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Abstract

In this dissertation, we address the issue of collaborative information processing for diffusive

source parameter estimation using wireless sensor networks (WSNs) capable of sensing in

dispersive medium/environment, from signal processing perspective. We begin the disserta-

tion by focusing on the mathematical formulation of a special diffusion phenomenon, i.e., an

underwater oil spill, along with statistical algorithms for meaningful analysis of sensor data

leading to efficient estimation of desired parameters of interest. The objective is to obtain

an analytical solution to the problem, rather than using non-model based sophisticated nu-

merical techniques. We tried to make the physical diffusion model as much appropriate as

possible, while maintaining some pragmatic and reasonable assumptions for the simplicity

of exposition and analytical derivation.

The dissertation studies both source localization and tracking for static and moving

diffusive sources respectively. For static diffusive source localization, we investigate two

parametric estimation techniques based on the maximum-likelihood (ML) and the best linear
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unbiased estimator (BLUE) for a special case of our obtained physical dispersion model.

We prove the consistency and asymptotic normality of the obtained ML solution when the

number of sensor nodes and samples approach infinity, and derive the Cramer-Rao lower

bound (CRLB) on its performance. In case of a moving diffusive source, we propose a particle

filter (PF) based target tracking scheme for moving diffusive source, and analytically derive

the posterior Cramer-Rao lower bound (PCRLB) for the moving source state estimates as a

theoretical performance bound.

Further, we explore nonparametric, machine learning based estimation technique for

diffusive source parameter estimation using Dirichlet process mixture model (DPMM). Since

real data are often complicated, no parametric model is suitable. As an alternative, we

exploit the rich tools of nonparametric Bayesian methods, in particular the DPMM, which

provides us with a flexible and data-driven estimation process. We propose DPMM based

static diffusive source localization algorithm and provide analytical proof of convergence.

The proposed algorithm is also extended to the scenario when multiple diffusive sources of

same kind are present in the diffusive field of interest.

Efficient power allocation can play an important role in extending the lifetime of a re-

source constrained WSN. Resource-constrained WSNs rely on collaborative signal and in-

formation processing for efficient handling of large volumes of data collected by the sensor

nodes. In this dissertation, the problem of collaborative information processing for sequential

parameter estimation in a WSN is formulated in a cooperative game-theoretic framework,

which addresses the issue of fair resource allocation for estimation task at the Fusion cen-

ter (FC). The framework allows addressing either resource allocation or commitment for

information processing as solutions of cooperative games with underlying theoretical jus-

tifications. Different solution concepts found in cooperative games, namely, the Shapley

function and Nash bargaining are used to enforce certain kinds of fairness among the nodes

in a WSN.

viii



Contents

List of Figures xiv

Glossary xviii

1 Motivations and Overview of the Dissertation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Recent Trends in Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . 2

1.3 Limitations of Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Physical Modeling of Diffusion Phenomenon 13

2.1 Problem Formulation and Modeling . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Moving Diffusive Source . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



Contents

3 Parametric Diffusive Source Localization 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Maximum-likelihood (ML) Based Parameter Estimation . . . . . . . . . . . . 28

3.5 Best Linear Unbiased Estimator (BLUE) Based Source Localization . . . . . 31

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Static Diffusive Source Localization . . . . . . . . . . . . . . . . . . . 33

3.6.2 Reconstructed Spatio-Temporal Concentration Distribution . . . . . . 35

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Dirichlet Process Mixture Model Based Diffusive Source Localization 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Physical and Measurement Models . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Learning-based Diffusive Source Estimation . . . . . . . . . . . . . . . . . . 49

4.3.1 Dirichlet Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Dirichlet Process Mixture Model (DPMM) . . . . . . . . . . . . . . . 51

4.3.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 DPMM-based Single Diffusive Source Localization . . . . . . . . . . . . . . . 52

4.4.1 Description of the proposed Algorithm 1 . . . . . . . . . . . . . . . . 53

4.5 DPMM-based Multiple Diffusive Source Localization . . . . . . . . . . . . . 55

x



Contents

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Single Diffusive Source Localization . . . . . . . . . . . . . . . . . . . 57

4.6.2 Multiple Diffusive Source Localization . . . . . . . . . . . . . . . . . 59

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Moving Diffusive Source Tracking 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Problem Formulation and System Model . . . . . . . . . . . . . . . . . . . . 67

5.2.1 State Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Target Tracking using Particle Filters . . . . . . . . . . . . . . . . . . . . . . 70

5.4 PCRLB Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Game Theoretic Lifetime Improvement of WSN in Estimation 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Sensor Network Model for Sequential Estimation . . . . . . . . . . . . . . . . 81

6.3 Basics of The Shapley Function . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Shapley Value-based Power Allocation . . . . . . . . . . . . . . . . . . . . . 86

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



Contents

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Fair Resource Allocation in WSNs for Sequential Estimation 95

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Sensor Network Model for Sequential Estimation . . . . . . . . . . . . . . . . 96

7.3 Basics of Nash Bargaining Solution . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 NBS-based Solution Using Algorithm 4 . . . . . . . . . . . . . . . . . . . . . 98

7.5 NBS-based Solution Using Algorithm 5 . . . . . . . . . . . . . . . . . . . . . 101

7.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Summary of Dissertation and Future Works 106

8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Research Work Done in Cognitive Radios 111

9.1 Efficient Dynamic Spectrum Sharing in Cognitive Radio Networks: Central-

ized Dynamic Spectrum Leasing (C-DSL) . . . . . . . . . . . . . . . . . . . . 111

9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.1.2 C-DSL-based Spectrum Sharing Cognitive Radio Network Model . . . 114

9.1.3 C-DSL Game Model for Dynamic Spectrum Sharing . . . . . . . . . . 116

9.1.4 Analysis of The Proposed C-DSL Game with The MF Secondary Receiver121

xii



Contents

9.1.5 Analysis of The Proposed C-DSL Game with the LMMSE Secondary

Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.1.6 Performance Analysis of a Centralized Dynamic Spectrum Leasing Sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 142

xiii



List of Figures

1.1 A typical wireless sensor network. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 (a) Sensing board, and (b) RF transceiver of a typical sensor node with

wireless communication capability. . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 An under-water oil spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Concentration distribution in space (x−y−z coordinates) at times (a) t = 1

sec, and (b) t = 100 sec with velocity vector v = [50, 50, 0] m/s. (Magnitude

of concentration is proportional to darkness) . . . . . . . . . . . . . . . . . 21

3.1 Normalized MSE and CRLB of the MLE as function of (a) number of nodes,

and (b) time samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Normalized MSE of the BLUE as function of (a) number of nodes, and (b)

time samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Concentration distribution in space (x-y-z coordinates) at times (a) t = 1

sec and (b) t = 100 sec for z = 100m, (c) Concentration distribution along

z-axis and in time for x=25m and y=25m. . . . . . . . . . . . . . . . . . . . 36

xiv



List of Figures

3.4 Concentration distribution in space (x-y-z coordinates) at times (a) t = 1

sec and (b) t = 100 sec for z = 100m, (c) Concentration distribution along

z-axis and in time for x=25m and y=25m for MLE. . . . . . . . . . . . . . 37

3.5 Concentration distribution in space (x-y-z coordinates) at times (a) t = 1

sec and (b) t = 100 sec for z = 100m, (c) Concentration distribution along

z-axis and in time for x=25m and y=25m for BLUE. . . . . . . . . . . . . . 37

4.1 Clustering with associated probabilities at time (a) t = 2 sec, (b) t = 4 sec,

(c) t = 6 sec, and (d) t = 8 sec for a single random realization with actual

location being [0.01, 0.01]T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Performance of the proposed Algorithm 1. . . . . . . . . . . . . . . . . . . . 60

4.3 Estimated source-to-node distances for diffusive source (a) One, (b) Two. . 61

4.4 Clustering with associated probabilities at time (a) t = 5 sec and (b) t = 10

sec for source 1 with actual location being [0.01, 0.01]T for a single random

realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Clustering with associated probabilities at time (a) t = 5 sec and (b) t = 10

sec for source 1 with actual location being [−20,−20]T for a single random

realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Performance of the proposed Algorithm 2. . . . . . . . . . . . . . . . . . . . 63

5.1 (a) Actual and estimated trajectories of the moving diffusive source, and (b)

RMSE (dB) for grid-based sensor node deployment. . . . . . . . . . . . . . 74

5.2 (a) Actual and estimated trajectories of the moving diffusive source, and (b)

RMSE (dB) for random sensor node deployment. . . . . . . . . . . . . . . . 75

xv



List of Figures

5.3 (a) Actual and estimated trajectories of the moving diffusive source, and (b)

RMSE (dB) for different values of sampling time Ts. . . . . . . . . . . . . . 76

6.1 A typical WSN architecture with a FC. . . . . . . . . . . . . . . . . . . . . 82

6.2 Sequential estimation using the proposed algorithm. . . . . . . . . . . . . . 88

6.3 Updated variance at the FC using Shapley value-based algorithm for different

values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Network lifetime improvement using the proposed algorithm for equal initial

node energy with ε = 0.85. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Improvement in the (a) Network lifetime, (b) Variance of estimation at the

FC for random initial node energy with ε = 0.85. . . . . . . . . . . . . . . . 92

6.6 Network lifetime in number of estimation task as a function of processing

time (tp) for random initial node energy. . . . . . . . . . . . . . . . . . . . . 92

6.7 Network lifetime in number of estimation task as a function of α for random

initial node energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Sequential estimation process using Algorithm 4. . . . . . . . . . . . . . . . 100

7.2 Sequential estimation process using Algorithm 5. . . . . . . . . . . . . . . . 103

7.3 Updated variance at the FC vs. number of nodes with ρ = 0. . . . . . . . . 104

7.4 Network lifetime improvement using Algorithm 4 and 5. . . . . . . . . . . . 105

9.1 Primary utility u0 for a fixed secondary interference I0 with Q0 = Qmax
0 = 10,

hp1 = 1, ρ(p)
01 = ρ(s)

10 = 1 and λ = 1. . . . . . . . . . . . . . . . . . . . . . . . 119

xvi



List of Figures

9.2 Secondary-link utility uk for (a) fixed interference cap Q0 and (b) fixed λ

with Q0 = 5. Other parameters used are: Wk = W = 1, h2
p1 = h2

11 = 1,

σ2
p = σ2

s = 1 and all the cross-correlations are assumed to be unity. . . . . . 122

9.3 Outcome of the C-DSL game at the system NE, with MF and LMMSE re-

ceiver, as a function of secondary system size Ks assuming identical secondary

links, when λ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.4 Primary and secondary utilities at the system NE as a function of secondary

system size Ks for λ = 5 and assuming identical secondary user. (a) Primary

system utility, (b) Sum-rate and the per-user rate achieved by the secondary

system at the NE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.5 (a) Outcome of the C-DSL game at the system NE, with MF and LMMSE

secondary receiver, as a function of secondary system size Ks in the presence

of channel fading, (b) Average sum-rate and the per-user rate achieved by

the secondary system at the NE. . . . . . . . . . . . . . . . . . . . . . . . . 131

9.6 Outage probability Pr (fk (p∗k) < fmin) of a typical secondary user at the NE

of the C-DSL game in fading channels as a function of secondary system size

Ks for a required QoS requirement fmin. . . . . . . . . . . . . . . . . . . . . 132

9.7 Primary and secondary rates at the system NE as a function of secondary

system size Ks in the presence of channel fading with Kp = 3 (a) Average

data rate of primary user 1, (b) Average sum-rate and the per-user rate

achieved by the secondary system at the NE. . . . . . . . . . . . . . . . . . 134

9.8 Outage probability Pr (fk (p∗k) < fmin) of a typical secondary user at the

NE of the C-DSL game in fading channels with Kp = 3 for a required QoS

requirement fmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xvii



Glossary

AWGN Additive white Gaussian Noise

BLUE Best linear unbiased estimator

CDMA Code division multiple access

C-DSL Centralized dynamic spectrum leasing

CRLB Cramér-Rao lower bound

CSI Channel state information

DPMM Dirichlet process mixture model

DSA Dynamic spectrum access

DSL Dynamic spectrum leasing

DSS Dynamic spectrum sharing

FC Fusion center

FIM Fisher information matrix

H-SVM Hierarchical SVM

IC Interference cap

xviii



Glossary

IP Internet protocol

LMMSE Linear minimum mean-squared error

MEMS Micro-electro-mechanical systems

MF Matched filter

ML Maximum-likelihood

MLE Maximum-likelihood estimator

MPA Maximum power allocation

MSE Mean squared error

MUD Multiuser detector

NB Nash bargaining

NBS Nash bargaining solution

NE Nash equilibrium

PCRLB Posterior Cramér-Rao lower bound

PDF Probability density function

PF Particle filter

PoI Phenomenon of Interest

POMDP Partially observable Markov decision process

QoS Quality-of-Service

RL Reinforcement learning

xix



Glossary

RMSE Root mean squared error

SINR Signal-to-interference-plus-noise ratio

SNR Signal-to-noise ratio

SLT Statistical learning theory

SVM Support vector machine

UAV Unmanned autonomous vehicles

WSN Wireless sensor networks

xx



Chapter 1

Motivations and Overview of the

Dissertation

1.1 Introduction

The release of hazardous diffusive substance into environment, e.g., the release of chemicals

from industries into air, liquid petroleum hydrocarbon into the ocean or coastal water due to

human activity, has attracted tremendous attention because of its environmental, biological

and economical impact. Recent BP oil disaster in the Gulf of Mexico is a perfect example of

how spill stemmed from a sea-floor oil gusher can severely damage the marine and wildlife

habitats as well as the Gulf’s fishing and tourism industries [1, 2]. Threats and hazardous

effects of such scenarios on environment and economy can be reduced if there were accurate-

enough models to assist in planning and emergency decision making. In particular, to limit

potential damage, it is important to have an efficient and reliable detection and estimation

system to predict substance dispersion. To that end, researchers and scientists in the signal

processing community have given considerable amount of attention in addressing the diffi-

cult task of diffusive source estimation, i.e., diffusive source localization [3–6]. Research in

1



Chapter 1. Motivations and Overview of the Dissertation

diffusive source parameter estimation can, in general, be extended to many other similar con-

texts such as homeland security, environmental and industrial monitoring, pollution control,

servers and data center temperature monitoring as well [3,6–12]. Some useful applications of

diffusive source estimation include, among many others, detection of potential biochemical

attacks, sensing explosives mounted on a static platform or a moving vehicle, and detecting

leakage of hazardous liquids from a container. In this dissertation, we explore collaborative

information processing for diffusive source parameter estimation from a signal processing

perspective to improve on and overcome the limitations in the methods found in existing

literature, and then further develop novel and efficient methods for solving realistic diffusion

scenarios.

