver [6,92] at the remote station,

i.e., the remote station drops all the packets with the received SNR (or equivalently

the received channel power) below a predefined threshold. Note that in practice,

the receiver drops the packets based on the quality of decoding. However, in [93],

the authors show that this is equivalent to having a received SNR threshold. Let

SNRTH denote this SNR threshold. Then, the received packet from the kth mobile

sensor is dropped at time t if SNR(ξk,t) < SNRTH, and is kept otherwise. Here,

SNR(q) is the received SNR at the remote station when mobile sensor is at position

q ∈ W. Without loss of generality, assume that all the mobile sensors use a fixed

transmit power PTX. From Chapter 2, for any q ∈ W we have SNR(q) = PTXG(q)
BN0

,

where B is the transmission bandwidth and N0

2
is the power spectral density (PSD)

of the thermal noise at the receiver of the remote station. Then, SNR(ξk,t) < SNRTH

results in

GdB(ξk,t) < 10 log10

(
SNRTHBN0

PTX

)
, GdB,TH, (3.1)

where GdB,TH is the equivalent packet dropping threshold for channel power in dB

(see Chapter 2 for more details).

Let us define xt ,
[
pTt ṗTt

]T
, with pt ∈ R

2 and ṗt ∈ R
2 denoting the position

and velocity of the target respectively at time t. Also, let yk,t ∈ R
2 represent the

measurement of the kth mobile sensor of xt at time t. We consider the following
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dynamical and observation models [94]:

xt+1 =


I2 tsI2

0 I2




︸ ︷︷ ︸
A

xt +




1
2
t2sI2

tsI2




︸ ︷︷ ︸
B

wt, yk,t =
[
I2 0

]

︸ ︷︷ ︸
C

xt + vk,t, (3.2)

where ts is the sampling period used to discretize the dynamics of the target, wt ∈ R
2

and vk,t ∈ R
2 are zero-mean Gaussian noises, with W = E

{
wkw

T
k

}
and Vk,t =

E
{
vk,tv

T
k,t

}
representing their covariance matrices respectively, and I2 is the 2 × 2

identity matrix. Note that Vk,t depends on the position of the kth mobile sensor as

well as the position of the target [7, 94]: Vk,t = Φ
(
ξk,t, pt

)
, where Φ(., .) is assumed

known.

The remote station constantly estimates the position of the target, based on

its received observations and by using a Kalman filter. We assume that when the

received packet from a mobile sensor is kept at the remote station, it is error-free.

This is the case when SNRTH is large enough. We therefore consider the following

assumption throughout the rest of this chapter:

Assumption 3.1.1. The packet-dropping threshold SNRTH is large enough, or equiv-

alently the performance of the decoding algorithm at the remote station is good

enough, such that the packets that are kept at the remote station can be considered

error-free.

Note that Assumption 3.1.1 is a valid for a large class of existing receivers used in

robotics and sensor network applications. Now, let x̂t1|t2 represent the estimate of xt1

at the remote station, using all the received observations up to and including time t2.

Also, let Πt1|t2 denote the corresponding estimation error covariance at the remote

station, given GdB(ξk,0), · · · , GdB(ξk,t2), for t2 ≤ t1 and k = 1, · · · , n. Assuming

i.i.d. observations and based on Assumption 3.1.1, the Kalman filter equations for
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estimating xt is given as follows [95]:

x̂t+1|t = A x̂t|t,

Πt+1|t = AΠt|tA
T +BWBT,

x̂t+1|t+1 = x̂t+1|t +Πt+1|tC
T(
CΠt+1|tC

T
+ V t+1

)−1(
yt+1 − Cx̂t+1|t

)
,

Πt+1|t+1 = Πt+1|t −Πt+1|tC
T(
CΠt+1|tC

T
+ V t+1

)−1
CΠt+1|t, (3.3)

where C ,
[
CT · · ·CT

]T
is the matrix of the stacked observation matrices of all the

mobile sensors, yt+1 ,
[
yT1,t+1 · · · yTn,t+1

]T
is the vector of stacked observations of the

mobile sensors and V t+1 = diag
(

V1,t+1

λ1,t+1
, · · · , Vn,t+1

λn,t+1

)
. Here, the binary variable λk,t

captures the effect the packet-dropping receiver of the remote station and is defined

as follows:

λk,t ,





1, GdB(ξk,t) ≥ GdB,TH,

0, else
(3.4)

Using the definition of V t+1, one can see that whenever the received packet from the

kth mobile sensor is dropped at time t+ 1, its corresponding diagonal block in V t+1

becomes infinite, which implies that the observation of the kth mobile sensor does not

contribute to the estimation process at that time. This becomes more clear by using

the information form of the Kalman filters [95]. Let us define the Fisher information

matrix as Γt1|t2 , Π−1
t1|t2 . Then, by using the information form of Kalman filter,

which is a direct result of applying the matrix inversion lemma, a recursion for Γt|t

is given as follows:

Γt+1|t =
(
AΓ−1

t|t A
T +BWBT

)−1

,

Γt+1|t+1 = Γt+1|t +
n∑

k=1

λk,t+1C
TV −1

k,t+1C︸ ︷︷ ︸
,Λk,t+1

, (3.5)

where Λk,t+1 is the information contribution of the kth mobile sensor at time t + 1.

As can be seen, the Fisher information at the remote station will be dictated by
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the dynamics of the target as well as the summation of the information contribution

terms, i.e.,
∑n

k=1 Λk,t+1. Next we show how to plan the motion of the mobile sensors

at each step to maximize the average Fisher information at the remote station.

3.2 Communication-Aware Target Tracking Using

Probabilistic Assessment of Wireless Chan-

nels

The information innovation term Λk,t+1 in (3.5) depends on both the sensing quality

of the kth mobile sensor as well as its communication link quality to the remote

station. Since our assessment of the link qualities is probabilistic, Λk,t+1 also becomes

stochastic due to its dependency on the link qualities. By averaging over channel

distributions, we have

E
{
Γt+1|t+1

}
= E

{
Γt+1|t}+

n∑

k=1

E
{
Λk,t+1

}
, (3.6)

where

E
{
Λk,t+1

}
= E

{
λk,t+1

}
CTV −1

k,t+1C

= P

{
GdB

(
ξk,t+1

)
≥ GdB,TH

}
CTV −1

k,t+1C. (3.7)

In this equation, P
{
GdB

(
ξk,t+1

)
≥ GdB,TH

}
is the probability that the received packet

from the kth mobile sensor is kept at the remote station at time t+1. At any time t,

the next step average Fisher information at the remote station is maximized if the kth

mobile sensor maximizes its assessment of E
{
Λk,t+1

}
. The kth mobile mobile sensor

can assess P
{
GdB

(
ξk,t+1

)
≥ ΥdB,TH

}
by using the channel assessment framework of

Chapter 2 as follows:

P

{
GdB

(
ξk,t+1

)
≥ GdB,TH

}
= Q

(
GdB,TH − ĜdB,k,t,est(ξk,t+1)

σk,t,est(ξk,t+1)

)
, (3.8)
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where Q(a) = 1√
2π

∫∞
a
e−s2/2ds is the Q-function (the tail probability of normal dis-

tribution). Also, ĜdB,k,t,est(q) and σk,t,est(q) are the estimates of ĜdB,k,t(q) and σk,t(q)

respectively (see Theorem 2.2.2), with the exact parameters replaced by the esti-

mated ones.

Our first proposed approach is to plan the motion of the mobile sensors at time

t such that the trace of E
{
Γt+1|t+1

}
is maximized. This is equivalent to maximizing

the trace of
∑n

k=1E
{
Λk,t+1

}
, which results in the following optimization problem for

finding the control input of the kth mobile sensor at time t:

u∗k,t = argmax
uk,t

JTRCK1,k,t(ξk,t+1) , Q

(
GdB,TH − ĜdB,k,t,est

(
ξk,t+1

)

σk,t,est
(
ξk,t+1

)
)

︸ ︷︷ ︸
Comm. obj.

× tr
{
Φ−1

(
ξk,t+1, p̂k,t+1|t

)}

︸ ︷︷ ︸
Sensing obj.

s.t. 1) ξk,t+1 = Υk

(
ξk,t, uk,t

)
, 2) uk,t ∈ Uk, 3) ξk,t+1 ∈ W \ Ok,t. (3.9)

Here, ξk,t+1 = Υk(ξk,t, uk,t), for known Υk(., .), denotes the dynamical model of the

kth mobile sensor, uk,t ∈ Uk is the control input of the kth mobile sensor at time t

and Uk is the set of its admissible control inputs. Also, p̂k,t+1|t is the prediction of the

kth mobile sensor of the target position at time t+ 1, which it can assess by using a

local Kalman filter. The set Ok,t includes the forbidden positions that are excluded

to avoid obstacles/collisions. The objective function of (3.9) shows how channel

learning is integrated with sensing objectives in order to ensure communication-

aware operation. A mobile sensor can start with a priori channel measurements in

the environment for channel assessment. It then improves its channel assessment as

it gathers more measurements along its trajectory, while simultaneously tracking the

target using (3.9).

As can be seen, by using the trace of E
{
Γt+1|t+1

}
, the overall objective of the next

step information maximization at the remote station decouples into maximizing n

47



Chapter 3. Communication-Aware Target Tracking Using Mobile Networks

localized objective functions at the individual mobile sensors. In case other metrics

are used (e.g. det(.) or ‖.‖), the objective function may not be decentralizable,

requiring coordination and sharing the position of the mobile sensors among them.

Note that sharing the positions (and the channel measurements) is useful even when

the decentralized motion planning approach of (3.9) is used. As explained in Section

2.4, each mobile sensor can use the channel measurements and the positions of the

other sensors up to time t to better assess the channel. This makes the Q-function

term in the objective function of (3.9) a more precise estimate of the probability of

connectivity. Additionally, by using the current positions of other mobile sensors,

the set Ok,t will be a more reliable set for collision avoidance.

Using the motion planning approach of (3.9), the mobile sensors improve their

probability of connectivity while tracking the target. Next, we mathematically show

that in case the channel is assessed perfectly, the motion planning approach of (3.9)

maintain the connectivity of the mobile sensors. By perfect channel assessment we

mean the following:

Definition 3.2.1. Perfect channel assessment refers to the case where the channel

is predicted perfectly. For instance, if the multipath fading power is negligible, the

channel parameters are known perfectly and the number of channel measurements

are large enough such that σk,t(q) → 0, for all k, q ∈ W and t ≥ 0, then the channel

is predicted perfectly.

We then have the following theorem in case of perfect channel assessment:

Theorem 3.2.1. Assume that the channel is assessed perfectly. Define the time-

invariant set Wc ,
{
q ∈ W

∣∣ĜdB,k,t,est(q) ≥ GdB,TH

}
as the connected region, which

is assumed to be closed. Then, if ξk,0 ∈ Wc for all k, the motion planning approach

of (3.9) maintain the connectivity of the mobile sensors, i.e., it ensures ξk,t ∈ Wc for

all k and t > 0.
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Proof. In case the channel is assessed perfectly, the Q-function in (3.9) acts as a hard

limiter and becomes one if ξk,t+1 ∈ Wc, and zero otherwise. Therefore, if ξk,t ∈ Wc,

the solution of (3.9) is a point ξk,t+1 ∈ Wc, which has this property that the kth

mobile sensor can be navigated to this point at time t + 1, without any collision or

violating the constraints imposed by its dynamics. This proves that if ξk,0 ∈ Wc,

then ξk,t ∈ Wc for all t > 0. Note that we assumed that 1) Uk ∋ 0 and 2) when

uk,t = 0 then Υk

(
ξk,t, uk,t

)
= ξk,t.

From Theorem 3.2.1, one can observe that in case of perfect channel assessment,

the optimization problem of (3.9) is equivalent to the following:

u∗k,t = argmax
uk,t

tr
{
Φ−1

(
ξk,t+1, p̂k,t+1|t

)}
(3.10)

s.t. 1) ξk,t+1 = Υk

(
ξk,t, uk,t

)
, 2) uk,t ∈ Uk, 3) ξk,t+1 ∈ Wc \ Ok,t.

In other words, in order to ensure communication-awareness in this case, it is suffi-

cient to limit the motion of the mobile sensors to the connected region Wc and only

consider the sensing objective. This motivates our second motion planning approach

for communication-aware target tracking. In this approach, we limit the motion of

the mobile sensors to the areas with good probability of connectivity. More specifi-

cally, we plan the motion of the kth mobile sensor to guarantee that, if the channel

is not assessed perfectly, P
{
GdB

(
ξk,t+1

)
≥ GdB,TH

}
≥ 1 − ε, for all k and an arbi-

trary small 0 < ε < 1, while maximizing the trace of CTV −1
k,t+1C. This results in the

following motion optimization problem to find the control input of the kth mobile

sensor at time t:

u∗k,t = argmax
uk,t

JTRCK2,k,t(ξk,t+1) , tr
{
Φ−1

(
ξk,t+1, p̂k,t+1|t

)}

︸ ︷︷ ︸
Sensing obj.

s.t. 1) Q

(
GdB,TH − ĜdB,k,t,est

(
ξk,t+1

)

σk,t,est
(
ξk,t+1

)
)

≥ 1− ε

︸ ︷︷ ︸
Comm. constraint

,

2) ξk,t+1 = Υk

(
ξk,t, uk,t

)
, 3) uk,t ∈ Uk, 4) ξk,t+1 ∈ W \ Ok,t. (3.11)
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It can be seen that in case of perfect channel assessment, (3.9) and (3.11) are equiv-

alent and are reduced to (3.10).

We next continue with analyzing the convergence properties of the proposed

motion planning approaches. We have the following theorem:

Theorem 3.2.2. Consider the case where the channel is assessed perfectly. Assume

that the collision among the mobile sensors is negligible. Let O ⊂ W denote the

open set of obstacles and define Wc,f , Wc \ O to be the obstacle-free connected

region (obstacle-free region with ĜdB,k,t,est(q) ≥ GdB,TH). Assume that Wc,f is a

closed set and ξk,0 ∈ Wc,f for all k. Also, assume that the target is static and located

at p0 ∈ W. Define the function ϕ : Wc,f → R+ such that ϕ(q) = tr
{
Φ−1(q, p0)

}
.

Also, for any q ∈ R
2, define the reachable set of the kth sensor as Rk(q) ,

{
q′ ∈

R
2
∣∣q′ = Υk(q, u), u ∈ Uk

}
, which is assumed to be a closed and connected set (not to

be confused with the connected region Wc). Assume there exists an r > 0 such that

Rk(q) ⊇ B(q, r), where B(q, r) is the disk with radius r centered at q ∈ Wc,f . Then,

each mobile sensor converges to a local maximum of ϕ over Wc,f (which could be on

the boundary of Wc,f) using (3.9) or (3.11).

Proof. As proved by Theorem 3.2.1, in case the collision among the mobile sensors

is negligible and they start in Wc,f , they will remain in Wc,f using (3.9) or (3.11).

At each time t, the next position of the kth sensor is found as follows: ξk,t+1 =

argmaxq∈Rk,f (q)
tr
{
Φ−1

(
q, p̂k,t+1|t

)}
, where Rk,f(q) , Rk(q)∩Wc,f . Since the target

is stationary, each mobile sensor can asymptotically estimate the position of the

target using its local Kalman filter, i.e., p̂k,t+1|t → p0. Also, since both Wc,f and

Rk(q) are closed and Rk(q) ⊇ B(q, r) for some r > 0, then there always exists a

ρ(q) > 0 such that Rk,f(q) ⊇ B
(
q, ρ(q)

)
for each q ∈ Wc,f \ ∂Wc,f , where ∂Wc,f

denotes the boundary of Wc,f (note that Wc,f is a closed set). This ensures that the

dynamics of the mobile sensor is such that it can move in any direction unless it hits

the boundary of Wc,f . Thus, it will eventually converge to a local maximum of ϕ(q)
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over Wc,f , which could be in Wc,f \ ∂Wc,f or on the boundary ∂Wc,f .

Using Theorem 3.2.2, one can immediately conclude that if the smooth ϕ(q) has

a unique maximum and attains its global maximum inside Wc,f , then the mobile

sensors will eventually converge to this global maximum of ϕ(q), provided that the

conditions of Theorem 3.2.2 hold. Note that the condition Rk(q) ⊇ B(q, r) in Theo-

rem 3.2.2 guarantees that the mobile sensor can move in every direction at any point

along its trajectory unless it is on the boundary of the workspace. In case the dy-

namical model of the mobile sensor limits its direction of the movement, convergence

may not happen.

3.2.1 Discussion on Local Extrema Avoidance

Local extrema avoidance is an important issue in motion planning [28, 29]. Re-

searchers have proposed several methods to design motion planners that can avoid

local extrema. The approaches based on the well-known Navigation Functions, for

instance, are good examples [29, 96].

In our proposed motion planning framework of this chapter, we solve the resulting

optimization problems through a local greedy search (dictated by constraints 1 and

2 of (3.9) or constraints 2 and 3 of (3.11)). Thus, our framework naturally suffers

from local extrema. Although, we emphasize that by enlarging the search space (if

permitted computationally) and/or separating the optimization of the best next step

from path planning, local extrema could be avoided. For instance, by enlarging the

reachable set Rk(q) (defined in Theorem 3.2.2), we can lower the chance of getting

trapped in a local extremum. In the extreme case where the workspace is obstacle-

free, W ⊆ Rk(q), the channel is assessed perfectly as t → ∞, and the target is

stationary, asymptotically the mobile sensors converge to the global maxima of ϕ(q).

There is, however, a constraint on the size of the reachable set of the mobile sensors.
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Generally, the size of Rk(q) is dictated by the sampling period ts and the dynamics

of the kth sensor. For a very small ts the size of Rk(q) is small unless the mobile

sensors can move very fast. So, the reachable sets should be chosen as larger as

possible within the constraints imposed by the dynamics of the mobile sensors.

Also, note that the time variation of the objective function/constraints, due to

the movement of the target and/or the new channel measurements gathered along

the trajectory, is also a mechanism that may prevent the mobile sensors from being

trapped in local extrema. This mechanism is specially useful in practical applications

where the channel assessment is not perfect.

3.3 Simulation and Experimental Results

In this section, we present the results of applying the proposed communication-aware

framework to two examples with simulated and real channels. For the sake of brevity,

we use the motion optimization approach of (3.9) in these example. Similar behaviors

can be observed if (3.11) is instead used.

Fig. 3.2 shows a target tracking scenario in an outdoor environment that con-

tains obstacles (gray areas), using three mobile sensors. We use mobile agents with

the following dynamics: ξk,t+1 = ξk,t + uk,t, for ‖uk,t‖ ≤ 2.0. We furthermore

assume the position-dependent model of [7] for the observation noise covariance:

tr
{
Φ−1(ξk,t, pt)

}
= 1

g(‖ξk,t−pt‖) , where g(r) = ̟(r − rs)
2 + ν, ̟ > 0 and ν > 0 are

scaling constants, and rs is the sweet spot radius at which the sensing quality is the

best. For this example we use ̟ = 0.008, ν = 0.08 and rs = 1.0 m. The outdoor

channel is simulated using the following parameters: θ = [−10 2.0]T, ϑ = 4.0 dB,

β = 20 m and ω = 1.13 dB (corresponding to a Rician distribution with Kr = 30).

Furthermore, ts = 0.5 s, W = 0.001I2 and GdB,TH = −40 dB. In order to com-

pare the performance of our communication-aware framework with more traditional
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approaches, the figure shows four different cases: 1) comm-aware, 2) comm-aware

(PL-only), 3) informed disk model and 4) comm-unaware. Comm-aware case is the

full communication-aware framework of (3.9). On the other hand, comm-aware (PL-

only) is a simplified yet probabilistic version of our framework where the correlation

of the shadowing part is not utilized. In this case, the average of the channel is esti-

mated by considering only the path loss parameters in (3.9) (ĜdB,k,t,est(q) = hT(q) θ̂k,t

in Theorem 2.2.2) and the variance is calculated accordingly. As we shall see from

our results, this approach is more suitable for the cases where the environment is

multipath dominant (experiencing a small ratio of the correlated channel component

to the uncorrelated part). Informed disk model is the case where each mobile sensor

models the link with a disk model (which is common in the robotics literature). How-

ever, it is a more informed approach, in which our channel assessment framework is

utilized to assess the path loss decay rate. Then a disk is specified based on GdB,TH.

Finally, the comm-unaware case is the case where each mobile sensor only considers

its sensing objectives. Fig. 3.2 (left) shows the trajectories of the mobile sensors

for comm-aware (solid magenta lines) and comm-unaware (dashed red lines) cases,

superimposed on the connectivity map of the received channel power to the remote

station, with the white (black) regions denoting the connected (disconnected) areas.

For better visualization, we did not include the trajectories of the other two cases.

The performance of all the four cases is then compared in Fig. 3.2 (right), where the

trace of the average normalized error covariance of target position estimation at the

remote station (averaged over 30 runs) is plotted as a function of time. It can be

seen that the communication-aware case performs considerably better than the other

approaches as it maintains the connectivity of the mobile sensors to the remote sta-

tion with high probability. This is then followed by the performance of the PL-only

case, informed disk model and the unaware case, as expected. Note that in all the

cases, each mobile sensor solves for its corresponding next-step motion optimization

problem locally, in a small area around it. Furthermore, in all the cases, the mobile
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sensors start with 0.1% randomly-positioned a priori channel measurements in the

environment (102 measurements for a 320× 320 grid).
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Figure 3.2: Performance of the proposed communication-aware target tracking framework
in an outdoor environment – The left figure shows the trajectories of the mobile sensors and
the target. The solid magenta and dashed red lines correspond to the trajectory of the mo-
bile sensors in communication-aware and communication-unaware cases respectively, while
the yellow dash-dot line represents the trajectory of the target. The empty circles/box
and the filled ones show the initial and final positions of the mobile sensors/target respec-
tively. The right figure compares the performance of four approaches, with different levels
of communication-awareness, in terms estimation error covariance at the remote station
(RS).

Fig. 3.3 compares the performance of the aforementioned four approaches in an

indoor environment. In this case, the performance is simulated in a real environment

in our building, in terms of channel measurements. The figure shows the blueprint of

the basement of the Electrical and Computer Engineering building at the University

of New Mexico, with the true connectivity map to the remote station superimposed

on it. Aside from the underlying channel, all the other parameters are the same

as for Fig. 3.2, except that we only have one mobile sensor with ‖uk,t‖ ≤ 0.8 and

GdB,TH = −50 dB. As can be seen, the aforementioned four approaches compare

similar to Fig. 3.2. In this case, however, the performance of comm-aware (PL

only) is very close to that of the comm-aware case since the ratio of the power of the

correlated channel component to that of the uncorrelated part is lower (ϑ2/ω2 = 1.13
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as compared to ϑ2/ω2 = 13.22 for Fig. 3.2) and the decorrelation distance is also

smaller (β = 0.32 m as compared to β = 20 m for Fig. 3.2), as expected. Overall,

the results indicate that networked robotic operations can benefit considerably from

probabilistic channel assessment and the integration of communication and sensing

objectives.
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Figure 3.3: Performance of the proposed communication-aware target tracking framework
in an indoor environment (basement of the Electrical and Computer Engineering building at
the University of New Mexico) – The left figure shows the trajectories of the mobile sensor
and the target (see the explanation of Fig. 3.2). The right figure compares the performance
of four approaches, with different levels of communication-awareness, in terms estimation
error covariance at the remote station (RS).

3.4 Summary

In this chapter, we proposed a communication-aware motion planning framework to

remotely track a target in realistic communication environments, using a number

of mobile sensors. We formulated the filtering equations in the presence of realistic

communication links and a packet-dropping receiver at the remote station. By us-

ing the probabilistic channel assessment framework of Chapter 2, we then designed

communication-aware motion planning approaches that properly combine sensing

and communication objectives. Our proposed approaches plan the motion of mobile
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sensors such that the increase in the Fisher information at the remote station is

maximized. Finally, we showed the good performance of our framework, using both

real and simulated channel measurements.

In the next chapter, we consider the problem of multi sensor surveillance using

mobile sensor networks and develop a communication-aware data fusion and motion

planning framework for surveillance in the presence of realistic fading channels.
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Chapter 4

Communication-Aware

Surveillance Using Mobile

Networks

In this chapter, we build on the previous chapters to consider the case where the in-

formation is generated in a more complex manner in the environment. More specif-

ically, we consider a networked surveillance operation where a number of mobile

sensors/robots are deployed to survey an environment, for the possible presence of

an unknown number of static (stationary) targets, and inform a remote station of

their findings. We discretize the environment into several non-overlapping cells. The

cells are assumed small enough, such that there exists at most one target in each cell.

The mobile sensors detect the targets along their trajectories, using their collected

sensory data. Each mobile sensor is equipped with an omni-directional sensor with a

limited sensing range. The sensing quality within the sensing range also degrades as

the distance to the sensor increases. To inform the remote station, the mobile sen-

sors send fixed-size binary vectors, referred to as target maps, to the remote station.

In a target map, a one (zero), at any element, indicates that the mobile sensor has
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detected a target (or not) in the corresponding cell of the discretized version of the

environment. Additionally, the communication links between the mobile sensors and

the remote station are realistic narrowband communication channels that experience

path loss, shadowing and multipath fading. The remote station then fuses the target

maps received from the mobile sensors, by running its target detection algorithm,

and builds a more reliable map of targets over the entire environment. Fig. 4.1 shows

a schematic of the networked surveillance operation considered in this chapter.

mobile sensor
remote station

target

wireless link

sensing

trajectory of the node

 sensor trajectory

Figure 4.1: A schematic of the networked surveillance operation considered in this chapter.

In this chapter, we start with analyzing the impact of the trajectories of the mobile

sensors and the resulting sensing and communication qualities on the probability of

target detection error at the remote station. We then proceed with solving the

main problem considered in this chapter, which is stated as follows: How can each

mobile sensor plan its trajectory such that it explores the environment and gathers

as much information as possible regarding target locations, while maintaining the

required connectivity to the remote station?

Following the terminology of Chapter 3, we refer to such a motion design as

communication-aware motion planning in this chapter. This is a challenging task

that requires 1) evaluating the probability of connectivity to the remote station at

unvisited locations and 2) co-optimization of sensing (information gathering) and

communication (information exchange) through proper trajectory design.
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In this chapter, we develop the mathematical framework of communication-aware

motion planning for networked surveillance. As explained in Chapter 1, in the current

literature on surveillance and exploration using robots/mobile sensors, the authors

effectively consider the sensing objectives, i.e., goals that are aimed at maximizing

the exploration and sensing performance of the mobile sensors when planning the

motion. However, proper communication objectives, i.e., goals that are aimed at

maximizing the probability of connectivity to the remote station, are not taken into

account [15, 17, 19–21, 73, 75]. Most of the current works on the motion planning of

mobile networks typically assume non-realistic communication links. For instance,

it is common to assume either perfect links [15] or links that are perfect within a

certain radius of a mobile sensor [97,98], a significant over-simplification of commu-

nication channels. In this chapter, we extend our results on communication-aware

motion planning for target tracking, presented in Chapter 3, to a surveillance sce-

nario using mobile sensors. Our framework enables robust networked surveillance

operation in realistic communication settings which is not possible using traditional

communication-unaware approaches. The main contributions of this chapter are

summarized as follows:

• The first key contribution of this chapter is introducing a communication-aware

motion planning framework for networked surveillance. The proposed frame-

work consists of two decentralized switching approaches to satisfy the require-

ments on the connectivity of the mobile sensors to the remote station. Our

communication-constrained approach plans the motion of each mobile sensor

such that it explores the workspace while maximizing its probability of con-

nectivity to the remote station during the entire operation. This approach is

appropriate for the case where the remote station needs to be constantly in-

formed of the most updated map of the targets, which puts a constraint on

the motion of the mobile sensors to constantly maintain their connectivity.
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Constant connectivity, however, is not required if the mission is such that the

remote station only needs to be informed of the map of the targets at the end

of a given operation time. In this case, the mobile sensors can explore the

environment with less connectivity constraints, provided that they get con-

nected to and inform the remote station at the end of the given operation

time. Our hybrid motion planning approach is then appropriate for this case.

This approach builds on our communication-constrained one and allows the

mobile sensors to explore the area more extensively than the communication-

constrained approach, while maximizing their probability of connectivity at the

end of the operation. Both approaches make use of the probabilistic channel

assessment framework of Chapter 2 to predict the path loss and shadowing

components of the channel at unvisited locations, based on a small number

of channel samples that are collected online or a priori. A considerable part

of this chapter is then dedicated to designing these two switching approaches,

mathematically characterizing their asymptotic behaviors, and discussing their

underlying trade-offs.

• Another important contribution of this chapter is proposing strategies to in-

crease the robustness of the proposed communication-constrained and hybrid

approaches to multipath fading. Such strategies are specially desired since

multipath fading cannot be predicted efficiently using our channel assessment

framework and, therefore, is a source of uncertainty.1

Similar to the previous chapter, we are not concerned with the interference among

the mobile sensors. We assume that the number of mobile sensors is small enough,

with respect to the available resources, such that each mobile sensor can have a

pre-assigned slot for communication to the remote station. Similarly, we do not

1Multipath fading typically gets uncorrelated over small distances [59]. Thus, it cannot
be predicted at unvisited locations based on a few spatial samples of the channel, as
discussed in Chapter 2.
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consider coordination among the mobile sensors when motion planning. Instead,

each mobile sensor optimizes its motion locally, to maintain proper connectivity to

the remote station, while exploring the area efficiently. We are also not concerned

with obstacle/collision avoidance in this chapter. However, our framework can be

extended to include obstacle avoidance, as we have considered such cases in Chapter

2 and 3. Also, similar to those chapters, the motion planning approaches proposed

in this chapter are greedy with time-varying objective functions/constraints.

The rest of the chapter is organized as follows. In Section 4.1, we describe our

sensing and communication models . In Section 4.2, we mathematically characterize

the target detection quality of the mobile sensors and the remote station. This forms

the base of our analysis for Section 4.3, where we introduce our communication-

constrained and hybrid motion planning approaches. In Section 4.4, we propose

strategies to increase the robustness of our motion planning approaches to multipath

fading and other channel assessment errors. The performance of our approaches is

analyzed mathematically in Section 4.5. We present our simulation and experimental

results in Section 4.6, followed by a summary of the chapter in Section 4.7.

4.1 Problem Formulation

Consider a convex and closed [91] workspace W ⊂ R
2, which contains an unknown

number of fixed targets that need to be detected. Let {Wi}mi=1 denote a partition

(or tessellation) of W into m non-overlapping subsets, such that
⋃m

i=1Wi = W and

Wi∩Wj = ∅ for i 6= j. We refer to each Wi as a cell in this chapter. We assume small

enough cells such that there exists at most one target in each cell. Furthermore, we

assume that the events, corresponding to the presence of a target in different cells,

are independent.

The remote station deploys n mobile sensors to detect the targets in W. Each
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mobile sensor k, for k = 1, · · · , n, uses a local detection algorithm to fuse its gathered

sensory data at any time t and update its binary target map. The target map of the

kth mobile sensor at time t refers to a binary vector xk,t = [x1,k,t · · · xm,k,t]
T, in which

xi,k,t = 1 (or xi,k,t = 0) indicates that the mobile sensor has detected a target (or not)

in the ith cell, based on its observations up to time t. The mobile sensors then send

their most updated maps to the remote station, over realistic wireless communication

links that experience path loss, shadowing and multipath fading. The remote station

fuses the most updated target maps received from the mobile sensors and builds its

more reliable target map xb,k = [x1,b,k · · · xm,b,k]
T. The goal is for the remote station

to obtain an accurate assessment of all the cells that contain the targets, using the

information received from the mobile sensors as they move along their trajectories.

The trajectories of the mobile sensors affect both their sensing/exploration and

communication link qualities, impacting the overall performance at the remote sta-

tion. While some motion trajectories could result in the best sensing quality, they

may not satisfy the constraints on connectivity of the mobile sensors to the remote

station. Similarly, the trajectories that solely optimize connectivity may result in

poor sensing/exploration quality and a resulting high probability of target detection

error. Thus, the desired trajectories are the ones that combine sensing and commu-

nication objectives to satisfy the constraints on connectivity of the mobile sensors

to the remote station, while improving the sensing quality of the mobile sensors, as

we mathematically characterize in this chapter. Based on the requirement on the

connectivity of the mobile sensors to the remote station, we propose two switch-

ing motion planning approaches, called communication-constrained and hybrid, to

improve the performance of the remote station, in the presence of realistic fading

channels. These two approaches are explained in details in Section 4.3.

Note that in case the distribution of the targets is known to be very sparse, in-

stead of sending its whole target map, each mobile sensor can only send the difference
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between its current map and the one that was last received by the remote station.

This strategy saves power as the number of bits that need to be sent is smaller,

compared to the case that the whole target map is sent. Proper compression tech-

niques [99] can also be used to decrease the number of bits sent to the remote station.

In either case, the proposed framework of this chapter is still valid and can be used

with minor modifications. For the sake of simplicity, however, we assume that the

mobile sensors send their whole binary maps without any compression.

4.1.1 Sensing and Dynamical Models of the Mobile Sensors

Assuming small enough cells, each cell i can be effectively represented by a single

position qi ∈ Wi. We assume omni-directional onboard sensors such that a target in

the ith cell can be sensed by the kth mobile sensor if ‖ξk,t − qi‖ < dsen,k, where ξk,t

denotes the position of the kth mobile sensor at time t and dsen,k is its sensing radius.

The time-varying set Sk,t =
{
1 ≤ i ≤ m

∣∣ ‖ξk,t − qi‖ < dsen,k
}
, referred to as the

sensing region or the footprint of the kth mobile sensor, then contains the indices of

all the cells that are in the sensing range of the kth mobile sensor at time t.

Let hypothesis H1 (H0) refer to the case that there exists a target (there is no

target) in a cell. Also, let yi,k,t represent the observation of the kth mobile sensor of the

ith cell at time t, when i ∈ Sk,t. Under hypotheses H1 and H0, the distribution of yi,k,t

is given by two probability density functions p(yi,k,t|H1) and p(yi,k,t|H0), respectively.

Note that p(yi,k,t|H1) and p(yi,k,t|H0) are time-varying functions that depend on the

positions of the kth mobile sensor and the ith cell. A well-known example is the

Gaussian observation model: yi,k,t = vi,k,t under H0, and yi,k,t = 1 + vi,k,t under H1,

where vi,k,t ∈ R is a zero-mean white Gaussian noise representing the effect of sensing

error. The variance of vi,k,t is then given by Vi,k,t = Φk

(
‖ξk,t − qi‖

)
, where Φk(.) is a

non-decreasing function of its argument [17, 73].2

2Our proposed framework is general in terms of the sensing model and does not pre-
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As for the dynamics of the mobile sensors, we consider holonomic mobile sensors

[100] with the following first order dynamics:3 ξk,t+1 = ξk,t + uk,t, where uk,t is the

motion control input of the kth mobile sensor at time t. We assume ‖uk,t‖ ≤ umax,k,

where umax,k denotes the maximum step size of the kth mobile sensor. We furthermore

assume that the mobile sensors are small enough, compared to the dimension of the

workspace, such that each mobile sensor can be considered a point in W.

Note that it is straightforward to extend the result of this chapter to consider

directional sensors. Similarly, more complicated non-holonomic and/or nonlinear

dynamics can be used for the mobile sensors. We, however, consider the simpler

case of omni-directional sensing models and holonomic dynamics to focus on the

main purpose of this chapter which is communication-aware motion planning for

networked surveillance.

4.1.2 The Communication Model and Probabilistic Charac-

terization of Wireless Links

Each mobile sensor k updates the remote station on its current target map, at a

number of points along its trajectory. In case of realistic communication settings, the

remote station receives a corrupted version of the transmitted target map. Let SNRk,t

denote the instantaneous received signal-to-noise ratio (SNR) in the transmission

from the kth mobile sensor to the remote station at time t. As explained in Chapter

2, we have SNRk,t =
PTX,k,tGk,t

BN0
, where PTX,k,t represents the transmission (TX) power

of the kth mobile sensor at time t, Gk,t > 0 is the channel power in the transmission

from the kth mobile sensor to the remote station at time t, B is the channel bandwidth

sume the validity of the Gaussian model. This model is, however, used extensively in our
simulation results.

3By a holonomic mobile sensor, we refer to a mobile sensor whose degrees of freedom are
all controllable, i.e., it can be controlled to move in any direction by changing its control
input [100].
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and N0

2
is the power spectral density (PSD) of the receiver thermal noise [59]. Similar

to Chapter 3, in this chapter we consider a packet-dropping receiver at the remote

station, where a received packet from the kth mobile sensor is kept if SNRk,t ≥
SNRTH, for a fixed threshold SNRTH, and is dropped otherwise. Then, at any time

t, we refer to the kth mobile sensor as connected (disconnected) if SNRk,t ≥ SNRTH

(SNRk,t < SNRTH). To facilitate the mathematical derivations, we also assume that

SNRTH is large-enough such that the packets that are kept at the remote station can

be assumed to be error-free.

As explained in Chapter 2, the channel power Gk,t is a function of the position of

the kth mobile sensor at time t, i.e., Gk,t = G(ξk,t), where G(q) denotes the channel

power at position q ∈ W. We consider realistic communication channels between the

mobile sensors and the remote station, where G(q) experiences path loss, shadowing

and multipath fading. We model G(q) probabilistically using the multi-scale non-

stationary random process model introduced in Chapter 2. Each mobile sensor then

uses its a priori collected channel samples to predict the channel at unvisited places,

as discussed in Section 2.2. Refer to Chapter 2 for more details on probabilistic

modeling of wireless channel. A plot of a real channel, measured along a route in

the basement of the ECE building at UNM, is also shown in Fig. 2.1 of Chapter 2.

4.2 Multi-Sensor Surveillance in the Presence of

Fading Channels

In order to find the optimum communication-aware motion decisions and characterize

the underlying sensing and communication trade-offs, we need to first derive expres-

sions for the detection performance of a mobile sensor and the remote station, at any

time instant, as a function of channel and sensing qualities. In this section, we design
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target detection algorithms, for both the mobile sensors and the remote station, and

analyze their performance. In Section 4.2.1, a sequential detection algorithm is pro-

posed for the mobile sensors. A target detection algorithm for the remote station is

then introduced in Section 4.2.2, where the exact probability of error at the remote

station, as well as its Chernoff bound, are characterized. Our derived expressions

are then used in Section 4.3, when devising a framework for communication-aware

surveillance.

4.2.1 Optimal Sequential Detection at Mobile Sensors

Let 0 ≤ πi,0 ≤ 1 denote the prior probability that a target exists in the ith cell, in the

absence of any observation. Also, let Ii,k,t ,
{
1 ≤ ℓ ≤ t

∣∣i ∈ Sk,ℓ

}
be the set of all the

time instants, up to and including time t, when the ith cell has been observed by the

kth mobile sensor. The kth mobile sensor uses a maximum a posteriori (MAP) test

to decide whether there exist a target in the ith cell, based on its set of observations

Yi,k,t ,
{
yi,k,ℓ | ℓ ∈ Ii,k,t

}
. We have xi,k,t = 1 if p(H1|Yi,k,t) > p(H0|Yi,k,t), and xi,k,t =

0 otherwise, where p(H1|Yi,k,t) and p(H0|Yi,k,t) are the a posteriori probabilities of

having a target or not in the ith cell [87]. In the Bayesian paradigm, p(H1|Yi,k,t) =
p(Yi,k,t|H1)p(H1)

p(Yi,k,t)
and p(H0|Yi,k,t) =

p(Yi,k,t|H0)p(H0)

p(Yi,k,t)
, where p(H1) = πi,0 and p(H0) =

1− πi,0. Assuming i.i.d. observations, we can see that the MAP test is equivalent to

the following likelihood ratio test (LRT) [87]:

∏

ℓ∈Ii,k,t

Li,k,ℓ

xi,k,t=1
≷

xi,k,t=0

1− πi,0
πi,0

, (4.1)

where Li,k,ℓ =
p(yi,k,ℓ |H1)

p(yi,k,ℓ |H0)
is the likelihood ratio using observation yi,k,ℓ. This LRT can

be also implemented in a sequential fashion as follows:

Li,k,t

xi,k,t=1
≷

xi,k,t=0

1− πi,k,t−1

πi,k,t−1

,

πi,k,t =
πi,k,t−1 Li,k,t

πi,k,t−1 Li,k,t + 1− πi,k,t−1
, (4.2)
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where πi,k,t denotes the updated posterior of the kth mobile sensor, regarding the

presence of a target in the ith cell, using its observations up to time instant t ≥ 1.

Note that we set πi,k,0 = πi,0 for 1 ≤ k ≤ n. Also, in case i 6∈ Sk,t, we set Li,k,t = 1,

which results in πi,k,t = πi,k,t−1. Finally, if the ith cell has not been observed by the

kth mobile sensor for all the time instants ℓ ≤ t, i.e., Ii,k,t = ∅, the decision regarding

the presence of a target is made solely based on the value of the initial prior, i.e.,

xi,k,t = 1 if πi,0 > 0.5, and xi,k,t = 0 otherwise. More details on sequential likelihood

ratio testing can be found in [87].

The performance of the local detectors of the mobile sensors is characterized by

their detection, false-alarm and the corresponding error probabilities at each time

instant. Let ηi,k,t, µi,k,t and γi,k,t denote the detection, false-alarm and error proba-

bilities of the kth mobile sensor, for detection of a target in the ith cell at time t. We

have

ηi,k,t = P

{ ∏

ℓ∈Ii,k,t

Li,k,ℓ >
1− πi,0
πi,0

∣∣∣H1

}
,

µi,k,t = P

{ ∏

ℓ∈Ii,k,t

Li,k,ℓ >
1− πi,0
πi,0

∣∣∣H0

}
,

γi,k,t = πi,0(1− ηi,k,t) + (1− πi,0)µi,k,t. (4.3)

These probabilities can be characterized using the sensing model of the mobile sensor.

Note that since p(yi,k,t |H1) and p(yi,k,t |H0) depend on the position of the kth mobile

sensor at time t, the probabilities ηi,k,t, µi,k,t, and as a direct result γi,k,t, will be

functions of the whole trajectory of the kth mobile sensor from the beginning up to

time t. To show this, consider the Gaussian observation model of Section 4.1.1. It is

easy to confirm that in this case

∏

ℓ∈Ii,k,t

Li,k,ℓ =
∏

ℓ∈Ii,k,t

exp
(
− (yi,k,ℓ−1)2

2Vi,k,ℓ

)

exp
(
− y2

i,k,ℓ

2Vi,k,ℓ

) = exp



∑

ℓ∈Ii,k,t

2yi,k,ℓ − 1

2Vi,k,ℓ


 . (4.4)
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Therefore, the detection probability in this case is given by

ηi,k,t = P




∑

ℓ∈Ii,k,t

yi,k,ℓ
Vi,k,ℓ

> log

(
1− πi,0
πi,0

)
+
∑

ℓ∈Ii,k,t

1

2Vi,k,ℓ

∣∣∣∣∣H1



 . (4.5)

Under hypothesis H1, the distribution of
∑

ℓ∈Ii,k,t
yi,k,ℓ
Vi,k,ℓ

is given by a Gaussian distri-

bution with mean
∑

ℓ∈Ii,k,t
1

Vi,k,ℓ
and variance

∑
ℓ∈Ii,k,t

1
Vi,k,ℓ

. We therefore have

ηi,k,t = Q



log
(

1−πi,0

πi,0

)
− 1

2

∑
ℓ∈Ii,k,t V

−1
i,k,ℓ

√∑
ℓ∈Ii,k,t V

−1
i,k,ℓ




= Q



log
(

1−πi,0

πi,0

)
− 1

2

∑
ℓ∈Ii,k,t Φ

−1
k

(
‖ξk,ℓ − qi‖

)

√∑
ℓ∈Ii,k,t Φ

−1
k

(
‖ξk,ℓ − qi‖

)


 (4.6)

where Q(.) is the Q-function (the tail probability of the Gaussian distribution).

Similarly,

µi,k,t = Q



log
(

1−πi,0

πi,0

)
+ 1

2

∑
ℓ∈Ii,k,t Φ

−1
k

(
‖ξk,ℓ − qi‖

)

√∑
ℓ∈Ii,k,t Φ

−1
k

(
‖ξk,ℓ − qi‖

)


 (4.7)

In the simpler case of πi,0 = 0.5 (no initial prior on the positions of the targets), this

results in

γi,k,t = µi,k,t = 1− ηi,k,t = Q


1

2

√ ∑

ℓ∈Ii,k,t

Φ−1
k

(
‖ξk,ℓ − qi‖

)

 . (4.8)

As can be seen, the target detection performance of each mobile sensor is a function

of its entire trajectory. Finally, for the special case of Ii,k,t = ∅, we have γi,k,t =

min
{
πi,0, 1− πi,0

}
, as expected.

4.2.2 Optimal Detection at the Remote Station

Similar to Chapter 3, let us define the binary variable λk,t as follows:

λk,t ,





1, SNRk,t > SNRTH

0, otherwise
(4.9)
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Also, let τk,t denote the last time instant that the kth mobile sensor was connected

to the remote station, up to time t ≥ 1:

τk,t , max
{
{0} ∪ {1 ≤ ℓ ≤ t | λk,ℓ = 1}

}
. (4.10)

Note that since t ≥ 1, we define τk,t = 0 to indicate the case that the kth mobile sensor

has not been yet connected to the remote station up to time t ≥ 1, i.e., λk,ℓ = 0 for

ℓ = 1, · · · , t. At any time instant, the remote station fuses the last received decisions

of all the mobile sensors (if available), regarding the presence of a target in a cell.

Let us define Ki,t as the set of the mobile sensors that have been connected to the

remote station at least once up to time t ≥ 1 and visited the ith cell at least once

before their last connection to the remote station.

Ki,t ,

{
1 ≤ k ≤ n

∣∣∣∣ qi ∈
τk,t⋃

ℓ=1

Sk,ℓ, τk,t ≥ 1

}
. (4.11)

Assuming independent received observations from the mobile sensors, we then have

the following LRT at the remote station:4

∏

k∈Ki,t

L̃i,k,τk,t

xi,b,t=1
≷

xi,b,t=0

1− πi,0
πi,0

, (4.12)

where L̃i,k,τk,t denotes the LR corresponding to the last received observation from the

kth mobile sensor and is given by the following at any time 1 ≤ ℓ ≤ t:

L̃i,k,ℓ =
p(x̂i,k,ℓ|H1)

p(x̂i,k,ℓ|H0)
=






p(x̂i,k,ℓ=1|H1)

p(x̂i,k,ℓ=1|H0)
, x̂i,k,ℓ = 1

p(x̂i,k,ℓ=0|H1)

p(x̂i,k,ℓ=0|H0)
, x̂i,k,ℓ = 0

, (4.13)

where x̂i,k,ℓ denotes the decoded version of xi,k,ℓ at the remote station. We have

p(x̂i,k,ℓ = 1|H1)

p(x̂i,k,ℓ = 1|H0)

=
p(x̂i,k,ℓ = 1|xi,k,ℓ = 1)p(xi,k,ℓ = 1|H1) + p(x̂i,k,ℓ = 1|xi,k,ℓ = 0)p(xi,k,ℓ = 0|H1)

p(x̂i,k,ℓ = 1|xi,k,ℓ = 1)p(xi,k,ℓ = 1|H0) + p(x̂i,k,ℓ = 1|xi,k,ℓ = 0)p(xi,k,ℓ = 0|H0)

=
p(x̂i,k,ℓ = 1|xi,k,ℓ = 1)ηi,k,ℓ + p(x̂i,k,ℓ = 1|xi,k,ℓ = 0)(1− ηi,k,ℓ)

p(x̂i,k,ℓ = 1|xi,k,ℓ = 1)µi,k,ℓ + p(x̂i,k,ℓ = 1|xi,k,ℓ = 0)(1− µi,k,ℓ)
. (4.14)

4We implicitly assume that the remote station is aware of the sensing model of the mobile
sensors and can calculate their corresponding detection and false-alarm probabilities, using
their instantaneous positions.
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Using the assumption of large SNRTH, the packets that are kept at the remote station

are error-free. Therefore, p(x̂i,k,ℓ = 1|xi,k,ℓ = 1) = 1 and p(x̂i,k,ℓ = 1|xi,k,ℓ = 0) = 0.

Then,
p(x̂i,k,ℓ=1|H1)

p(x̂i,k,ℓ=1|H0)
=

ηi,k,ℓ
µi,k,ℓ

. Similarly,
p(x̂i,k,ℓ=0|H1)

p(x̂i,k,ℓ=0|H0)
=

1−ηi,k,ℓ
1−µi,k,ℓ

, which results in

L̃i,k,ℓ =





ηi,k,ℓ
µi,k,ℓ

, x̂i,k,ℓ = 1

1−ηi,k,ℓ
1−µi,k,ℓ

, x̂i,k,ℓ = 0
, (4.15)

Note that in case Ki,t = ∅, we have
∏

k∈Ki,t
L̃i,k,τk,t = 1. Then xi,b,t = 1 if πi,0 > 0.5,

and xi,b,t = 0 otherwise.

Detection, false-alarm and error probabilities at the remote station, as functions

of target detection performance of the mobile sensors and their channel to the remote

station, are also very important to characterize. Let ηi,b,t, µi,b,t and γi,b,t denote the

detection, false-alarm and error probabilities at the remote station, for detection of

a target in the ith cell at time t. We have

ηi,b,t = P

{
∏

k∈Ki,t

L̃i,k,τk,t >
1− πi,0
πi,0

∣∣∣∣∣H1

}
,

µi,b,t = P

{
∏

k∈Ki,t

L̃i,k,τk,t >
1− πi,0
πi,0

∣∣∣∣∣H0

}
,

γi,b,t = πi,0(1− ηi,b,t) + (1− πi,0)µi,b,t. (4.16)

Next, we show how to characterize these quantities.

4.2.3 Mathematical Characterization of the Performance at

the Remote Station

The trajectories of the mobile sensors affect both their sensing (target detection) and

communication qualities. In order to optimize the motion planning accordingly, we

need to mathematically characterize the impact of both on the probability of error

at the remote station. Let us define Bi,t ,
{
b = [b1 · · · bn]T

∣∣ bk ∈ {0, 1}, bk =
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0 ∀k 6∈ Ki,t

}
, with the size of |Bi,t| = 2|Ki,t|. This set contains all the possible binary

decisions of the mobile sensors of the ith cell, up to the last time they were connected

to the remote station (if k 6∈ Ki,t, then the kth mobile sensor will not cooperate in

the decision making process at the remote station). By calculating the probability

of occurrence of each member of Bi,t, under the both hypotheses H0 and H1, and

considering the cases where
∏

k∈Ki,t
L̃i,k,τk,t >

1−πi,0

πi,0
, we get

ηi,b,t =
∑

b∈Bi,t

[
∏

k∈Ki,t

ηbki,k,τk,t
(
1− ηi,k,τk,t

)1−bk

]

×Heav

(
∏

k∈Ki,t

(
ηi,k,τk,t
µi,k,τk,t

)bk
(
1− ηi,k,τk,t
1− µi,k,τk,t

)1−bk

− 1− πi,0
πi,0

)
,

µi,b,t =
∑

b∈Bi,t

[
∏

k∈Ki,t

µbk
i,k,τk,t

(
1− µi,k,τk,t

)1−bk

]

×Heav

(
∏

k∈Ki,t

(
ηi,k,τk,t
µi,k,τk,t

)bk
(
1− ηi,k,τk,t
1− µi,k,τk,t

)1−bk

− 1− πi,0
πi,0

)
, (4.17)

where Heav(.) denotes the Heaviside step function:

Heav(x) =






1, x > 0

0.5, x = 0

0, x < 0

(4.18)

Also, as explained previously, the detection error probability γi,b,t is calculated as

follows:

γi,b,t = πi,0(1− ηi,b,t) + (1− πi,0)µi,b,t. (4.19)

Similar to optimal detection at the mobile sensors, if Ki,t = ∅, we have γi,b,t =

min
{
πi,0, 1 − πi,0

}
, as confirmed next. Using (4.17), we have ηi,b,t = µi,b,t =

Heav
(
1− 1−πi,0

πi,0

)
= Heav (πi,0 − 0.5), for Ki,t = ∅. Therefore,

γi,b,t = πi,0 Heav (−πi,0 + 0.5) + (1− πi,0) Heav (πi,0 − 0.5) = min
{
πi,0, 1− πi,0

}
.

(4.20)
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Furthermore, for the special case where πi,0 = 0.5 (no initial prior) and µi,k,τk,t =

1 − ηi,k,τk,t ,
5 the detection error probability takes a more simplified form. First,

consider the following lemma:

Lemma 4.2.1. Let B denote the set of all the binary permutations of an n-dimensional

binary vector b. Assume ηk, for k = 1, · · · , n, denotes the probability that bk = 1.

Define

ηb =
∑

b∈B

[
n∏

k=1

ηbkk (1− ηk)
1−bk

]
Heav

(
n∏

k=1

(
ηk

1− ηk

)2bk−1

− 1

)
.

µb =
∑

b∈B

[
n∏

k=1

(1− ηk)
bkη1−bk

k

]
Heav

(
n∏

k=1

(
ηk

1− ηk

)2bk−1

− 1

)
. (4.21)

Then, ηb + µb = 1.

Proof. We have

ηb + µb =
∑

b∈B

[
n∏

k=1

ηbkk (1− ηk)
1−bk

]

×
[
Heav

(
n∏

k=1

(
ηk

1− ηk

)2bk−1

− 1

)
+Heav

(
n∏

k=1

(
1− ηk
ηk

)2bk−1

− 1

)]

=
∑

b∈B

[
n∏

k=1

ηbkk (1− ηk)
1−bk

]
= 1, (4.22)

where we used the fact that Heav(x− 1) + Heav( 1
x
− 1) = 1.

Using Lemma 4.2.1, we can immediately conclude that by setting 1 − ηi,k,τk,t =

µi,k,τk,t (for each mobile sensor) and
1−πi,0

πi,0
= 1 in (4.17), we have ηi,b,t = 1 − µi,b,t

(the same relationship between the detection and false-alarm probabilities hold at

the remote station). Therefore,

γi,b,t =
∑

b∈Bi,t

[
∏

k∈Ki,t

η1−bk
i,k,τk,t

µbk
i,k,τk,t

]
Heav

(
∏

k∈Ki,t

(
ηi,k,τk,t
µi,k,τk,t

)2bk−1

− 1

)
. (4.23)

5This is the case for several realistic sensing models, such as the Gaussian observation
model introduced in Section 4.1.1.
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Similarly, for the case that Ki,t = ∅, (4.23) results in γi,b,t = 0.5.

The derived expressions for the performance at the remote station are useful

for the analysis purposes. However, their computational complexity makes them

improper choices for real-time motion planning applications. Next, we characterize

the Chernoff bound [87] on the probability of error at the remote station, which can

be calculated more efficiently and is a better choice for motion planning approaches

of Section 4.3.

4.2.4 Chernoff Bound On the Probability of Error at the

Remote Station

With the assumption of independent received observations from the mobile sensors,

the probability of detection error at the remote station is upper bounded by its

Chernoff bound as follows [87]: γi,b,t ≤ γ̄i,b,t, where

γ̄i,b,t = inf
0<s<1

πs
i,0

(
1− πi,0

)1−s
∏

k∈Ki,t

E

{
exp

(
s log

(
L̃i,k,τk,t

)) ∣∣∣H0

}
(4.24)

= inf
0<s<1

πs
i,0

(
1− πi,0

)1−s
∏

k∈Ki,t

[(
ηi,k,τk,t
µi,k,τk,t

)s

p(x̂i,k,τk,t = 1|H0)

+

(
1− ηi,k,τk,t
1− µi,k,τk,t

)s

p(x̂i,k,τk,t = 0|H0)

]

= inf
0<s<1

πs
i,0

(
1− πi,0

)1−s
∏

k∈Ki,t

[
ηsi,k,τk,t µ

1−s
i,k,τk,t

+
(
1− ηi,k,τk,t

)s(
1− µi,k,τk,t

)1−s
]
.

Finding the optimum s in (4.24) is not easy in general. However, for the special

case of πi,0 = 0.5 and µi,k,τk,t = 1 − ηi,k,τk,t, the optimum exponent is s = 0.5, as

proved by the following lemma:6

6In case s = 0.5 is used, the Chernoff bound is called the Bhattacharyya bound [87].
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Lemma 4.2.2. Assume ηk > 0.5 for k ∈ K, where K ⊆ {1, · · · , n}. Then,

argmin0<s<1

∏

k∈K

[
ηsk (1− ηk)

1−s + η1−s
k (1− ηk)

s
]
= 0.5. (4.25)

Proof. Define f(s) ,
∑

k∈K log
[
ηsk (1− ηk)

1−s + η1−s
k (1− ηk)

s
]
. Then, the optimum

s is the one that minimizes f(s) for s ∈ (0, 1). We have

d

ds
f(s) =

∑

k∈K

ηsk (1− ηk)
1−s log

(
ηk

1−ηk

)
− η1−s

k (1− ηk)
s log

(
ηk

1−ηk

)

ηsk (1− ηk)1−s + η1−s
k (1− ηk)s

=
∑

k∈K
log(αk)

(
α2s−1
k − 1

α2s−1
k + 1

)
, (4.26)

where αk , ηk
1−ηk

. It can be seen that d
ds
f(s) = 0 for s = 0.5, d

ds
f(s) < 0 for

0 < s < 0.5 and d
ds
f(s) > 0 for 0.5 < s < 1, which completes the proof.

Using Lemma 4.2.2, the Chernoff bound, for the case of πi,0 = 0.5 (no initial prior)

and µi,k,τk,t = 1 − ηi,k,τk,t, is given by γ̄i,b,t = 0.5
∏

k∈Ki,t

[
2
√
ηi,k,τk,t

(
1− ηi,k,τk,t

) ]
.

Finally, in case Ki,t = ∅, the Chernoff bound on the probability of error will be

γ̄i,b,t = inf
0<s<1

πs
i,0

(
1 − πi,0

)1−s
= min

{
πi,0, 1 − πi,0

}
, which is the same as what we

found previously for the probability of error in this case.

4.3 Motion Planning and PowerManagement Strate-

gies for Minimizing the Detection Error Prob-

ability at the Remote Station

Based on the explanations of the previous section, a communication-aware surveil-

lance problem in a mobile sensor network can be stated as follows: Given a lim-

ited operation time, T , limited average transmission powers for the mobile sensors,

PTX,AV,k, for k = 1, · · · , n, and their dynamical models, find the positions of the
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mobile sensors, ξk,t, as well as the instantaneous TX powers, PTX,k,t, for k = 1, · · · , n
and over the entire time interval t = 1, · · · , T , such that one of the followings holds:

(i)
∑T

t=1

∑m
i=1 E{γi,b,t} is minimized, while maximizing the probability of connec-

tivity of all the mobile sensors during the entire operation, i.e., E{λk,t}, for
k = 1, · · · , n and over the entire time interval t = 1, · · · , T .

(ii)
∑m

i=1 E{γi,b,T} is minimized, while maximizing the probability of connectivity

of the mobile sensors at the end of the operation, i.e., E{λk,T}, for k = 1, · · · , n.

As explained before, problem (i) is applicable to the case where the remote sta-

tion requires a constant update on the target positions. Then, the mobile sensors are

required to maximize their probability of connectivity to the remote station during

the entire operation and improve their exploration performance within connectivity

constraints. In problem (ii), on the other hand, maximizing the probability of con-

nectivity during the entire operation is not a goal and the probability of error at the

end of the operation is the only performance measure. In this case, the mobile sensors

can freely explore the environment, provided that their probability of connectivity,

at the end of the operation, is maximized.

Solving problems (i) and (ii) is considerably challenging, without any approxi-

mation. Furthermore, the distribution of the channel at unvisited locations, which

is used to calculate E{γi,b,t}, is time-varying. This makes solving the problem even

more challenging. Therefore, more efficient but approximate approaches are desired.

In this section, we propose a communication-aware motion planning framework

for suboptimally solving problems (i) and (ii). This is the main contribution of

this chapter. The proposed framework consists of two switching greedy approaches:

communication-constrained approach for problem (i) and hybrid approach for prob-

lem (ii). This framework can account for the time-varying distribution of channel
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variations, using a probabilistic assessment of wireless channels. We also introduce

robustness strategies, such as TX power adaptation, motion jittering and robustness

margins, to increase the robustness of the proposed framework to multipath fading

and channel assessment errors.7

Similar to Chapter 3, we use the channel assessment framework of Chapter 2 to

evaluate our proposed objective functions at unvisited locations. This is discussed in

more details when explaining the proposed motion planning approaches in the next

two sections.

4.3.1 Communication-Constrained Motion Planning

Consider planning the motion of the mobile sensors in order to constantly update

the remote station on the positions of the targets, while improving the exploration

performance of each individual mobile sensor. Assume πi,0 = 0.5 for 1 ≤ i ≤ m and

ηi,k,t = 1− µi,k,t for 1 ≤ i ≤ m and 1 ≤ k ≤ n. By using the optimal s = 0.5, we get

log
(
γ̄i,b,t+1

)
= log(0.5) +

∑

k∈Ki,t+1

log
(
2
√
ηi,k,τk,t+1

(
1− ηi,k,τk,t+1

) )
. (4.27)

Let KL(η) denote the Kullback-Leibler (KL) distance between two discrete distri-

butions Bern(0.5) and Bern(η), where Bern(η) represents the Bernoulli distribution

with the success probability of η. We have KL(η) = − log
(
2
√
η(1− η)

)
. Using the

definition of KL(η) and λk,t, we have

log
(
γ̄i,b,t+1

)
= log(0.5)−

n∑

k=1

[
λk,t+1KL

(
ηi,k,t+1

)
+
(
1− λk,t+1

)
KL
(
ηi,k,τk,t

)]
, (4.28)

where we set ηi,k,τk,t = 0.5 for τk,t = 0 (the case where the kth mobile sensor has

not yet been connected to the remote station up to time t ≥ 1). The average of

7Note that in this chapter, we are not concerned with energy conservation. Instead,
our goal is to schedule a limited average TX power for communication. In case energy
conservation is a goal, the current framework can be extended to consider communication
and motion powers and optimize the trajectories to minimize the total energy consumption.
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log
(
γ̄i,b,t+1

)
, conditioned on the channel values up to time t, is then given by the

following:

E

{
log
(
γ̄i,b,t+1

)∣∣∣λt
}
= log(0.5)−

n∑

k=1

[
E{λk,t+1}

(
KL
(
ηi,k,t+1

)
−KL

(
ηi,k,τk,t

))

+KL
(
ηi,k,τk,t

)]
, (4.29)

where λt = [λ1,1 · · · λn,t]T. Using the probabilistic channel assessment framework of

Chapter 2, the kth mobile sensor can assess the probability of being connected to the

remote station at time t+ 1 as follows:

E
{
λk,t+1

}
= P

{
GdB(ξk,t+1) > GdB,TH,k,t+1

}
= Q

(
GdB,TH,k,t+1 − ĜdB,k,t,est(ξk,t+1)

σk,t,est(ξk,t+1)

)
,

(4.30)

where Q(.) is the Q-function, ĜdB,k,t,est(q) and σ
2
k,t,est(q) are the estimates of GdB,k,t(q)

and σ2
k,t(q) respectively (see Theorem 2.2.2), with the exact channel parameters re-

placed by the estimated ones (similar to Chapter 3). Furthermore, GdB,TH,k,t+1 de-

notes the (possibly time-varying) channel power threshold of the kth mobile sensor

at time t+1 (in dB), which depends on the power management strategy that we in-

troduce in Section 4.4.1. We then propose the following decentralized greedy motion

optimization framework for the kth mobile sensor at time t, based on minimizing its

contribution to the average detection error probability of the next time step at the

remote station:

u∗k,t = argmax
uk,t

Jcc,k,t
(
ξk,t+1

)
, E

{
λk,t+1

}
︸ ︷︷ ︸
Comm. obj.

[ m∑

i=1

KL(ηi,k,t+1)− Ck,t

]

︸ ︷︷ ︸
Sensing obj.

s.t. 1) ξk,t+1 = ξk,t + uk,t, 2) ξk,t+1 ∈ Vk,t, (4.31)

where Ck,t ,
∑m

i=1KL
(
ηi,k,τk,t

)
is a constant (is not a function of ξk,t+1) and

Vk,t ,
{
q ∈ W

∣∣∣ ‖q − ξk,t‖ ≤ umax,k,P
{
GdB(q) > GdB,TH,k,t+1

}
≥ ∆conn

}
, (4.32)

77



Chapter 4. Communication-Aware Surveillance Using Mobile Networks

for a positive threshold ∆conn. Note that larger ∆conn will result in a more conserva-

tive (in terms of connectivity maintenance) but less sensing-effective strategy. This

threshold is chosen based on how much we need the communication-constrained ap-

proach to be robust to multipath fading (and other channel assessment errors). Also,

the sensing part of (4.31) is always non-negative as KL
(
ηi,k,t+1

)
≥ KL

(
ηi,k,τk,t

)
for

every 1 ≤ i ≤ m.

Equation (4.31) is a key equation that shows 1) the separation of communication

and sensing objectives for the purpose of navigation, 2) that solely from a sensing

perspective, each mobile sensor should minimize its surveillance uncertainty at the

next step by maximizing its KL distance to Bern(0.5), 3) that solely from a commu-

nication perspective, each mobile sensor should maximize the probability of being

connected to the remote station at the next step and 4) that the optimal trajectory

is the one that provides the right balance between these objectives. In other words,

the optimal communication-constrained navigation strategy is the one that minimizes

the sensing uncertainty while maximizing the probability of being connected to the

remote station at the next step, based on what the mobile sensor can assess about the

connected regions.