Wireless sensor networks, in general, can be tasked with information collection, process-

ing and dissemination in dynamic and hazardous environments. Sensor networks are prone

to premature failure since nodes might run out of their batteries rapidly due to work load

variations (e.g. relay nodes or nodes that are in close proximity to a certain PoI are triggered

frequently), different communication environments or hardware setup. It is undesirable for

a sensor node to waste power as excessive use of battery power can shorten the lifetime of

a node. Hence, a commonly used performance criteria for many wireless sensor networks

is the network lifetime while satisfying required coverage and connectivity over the deploy-

ment region. In this dissertation, we also address the challenge of fair resource allocation,

i.e. power, among sensing nodes in a resource constrained WSN tasked with parameter

estimation, by developing algorithms based on cooperative game-theoretic framework for

collaborative sensor signal processing.

1.2 Recent Trends in Wireless Sensor Networks

Wireless sensor networks (WSNs) are spatially distributed data acquisition systems consist-

ing of many sensing nodes tasked with cooperatively monitoring a Phenomenon of Interest

2



Chapter 1. Motivations and Overview of the Dissertation

(PoI) [13,14]. Sensor nodes are capable of a limited amount of local processing and wireless

communication. Though having limited capability of processing information, when large

number of these sensors communicate and share information among themselves, they can

measure a desired PoI in great detail. Figure 1.1 shows a typical WSN connected to an IP

(internet protocol) network

Figure 1.1: A typical wireless sensor network.

WSNs have applications in a variety of fields because of their inexpensive feature and

ad-hoc method of deployment. In order to collect data from the diffusive field and to op-

erate on those obtained data to extract useful information about the diffusive source and

the field itself, we propose to use WSNs. The reasons behind choosing WSNs in our study

are the possibility of their distributed and ad-hoc nature of deployment, and wireless sensing

and communication capability. For example, when exact location of a PoI is not known,

distributed sensing would allow closer placement to the phenomenon than a single sensor

would permit. Also, in many practical cases, network of sensors are required to avoid pos-
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sible human deployment because of hazardous environment, or to overcome environmental

obstacles such as obstructions, line of sight constraints etc. In situations, where no fixed

infrastructure for power or communication are available, network of sensors are preferable

to single sensing node to cope up with finite sources of energy and communications. An-

other important benefit of using WSNs is the distributed wireless sensing, processing and

communication capability. Unlike a centralized system, distributed sensor nodes in a WSN

can sometimes process obtained data locally as much as possible in order to minimize the

total number of bits to be transmitted to the fusion center (FC) which leads to savings in

overall energy consumption.

Recent advances in low-power micro sensors, integrated circuits and wireless communi-

cation technologies have enabled the development of WSNs for variety of useful applica-

tions [13, 15, 16]. Also with the developments of unmanned autonomous vehicles (UAV’s),

WSNs are gaining popularity due to their potential to be useful for a wide range of appli-

cations including environmental monitoring, intrusion detection, and various military and

civilian applications [13,17,18]. Due to advanced micro-electro-mechanical systems (MEMS),

many of the state-of-the-art sensors are now more accurate, robust against noise and energy

efficient [19–22]. These new cutting-edge sensors can withstand severe unfavorable condi-

tions in hazardous areas where human deployment is impossible. Modern sensor nodes can

now be deployed either in a systematic or in random pattern in various environments, such

as, on ground, in the air, under water, on vehicle bodies depending on feasibilities and

requirements.

For instance, KMHP-100 MEMS microhotplate suitable for chemical sensor applications

can operate continuously at up to 650oC ensuring stable operation in hostile environment [20].

Some of the important commercially available cheap chemical sensors which are useful in

sensing gas diffusion are SeaPORT SC-210 and EX-TEC OD 4 [21, 23]. SeaPORT SC-

210 sensor developed by Seacoast Science is a chemical sensor which can accurately detect

airborne organic chemicals. EX-TEC OD 4 is an odorant measuring sensor used for ensuring
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safety in natural gas supply. Among underwater sensors, LI-192SA underwater quantum

sensor can accurately measures photosynthetically active radiation (PAR) in freshwater or

saltwater environments [22]. The LI-193 sensor features a high sensitivity optical design

and can be used at pressures up to 493 psi (pound per square inch) or 350 meter depths.

Recently researchers in Sandia National laboratory invented micro-chemical sensors for in-

situ monitoring and characterization of volatile contaminants for real-time monitoring of

subsurface contaminants [19]. These SWNT TFT (Single-Walled Carbon Nanotubes Thin

Film Transistor) sensors are well-suited for detecting chemical weapons agents and explosives,

which typically occur in low concentrations in situ. Some of the commercially available but

cheap gas sensors are: Safety Siren Pro HS80504 sensor (for detection of carbon monoxide

gas), Amprobe GSD600 gas detector for Methane and Propane, TPI A739 combustible gas

detector, and GE Security 60-652-95 -ITI wireless carbon monoxide (CO) sensor [24–26].

(a) (b)

Figure 1.2: (a) Sensing board, and (b) RF transceiver of a typical sensor node with wireless
communication capability.

A typical sensing unit of a sensor node is equipped with a programmable processor board

with an RF transceiver for wireless communication. Figure 1.2 shows a sensing board and

RF transceiver by Crossbow [27]. Now a days, many of the sensing units are equipped with

GPRS, Bluetooth, Wifi, and RFID/NFC modules for transmitting sensed signals to and
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receiving instructions from central unit.

All of these aforementioned exciting cutting-edge features in recently developed sensors

make them suitable candidates for the set of applications involving monitoring of diffusion

phenomena that we are interested in.

1.3 Limitations of Existing Approaches

Source or target localization using distributed sensor arrays is an area of active research

interest for a considerable period of time [28, 29]. In the past, detection and localization

problems of diffusive sources in WSN have been a topic of interest, specially in the case

of chemical/biological threat detection. Interesting research in this context can be found

in [3, 5, 6, 30], where biochemical concentration distribution in space and time for different

types of diffusive sources, diffusion models and/or sensor networks are estimated. For in-

stance, remotely localizing a gas or odor source using mobile robot was proposed in [6] by

fitting the gas distribution model to the gas sensor response at the sensor locations. However,

the mobile sensor dynamics model therein, was obtained empirically which does not allow

for dynamic environment and moving diffusive source. In [3], a maximum likelihood (ML)

estimator was developed for localizing vapor emitting sources and its asymptotic normality

of the obtained maximum likelihood (ML) estimator was proved when the signal-to-noise-

ratio (SNR) approaches infinity. Many other estimation techniques have also been used in

diffusive source parameters estimation literature [4, 5, 30–32]. In particular, Bayesian esti-

mation has been applied in [30, 31] in a sequential manner, which is not suitable in many

practical scenarios where faster estimation and immediate actions based on the estimation

are top priorities. A real-time maximum-likelihood estimation method was proposed in [4]

for estimating diffusive source parameters, where consistency and asymptotic efficiency of

the obtained estimator were proved when the density of sensors becomes infinite. In [33],

the problem of impulsive diffusive source localization was solved assuming the spatial sensor
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measurements at any sensor location as a scaled and shifted version of a common prototype

function, leading to solving a set of linear equations. However, the physical diffusion mod-

els used in [4, 33] are oversimplified with the diffusive sources assumed to be impulsive or

instantaneous in nature.

Although research has been done in tracking and/or estimating time-varying parameter

estimation in general [34–38], very few attempts have been made in time varying diffusive

source parameter estimation. Some of these methods cannot be applied directly into our time

varying parameter estimation model since, e.g., for a moving source, the concentration at

the current time is affected by all past values of source position. Therefore, time-cumulation

effects on the concentrations (i.e. observations) must be taken into account to estimate

time-varying parameters. Among previous works, a parametric moving path model for a

diffusive moving source was discussed in [5], where the moving source path was approximated

using finite number of basis functions. Tracking performance in this case depends on the

smoothness of the source trajectory, prior information about the moving source trajectory

and choosing a suitable finite set of basis functions. In [39], a novel recursive algorithm

was proposed to track the intensity of a diffusive point source, but the source location was

considered as an unknown static value. The aforementioned limitations may be overcome by

developing or exploiting state-of-the-art Bayesian location tracking methods, i.e., Kalman

filter [40], particle filter (PF) [41] suitable for dynamic state estimation problem.

There has been flurry of research in diffusive source detection and localization using

various parametric estimation techniques [3–6,30,31,33,42–45]. However, to the best of our

knowledge, no attempts have been made in exploiting the rich tools of machine learning for

diffusive source parameter estimation and localization. Though parametric models provides

us with a rigorous analysis of many fundamental questions for inference, if instead data

is sparse and prior knowledge is limited, robust nonparametric methods for inference are

generally preferred [46–48]. Since real data are often complicated, no parametric model

is suitable sometimes. This leads to degradation of the accuracy of parametric estimation
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techniques. Among recent works, support vector machine (SVM) and hierarchical-SVM (H-

SVM) were successfully applied in acoustic objection localization, and estimating physical

location of sensor nodes and channel noise in [49], [50] respectively with theoretical and

experimental validations. The problem of kernel parameter estimation for manifold learning

is addressed based on the nonparametric statistical theory estimation was proposed in [51].

The authors in [52] proposed a novel statistical learning theory (SLT) based model selection

approach to estimate optimal motion models from small data sets of image measurements for

single motion estimation and tracking. In [53], reinforcement learning (RL) method has been

used for parameter estimation in statistical spoken dialogue systems modeled as a partially

observable Markov decision process (POMDP).

For efficient resource allocation problem among sensing nodes, cooperative game theo-

retic concepts can be a useful tool in approaching collaborative signal processing problems in

distributed sensor networks. Unlike non-cooperative game theory, where individual players

compete with each other to achieve their goals of maximizing individual payoffs, cooperative

game theory allows competing players (or nodes) to form coalitions so as to efficiently achieve

their individual goals. Although collaborative signal and information processing for sensor

networks have been extensively studied in the literature [35–37, 54–56], there is still ample

room for research aimed at developing a formal analytical framework for collaborative infor-

mation processing in resource-constrained sensor networks, especially when maximizing the

sensor network lifetime is the most important objective. The fact that nodes act to optimize

their own payoffs has triggered research on using non-cooperative game theory to manage

powers in wireless sensor networks [57–59]. On the other hand, for a resource constrained

WSN, cooperative game theory can be a natural choice and comes in handy when estimating

a parameter with desired estimator quality is the ultimate goal. In current literature, very

few attempts have been made to exploit the rich collection of cooperative game theory in

power/energy-constrained WSNs tasked with estimating a parameter. For example, in [60],

a novel concept of incompletely cooperative game theory was used to simultaneously achieve

energy conservation and throughput for WSNs. On the other hand, [61,62] used cooperative
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game theory for channel/bandwidth allocation problem.