One drawback of the localized motion planning strategy of (4.31) is its feasibility.

Based on the available knowledge on channel link qualities, there may be situations

where Vk,t = ∅ (for example the case where the mobile sensor starts in a disconnected

area far from the remote station). In such cases, the kth mobile sensor can get stuck in

a region with a poor link quality. Furthermore, even if the problem does not become

infeasible, if Area
(
Vk,t

)
is too small, the proposed approach will be less robust to

channel assessment errors. In order to avoid such undesired conditions, next we

propose a switching strategy to navigate each mobile sensor to unvisited locations

with good link qualities, in case the link quality is poor in the local region around

the current position of the mobile sensor.
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A Switching Strategy for Avoiding Undesired Local Extrema

Let idx(q), for q ∈ W, denote the index of the cell that contains q, i.e., the unique i

such that q ∈ Wi. Also, let us define the following sets:

Ek,t ,
{
q ∈ W

∣∣∣ P
{
GdB(q) > GdB,TH,k,t+1

}
≥ ∆conn

}
,

Fk,t ,
{
q ∈ W

∣∣∣ ηidx(q),k,t < ∆sens

}
, (4.33)

where ∆conn is as defined before and ∆sens is another positive threshold. The idea

behind the switching approach is to add another mode of operation, referred to as

the sensing-aware communication seeking mode, to navigate the kth mobile sensor

to the closest point in Ek,t ∩ Fk,t whenever
∣∣Vk,t

∣∣ < εconn, for a small positive εconn.

Here,
∣∣Vk,t

∣∣ represents the area of Vk,t. In other words, this mode navigates the kth

mobile sensor towards the closest unexplored (or poorly explored) region where the

probability of connection (using the current assessment of the channel at the mobile

sensor) is good enough. Then, as soon as we have
∣∣Vk,t

∣∣ ≥ εconn, we switch back to

the motion planning strategy of (4.31), which we refer to as communication-aware

exploration mode. The control input of the kth mobile sensor in the sensing-aware

communication seeking mode can then be found as follows:

u∗k,t = argmin
uk,t

‖ξk,t+1 − q∗comm,k,t‖ (4.34)

s.t. 1) q∗comm,k,t = argmin
q∈Ek,t∩Fk,t

‖q − ξk,t‖, 2) ξk,t+1 = ξk,t + uk,t, 3) ‖uk,t‖ ≤ uk,max.

Using the control strategy of (4.34), whenever
∣∣Vk,t

∣∣ < εconn, the k
th mobile sensor

is navigated directly towards q∗comm,k,t, which is the closest point of Ek,t ∩ Fk,t to the

current position of the mobile sensor. Fig. 4.2 summarizes the proposed switching

strategy, which prevents the mobile sensor from getting stuck in undesired local ex-

trema. Furthermore, it increases the robustness to channel assessment errors (mainly

caused by multipath), by introducing extra design parameters such as ∆conn. In Sec-
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tion 4.4, we discuss more strategies for improving the performance and increasing

the robustness of the switching approach.

comm-aware

exploration

mode

      |V  | ≥ ε  k,t conn

sens-aware

comm 

seeking

mode

        
conn      |V  | < ε  

k,t

Figure 4.2: Illustration of the proposed communication-constrained motion planning ap-
proach.

4.3.2 Hybrid Motion Planning

Consider the communication-constrained motion planning approach of (4.31). The

communication part of the objective function in (4.31), i.e., the Q-function in the

definition of Jcc,k,t
(
ξk,t+1

)
, enforces the kth mobile sensor to move to the positions

with a higher chance of experiencing a better channel quality. As the quality of

channel learning gets better, σk,t,est(ξk,t+1) becomes smaller. In the limit of perfect

channel learning, the Q-function acts as a hard limiter, enforcing the mobile sensor to

only explore the connected regions. This property of the communication-constrained

approach can be considerably useful for the applications that require constant com-

munication of the most updated binary maps to the remote station, which requires

constant improvement of the probability of connection of individual mobile sensors.

However, for a limited operation time T and a time-invariant field, the mobile sensors

may only be concerned with the probability of detection error of the remote station

at the end of operation, i.e.,
∑m

i=1 E{γi,b,T} as explained before. Minimizing this will

result in a different motion planning approach, with a different balance between ex-

ploration and communication, which we refer to as hybrid motion planning. The idea
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behind the hybrid motion planning approach is to have each mobile sensor explore

the environment extensively and communicate its binary target map at the end of

the mission (note that the remote station only uses the last communication of each

mobile sensor). This proposed approach has four modes of operation:

• Mode 1 (sensing-aware exploration mode): In this mode, each mobile sensor

optimizes its motion only based on its sensing and exploration objectives, with-

out taking communication constraints into account. The purpose of this mode

is to explore the environment as much as possible, in the given operation time.

Each mobile sensor k, therefore, chooses its next motion decision such that its

local detection probability, ηi,k,t+1, is maximized. The controller input of the

kth mobile sensor is then calculated using the following optimization problem:

u∗k,t = argmax
uk,t

Jsens,k,t
(
ξk,t+1

)
,

m∑

i=1

ηi,k,t+1 (4.35)

s.t. 1) ξk,t+1 = ξk,t + uk,t, 2) ‖uk,t‖ ≤ umax,k, 3) ξk,t+1 ∈ W,

where the kth mobile sensor assesses its detection probability based on its sens-

ing model. In this mode, communication objectives are not considered in local

motion planning. However, it is possible that the mobile sensor transmits its

current decision vector if it randomly moves to a connected spot. This can

increase the robustness, in case the operation was terminated abruptly and

earlier than planned. However, from power consumption perspective, it may

be better if the mobile sensor does not communicate in this stage and leaves

all its power for optimizing the connectivity at the end of operation.

• Mode 2 (local extrema avoidance mode): Using the localized exploration strat-

egy of (4.35), each mobile sensor tries to explore the environment as much as

possible. However, there can be undesirable situations where it gets stuck in

a given area, while there are still unvisited areas that can be explored in the
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given operation time. Similar to the communication-constrained case, in or-

der to avoid such undesirable situations, we add a mode to navigate a mobile

sensor to poorly explored locations, whenever the estimated improvement of

its sensing quality is small. Using the definition of Fk,t in Section 4.3.1, the

mobile sensor switches to the local extrema avoidance mode, to move towards

the closest point in Fk,t, whenever

ψk,t ,
maxξk,t+1∈Rk,t

∑m
i=1 |ηi,k,t+1 − ηi,k,t|∑m

i=1 ηi,k,t
< εsens, (4.36)

for a small positive εsens and Rk,t ,
{
q ∈ W

∣∣ ‖q − ξk,t‖ ≤ umax,k

}
. In other

words, we navigate the mobile sensor towards the closest poorly explored point

in the workspace in order to improve its sensing performance. We then switch

back to the sensing-aware exploration mode as soon as we have ψk,t ≥ εsens. The

control input of the kth mobile sensor, in this mode, is also found by following

the same approach of the sensing-aware communication seeking mode of the

previous case:

u∗k,t = argmin
uk,t

‖ξk,t+1 − q∗sens,k,t‖ (4.37)

s.t. 1) q∗sens,k,t = argmin
q∈Fk,t

‖q − ξk,t‖, 2) ξk,t+1 = ξk,t + uk,t, 3) ‖uk,t‖ ≤ uk,max.

• Mode 3 (connection-seeking mode): Once the environment is explored exten-

sively and the limited operation time is approaching, each mobile sensor needs

to move to positions with high chance of connectivity, where it can send its

most updated binary decision vector to the remote station. Based on its most

recent predicted channel, each mobile sensor has an estimate of how many steps

it takes for it to move to a connected position. Based on this knowledge and

by considering the remaining number of operation steps, each mobile sensor

can decide when to switch from the sensing-aware exploration mode or the

local extrema avoidance mode to the connection-seeking mode. Consider the
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set Ek,t, defined in Section 4.3.1. The closest point in Ek,t is then found as fol-

lows: q∗seek,k,t = argmin
q∈Ek,t

‖q − ξk,t‖. Using the fist-order dynamics of the mobile

sensors, the minimum number of steps required to get to q∗seek,k,t, at time t, is

ζk,t =
⌊‖ξk,t−q∗seek,k,t‖

umax,k

⌋
+ 1. The kth mobile sensor switches to the connection-

seeking mode at time t if 1) it is not connected to the remote station at time

t and 2) ζk,t ≥ T − t −M , where M is a positive and small offset, which can

add a robustness margin to the operation. Once a decision to switch to the

connection-seeking mode is made, the control input of each mobile sensor is

found as follows:

u∗k,t = argmin
uk,t

‖ξk,t+1 − q∗seek,k,t‖ (4.38)

s.t. 1) q∗seek,k,t = argmin
q∈Ek,t

‖q − ξk,t‖, 2) ξk,t+1 = ξk,t + uk,t, 3) ‖uk,t‖ ≤ uk,max.

Similar to the communication-constrained approach, as we increase ∆conn in

Ek,t, the motion planner becomes more robust to the variations of multipath

fading and other assessment uncertainties, by acting more conservatively.

• Mode 4 (communication-aware exploration mode): Once a mobile sensor moves

to a region where
∣∣Vk,t

∣∣ ≥ εconn, it utilizes the proposed communication-aware

exploration mode of Section 4.3.1, in order to maintain its connectivity to

the remote station till the end of operation. In this mode, the mobile sensor

still senses the connected area, as described in the previous section. However,

its main goal is connectivity maintenance. Note that in case the kth mobile

sensor is still disconnected after switching to this mode (possibly due to its poor

assessment of the channel in the presence of large multipath fading), it can take

advantage of a jittery movement around its current location, in order to increase

its chance of connectivity. In the next section, we explain such strategies to

further increase the robustness of both communication-constrained and hybrid

approaches.
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Fig. 4.3 demonstrates an overview of the hybrid approach where transition between

the modes is illustrated.

sensing-

aware

exploration

mode

local extrema

avoidance

mode

comm

seeking

mode

comm-aware

exploration

mode

   ζ    ≥ T  − t − M  
k,t

   ζ    ≥ T  − t− M  
k,t

   ψ   ≥ ε  k,t sens
    ψ   < ε  

k,t

conn

sens

      |V  | ≥ ε  k,t

Figure 4.3: Illustration of the proposed hybrid motion planning approach.

4.4 Further Robustness to Multipath Fading and

other Channel Assessment/Modeling Errors

In Chapter 2, we explained how our probabilistic channel assessment framework can

be used by each mobile sensor to learn the shadowing and path loss components and

characterize the channel learning uncertainty, in the presence of multipath fading

and other channel assessment errors. This enabled our probabilistic motion con-

trol approaches in Section 4.3.1 and 4.3.2. We also showed how to increase the

robustness, by introducing a number of design parameters (such as ∆conn). In this

section, we discuss more strategies to increase the robustness to multipath fading

and other channel assessment/modeling errors. These strategies can be combined

with our communication-constrained or hybrid motion planners to further improve

the performance. Fig. 4.4 summarizes how our proposed framework handles different
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elements of wireless channels using 1) probabilistic assessment of the shadowing and

path loss components and 2) strategies to increase robustness to multipath fading and

other modeling errors. We will discuss the robustness strategies in the subsequent

sections.

Figure 4.4: Illustration of the proposed probabilistic channel assessment framework and
robustness techniques.

4.4.1 Adaptive Transmit Power and Packet Dropping Thresh-

old for Increasing the Robustness to Multipath Fading

The threshold GdB,TH,k,t+1 in the formulation of E{λk,t+1} in (4.30), as well as in

the definitions of Vk,t and Ek,t, depends on the TX power adaptation strategy of the

kth mobile sensor. Consider the case where the kth mobile sensor is given the total

average TX power of PTX,AV,k. It can use the fixed TX power of PTX,k,t = PTX,AV,k

during its operation, independent of the channel quality. In this case, we have

GdB,TH,k,t+1 = 10 log10

(
SNRTHBN0

PTX,AV,k

)
+ ∆GdB,TH, where ∆GdB,TH ≥ 0 is added to

increase the robustness to multipath fading. The idea is that by increasing the

packet-dropping threshold, the mobile sensor is then forced to operate in regions

with higher channel power, resulting in more robustness to multipath fading.
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Alternatively, each mobile sensor can adapt its TX power to channel quality.

Power adaptation strategies have been heavily explored in the communication litera-

ture [45,46,101]. In this chapter, the goal of TX power adaptation is to increase the

robustness of the proposed motion planning algorithm by saving power at positions

with high channel qualities, with the goal of satisfying the connectivity requirements

at positions with low channel qualities. Similar to [101], we consider the following

simple TX power adaptation strategy for each mobile sensor:

PTX,k,t =





0, min
(
PTX,AV,k,t, PTX,max,k

)
< SNRTHBN0

G(ξk,t)

SNRTHBN0

G(ξk,t)
, otherwise

, (4.39)

where PTX,max,k is the maximum TX power of the kth mobile sensor and PTX,AV,k,t is

the average of the remaining power budget of the kth mobile sensor at time instant

t:

PTX,AV,k,t =
1

T − t+ 1

(
TPTX,AV,k −

t−1∑

ℓ=1

PTX,k,ℓ

)
. (4.40)

Based on (4.39), the kth mobile sensor sends its binary decision vector to the

remote station at time t when the minimum required TX power to make the mobile

sensor connected is no larger than min
(
PTX,AV,k,t, PTX,max,k

)
. The channel power

threshold is then selected to be:

GdB,TH,k,t+1 = 10 log10

(
SNRTHBN0

min(PTX,AV,k,t, PTX,max,k)

)
+∆GdB,TH. (4.41)

Note that in this chapter, we are not concerned with minimizing the total energy

consumption. In other words, our goal is to schedule a limited average TX power for

communication. However, the current framework can be extended to consider both

communication and motion powers and optimize the trajectories of the mobile sensors

such that the total energy consumption is minimized, while the main networked task

is accomplished. It is also worth mentioning that, in the hybrid approach, the mobile
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sensors may decide not to send anything, while operating in modes 1 and 2, to save

power for the end of the operation when they need to be connected. This strategy

is particularly useful for long operations with limited power budgets. However, if

power is not a constraint, the mobile sensors can always send their most updated

target maps to the remote station if they move to a connected spot by chance. This

can further increase the robustness, in case the operation terminates abruptly and

earlier than planned.

4.4.2 Jittery Movements for Increasing the Probability of

Connectivity in the Presence of Large Multipath Fad-

ing

Consider the communication-constrained approach. This strategy guides each mobile

sensor to an area that has a high probability of connectivity. However, a specific

position may or may not have the connectivity requirement, as our channel learning

framework cannot predict the fine variations of multipath fading and is also prone

to errors. Since the mobile sensor is guided to an area that has a high probability of

connectivity (high average channel power), then small jittering can help the mobile

sensor find a better location in terms of connectivity. In case a jittery movement is

added, after the proposed communication-constrained or hybrid motion planner is

executed at each step, the mobile sensor picks Njitt random points in a small circular

region around its current location. It then moves to each point one by one, measures

the channel there, and then simply chooses the point with the best channel quality

for sending. The radius of the circular region for jittering is chosen such that the

path loss and shadowing parts of channel remain stationary in the region, based on

the assessment of the channel available to each mobile sensor. Note that in case the

adaptive TX power strategy of (4.39) is used, if none of the Njitt points satisfy the
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the connectivity requirement at some steps, nothing will be sent.

4.5 Performance Analysis of the Proposed Motion

Planning Strategies

With some assumptions, it is possible to analyze the final performance of the pro-

posed communication-constrained and hybrid approaches. The following theorems

summarize our key results:

Theorem 4.5.1. Assume that 1) the mobile sensors use the fixed TX power strategy

of PTX,k,t = PTX,AV,k, for k = 1, · · · , n, 2) based on the assessment of the channel

at all the mobile sensors, W \ ∪∞
t=1 ∪n

k=1 Ek,t 6= ∅ (refer to Section 4.3.1 for the

definition of Ek,t), and 3) the sensing radius of each mobile sensor and the size of

each cell are small, compared to the size of the workspace, such that some of the cells

in W \∪∞
t=1 ∪n

k=1 Ek,t cannot be sensed by any mobile sensor k, while it moves inside

∪∞
t=1Ek,t. Then, the average of the probability of error at the remote station in the

communication-constrained approach (averaged over the space and the conditional

distribution8 of the channel) is lower bounded by a positive value at any time, i.e.,

there exists γ > 0 such that 1
m

∑m
i=1 E

{
γi,b,t

}
≥ γ, for all k ≥ 1.

Proof. For every t ≥ 1, we have

1

m

m∑

i=1

E
{
γi,b,t

}
≥ 1

m

m∑

i=1

E
{
γi,b,T

}
≥ lim

T→∞

1

m

m∑

i=1

E
{
γi,b,T

}
, (4.42)

where the expected values are calculated over the conditional distribution of the

channel. Assuming πi,0 = 0.5, for 1 ≤ i ≤ m, and ηi,k,t = 1 − µi,k,t, for 1 ≤ i ≤ m

8The distribution of the channel conditioned on the finite set of channel measurements.
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and 1 ≤ k ≤ n, we obtain

lim
T→∞

γi,b,T =
∑

b∈B

[
n∏

k=1

(1− µi,k,∞)1−bk µbk
i,k,∞

]
Heav

(
n∏

k=1

(
1− µi,k,∞
µi,k,∞

)2bk−1

− 1

)
,

(4.43)

where µi,k,∞ , limT→∞ µi,k,τk,T and B is the set of all the binary vectors of size

n. Note that µi,k,∞ = 0.5 in case limT→∞ τk,T = 0. Consider the communication-

constrained approach, where PTX,k,t = PTX,AV,k and W \ ∪∞
t=1 ∪n

k=1 Ek,t 6= ∅. If the

sensing radius of each mobile sensor and the size of each cell are small, we can find

some cell i inside W \∪∞
t=1 ∪n

k=1 Ek,t 6= ∅ and some µ
i
> 0, such that µi,k,∞ ≥ µ

i
, ∀k.

This cell i can be any cell inside W\∪∞
t=1∪n

k=1Ek,t, which is not visited by any mobile

sensor during the entire operation or is sensed for a finite number of steps before each

mobile sensor reaches Ek,t, for k = 1, · · · , n. This implies that there exists a positive

lower bound on limT→∞
1
m

∑m
i=1 γi,b,T and, by averaging over the conditional channel

distribution, on limT→∞
1
m

∑m
i=1 E

{
γi,b,T

}
. In other words, there exists γ > 0 such

that limT→∞
1
m

∑m
i=1 E

{
γi,b,T

}
≥ γ. The same result can be obtained for the more

general case where πi,0 6= 0.5, for some 1 ≤ i ≤ m, or ηi,k,t 6= 1 − µi,k,t, for some

1 ≤ i ≤ m and 1 ≤ k ≤ n, using (4.17). This completes the proof.

Theorem 4.5.2. Assume that 1) the channel is assessed perfectly,9 2) the mobile

sensors are connected to the remote station at the beginning of the operation, 3) the

sensing radius of each mobile sensor and the size of each cell are small, compared to

the size of the workspace, such that the maximum area covered by a mobile sensor

k, while moving in Ek,t, is approximately equal to the area of Ek,t (refer to Section

4.3.1 for the definition of Ek,t), for k = 1, · · · , n, 4) the mobile sensors use the

same fixed TX power strategy of PTX,k,t = PTX,AV, for k = 1, · · · , n, 5) πi,0 =

9By this assumption we automatically assume that the multipath fading power is zero,
the channel parameters are estimated perfectly and the number of channel measurements
in the environment are large such that σk,t(q) → 0 for all k, q ∈ W and t ≥ 1. See
Definition 3.2.1 in Chapter 3 for more details.
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0.5, for i = 1, · · · , m, and 6) the workspace is a circular region with the remote

station located at the center of the circle. Then, in the communication-constrained

approach, a lower bound for limT→∞
1
m

∑m
i=1 E

{
γi,b,T

}
(averaged over every possible

channel) is approximately given by 0.5
[
Q(a) − exp

(
2+2aρ
ρ2

)
Q
(

2+aρ
ρ

)]
, where a =

KdB−10nPL log10(RW )−GdB,TH

ϑ
, ρ = 10nPL

ϑ log(10)
, GdB,TH = 10 log10

(
BN0SNRTH

PTX,AV

)
and RW is the

radius of the workspace.

Proof. In case the mobile sensors start connected and the channel is assessed per-

fectly, each mobile sensor k only explores Ek,t in the communication-constrained

approach. Then, if there exists only one connected region around the remote station

and the size of the cells and the sensing radii of the mobile sensors are small, we

approximately have

lim
T→∞

1

m

m∑

i=1

γi,b,T ≥
∣∣W \ ∪∞

t=1 ∪n
k=1 Ek,t

∣∣
2
∣∣W
∣∣ . (4.44)

In case of perfect channel assessment, the area ofW\∪∞
t=1∪n

k=1Ek,t is equal to the area
of the disconnected region. Therefore, by averaging over the channel distribution,

we get

lim
T→∞

1

m

m∑

i=1

E
{
γi,b,T

}
≥ 0.5

πR2
W

∫

W
P
{
GdB(q) < GdB,TH

}
dq

=
1

R2
W

∫ RW

0

rQ

(
KdB − 10nPL log10(r)−GdB,TH

ϑ

)
dr

= 0.5

[
Q(a)− exp

(
2 + 2aρ

ρ2

)
Q

(
2 + aρ

ρ

)]
, (4.45)

for ρ = 10nPL

ϑ log(10)
, a =

KdB−10nPL log10(RW )−GdB,TH

ϑ
and GdB,TH = 10 log10

(
BN0SNRTH

PTX,AV

)
,

where we used the method of Chapter 2 of [59] to calculate the integral.

Theorem 4.5.3. Assume that the channel is assessed perfectly, πi,0 = 0.5, for 1 ≤
i ≤ m, and ηi,k,t = 1− µi,k,t, for 1 ≤ i ≤ m and 1 ≤ k ≤ n. In the hybrid approach,

if we select ∆sens = 1− δsens (see Section 4.3.1 for the definition of the ∆sens), for an
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arbitrary small positive δsens, then we have the following for the asymptotic average

probability of detection error at the remote station: limT→∞
1
m

∑m
i=1 E

{
γi,b,T

}
≤ δsens,

where averaging is done over every possible channel.

Proof. Assume that the mobile sensors start with the sensing-aware exploration mode

in the hybrid approach. Consider the kth mobile sensor, for 1 ≤ k ≤ n. For this

mobile sensor, the exploration continues (the spatial average of its detection error

probability decreases) until ψk,t < εsens (see Section 4.3.2 for the definition of the

variables). In this case, we have either Fk,t = ∅, which means that µi,k,t ≤ δsens, for

1 ≤ i ≤ m, or Fk,t 6= ∅. For the latter, the proposed local extrema avoidance mode

of the hybrid approach navigates the mobile sensor to a point in Fk,t. Then, two

different cases may happen. If a situation where ψk,t ≥ εsens does not happen, while

in the local extrema avoidance mode, the mobile sensor will remain in this mode

and visit every point in Fk,t until Fk,t = ∅. On the other hand, if the mobile sensor

switches back to the sensing-aware exploration mode at some point, the exploration

continues similar to the previous case, which also proves that Fk,t = ∅ after some

steps. Therefore, we have µi,k,t ≤ δsens, for 1 ≤ i ≤ m and t greater than a positive

constant. Then, assuming that the channel is assessed almost perfectly, we have

µi,k,∞ ≤ δsens (see the proof of Lemma 4.5.1 for the definition of µi,k,∞), for 1 ≤ i ≤ m

and 1 ≤ k ≤ n. This implies that limT→∞ γi,b,T ≤ δsens, for 1 ≤ i ≤ m. By averaging

over the channel distribution, we have limT→∞ E
{
γi,b,T

}
≤ δsens, for 1 ≤ i ≤ m,

which completes the proof.

As indicated by Theorem 4.5.3, the hybrid approach almost always outperforms

the communication-constrained one, in terms of the final probability of error at

the remote station, for large enough T . We compare the performance of the two

approaches in the next section, using both simulated and experimental data.
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4.6 Simulation and Experimental Results

In this section, we evaluate the performance of the proposed communication-aware

surveillance framework using both simulated and real channel measurements. Our

results highlight the underlying trade-offs in the design space as summarized later in

this section. For instance, they show that while the hybrid approach outperforms the

communication-constrained one in terms of the final probability of networked detec-

tion error, the latter has a higher probability of constant connectivity and is therefore

more robust to the abrupt termination of the operation. Also, we further compare

these two approaches with communication-unaware strategies (strategies that con-

sider only sensing objectives for planning the motion of the mobile sensors) and show

the effectiveness of the proposed framework in realistic fading environments.

Consider a surveillance scenario where three mobile sensors are tasked to explore

a given environment for the possible presence of targets. We use the Gaussian obser-

vation model of Section 4.1.1, where the following form is chosen for the observation

error variance [17, 73]:

Φk(d) =




̺ d2 + ν, d < dsen

∞, otherwise
(4.46)

for positive constants ̺ > 0 and ν > 0 and a limited sensing radius dsen for each mo-

bile sensor. The communication channel between the mobile sensors and the remote

station is simulated using our probabilistic channel simulator, which can simulate

path loss, shadow fading and multipath fading, with realistic spatial correlations. A

detailed description of this channel simulator can be found in [54, 56].

First we compare the trajectories of communication-constrained and hybrid plan-

ning approaches, for a fixed TX power case, where the following parameters are used:

umax,k = 3.0 m for k = 1, 2, 3, ̺ = 0.02, ν = 0.04, dsen = 3.0 m, KdB = −10 dB,

nPL = 2.5, ϑ = 2 dB, β = 4 m, ω = 2 dB, BN0 = −85 dB, PTX,AV,k = −20 dB, for
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k = 1, 2, 3, PTX,max,k = −10 dB, for k = 1, 2, 3, and SNRTH = 23 dB, with a Rician

multipath fading. Note that Rician multipath fading was simulated to make the

simulated more realistic. Furthermore, we use the following design parameters when

implementing our communication-aware and hybrid motion planners: ∆conn = 0.8,

∆sens = 0.65, εconn = 0.25, εsens = 0.002, ∆GdB,TH = 0 and M = 5 (see Section 4.3.1

and 4.3.2 for the definition of these parameters). For the purpose of channel learning,

the mobile sensors use 0.01% of the total channel samples (64 samples in a 800×800

grid), which are assumed to be randomly collected during an initial learning phase.

Then, they collect more samples as they move along their trajectories. The collected

samples are used to estimate the underlying channel parameters and assess the spa-

tial variations of the channel at unvisited areas. Fig. 4.5 shows the trajectories of the

mobile sensors for one simulated channel in both cases. The black regions in Fig. 4.5

represent the areas where the mobile sensors are not connected to the remote station

(received SNR is below the acceptable threshold), given PTX,k,t = PTX,AV,k. It can

be seen that by using the communication-constrained approach, the mobile sensors

converge to the regions where they are connected to the remote station (if they are

not connected at the beginning) and stay connected afterwards. In other words, this

approach forces the mobile sensors to mostly explore the regions with better link

qualities, so that they can constantly update the remote station and minimize its

detection error probability, as we explained in Section 4.3.1. The hybrid navigation

strategy, on the other hand, allows the mobile sensors to explore the environment

more freely. It, however, enables the mobile sensors to be connected to the remote

station at the end of operation. Also, as can be seen from the figure, some regions

may be revisited by the mobile sensors several times along their trajectories. Note

that in both cases, the mobile sensors take advantage of a jittery movement, in areas

of radius 0.3 m around their current locations and by testing Njitt = 45 points at each

step. In this specific example, jittery movement in the communication-constrained

case results in 10%, 15% and 17% increase in the percentage of time that Mobile
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Sensor #1, Mobile Sensor #2 and Mobile Sensor #3 are connected along their trajec-

tories, respectively. Similarly, in the hybrid approach, by using the jittery movement

we have 24%, 20% and 41% increase in the percentage of time that Mobile Sensor

#1, Mobile Sensor #2 and Mobile Sensor #3 are connected along their trajectories,

respectively.
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Figure 4.5: Trajectories of three mobile sensors for communication-constrained (left) and
hybrid (right) cases, with fixed TX powers. The red, magenta and green lines correspond
to the trajectories of the Mobile Sensor #1, Mobile Sensor #2 and Mobile Sensor #3,
respectively. The empty boxes and the filled ones denote the initial and final positions
respectively. The location of the remote station is denoted on the top left corner of the
figures. See the pdf file for more visual clarity.

Next, consider the case where the adaptive TX power strategy of (4.39) is used for

both communication-constrained and hybrid approaches.10 Then, the connectivity

regions will become time-varying and different for different mobile sensors (since

their TX powers are different). One would expect that the white regions (connectivity

regions), corresponding to the kth mobile sensor, expand as its instantaneous average

10As explained before, in case energy conservation is not an issue, a mobile sensor can
transmit any time it is connected by luck in the hybrid approach too and hence apply the
adaptive TX power strategy of (4.39). Multiple transmissions (as opposed to transmission
only at the end of the operation) in the hybrid case will increase the robustness, although
it is not required.
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TX power, PTX,AV,k,t, increases. Fig. 4.6 shows the evolution of the connectivity

regions for both strategies, for one of the mobile sensors of Fig. 4.5, when the TX

power adaptation technique of (4.39) is used. The communication channel is taken to

be the same as the one used in Fig. 4.5. In such an adaptive strategy, the connectivity

region of the mobile sensor expands with time with high probability, as can be seen

from the figure, for two reasons. First, in case of poor channel quality at time t, the

mobile sensor does not send anything, which results in an increase in PTX,AV,k,t+1 and

an expansion in its next step connectivity region. Second, in case the mobile sensor

decides to send its updated target map to the remote station using (4.39), it uses

the minimum required power for connectivity, given by SNRTHBN0

G(ξk,t)
, using its measured

channel power at time t. Note that we did not simulate any jittery movement in this

case.
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Figure 4.6: Impact of the adaptive TX power on connectivity regions. Time-varying
connectivity regions (white areas) in communication-constrained (top row) and hybrid
(bottom row) cases are shown for one of the mobile sensors of Fig. 4.5, at time steps
t = 15, t = 25, t = 35 and t = 45 (from left to right). The communication channel is taken
to be the same as the one used in Fig. 4.5. Empty boxes and filled ones denote the initial
and final positions respectively. See the pdf file for more visual clarity.

In order to further compare the communication-constrained and hybrid approaches,

Fig. 4.7 (left) shows the average of the final detection error probability at the remote
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station, i.e., 1
m

∑m
i=1 E{γi,b,T}, as a function of the given operation time T , for the

three mobile sensors and the same system parameters of Fig. 4.5.11 The averaging

is done over the space and 20 different channels. In Fig. 4.7 (left), for every T , the

whole trajectory of the mobile sensor is generated for 20 different channels and the

average results at the end of the operation are then plotted. In order to simplify

the scenario, TX power is not adaptive in this case and the mobile sensors, in both

communication-constrained and hybrid approaches, use the constant TX power of

PTX,AV,k = −20 dB at each step. They, however, make use of a jittery movement, at

the end of each step, to increase their chance of connectivity to the remote station.

It can be seen that the hybrid approach outperforms the communication-constrained

one, in terms of the average of the final detection error probability at the remote

station, as expected. The figure also shows that as T → ∞, the average prob-

ability of error goes to zero in the hybrid case, while it reaches an error floor in

the communication-constrained case. However, the communication-constrained ap-

proach provides smaller average detection error probability at the remote station, in

case the operation terminates earlier than the planned time T . To see this, Fig. 4.7

(right) shows the average of the detection error probability at the remote station, i.e.,

1
m

∑m
i=1 E{γi,b,t}, as a function of time step t, averaged over space and 20 different

channels. We used T = 50 as the operation time in this case. As can be seen, if the

operation ends while the hybrid approach is still in the exploration mode, it results

in a worse performance, as it is designed to optimize the operation given a certain

time.

Fig. 4.8 compares the performance of three approaches, with different levels of

awareness, in terms of communication and sensing, for the same system parameters of

Fig. 4.5. The results are averaged over 20 different channels. Similar to Fig. 4.7, TX

power is not adaptive. Also, no jittery movement is simulated in this case, to show

11The spatial average or spatial integration of the quantity under control, is a popular
choice for the performance measure in surveillance and exploration literature [17].
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Figure 4.7: Average of the detection error probability at the remote station (RS) as a
function of (left) the given operation time (T ) and (right) time step (t) for communication-
constrained and hybrid approaches. TX power is not adaptive in this case.

the underlying trade-off more clearly. For the sake of comparison, the results for a

sensing-constrained case are also shown. A sensing-constrained case only optimizes

the exploration objective and communicates with the remote station anytime its

trajectory takes it to the connected regions, as was described in modes 1 and 2

of the hybrid case. Thus, it is unaware of communication objectives. The figure

shows the average of the final detection error probability at the remote station, as

a function of SNRTH, for two cases of T = 10 (left) and T = 50 (right). Interesting

trade-offs can be observed. Consider the left figure, where T is small. In this case,

as SNRTH increases, the chance of connectivity becomes small over the whole space.

As such, the performance of the sensing-constrained approach degrades considerably,

for large SNRTH, since it does not include communication objectives in its motion

optimization. It can be see that the communication-constrained and hybrid cases

perform almost the same and better than the sensing constrained approaches. Also,

in this case, the average of the detection error probability in the communication-

constrained and hybrid approaches are large (compared to detection error probability

of hybrid approach in the right figure). This is because the operation time is limited

and the requirement on link qualities is high. The right figure, on the other hand,

shows the performance for the case of T = 50. In this case, since the given operation
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time is longer than the left figure, the trajectory of the sensing-constrained approach

crosses through more connected regions by luck, which improves its performance. For

the communication-constrained case, the performance degrades as SNRTH increases

since its exploration is limited to connected regions, which are shrinking as SNRTH

increases. The hybrid approach, however, results in the best performance in both

cases, providing the best trade-off between sensing and communication, as expected.
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Figure 4.8: Communication and sensing trade-offs in a networked surveillance scenario.
The figure shows average of the final detection error probability at the remote station (RS),
averaged over the space and channel distribution, as a function of SNRTH, for two cases of
T = 10 (left) and T = 50 (right).

In order to show the performance of our framework with real channel measure-

ments, Fig. 4.9 shows a surveillance scenario, using one mobile sensor and by con-

sidering the real channel measurements gathered in the basement of our building.

The channel measurements are collected through a survey of the channel, using the

onboard IEEE 802.11g WLAN card of a Pioneer 3-AT robot (shown in Fig. 4.11) and

for a remote station (an IEEE 802.11g wireless router) located in one of the rooms

in the basement. This channel samples are then used to simulate the surveillance

scenario. During the surveillance operation, the channel is assessed based on 0.1%

a priori channel samples (47 samples), as well as the samples the mobile sensor col-

lects along its trajectory. The TX power is kept fixed and a received SNR threshold

of 35 dB is chosen for packet dropping. The mobile sensor also takes advantage of

a jittery movement, in areas of radius 0.15 m around its current locations and by
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testing Njitt = 20 points at each step. The sensing model is the same as the one

used for the previous simulations, except that we use dsen = 1.0 m in this case. The

Pioneer robot is modeled by the holonomic dynamical model of this chapter, with

umax,k = 1.5. A simple obstacle avoidance strategy, similar to the one proposed in [6],

is also used. The left and right figures in Fig. 4.9 show the trajectory of the mobile

sensor in the communication-constrained and hybrid approaches respectively, where

the true connectivity map to the remote station is superimposed on the blueprint of

the basement. Fig. 4.10 then compares the resulting average of the detection error

probability at the remote station, as a function of time step t.

It can be seen that, although multipath fading power is large, the mobile sen-

sor maintains its connectivity along its entire trajectory in the communication-

constrained approach, as expected. More precisely, in this example it maintains its

connectivity at 97.3% of the entire operation time. The hybrid approach, however,

achieves a smaller average probability of detection error at the end of operation, com-

pared to the communication-constrained approach. It also ensures that the mobile

sensor is connected by the end of the operation.

Finally, Fig. 4.12 summarizes the results and observations of this chapter, in

terms of the level of communication and sensing awareness of a motion planning

strategy and its impact on the overall performance.

4.7 Summary

In this chapter, we considered the scenario where a team of mobile sensors are de-

ployed by a remote station to explore a given environment, detect an unknown num-

ber of static targets and inform the remote station of their findings. We studied the

problem of designing the trajectories of the mobile sensors to minimize the probabil-

ity of target detection error at the remote station, while satisfying the requirements
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Figure 4.9: Performance of the proposed communication-aware surveillance framework
using real channel measurements in an indoor environment (basement of the Electrical and
Computer Engineering building at UNM). The left and right figures show the trajectory of
the mobile sensor in the communication-constrained and hybrid approaches respectively,
where the true connectivity map to the remote station is superimposed on the blueprint of
the basement.

on the connectivity of the mobile sensors to the remote station. We showed how to

design such trajectories by co-optimization of sensing (information gathering) and

communication (information exchange). Based on the requirement on the connec-

tivity of the mobile sensors to the remote station, we considered two cases. First, we

considered the case where the mobile sensors need to constantly update the remote

station on the locations of the targets. For this case, we proposed our communication-

constrained motion planning approach which enables the mobile sensors to explore

the workspace while maximizing their probability of connectivity to the remote sta-

tion during the entire operation. We proved that the overall motion optimization

objective function, in this case, is a multiplication of a sensing function that maxi-

mizes the Kullback-Leibler (KL) divergence between the maximum uncertainty state

and the current one, with a communication function, that maximizes the probability
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Figure 4.10: The resulting average of the detection error probability at the remote station
(RS), as a function of time step t, for the indoor environment of Fig. 4.9.

of connectivity to the remote station.

Second, we considered the case where the remote station only needs to be in-

formed of the locations of the targets at the end of a given operation time. By

building on our communication-constrained results, we proposed our hybrid motion

planning approach for this case. This approach plans the motion of the mobile sen-

sors such that they explore the workspace with less connectivity constraint on their

motion, as compared to the communication-constrained approach, while maximizing

their probability of connectivity at the end of the operation. We mathematically

characterized the asymptotic behavior of our proposed approaches under certain

conditions. We showed that, in terms of the final detection error probability at the

remote station, the hybrid approach outperforms the communication-constrained

one, while the latter provides better constant connectivity and, therefore, is more

robust to abrupt termination of the operation. We finally proposed strategies to

further increase the robustness of both approaches to multipath fading.
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Figure 4.11: The picture of the Pioneer 3-AT robot, equipped with directional and omni-
directional antennas, used for channel measurements in the indoor surveillance scenario of
Fig. 4.9. Only omni-directional channel measurement were used in this example.
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Figure 4.12: Comparison of different motion planning approaches, based on the level of
communication and sensing awareness and its impact on the overall performance.
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Chapter 5

Communication-Aware Dynamic

Coverage of Time-Varying

Environments Using Mobile

Networks

Deployment of a group of mobile sensors/robots/agents1 to dynamically cover a

number of points of interest (POIs) in a spatially-large environment has a broad

range of applications in robotics and mobile sensor networks [15,17,75,85]. Covering

the POIs may refer to sensing the POIs using the onboard sensors of the mobile

agents. It may also refer to servicing or performing a task at the POIs. By a

spatially-large environment, we mean an environment in which the POIs cannot be

fully covered by any static configuration of the mobile agents, possibly due to the

small effective ranges of their onboard sensors/actuators, as compared to the size

1In this chapter, we intentionally use “mobile agents” as opposed to “mobile sensors”
to emphasize that the nodes can also be active nodes that are able to actuate or change
the environment.
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of the environment. In the dynamic coverage problem, we are then interested in

planning the motion of the mobile agents such that they can cover all the POIs

in a spatially-large environment. This translates to planning the motion of the

mobile agents to minimize/maximize a quantity of interest at the POIs [17,75]. Such

quantity is specifically defined for the given dynamic coverage problem (we explain

this later in this section through some examples).

In this chapter, we consider an extended version of the dynamic coverage problem

where a number of mobile agents, with limited energy budgets and sensing/actuation

capabilities, are deployed to cover a set of POIs in a time-varying environment. By a

time-varying environment, we refer to an environment where the quantity of interest

is time-varying and increasing in time at every POI that is not in the effective range

of any mobile agent. We also consider a communication-constrained scenario, where

the mobile agents are required to communicate to a fixed remote station in order to

complete their coverage task. Our goal in this chapter is then to plan the motion

and communication policies of the mobile agents to minimize the total energy (the

summation of the motion and communication energy) consumption of the mobile

agents, while 1) guaranteeing the boundedness of the quantity of interest at all the

POIs, and 2) meeting the constraints on the connectivity of the mobile agents to the

remote station, the frequency of covering the POIs, and the total energy budget of

the mobile agents. Note that since the quantity of interest is continuously increasing

at the POIs, periodic trajectories need to be devised for the mobile agents in order to

repeatedly cover the POIs. A schematic of the dynamic coverage problem considered

in this chapter is shown in Fig. 5.1.

Several real-world applications can be modeled by a dynamic coverage problem.

Next, we provide four examples from mobile sensor networks and robotics literature:

1. The first example is surveillance and monitoring of a time-varying environment

using a team of mobile agents. Here, the remote station is a monitoring station
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Figure 5.1: Dynamic coverage of a time-varying environment using a team of mobile
agents. Ψi(t) is the quantity of interest at the ith POI that needs to be kept bounded by
periodically visiting the POI.

and the quantity of interest that needs to be kept bounded is the uncertainty

on the time-varying states of the POIs at the remote station. In this example,

a POI is covered if it can be sensed by the onboard sensor of a mobile agent

(e.g., a digital camera). This example can be considered as the extension of

the surveillance problem of Chapter 4 to a time-varying environment.2

2. The second example is estimation over wireless communication links. The POIs

in this example represent a number of dynamical systems, spatially distributed

over the workspace, whose states need to be estimated at a remote station. A

number of mobile agents then observe the dynamical systems along periodic

trajectories and send their observations to the remote station over wireless

2To see this more clearly, consider the target detection problem of Chapter 4, where
additionally the presence or absence of a target at a POI is modeled by a Markov process.
The state of each POI is a binary value which is one if there is a target at the POI, and
is zero otherwise. The problem of estimating the state of the POIs, using the observations
collected by the sensing devices of the mobile agents, can be formulated by a hidden
Markov model (HMM), which is an extension of the detection framework of Chapter 4.
The quantity of interest to keep bounded is the uncertainty of the state estimation, i.e.,
the probability of detection error at the remote station.
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communication links. A POI is covered in this examples if its state can be

observed by a mobile agent and communicated to the remote station. The

quantity of interest to keep bounded for each POI is then the uncertainty of

its state estimation (e.g., the estimation error variance) at the remote station.

This uncertainty is increasing in time when the POI is not covered by any

agent.

3. The third example is information collection in a time-varying environment,

where the POIs represent a number of stationary data loggers that are dis-

tributed over a spatially-large environment to log time-variations of an envi-

ronmental feature (e.g. temperature, humidity, radioactive contamination).

The information bits (which are increasing in time at each data logger) need to

be collected and transmitted to a remote station. A number of mobile agents

are then tasked to move along periodic trajectories, collect the information bits

from the data loggers, and transmit them to the remote station at positions

where they get connected along their trajectories. The quantity of interest to

keep bounded in this example is the size of the queue of the POIs through

proper information collection and communication.

4. The fourth example is a remotely controlled robotic operation for collecting

hazardous materials that are continuously produced at some POIs in the envi-

ronment. In this example, the remote station is in charge of remotely control-

ling the mobile agents. The quantity of interest to be kept bounded is also the

volume of the hazardous materials at all the POIs. The coverage in this case

means collecting the hazardous materials from the POIs, using the onboard

actuators of the mobile agents.

In all these examples, the communication to a remote station is crucial. There-

fore, considering the effect of realistic fading communication channels between the

mobile agents and the remote station is considerably important. The dynamics of
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the quantity of interest depends on both local coverage (sensing/servicing) perfor-

mance and communication link qualities between the mobile agents and the remote

station. Similar to the previous chapters, a communication-aware strategy is then

required to co-optimize the information-gathering (local coverage) and information-

exchange (communication) performance of the mobile agents. Next, we explain our

communication-aware approach for dynamic coverage of time-varying environments

in more detail.

We consider a linear dynamics for the time-variation of the quantity of interest at

the POIs.3 We then propose motion and communication policies for the mobile agents

to minimize the total energy consumption of the mobile agents in each period, while

guaranteeing that the quantity of interest at the POIs remains bounded, and the con-

straints on the connectivity of the mobile agents, the frequency of covering the POIs,

and the total energy budget of the mobile agents are satisfied. We start with the

case where the sensing/actuation range of the mobile agents is small such that each

agent is required to move to the position of each POI and stop there for some time

to sense/service it (this assumption is then relaxed at the end of the chapter). We

also assume a limited total energy budget for the mobile agents. To keep our frame-

work general, we consider two variants of the problem: communication-intensive and

communication-efficient. Communication-intensive case refers to the case where the

mobile agents are required to be connected at all the POIs they visit, in order to

send their collected information to the remote station in real-time. Communication-

efficient case, on the other hand, refers to the case where the mobile agents are

only required to connect to the remote station once along their trajectories, decreas-

ing the communication burden considerably. In both communication-intensive and

communication-efficient cases, we show how to optimally find the trajectories of the

3While the dynamics of the quantity of interest in the aforementioned problems could
be nonlinear, a linear approximation may be a close enough approximation depending on
the system parameters.
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mobile agents, as well as their stop times and transmission powers at the POIs,

using mixed-integer linear programs (MILPs). The properties of the optimal solu-

tions of the MILPs, as well as their asymptotic properties, are also characterized

mathematically.

We next continue with extending our framework by considering a non-zero range

for the sensing/actuation device of the mobile agents and adapting their velocities

and transmission rates (in addition to their transmission powers) along their trajec-

tories. Unlike the previous case, here we take into account the amount of information

(the number of information bits) that is transmitted to and correctly received by the

remote station along the trajectories of the mobile agents. For the sake of simplicity,

however, we consider only one mobile agent. We then show how to plan the trajec-

tory of the mobile agent, as well as its transmission power, transmission rate and

velocity, can be optimally found using an MILP. Finally, the solution of the proposed

MILP is also characterized mathematically in this case.

The rest of this chapter is organized as follows. In Section 5.1, we present our

system model for dynamic coverage of a time-varying environment. In this section,

we present a linear dynamics for the time-variations of the quantity of interest at

the remote station, which depends on both the local sensing qualities of the mobile

agents as well as their communication link qualities to the remote station. In Section

5.2, we then propose a novel MILP program to find the optimal trajectories of the

mobile agents, as well as their optimal stop times and transmission powers at the

POIs, in the communication-intensive case. In Section 5.3, we extend all the results of

Section 5.2 to the communication-efficient case. In both Section 5.2 and Section 5.3,

we also provide a probabilistic analysis of the solutions of the proposed MILPs. We

present our extensive simulation results in Section 5.4. In Section 5.5, we then extend

our framework to the case where the range of the sensing/actuation devices of the

mobile agents is not zero, and the velocities, transmission powers and transmission
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rates along the trajectories of the mobile agents are adaptive. The dynamic coverage

problem in this case is solved optimally in Section 5.6 using a novel MILP program.

A mathematical analysis of the solution of the MILP and its special cases (e.g. when

sensing/actuation range goes to zero) is also provided in this section. We present

our simulation results for this extended case in Section 5.7, followed by a summary

of the results of the chapter in Section 5.8.

5.1 System Modeling

Consider an obstacle-free workspace W ⊂ R
2, which contains a set of m POIs

Q = {q1, · · · , qm}. Let Ψi(t), for i = 1, · · · , m, represent the quantity of interest

that needs to be controlled at the ith POI. We assume a time-varying workspace,

where Ψi(t) increases with a certain rate as long as the ith POI is not being covered

(sensed/serviced) by any mobile agent. Then, as soon as the POI is covered by a

connected mobile agent, Ψi(t) decreases with a rate that depends on the onboard

sensing capabilities of the mobile agent. In order to keep Ψi(t) bounded at all the

POIs, we therefore use a team of n mobile agents to repeatedly cover the POIs in

the workspace. Each mobile agent is assigned to a nonempty subset of the POIs. A

closed periodic trajectory is then planned for each agent to cover every point in this

subset.

Let V = {1, · · · , m} denote the set of the indices of the POIs. Also, let Vk, for

k = 1, · · · , n, represent the nonempty subset of V assigned to the kth agent. In this

section, we consider the following assumptions:

Assumption 5.1.1. The sets {Vk}nk=1 define a partition of V, i.e., ⋃n
k=1 Vk = V and

Vk1 ∩ Vk2 = ∅, for k1 6= k2. Therefore, each POI is assigned to one agent only.

Assumption 5.1.2. The trajectory of each mobile agent k defines a Hamiltonian

cycle, shown by Ck, on Vk. In other words, for each mobile agent k, we assume a
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piecewise-linear trajectory that passes through all the POIs in Vk and visits each POI

exactly once in each period.

Assumption 5.1.3. The effective ranges of the onboard sensors of the mobile agents

are negligible, compared to the size of the workspace. Therefore, in order to cover

each POI, each agent is required to physically move to the position of the POI.

These assumptions imply that 1) the optimal trajectory for kth agent, without

loss of generality, can be selected from the set of the Hamiltonian cycles on the POIs

in Vk and 2) due to negligible effective ranges, each agent is required to stop at each

POI for a limited time to sense it. As explained previously, depending on the re-

quirement on the connectivity of the mobile agents to the remote station, we consider

two cases in this section: communication-intensive and communication-efficient. In

the communication-intensive case, the mobile agent k is required to be connected to

the remote station at all the POIs in Vk. This case is suitable, for instance, for the

scenario where communication is needed to permit local sensing/servicing. In the

communication-efficient case, on the other hand, the connectivity at all the POIs

is not a constraint. Each mobile agent k covers the POIs in Vk and completes its

coverage task by communicating to the remote station at one pre-selected position

along its trajectory, reducing the communication burden considerably. At this posi-

tion, the mobile agent informs the remote station of the states of all the POIs it has

covered in one period. In this chapter, we adopt two extended versions of the linear

model proposed in [75], for the dynamics of Ψi(t) in both communication-intensive

and communication-efficient cases:

1. Communication-intensive case:

Ψ̇i(t) = I
(
Ψi(t) ≥ 0

)[
ρi − λk(t)I

(
ξk(t) = qi

)
αi,k

]
, ∀i ∈ Vk, k = 1, · · · , n,

(5.1)
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2. Communication-efficient case:

Ψi(t) = Φi

(
τk(t)

)
+ ρi

[
t− τk(t)

]
,

Φ̇i(t) = I
(
Φi(t) ≥ 0

)[
ρi − I

(
ξk(t) = qi

)
αi,k

]
, ∀i ∈ Vk, k = 1, · · · , n, (5.2)

where I(.) denotes the indicator function, ξk(t) is the position of the kth mobile

agent at time t, λk(t) is a binary value which is one if the kth agent is connected

to the remote station at time t along its trajectory and zero otherwise and τk(t) ,

max
{
0 ≤ τ ≤ t

∣∣λk(τ) = 1
}
specifies the last time the kth agent has been connected

to the remote station up to time t in the communication-efficient case. Furthermore,

ρi determines the constant rate at which Ψi(t) increases, while it is not being covered

by any mobile agent, αi,k represents the constant service rate of the kth mobile agent

at the ith POI, and Φi(t) is an auxiliary function.4 Characterization of the service

rate depends on the sensing/servicing performance of each individual agent.

The dynamical model of (5.1) implies that Ψi(t) increases with rate ρi, whenever

the kth mobile agent is not connected to the remote station or the POI is not covered

by the mobile agent. This implies that the mobile agents need to maintain their

connectivity, while covering the POIs, in order to bound Ψi(t), for all i ∈ V. On

the other hand, in the dynamical model of (5.2), the mobile agents are not required

to maintain their connectivity at the POIs, provided that they get connected to the

remote station at least once along their trajectory.

5.1.1 Communication Model of the Mobile Agents

The binary value λk(t) of (5.1) and (5.2), is a function of the signal-to-noise ratio

(SNR) of the uplink channels from the kth agent to the remote station at time

4In the communication-efficient case, Φi(t) can be treated as the local version of Ψi(t)
at the kth agent, while Ψi(t) is defined for the remote station.
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t [59]. Similar to the previous chapters, in a realistic communication setting and in

the presence of a packet-dropping receiver at the remote station, λk(t) is given as

follows:

λk(t) =

{
1,

PTX,k(t)Gk(t)

N0B
≥ SNRTH,

0, otherwise,
k = 1, · · · , n, (5.3)

where PTX,k(t) is the transmission power of the kth agent at time t along its trajec-

tory, Gk(t) represents the instantaneous channel power in transmission from the kth

agent to the remote station at time t along its trajectory, N0

2
is the power spectral

density (PSD) of the receiver noise, B is the channel bandwidth and SNRTH is the

packet-dropping threshold of the receiver of the remote station, which depends on the

quality of decoding at the remote station [59, 93]. The instantaneous channel power

Gk(t) is a function of the position of the kth agent at time t: Gk(t) = G
(
ξk(t)

)
, where

G(q), for q ∈ W, denotes the 2D map of channel power in the workspace. When

designing our optimal coverage policies in Sections 5.2.2 and 5.3.2, we start by as-

suming that G(q) is known for every q ∈ W. This assumption, however, may not be

feasible in practical applications, where the channel is only known at a small number

of positions in the workspace. In such cases, similar to the previous chapters, we use

the probabilistic channel assessment framework of Chapter 2 to assess the distribu-

tion of the channel power at unvisited locations. Considering such stochastic channel

models, when designing the optimal dynamic coverage policies, is typically challeng-

ing. Our proposed approach is based on stochastic programming and is discussed in

Sections 5.2.3 and 5.3.3.

Note that each mobile agent needs to be connected in order to communicate

to the remote station at the positions of the POIs (in the communication-intensive

case) or at one predefined point along its trajectory (in the communication-efficient

case). Let PTX,i,k, for i ∈ Vk, denote the transmission power of the kth mobile

agent at the ith POI in the communication-intensive case. Also, let tc denote a

fixed communication time assigned for communication to the remote station. We
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assume that tc is small enough such that sending/receiving the packets at each POI

can be finished while the mobile agent is stopped at the POI (or is still very close

to it). Then, in the communication-intensive case we have PTX,k(t) = PTX,i,k for a

total time period of length tc at the i
th POI, and PTX,k(t) = 0 otherwise. Similarly,

in the communication-efficient case, the mobile agent communicates to the remote

station at one selected point along their trajectory. Let ξTX,k and PTX,k denote the

communication point and the fixed transmission power of the kth mobile agent in the

communication efficient case, respectively. Similar to the communication-intensive

case, we then have PTX,k(t) = PTX,k for a total time period of length tc at position

ξTX,k, and PTX,k(t) = 0 otherwise. We find the optimal values of PTX,i,k, for i ∈ Vk,

in Section 5.2 and the optimal values of ξTX,k and PTX,k in Section 5.3.

5.1.2 Energy Consumption Model of the Mobile Agents

The total energy consumed by a mobile agent in one period is the summation of

its motion energy and its communication energy. The motion energy is the time

integral of the motion power, which itself is a function of the velocity and power loss

of the mobile agent. We adopt the following model for the motion power of the kth

agent [102, 103]:

Pm,k(t) =

{
Ploss,s,k, ξk(t) = qi, for some i ∈ Vk,

Ploss,m,k + wkvk, otherwise,
(5.4)

where Ploss,m,k and vk are the velocity and the power loss of the kth agent while

moving from one POI to another, Ploss,s,k denotes its power loss while stopping at

one of the POIs, and wk is a constant that depends on the dynamics of the kth

agent. Note that we include all the constant power losses (i.e., motion, computation

and actuation losses) in Ploss,m,k and Ploss,m,s terms. Therefore, generally Ploss,m,k is

different from (typically smaller than) Ploss,s,k. Another note is that, without loss of

generality, the velocity of the each mobile agent is assumed constant. The reason
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is that both sensing/actuation and communication happen either at the positions of

the POIs or at one point along the trajectory of the agent. Therefore, adaptation

of speed is not required. In fact the optimal velocity for each mobile agent is the

maximum possible velocity, as shown in the next section.

As explained previously, the periodic trajectory of each mobile agent defines a

Hamiltonian cycle on the set of POIs assigned to it. Let Ck denote the Hamiltonian

cycle defined on the set of POIs in Vk, with d(Ck) denoting its total Euclidean length.

Also, let ti,k, for i ∈ Vk, denote the stop time of the kth mobile agent at the ith POI.

The motion energy consumed in one period by the kth agent, in both communication-

intensive and communication-efficient cases, is then calculated as follows:

Em,k =

∫

Tk

Pm,k(t)dt = Ploss,s,k

∑

i∈Vk

ti,k +

(
Ploss,m,k

vk
+ wk

)
d(Ck), (5.5)

where Tk =
∑

i∈Vk
ti,k +

d(Ck)
vk

denotes the period of the movement of the kth mobile

agent along its trajectory (including the summation of the stop times at the POIs).

The communication energy, on the other hand, is consumed when a mobile agent

transmits data to the remote station. Based on the connectivity model of the mobile

agents discussed in the previous section, the communication energy consumed in one

period by the kth agent in the communication-intensive case becomes

Ec,k =

∫

Tk

PTX,k(t)dt = tc
∑

i∈Vk

PTX,i,k. (5.6)

In the communication-efficient case, on the other hand, we have the following for

communication energy consumed in one period the kth agent

Ec,k =

∫

Tk

PTX,k(t)dt = tcPTX,k. (5.7)

Finally, the total energy consumed by the kth agent in one period is given as Ek =

Em,k + Ec,k.
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5.2 Dynamic Coverage of Time-Varying Environ-

ments in the Communication-Intensive Case

In this section, we study the problem of dynamic coverage of time-varying environ-

ments in the communication-intensive case. More specifically, we provide a formal

definition of feasible stabilizing dynamic coverage policies and formulate the dynamic

coverage problem. We then show how to design optimal feasible stabilizing dynamic

coverage policies for a given team of mobile agents using a mixed-integer linear pro-

gram (MILP). Furthermore, we show how to modify the MILP, using methods from

stochastic programming, to consider stochastic communication channels. We con-

clude this section by a probabilistic analysis of the dynamic coverage task, when both

the channel and the positions of the POIs are stochastic and the number of POIs is

large.

5.2.1 Problem Formulation

Consider the dynamical system of (5.1). In the communication-intensive case, we

are interested in finding dynamic coverage policies that make this dynamical system

stable, while meeting the constraints on 1) the connectivity of the mobile agents, 2)

the minimum frequency (maximum period) of covering the POIs, and 3) the total

energy consumption in one period. A dynamic coverage policy in the communication-

intensive case is a tuple of all the design variables and is defined as follows:

Definition 5.2.1. In the communication-intensive case, a dynamic coverage policy

for the kth mobile agent is a tuple Pk =
(
Vk, Ck, vk, {PTX,i,k}i∈Vk

, {ti,k}i∈Vk

)
, where Vk

is the non-empty set of POIs assigned to the kth agent, Ck denotes the Hamiltonian

cycle defined on Vk, and vk is the constant velocity of the kth agent. Also, PTX,i,k and

ti,k, for i ∈ Vk, are the transmission power and the stop time of the kth agent at the ith
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POI. The overall dynamic coverage policy to find is then the tuple P = (P1, · · · ,Pn).

Given the channel powers at all the POIs, the available energy budget of each

mobile agent, the constraint on the frequency of covering each POI, and the maximum

transmission power of each agent, only a finite set of dynamic coverage policies is

acceptable. This motivates the definition of feasible dynamic coverage policies in the

communication-intensive case:

Definition 5.2.2. A dynamic coverage policy P is feasible in the communication

intensive case if the following are true:

1)
∑

i∈Vk

ti,k +
d(Ck)
vk

≤ Tmax, k = 1, · · · , n, (5.8)

2) Ploss,s,k

∑

i∈Vk

ti,k +

(
Ploss,m,k

vk
+ wk

)
d(Ck) + tc

∑

i∈Vk

PTX,i,k ≤ Emax,k, k = 1, · · · , n,

3) PTX,max,k ≥ PTX,i,k ≥
PTH

G(qi)
, ∀i ∈ Vk, k = 1, · · · , n,

4) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n.

Here, PTH , SNRTHN0B, Tmax is the given maximum acceptable period for covering

all the POIs, Emax,k, PTX,max,k and vmax,k are the given maximum total energy, max-

imum transmission power and maximum velocity of the kth agent, and SNRTH is the

packet-dropping threshold of the receiver of the remote station, as defined in (5.3).

Note that the lower-bound PTH

G(qi)
, on the feasible transmission power at the ith

POI, is the minimum transmission power required for being connected based on

(5.3). Also note that, depending on the channel powers at the POIs and the thresh-

olds Tmax, PTX,max,k and Emax,k, a feasible dynamic coverage policy may not exist.

However, if such feasible policies exist, we are interested in finding those feasible poli-

cies that make the dynamic coverage task stable, while minimizing the total energy

consumption. The formal definition of a stable coverage task is given as follows:
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Definition 5.2.3. A dynamic coverage task is called stable if there exists a finite Ψ,

independent of the initial conditions, such that max1≤i≤m supt≥0 Ψi(t) ≤ Ψ.

The following lemma gives a necessary and sufficient condition for a feasible policy

P to stabilize the dynamic coverage task:

Lemma 5.2.1. A feasible dynamic coverage policy P is stabilizing, i.e., it stabilizes

the dynamic coverage task, if and only if there exist non-negative stability margins

∆1, · · · ,∆n such that

αi,kti,k − ρi

(
∑

j∈Vk

tj,k +
d(Ck)
vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n. (5.9)

Proof. Consider POI i ∈ Vk and dynamical system (5.1) and (5.2). When the

dynamic coverage policy is feasible, the kth mobile agent is connected to the re-

mote station at all the POIs in the communication-intensive case, i.e., λk(t) = 1

whenever I
(
ξk(t) = qi

)
= 1, for i ∈ Vk. Then, the dynamic coverage task is

stable, based on Definition 5.2.3, if and only if Ψi(t + Tk) ≤ Ψi(t), for i ∈ Vk,

k = 1, · · · , n and any t. Here, Tk is the period of movement of the kth mobile

agent. From (5.1), Ψi(t + Tk) − Ψi(t) = ρiTk − αi,kti,k. Furthermore, we have

Tk =
∑

i∈Vk
ti,k +

d(Ck)
vk

. Therefore, the necessary and sufficient condition for stability

to satisfy Ψi(t+ Tk) ≤ Ψi(t) is given by (5.9). Similar results also hold for a feasible

coverage policy in the communication-efficient case.

By an optimal feasible stabilizing policy, we then refer to a feasible stabilizing

policy P, based on conditions (5.8) and (5.9), that optimizes a performance measure

defined for the dynamic coverage task. In this section, we focus on maximizing

the lifetime of the mobile agents. We define the lifetime of each mobile agent as

the number of times it covers its assigned POIs. Assuming a fixed total energy for

each mobile agent for the entire operation, maximizing the lifetime is equivalent to
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minimizing the total energy consumption of the mobile agent during one period.

Therefore, we have the following optimization problem to find the optimal feasible

stabilizing policies in the communication-intensive case:

Problem 5.2.1. The maximum-lifetime feasible stabilizing dynamic coverage policy

for coverage of a time-varying environment in the communication-intensive case is

given as follows:

min
P,E1,··· ,En

n∑

k=1

̟kEk,

s.t.

1) αi,kti,k − ρi

(
∑

j∈Vk

tj,k +
d(Ck)
vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n,

2)
∑

i∈Vk

ti,k +
d(Ck)
vk

≤ Tmax, k = 1, · · · , n,

3) Ploss,s,k

∑

i∈Vk

ti,k +

(
Ploss,m,k

vk
+ wk

)
d(Ck) + tc

∑

i∈Vk

PTX,i,k ≤ Ek, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,i,k ≥
PTH

G(qi)
, ∀i ∈ Vk, k = 1, · · · , n,

5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n,

6) Ek ≤ Emax,k, k = 1, · · · , n, (5.10)

where we set ∆k ≥ 0 and ̟k > 0.

Note that ∆k > 0 is a given system design parameter that increases the ro-

bustness of the optimal policy to modeling errors and disturbances. Robustness,

however, comes at the cost of consuming more energy, as expected. The next section

is dedicated to solving this problem using an MILP.
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5.2.2 Optimal Solution of the Dynamic Coverage Problem in

the Communication-Intensive Case – Case of Known

Channel Powers at the POIs

In the main theorem of this section (Theorem 5.2.1), we provide a closed form expres-

sion for the optimal policy of each agent, given a partition {Vk}nk=1. We furthermore

confirm that the optimal Hamiltonian cycle is the minimum-length Hamiltonian cycle

and the optimal speed is vmax.