1.4 Main Contributions

In this section, we outline the significant contributions of this dissertation:

• We formulate the problem of an underwater oil spill scenario, and derive mathematical

model for the space-time substance dispersion considering the effect of laminar water

velocity as an external force. For a special case of our obtained physical dispersion

model, we propose and implement maximum-likelihood (ML) and best linear unbiased

estimator (BLUE) based parameter estimation techniques for a static diffusive source

continuously emitting substance. We prove both the consistency and asymptotical

normality of our obtained ML based solution when the number of sensor nodes and

time samples go to infinity. Derivation of the Cramér-Rao lower bound (CRLB) as a

theoretical performance bound is also presented.

• For moving diffusive source emitting substance into dispersive medium, we propose a

particle filter (PF) based target tracking method. To the best of our knowledge, mov-

ing diffusive source tracking using particle filtering approach has not been attempted

before. The posterior Cramér-Rao lower bound (PCRLB) for the moving source state

estimates is also derived as a theoretical performance bound.

• We propose Dirichlet process mixture model (DPMM) [63] classifier based algorithms

to estimate the location of continuous diffusive source emitting substance in a dis-

persive environment for both single and multiple source cases. We analytically prove

asymptotic convergence of the proposed algorithms in terms of total variation norm

as a function of the number of iterations in the learning process. For the proposed al-

gorithms, knowledge of the family of distribution of the likelihood function is enough.

The nonparametric nature of DPMM framework allows for minimal knowledge of mea-
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surement data, arbitrary noise distributions, and can estimate unknown parameters of

corresponding probability distribution from data itself in order to best fit the under-

lying the observation model.

• We address the issue of fair allocation of power among sensing nodes that are subjected

to power constraints. We formulate and solve the problems of sequential estimation

and power allocation in WSNs as a combined problem in a cooperative game theoretic

framework. The proposed framework allows addressing problems of fair resource allo-

cation for sequential estimation at the Fusion center (FC) of a wireless sensor network

as a solution of a cooperative game. We propose two novel and simple game theoretic

solutions to power allocation problem for sensor nodes such that the obtained solution

leads to increased lifetime of the WSN tasked with estimating desired parameters. In

particular, we use the concepts of Nash bargaining [64] and the Shapley function [65]

for our proposed game theoretic solutions.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows: Chapter 2 focuses on the mathematical

formulations of a special physical diffusion phenomenon, i.e., an underwater oil spill scenario,

and solving corresponding diffusion equations for space-time concentration distribution of

the dispersed substance.

In Chapter 3, the parametric estimation of a static diffusive source location has been

proposed and discussed using ML and BLUE estimators for a special case of our obtained

physical dispersion model in Chapter 2. Detailed analytical proofs corresponding to the

consistency and asymptotic normality for the obtained ML estimator are presented when

the number of sensor nodes and time samples go to infinity. The Cramér-Rao lower bound

(CRLB) was also obtained as a theoretical performance bound. The proposed methods can

be extended to the detection and estimation of other diffusive source estimation problem that
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may be encountered in homeland security applications, environmental monitoring, pollution

and temperature control etc.

Parametric diffusive source localization methods presented in Chapter 3 extensively de-

pend on the prior knowledge and sophistication of the underlying statistical model in most

cases. As an alternative, in Chapter4, we explore the rich tools of nonparametric Bayesian

methods, in particular Dirichlet process mixture model (DPMM) which provides us with a

flexible and data-driven estimation process. We propose DPMM based static diffusive source

localization algorithm and provide analytical proof of convergence. The proposed algorithm

is also extended to the scenario when multiple diffusive sources of same kind are present in

the diffusive field of interest.

In case of time varying parameter estimation, i.e., moving diffusive source localization,

the tracking problem becomes challenging as the space-time concentration distribution at

any time is affected by all past values of source position. To that end, Chapter 5 proposes

a particle filter (PF) based target tracking method for moving diffusive source. To the best

of our knowledge, moving diffusive source tracking using sequential Monte Carlo based PF

approach has not been attempted before. The Posterior Cramér-Rao Lower Bound (PCRLB)

for the moving source state estimates is also derived as a theoretical performance bound [66].

In Chapter 6 and 7, the problem of fair resource allocation and lifetime maximization of

WSNs, tasked with estimating desired parameters, is formulated in a cooperative game theo-

retic framework using the Shapley value [65] and Nash bargaining [61] concepts respectively.

The proposed frameworks allow addressing problems of fair resource, i.e., power allocation

for sequential estimation at the Fusion center (FC) of WSNs as solution of a cooperative

games. We proposed the Shapley value and Nash bargaining based simple game theoretic

solutions to power allocation problems for sensor nodes such that the obtained solution leads

to increased lifetime of the WSN.

In Chapter 8, we conclude the dissertation by summarizing our works and discussing
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future research directions. Finally, Chapter 9 discusses some other research work done in

cognitive radio area involving dynamic spectrum allocation/sharing.
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Chapter 2

Physical Modeling of Diffusion

Phenomenon

The word “diffusion” means spreading, propagation or dispersion. Oxford dictionary defines

it as:“the spreading of something more widely”. It has been used in different contexts while

maintaining the same literal meaning. Although diffusion phenomena have been experienced

since its early days, e.g., smelling remote things, mixing of solids into liquids etc., the first

related scientific record was accounted in 1827 by Scottish botanist Robert Brown [67].

Systematic experimental study of diffusion was performed by Thomas Graham in 1831 [68].

However, in 1855, Adolf Fick proposed the first mathematical laws of diffusion [69]. In

this dissertation, since we are dealing with physical diffusion phenomena, we use the terms

“diffusive” and/or “dispersive” to represent sources emitting diffusing substance into the

environment. In physics and chemistry, diffusion is the process of matter being transported

from one part of a system to another as a result of random molecular motions [69, 70].

Diffusion equation describes the dispersion of particles from a region of high concentration

to regions of lower concentration due to this random molecular motion.

Diffusion happens all around us, and affects our everyday lives both in positive and
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negative ways, i.e., cologne or perfume permeating the air in a room, exchange of oxygen

into muscles from the blood cells in the blood stream, and air pollution, water pollution

etc. Among the disadvantages of physical diffusion process, the release of liquid petroleum

hydrocarbon into the ocean or coastal water due to human activity has attracted tremendous

attention because of its environmental, biological and economical impact. Environmental

accidents, such as, BP oil disaster can severely damage the marine and wildlife habitats

as well as the Gulf’s fishing and tourism industries. Research in modeling and predicting

the extent of such oil spill can assist in planning and emergency decision making, thereby

reducing the threats and hazardous effects on environment as well as the economic cost.

Over the last decades, researchers and scientists in the signal processing community have

given considerable amount of attention in addressing the difficult task of diffusive source

estimation, in particular, diffusive source localization [3–6]. Considering the fact that this is

a diffusive source estimation and tracking problem, such research can in general be applicable

in many other similar contexts such as homeland security, environmental and industrial

monitoring, pollution control, servers and data center temperature monitoring as well [3,6–

12].

In this chapter, we first determine the space-time concentration distribution of the dis-

persion from physical modeling and mathematical formulations of a special diffusion phe-

nomenon, i.e., an underwater oil spill scenario, considering the effect of laminar water veloc-

ity as an external force. The transport model of a substance from a diffusive source can be

obtained by solving the corresponding diffusion equations.

The remainder of this chapter is organized as follows: Section 2.1 discusses problem

formulation and modeling of an underwater oil spill scenario. Section 2.2 shows the validity

of our obtained model through numerical simulations. The chapter concludes with summary

on the obtained model and performance in section 2.3.
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2.1 Problem Formulation and Modeling

Let us denote the concentration of the diffused substance at a position r = [x, y, z]T and

at time t as c(r, t). Ignoring the effects of external forces for a source-free volume and for

space-invariant diffusivity constant κ, the concentration of a dispersed substance follows the

following diffusion equation [69]:

∂c(r, t)

∂t
= κ∇2c(r, t) = κ

(
∂2c(r, t)

∂x2
+
∂2c(r, t)

∂y2
+
∂2c(r, t)

∂z2

)

. (2.1)

To solve the above differential equation, appropriate boundary and initial conditions are

required. We first compute the concentration for a stationary impulse point source of unit

mass to obtain the Green’s function. The obtained result is then extended for a continuous

source by integrating the source-release rate with the Green’s function. Denoting the Green’s

function of the impulse source as cG(r, t), the concentration of a continuous point source with

mass release rate µ(t) and initial release time tI , can then be given by the following integral:

c(r, t) =

∫ t

tI

µ(τ)cG(r, t− τ)dτ. (2.2)

For parametric estimation case, it is to be noted that from the concentration measurements

taken by the sensors, we can first estimate the source parameters of interest, and then predict

its cloud evolution in space and time by inserting the estimated parameters into (2.2).

Although, the main focus of this dissertation are diffusive source localization and tracking,

we introduce a special diffusion phenomenon, i.e., an underwater oil spill, to demonstrate

how to model and solve for a practical diffusion phenomenon, and also to motivate the

practical importance of the problem we are discussing. As shown in Fig. 2.1, we may model

an under-water oil spill as diffusion occurring in a two-layer semi-infinite medium (i.e. water

and air). We assume that the oil spilling source is located at the bottom (i.e. river/sea bed)

at location r0 = [x0, y0, z0]T . The depth of water level is 0 ≤ z ≤ L with diffusivity κw and

15



Chapter 2. Physical Modeling of Diffusion Phenomenon

Figure 2.1: An under-water oil spill

concentration cw. The same quantities for air (z > L) are denoted as κa and ca respectively.

Along the z-axis, we need to solve the following differential equations:

∂cw

∂t
= κw

∂2cw

∂z2
, for 0 < z < L,

∂ca

∂t
= κa

∂2ca

∂z2
, for z > L.

Considering only point impulse source located at z = z0, where 0 ≤ z0 ≤ L and impermeable

boundary at z = 0, we have the following initial condition:

cw(z, t) = δ(z − z0), at t = tI

and boundary conditions:

cw = ca, at z = L, (2.3)
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κw
∂cw

∂z
= κa

∂ca

∂z
, at z = L, (2.4)

∂cw

∂z
= 0, at z = 0. (2.5)

Boundary condition (2.3) implies the continuity of concentration at the interface z = L.

Condition (2.4) represents the fact that there is no accumulation of diffusing substance at

z = L. Finally, the third boundary condition in (2.5) reflects the assumption that the

medium at z = 0 is impermeable. Applying the concept of Laplace transform on the above

system of partial differential equations, we can obtain the solution to the spatio-temporal

concentration distribution (omitting the details in [5, 69, 70]):

cw(z, t) =
1

2
√

πκw(t − tI)

∞
∑

n=0

ρn

[

exp

{

−(z − z0 − 2nL)2

4κw(t − tI)

}

+ exp

{

−(z + z0 + 2nL)2

4κw(t − tI)

}]

+
1

2
√

πκw(t − tI)

∞
∑

n=0

ρ(n+1)

[

exp

{

−(z − z0 − 2(n + 1)L)2

4κw(t − tI)

}

+ exp

{

−(z + z0 + 2(n + 1)L)2

4κw(t − tI)

}]

,

where ρ =
√

κw−√
κa√

κw+
√

κa
. As can be seen, the concentration curve can be considered to be the

superimposed curve resulting from each successive reflection (from the surface layer) being

superimposed on the original curve. In practice, if κw % κa, then ρ→ 1. Therefore we have,

cw(z, t) =
1

2
√

πκw(t − tI)

[

exp

{

− (z − z0)2

4κw(t − tI)

}

+ exp

{

− (z + z0)2

4κw(t − tI)

}]

+
1

√

πκw(t − tI)

∞
∑

n=1

[

exp

{

−(z − z0 − 2nL)2

4κw(t − tI)

}

+ exp

{

−(z + z0 + 2nL)2

4κw(t − tI)

}]

.

(2.6)

Considering the laminar water velocity working along the X-Y plane as an external force,

we have v = [vx, vy, 0]T . The diffusion equations along the x and y axes will include additional
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advection term [69]:

∂cw

∂t
= κw

∂2cw

∂x2
− vx

∂cw

∂x
, (2.7)

and

∂cw

∂t
= κw

∂2cw

∂y2
− vy

∂cw

∂y
. (2.8)

Taking the Fourier transform of (2.7), we obtain:

dC

dt
=
(

−κwω
2
x − jvxωx

)

C, (2.9)

where C(ωx, t) is the Fourier transform of cw(x, t) with respect to spatial coordinate x.

Integrating with respect to time index t and taking the inverse Fourier transform, we again

obtain the following:

cw(x, t) =
1

2π

∫ ∞

−∞
exp

[

−κw(t − tI)ω
2
x + j{x − vx(t − tI) − x0}ωx

]

dωx

=
1

2π
√

κw(t − tI)
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)

]

·
∫ ∞

−∞
exp

[

−
(

m − ja

2

)2
]

dm,

∴ cw(x, t) =
1

2
√

πκw(t − tI)
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)

]

, (2.10)

where a = x−vx(t−tI )−x0√
κw(t−tI )

. Similarly, we can obtain the following for the y-axis:

cw(y, t) =
1

2
√

πκw(t − tI)
exp

[

−{y − y0 − vy(t − tI)}2

4κw(t − tI)

]

. (2.11)

Based on our assumptions on initial and boundary conditions, and for rectangular paral-

lelepiped space, the Green’s function solution for 3-spatial-variable case is the product of the

solutions of the three single spatial-variable cases with stationary impulse point source [5,69].
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Therefore, the Green’s function cG(r, t) for the space-time concentration distribution can be

obtained as the product of the solutions in (2.6), (2.10) and (2.11):

cG(r, t) =
1

8{πκw(t − tI)}3/2

[

exp

{

− |r − v(t − tI) − r0|2

4κw(t − tI)

}

+ exp

{

− |r − v(t − tI) − r′|2

4κw(t − tI)

}]

+
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

[

exp

{

−{z − z0 − 2nL}2

4κw(t − tI)

}

+ exp

{

−{z + z0 + 2nL}2

4κw(t − tI)

}]

, (2.12)

where r0 = [x0, y0, z0]T and r′ = [x0, y0,−z0]T . Considering the source mass release rate to be

constant µ(t) = µ, the final solution for concentration of oil diffusion in water for stationary

continuous source with mass rate of µ(t) can be obtained from (2.2):

c(r, t) = µ

∫ t

tI

cG(r, t− τ)dτ = c1(r, t) + c2(r, t) + c3(r, t) + c4(r, t), (2.13)

where

c1(r, t) =
µ

8πκw|r− r0|
exp

{
(r − r0) · v

2κw

}
[

exp

{
|r− r0||v|

2κw

}

erfc

{

|r− r0|
2
√

κw(t − tI)
+ |v|

√

t − tI
4κw

}

+ exp

{

− |r− r0||v|
2κw

}

× erfc

{

|r − r0|
2
√

κw(t − tI)
− |v|

√

t − tI
4κw

}]

,

c2(r, t) =
µ

8πκw|r− r′| exp

{
(r − r′) · v

2κw

}
[

exp

{
|r − r′||v|

2κw

}

erfc

{

|r − r′|
2
√

κw(t − tI)
+ |v|

√

t − tI
4κw

}

+ exp

{

− |r− r′||v|
2κw

}

× erfc

{

|r − r′|
2
√

κw(t − tI)
− |v|

√

t − tI
4κw

}]

,

c3(r, t) =
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0
τ−3/2 exp

{

−(x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z − z0 − 2nL)2

4κwτ

}

dτ,

19



Chapter 2. Physical Modeling of Diffusion Phenomenon

c4(r, t) =
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0
τ−3/2 exp

{

−(x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z + z0 + 2nL)2

4κwτ

}

dτ.

Derivation to (2.13) is given in Appendix 2.3. For the sake of simplicity, from here on, we

denote the diffusivity constant κw = κ.

2.1.1 Moving Diffusive Source

For a moving diffusive source emitting substance continuously in a semi-infinite medium

similar to our case, space-time concentration distribution can be obtained using the con-

cept of convolution integral from the Green’s function solution corresponding to stationary

impulsive source. In this case, substance concentration at any time instant is affected by

all the past values of source position and release rate. Therefore, time-cumulation effect on

the concentrations has to be considered to obtain complete physical model. For a moving

diffusive source continuously releasing substance at a mass rate µ(t), the space-time concen-

tration distribution in a semi-infinite medium can be obtained for a given Green’s function

cG(r, t) using the following integral:

c(r, t) =

∫ t

tI

µ(τ)cG (r − r0(τ), t − τ) dτ, (2.14)

where r0(t) = [x0(t), y0(t), z0(t)]T represents the source moving path. The advantage of

solving the physical diffusion model corresponding to a moving diffusive source using (2.14)

is that the initial, boundary, and other necessary conditions can be taken into account to

solve for the stationary case in the first step before extending it to the moving source case.

2.2 Simulation Results

In the following, we give simple examples of how concentration of chemical substance dis-

persion evolve over time and/or space. In these examples, we show the concentration dis-
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tribution of a point source at a location r0 in a homogeneous semi-infinite medium with

impermeable boundary, releasing diffusing chemical substance with µ Kg/s and medium

diffusivity κ m2/s at tI sec. The parameters used for simulation in this section are: mass

release rate µ = 103Kg/s, diffusivity constant κ = 25m2/s, initial release time tI = 0 sec

and velocity vector v = [50, 50, 0]m/s. The source is assumed to be located at r0 = [0, 0, 0]T

and the depth of water is taken to be L = 100m from the sea bed.

Figure 2.2 shows the spatial concentration distribution for two different time instants

t = 1 and t = 100 sec. It can be seen from Fig. 2.2 that as the source emitting the

chemical substance is located at the origin, concentration is high near the origin at t = 1 sec

(magnitude of concentration is proportional to darkness). It is interesting to see that since

laminar water flow is assumed to be only active in the x and y directions, concentration

increases more along the positive x-y plane with the increase in time.
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Figure 2.2: Concentration distribution in space (x−y−z coordinates) at times (a) t = 1 sec,
and (b) t = 100 sec with velocity vector v = [50, 50, 0] m/s. (Magnitude of concentration is
proportional to darkness)
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2.3 Conclusion

In this chapter, we introduced a special diffusion phenomenon, i.e., an underwater oil spill,

and obtained spatial and temporal distribution of the substance concentration by solving cor-

responding diffusion equations with appropriate initial, boundary conditions, and pragmatic

assumptions. Though oil spill problem has been discussed as a special case, in general, the

solution techniques used in this chapter, are applicable (with appropriate modifications) to

many other similar contexts as well, including environmental and industrial monitoring, pol-

lution control, biochemical dispersion, temperature monitoring etc. Differences in modeling

and solution methods occur during the mathematical formulations of the physical diffusion

phenomena leading to different initial and boundary conditions. While solving for the spatio-

temporal concentration distribution corresponding to an underwater oil spill scenario, our

main objective was to obtain an analytical solution to the diffusion problem, rather than

using non-model based sophisticated numerical techniques. Simulation results are provided

to demonstrate the effectiveness of the obtained model.

Appendix 2A

Derivation of Spatio-Temporal Concentration Distribution in (2.13)

To derive and verify the spatio-temporal concentration distribution in (2.13), the Green’s

function cG (r, t) in (2.12) can be written as cG (r, t) = c′1(r, t) + c′2(r, t) + c′3(r, t) + c′4(r, t),

where

c′1(r, t) =
1

8{πκw(t − tI)}3/2
exp

{

− |r − r0 − v(t − tI)|2

4κw(t − tI)

}

,

c′2(r, t) =
1

8{πκw(t − tI)}3/2
exp

{

− |r − r′ − v(t − tI)|2

4κw(t − tI)

}

,
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c′3(r, t) =
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

exp

{

−(z − z0 − 2nL)2

4κw(t − tI)

}

, and

c′4(r, t) =
1

4{πκw(t − tI)}3/2
exp

[

−{x − x0 − vx(t − tI)}2

4κw(t − tI)
− {y − y0 − vy(t − tI)}2

4κw(t − tI)

]

×
∞
∑

n=1

exp

{

−(z + z0 + 2nL)2

4κw(t − tI)

}

.

Therefore, performing change of variables, we can rewrite c1(r, t) in (2.13) as follows:

c1(r, t) = µ

∫ t

tI

c′1(r, t − τ)dτ,

=

∫ t

tI

µ

8{πκw(t − τ + tI)}3/2
exp

{

− |r − r0 − v(t − τ + tI)|2

4κw(t − τ + tI)

}

dτ,

=

∫ t−tI

0

µ

(4πκwτ)3/2
exp

{

− |r − r0 − vτ |2

4κwτ

}

dτ, (2.15)

To prove that (2.15) indeed translates into the expression given in (2.13), we will use the

concept of first fundamental theorem of calculus [71]. Since c′1(r, t) is a continuous real-

valued function within the limits of the integral, derivate of the expression given in (2.13)

will be taken to verify (2.15). Replacing γ = t− tI and assuming F (r, t) = c1(r, t) in (2.13),

we have:

F (r, γ) =
µ

8πκw|r − r0|
exp

{
(r − r0) · v

2κw

}[

exp

{
|r− r0||v|

2κw

}

erfc

{
|r − r0|
2
√
κwγ

+ |v|
√

γ

4κw

}

+ exp

{

− |r − r0||v|
2κw

}

× erfc

{
|r− r0|
2
√
κwγ

− |v|
√

γ

4κw

}]

.
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Since d
dz erfc(z) = − 2√

π exp(−z2), we can obtain the following:

∂F (r, γ)

∂γ
=

µ

4π3/2κw|r − r0|
exp

{
(r − r0) · v

2κw

}[

exp

{
|r− r0||v|

2κw

}{
|r − r0|

4
√
κwγ3/2

− |v|
4
√
γκw

}

× exp

{

− |r − r0|2

4κwγ
− |v|2γ

4κw
− |r − r0||v|

2κw

}

+ exp

{

− |r − r0||v|
2κw

}

×
{

|r− r0|
4
√
κwγ3/2

+
|v|

4
√
γκw

}

exp

{

− |r − r0|2

4κwγ
− |v|2γ

4κw
+

|r− r0||v|
2κw

}]

,

=
µ

4π3/2κw|r − r0|
exp

{
(r − r0) · v

2κw

}[{
|r − r0|

4
√
κwγ3/2

− |v|
4
√
γκw

}

× exp

{

− |r − r0|2

4κwγ
− |v|2γ

4κw

}

+

{
|r − r0|

4
√
κwγ3/2

+
|v|

4
√
γκw

}

exp

{

− |r − r0|2

4κwγ
− |v|2γ

4κw

}]

,

=
µ

(4πκwγ)3/2
exp

{
(r − r0) · v

2κw

}

exp

{

− |r − r0|2

4κwγ
− |v|2γ

4κw

}

,

=
µ

(4πκwγ)3/2
exp

{

− |r − r0|2 − 2γ(r − r0) · v + |v|2γ2

4κwγ

}

,

∴
∂F (r, γ)

∂γ
=

µ

(4πκwγ)3/2
exp

{

− |r − r0 − vγ|2

4κwγ

}

. (2.16)

Hence, the resulting expression for c1(r, t) in (2.13) is valid. The expression for c3(r, t) can

be obtained as follows:

c3(r, t) = µ

∫ t

tI

c′3(r, t − τ)dτ,

=

∫ t

tI

µ

4{πκw(t − τ + tI)}3/2
exp

[

−{x − x0 − vx(t − τ + tI)}2

4κw(t − τ + tI)
− {y − y0 − vy(t − τ + tI)}2

4κw(t − τ + tI)

]

×
∞∑

n=1

exp

{

−(z − z0 − 2nL)2

4κw(t − τ + tI)

}

dτ,

=
µ

4(πκw)3/2

∞
∑

n=1

∫ t−tI

0

τ−3/2 exp

{

−(x − x0 − vxτ)2 + (y − y0 − vyτ)2 + (z − z0 − 2nL)2

4κwτ

}

dτ,

Similarly, we can also verify the expressions for c2(r, t) and c4(r, t). Therefore, the spatio-

temporal concentration distribution c(r, t) given in (2.13) is valid. "
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Chapter 3

Parametric Diffusive Source

Localization

3.1 Introduction

Source localization/tracking using WSN is an area of active research interest in the signal

processing community [28,29]. Interesting research on diffusive source localization problems

can be found in [3–6,30–32], where biochemical concentration distribution in space and time

for different types of diffusive sources and models are estimated in various environments.

The pros and cons of the existing literature on diffusive source localization have been dis-

cussed in detail in section 1.3 of Chapter 1. In this chapter, we propose and discuss two

parametric estimation based static diffusive source localization methods using the ML and

BLUE estimators. We provide detailed analytical proofs corresponding to the consistency

and asymptotic normality for the obtained ML estimator are presented when the number of

sensor nodes and time samples go to infinity. The Cramér-Rao lower bound (CRLB) [40]

was also obtained as a theoretical performance bound.

The chapter is organized as follows: Section 3.2 and 3.3 discuss, respectively, modeling of
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an underwater oil spill scenario and measurement model for static diffusive source localization

using sensor network. The proposed statistical methods for static diffusive source localization

are discussed in section 3.4 and 3.5. Section 3.6 shows the validity and effectiveness of our

proposed methods for static diffusive source localization by comparing numerical simulations

with analytically obtained theoretical bound . Finally, section 3.7 concludes the chapter by

summarizing our results.