Theorem 5.2.1. Consider a partition {Vk}nk=1 of V. Then, assuming that G(qi),

for i ∈ V, are known, the following are true for the solution of Problem 5.2.1 in the

communication-intensive case:

1. For a given set of non-negative stability margins ∆k, k = 1, · · · , n, Problem
5.2.1 is feasible if and only if the following are true, for k = 1, · · · , n:

1)
PTH

G(qi)
≤ PTX,max,k, ∀i ∈ Vk, (5.11)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(Hk)

vmax,k
≤ min

{
Tmaxφk −∆kηk,

(
Emax,k − wkd(Hk)

)
φk −∆kηkPloss,s,k

(1− φk)Ploss,s,k + φkPloss,m,k

}
,

where Hk denotes the minimum-length Hamiltonian cycle on Vk, Emax,k ,

Emax,k − tc
∑

i∈Vk

PTH

G(qi)
, φk , 1−∑i∈Vk

ρi
αi,k

and ηk ,
∑

i∈Vk

1
αi,k

.

2. The maximum stability margin that can be selected for each agent k, for k =

1, · · · , n, is given as follows when
∑

i∈Vk

ρi
αi,k

< 1:

∆max,k = min




Emax,k − wkd(Hk) +

(
Ploss,s,k − Ploss,m,k

) d(Hk)
vmax,k

Ploss,s,k

, Tmax




φk

ηk

− 1

ηk

d(Hk)

vmax,k
. (5.12)
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3. There exists a feasible stabilizing policy, i.e., Problem 5.2.1 is feasible for at

least one set of non-negative ∆k, if and only if the following are true, for

k = 1, · · · , n:

1)
PTH

G(qi)
≤ PTX,max,k, ∀i ∈ Vk, (5.13)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(Hk)

vmax,k

≤ min

{
Tmax,

Emax,k − wkd(Hk)

(1− φk)Ploss,s,k + φkPloss,m,k

}
φk.

4. If Problem 5.2.1 is feasible, the optimal Hamiltonian cycle, velocity and trans-

mission power of the kth agent, for k = 1, · · · , n, are given as follows: C∗
k = Hk,

v∗k = vmax,k and P ∗
TX,i,k = PTH

G(qi)
, for all i ∈ Vk. We also have the following for

the optimal stop times and total energy of the mobile agents:

1) t∗i,k = ∆k

(
1

αi,k
+

ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(Hk)

vmax,k
, ∀i ∈ Vk, (5.14)

2) E∗
k = Ploss,s,k

(
∆kηk
φk

+
1− φk

φk

d(Hk)

vmax,k

)
+

(
Ploss,m,k

vmax,k
+ wk

)
d(Hk)

+ tc
∑

i∈Vk

PTH

G(qi)
.

Proof. Consider (5.60) where a partition {Vk}nk=1 is given. In this case, the problem

becomes decoupled and can be solved individually for each mobile agent. It can

be immediately seen that the optimal TX power for each mobile agent k is the

minimum possible transmission power required to make the POIs in Vk connected,

i.e., P ∗
TX,i,k = PTH

G(qi)
, for i ∈ Vk. Thus, the first set of conditions for feasibility of the

problem are PTH

G(qi)
≤ PTX,max,k, for i ∈ Vk and k = 1, · · · , n. Moreover, for any set of

stop times ti,k, for i ∈ Vk, the total energy and the period are increasing functions of

d(Ck) and decreasing functions of vk. Thus, to obtain the minimum total energy, the

optimal cycle is the one with the minimum total length, i.e., the minimum-length

Hamiltonian cycle Hk, and the optimal velocity is the maximum possible velocity,

i.e., vmax,k.
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Let us replace d(Ck) with d(Hk) and vk with vmax,k in (5.60). Also, let us define

Emax,k , Emax,k − tc
∑

i∈Vk

PTH

G(qi)
. Then, the optimal stop times for each mobile agent

k are given by the solution of the following optimization problem, provided that the

optimal stop times are all positive:

min
∑

i∈Vk
ti,k,

s.t.

1) αi,kti,k − ρi

(∑
j∈Vk

tj,k +
d(Hk)
vmax,k

)
≥ ∆k, ∀i ∈ Vk,

2)
∑

i∈Vk
ti,k +

d(Hk)
vmax,k

≤ Tmax,

3) Ploss,s,k

∑
i∈Vk

ti,k +
(

Ploss,m,k

vmax,k
+ wk

)
d(Hk) ≤ Emax,k.

(5.15)

This optimal solution of this linear program satisfies the Karush-Kuhn-Tucker (KKT)

conditions. The Lagrangian of the problem is given by

Lk =
∑

i∈Vk

ti,k −
∑

i∈Vk

µi,k

(
αi,kti,k − ρi

∑

j∈Vk

tj,k − ρi
d(Hk)

vmax,k

−∆k

)
+ (5.16)

γk

(∑

i∈Vk

ti,k +
d(Hk)

vmax,k
− Tmax

)
+ νk

(
Ploss,s,k

∑

i∈Vk

ti,k +
Ploss,m,kd(Hk)

vmax,k
+ wkd(Hk)− Emax,k

)
,

where µi,k, γk and νk are the Lagrange multipliers. The KKT conditions are then as

follows:

1) ∂Lk

∂ti,k
= 1− αi,kµi,k +

∑
j∈Vk

µj,kρj + γk + νkPloss,s,k = 0, ∀i ∈ Vk,

2) µi,k

(
αi,kti,k − ρi

∑
j∈Vk

tj,k − ρi
d(Hk)
vmax,k

−∆k

)
= 0, ∀i ∈ Vk,

3) γk

(∑
i∈Vk

ti,k +
d(Hk)
vmax,k

− Tmax

)
= 0,

4) νk

(
Ploss,s,k

∑
i∈Vk

ti,k +
Ploss,m,kd(Hk)

vmax,k
+ wkd(Hk)− Emax,k

)
= 0,

5) αi,kti,k − ρi
∑

j∈Vk
tj,k − ρi

d(Hk)
vmax,k

−∆k ≥ 0,

6)
∑

i∈Vk
ti,k +

d(Hk)
vmax,k

− Tmax ≤ 0,

7) Ploss,s,k

∑
i∈Vk

ti,k +
Ploss,m,kd(Hk)

vmax,k
+ wkd(Hk)−Emax,k ≤ 0,

8) µi,k ≥ 0, ∀i ∈ Vk, γk ≥ 0, νk ≥ 0.

(5.17)

From the first set of conditions in (5.17), we conclude that µi,k > 0, for i ∈ Vk, which

results in the following optimality conditions: αi,kti,k − ρi
∑

j∈Vk
tj,k − ρi

d(Hk)
vmax,k

= ∆k,

121



Chapter 5. Comm-Aware Dynamic Coverage of Time-Varying Environments

for i ∈ Vk. By solving this set of equations, we get the following for the optimal stop

times:

t∗i,k = ∆k

(
1

αi,k

+
ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(Hk)

vmax,k

, ∀i ∈ Vk, (5.18)

∑

i∈Vk

t∗i,k = ∆k
ηk
φk

+
d(Hk)

vmax,k

1− φk

φk
,

where φk , 1−∑i∈Vk

ρi
αi,k

and ηk ,
∑

i∈Vk

1
αi,k

. It can be seen that the optimal stop

times are all positive when
∑

i∈Vk

ρi
αi,k

< 1, for k = 1, · · · , n, which form the second

set of conditions for the feasibility of the optimization problem. The third set of such

conditions are also given as follows:

Ploss,s,k

(
∆k

ηk
φk

+
d(Hk)

vmax,k

1− φk

φk

)
+

(
Ploss,m,k

vmax,k

+ wk

)
d(Hk) ≤ Emax,k,

∆k
ηk
φk

+
d(Hk)

vmax,k

1

φk
≤ Tmax,k. (5.19)

After combining these two constraints, we then obtain the third set of feasibility

conditions in part 1 of Theorem 5.2.1. The maximum stability margin is also the

maximum ∆k that satisfies (5.19), which can be shown to be the same as ∆max,k in

part 2 of Theorem 5.2.1. Finally, by setting ∆k = 0 in (5.19), we get the conditions

of (5.13) in part 3 of Theorem 5.2.1.

Theorem 5.2.1 can be used to determine whether there exists a feasible stabilizing

policy for a given partition {Vk}nk=1. Then, we can find the optimal solution to

Problem 5.2.1 by searching through all the partitions {Vk}nk=1 of V that satisfy (5.11),

and finding the one with minimum
∑n

k=1̟kE
∗
k . A more efficient alternative for

solving Problem 5.2.1 is to use a mixed-integer program (MIP) to find the optimal

partitions and optimal stopping times for the mobile agents, when the maximum

allowed velocities and minimum possible transmission powers are used. Generally,

there is more than one way to formulate the MIP. Since there are multiple mobile

agents, some MIP formulations can be nonlinear, in which case the optimal solution
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is very challenging to find. Next, we show how to formulate a mixed-integer linear

program (MILP), by transforming the nonlinear mixed-integer constraints to linear

ones. This makes finding the optimal dynamic coverage policies tractable even for

large number of POIs. Note that MILPs can be solved much more efficiently than

their nonlinear alternatives. There exists several solvers, such as IBM ILOG CPLEX

[104] and SAS/OR [105], that can solve large-scale MILP considerably fast.

Let us consider auxiliary binary variables xi,k and zi,j,k, for i, j ∈ V and k =

1, · · · , n. We have xi,k = 1 whenever the ith POI is assigned to the kth mobile

agent, and xi,k = 0 otherwise. Also, zi,j,k = 1 if there exists an edge between

the ith and jth POIs in the Hamiltonian cycle assigned to the kth mobile agent,

and zi,j,k = 0 otherwise. To guarantee that every POI that is on the Hamiltonian

cycle Vk have one degree in and one degree out, we can add the following set of

constraints:
∑m

j=1,j 6=i zi,j,k = xi,k,
∑m

j=1,j 6=i zj,i,k = xi,k, for all i ∈ V. Then, by

defining di,j , ‖qi − qj‖, we have the following constraints for the period and total

energy per period of the kth agent:

m∑

i=1

xi,kti,k +
1

vmax,k

m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j ≤ Tmax, (5.20)

Ploss,s,k

m∑

i=1

xi,kti,k +

(
Ploss,m,k

vmax,k

+ wk

) m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j + tc

m∑

i=1

xi,kPTH

G(qi)
≤ Emax,k,

with ti,k ≥ 0 for all i, k. As can be seen, the left-hand side of both constraints

are nonlinear functions of ti,k and xi,k. In order to make the constraints linear, we

consider a large constant Ω > 0. We then add the linear constraints ti,k ≤ xi,kΩ,

for all i, k, to guarantee that ti,k = 0 whenever xi,k = 0 (i 6∈ Vk), while there is no

constraint on ti,k whenever xi,k = 1 (i ∈ Vk). This way we can replace the nonlinear

term xi,kti,k with ti,k in (5.20), without changing the optimal solution. Furthermore,

since the kth mobile agent does not need to stabilize any POI out of Vk, we should

modify the stability constraints of the kth mobile agent such that they automatically

become true for all i 6∈ Vk. This is done by considering the following stability
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constraints:

αi,kti,k − ρi

(
m∑

i=1

ti,k +
1

vmax,k

m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j

)
+ (1− xi,k)Ω ≥ ∆k, ∀i, k. (5.21)

We can see that when xi,k = 0, constraint (5.21) becomes true if Ω > 0 is large

enough. It is easy to confirm that any Ω ≥ max
{
Tmax,

(
maxi ρi

)
Tmax + maxk ∆k

}

can be considered large enough for this set of constraints. Such an Ω also guarantees

that whenever xi,k = 1, the constraint ti,k ≤ xi,kΩ is always true. Based on this

discussion, the MILP formulation for solving Problem 5.2.1 is given by Program 1.

Program 1 MILP for solving Problem 5.2.1 in the communication-intensive case

min
∑n

k=1̟kEk,

s.t.

1) αi,kti,k − ρi

(∑m
i=1 ti,k +

1
vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j

)
+ (1− xi,k)Ω ≥ ∆k, ∀i, k,

2)
∑m

i=1 ti,k +
1

vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j ≤ Tmax, ∀k,

3) Ploss,s,k

∑m
i=1 ti,k +

(
Ploss,m,k

vmax,k
+ wk

)∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j + tc

∑m
i=1

xi,kPTH

G(qi)
≤ Ek, ∀k,

4)
∑m

j=1,j 6=i zi,j,k = xi,k,
∑m

j=1,j 6=i zj,i,k = xi,k, ∀i, k,

5)
∑n

k=1 xi,k = 1, ∀i,

6)
∑m

i=1 hi = n,

7) ui − uj −m(hi + hj) + (m− 1)
∑n

k=1 zi,j,k ≤ m− 2, ∀i, j 6= i,

8) 2− hi ≤ ui ≤ m, ∀i,
9) ti,k ≤ xi,kΩ, ∀i, k,
10) xi,k

PTH

G(qi)
≤ PTX,max,k, ∀i, k,

11) Ek ≤ Emax,k, ∀k,
12) zi,j,k ∈ {0, 1}, xi,k ∈ {0, 1}, hi ∈ {0, 1}, ui ∈ N, 0 ≤ ti,k ≤ Ω, ∀i, j, k,

Constraints 1, 2 and 3 in Program 1 are the stability, time and energy constraints,

as introduced before. Constraint 4 forces each POI i ∈ V to have exactly one degree in
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and one degree out. Constraint 5 guarantees that each POI is assigned to one mobile

agent.5 Constraints 6, 7 and 8 are the sub-tour elimination constraints (SECs),

which are added to prevent any invalid sub-tour on the set of POIs assigned to

each agent [106]. To prevent sub-tours, we have introduced 2m auxiliary variables

hi and ui, for i ∈ V, and used a modified version of the well-known Miller-Tucker-

Zemlin (MTZ) constraints [106, 107]. Constraint 9 forces ti,k = 0 whenever xi,k = 0.

Constraint 10 is the transmission power constraint, which implies that if a POI is

assigned to a mobile agent, that mobile agent should be able to be connected at the

position of the POI. Finally, constraint 11 is the constraint on the maximum total

energy consumption in each period.

It is worth mentioning that MTZ formulations for sub-tour elimination, as used

in vehicle routing problem (VRP) or multiple traveling salesman problem (mTSP),

typically assume a fixed POI, called depot, through which all the mobile agents must

pass [108]. The MTZ formulation used in Program 1 is different from those formu-

lations, as it assumes no depot [107]. The idea here is to introduce floating depot

variables hi, for i ∈ V, which guarantee that whenever hi = 1 (the ith POI is selected

as a depot), constraint 7 in Program 1 is always true. Also note that, in general, the

MTZ formulation has a polynomial size (i.e., the number of SECs is of polynomial

order), compared to the exponential size of several alternative formulations in the

literature [108].

For n mobile agents and m POIs, the MILP of Program 1 has nm(m+1)+2m+n

variables (nm2 +m binaries, nm + n reals and n integers), 3nm +m(m + 1) + 2n

inequality constraints and 2nm+m+1 equality constraints. This MILP can be solved

using several efficient solvers, such as IBM ILOG CPLEX [104] and SAS/OR [105].

5Note that if xi,k = 1, the kth mobile agent needs to visit at least one more POI (other
than POI i) to satisfy constrain 4 in Program 1. Therefore, the case of one single POI
assigned to one agent is automatically prevented, i.e., |Vk| > 1 for all k.
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Fig. 5.2 shows a sample plot of Ψi(t) for one of the POIs after optimizing the

dynamic coverage operation using the proposed MILP. Fig. 5.2 (left) corresponds to

the case where ∆k > 0 (robust dynamic coverage with positive stability margin) and

Fig. 5.2 (right) corresponds to the case where ∆k = 0 (zero stability margin). It can

be seen that a positive stability margin results in a longer stop time and, as a direct

result, more energy consumption at the point of interest, as proved by Theorem 5.2.1.
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Figure 5.2: A sample plot of Ψi(t) at the remote station in the communication-intensive
case, for one of the POIs, after optimizing the dynamic coverage operation using the MILP
of Program 1. The left figure corresponds to the case where ∆k > 0 (robust dynamic
coverage with positive stability margin) and the right one corresponds to the case where
∆k = 0 (zero stability margin).

5.2.3 Optimal Solution of the Dynamic Coverage Problem in

the Communication-Intensive Case – Case of Unknown

Stochastic Channel Powers at the POIs

So far, we have assumed that the channel powers G(qi), for i ∈ V, are known before-

hand when solving Problem 5.2.1. This, however, may not be the case in practical

applications, where the channel power may only be known at a small number of
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positions in the workspace that are different from the positions of the POIs. For

such cases, we can use the probabilistic channel prediction framework of Chapter 2

to assess the channel powers at the positions of the POIs. Stochastic channel powers,

however, result in stochastic constraints in Problem 5.2.1. It is then desired to find al-

ternative deterministic conditions that guarantee that the feasibility conditions hold

with a probability larger than a given threshold. This is, however, very challenging

in general, due to the fact that the conditions are complex functions of the stochastic

channel powers. To simplify the problem in the case of stochastic channel powers, we

propose using concepts from stochastic programming [109]. Stochastic programming

provides a systematic sub-optimal approach to transform the stochastic constraints

of an optimization problem to deterministic ones.

Several methods have been proposed in the stochastic programming literature

for this purpose, such as the expectation constraint method, worse-case constraint

method and chance constraint method [109]. In this section, we use the chance

constraint method, as it provides more robustness to stochasticity of the channel

and is yet easy to apply to our dynamic coverage problem. The idea behind the

chance constraint method is to replace any constraint that is directly a function of

the main random variables (G(qi) in our case) with its chance constrain. A chance

constraint is simply a constraint that guarantees that the probability of meeting the

stochastic constraint is larger than a given χ, for 0.5 < χ < 1, while assuming that

all the other optimization variables are deterministic [109]. Next, we show how to

solve the chance-constrained version of Problem 5.2.1, i.e., Problem 5.2.1, with its

stochastic constraints replaced with the corresponding chance constraints. In this

chapter, a feasible solution to this problem is called a χ-probable feasible stabilizing

dynamic coverage policy and is defined as follows:

Definition 5.2.4. The dynamic coverage policy P is called a χ-probable feasible

stabilizing dynamic coverage policy in the communication-intensive case if for this
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policy the probability of meeting any stochastic constraint in Problem 5.2.1 is larger

than χ, for 0.5 < χ < 1.

Let us start by calculating the probability of meeting the stochastic constraint in

the chance-constrained version of Problem 5.2.1. Instead of deterministic G(qi), for

i ∈ V, we have the corresponding predicted channel ĜdB(qi) in dB (see Chapter 2).

Then, the minimum transmission power constraint (constraint 4 of Problem 5.2.1)

will have the following chance-constrained form:

P

{
PTX,i,k ≥

PTH

G(qi)

}
≥ χ, i ∈ Vk, k = 1, · · · , n. (5.22)

Similar to the previous chapters, in order to calculate P
{
PTX,i,k ≥ PTH

G(qi)

}
, we use the

probabilistic channel assessment framework of Chapter 2. We then have

P

{
PTX,i,k ≥

PTH

G(qi)

}
= Q

(
10 log10

(
PTH

PTX,i,k

)
− ĜdB(qi)

σ(qi)

)
, (5.23)

where Q(x) = 1√
2π

∫∞
x
e−x2/2dx is the tail probability of a Gaussian distribution.

Note that we have dropped the dependency of channel assessment on k and t in

this case, as the channel is assessed beforehand, using a number of a priori channel

measurements, and used for finding the optimal dynamic coverage policy for all the

mobile agents. After some straightforward calculations, we can find the necessary

and sufficient condition for (5.22) as follows:

PTX,i,k ≥ 10−(σ(qi)Q
−1(χ)+ĜdB(qi))/10 PTH , Γ(qi, χ), i ∈ Vk, k = 1, · · · , n, (5.24)

with Q−1(x) denoting the inverse of Q(x) (not to be confused with exponentiation).

This shows that in order to account for stochastic channels when designing optimal

dynamic coverage policies, it is sufficient to replace PTH

G(qi)
with Γ(qi, χ) in Problem

5.2.1. After this modification, the MILP of Program 1 is readily applicable to this

case as well. Similarly, the results of Theorem 5.2.1 also hold. For instance, we can
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show that, given the partition {Vk}nk=1, there exists a χ-probable feasible stabilizing

policy for the kth agent, for k = 1, · · · , n, if and only if

1) Γ(qi, χ) ≤ PTX,max,k, ∀i ∈ Vk, (5.25)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(Hk)

vmax,k
≤ min

{
Tmax,

Emax,k − tc
∑

i∈Vi
Γ(qi, χ)− wkd(Hk)

(1− φk)Ploss,s,k + φkPloss,m,k

}
φk.

It is worth mentioning that, from (5.24), the average minimum transmit power re-

quired, to meet the constraint on the transmission power with a probability larger

than χ, for 0.5 < χ < 1, increases as the uncertainty in channel assessment (σ(qi))

gets larger. Finally, in a realistic communication scenario, results of both cases of

known and unknown channel powers can be useful. Since the dynamic coverage task

is periodic, the results for the unknown probabilistic case can first be used for plan-

ning. Then, once the agents measure the channel at their corresponding POIs, they

can share their channel measurements and solve the optimization problem for the

case of known channels.

5.2.4 Probabilistic Analysis of the Dynamic Coverage Prob-

lem in the Communication-Intensive Case

By probabilistic analysis of the dynamic coverage problem, we mean deriving condi-

tions for a policy P to be a χ-probable feasible stabilizing dynamic coverage policy

in case both the channel and the positions of the POIs are stochastic. Such analysis

provides a priori knowledge about the coverage task before the deployment of the

mobile agents, which is extremely useful for high-level planning purposes. It charac-

terizes the probability of having a feasible stabilizing dynamic coverage policy, when

the channel power and the positions of the POIs are drawn from a certain distribu-

tion. Without loss of generality, we consider the following extra assumptions in this
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section for the ease of mathematical derivations:6

Assumption 5.2.1. The rate of increasing Ψi(t) and the service rate of each agent

k are identical at all the POIs, i.e., ρi = ρ and αi,k = αk, for i ∈ V and k = 1, · · · , n.

Assumption 5.2.2. The motion power loss, while a mobile agent is moving, is equal

to its motion power loss when it stops at a POI, i.e., Ploss,s,k = Ploss,m,k = Ploss,k, for

k = 1, · · · , n.

Assumption 5.2.3. The POIs assigned to the kth mobile agent, for k = 1, · · · , n,
are independently and identically distributed (i.i.d.) according to an absolutely con-

tinuous pdf ψ(q) which is defined over the workspace W. Furthermore, the number

of these POIs is large.7

In order to better follow the discussion, it would be easier to assume the case of

known channels, i.e., for any realization of the channel, the agents plan based on the

full knowledge of the channel.

As explained in Section 5.2.3, in case of stochastic constraints in Problem 5.2.1,

the optimal strategy is to directly calculate the probability of having a feasible stabi-

lizing dynamic coverage policy and derive conditions that guarantee this probability

is larger than a threshold. If both the channel powers at the POIs and their positions

are stochastic, however, deriving such conditions is extremely challenging. There-

fore, similar to Section 5.2.3, we use a sub-optimal approach based on stochastic

programming, i.e., we treat the rest of the variables, aside from channel power and

the positions of the POIs, deterministically.

6Note that these assumptions are made to simplify the theoretical analysis of this sec-
tion. Similar results can be found for the case that either one of these assumptions does
not hold. For instance, the results of this section can be easily extended to the case that ρi,
for i = 1, · · · , n, are i.i.d. random variables, independent of the channel and the positions
of the POIs, or to the case where Ploss,s,k 6= Ploss,m,k.

7The meaning of a large number of POIs will be explained later in this section.
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Let mk = |Vk| represent the number of POIs assigned to the kth mobile agent. We

calculate the probabilities of meeting the stochastic constraints by first conditioning

on the positions of the POIs and then averaging over their probability distributions.

Using the results of the previous section, we conclude that in the case of randomly

positioned POIs, we have

P

{
PTX,i,k ≥

PTH

G(qi)

}
=

∫

W
Q




10 log10

(
PTH

PTX,i,k

)
− G̃dB(q)

σ̃(q)



ψ(q)dq ≥ χ, (5.26)

where G̃dB(q) and σ̃
2(q) are the mean and variance of a Gaussian distribution that

characterizes the channel power (in the dB domain) at a position q ∈ W. Since the

left-hand side of (5.26) is an increasing function of PTX,i,k, we have the following for

all the POIs assigned to the kth agent:

PTX,i,k ≥ 10−ĞdB(χ)/10 PTH , Γ(χ), i ∈ Vk, k = 1, · · · , n, (5.27)

where ĞdB(χ) is the unique solution to the following equation as a function of G:

∫

W
Q

(
G− G̃dB(q)

σ̃(q)

)
ψ(q)dq = χ. (5.28)

Next, consider all the constraints of Problem 5.2.1 that are functions of the d(Ck).
Based on the previous results, the optimum Hamiltonian cycles are the minimum-

length Hamiltonian cycles. Therefore, we can find the probability of meeting the

constraints as a function of d(Hk) instead, where Hk is the minimum-length Hamil-

tonian cycle on Vk. Since the constraints of Problem 5.2.1 are linear with respect

to d(Hk), we are then required to find the probabilities of the form P {d(Hk) ≤ c},
for a constant c. Such probabilities can be found using the following result from the

probabilistic traveling salesman problem (TSP) literature [106]:

Lemma 5.2.2. Assume that the spatial distribution of POIs is i.i.d., according to an

absolutely continuous pdf ψ(q) defined over the compact set W. Then, there exists a
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constant θTSP such that

1) P

{
lim

mk→∞

d(Hk)√
mk

= θTSP

∫

W

√
ψ(q)dq

}
= 1,

2) lim
mk→∞

E
{
d(Hk)

}
√
mk

= θTSP

∫

W

√
ψ(q)dq, (5.29)

where mk = |Vk| is the number of POIs assigned to the kth mobile agent.

Proof. See [106].

The constant θTSP is estimated to be around 0.765 [110]. Let us define ζ ,

θTSP

∫
W
√
ψ(q)dq. By using Lemma 5.2.2 and by considering the constraint (5.27)

on the transmission power of each mobile agent, we conclude that, for large mk, the

results of Theorem 5.2.1 hold in this case too, provided that d(Hk) is replaced by

ζ
√
mk,

PTH

G(qi)
is replaced by Γ(χ), and mk remains large.8 Therefore, given a partition

{Vk}nk=1, there exists a χ-probable feasible stabilizing dynamic coverage policy, i.e.,

the chance-constrained version of Problem 5.2.1 is feasible, if and only if the following

are true, for k = 1, · · · , n:

1) Γ(χ) ≤ PTX,max,k, (5.30)

2) mk <
αk

ρ
,

3) min

{
Emax,k − tcmkΓ(χ)− wkζ

√
mk

Ploss,k

, Tmax

}(
1−mk

ρ

αk

)
≥ ζ

√
mk

vmax,k

.

Note that for (5.30) to be a precise condition, mk is required to be large. That is

why the second part of Assumption 5.2.3 is necessary for the analysis of this section.

For convex environments, mk ≥ 15 can be assumed sufficiently large. In other words,

for mk ≥ 15, ζ
√
mk is a tight approximation for the length of the minimum-length

Hamiltonian cycle on the set of POIs assigned to the kth agent [110]. On the other

hand, the set of constraints in (5.30) may not be feasible for very large mk. In

8Note that no MILP needs to the be solved in this case.
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fact, there is an upper-bound on the maximum number of access points that can be

assigned to each agent, as we characterize next.

An Upper Bound on the Maximum Number of POIs Covered by a Mobile

Agent in the Communication-Intensive Case

Consider the following theorem:

Theorem 5.2.2. Assume that for the kth agent and for the given χ, we have Γ(χ) ≤
PTX,max,k, where Γ(χ) is given by (5.27). Then, under Assumptions 5.2.1, 5.2.2 and

5.2.3, an upper-bound on the maximum number of POIs that can be assigned to the

kth agent, to guarantee a χ-probable feasible stabilizing dynamic coverage policy in

the communication-intensive case, is given as follows:

mk =





min
{
s2k,1, s

2
k,2

}
, Ak ∩ Bk = ∅, Emax,k > Ploss,kTmax

max
{
s2
∣∣s ∈ Ak ∩ Bk

}
, Ak ∩ Bk 6= ∅, Emax,k > Ploss,kTmax

max
{
s2
∣∣s ∈ A′

k ∩ Bk

}
, A′

k ∩ Bk 6= ∅, Emax,k ≤ Ploss,kTmax

, (5.31)

provided that such mk exists (chance-constrained version of Problem 5.2.1 is feasible)

and it is sufficiently large. Here,

sk,1 =
−ζ/vmax,k +

√
ζ2/v2max,k + 4T 2

maxρ/αk

2Tmaxρ/αk
, (5.32)

sk,2 =
−ζwk +

√
ζ2w2

k + 4tcΓ(χ) (Emax,k − Ploss,kTmax)

2tcΓ(χ)
,

sk,3 = min

{√
αk

ρ
,
−ζwk +

√
ζ2w2

k + 4tcΓ(χ)Emax,k

2tcΓ(χ)

}
,

Ak =
{
s
∣∣sk,2 ≤ s ≤ sk,3

}
, A′

k =
{
s
∣∣0 ≤ s ≤ sk,3

}
,

Bk =

{
s

∣∣∣∣
(
ζPloss,k

vmax,k
+ ζwk

)
s+

(
tcΓ(χ) +

Emax,kρ

αk

)
s2− ζwkρ

αk
s3 − tcΓ(χ)ρ

αk
s4 ≤ Emax,k

}
.

Proof. Consider the constraints in (5.30) and assume that mk is large enough. By

defining the variable s ,
√
mk and after some straightforward derivations, we can
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conclude that any feasible s ≥ 0 satisfies one of the following sets of constraints:

1) Tmaxρ
αk

s2 + ζ
vmax,k

s ≤ Tmax, tcΓ(χ)s
2 + wkζs ≤ Emax,k − Ploss,kTmax, or 2) Emax,k ≥

tcΓ(χ)s
2 + wkζs ≥ Emax,k − Ploss,kTmax,

(
ζPloss,k

vmax,k
+ ζwk

)
s +

(
tcΓ(χ) +

Emax,kρ

αk

)
s2 −

ζwkρ
αk

s3 − tcΓ(χ)ρ
αk

s4 ≤ Emax,k, s
2 ≤ αk

ρ
. First assume that Emax,k > Ploss,kTmax. Then,

the maximum s ≥ 0 that satisfies the first set of constraints is simply the minimum

of the positive roots of Tmaxρ
αk

s2 + ζ
vmax,k

s = Tmax and tcΓ(χ)s
2 + wkζs = Emax,k −

Ploss,kTmax, which are sk,1 and sk,2 in (5.32), respectively. Similarly, any s ≥ 0

that satisfies the second set of constraints 1) must be greater than or equal to sk,2

and less than or equal to the minimum of
√

αk

ρ
and the positive root of tcΓ(χ)s

2 +

wkζs = Emax,k, which is sk,3 in (5.32), and 2) must satisfy the fourth-order polynomial

inequality in the second set of constraints. Therefore, the maximum s that satisfies

the second set of constraints is simply the maximum s in Ak ∩ Bk, for Ak and Bk

defined in (5.32). Note that all the elements of Ak ∩ Bk are necessarily greater than

or equal to min
{
sk,1, sk,2

}
. Therefore, if Ak ∩ Bk 6= ∅, the upper bound on s is the

maximum element of Ak ∩ Bk. However, if Ak ∩ Bk = ∅, the upper bound on s is

given by min
{
sk,1, sk,2

}
.

Next, assume that Emax,k ≤ Ploss,kTmax. In this case the first set of constraints

does not hold for any s ≥ 0 and only the second set of constraints needs to be con-

sidered. Following a similar procedure, we can conclude that the maximum possible

s that satisfies the second set of constraints is the maximum s in A′
k ∩ Bk. This

completes the proof.

Average Minimum Energy Per Period Consumed to Cover a Set of POIs

by a Mobile Agent in the Communication-Intensive Case

Another interesting quantity to characterize probabilistically is the average of the

minimum energy consumed in one period by the kth mobile agent to feasibly stabilize

its assigned POIs. This is given by the following theorem in case of large mk:
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Theorem 5.2.3. Consider Assumptions 5.2.1, 5.2.2 and 5.2.3. Then, the average

of the minimum energy consumed in one period by the kth mobile agent to feasibly

stabilize its assigned POIs is given as follows in the communication-intensive case:

Emin,ave,k =



 Ploss,k(
1−mk

ρ
αk

)
vmax,k

+ wk



 ζ√mk + tcmkPTH

∫

W

exp
(
1
2
σ̄2(q)

)

10
G̃dB(q)

10

ψ(q)dq,

(5.33)

where G̃dB(q) and σ̃2(q) are the mean and variance of a Gaussian distribution that

characterizes the channel power at a position q ∈ W in the dB domain, σ̄(q) ,
log(10)

10
σ̃(q), mk <

αk

ρ
, and mk remains large enough.