3.2 Physical Model

For simplicity of exposition, we consider a special case of our obtained physical model in

Chapter 2, when an oil spill occurs in an infinite (L → ∞) underwater medium with no

external force. Using the concept of Fourier and inverse-Fourier transform, and extending

(2.10) we can solve for the following Green’s function for the aforementioned case:

cG(r, t) =





exp
{

− (x−x0)2

4κ(t−tI )

}

2
√

πκ(t − tI)



×





exp
{

− (y−y0)2

4κ(t−tI )

}

2
√

πκ(t − tI)



×





exp
{

− (z−z0)2

4κ(t−tI )

}

2
√

πκ(t − tI)



 ,

=
1

8 {πκ(t − tI)}
3
2

exp

{

− |r − r0|2

4κ(t − tI)

}

. (3.1)

Considering the source mass release rate to be constant µ(t) = µ, the final solution for

concentration of oil diffusion in water for stationary continuous source with mass rate of µ(t)

can be obtained from (2.2) using (3.1), [69]:

c(r, t) = µ

∫ t

tI

cG(r, t− τ)dτ =

∫ t−tI

0

µ

(4πκτ)
3
2

exp

{

− |r − r0|2

4κτ

}

dτ,

=
µ

4πκ|r − r0|
erfc

(

|r − r0|
2
√

κ(t − tI)

)

. (3.2)
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In this case, the concentration at any position rj at time tk is reduced to the following

expression [3, 69]:

c(rj, tk) =
µ

4πκ|rj − r0|
erfc

(

|rj − r0|
2
√

κ(tk − tI)

)

, (3.3)

where erfc(.) is the complementary error function. Assuming that the spatio-temporal con-

centration distribution given in (3.3) represents the underlying diffusion phenomenon, we

transform the transport model into a statistical measurement model in order to facilitate

the use of the proposed methods.

3.3 Measurement Model

We consider a WSN consisting of a fusion center (FC) and N spatially distributed biochemical

static sensor nodes capable of sensing in dispersive environment. For practical consideration,

we assume that the N distributed sensors are located in a rectangular volume in space such

that rj = [xj , yj, zj ]T ∈ Λ, ∀j ∈ {1, 2, ..., N}, where Λ = [a1, a2] × [b1, b2] × [c1, c2] ⊆ R3. It is

also assumed that the source-to-sensor distances are much higher than the source and sensor

dimensions. Each sensor node takes measurements at times tk; ∀k ∈ {1, 2, ..., T}, where T is

the total number of time samples. We may obtain a measurement model for a sensor at a

position rj and at time tk as:

y(rj, tk) = c(rj, tk) + e(rj, tk) + b, (3.4)

where c(rj, tk) is the concentration of interest, b is a bias term, and e(rj , tk) ∼ N (0, σ2) is

the sensor noise assumed to be independent in both time and space. For the sake of brevity,

(3.4) can be rewritten in the simplified form as:

yj,k = cj,k(θ) + ej,k + b, (3.5)
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where yj,k = y(rj, tk), ej,k = e(rj , tk), cj,k(θ) = c(rj , tk), θ ∈ Rn×1 is the unknown source and

medium parameter vector that we are interested to estimate, and b is the bias or clutter term

representing the sensor’s response to foreign substances that may be present in a diffusive

field of interest. The bias term is assumed to be space and time-invariant, such that the

foreign substances interfering with the actual measurements are in steady state. If we want

to localize a static diffusive source, then only [x0, y0, z0] are the parameters of interest. It

is to be noted that some of the parameters, such as, the diffusivity constant κ, bias term b

and noise variance σ2 can be measured at the calibration stage, thereby reducing the cost of

computation during the detection/estimation phase.

We assume that the sensor nodes are in sleep mode until they are activated by some

central control (i.e. FC) due to a possible release of substance from a diffusive source. The

activated sensor nodes take measurements of substance concentration at time instants tk’s

and then return to sleep mode. For N number of nodes in a WSN and each node taking

T number of time samples of the substance concentrations at their respective locations, let

y ∈ RNT×1 be the measurement vector received at the FC.

3.4 Maximum-likelihood (ML) Based Parameter Esti-

mation

In this section, we use the maximum-likelihood (ML) estimator to estimate the unknown

parameter vector θ. From the measurement model discussed in section 3.3, if the bias

parameter b is known, conditional pdf of the measurement taken by the j-th node at tk time

instant p(yjk|θ) ∼ N (cjk(θ) + b, σ2). Hence, the log-likelihood function formed at the FC
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can be written as:

L =
N
∑

j=1

T
∑

k=1

log p(yjk|θ)

= −NT

2
log(2πσ2) − 1

2σ2

N
∑

j=1

T
∑

k=1

(yj,k − cj,k(θ) − b)2 . (3.6)

The log-likelihood equations are obtained by ∂L
∂θ

:

N
∑

j=1

T
∑

k=1

(yj,k − cj,k(θ) − b)

[
∂cj,k(θ)

∂θu

]
∣
∣
∣
∣
∣

θ=θ̂

= 0, (3.7)

for u = 1, 2, 3, where θu is the u-th element of θ, and

∂cj,k(θ)

∂θu
=

µ [rj(u) − r0(u)]

4πκ|rj − r0|2







erfc

(

|rj−r0|
2
√

κ(tk−tI )

)

|rj − r0|
+

exp
{

− |rj−r0|2
4κ(tk−tI )

}

√

πκ(tk − tI)







. (3.8)

Since the system of equations in (3.7) is nonlinear, there is no closed-form solution to it. We

can obtain an ML estimation of the source location using any suitable nonlinear optimization

technique. In this case, (3.7) is solved using simplex search algorithm [72].

The Cramér-Rao lower bound (CRLB) provides a lower limit on the mean-squared esti-

mation error of an unbiased estimator of a non-random parameter [40]. CRLB in this case

can be obtained as CRLB ≥ I−1
θ , where Iθ ∈ R3×3 is the Fisher information matrix (FIM)

formed at the FC. The u-vth element of the FIM can be found as:

[Iθ]u,v = E

[{

∂

∂θu
log p(y|θ)

}{

∂

∂θv
log p(y|θ)

}]

,

=
1

σ4
E

[(
N
∑

j=1

T
∑

k=1

(yjk − cjk(θ) − b)

{
∂cjk(θ)

∂θu

}
)(

N
∑

j=1

T
∑

k=1

(yjk − cjk(θ) − b)

{
∂cjk(θ)

∂θv

}
)]

,

=
1

σ2

N
∑

j=1

T
∑

k=1

{

∂cj,k(θ)

∂θu

}{

∂cj,k(θ)

∂θv

}

, (3.9)
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where (3.9) was obtained using the independence assumption of observations in space and

in time.

A sequence of estimators θ̂n to an unknown parameter vector θ is said to be consistent

if the sequence converges in probability to θ, i.e., limn→∞ θ̂n = θ, where n is the sample

size [40]. It is desirable to have a consistent MLE as consistency ensures that for large

data sets, the MLE will converge to the true parameter. The obtained MLE to our source

localization problem is consistent when the number of sensor nodes in any non-negligible

open subset of Λ = [a1, a2] × [b1, b2] × [c1, c2] ⊆ R3 and time samples go to infinity.

Theorem 1 : If the number of sensors N increases in such a way that for any open subset

of Λ = [a1, a2]× [b1, b2]× [c1, c2] ⊆ R3 having positive area, the number of sensors N and/or

the number of time samples T tend to infinity, the obtained ML estimator is consistent.

Proof : See Appendix 3A.

Once consistency for the obtained MLE is established, the next important thing is to

check the asymptotic normality. An asymptotically normal estimator is a consistent esti-

mator whose distribution around the true parameter θ approaches a normal distribution

with standard deviation shrinking in proportion to 1/
√

n as the sample size n grows, i.e.,
√

nIθ

(

θ̂n − θ
)

−→ N (0, I−1), where Iθ and I are the Fisher information and identity ma-

trices respectively [40]. It ensures that the estimator not only converges to the unknown

parameter, but it converges fast enough at a rate 1/
√

n. We address this issue with the

following theorem on asymptotic normality.

Theorem 2 : If the number of sensors N and time samples T increase as in Theorem 1,

then for a true parameter vector θ0 ∈ Λ̊, where Λ̊ ⊂ Λ is an open subset of Λ, the following

is true

√
NT

(

θ̂ML (y) − θ0

)

−→ N
(

0,
(

Īθ0

)−1
)

,
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in distribution where the (u, v)-th element of the matrix Īθ is given by

[

Īθ

]

u,v
= lim

N,T→∞

1

σ2NT

N
∑

j=1

T
∑

k=1

{
∂cj,k(θ)

∂θu

}{
∂cj,k(θ)

∂θv

}

.

Proof : See Appendix 3B.

3.5 Best Linear Unbiased Estimator (BLUE) Based

Source Localization

The advantage of using the BLUE for static diffusive source localization is that there is no

constraints on the PDF, and also knowing only the mean and covariance of the measurements

are enough. However, observations have to be linear for performing the BLUE algorithm.

In this section, we assume that the distributed sensing nodes are capable of estimating their

respective distances from the source using BLUE.

Since the complementary error function can be approximated as erfc(z) ≈ 1− 2√
πz, hence

our observation model for j-th node at the k-th time instant can be linearized in terms of

the inverse of the source-to-node distances from (3.5) and (3.3):

yj,k ≈ µ|rj − r0|−1

4πκ
+

[

b − µ

4
√

π3κ3(tk − tI)

]

+ ej,k

= hdinv
j + ak + ej,k, (3.10)

where h = µ
4πκ , dinv

j = |rj − r0|−1 and ak = b − µ

4
√

π3κ3(tk−tI )
. Since all the parameters are

known except for the diffusive source location, we can write ỹj,k = yj,k − ak = hdinv
j + ej,k.
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Therefore, the observation vector formed at the j-th node can be written as:

ỹj =











yi1 − a1

yi2 − a2

...

yiT − aT











= hdinv
j + ej , (3.11)

where h is a column vector of all h’s and ej = [ei1, ei2, . . . , eiT ]T . Since ej,k ∼ N (0, σ2) for

∀j, k and measurement noise is assumed to be independent and identically distributed across

space and time, hence the covariance matrix of ỹj is Σ̃j = diag (σ2, σ2, . . . , σ2) ∈ RT×T . The

optimal BLUE estimator formed at j-th node is given by

d̂inv
j =

hT Σ̃−1
j ỹj

hT Σ̃−1
j h

, (3.12)

with estimator variance Vj =
(

hT Σ̃−1
j h

)−1
.

After the distributed nodes estimate their respective distances d̂j = |rj − r0| from the

source using BLUE, all nodes send d̂j ’s to the fusion center (FC) for further processing. It

is to be noted that the source-to-node distance estimation can also be performed at the FC.

Signal received at the FC from the j-th node can be expressed as fj = d̂j + wj, where wj is

normally distributed with mean 0 and variance σ2
m. For N number of nodes, the data vector

available at the FC can be written as:

F = [f1, f2, . . . , fN ]T = D̂ + w,

where D̂ =
[

d̂1, d̂2, . . . , d̂N

]T
with dj =

√

(xj − x0)2 + (yj − y0)2 + (zj − z0)2, and w =

[w1, w2, . . . , wN ]T . The data vector F formed at the FC can be used to estimate the diffusive

source location using the nonlinear least-square approach:

r̂0 = arg min
r0=[x0,y0,z0]

∣
∣
∣

∣
∣
∣F − D̂

∣
∣
∣

∣
∣
∣

2

2
. (3.13)

To solve for the source location from (3.13), simplex search algorithm [72] has been used.

32



Chapter 3. Parametric Diffusive Source Localization

3.6 Simulation Results

3.6.1 Static Diffusive Source Localization

Here, we show simulation results in estimating the location of a static diffusive source using

the proposed MLE and BLUE based methods from the concentration observations taken

by the sensing nodes. For the sake of simplicity, we consider a 2D diffusive field volume of

Λ = [−50, 50] × [−50, 50] m2. We assume that the sensors are placed in a uniform 2D grid

such that the distance between adjacent sensors along the same ordinate is approximately

14.3 m. Parameters used for simulations are: number of nodes N =64, r0 = [0, 0]T , µ= 1000

Kg/s, b = 10−4 Kg/m2, tI = 0 sec and κ = 25m2/s. The observation noise is assumed to

have Gaussian distribution with mean 0 and variance σ2 = 1 × 10−4 Kg/m2. Total number

of random realizations used for simulations is 100. The measurements are taken at every

0.5 sec time-step starting from 0.5 sec and ending at 30 sec. In case of BLUE estimator,

received noise variance at the fusion center is assumed to be σ2
m = 0.01, 10 m2.

Figure 3.1 shows the normalized mean-squared-error (MSE) and CRLB (in dB) with

the increase in the number of nodes and samples. The normalized MSE and CRLB are

obtained by dividing each with the diffusive field volume. As one would except, estimation

error decreases as more distributed nodes and samples are considered for estimation purpose.

Since it is a 2D location estimation problem, we at least need 3 nodes to determine the source

location correctly. It is interesting to note that the estimation performance is slightly better

than the CRLB in some cases. This is due to the fact that the ML estimator in this case

is biased (suggested from simulation), and thus it can outperform the CRLB by trading

variance for bias. In this particular case, the continuous diffusive source can be localized

with a resolution of less than 12 cm.

The estimated source location using the BLUE estimator is shown in Figure 3.2 as a

function of the number of nodes and time samples for different values of σ2
m’s. As one would
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Figure 3.1: Normalized MSE and CRLB of the MLE as function of (a) number of nodes,
and (b) time samples.

expect, the overall performance obtained from the BLUE estimator is not as good as that

from the MLE due to the linear approximation applied on the observation model in (3.10).

However, performance of the BLUE estimator based localization improves as the number of

nodes and/or time samples increases. This is because for N, T → ∞, the complementary

error function in (3.3) tends to be equal to 1, causing the linearization having almost no

effect on the approximation.
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Figure 3.2: Normalized MSE of the BLUE as function of (a) number of nodes, and (b) time
samples.

3.6.2 Reconstructed Spatio-Temporal Concentration Distribution

In this section, we reconstruct the space-time variance concentration distribution based on

our estimated source location r̂0 = [x̂0, ŷ0, ẑ0]T using MLE and BLUE, and compare them

with the original concentration distribution. For better clarity of exposition, we consider a

diffusive field of 100 × 100 × 100 m3. The rest of the parameters remain same as before.

Figure 3.3 shows the actual concentration distribution in space and in time. As it can be

seen at time t = 1 sec, the diffusive source located at the center r0 = [0, 0, 0]T just started
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to diffuse chemical substance into the field. At time t = 100 sec, the chemical substance

emitting from the source is diffused through the medium and spread out to larger distance

from the source position. Figure 3.3(c) shows the change in concentration along the z-axis

over time for x=25m and y=25m. It is interesting to see that the concentration in this

case increases with the increase in time and decreases with the increase in distance from the

source position.
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Figure 3.3: Concentration distribution in space (x-y-z coordinates) at times (a) t = 1 sec
and (b) t = 100 sec for z = 100m, (c) Concentration distribution along z-axis and in time
for x=25m and y=25m.

Figure 3.4 and 3.5 show the reconstructed concentration distribution for MLE and BLUE

respectively. As it can be seen from both of these figures, though the concentration distribu-

tion pattern are same as that for the original, but there is slight shifting in the concentration

distribution peak both over space and time because of the estimated source locations being

different for both MLE and BLUE.
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Figure 3.4: Concentration distribution in space (x-y-z coordinates) at times (a) t = 1 sec
and (b) t = 100 sec for z = 100m, (c) Concentration distribution along z-axis and in time
for x=25m and y=25m for MLE.
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Figure 3.5: Concentration distribution in space (x-y-z coordinates) at times (a) t = 1 sec
and (b) t = 100 sec for z = 100m, (c) Concentration distribution along z-axis and in time
for x=25m and y=25m for BLUE.

3.7 Conclusion

In this chapter, we proposed two parametric estimation methods based on the MLE and

BLUE for estimating static diffusive source location using sensor measurements. We also
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obtained the Cramér-Rao lower bound as theoretical performance bound for source local-

ization. While the MLE requires complete knowledge of the pdf, knowing only 1st and 2nd

order information of data are enough for BLUE-based technique. On the other hand, BLUE

can only be used for linear observation models. Since in our case, concentration is highly

nonlinear in space and time, hence linearization is necessary before using BLUE for param-

eter estimation. However, the performance of the BLUE deteriorates due to linearization

effect for lower number of sensing nodes and time samples.

It was observed that performance of the MLE is slightly better than the CRLB in some

cases. This is because of the fact that the MLE in this case is biased, and therefore it can

outperform the CRLB by trading variance for bias. As one would expect, the MLE performs

better than the BLUE-based diffusive source localization method. However, the later shows

satisfactory performance trend for large number of sensing nodes and time samples. This

is because, linearization tends to have negligible effect on the performance of the BLUE

as the number of samples increases. Finally, the estimated source locations were used to

reconstruct the spatio-temporal concentration distributions, and the outputs were found to

be satisfactory.

Appendix 3A

Proof of Theorem 1

To prove the consistency for the MLE of source localization, we follow the technique described

in [40]. We show the proof w.r.t. θ1 = x0 and it can be easily followed to prove the consistency

for θ2 = y0 and θ3 = z0 without any loss of generality. we have to prove that

lim
N,T→∞

1

dN,T

N
∑

j=1

T
∑

k=1

KN,T (x0; x
′
0) exists, and (3.14)
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lim
N,T→∞

1

d2
N,T

N
∑

j=1

T
∑

k=1

[
∂cj,k(θ)

∂x0

]2

= 0, (3.15)

for some sequence {dN,T > 0}∞N,T=1, where
∂cj,k(θ)

∂x0
is defined by (3.8), and

KN,T (x0; x
′
0) #

N
∑

j=1

T
∑

k=1

{
∂cjk(θ′)

∂x′
0

}

[cjk(θ) − cjk (θ′)] , (3.16)

with x0 1= x′
0 ⇒ r0 1= r′0 and θ 1= θ′.

For the sake of brevity, while doing the proof for x0, we denote cjk(θ) # cjk(x0) and
∂cjk(θ)

∂x0
# c′jk(x0). Since both cjk(x0) and c′jk(x0) are continuous functions of x0. Hence, we

have

KNT (x0; x
′
0) ≤

∣
∣
∣
∣
∣

N
∑

j=1

T
∑

k=1

c′jk (x′
0) [cjk(x0) − cjk (x′

0)]

∣
∣
∣
∣
∣
,

≤
N
∑

j=1

T
∑

k=1

∣
∣c′jk (x′

0) [cjk(x0) − cjk (x′
0)]
∣
∣ .

≤
[

N
∑

j=1

T
∑

k=1

µ|xj − x′
0|

4πκ|rj − r′0|2
+

1
√

πκ(tj − tI)

]

×
[

N
∑

j=1

T
∑

k=1

µ

4πκ

{
1

|rj − r0|
+

1

|rj − r′0|

}
]

.

(3.17)
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Since tI < tk, ∀k, we can have the following:

T
∑

k=1

1√
tk − tI

<
T
∑

k=1

∣
∣
∣t

−1/2
1

∣
∣
∣

∣
∣
∣
∣
∣

(

1 − tI
tk

)−1/2
∣
∣
∣
∣
∣

≤ 1√
t1

[

T max
1≤k≤T

{
(

1 − tI
tk

)−1/2
}]

≤ T

[

1√
t1

max
1≤k≤T

{
(

1 − tI
tk

)−1/2
}]

︸ ︷︷ ︸

S

∴

T
∑

k=1

1√
tk − tI

< TS. (3.18)

Similarly, for
∣
∣
∣
tI
tk

∣
∣
∣ < 1, we have

∑T
k=1

1
tk−tI

< TQ1, where S and Q1 are positive real values.

For practical consideration, assuming 0 ≤ |xj−x′
0|

|rj−r0|2 ≤ P , 0 < 1
|rj−r0| ≤ M1, 0 < 1

|rj−r′0|
≤ M2

and using (3.18), KNT (x0; x′
0) can be written as:

KNT (x0; x
′
0) ≤

[
µP

4πκ
+

S√
πκ

] [ µ

4πκ
(M1 + M2)

]

× N2T 2 (3.19)

If dN,T = N3T 3 > 0 for N ≥ 1, T ≥ 1, then we can claim that

limN,T→∞
1

dN,T

∑N
j=1

∑T
k=1 KN,T (x0; x′

0) exists.

Now, we need to prove that limN,T→∞
1

d2
N,T

∑N
j=1

∑T
k=1

{

c′jk(x0)
}2

= 0. Therefore, from
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(3.8), we can write:

{

c′jk(x0)
}2

=
µ2|xj − x0|2

16π2κ2|rj − r0|2







erfc2

{

|rj−r0|
2
√

κ(tk−tI)

}

|rj − r0|2
+

exp
{

−|rj−r0|2
2κ(tk−tI )

}

πκ(tk − tI)

+

2erfc

{

|rj−r0|
2
√

κ(tk−tI )

}

exp
{

−|rj−r0|2
4κ(tk−tI)

}

|rj − r0|
√

πκ(tk − tI)







≤ µ2

16π2κ2

|xj − x0|2

|rj − r0|2

[

1

|rj − r0|2
+

1

πκ(tk − tI)
+

2

|rj − r0|
√

πκ(tk − tI)

]

.

(3.20)

Assuming 0 ≤ |xj−x0|2
|rj−r0|2 ≤ Q2 and using

∑T
k=1

1
tk−tI

< TQ1, we obtain the following from

(3.20),

{

c′jk(x0)
}2

<
µ2Q2

16π2κ2

[

M2
1 +

1

πκ(tk − tI)
+

2M1
√

πκ(tk − tI)

]

∴
N
∑

j=1

T
∑

k=1

{

c′jk(x0)
}2

<
µ2Q2

16π2κ2

[
N
∑

j=1

T
∑

k=1

M2
1 +

1

πκ

N
∑

j=1

T
∑

k=1

1

tk − tI
+

2M1√
πκ

N
∑

j=1

T
∑

k=1

1√
tk − tI

]

<
µ2Q2

16π2κ2

[

M2
1 NT +

Q1

πκ
NT +

2M1S√
πκ

NT

]

=
µ2Q2

16π2κ2

[

M2
1 +

Q1

πκ
+

2M1S√
πκ

]

× NT. (3.21)

For dN,T = N3T 3 > 0, N ≥ 1, T ≥ 1, we have

lim
N,T→∞

1

d2
N,T

N
∑

j=1

T
∑

k=1

{

c′jk(x0)
}2

= 0. (3.22)

Similarly, for y0 and z0, we can also claim that the MLE to the diffusive source localization

problem is consistent when the number of sensor nodes and time samples go to infinity. "
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Appendix 3B

Proof of Theorem 2

To prove the asymptotic normality of the the MLE, let us first define the following notations,

which will be useful in presenting the sufficient conditions for asymptotic normality. For

p (yjk|θ), we define:

Φjk (yjk|θ) = log p (yjk|θ) .

Let Φ̇jk (yjk|θ) be the 3 × 1 vector whose u-th component is

Φ̇jk,u (yjk|θ) =
∂

∂θu
{Φjk (yjk|θ)} ,

and let Φ̈jk (yjk|θ) be the 3 × 3 matrix whose (u, v)-th component is

Φ̈jk,u,v (yjk|θ) =
∂2

∂θu∂θv
{Φjk (yjk|θ)} .

It is proved in [73] that the ML estimates for the independent not identically distributed

case are asymptotically normal if the following nine conditions are satisfied:

C1. The parameter space is an open subset of R3.

C2. The ML estimator is consistent.

C3. Φ̇jk (yjk|θ) and Φ̈jk,u,v (yjk|θ) exist almost surely.

C4. Φ̈jk (yjk|θ) is a uniformly continuous function of θ in j and k almost surely and is a

measurable function of yjk.

C5. E

[

Φ̇jk (yjk|θ)
]

= 0, ∀j, k.
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C6. E

[

Φ̇jk (yjk|θ) Φ̇jk (yjk|θ)T
]

= −E

[

Φ̈jk (yjk|θ)
]

.

C7. Īθ = limN,T→∞
1

NT Iθ is positive definite for all N, T ≥ 1.

C8. E

[∣
∣
∣Φ̇jk,u (yjk|θ)

∣
∣
∣

3
]

≤ K for all j, k and 1 ≤ u ≤ 3, where K is some finite real number.

C9. There exist ε > 0 and random variables Bjk,u,v(yjk) such that

i) sup
{∣
∣
∣Φ̈jk,u,v (yjk|θ)

∣
∣
∣ : ||θ − θ0|| ≤ ε

}

≤ Bjk,u,v(yjk), where θ0 is the actual pa-

rameter vector.

ii) E
[

|Bjk,u,v(yjk)|2
]

≤ K for some real finite number K.

Below, we verify the necessary conditions mentioned in [73] for our obtained MLE to be

asymptotically normal.

C1. From practical point of view, there is no loss in generality in assuming that θ0 ∈ Λ̊,

where Λ̊ ⊂ Λ is an open subset of Λ. Thus C1 is satisfied.

C2. Since from Appendix 3A, MLE of diffusive source location is consistent, hence it is also

consistent even when θ0 ∈ Λ̊ ⊂ Λ. Therefore C2 is satisfied.

C3. From the notations defined above, we have

Φ̇jk,u (yjk|θ) =
1

σ2
(yjk − cjk(θ) − b)

∂cjk(θ)

∂θu
, (3.23)

where ∂cjk(θ)
∂θu

is given by (3.8) for u = 1, 2, 3 respectively, and

Φ̈jk,u,v (yjk|θ) =
1

σ2

[

(yjk − cjk(θ) − b)
∂2cjk(θ)

∂θu∂θv
− ∂cjk(θ)

∂θu

∂cjk(θ)

∂θv

]

. (3.24)

It can be easily verified that
∂2cjk(θ)
∂θu∂θv

exists (omitted for tedious and lengthy calculation).