Proof. The minimum energy occurs when the stability margin is zero. By setting

∆k = 0 in (5.14), and based on Assumptions 5.2.1, 5.2.2 and 5.2.3, we obtain

Emin,ave,k = E {E∗
k} =


 Ploss,k(

1−mk
ρ
αk

)
vmax,k

+ wk


E
{
d(Hk)

}

+ tcmkPTH

∫

W
E

{
1

G(q)

∣∣∣∣q
}
ψ(q)dq, (5.34)

where averaging is done over every possible distribution of the channel. The channel

power G(q) is log-normally distributed in linear domain (Gaussian distributed, with

mean G̃dB(q) and variance σ̃2(q), in the dB domain). We have

E

{
1

G(q)

∣∣∣∣q
}

=

∫ ∞

0

10

log(10)
√
2πσ̃(q)G2

exp

(
−
(
10 log10(G)− G̃dB(q)

)2

2σ̃2(q)

)
dG

=
exp

(
1
2
σ̄2(q)

)

10
G̃dB(q)

10

. (5.35)

Also, using Lemma 5.2.2, E
{
d(Hk)

}
= ζ

√
mk for large mk. After substituting

E

{
1

G(q)

∣∣∣q
}
and E

{
d(Hk)

}
into (5.34), (5.33) is obtained.

Note that Theorem 5.2.3 characterizes the exact average minimum energy con-

sumption, as it directly calculates the average of E∗
k in (5.14) over the distributions

of the channel and POIs.
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5.3 Dynamic Coverage of Time-Varying Environ-

ments in the Communication-Efficient Case

In this section, we study dynamic coverage of time-varying environments in the

communication-efficient case. Unlike the communication-intensive case, the mobile

agents are not required to be connected at the positions of all POIs in this case, as

long as they are connected at least once along their trajectories. Next, we present

the definition of the dynamic coverage policy in the communication-efficient case

and formulate the problem. We then show how to design optimal feasible stabilizing

policies for the mobile agents in this case.

5.3.1 Problem Formulation

Consider the dynamical system of (5.2). Similar to the communication-intensive case,

a dynamic coverage policy in the communication-efficient case is defined as follows:

Definition 5.3.1. In the communication-efficient case, a dynamic coverage policy

for the kth mobile agent is a tuple Pk =
(
Vk, Ck, vk, ξTX,k, PTX,k, {ti,k}i∈Vk

)
, where

Vk is the non-empty set of POIs assigned to the kth agent, Ck is the Hamiltonian

cycle defined on Vk, vk is the constant velocity of the kth agent, ξTX,k is the only

position along the Hamiltonian cycle Ck assigned for communication, PTX,k is the

transmission power of the kth agent at ξTX,k, and ti,k, for i ∈ Vk, is the stop time of

the kth mobile agent at the ith POI. The overall dynamic coverage policy to find is

then the tuple P = (P1, · · · ,Pn).

Note that we have assumed only one transmission in one period.9 The definitions

9The results can be easily extended to the case of multiple transmissions in one period.
Multiple transmission is, in particular, useful to increase the spatial diversity and therefore
the robustness of the proposed scheme to multipath fading and other channel assessment
errors.
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of the feasible coverage policies, stable coverage tasks, and the conditions for a policy

P to be a feasible stabilizing policy in the communication-efficient case are also

similar to the communication-intensive case. The only differences are as follows: 1)

the total communication energy tc
∑

i∈Vk
PTX,i,k in the second condition of (5.8) is

replaced by tcPTX,k, 2) PTX,i,k in the third condition of (5.8) is replaced by PTX,k,

for all i ∈ Vk, and 3) the channel powers G(qi), in the third condition of (5.8),

are replaced by G(ξTX,k). Here, the communication-time tc is as defined in the

communication-intensive case.

In order to maximize the lifetime of the mobile agents, we therefore have the

following optimization problem to find the optimal feasible stabilizing policies in the

communication-efficient case:

Problem 5.3.1. The maximum-lifetime feasible stabilizing dynamic coverage policy

for coverage of time-varying environments in the communication-efficient case is

given as follows:

min
P,E1,··· ,En

n∑

k=1

̟kEk, (5.36)

s.t.

1) αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Ck)
vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n,

2)
∑

i∈Vk

ti,k +
d(Ck)
vk

≤ Tmax, k = 1, · · · , n,

3) Ploss,s,k

∑

i∈Vk

ti,k +

(
Ploss,m,k

vk
+ wk

)
d(Ck) + tcPTX,k ≤ Ek, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,k ≥
PTH

G(ξTX,k)
, k = 1, · · · , n, (5.37)

5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n,

6) Ek ≤ Emax,k, k = 1, · · · , n,

where we set ∆k ≥ 0 and ̟k > 0.
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Note that in the communication-efficient case, the communication points ξTX,k,

for k = 1, · · · , n, also need to be optimized. Also, here the mobile agents do not stop

to communicate at the communication points, i.e., they transmit for a time interval

with length tc as they move.10 Next we show how this dynamic coverage problem

can be optimally solved using an MILP, similar to the communication-intensive case.

5.3.2 Optimal Solution of the Dynamic Coverage Problem

in the Communication-Efficient Case – Case of Known

Channel Powers at the POIs

Consider Problem 5.3.1. Based on the definition of the dynamic coverage policy in

the communication-efficient case, ξTX,k can be any point on the Hamiltonian cycle Ck
of the kth agent. Finding the optimal coverage policy in this case is very challenging.

This is due to the fact that given the partition {Vk}nk=1 and conditioned on the

channel power over the workspace, the optimal Hamiltonian cycle for an agent k

may be different from the minimum-length Hamiltonian cycle Hk. In other words,

since there is no requirement for transmission at the POIs, moving to a point out

of the minimum-length Hamiltonian cycle can possibly minimize the communication

energy and the resulting overall energy consumption. To simplify the problem, we

consider the following assumption in this section:

Assumption 5.3.1. The communication point ξTX,k is selected from the set of POIs

Vk, i.e., ξTX,k = qi, for some i ∈ Vk.

Based on this assumption and given a partition {Vk}nk=1, the optimal policy in

the communication-efficient case is then given by the following theorem:

10As compared to the communication-intensive case, tc could be larger in the
communication-efficient case, since more data is sent to the remote station in each trans-
mission. Still, we assume that tc is small enough such that the movement of the kth mobile
agent while communicating, i.e., vmax,ktc, is negligible for all k.
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Theorem 5.3.1. Consider a partition {Vk}nk=1 of V. Then, assuming that the chan-

nel powers G(qi), for i ∈ V, are known, the following are true for the solution of

Problem 5.3.1, in the communication-efficient case:

1. For a given set of non-negative stability margins ∆k, k = 1, · · · , n, Problem
5.3.1 is feasible if and only if the following are true, for k = 1, · · · , n:

1)
PTH

maxi∈Vk
{G(qi)}

≤ PTX,max,k, (5.38)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(Hk)

vmax,k
≤ min

{
Tmaxφk −∆kηk,

(
Emax,k − wkd(Hk)

)
φk −∆kηkPloss,s,k

(1− φk)Ploss,s,k + φkPloss,m,k

}
,

where Hk denotes the minimum-length Hamiltonian cycle on Vk, Emax,k ,

Emax,k − tc
PTH

maxi∈Vk
{G(qi)} , φk , 1−∑i∈Vk

ρi
αi,k

and ηk ,
∑

i∈Vk

1
αi,k

.

2. The maximum stability margin that can be selected for each agent k, for k =

1, · · · , n, is given as follows when
∑

i∈Vk

ρi
αi,k

< 1:

∆max,k = min





Emax,k − wkd(Hk) +

(
Ploss,s,k − Ploss,m,k

) d(Hk)
vmax,k

Ploss,s,k
, Tmax





φk

ηk

− 1

ηk

d(Hk)

vmax,k
. (5.39)

3. There exists a feasible stabilizing policy, i.e., Problem 5.2.1 is feasible for at

least one set of non-negative ∆k, if and only if the following are true, for

k = 1, · · · , n:

1)
PTH

maxi∈Vk
{G(qi)}

≤ PTX,max,k, (5.40)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(Hk)

vmax,k
≤ min

{
Tmax,

Emax,k − wkd(Hk)

(1− φk)Ploss,s,k + φkPloss,m,k

}
φk.
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4. If Problem 5.3.1 is feasible, the optimal Hamiltonian cycle, velocity, transmis-

sion power and transmission point of the kth agent, for k = 1, · · · , n, are given

as follows: C∗
k = Hk, v

∗
k = vmax,k, P

∗
TX,k = PTH

maxi∈Vk
{G(qi)} and ξ∗TX,k = qi∗

k
, where

i∗k = argmaxi∈Vk
G(qi). We also have the following for the optimal stop times

and total energy of the mobile agents:

1) t∗i,k = ∆k

(
1

αi,k
+

ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(Hk)

vmax,k
, ∀i ∈ Vk, (5.41)

2) E∗
k = Ploss,s,k

(
∆kηk
φk

+
1− φk

φk

d(Hk)

vmax,k

)
+

(
Ploss,m,k

vmax,k
+ wk

)
d(Hk)

+ tc
PTH

maxi∈Vk
{G(qi)}

.

Proof. The proof is similar to the proof of Theorem 5.2.1 and is omitted for brevity.

Similar to the communication-intensive case, we next propose an MILP to solve

Problem 5.3.1. This MILP can be used to find the optimal partitions, optimal

Hamiltonian cycles, optimal communication points and optimal stopping times for

the mobile agents when the maximum allowed velocities and minimum possible trans-

mission powers are used. However, the MILP formulation is more complicated in this

case, since the optimal transmission points and, therefore, the optimal transmission

powers of the mobile agent are not known beforehand. The MILP formulation for

solving Problem 5.3.1 is given in Program 2.

In Program 2, the constant Ω′ is selected large enough, similar to Ω in Program

1. Furthermore, in addition to the variables used in Program 1, we have introduced

mn auxiliary binary variables yi,k, for i ∈ V and k = 1, · · · , n. For each mobile

agent k, yi,k = 1 if the ith POI is selected as the communication point, and yi,k = 0

otherwise. Constraint 10 in Program 2 guarantees that only one POI in Vk is selected

as the communication point. Constraint 11 also forces yi,k = 0 whenever xi,k = 0.

Explanation of other constraints is similar to Program 1. Fig. 5.3 shows sample
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Program 2: MILP for solving Problem 5.3.1 in the communication-efficient case

min
∑n

k=1̟kEk,

s.t.

1) αi,kti,k − ρi

(∑m
i=1 ti,k +

1
vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j

)
+ (1− xi,k)Ω

′ ≥ ∆k, ∀i, k,
2)
∑m

i=1 ti,k +
1

vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j ≤ Tmax, ∀k,

3) Ploss,s,k

∑m
i=1 ti,k +

(
Ploss,m,k

vmax,k
+ wk

)∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j + tc

∑m
i=1

yi,kPTH

G(qi)
≤ Ek, ∀k,

4)
∑m

j=1,j 6=i zi,j,k = xi,k,
∑m

j=1,j 6=i zj,i,k = xi,k, ∀i, k,

5)
∑n

k=1 xi,k = 1, ∀i,

6)
∑m

i=1 hi = n,

7) ui − uj −m(hi + hj) + (m− 1)
∑n

k=1 zi,j,k ≤ m− 2, ∀i, j 6= i,

8) 2− hi ≤ ui ≤ m, ∀i,

9) ti,k ≤ xi,kΩ
′, ∀i, k,

10)
∑m

i=1 yi,k = 1, ∀k,

11) yi,k ≤ xi,kΩ
′, ∀i, k,

12) yi,k
PTH

G(qi)
≤ PTX,max,k, ∀i, k,

13) Ek ≤ Emax,k, ∀k,
14) zi,j,k ∈ {0, 1}, xi,k ∈ {0, 1}, yi,k ∈ {0, 1}, hi ∈ {0, 1}, ui ∈ N, 0 ≤ ti,k ≤ Ω′, ∀i, j, k,

plots of Ψi(t) and Φi(t) for one of the POIs after optimizing the dynamic coverage

operation using the MILP of Program 2. Fig. 5.3 (left) corresponds to the case where

∆k > 0 (robust dynamic coverage with positive stability margin) and Fig. 5.3 (right)

corresponds to the case where ∆k = 0 (zero stability margin). It can be seen that,

similar to the communication-intensive case, a positive stability margin results in

longer stop time and more energy consumption at the point of interest, as proved in

Theorem 5.3.1. It can also be seen how Ψi(t) at the remote station becomes equal to

Φi(t) any time the mobile agent communicates to the remote station (in this example
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the communication point is located at another POI).
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Figure 5.3: Sample plots of Ψi(t) and Φi(t) in the communication-efficient case for one
of the POIs after optimizing the dynamic coverage operation using the MILP of Program
2. The left figure corresponds to the case where ∆k > 0 (robust dynamic coverage with
positive stability margin) and the right figure corresponds to the case where ∆k = 0 (zero
stability margin).

Virtual POIs in the Communication-Efficient Case

The coverage task in the communication-efficient case can be feasibly stabilized if

at least one POI is connected along the Hamiltonian cycle of each mobile agent (as

opposed to all POIs in the communication-intensive case). In case there is no feasible

stabilizing dynamic coverage policy in the communication-efficient case, due to a poor

channel quality at the POIs, we may be able to feasibly stabilize the coverage task by

adding a number of virtual POIs. These are points close enough to the actual POIs,

which have a good channel quality. Adding virtual POIs does not guarantee the

existence of a feasible stabilizing coverage policy. It, however, increases the chance

of finding such a policy in case the channel quality is low at the positions of the

actual POIs.
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5.3.3 Optimal Solution of the Dynamic Coverage Problem in

the Communication-Efficient Case – Case of Unknown

Stochastic Channel Powers at the POIs

The definitions of the chance constraints and χ-probable feasible stabilizing dynamic

coverage policies, presented in Section 5.2.3 for Problem 5.2.1, can also be applied

to Problem 5.3.1 as well. Similarly, the minimum transmission power constraint

(constraint 4 of Problem 5.3.1) will have the following chance-constrained form:

P

{
PTX,k ≥

PTH

G(ξTX,k)

}
≥ χ, k = 1, · · · , n. (5.42)

Using the distribution of the channel power in the dB domain given by our channel

assessment framework of Chapter 2, we can show that this condition is equivalent to

PTX,k ≥ 10−(σ(ξTX,k)Q
−1(χ)+ĜdB(ξTX,k))/10 PTH , Γ(ξTX,k, χ), k = 1, · · · , n. (5.43)

Similar to the communication-intensive case, this result shows that in order to ac-

count for stochastic channels, when designing optimal dynamic coverage policies in

the communication-efficient case, it is sufficient to replace PTH

G(ξTX,k)
with Γ(ξTX,k, χ)

in Problem 5.3.1. Then, the results of Theorem 5.3.1 and the MILP of Program

2 can readily be used in this case as well. We can see that, given the partition

{Vk}nk=1, the optimum communication point ξ∗TX,k is given by ξ∗TX,k = qi∗
k
, where

i∗k = argmini∈Vk
Γ(qi, χ). Also, there is a χ-probable feasible stabilizing policy for the

kth agent, for k = 1, · · · , n, if and only if

1)min
i∈Vk

Γ(qi, χ) ≤ PTX,max,k, (5.44)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)min

{
Emax,k − tc mini∈Vk

Γ(qi, χ)− wkd(Hk)

(1− φk)Ploss,s,k + φkPloss,m,k
, Tmax

}
φk ≥

d(Hk)

vmax,k
.
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5.3.4 Probabilistic Analysis of the Dynamic Coverage Prob-

lem in the Communication-Efficient Case

The same approach we used in Section 5.2.4 can be followed to probabilistically

analyze the dynamic coverage problem in the communication-efficient case. Assume

that the POIs are independently and identically distributed (i.i.d.) according to an

absolutely continuous pdf ψ(q), defined over the workspace W. Also, assume that,

conditioned on every q ∈ W, the channel power G(q) is Gaussian-distributed in the

dB domain, with G̃dB(q) and σ̃
2(q) representing its mean and variance respectively.

By following the same (sub-optimal) chance constraint approach of Section 5.2.4 and

by considering Assumptions 5.2.1, 5.2.2 and 5.2.3, we can show that, given a partition

{Vk}nk=1, there exists a χ-probable feasible stabilizing dynamic coverage policy for

this case if the following are true, for all k = 1, · · · , n:

1) Γ(χ) ≤ PTX,max,k, (5.45)

2) mk <
αk

ρ
,

3) min

{
Emax,k − tcΓ(χ)− wkζ

√
mk

Ploss,k
, Tmax

}(
1−mk

ρ

αk

)
≥ ζ

√
mk

vmax,k
,

where mk is the number of POIs assigned to the kth agent, which is assumed large

enough (refer to Section 5.2.4), and Γ(χ) is a function of G̃dB(q) and σ̃
2(q), as defined

in (5.27). Next, similar to the communication-intensive case, we use (5.45) to find an

upper bound on the maximum number of POIs that can be assigned to each agent.

An Upper Bound on the Maximum Number of POIs Covered by a Mobile

Agent in the Communication-Efficient Case

Consider the following theorem:

Theorem 5.3.2. Assume that for the kth agent and for the given χ, we have Γ(χ) ≤
PTX,max,k, where Γ(χ) is given by (5.27). Then, under Assumptions 5.2.1, 5.2.2 and
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5.2.3, an upper-bound on the maximum number of POIs that can be assigned to the

kth agent, to guarantee a χ-probable feasible stabilizing dynamic coverage policy in

the communication-efficient case, is given by the following:

mk =





min
{
s2k,1, s

2
k,2

}
, Ak ∩ Bk = ∅, Emax,k − tcΓ(χ) > Ploss,kTmax

max
{
s2
∣∣s ∈ Ak ∩ Bk

}
, Ak ∩ Bk 6= ∅, Emax,k − tcΓ(χ) > Ploss,kTmax

max
{
s2
∣∣s ∈ A′

k ∩ Bk

}
, A′

k ∩ Bk 6= ∅, Emax,k − tcΓ(χ) ≤ Ploss,kTmax

,

(5.46)

provided that such mk exists (chance-constrained version of Problem 5.3.1 is feasible)

and it is sufficiently large. Here,

sk,1 =
−ζ/vmax,k +

√
ζ2/v2max,k + 4T 2

maxρ/αk

2Tmaxρ/αk
, (5.47)

sk,2 =
Emax,k − tcΓ(χ)− Ploss,kTmax

ζwk

,

sk,3 = min

{√
αk

ρ
,
Emax,k − tcΓ(χ)

ζwk

}
,

Ak =
{
s
∣∣sk,2 ≤ s ≤ sk,3

}
, A′

k =
{
s
∣∣0 ≤ s ≤ sk,3

}
,

Bk =

{
s

∣∣∣∣
(
ζPloss,k

vmax,k
+ ζwk

)
s+

(Emax,k − tcΓ(χ)) ρ

αk
s2 − ζwkρ

αk
s3 ≤ Emax,k

}
.

Proof. Consider the constraints in (5.45) and assume that mk is large enough. By

defining the variable s ,
√
mk and after some straightforward derivations, we can

conclude that any feasible s ≥ 0 satisfies the following sets of constraints: 1)

Tmaxρ
αk

s2 + ζ
vmax,k

s ≤ Tmax, s ≤ Emax,k−tcΓ(χ)−Ploss,kTmax

ζwk
or 2)

Emax,k−tcΓ(χ)

ζwk
≥ s ≥

Emax,k−tcΓ(χ)−Ploss,kTmax

ζwk
, s2 ≤ αk

ρ
,
(

ζPloss,k

vmax,k
+ ζwk

)
s +

(Emax,k−tcΓ(χ))ρ
αk

s2 − ζwkρ
αk

s3 ≤
Emax,k. The maximum s that satisfies one of these constraints is then found us-

ing a procedure similar to that of Theorem 5.2.2 for two cases of Emax,k − tcΓ(χ) >

Ploss,kTmax and Emax,k − tcΓ(χ) ≤ Ploss,kTmax.
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Average Minimum Energy Per Period Consumed to Cover a Set of POIs

by a Mobile Agent in the Communication-Efficient Case

An approach similar to that of the communication-intensive case can be followed

to calculate the average of the minimum energy consumed in one period by the kth

mobile agent to feasibly stabilize its assigned POIs in the communication-efficient

case. Unlike communication-intensive case, however, the joint pdf of the channel

powers at the POIs is required in this case. From Chapter 2, we know that, given a

set of channel positions, the joint pdf of the channel powers is given by a multi-variate

Gaussian distribution. Without loss of generality, assume that we order the POIs

assigned to the kth agent as follows: Vk = {1, · · · , mk}. Let G̃dB(Qk) and Σ̃(Qk), for

Qk ,
[
qT1 , · · · , qTmk

]T
, denote the mk×1 mean vector and mk×mk covariance matrix

of the multi-variate Gaussian distribution that gives the joint pdf of the channel

powers at these POIs. We then have the following theorem:

Theorem 5.3.3. Consider Assumptions 5.2.1, 5.2.2 and 5.2.3. Then, the average

of the minimum energy consumed in one period by the kth mobile agent, to feasibly

stabilize its assigned POIs, is given as follows in the communication-efficient case:

Emin,ave,k =


 Ploss,k(

1−mk
ρ
αk

)
vmax,k

+ wk


 ζ√mk

+ tcPTH

∫

W
· · ·
∫

W

∫ ∞

−∞
10−x/10 ∂

∂x
Υ(x,Qk)ψ(q1) · · ·ψ(qmk

)dxdQk, (5.48)

where Qk ,
[
qT1 , · · · , qTmk

]T
is the stacked vector of the positions of the POIs in Vk,

mk <
αk

ρ
,

Υ(x,Qk) ,
∫ x

−∞
· · ·
∫ x

−∞

exp
(
−1

2

(
GdB − G̃dB(Qk)

)T
Σ̃−1(Qk)

(
GdB − G̃dB(Qk)

))

(2π)
mk
2

∣∣Σ̃(Qk)
∣∣ 12

dGdB,

(5.49)

and G̃dB(Qk) and Σ̃(Qk) denote the mean vector and covariance matrix of the multi-

variate Gaussian distribution characterizing the channel powers at the POIs in the
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dB domain.

Proof. The proof is similar to the proof of Theorem 5.2.3. The minimum energy

occurs when the stability margin is zero. By setting ∆k = 0 in (5.41), and based on

Assumptions 5.2.1, 5.2.2 and 5.2.3, we obtain

Emin,ave,k = E {E∗
k} =


 Ploss,k(

1−mk
ρ
αk

)
vmax,k

+ wk


E
{
d(Hk)

}
(5.50)

+ tcPTH

∫

W
· · ·
∫

W
E

{
1

maxi∈Vk
G(qi)

∣∣∣∣Qk

}
ψ(q1) · · ·ψ(qmk

)dQk.

Let us define Gmax = maxi∈Vk

{
GdB(qi)

}
. Then, the cumulative density function

(cdf) of Gmax is given as follows:

P{Gmax ≤ x} =

∫ x

−∞
· · ·
∫ x

−∞

exp
(
−1

2

(
GdB − G̃dB(Qk)

)T
Σ̃−1(Qk)

(
GdB − G̃dB(Qk)

))

(2π)
mk
2

∣∣Σ̃(Qk)
∣∣ 12

dGdB

= Υ(x,Qk). (5.51)

We therefore have

E

{
1

maxi∈Vk
G(qi)

∣∣∣∣Qk

}
=

∫ ∞

−∞
10−x/10 ∂

∂x
Υ(x,Qk)dx. (5.52)

Also, using Lemma 5.2.2, E
{
d(Hk)

}
= ζ

√
mk for large mk. After substituting

E

{
1

G(q)

∣∣∣q
}
and E

{
d(Hk)

}
into (5.50), (5.48) is obtained.

Note that the average of the minimum energy per period in the communication-

efficient case is more complicated than the one derived in the communication-intensive

case.

5.4 Simulation Results

In this section, we present our simulation results for the dynamic coverage of a time-

varying environment using the proposed framework. The simulation environment
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was implemented in C++ and MATLAB. To solve the MILPs, we used IBM ILOG

CPLEX Optimization Studio v12.2.

Fig. 5.5 shows the result of applying the proposed dynamic coverage framework

to cover 24 POIs using 3 mobile agents, in a 200 m by 200 m workspace. The

wireless channel between the mobile agents and the remote station is generated

using our probabilistic channel simulator, which can generate path loss, shadowing

and multipath fading with realistic spatial correlations. A detailed description of

this channel simulator can be found in [54, 56]. The 3D plot of the channel power

over the workspace is shown in Fig. 5.4. In this example, the shadowing component

of the channel is log-normally distributed in the linear domain (has a zero-mean

Gaussian distribution in the dB domain). The multipath fading component is also

Rician-distributed in the linear domain. The remote station is located at position

qb = (−80, 80, 0.5) m. The following channel parameters are also used: KdB = −5

dB, nPL = 2, ϑ = 5 dB, β = 30 m and ω = 2 dB. See Chapter 2 for the descriptions

of the channel parameters and the distributions of the shadowing and multipath

components. The rest of the parameters are as follows: SNRTH = 25 dB, BN0 = −90

dB, αi,k = 100, Tmax = 6000 s, Emax,k = 40 J, vmax,k = 0.1 m/s, PTX,max,k = 800 mW,

Ploss,m,k = 0.1 mW, Ploss,s,k = 0.2 mW, wk = 0.1 J/m (corresponding to a small-size

light-load robot) and ∆k = 0, for i = 1, · · · , 24 and k = 1, 2, 3. Furthermore, we

set ̟k = 1
3
, for k = 1, 2, 3, and tc = 20 s in both communication-intensive and

communication-efficient cases. Note that the value of tc is small enough such that

communication can be done while stopping at the positions of the POIs (or while

being very close to them).

Fig. 5.5 (left) and Fig. 5.5 (right) show the optimal trajectories of the mobile

agents in the communication-intensive and communication-efficient cases respectively

and for the case of known channel. The optimal communication points for each

mobile agent in the communication-efficient case is also specified by a circle in Fig. 5.5
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Figure 5.4: The 3D plot of the channel power G(q) over the workspace of Fig. 5.5.

(right). The values of ρi andG(qi) for all the POIs are listed in Table 5.1. The optimal

stop times at all the POIs, in both communication-intensive and communication-

efficient cases, are listed in Table 5.2. The optimal period, optimal total energy per

period, optimal motion energy per period and optimal communication energy per

period, in both communication-intensive and communication-efficient cases and for

all the mobile agents, are also listed in Table 5.3.

In can be seen that the optimal period and the optimal motion energy per period

are larger for longer routes, as expected. The optimal communication energy per

period, on the other hand, is a function of channel qualities at the POIs. For instance,

in the communication-intensive case, Agent 2 (dashed-blue trajectory) is assigned to

5 POIs only. However, the optimal communication energy per period is the largest for

this agent. This is due to the fact that the POIs assigned to this agent experience the

lowest channel qualities among the POIs, as can be seen from Table 5.1. On the other

hand, Agent 1 (solid-red trajectory) consumes the minimum communication energy

in the communication-intensive case as its assigned POIs experience highest channel

qualities. The same discussion applies to the optimal motion and communication

energies in the communication-efficient case.
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POI ρi G(qi) (dB) POI ρi G(qi) (dB) POI ρi G(qi) (dB)
1 2.01 -48.3 9 2.89 -42.8 17 2.38 -43.2
2 1.47 -49.3 10 1.92 -62.7 18 1.26 -30.3
3 1.23 -46.3 11 1.78 -51 19 1.74 -40.1
4 2.84 -45.9 12 1.54 -56.4 20 2.78 -43.7
5 2.91 -37.1 13 2.97 -51.4 21 1.34 -35.5
6 2.71 -46.5 14 1.59 -53.8 22 2.85 -54.1
7 1.19 -45.2 15 1.78 -49.4 23 2.42 -42.9
8 1.71 -39.8 16 1.39 -41.7 24 2.07 -34.9

Table 5.1: The value of ρi and G(qi) at the POIs in Fig. 5.5.

From Table 5.3, one can also see that the communication energy per period in

the communication-efficient case is much less than the one in the communication-

intensive case, as expected. Furthermore, it can be confirmed that the optimal

communication point for each mobile agent in the communication-efficient case is

the POI that experiences the maximum channel power among all the POIs assigned

to that agent. It is worth mentioning that in this example the mobile agents are

identical. Therefore, we can alternatively assign any mobile agent to any partition,

in both communication-intensive and communication-efficient cases, without chang-

ing the optimal solution. Another important note is that for a given Emax,k, the

communication-efficient case imposes less constraint on the motion, since less com-

munication energy is consumed as compared to the communication-intensive case

(same tc is used for both cases).

Note that the optimal partition found for the communication-efficient case cannot

be used for the communication-intensive case as it violates the constraint on the total

energy per period.

Fig. 5.28 (left) and Fig. 5.28 (right) show the plots of Ψi(t) at the remote sta-

tion for one sample POI in Fig. 5.5 (POI #4), in communication-intensive and

communication-efficient cases respectively. In the communication-efficient case, the
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Communication-Intensive Case Communication-Efficient Case
POI t∗i,k POI t∗i,k POI t∗i,k POI t∗i,k
1 63.3 s 13 93.5 s 1 107 s 13 158 s
2 46.1 s 14 50 s 2 77.6 s 14 84.2 s
3 54.4 s 15 78.5 s 3 49.9 s 15 72 s
4 50.2 s 16 24.4 s 4 151 s 16 56.1 s
5 91.6 s 17 105 s 5 154 s 17 96.2 s
6 47.8 s 18 55.6 s 6 144 s 18 6.2 s
7 52.6 s 19 76.8 s 7 48.2 s 19 8.56 s
8 75.6 s 20 123 s 8 69.4 s 20 113 s
9 128 s 21 42.1 s 9 117 s 21 70.9 s
10 33.8 s 22 89.7 s 10 101 s 22 151 s
11 56 s 23 76 s 11 94.4 s 23 128 s
12 27.1 s 24 91.6 s 12 81.4 s 24 84 s

Table 5.2: The optimal stop times at all the POIs in Fig. 5.5 in both communication-
intensive and communication-efficient cases.

plot of Φi(t) is also shown. Without loss of generality, in both figures we assume

that at t = 0 the robot starts at POI 4. In the communication-efficient case, we also

assume that communication happens at the end of visiting the POI that is selected

as the optimal communication point (POI 21 in this case). In can be seen that

Ψi(t) remains bounded at the remote station in both cases. Similar plots can also

be obtained for other POIs in Fig. 5.5.

Note that for a fixed Vk, the maximum value of Ψi(t) for any i ∈ Vk is larger in the

Communication-Intensive Case Communication-Efficient Case
k T ∗

k E∗
k E∗

m,k E∗
c,k k T ∗

k E∗
k E∗

m,k E∗
c,k

1 4414 s 37.85 J 36.26 J 1.587 J 1 4050 s 33.94 J 33.92 J 0.01939 J
2 1764 s 31.14 J 16 J 15.14 J 2 5298 s 38.67 J 38.64 J 0.02229 J
3 3144 s 31.66 J 25.74 J 5.924 J 3 492.1 s 4.831 J 4.824 J 0.006781 J

Table 5.3: The optimal period, optimal total energy per period, optimal motion energy
per period and optimal communication energy per period in both communication-intensive
and communication-efficient cases and for all the mobile agents in Fig. 5.5.
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Figure 5.5: The optimal trajectories of the mobile agents in the communication-intensive
(left) and communication-efficient (right) cases for the case of known channel. The solid
red, dashed blue and dot-dashed green lines correspond to the trajectories of Agent 1, 2 and
3 respectively. The location of the remote station is denoted at the top left corner of the
figures. The optimal communication points for each mobile agent in the communication-
efficient case is also specified by a circle in the right figure.

communication-efficient case, as compared to the communication-intensive case. This

is due to the fact that in the communication-efficient case, there is generally a delay

in reporting the observation of each POI, which results in a non-zero minimum for

Ψi(t). However, the communication-efficient case can stabilize the dynamic coverage

task with less constraints on the connectivity.

Next, consider the case where the channel powers at the POIs are not known and

are assessed probabilistically. Assume the same workspace and channel of Fig. 5.5.