Therefore both Φ̇jk,u (yjk|θ) and Φ̈jk,u,v (yjk|θ) exist almost surely.
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C4. It can be easily verified from (3.24) that Φ̈jk (yjk|θ) is a continuous function of θ

in j and k. Because of θ ∈ Λ, and Φ̈jk (yjk|θ) being a continuous mapping of θ,

therefore using Theorem 4.19 in [71], we can claim that Φ̈jk (yjk|θ) is indeed uniformly

continuous on θ in j and k.

Since Φ̈jk (yjk|θ) : yjk → R is a continuous function of yjk, with yjk ∈ R being a

measurable space, hence Φ̈jk (yjk|θ) is also a measurable function of yjk [71].

C5. From (3.23), we obtain

E

[

Φ̇jk,u (yjk|θ)
]

=
1

σ2

∂cjk(θ)

∂θu
E [(yjk − cjk(θ) − b)] = 0, ∀j, k and u.

C6. As given in [73], C6 is implied if the following is true:

∂2

∂θu∂θv

∫

p(yjk|θ)dyjk =

∫
∂2

∂θu∂θv
p(yjk|θ)dyjk, ∀j, k, u and v. (3.25)

Since in our case p(yjk|θ) ∼ N (cjk(θ) + b, σ2), and p(yjk|θ) is continuous function of

yj,k, hence (3.25) is valid and thus C6 is satisfied.

C7. The Fisher information matrix (FIM) in our case is a 3×3 matrix with (u, v)-th element

given by:

[Iθ]u,v =
1

σ2

N
∑

j=1

T
∑

k=1

{
∂cjk(θ)

∂θu

}{
∂cjk(θ)

∂θv

}

.

Using the Cauchy-Schwarz inequality,

(
N
∑

j=1

T
∑

k=1

{
∂cjk(θ)

∂θu

}2
)(

N
∑

j=1

T
∑

k=1

{
∂cjk(θ)

∂θv

}2
)

−
(

N
∑

j=1

T
∑

k=1

{
∂cjk(θ)

∂θu

}{
∂cjk(θ)

∂θv

}
)2

≥ 0,

with equality if and only if
{

∂cjk(θ)
∂θu

}

and
{

∂cjk(θ)
∂θv

}

are linearly dependent, which

is impossible as the coordinates of the locations of the distributed sensor nodes are
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linearly independent. Therefore, all the leading principle minors of Iθ can be shown to

be positive and hence the FIM for fixed N and T is a positive-definite matrix.

From the prove of consistency of MLE in Appendix 3A, it can be observed that
∑N

j=1

∑T
k=1

{
∂cjk(θ)

∂θu

}2
and

∑N
j=1

∑T
k=1

{
∂cjk(θ)

∂θu

}{
∂cjk(θ)

∂θv

}

exist and are bounded for

all u, v. Hence the (u, v)-th element of Īθ,

[

Īθ

]

u,v
=

1

σ2
lim

N,T→∞

1

NT

N
∑

j=1

T
∑

k=1

{
∂cjk(θ)

∂θu

}{
∂cjk(θ)

∂θv

}

,

exits for all u, v. Therefore, using the same reasoning used for proving the positive-

definiteness of the FIM for the finite case, we can claim that Īθ is also positive-definite.

C8. From (3.23), we have the following:

E

[∣
∣
∣Φ̇jk,u (yjk|θ)

∣
∣
∣

3
]

≤ 1

σ6

∣
∣
∣
∣

∂cjk(θ)

∂θu

∣
∣
∣
∣

3

E
[

|yjk − cjk(θ) − b|3
]

.

As we know, for X ∼ N (µ, σ2),

E [|X − µ|p] = σp 2
p
2 Γ(p+1

2 )
√
π

,

therefore

E

[∣
∣
∣Φ̇jk,u (yjk|θ)

∣
∣
∣

3
]

≤ 2

σ2

√

2

π

∣
∣
∣
∣

∂cjk(θ)

∂θu

∣
∣
∣
∣

3

≤ K.

Hence, C8 is satisfied ∀j, k, and u.

C9. Since Φ̈jk,u,v (yjk|θ) is a uniformly continuous function of θ (shown in C4), hence for

each δ > 0, there exists one ε > 0 such that,

∣
∣
∣Φ̈jk,u,v (yjk|θ) − Φ̈jk,u,v (yjk|θ0)

∣
∣
∣ < δ ∀ ||θ − θ0|| < ε.

From (3.24), we have

∣
∣
∣Φ̈jk,u,v (yjk|θ)

∣
∣
∣ ≤ 1

σ2

[

|ejk|
∣
∣
∣
∣

∂2cjk(θ)

∂θu∂θv

∣
∣
∣
∣
+

∣
∣
∣
∣

∂cjk(θ)

∂θu

∣
∣
∣
∣

∣
∣
∣
∣

∂cjk(θ)

∂θv

∣
∣
∣
∣

]

.
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Therefore, for each ε > 0, the following can be obtained

sup
{∣
∣
∣Φ̈jk,u,v (yjk|θ)

∣
∣
∣

}

< δ + sup
{∣
∣
∣Φ̈jk,u,v (yjk|θ0)

∣
∣
∣

}

≤ δ +
1

σ2

[

|ejk| sup

{∣
∣
∣
∣

∂2cjk(θ0)

∂θu∂θv

∣
∣
∣
∣

}

+sup

{∣
∣
∣
∣

∂cjk(θ0)

∂θu

∣
∣
∣
∣

}

sup

{∣
∣
∣
∣

∂cjk(θ0)

∂θv

∣
∣
∣
∣

}]

.

Since ∂cjk(θ0)
∂θu

, ∂cjk(θ0)
∂θv

and ∂2cjk(θ0)
∂θu∂θv

are continuous functions of θ0 ∈ Λ̊ ⊂ Λ, ∀j, k, u

and v, hence sup
{∣
∣
∣
∂cjk(θ0)

∂θu

∣
∣
∣

}

, sup
{∣
∣
∣
∂cjk(θ0)

∂θv

∣
∣
∣

}

and sup
{∣
∣
∣
∂2cjk(θ0)
∂θu∂θv

∣
∣
∣

}

can be bounded

replaced by finite real numbers. Therefore,

sup
{∣
∣
∣Φ̈jk,u,v (yjk|θ)

∣
∣
∣

}

≤ δ +
[

|ejk|Ksup
jk,u,v + Ksup

jk,uK
sup
jk,u

]

= Bjk,u,v(ejk),

where Ksup
jk,u,v, Ksup

jk,u and Ksup
jk,u are some finite real numbers and Bjk,u,v(ejk) are random

variables. Since E {|ejk|} = σ
√

2
π and E

{

|ejk|2
}

= σ2, hence

E
[

|Bjk,u,v(ejk)|2
]

≤ K,

where K is a finite real number.

Therefore, the obtained MLE of the diffusive source location is asymptotically normal when

the number of sensor nodes and time samples go to infinity."
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Chapter 4

Dirichlet Process Mixture Model

Based Diffusive Source Localization

4.1 Introduction

In this chapter, we consider the problem of diffusive source localization using nonparamet-

ric estimation approach. In most cases, accuracy of the widely used parametric estimation

techniques depends on the sophistication of underlying statistical model, and priors. Since

real data are often complicated, accurate and suitable parametric representation is some-

times difficult to obtain. As an alternative, we explore the rich tools of machine learning,

which offers efficient learning algorithms or techniques allowing the WSN to detect threats

intelligently. Since the diffusive field can be very dynamic and intelligent hazardous source

could pose severe threat, sticking to a fixed statistical model might not be a smart idea.

To that end, machine learning can be a suitable approach to deal with those dynamic or

intelligent threats. To the best of our knowledge, though there are many literature on the

application of machine learning in WSN area [74–77], no efforts have been made to utilize

the rich collection of machine learning tools in diffusive source detection and estimation. We
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plan to consider “Smart WSN ” with cognition and machine learning abilities that is capable

of adapting its actions in order to reach a desired quality of detection and/or estimation

about diffusive source.

In this chapter, to overcome the aforementioned drawbacks of parametric estimation and

localization, we propose to use nonparametric Bayesian methods, in particular Dirichlet pro-

cess mixture model (DPMM) which provides us with a flexible and data-driven estimation

process to estimate the location of diffusive source from sensor measurements [63]. DPMM

has been previously applied in various pragmatic problems, such as, classification [78], im-

age segmentation [79] and language modeling [80]. The nonparametric nature of DPMM

framework allows for minimal knowledge of measurement data, and can estimate unknown

parameters of corresponding probability distribution from data itself in order to best fit the

underlying the observation model. We propose DPMM classifier based algorithm to estimate

the location of continuous diffusive source emitting substance in a diffusive environment, and

provide analytical proof of convergence. The proposed algorithm is also extended to the sce-

nario when multiple diffusive sources of same kind are present in the diffusive field of interest.

The remainder of this chapter is organized as follows: Section 4.2 discusses physical mod-

eling of a diffusion phenomena and measurement model for static diffusive source localization

using sensor network. Brief descriptions on DPMM and Gibbs Sampling [81] are given in

section 4.3. The proposed DPMM-based algorithm for single static diffusive source localiza-

tion, along with analytical proof of convergence is discussed in section 4.4. The proposed

algorithm is extended to multiple diffusive source localizations in section 4.5. Simulation

results for the proposed algorithms are shown in section 4.6. Finally, section 4.7 concludes

the chapter by summarizing our results.
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4.2 Physical and Measurement Models

In this section, we use the same physical and measurement models as discussed in section

3.2 and 3.3 of Chapter 3, where the substance concentration and observation for a sensing

node at location rj and at time tk are defined as follows:

c(rj, tk) =
µ

4πκ|rj − r0|
erfc

(

|rj − r0|
2
√

κ(tk − tI)

)

, (4.1)

and

y(rj, tk) = c(rj, tk) + e(rj, tk) + b, (4.2)

where c(rj, tk) is the concentration of interest, tI is initial substance release time, κ is the

diffusivity constant, r0 is the actual source location, b is a bias term, and e(rj, tk) ∼ N (0, σ2)

is the sensor noise assumed to be independent in both time and space. For the sake of brevity,

(4.2) can be rewritten in the simplified form as:

yj,k = cj,k(θ) + ej,k + b, (4.3)

where yj,k = y(rj, tk), ej,k = e(rj , tk) and cj,k(θ) = c(rj , tk), θ ∈ Rn×1 is the unknown source

and medium parameter vector that we are interested to estimate. For our static diffusive

source localization problem, only [x0, y0, z0]T are the parameters of interest.

4.3 Learning-based Diffusive Source Estimation

One of the main ideas of learning is to explore the environment to get evaluative feedback

and exploit the resources to increase the rewards. Each time an agent executes action under

certain environment conditions, it gets either a good or a bad feedback. In our case, at each
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time instant, the WSN has an estimate about the source parameters based on the sensor

observations. This estimate is in general different from the actual parameters due to noise.

The goal of the WSN is to reach close to the actual solution by adapting its actions. Below

we provide a brief description of DPMM, which will be used as the backbone of our proposed

nonparametric diffusive source localization algorithms.

4.3.1 Dirichlet Process

A Dirichlet process DP (α0, G0) is defined to be the distribution of a random probability

measure G over a measurable space (Θ,B), such that, for any finite measurable partition

(A1, A2, . . . , Ar) of Θ, the random vector (G(A1), G(A2), . . . , G(Ar)) is distributed as a finite

dimensional Dirichlet distribution with parameters (α0G0(A1),α0G0(A2), . . . ,α0G0(Ar)), for

α0 > 0. It can be denoted as follows [63]:

(G(A1), G(A2), . . . , G(Ar)) ∼ Dir (α0G0(A1),α0G0(A2), . . . ,α0G0(Ar)) .

G ∼ DP (α0, G0) represents the probability measure G that is drawn from the Dirichlet

process DP (α0, G0). That is, G is a random probability measure whose distribution is given

by the Dirichlet process DP (α0, G0).

The first and direct approach of constructing the random probability distribution G is the

stick-breaking method [63]. Another way to construct a Dirichlet process is to characterize

the distribution of the drawings θ of G, given a certain realization G of DP (α0, G0). It

is to be noted that G is discrete with probability 1. The infinite discrete support for G

makes it a suitable candidate for non-parametric Bayesian methods. However, since this

method involves infinite sum in G for practical implementation, other alternatives methods

to construct G are Polya urn model and the Chinese Restaurant Process (CRP) [63, 82].

In case of a Hierarchical Dirichlet process (HDP) [63], G0 itself is drawn from a Dirichlet

process, such as G0 ∼ DP (γ, H).
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4.3.2 Dirichlet Process Mixture Model (DPMM)

Dirichlet process mixture model is a suitable candidate for non-parametric classification

problems. DPMM has a non-parametric prior on the parameters of the mixture model [63].