In order to show our results more clearly, assume that only one mobile agent is used

to cover the POIs. The system parameters are taken to be the same as the previous

case, except we have αi = 200, Tmax = 12000 s, Emax = 200 J, and ∆ = 2000 in this

case. Note that we dropped the dependency of the system parameters on k, as we

have only one mobile agent in this case. In this example, we assume that the channel

is assessed using 0.5% of the total channel power samples (804 samples in a 401×401
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Figure 5.6: The plot of Ψi(t) at the remote station for POI #4 in Fig. 5.5
in communication-intensive (left) and communication-efficient (right) cases. In the
communication-efficient case, the plot of Φi(t) at the mobile agent is also provided.

grid), which are assumed to be randomly collected during an offline survey of the

channel (see Chapter 2 for a detailed discussion on our probabilistic channel assess-

ment framework). Fig. 5.7 (left) compares the estimated and actual channel powers

at the positions of the POIs. Fig. 5.7 (right) then shows the optimal trajectory of

the mobile agent in both communication-intensive and communication-efficient cases

respectively. Note that, as proved by Theorems 5.2.1 and 5.3.1, the optimal trajec-

tory in case of a single mobile agent is the minimum-length Hamiltonian cycle, in

both communication-intensive and communication efficient cases. The optimal com-

munication point in the communication efficient case, i.e., the POI with the smallest

Γ(qi, χ) (see Section 5.3.3), is also specified by a circle in Fig. 5.7 (right). Table 5.4

lists the optimal stop times and the value of Γ(qi, χ) at all the POIs. For the sake of

comparison, this table also shows the minimum required transmit power for the case

of known channel powers, i.e., PTH

G(qi)
, for all the POIs. The optimal period, optimal

total energy per period, optimal motion energy per period and optimal communica-

tion energy per period, in both communication-intensive and communication-efficient
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cases, are listed in Table 5.5.11 In this example, we set χ = 0.95. From Table 5.4, one

can see that Γ(qi, χ) is larger than the minimum required transmit power in case of

known channel power, i.e., PTH

G(qi)
, at each POI. This is to guarantee that, based on the

variance of channel estimation, the probability of connectivity is larger than χ. Note

that in Table 5.4, the optimal periods are the same for both communication-intensive

and communication-efficient cases, since we only have one mobile agent. Also, as can

be seen from Table 5.4, the optimal communication energy per period and, as a direct

result, the optimal total energy per period is larger in the communication-intensive

case, as expected (tc is taken to be the same for both cases).
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Figure 5.7: The comparison of the estimated and real channel powers at the POIs (left)
and the optimal trajectories of one mobile agent in both communication-intensive and
communication-efficient cases and for the case of unknown channel powers (right). The
location of the remote station is denoted at the top left corner of the right figure. The
optimal communication point for the mobile agent in the communication-efficient case is
also specified by a circle in the right figure. It can be seen that the optimal trajectory is
the Hamiltonian cycle over the set of POIs.

11The calculated energy values are based on assuming that the mobile agent will use the a
priori found optimal channel powers, based on the probabilistic channel assessment at the
POIs. Alternatively, the agent can measure the channel at the POIs after deployment and
better adapt its transmission powers at the POIs, resulting in less total energy consumption.
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POI t∗i Γ(qi, χ)
PTH

G(qi)
POI t∗i Γ(qi, χ)

PTH

G(qi)

1 113.13 s 67.259 mW 21.316 mW 13 162.38 s 127.25 mW 43.702 mW
2 85.084 s 122.72 mW 26.615 mW 14 91.422 s 200.61 mW 74.99 mW
3 73.151 s 44.735 mW 13.532 mW 15 101.09 s 125.84 mW 27.739 mW
4 155.76 s 45.637 mW 12.171 mW 16 81.005 s 36.209 mW 4.7053 mW
5 159.26 s 4.1431 mW 1.6186 mW 17 131.75 s 16.905 mW 6.5547 mW
6 148.9 s 71.488 mW 14.09 mW 18 74.563 s 1.338 mW 0.33904 mW
7 71.034 s 49.583 mW 10.496 mW 19 99.129 s 12.229 mW 3.206 mW
8 97.799 s 18.894 mW 2.9919 mW 20 152.51 s 22.329 mW 7.4526 mW
9 158.17 s 28.176 mW 6.0823 mW 21 78.6 s 7.8333 mW 1.1143 mW
10 108.17 s 774.54 mW 589.35 mW 22 156.13 s 224.98 mW 80.994 mW
11 101.33 s 165.64 mW 39.749 mW 23 133.92 s 41.428 mW 6.118 mW
12 88.73 s 185.93 mW 136.71 mW 24 116.3 s 2.1681 mW 0.96975 mW

Table 5.4: The optimal stop times (for both communication-intensive and communication-
efficient cases), and the values of PTH

G(qi)
and Γ(qi, χ) for all the POIs in Fig. 5.7.

Communication-Intensive Case Communication-Efficient Case
T ∗ E∗ E∗

m E∗
c T ∗ E∗ E∗

m E∗
c

10250 s 124.36 J 76.403 J 47.957 J 10250 s 76.43 J 76.403 J 0.02676 J

Table 5.5: The optimal period, optimal total energy per period, optimal motion energy
per period and optimal communication energy per period in both communication-intensive
and communication-efficient cases and for all the mobile agents in Fig. 5.7. Note that the
dependency on k has been dropped as there is one mobile agent in this case.

Fig. 5.8 (left) and Fig. 5.8 (right) show the plots of Ψi(t) at the remote station for

two sample POIs in Fig. 5.7 (POI #4 and POI #10). For the sake of comparison, each

figure shows the plots of Ψi(t) at the remote station for three cases: communication-

intensive, communication-efficient and communication-unaware. By communication-

unaware we mean the case where the same transmission power is used at all the POIs,

without adapting to channel powers. To have a fair comparison, we set this fixed

communication energy budget to be the same as the optimal communication energy

found in the communication-intensive case (47.9573 J). The transmission power at

every POI is then fixed to 1
m

∑
i∈V Γ(qi, χ) = 99.91 mW in this case. It can be seen
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that in communication-intensive and communication-efficient cases, both of the POIs

could be stably covered. The communication-unaware case, however, could stabilize

the sensing of only one POI (POI #4). This is due to the fact that the robot is not

connected to the remote station at the position of POI #10 in the communication-

unaware case. This has been explained visually in Fig. 5.9. This figure shows the

positions of the POIs superimposed on the connectivity map to the remote station

for the communication-unaware case, assuming that the fixed transmission power of

99.91 mW is used. It can be seen that POI #10 and POI #12 are disconnected,

resulting in Ψi(t) becoming unstable at these points.
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Figure 5.8: The plots of Ψi(t) at the remote station for POI #4 (left) and POI #10 (right)
in Fig. 5.7. These figures compare the time evolution of Ψi(t) in communication-intensive,
communication-efficient and communication-unaware cases.

Note that after solving the proposed MILP to find the feasible stabilizing policy

in this specific example, all the POIs in the communication-intensive case or the

optimal communication point in the communication-efficient case are connected, al-

though the channel is assessed probabilistically. This may or may not be the case

in general, depending on the quality of the channel assessment, especially the power

of the multipath fading component of the channel. Since multipath fading is not

predictable using sparse sampling of the channel, one expects that by increasing the
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Figure 5.9: Positions of the POIs superimposed on the connectivity map to the re-
mote station, assuming that the fixed transmission power 1

m

∑
i∈V Γ(qi, χ) is used in the

communication-unaware case. The disconnected POIs are circled on the figure.

power of multipath fading the number of POIs that can be covered decreases. This

is shown in Fig. 5.10. Fig. 5.10 (left) shows the percentage of the connected POIs

in Fig. 5.7 that can be covered by the mobile agent in the communication-intensive

case, as a function of the power of the multipath fading component. The figure

also shows the results for the non-adaptive communication-unaware case. The com-

munication energy per period in the communication-intensive case is calculated to

guarantee for χ = 0.95. The same energy budget is then used in the communication-

unaware case, where the power is uniformly distributed among all the POIs. The

results are averaged for 500 different realizations of the channel. In this example,

the path loss and shadowing components are kept fixed and only the multipath fad-

ing component is regenerated in each realization. Similar to Fig. 5.7, the channel

is assessed using 0.5% of the total channel power samples. Interesting results can

be observed. First, it can be seen that the percentage of the POIs that can be cov-

ered in the communication-intensive case decreases as the power of multipath fading

increases. Second, for a fixed multipath power, the percentage of POIs, covered in

the communication-unaware case, is lower than the communication-intensive case,
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unless multipath power is very large. Third, for a very large multipath power, the

percentage of the POIs covered by the communication-intensive case converges to

that of the communication-unaware case. These results can be justified as follows:

As the multipath fading power increases, the quality of channel assessment de-

grades considerably. Although the optimal energy allocated for communication, i.e.,
∑

i∈V Γ(qi, χ), also increases as the power of multipath fading increases, the over-

all number of connected POIs decreases in the communication-intensive case. The

increase in the optimal energy allocated for communication, however, results in an

opposite effect in the communication-unaware case. Since the power is distributed

uniformly among all the POIs in this case, the increase in the allocated transmission

power, along with more randomness in channel variations, increases the chance of

connectivity at the POIs. Finally, for very large multipath fading power, adapta-

tion of the transmission power in the communication-intensive case is not effective

anymore due to large channel variations, resulting in almost the same percentage of

connected POIs as of the communication-unaware case. Note that we used Rician

multipath fading in this example. Therefore, the maximum possible multipath fad-

ing power is ω = 5.1195 dB, which corresponds to the case when Rician distribution

becomes a Raleigh distribution [54, 59]. To get a better idea about how the channel

looks like for very small and very large multipath fading powers, Fig. 5.11 shows two

sample channels with ω = 0.8730 dB (left) and ω = 5.0941 dB (right). The Rician

K-parameter (the ratio of the power of the non-multipath component to that of the

multipath component [59]) is equal to 50 for the left figure and 0.2 for the right one.

The probability of connectivity of the optimal transmission point found in the

communication-efficient case also presents a similar behavior. Fig. 5.10 (middle)

shows the plot of the probability of connectivity of the optimal transmission point in

the communication-efficient case, as a function of the multipath power. The result is

averaged over 500 realizations of the channel. Similar to the communication-intensive
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case, it can be seen that the probability of connectivity decreases as multipath power

increases. Finally, Fig. 5.10 (right) shows the total optimal communication energy as

a function of multipath power for both communication-intensive and communication-

efficient cases. As expected, the energy increases as the multipath power increases.
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Figure 5.10: The percentage of the POIs that can be covered by the mobile agent of
Fig. 5.7 in the communication-intensive case (left), the probability of connectivity of the
optimal transmission point in the communication-efficient case (middle), and the total
optimal communication energy (right) as a function of multipath power.

Figure 5.11: Two sample channels with ω = 0.8730 dB (left) and ω = 5.0941 dB (right).
The path loss and shadowing components of both channels are the same as in Fig. 5.4

Finally, in order to confirm the probabilistic analysis of Sections 5.2.4 and 5.3.4

for a large number of POIs, Fig. 5.12 compares the actual and theoretical average

minimum total energy per period, consumed to cover a set of POIs by one mobile

agent, as a function of the number of POIs. Fig. 5.13 (left) and Fig. 5.13 (right) also

show the average minimum communication energy per period for communication-

intensive and communication-efficient cases respectively. The results for every m are
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calculated by averaging over 500 different channels and sets of POIs. The POIs are

distributed according to a uniform pdf over the workspace of Fig. 5.7. The channel

in the dB domain is generated using a Gaussian distribution, with a mean equal to

the path loss component of the channel of Fig. 5.5 and a standard deviation equal

to ϑ = 5 dB. Also, in this example we set Ploss,m = Ploss,s = Ploss = 0.1 mW, ρ = 1

and α = 200 for all the POIs. The rest of the parameters are the same as in Fig.

5.5. Note that we dropped the dependency of the parameters on i and k as there is

only one mobile agent and the parameters are the same for all the POIs. Fig. 5.13

shows that the average minimum communication energy per period is an increasing

function of the number of POIs in the communication-intensive case, as expected.

However, it is a decreasing function of the number of POIs in the communication-

efficient case. This is explained by the fact that by increasing the number of POIs

in an environment, the chance of finding a higher channel power at one of the POIs

increases. Also, it can be seen that overall the theoretical values provide a good

approximation to the simulated ones.
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Figure 5.12: The actual and theoretical average minimum total energy consumed in each
period to cover a set of POIs, as a function of the number of POIs.
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Figure 5.13: The actual and theoretical average minimum communication energy con-
sumed in each period to cover a set of POIs as a function of the number of POIs, in the
communication-intensive (left) and communication-efficient (right) cases.

5.5 Further Extension of the Dynamic Coverage

Problem

In this section, we extend our dynamic coverage results by considering a non-zero

range for the sensing/actuation device of the mobile agents and adapting their ve-

locities and transmission rates (in addition to their transmission powers) along their

trajectories. Unlike our previous results, here we take into account the number of

information bits that are transmitted to and correctly received by the remote sta-

tion. We, however, assume only one robot in this section to facilitate mathematical

derivations.12

We assume an obstacle-free workspace W ⊂ R
2, which contains a set of m POIs

Q = {q1, · · · , qm} ⊂ W. Let V = {1, · · · , m} denotes the indices of the POIs. In

this section, we specifically consider a scenario where information bits are generated

with certain rates at the POIs (e.g., consider the case where the POIs are data

loggers that are distributed over the workspace to log time variations of a physical

12Extension to the case of multiple mobile agents in this case is under our consideration.
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quantity in an environment). The mobile agent is then tasked with collecting the

information bits from the POIs and transmitting them to a remote station. Similar to

the previous, the trajectory of the mobile agent is uniquely defined by a Hamiltonian

cycle, denoted by C, on the set of POIs in V. The range of the data collection device

of the mobile agent is, however, not zero in this case. Let S(t) ⊂ R
2 denote the

area covered by the mobile agent at time t. Generally, S(t) is a function of the

position and orientation of the mobile agent at time t, i.e., S(t) = S
(
ξ(t), θ(t)

)
,

where ξ(t) ∈ W and θ(t) ∈ (−π, π] are the position and orientation of the mobile

agent at time t, respectively. Whenever a POI i falls within S(t), the information

bits at this POI are collected with a distance-dependent rate α
(
‖ξ(t)− qi‖

)
by the

mobile agent. The physical quantity under control at the ith POI, Ψi(t), is then

the number of information bits to be collected from the ith POI at time t. Similar

to dynamic coverage for surveillance, we consider the following linear dynamics for

Ψi(t):

Ψ̇i(t) = I
(
Ψi(t) ≥ 0

)[
ρi − I

(
qi ∈ S(t)

)
α
(
‖ξ(t)− qi‖

)]
, (5.53)

where ρi is rate at which the information bits are generated/stored at the ith POI

and I(.) denotes the indicator function.13

5.5.1 Motion Model

The velocity of the mobile agent at time t is shown by v(t) ∈ [vmin, vmax]. For a

periodic trajectory, v(t) is also periodic and given by v(t) = v
(
ξ(t)

)
, where v(q) is

the velocity of the mobile agent at position q along its trajectory. The mobile agent

adapts its velocity along its trajectory based on its data collection rate, in order to

13It should be noted that in practice the number of information bits, Ψi(t), is an integer
value. Here, in order to simplify the problem, we approximate Ψi(t) with a real value
and consider a continuous-time dynamics for it. The case of integer Ψi(t) can be similarly
considered by using a discrete linear dynamics and properly choosing ρi and α(.).
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increase the number of information bits it collects in each period. This is done by

slowing down at positions with good data collection rate, i.e., the positions where one

or more POIs are within S(t) and α
(
‖ξ(t)− qi‖

)
attains a large value. On the other

hand, spending time at positions with good data collection rate increases the motion

energy consumed by the robot in each period (according to the motion power model

that was introduced previously in this chapter), resulting in a trade-off between the

motion energy consumed and the number of information bits collected in one period.

To see this more clearly, let us calculate the number of information bits collected

while the mobile agent from POI i to POI j along the trajectory of the mobile agent:

Ni,j =
∑m

ℓ=1Ni,j,ℓ, where

Ni,j,ℓ =

∫ qj

qi

1

v(q)
I
(
qℓ ∈ S(q, θi,j)

)
α
(
‖q − qℓ‖

)
dq, (5.54)

and θi,j = atan2(qj − qi). Clearly, for a given trajectory, Ni,j increases by decreasing

v(q) in positions where the data collection rate is larger. On the other hand, by

adopting the first-order motion power model used in the previous part, the motion

power of the mobile agent at time t is given by Pm(t) = Ploss + wv(t), where Ploss

denotes the motion power loss and w is a positive constant. By integrating Pm(t) in

time we obtain the motion energy consumed in one period as follows:

Em =

∫

T

Pm(t)dt = PlossT + wd(C), (5.55)

where T is the period and d(C) denotes the Euclidean length of C. From (5.55),

for a given trajectory the motion energy Em is an increasing function of T , which

explains why decreasing v(q) is not preferred for energy minimization purposes. The

optimal motion policy, without considering communication issues, provides the right

balance between the motion energy Em and the amount of information bits collected

in one period. More specifically, such a motion policy determines the trajectory of

the mobile agent as well as the its velocity profile v(q) along this trajectory such

that Em is minimized, while guaranteeing that enough information bits are collected

from the POIs to make Ψi(t) bounded for all i.
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5.5.2 Communication Model

The information bits collected from the POIs are transmitted to the remote sta-

tion along the trajectory of the mobile agent. Unlike our previous dynamic coverage

results, in this case it is important to consider how the information bits are transmit-

ted to the remote station. The mobile agent is capable of adapting its transmission

power and rate based on the quality of the channel to the remote station. By doing

so, it can control the number of information bits sent in each period, its consumed

communication energy, and the reception quality of the remote station.

We assume that MQAM modulation with nr different constellation sizes is used

by the onboard digital communication device of the mobile agent. Then, by assuming

a transmission bandwidth B, we achieve the spectral efficiency of RTX,ℓ bits/symbol

(bits/s/Hz) or equivalently the transmission rate of BRTX,ℓ bits/s by choosing the

constellation size 2RTX,ℓ , for ℓ = 1, · · · , nr [59]. Let PTX(t) and RTX(t) denote the

transmission power and the spectral efficiency chosen at time t. Then, the number

of information bits transmitted to the remote station in one period is given by

Nc = B

∫

T

RTX(t)dt. (5.56)

The communication energy consumed in one period is also

Ec =

∫

T

PTX(t)dt. (5.57)

Note that for a periodic trajectory, PTX(t) = PTX

(
ξ(t)

)
and RTX(t) = RTX

(
ξ(t)

)
,

where PTX(q) and RTX(q) ∈ {0, RTX,1, · · · , RTX,nr
} are the transmission power and

the spectral efficiency chosen at position q along the trajectory of the mobile agent.

The reception quality at the remote station is measured by the resulting BER. For

an MQAM modulation, the BER at time t at the remote station is given by

BER(t) ≈ 0.2 exp

(
− 1.5PTX(t)G(t)(

2RTX(t) − 1
)
BN0

)
, (5.58)
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where G(t) = G
(
ξ(t)

)
, G(q) is the channel power at position q along the trajectory

of the mobile agent and N0

2
is the PSD of the thermal noise at the receiver of the

remote station. The optimal communication policy, without considering motion

issues, then determines the trajectory of the robot, as well as PTX(q) and RTX(q)

along this trajectory, such that the communication energy Ec is minimized and all the

information bits collected in one period are transmitted to the remote station, in the

same period, with a BER lower than a given threshold BERTH. Note that optimizing

the motion and communication cannot be done independently. The trajectory of

the robot affects both Em and Ec. Furthermore, the velocity profile of the robot

determines the number of the information bits collected in one period, which affects

the transmission power and rate required for the transmission. In the next section, we

formulate our proposed combined motion and communication optimization problem.

Then, in Section 5.6.2, we show how to solve this problem using an MILP.

Before presenting our MILP, we should note that the channel power G(q) may

not be deterministically known everywhere, as we also explained in Section 5.2.3.

Furthermore, even if the channel is deterministically known, pre-planning based on

the rapidly changing multipath fading component of the channel is not preferred

in practical applications. In such case, instead of a deterministic G(q), the pdf of

G(q), given by our channel assessment framework of Chapter 2, is used to calcu-

late P
{
BER(t) ≤ BERTH

}
. Then, PTX(q) and RTX(q) are selected to guarantee

P
{
BER(t) ≤ BERTH

}
≥ 1 − ǫ, for a small ǫ, whenever PTX(t) > 0 and RTX(t) > 0.

This is explained in more details in Section 5.6.2.

5.6 Extended Dynamic Coverage of Time-Varying

Environments

In this section, we formulate the problem of dynamic coverage for information collec-

tion in time-varying environments, which requires adapting the velocity, transmission
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power and transmission rate of the mobile agent along its trajectory. We then pro-

pose an MILP to find the optimal solution of the problem. We furthermore analyze

the solution of the MILP and its special cases mathematically.

5.6.1 Problem Formulation

Based on the discussions of the previous sections, the dynamic coverage policy for

information collection in time-varying environments is defined as follows

Definition 5.6.1. A dynamic coverage policy for information collection in a time-

varying environment using a single mobile agent is a tuple P = (C, PTX, RTX, v),

where C denote the Hamiltonian cycle defined on the set of POIs and functions PTX :

W → R≥0, RTX : W → {0, RTX,1, · · · , RTX,nr
} and v : W → [vmin, vmax] determine

the transmission power, spectral efficiency and velocity of the mobile agent for any

position q ∈ W along the trajectory defined by C, respectively.

Our goal in this section is then to determine the dynamic coverage policy P such

that the total energy E = Em + Ec is minimized and the following hold:

1. There exist Ψ ≥ 0 such that Ψi(t) ≤ Ψ for all t ≥ 0 and i = 1, · · · , m.

2. All the information bits collected in one period are transmitted to the remote

station, in the same period, and P
{
BER(t) ≤ BERTH

}
≥ 1 − ǫ whenever

PTX(t) > 0 and RTX(t) > 0.

3. The total information bits collected in one period is no larger than the maxi-

mum memory size of the the mobile agent Lmax.

The first condition implies that the dynamical system (5.53) is stable for all POIs.
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In Section 5.2 we showed that this is equivalent to the following:

Tρi −
∫

T

I
(
qi ∈ S(t)

)
α
(
‖ξ(t)− qi‖

)
dt ≤ 0, i = 1, · · · , m, (5.59)

which implies that the total information bits collected from the ith POI is no smaller

that the number of bits generated at this POI. Furthermore, if this condition holds,

the total information bits collected in one period becomes T
∑m

i=1 ρi. Therefore, the

first part of the second condition is equivalent to Nc = B
∫
T
RTX(t)dt ≥ T

∑m
i=1 ρi.

Finally, the third condition implies that T
∑m

i=1 ρi ≤ Lmax. The optimization prob-

lem to solve is then given as follows:

Problem 5.6.1. The minimum-energy dynamic coverage policy for information col-

lection in a time-varying environment is given as follows:

min
P

∫

T

PTX(t)dt+ PlossT + wd(C),

s.t.

1) Tρi −
∫

T

I
(
qi ∈ S(t)

)
α
(
‖ξ(t)− qi‖

)
dt ≤ 0, ∀i = 1, · · · , m

2) B

∫

T

RTX(t)dt ≥ T

m∑

i=1

ρi,

3) if PTX(t) > 0 and RTX(t) > 0 then P
{
BER(t) ≤ BERTH

}
≥ 1− ǫ, ∀t ≥ 0,

4) T
m∑

i=1

ρi ≤ Lmax, (5.60)

where T the period of movement, which is a function of the velocity profile of the

mobile agent v(t). Furthermore, v(t) = v
(
ξ(t)

)
, PTX(t) = PTX

(
ξ(t)

)
, and RTX(t) =

RTX

(
ξ(t)

)
.

As can be seen, Problem 5.6.1 is generally complicated to solve. Next, we show

how to solve this problem by discretizing the trajectory of the mobile agent and by

using an MILP.
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5.6.2 Optimal Solution of the Dynamic Coverage in Case of

Non-zero Ranges and Adaptive Velocities, Transmis-

sion Powers and Transmission Rates

Let us discretize each possible trajectory of the mobile agent into a number of small

line segments with maximum length δmax and minimum length δmin. δmax is selected

small enough such that the channel can be considered stationary along each seg-

ment.14 Define binary variables zi,j ∈ {0, 1} such that zi,j = 1 when C includes a

path from POI i to POI j, and zi,j = 0 otherwise. Let Li,j,k denote the kth line

segment along the path from POI i to POI j. Also, let ni,j denote the number

of such line segments. Define the continuous variables τi,j,k,ℓ as the amount of time

that mobile agent transmits information bits with the spectral efficiency of RTX,ℓ, for

ℓ = 1, · · · , nr, along Li,j,k. Also, define the continuous variables ̺i,j,k as the inverse

of the constant velocity of the mobile agent along Li,j,k. We set ̺i,j,k = 0 whenever

zi,j = 0, which can be guaranteed by the linear constraints zi,jv
−1
max ≤ ̺i,j,k ≤ zi,jv

−1
min.

Based on the definition of these variable we have

∫

T

I
(
qℓ ∈ S(t)

)
α
(
‖ξ(t)− qℓ‖

)
dt =

m∑

i=1

m∑

j=1
j 6=i

zi,jNi,j,ℓ. (5.61)

We can then confirm that the first condition in Problem 5.6.1 is equivalent to the

following for all ℓ = 1, · · · , m:

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

νi,j,k,ℓ ̺i,j,k − ρℓ

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

di,j,k ̺i,j,k ≥ 0, (5.62)

where the weights νi,j,k,ℓ are given by

νi,j,k,ℓ =

∫

Li,j,k

I
(
qℓ ∈ S(q, θi,j)

)
α
(
‖q − qℓ‖

)
dq. (5.63)

14Note that in practical applications pre-planning based on rapidly-changing multipath
fading is not desired.
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Here, di,j,k denotes the length of Li,j,k. Similarly, the second condition in Problem

5.6.1 is equivalent to the following:

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

nr∑

ℓ=1

RTX,ℓ τi,j,k,ℓ ≥
∑m

i=1 ρi
B

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

di,j,k̺i,j,k. (5.64)

Finally, for the third condition in Problem 5.6.1 we have

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

di,j,k ̺i,j,k ≤
Lmax∑m
i=1 ρi

. (5.65)

The motion and communication energies can also be found as functions of the newly

defined variables. For the motion energy we have

Em = Ploss

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

di,j,k ̺i,j,k + w
m∑

i=1

m∑

j=1
j 6=i

di,j zi,j, (5.66)

where di,j = ‖qi−qj‖. Given the transmission times τi,j,k,ℓ, the communication energy

to be minimized is also the minimum required communication energy to guarantee

P
{
BER(t) ≤ BERTH

}
≥ 1−ǫ along each line segment Li,j,k for which

∑nr

ℓ=1 τi,j,k,ℓ > 0.

We have

P
{
BER(t) ≤ BERTH

}
= P

{
G(t) ≥ κ

(2RTX(t) − 1)

PTX(t)

}
, (5.67)

where κ , − log(5BERTH)BN0

1.5
. Assume that the channel is known only at a number of

a priori channel measurements. According to the channel assessment framework of

Chapter 2, the distribution of G(q) in the dB domain, conditioned on the channel

measurements, is given by a Gaussian pdf with mean ĜdB(q) and variance σ2(q). Note

that similar to dynamic coverage for for surveillance, we dropped the dependency

of the channel assessment to t and k, since there is only one mobile agent and the

channel is assessed before the operation starts. Along each line segment the channel

is stationary and, therefore, ĜdB(q) and σ
2(q) can be assumed constant. Let us define

Ĝ(q) , 10
ĜdB(q)

10 . Also, let Ĝi,j,k and σi,j,k denote the constant values of Ĝ(q) and
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σ(q) along Li,j,k, respectively. After some straightforward calculations, we can then

find the minimum required communication energy, that guarantees P
{
BER(t) ≤

BERTH

}
≥ 1− ǫ along each Li,j,k for which

∑nr

ℓ=1 τi,j,k,ℓ > 0, as follows:

Ec = κ

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

nr∑

ℓ=1

τi,j,k,ℓ
(2RTX,ℓ − 1)

Gi,j,k

, (5.68)

where Gi,j,k , Ĝi,j,k10
Q−1(1−ǫ)σi,j,k

10 and Q−1(.) denotes the inverse of the Q-function

(the tail probability of the Gaussian distribution).

The total transmission time in each segment, i.e.,
∑m

ℓ=1 τi,j,k,ℓ, determines how

much time in each segment is dedicated to communication. Generally, two dif-

ferent types of constraints can be considered on
∑nr

ℓ=1 τi,j,k,ℓ. The first type of

constraints guarantee that
∑nr

ℓ=1 τi,j,k,ℓ is no larger than a fixed transmission time

tc ≤ mini,j,k
di,j,k
vmax

:

Type I constraints:
nr∑

ℓ=1

τi,j,k,ℓ ≤ zi,jtc, ∀i, j, k. (5.69)

The total transmission time in each segment is not affected by the velocity of the mo-

bile agent in this case. The second type of constraints, on the other hand, guarantee
∑nr

ℓ=1 τi,j,k,ℓ is no larger than the time required to move along Li,j,k:

Type II constraints:
nr∑

ℓ=1

τi,j,k,ℓ ≤ di,j,k ̺i,j,k, ∀i, j, k, (5.70)

where we set ̺i,j,k = 0 whenever zi,j = 0. By adding the second type of constraints,

the velocity of the mobile agent along its trajectory affects not only data collection

but also data transmission. This is due to the fact that by increasing ̺i,j,k in some

areas (e.g. areas with good channel quality) more information bits can be transmitted

to the remote station.

Based on the discretized version of Problem 5.6.1, we then propose the MILP of

Program 3 for finding the optimal dynamic coverage policy.
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Program 3 MILP for solving Problem 5.6.1

min E = Em + Ec = Ploss

∑m
i=1

∑m
j=1
j 6=i

∑ni,j

k=1 di,j,k ̺i,j,k + w
∑m

i=1

∑m
j=1
j 6=i

di,j zi,j

+κ
∑m

i=1

∑m
j=1
j 6=i

∑ni,j

k=1

∑nr

ℓ=1 τi,j,k,ℓ
(2

RTX,ℓ−1)

Gi,j,k

1)
∑m

i=1

∑m
j=1
j 6=i

∑ni,j

k=1 νi,j,k,ℓ ̺i,j,k − ρℓ
∑m

i=1

∑m
j=1
j 6=i

∑ni,j

k=1 di,j,k ̺i,j,k ≥ 0, ∀ℓ,

2)
∑m

i=1

∑m
j=1
j 6=i

∑ni,j

k=1

∑nr

ℓ=1RTX,ℓ τi,j,k,ℓ ≥
∑m

i=1 ρi
B

∑m
i=1

∑m
j=1
j 6=i

∑ni,j

k=1 di,j,k̺i,j,k,

3)
∑m

i=1

∑m
j=1
j 6=i

∑ni,j

k=1 di,j,k ̺i,j,k ≤ Lmax∑m
i=1 ρi

,

4)
∑nr

ℓ=1 τi,j,k,ℓ ≤ zi,jtc or
∑nr

ℓ=1 τi,j,k,ℓ ≤ di,j,k ̺i,j,k, ∀i, j, k,
5) zi,jv

−1
max ≤ ̺i,j,k ≤ zi,jv

−1
min, ∀i, j, k,

6)
∑m

j=1
j 6=i

zi,j = 1,
∑m

j=1
j 6=i

zj,i = 1, ∀i,

7) ui − uj + (m− 1)zi,j ≤ (m− 2), ∀i 6= 1, j 6= 1,

8) 2 ≤ ui ≤ m, ∀i 6= 1,

9) zi,j ∈ {0, 1}, τi,j,k,ℓ ∈ R≥0, ̺i,j,k ∈ R≥0, ui ∈ Z≥0,

Here, we have introduced m−1 extra integer variables u2, · · · , um. In this MILP,

in addition to constraints 1 to 5, which we introduced previously, constraint 6 enforces

each POI to have exactly one degree in and one degree out. Constraints 7 and 8 are

the Miller-Tucker-Zemlin (MTZ) constraints [106,111], which are added to eliminate

the subtours. This MILP can be solved using several efficient solvers, such as IBM

ILOG CPLEX [104] and SAS/OR [105].

Note that the optimal transmission times τi,j,k,ℓ, given by the solution of the MILP

of Program 3, are sufficient to find the optimal transmission power and transmission

rate profiles. More specifically, along any line segment Li,j,k and for ℓ = 1, · · · , nr,

we set the transmission power to κ2
RTX,ℓ−1
Gi,j,k

and transmit the information bits with

the spectral efficiency of RTX,ℓ for time interval τi,j,k,ℓ, if τi,j,k,ℓ > 0. Therefore, by

discretizing Problem 5.6.1, the solution of this MILP uniquely gives the optimal P.
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Also, note that the concept of virtual POIs, introduced in Section 5.3, can be also

used in this case as well. The virtual POIs are located at regions with good channel

qualities which are also close to the actual POIs. By ensuring that the mobile agent

passes through these points, we can then decrease the optimal communication energy

considerably.

5.6.3 Mathematical Analysis and Special Cases

In this section, we mathematically analyze the solution of the MILP of Program 3

and its special cases. We present our results in the form of the following theorems:

Theorem 5.6.1. Assume that the trajectory of the mobile agent is given by a Hamil-

tonian cycle C beforehand. Also, assume that the constraints in (5.69) are used for

the total transmission time in each segment. Then, the following are true:

1. The optimal velocity profile along the trajectory is given by the following linear

program (LP):

min
∑

(i,j)∈C

ni,j∑

k=1

di,j,k̺i,j,k (5.71)

s.t.

1)
∑

(i,j)∈C

ni,j∑

k=1

(
νi,j,k,ℓ − ρℓdi,j,k

)
̺i,j,k ≥ 0, ∀ℓ,

2)
∑

(i,j)∈C

ni,j∑

k=1

di,j,k̺i,j,k ≤
Lmax∑m
i=1 ρi

,

3) v−1
max ≤ ̺i,j,k ≤ v−1

min, ∀i, j, k.

2. The optimal transmission time profile along the trajectory is given by the fol-

172



Chapter 5. Comm-Aware Dynamic Coverage of Time-Varying Environments

lowing LP:

min
∑

(i,j)∈C

ni,j∑

k=1

nr∑

ℓ=1

τi,j,k,ℓ
(2RTX,ℓ − 1)

Gi,j,k

(5.72)

s.t.

1)
∑

(i,j)∈C

ni,j∑

k=1

nr∑

ℓ=1

RTX,ℓτi,j,k,ℓ ≥
∑m

i=1 ρi
B

T ∗,

2)

nr∑

ℓ=1

τi,j,k,ℓ ≤ tc, ∀i, j, k,

where T ∗ =
∑

(i,j)∈C
∑ni,j

k=1 di,j,k̺
∗
i,j,k is the optimal period found using the solu-

tion of (5.71).

3. In the optimal solution, v∗i,j,k = vmax in any segment for which
∑m

ℓ=1 νi,j,k,ℓ = 0.

In other segments, the optimal velocities are the maximum possible velocities

that do not violate the stability constraint (5.62).

4. In the optimal solution,
∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0 only in a number of segments where

Gi,j,k is the largest. Also, if for two segments (i1, j1, k1) and (i2, j2, k2) we have

Gi1,j1,k1 > Gi2,j2,k2, then, necessarily,

nr∑

ℓ=1

τ ∗i1,j1,k1,ℓ
(
2RTX,ℓ − 1

)
≥

nr∑

ℓ=1

τ ∗i2,j2,k2,ℓ
(
2RTX,ℓ − 1

)
. (5.73)

Proof. In case the trajectory of the mobile agent is given and the constraints in (5.69)

are used for the total transmission time in each segment, the problem of optimizing

the velocity and transmission times becomes decoupled. The velocity of the mobile

agent is then found to minimize the motion energy and the total information bits

collected in one period, while meeting the constraints on the stability and the total

memory size. Note that minimizing the number of collected information bits is in

favor of minimizing the communication energy and, as a direct result, the total

energy. In case the trajectory is given, the motion energy as well as the number of
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information bits collected are minimized when the period is minimized. This results

in the LP of (5.71) for finding the optimal velocity profile in the first part of the

theorem. The resulting optimal period is then used to find the optimal transmission

times such that the total communication energy is minimized, resulting in the LP of

(5.72) in the second part of the theorem.

From (5.71), it is clear that whenever
∑m

ℓ=1 νi,j,k,ℓ = 0 in a segment, i.e., when-

ever none of the POIs are being covered by the onboard data collection device of the

mobile agent, the optimal velocity is necessarily vmax such that the period is mini-

mized. Furthermore, in the other segments, where at least one of the POIs is covered,

the optimal velocities are the maximum possible velocities that do not violate the

stability constraint. This proves third part of the theorem.

The proof of the forth part is by contradiction. Consider two segments (i1, j1, k1)

and (i2, j2, k2) for which Gi1,j1,k1 > Gi2,j2,k2. Assume that for these two segments
∑nr

ℓ=1 τ
∗
i1,j1,k1,ℓ

(
2RTX,ℓ − 1

)
<
∑nr

ℓ=1 τ
∗
i2,j2,k2,ℓ

(
2RTX,ℓ − 1

)
. Then, if the optimal trans-

mission times of segment (i1, j1, k1) are used for segment (i2, j2, k2) instead and vice

versa, none of the constraints of (5.72) are violated. However, the total communica-

tion energy becomes smaller, since

nr∑

ℓ=1

τ ∗i1,j1,k1,ℓ
(2RTX,ℓ − 1)

Gi1,j1,k1

+
nr∑

ℓ=1

τ ∗i2,j2,k2,ℓ
(2RTX,ℓ − 1)

Gi2,j2,k2

−
nr∑

ℓ=1

τ ∗i1,j1,k1,ℓ
(2RTX,ℓ − 1)

Gi2,j2,k2

−
nr∑

ℓ=1

τ ∗i2,j2,k2,ℓ
(2RTX,ℓ − 1)

Gi1,j1,k1

(5.74)

=

(
1

Gi2,j2,k2

− 1

Gi1,j1,k1

)( nr∑

ℓ=1

τ ∗i2,j2,k2,ℓ
(
2RTX,ℓ − 1

)
−

nr∑

ℓ=1

τ ∗i1,j1,k1,ℓ
(
2RTX,ℓ − 1

)
)
> 0.

This is a contradiction which proves the forth part of the theorem.

From Theorem 5.6.1, by choosing the constraints in (5.69) and by assuming a

given trajectory, the problem of finding the optimal motion and communication
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policies becomes decoupled. This is, however, not the case when the constraints in

(5.70) are used for the total transmission time in each segment.

Next, we consider the special case of the MILP of Program 3 when the area

covered by the onboard data collection device of the mobile agent is very small, i.e.,

|S(t)| = 0. In this case, the mobile agent can only collect the information bits at the

positions of the POIs. The dynamics of Ψi(t) is given by the following in this case,

which is similar to the one considered in Section 5.1:

Ψ̇i(t) = I
(
Ψi(t) ≥ 0

)[
ρi − I

(
ξ(t) = qi

)
α0

]
, (5.75)

where we have defined α0 , α(0). As explained in Section 5.1, in order to guarantee

the boundedness of the Ψi(t), the mobile agent is then required to stop for some time

at each POI. Let ti denote the stop time at the ith POI. Given the trajectory of the

mobile agent, the optimal velocity and stop times at the POIs are then given by the

following lemma in this case:

Lemma 5.6.1. Assume that the trajectory of the mobile agent is given by a Hamil-

tonian cycle C and
∑m

i=1 ρi < α0. Then the following hold in the case of |S(t)| = 0:

1. If the constraints in (5.69) are used for the total transmission time in each seg-

ment, the optimal motion policy, which minimizes the total energy and guar-

antees the boundedness of Ψi(t) for all i = 1, · · · , m, is to choose the fixed

maximum velocity vmax for moving along the trajectory and to stop at the ith

POI for time t∗i =
ρi
φα0

d(C)
vmax

, where φ , 1− 1
α0

∑m
i=1 ρi.

2. If the constraints in (5.70) are used for the total transmission time in each seg-

ment, the optimal motion is not necessarily to move with the maximum velocity

along the trajectory. Also, for a given velocity profile along the trajectory, the

optimal stop time at POI i is t∗i =
ρi
φα0

∑
(i,j)∈C

∑ni,j

k=1 di,j,k ̺i,j,k.
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Proof. The proof is similar to the proof of Theorem 5.2.1 and is omitted for brevity.

Using Lemma 5.6.1, the MILP of Program 3 can be modified to find the opti-

mal motion and communication policies in the case of |S(t)| = 0, as shown by the

following two theorems:

Theorem 5.6.2. Assume that the constraints in (5.69) are used for the total trans-

mission time in each segment. Then, the optimal motion policy is to move with the

maximum velocity vmax. Also, the optimal trajectory and transmission times in the

case of |S(t)| = 0 are given by the following MILP:

min w

m∑

i=1

m∑

j=1
j 6=i

zi,jdi,j + κ

m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

nr∑

ℓ=1

τi,j,k,ℓ
(2RTX,ℓ − 1)

Gi,j,k

s.t.

1)
m∑

i=1

m∑

j=1
j 6=i

ni,j∑

k=1

nr∑

ℓ=1

RTX,ℓτi,j,k,ℓ ≥
1

B

∑m
i=1 ρi

φvmax

m∑

i=1

m∑

j=1
j 6=i

zi,jdi,j,

2)

∑m
i=1 ρi

φvmax

m∑

i=1

m∑

j=1
j 6=i

zi,jdi,j ≤ Lmax,

3)
nr∑

ℓ=1

τi,j,k,ℓ ≤ zi,jtc, ∀i, j, k,

4) Constraints 6, 7, 8 and 9 in MILP of Program 3, (5.76)

where w , 1
φ
Ploss

vmax
+ w.

Proof. The proof is based on the fact that in this case the minimum period T required

for stability is given by T = 1
φvmax

∑m
i=1

∑m
j=1
j 6=i

zi,jdi,j. This results in the following

motion energy in each period: Em = w
∑m

i=1

∑m
j=1
j 6=i

zi,jdi,j. By substituting T and

Em in Program 3, the MILP of (5.76) results.
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Note that by setting T ∗ = d(C)
φvmax

, the results of parts 2 and 4 of Theorem 5.6.1

hold for the MILP of (5.76) as well.

Theorem 5.6.3. Assume that the constraints in (5.70) are used for the total trans-

mission time in each segment. Then, the MILP, that gives the optimal motion and

communication policies in the case of |S(t)| = 0, is the same MILP of Program

3, without the stability constraints in (5.62) and after replacing ̺i,j,k with 1
φ
̺i,j,k in

(5.64), (5.65) and (5.66).

Proof. In case the constraints in (5.70) are used for the total transmission time

in each segment, the minimum period T required for stability is given by T =

1
φ

∑m
i=1

∑m
j=1
j 6=i

∑ni,j

k=1 di,j,k̺i,j,k. By substituting T in the MILP of Program 3 and re-

moving the constraints on stability (the stability is already guaranteed by choosing

proper stop times), it becomes clear that the optimal policies are the solution of the

this MILP without the stability constraints and after replacing ̺i,j,k with 1
φ
̺i,j,k.

Another special case happens when the mobile agent is forced to transmits its

collected information bits at the positions of the POIs only. This may be the case

when the actual POIs are located in a region with a poor channel quality and a

number of virtual POIs are added to improve the communication. In this case,

the mobile agent needs to stop for some time at a number of POIs to transmit its

collected information bits. Let τi,ℓ represent the time spent for transmission with

the spectral efficiency of RTX,ℓ at the i
th POI. The following theorem then gives the

optimal motion and communication policies in this case, when we additionally have

|S(t)| = 0:

Theorem 5.6.4. Assume that the mobile agent only transmits at the location of the

POIs and |S(t)| = 0. Then, the following hold:

1. The optimal trajectory is given by the minimum-length Hamiltonian cycle on
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the POIs, H, which is given by the solution of a Traveling Salesman Problem

(TSP). Also, the optimal velocity along the trajectory is vmax.

2. The optimal stop times and transmission times are given by the solution of the

following LP:

min Ploss

m∑

i=1

ti + κ

m∑

i=1

nr∑

ℓ=1

τi,ℓ
(2RTX,ℓ − 1)

Gi

s.t.

1) α0ti − ρi

(
d(H)

vmax
+

m∑

i=1

ti

)
≥ 0, ∀i,

2)

m∑

i=1

nr∑

ℓ=1

τi,ℓ RTX,ℓ ≥
∑m

i=1 ρi
B

(
d(H)

vmax
+

m∑

i=1

ti

)
,

3)
nr∑

ℓ=1

τi,ℓ ≤ ti, ∀i,

4) τi,ℓ ≥ 0, ti ≥ 0, ∀i, ℓ, (5.77)

where Gi , Ĝ(qi)10
Q−1(1−ǫ)σ(qi)

10 .

Proof. Since, the trajectory of the mobile agent affects neither the data collection

nor the data transmission, the optimal trajectory which results in the minimum

total energy is simply the one that results in the minimum period. This happens

after choosing the minimum-length Hamiltonian cycle, H, and the maximum velocity,

vmax. The rest of the proof is straightforward and uses the fact that T = d(H)
vmax

+
∑m

i=1 ti

in this case.

The more general case where |S(t)| > 0 and the mobile agent transmits at the

positions of the POIs only can be considered in a similar fashion. The results are,

however, omitted for lack of space.
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5.7 Simulation Results for the Extended Dynamic

Coverage Problem

In this section, we present the results of applying the proposed MILP approach to

a persistent information collection scenario using a mobile agent. The workspace is

a 100m by 100m rectangular region that includes 10 POIs. We assume the mobile

agent is equipped with an omni-directional data collection device with the following

distance-dependant data collection rate: α(d) = α0e
−d/ι, where α0 and ι are positive

constants. The area covered by the data collection device is also given by S(q) =
{
q′ ∈ W | ‖q′ − q‖ ≤ dmax

}
.

The channel power G(q) is generated using our probabilistic channel simulator.

The remote station is located at position qb = (0, 0, 1.0) m. The following channel

parameters are also used: path loss constant KdB = −25 dB, path loss exponent

nPL = 2, standard deviation of shadowing component ϑ = 5 dB, decorrelation dis-

tance of shadowing component β = 20 m, and standard deviation of multipath

component ω = 2 dB. The 3D plot of the channel power G(q) in dB is shown in Fig.

5.14. The rest of the parameters are selected as follows: α0 = 106 bits/s, ι = 8 m,

dmax = 8 m, δmax = 2 m, vmax = 1 m/s, vmin = 0.1 m/s, w = 0.1 J/m, Ploss = 0.2 W,

BERTH = 0.05, B = 1 MHz, N0 = 10−11 W/Hz, κ = 9.24×10−6, ρi = 6×104 bits/s,

for i = 1, · · · , 10, tc = 2 s, and Lmax = 1010 bits. We also consider nr = 3 different

spectral efficiencies of RTX,1 = 2 bits/symbol, RTX,2 = 4 bits/symbol and RTX,3 = 6

bits/symbol (corresponding to 4QAM, 16QAM and 64QAM modulations).

Fig. 5.15 shows the optimal trajectory of the mobile agent in case Type I con-

straints in (5.69) are used for the total transmission time in each segment. The green

parts of the trajectory in the left figure show the segments where the mobile agent

slows down, i.e., the segments where the robot does not move with the maximum

velocity (̺∗i,j,k > v−1
max). The green parts in the right figure also show the segments
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Figure 5.14: The 3D plot of the channel power G(q) over the workspace.

where the information bits are transmitted to the remote station, i.e., the segments

where
∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0.15 The velocity profile of the mobile agent long the optimal

trajectory is shown in Fig. 5.16 (left). The optimal transmission times along the op-

timal trajectory, for sending with the three different spectral efficiencies of RTX,1 = 2

bits/symbol, RTX,2 = 4 bits/symbol and RTX,3 = 6 bits/symbol, are also shown in

Fig. 5.16 (right). In both figures, we have specified the paths between any two POIs

along the trajectory of mobile agent. It can be seen that the mobile agent slows

down along the segments close to the POIs to collect the information bits. However,

it moves with velocity vmax when there is no information bits to collect. The optimal

motion energy, communication energy and period are also shown in Table 5.6. It is

worth mentioning that since the communication energy is much larger than the mo-

tion energy (due to poor predicted channel quality), the optimal trajectory passes

through the regions close to the remote station as much as possible to minimize

the communication energy. In other words, the minimum-length Hamiltonian cycle

15Note that the planning is based on a probabilistic prediction of the channel quality.
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(which provides the minimum motion energy) is not the optimal Hamiltonian cycle

in this case.
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Figure 5.15: The optimal trajectory of the mobile agent in case Type I constraints in (5.69)
are used for the total transmission time in each segment. The location of the remote station
is denoted at the center of the figures. The green parts of the trajectory in the left figure
show the segments where the mobile agent slows down, i.e., the segments where ̺∗i,j,k >

v−1
max. The green parts in the right figure also show the segments where the information
bits are transmitted to the remote station, i.e., the segments where

∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0.

In order to see how information bits are transmitted along the trajectory, Fig.

5.17 shows the plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
and Gi,j,k (as a measure of the pre-

dicted channel quality) along the optimal trajectory of the mobile agent. It can be

seen that in this case whenever for any two segments (i1, j1, k1) and (i2, j2, k2) we have

Gi1,j1,k1 > Gi2,j2,k2, then, necessarily
∑nr

ℓ=1 τ
∗
i1,j1,k1,ℓ

(
2RTX,ℓ−1

)
≥∑nr

ℓ=1 τ
∗
i2,j2,k2,ℓ

(
2RTX,ℓ−

1
)
, as proved by Theorem 5.6.1. In other words, information bits are sent in the re-

gions with good predicted channel quality.

Next consider the case where Type II constraints in (5.70) are used for the total

transmission time in each segment. The optimal trajectory of the mobile agent in

this case is shown in Fig. 5.18. Note that Type II constraints are more relaxed than
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Figure 5.16: The velocity profile (left) and the transmission time profile (right) of the
mobile agent along the optimal trajectory of Fig. 5.15. We have specified the paths between
any two POIs along the trajectory on both figures.

Type I ones. Therefore, the mobile agent can optimize the transmission times more

freely, resulting in less total energy, as shown in Table 5.6. This can be justified by

slowing down and spending more time for transmission in regions with good predicted

channel qualities (e.g., the regions close to the remote station). The velocity profile

and the transmission time profile of the mobile agent long the optimal trajectory of

Fig. 5.18 are shown in Fig. 5.19. The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ −1

)
and Gi,j,k along

the optimal trajectory of the mobile agent are also shown in Fig. 5.20. As can be

seen, unlike Fig. 5.17, part 4 of Theorem 5.6.1 does not hold for this case. Also, in

this example, the mobile agent slows down in two regions: along the segments close

to the POIs to collect more information bits, and along a number of segments with

high predicted channel quality to transmit more information bits. Due to the high

channel quality along the segments close to the remote station, the mobile agent

transmits most of its collected information bits in these region, as can be seen from

Fig. 5.20.

In both of the previous examples, the communication energy is much higher

than the motion energy due to poor predicted channel quality. In other words,
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Figure 5.17: The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
(top) and Gi,j,k (as a measure of the

predicted channel quality) (bottom) along the optimal trajectory of Fig. 5.15.

the optimal trajectory is very similar to the Hamiltonian tour that minimizes the

communication energy as opposed to the one with minimum length that minimizes

the motion energy. On the other hand, when the channel quality is very high, the

motion energy becomes the dominant factor, as compared to the communication

energy, and the optimal trajectory becomes the minimum-length Hamiltonian tour

on the POIs. In order to show this, we find the optimal trajectory for both of

the previous examples when the channel power is 20 dB larger (100 times larger in

the linear domain) at every point in the workspace. Fig. 5.21 shows the optimal

trajectory of the mobile agent in this case when Type I constraints are used for the

total transmission time in each segment. It can be seen that the optimal trajectory

is the minimum-length Hamiltonian cycle. The velocity profile and the transmission

time profile of the mobile agent along the optimal trajectory of Fig. 5.21 are also

shown in Fig. 5.22. The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
and Gi,j,k along the optimal
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Figure 5.18: The optimal trajectory of the mobile agent in case Type II constraints in
(5.70) are used for the total transmission time in each segment. The location of the remote
station is denoted at the center of the figures. The green parts of the trajectory in the
left figure show the segments where the mobile agent slows down, i.e., the segments where
̺∗i,j,k > v−1

max. The green parts in the right figure also show the segments where the informa-
tion bits are transmitted to the remote station, i.e., the segments where

∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0.

trajectory of the mobile agent are additionally shown in Fig. 5.23. The same behavior

as in the first example can be observed. Also, from Table 5.6, it can be seen that

both motion and communication energies are smaller than those of the first example,

with the motion energy being the dominant factor.

The trajectory of the mobile agent for the case that Type II constraints are used

instead for the total transmission time in each segment and the channel power is

20 dB larger at every point is shown in Fig. 5.24. The optimal trajectory is again

the minimum-length Hamiltonian cycle. The optimal velocity and transmission time

profiles in this case are shown in Fig. 5.25. The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
and

Gi,j,k along the optimal trajectory of the mobile agent are also shown in Fig. 5.26.

The same behavior as in the second example can be observed. From Table 5.6, both

motion and communication energies are smaller than their corresponding values in
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Figure 5.19: The velocity profile (left) and the transmission time profile (right) of the
mobile agent along the optimal trajectory of Fig. 5.18. We have specified the paths between
any two POIs along the trajectory in both figures.

Fig. 5.15 Fig. 5.18 Fig. 5.21 Fig. 5.24
E∗

c 1136.6 J 654.1 J 15.00 J 9.24 J
E∗

m 227.6 J 247.18 J 157.14 J 157.14 J
E∗ 1364.2 J 901.22 J 172.13 J 166.38 J
T ∗ 884.2 s 989.15 s 610.36 s 610.36 s

Table 5.6: The optimal communication energy, motion energy, total energy and period in
all the examples of Figs. 5.15, 5.18, 5.21 and 5.24.

the second example. Also, since Type II constraints are less restrictive, the total

energy in this case is less than that of the third example. In fact, this case results in

the least total energy among all the examples. Fig. 5.27 graphically explains how the

optimal energy and the length of the optimal Hamiltonian cycle change as a function

of the channel quality.

Finally, the time evolution of Ψi(t) for POI #4 in all the previous examples is

shown in Fig. 5.28. Without loss of generality, we have assumed that at time t = 0

the mobile agent starts from POI #4 and Ψi(0) = 0. It can be seen Ψi(t) remains

bounded in time. The same behavior can be shown for other POIs.
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Figure 5.20: The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
(top) and Gi,j,k (as a measure of the

predicted channel quality) (bottom) along the optimal trajectory of Fig. 5.18.

5.8 Summary

In this chapter, we considered the problem of dynamic coverage of a number of POIs

using a group of mobile agents in a time-varying environment and in the presence of

realistic fading channels. By a time-varying environment, we referred to an environ-

ment where a physical quantity is constantly growing at certain rates at the POIs.

We considered a linear dynamics for the time-variation of a quantity of interest at the

POIs. We then proposed motion and communication policies for the mobile agents

to minimize the total energy consumption of the mobile agents in each period, while

guaranteeing that the quantity of interest at the POIs remains bounded, and the

constraints on the connectivity of the mobile agents, the frequency of covering the

POIs, and the total energy budget of the mobile agents are satisfied.

We started with the case where the sensing/actuation range of the mobile agents
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Figure 5.21: The optimal trajectory of the mobile agent in case Type I constraints in
(5.69) are used for the total transmission time in each segment and the channel power is 20
dB larger. The location of the remote station is denoted at the center of the figures. The
green parts of the trajectory in the left figure show the segments where the mobile agent
slows down, i.e., the segments where ̺∗i,j,k > v−1

max. The green parts in the right figure also
show the segments where the information bits are transmitted to the remote station, i.e.,
the segments where

∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0.

is small such that each agent is required to move to the position of each POI and stop

there for some time to sense/service it. We also assumed a limited total energy budget

for the mobile agents. We considered two variants of the problem: communication-

intensive and communication-efficient. Communication-intensive case refers to the

case where the mobile agents are required to be connected at all the POIs they

visit, in order to send their collected information to the remote station in real-time.

Communication-efficient case, on the other hand, refers to the case where the mobile

agents are only required to connect to the remote station once along their trajectories,

decreasing the communication burden considerably. In both cases, we showed how

to optimally find the trajectories of the mobile agents, as well as their stop times

and transmission powers at the POIs, using mixed-integer linear programs (MILPs).

The properties of the optimal solutions of the MILPs, as well as their asymptotic
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Figure 5.22: The velocity profile (left) and the transmission time profile (right) of the
mobile agent along the optimal trajectory of Fig. 5.21. We have specified the paths between
any two POIs along the trajectory in both figures.

properties, were also characterized mathematically. At the end of this chapter, we

extended our framework by considering a non-zero range for the sensing/actuation

device of the mobile agents and adapting their velocities and transmission rates

(in addition to their transmission powers) along their trajectories. For the sake of

simplicity, however, we considered only one mobile agent. For this case, we similarly

proposed an MILP to optimally plan the trajectory of the mobile agent, as well as

its transmission power, transmission rate and velocity. The solution of the proposed

MILP was also characterized mathematically in this case.

Through theoretical analysis and simulation results, we showed that our proposed

dynamic framework enables dynamic coverage of time-varying environments in the

presence of realistic fading channels, which is not possible using the previous methods

in the literature.
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Figure 5.23: The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
(top) and Gi,j,k (as a measure of the

predicted channel quality) (bottom) along the optimal trajectory of Fig. 5.21.
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Figure 5.24: The optimal trajectory of the mobile agent in case Type II constraints in
(5.70) are used for the total transmission time in each segment and the channel power is 20
dB larger. The location of the remote station is denoted at the center of the figures. The
green parts of the trajectory in the left figure show the segments where the mobile agent
slows down, i.e., the segments where ̺∗i,j,k > v−1

max. The green parts in the right figure also
show the segments where the information bits are transmitted to the remote station, i.e.,
the segments where

∑nr

ℓ=1 τ
∗
i,j,k,ℓ > 0.
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Figure 5.25: The velocity profile (left) and the transmission time profile (right) of the
mobile agent along the optimal trajectory of Fig. 5.24. We have specified the paths between
any two POIs along the trajectory in both figures.

190



Chapter 5. Comm-Aware Dynamic Coverage of Time-Varying Environments

0 50 100 150 200 250 300
0

20

40

60
1 10 9 6 2 7 5 3 8 4 1

∑
ℓ
τ
∗ i,
j,
k
,ℓ
(2

R
T
X
,ℓ
−

1)

0 50 100 150 200 250 300

−45

−40

−35

−30

1 10 9 6 2 7 5 3 8 4 1

dist along the traj. (m)

G
i,
j,
k
(d
B
)

Figure 5.26: The plots of
∑nr

ℓ=1 τ
∗
i,j,k,ℓ

(
2RTX,ℓ − 1

)
(top) and Gi,j,k (as a measure of the

predicted channel quality) (bottom) along the optimal trajectory of Fig. 5.24.
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Figure 5.27: The graphical explanation of how optimal energy and the length of the
optimal Hamiltonian cycle change as functions of the channel quality.
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Figure 5.28: The time evolution of Ψi(t) in all the previous examples and for POI #4.
The top left, top right, bottom left and bottom rights plots correspond to Fig. 5.15, Fig.
5.18, Fig. 5.21, and Fig. 5.24, respectively.
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Chapter 6

Conclusions and Further

Extensions

In this dissertation, we proposed a new framework for communication-aware motion

planning in mobile sensor networks. Our proposed approach enables robust task

accomplishment in mobile networks by properly integrating communication, sens-

ing and navigation objectives for motion planning. Through several examples from

robotics and mobile sensors literature, we showed that our framework can be used

to optimize the trajectories of the mobile sensors (and possibly their transmission

powers and rates) to accomplish the sensing task of the network, while satisfying the

constraints on the connectivity of the mobile sensors (and their motion and energy

consumption).

Next we continue with summarizing the results of each chapter and providing

possible directions for further extension of the results of this dissertation.

In Chapter 2, we considered the problem of assessing (predicting) the spatial vari-

ations of a wireless channel based on a small number of channel measurements. We

used a multi-scale probabilistic model to characterize the channel variations and de-
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veloped a channel assessment framework based on that. More specifically, we showed

how to plan the motion of the mobile sensors to improve their channel assessment.

We first showed how a mobile sensor can plan its trajectory to improve its estima-

tion of the underlying model parameters. This was then followed by planning the

motion to decrease the channel assessment error variance. The proposed approaches

can be used to provide a good assessment of the wireless channels for the purpose of

communication-aware networked task accomplishment.

In Chapter 3, we considered our first communication-aware task accomplishment

example. We proposed a communication-aware motion planning framework to re-

motely track a moving target in realistic fading communication environments. We

formulated the Kalman filtering equations for estimating the position of the target

over realistic communication links and in the presence of a packet-dropping receiver

at the remote station. By using the probabilistic channel assessment framework of

Chapter 2, we then designed communication-aware motion planning approaches that

properly combine sensing and communication objectives with the goal of maximizing

received Fisher information at the remote station.

In Chapter 4, we considered our second example of communication-aware task

accomplishment using a mobile network. We assumed the scenario where a team

of mobile sensors are deployed by a remote station to explore a given environment,

detect an unknown number of static targets and inform the remote station of their

findings. We studied the problem of designing the trajectories of the mobile sensors

to minimize the probability of target detection error at the remote station, while

satisfying the requirements on the connectivity of the mobile sensors to the remote

station. First, we considered the case where the mobile sensors need to constantly

update the remote station on the locations of the targets. For this case, we proposed

our communication-constrained motion planning approach which enables the mobile

sensors to explore the workspace while maximizing their probability of connectivity
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to the remote station during the entire operation. We proved that the overall motion

optimization objective function, in this case, is a multiplication of a sensing func-

tion that maximizes the Kullback-Leibler (KL) divergence between the maximum

uncertainty state and the current one, by a communication function, that maximizes

the probability of connectivity to the remote station. Second, we considered the

case where the remote station only needs to be informed of the locations of the

targets at the end of a given operation time. By building on our communication-

constrained results, we proposed our hybrid motion planning approach for this case.

This approach plans the motion of the mobile sensors such that they explore the

workspace with less connectivity constraint on their motion, as compared to the

communication-constrained approach, while maximizing their probability of connec-

tivity at the end of the operation. Both of the proposed communication-constrained

and hybrid approaches make use of a switching structure. We mathematically char-

acterized the asymptotic behavior of our proposed approaches under certain condi-

tions. We showed that, in terms of the final detection error probability at the remote

station, the hybrid approach outperforms the communication-constrained one, while

the latter has a higher chance of constant connectivity and, therefore, is more robust

to the abrupt termination of the operation. We finally proposed strategies to further

increase the robustness of both approaches to multipath fading and under channel

assessment errors/uncertainties.

Finally, in Chapter 5, we considered our third communication-aware task accom-

plishment example. In this chapter, we studied the problem of dynamic coverage

of a number of POIs using a group of mobile agents in a time-varying environment

and in the presence of realistic fading channels. We considered a linear dynam-

ics for the time-variation of a quantity of interest at the POIs. We then proposed

motion and communication policies for the mobile agents to minimize the total en-

ergy consumption of the mobile agents in each period, while guaranteeing that the

quantity of interest at the POIs remains bounded, and the constraints on the con-
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nectivity of the mobile agents, the frequency of covering the POIs, and the total

energy budget of the mobile agents are satisfied. We started with the case where the

sensing/actuation range of the mobile agents is small such that each agent is required

to move to the position of each POI and stop there for some time to sense/service it.

We also assumed a limited total energy budget for the mobile agents. We considered

two variants of the problem: communication-intensive and communication-efficient.

Communication-intensive case refers to the case where the mobile agents are required

to be connected at all the POIs they visit, in order to send their collected informa-

tion to the remote station in real-time. Communication-efficient case, on the other

hand, refers to the case where the mobile agents are only required to connect to the

remote station once along their trajectories, decreasing the communication burden

considerably. In both cases, we showed how to optimally find the trajectories of

the mobile agents, as well as their stop times and transmission powers at the POIs,

using mixed-integer linear programs (MILPs). The properties of the optimal solu-

tions of the MILPs, as well as their asymptotic properties, were also characterized

mathematically. At the end of this chapter, we extended our framework by con-

sidering a non-zero range for the sensing/actuation device of the mobile agents and

adapting their velocities and transmission rates (in addition to their transmission

powers) along their trajectories. For the sake of simplicity, however, we considered

only one mobile agent. For this case, we similarly proposed an MILP to optimally

plan the trajectory of the mobile agent, as well as its transmission power, transmis-

sion rate and velocity. The solution of the proposed MILP was also characterized

mathematically in this case.

There are several possible extensions of the results of this dissertation. A number

of possible extensions are as follows:

1. In this dissertation, we considered a wide range of examples when proposing our

communication-aware motion planning approaches. The examples considered
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in this dissertation demonstrate different aspects of communication-aware task

accomplishment in mobile networks. Our ultimate goal is to have a unified

framework for communication-aware task accomplishment that can handle any

general form of information generation and thus can be applicable to several

different applications.

2. In this dissertation, we mainly considered assessing a channel between a mobile

sensor and a fixed remote station. The reason for this is as follows. While the

distributions of the underlying channel dynamics are readily applicable to the

case of two mobile sensors, there are very few work that address the modeling

of the channel spatial correlation in this case. We expect a more advanced

version of the exponential function to be a good match in this case. However,

assessing this hypothesis requires further experimental validations. We expect

that our channel prediction framework would then be easily extendable to the

case of mobile-to-mobile channels.

3. The proposed motion planning approaches of Chapters 2, 3 and 4 are greedy

approaches. As explained previously, the reason for choosing greedy approaches

are twofold. First, the form of the objective functions (and constraints) that

arise in communication-aware motion planning problems are highly nonlinear.

Second, greedy approaches can easily support adaptation to channel assess-

ment, which is a very useful property in case the channel is assessed online by

the mobile sensors. There are, however, more optimal solutions based on reced-

ing horizon approaches that can be used. Although receding horizon motion

planning naturally increases the complexity of the motion planning approaches,

studying the improvement achieved by using such approaches is still valuable.
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