A DPMM is defined as follows:

G ∼ DP (α0, G0)

θi|G ∼ G

yi|θi ∼ f(θi)













, (4.4)

where, θ1, θ2, . . . are i.i.d. random variables distributed according to G and yi’s are the

observations. In this chapter, we will exploit the excellent classification capability of DPMM

to perform diffusive source localization.

4.3.3 Gibbs Sampling

Let us consider a sequence of observations y1:N # {yj}N
j=1 and assume that these observations

are drawn from an unknown mixture model. If we do not have enough information except

for the sensor measurements and the family of distributions they belong to, it is reasonable

to assume a non-parametric model, such as DPMM. To that end, let us assume that the

mixture components θi are drawn from G ∼ DP (α0, G0), for G =
∑∞

l=1 πlδφl
, where δφl

are

the unique values of θj and πl their corresponding probabilities. The problem is to estimate

the mixture component θ̂j for each observation yj. It can be done by applying the Gibbs

sampling method proposed in [81]. In this particular method, the estimates θ̂j are sampled

from the posterior distribution of θj given the observation sequence y1:N . Gibbs sampler (or

Markov chain Monte Carlo (MCMC)) method has been described in detail in [83]. It is to be

noted that θj can be generalized to multivariate case (in our case, we model source location

vector θ accordingly).
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In a DPMM, the posterior distribution of θj |{θi}i)=j , y1:N can be computed as [81]:

θj |{θi}i)=j, y1:N







= θi with Pr. qi

∼ f(θj|yj) with Pr. q0

, (4.5)

where qi =
fθi

(yj)

α0f(yj)+
PN

i=1,i"=j fθi
(yj)

, q0 = α0f(yj)

α0f(yj )+
PN

i=1,i"=j fθi
(yj)

, and f(yj) =
∫

θ fθ(yj)G0(θ)dθ is

the marginal distribution of yj, assuming a prior G0(θ). Note that, the posterior distribu-

tion f(θj |yj) can easily be obtained if θj has a conjugate prior for the likelihood fθj
(yj). In

this case, G0(θj) and f(θj|yj) will belong to the same family of distributions. In particu-

lar, if both the prior distribution G0(θj) and the likelihood function fθj
(yj) are Gaussian,

then the posterior distribution f(θj |yj) will also be Gaussian. Therefore, almost all of the

DPMM problems assume conjugate priors in their formulations [80, 81]. If the sequence

of observations y1:N drawn from a DPMM are normally distributed, given mixture compo-

nent of parameters {θj}N
j=1 and if yj ∈ R, we let yj ∼ N (f(µj), Vj), where θj = µj for

j ∈ {1, 2, . . . , N}.

4.4 DPMM-based Single Diffusive Source Localization

Based on the discussions above, the following algorithm provides a recipe for estimating

unknown source location of static diffusive source using DPMM. Let us denote by θ̂j,k, the

estimated location of source by j-th sensor node at k-th time instant.
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Algorithm 1 DPMM-based single diffusive source localization

STEP 1: Take measurements yj,k, ∀j at k-th time instant.

STEP 2: Sample ĉj,k from the posterior p (cj,k|yj,k) and compute rough estimate d̂j,k,

where ĉj,k(θ) = µ

4πκd̂j,k(θ)
erfc

[

d̂j,k(θ)

2
√

κ(tk−tI )

]

with d̂j,k being the estimated distance between

j-th node and the source.

STEP 3:

while Convergence conditions not satisfied do

for j= shuffle {1,2,. . . ,N} do

Obtain θ̂j,k ∈ Rn×1 using Gibbs sampling, where

θ̂j,k

∣
∣
∣
∣

{

θ̂i,k

}

i)=j
, y1:N ∼ q0Gj,k(θ̂j,k) +

N
∑

i=1,i)=j

qiδθ̂i,k
, (4.6)

where Gj,k is a distribution such that θ̂j,k ∼ Gj,k

(

θ̂j,k

)

and θ̂j,k = rj,k + d̂j,k∠ψ,

ψ ∼ U [0, 2π], with weights q0 and qi are defined as [81]:

q0 ∝ α0c(s)√
L

(

1 +
(yj − m)2

sL

)−(1+s)/2

(4.7)

qi ∝ 1√
2Vi

e
−−(yi−f(µi))

2

2Vi , (4.8)

for i ∈ {1, 2, . . . , N}, i 1= j and subject to
∑

i=1,i)=j qi = 1, with L = (1+τ)S
s and

c(s) = Γ
(

1+s
2

)

Γ
(

s
2

)√
s.

end for

end while

STEP 4: Choose the cluster with maximum associated probability.

4.4.1 Description of the proposed Algorithm 1

Gibbs sampling described in section 4.3 provides us with the basic ingredient to Algorithm

1. Below we describe the proposed DPMM-based algorithm for single static diffusive source

localization:
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(1) In Step 1, the distributed sensor nodes takes concentration measurements from the

diffusive field of interest, send the data to the fusion center (FC), and go back to sleep

mode.

(2) In Step 2, rough estimate of of the source distance from a particular node is obtained

using either numerical calculation or offline iso-concentration map (contour mapping)

at the FC. The offline iso-concentration can be stored either in the distributed sensing

nodes or at the FC to reduce computational cost during the estimation process.

It is to be noted that when the variance of the observations is not known, then we

can set ĉj,k(θ) ≈ yj,k, ∀j, k and obtain a crude estimate of d̂j,k using contour mapping

without any need for explicit pdf function of the measurement.

(3) In Step 3, Gibbs sampling is applied to estimate unknown source location. It is to be

noted that the obtained rough estimate of source-to-node distance, along with assumed

uniformly distributed angular distance are used in generating Gj,k. The intuition

behind this idea is that once the rough estimate of the source-to-node distance is

obtained for a particular node, the source can be anywhere at an angle between [0, 2π]

with a probability q0.

At the end of the Gibbs sampling, each j-th node will generate an estimate to θ̂j,k.

When two or more nodes produce same estimate, they are considered to belong to the

same cluster. In (4.7) and (4.8), large value of τ > 0 implies a large dispersion among

the cluster means, whereas parameter m is a prior estimate of these means. Parameter

s reflects the uncertainty about the feature measurement errors such that s reflects the

confidence in the estimated observation error. The parameter S is the prior estimate

of the measurement error.

(4) Step 4 finds out the final estimated source location by discarding outlier cluster if there

is any. Location of the winning cluster generates the estimated source location.

A proof of convergence for Algorithm 1 is given in Appendix 4A.
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4.5 DPMM-based Multiple Diffusive Source Localiza-

tion

In this section, we will use the best linear unbiased estimator (BLUE) for estimating multiple

diffusive source distances from the distributed sensing nodes. The proposed DPMM based

Algorithm 1 will be modified and extended to localize multiple static diffusive sources. Let

us assume that we have M number of static diffusive sources of same kind with different mass

rates in a diffusive field of interest. Therefore, based on the concept developed in section

3.5, substance concentration measurements taken by j-th sensor and k-th time instant can

be written as:

yj,k = cj,k + ej,k + b =
M
∑

m=1

cm(rj , tk) + ej,k + b,

=
M
∑

m=1

µm

4πκ|rj − rs
m|

erfc

(

|rj − rs
m|

2
√

κ(tk − tI)

)

+ ej,k + b, (4.9)

where erfc(.) is the complementary error function. Since the complementary error function

can be approximated as erfc(z) ≈ 1 − 2√
πz, hence our observation model for j-th node at

the k-th time instant can be linearized in terms of the inverse of the distances between the

distributed nodes and the diffusive source as:

yj,k ≈
M
∑

m=1

( µm

4πκ

)

dinv
j,m −

M
∑

m=1

µm

4
√

π3κ3(tk − tI)
+ b + ej,k,

=
M
∑

m=1

hmdinv
j,m + ak + ej,k, (4.10)

where hm = µm

4πκ , dinv
j,m = |rj − rs

m|
−1 and ak = b −

∑M
m=1

µm

4
√

π3κ3(tk−tI )
. Since all the pa-

rameters are known except for the diffusive source locations, we can write ỹj,k = yj,k −

ak =
∑M

m=1 hmdinv
j,m + ej,k. Therefore, the observation vector formed at the j-th node for
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k = 1, 2, . . . , T , can be written as:

ỹj = Hdinv
j + ej , (4.11)

where H = 1
4πκ











µ1 µ2 . . . µM

µ1 µ2 . . . µM

...
...

. . .
...

µ1 µ2 . . . µM











∈ RT×M , dinv
j =

[

dinv
j,1 , dinv

j,2 , . . . , dinv
j,M

]T
, and ej =

[ei1, ei2, . . . , eiT ]T . Since ej,k ∼ N (0, σ2) for ∀j, k and measurement noise is assumed to be

independent and identically distributed across space and time, hence the covariance matrix

of ỹj is Σ̃j = Σ̃ = diag (σ2, σ2, . . . , σ2) ∈ RT×T . The optimal BLUE estimator formed at j-th

node is given by

dinv
j =

(

HT Σ̃−1H
)−1

HT Σ̃−1ỹj , (4.12)

with estimator variance given by the diagonal elements of
(

HT Σ̃−1H
)−1

. Finally, the esti-

mated distances can be obtained by element-wise inverse of the vector dinv
j as:

d̂j =
[(

dinv
j,1

)−1
,
(

dinv
j,2

)−1
, . . . ,

(

dinv
j,M

)−1
]T

. (4.13)

The following algorithm provides a detailed approach for multiple static diffusive source

localization using DPMM. Let us denote by θ̂m
j,k, the estimated location of m-th source by

j-th sensor node at k-th time instant.
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Algorithm 2 DPMM-based multiple diffusive source localization

STEP 1: Take measurements yj,k, ∀j, k.

STEP 2: Obtain source-to-node distance vector d̂j for j ∈ {1, 2, . . . , N} using (4.12) and

(4.13).

STEP 3: For any k ∈ {1, 2, . . . , T}

while Convergence conditions not satisfied do

for j= shuffle {1,2,. . . ,N} do

For m = 1, 2, . . . , M , obtain θ̂m
j,k using Gibbs sampling, where

θ̂m
j,k

∣
∣
∣
∣

{

θ̂m
i,k

}

i)=j
, y1:N ∼ q0G

m
j,k(θ̂

m
j,k) +

N
∑

i=1,i)=j

qiδθ̂m
i,k

,

where θ̂m
j,k # rj,k + d̂m

j,k∠ψ with ψ ∼ U [0, 2π], q0 and qi’s are defined according to (4.7)

and (4.8).

end for

end while

STEP 4: Choose cluster with maximum associated probability for each diffusive source.

A proof of convergence for Algorithm 2 is given in Appendix 4B.

4.6 Simulation Results

4.6.1 Single Diffusive Source Localization

We consider a 2D diffusive field volume of 2000m2. We assume that the sensors are placed

in a uniform 2D grid. Parameters used for simulations are: number of sensing nodes N =64,

r0 = [0.01, 0.01]T , µ= 100 Kg/s, b = 0 Kg/m2, tI = 0 sec and κ = 25m2/s. The observation

noise is assumed to have Gaussian distribution with mean 0 and variance σ2 = (0.5× 10−4)2

Kg2/m4. Number of learning iterations at each time instant is taken to be 60000. Other

learning parameters are: Sj = 1, ∀j, s = 3, τ = 1 and m = 0.
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The obtained cluster formations from DPMM-based learning process at times t = 2s,

t = 4s, t = 6s and t = 8s are shown in Fig. 4.1 along with their corresponding probabilities

and estimated source locations for a single random realization. At each time instant, cluster

with the highest probability is considered as the estimated source location. It can be seen

that the diffusive source location was successfully estimated in this particular case. In

this particular simulation, the static diffusive source can be localized with a resolution of

approximately 14 cm.
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Figure 4.1: Clustering with associated probabilities at time (a) t = 2 sec, (b) t = 4 sec,
(c) t = 6 sec, and (d) t = 8 sec for a single random realization with actual location being
[0.01, 0.01]T .
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Figure 4.2 shows performance of the proposed Algorithm 1 in terms of the normalized

root-mean-squqred-error (RMSE) as a function of number of sensing nodes, and compares

the same with that of the maximum-likelihood estimator (MLE) along with the Cramer-Rao

lower bound (CRLB) [40]. The CRLB provides a lower limit on the mean-squared estimation

error for non-random parameter estimation for unbiased estimator. In this case, CRLB can

be obtained as CRLB ≥ I−1
θ , where Iθ ∈ R2×2 is the Fisher information matrix (FIM) formed

at the FC. The u − vth element of the FIM can be found as:

[Iθ]u,v =
1

σ2

N
∑

j=1

T
∑

k=1

{
∂cj,k(θ)

∂θu

}{
∂cj,k(θ)

∂θv

}

, (4.14)

where (4.14) was obtained assuming independent observations across space and time. Al-

though the performance of Algorithm 1 is satisfactory, it is not as good as its parametric

competitor MLE. This is because MLE requires complete description of the likelihood func-

tion, which is a very strict requirement. On the other hand, this requirement is relaxed

in case of DPMM-based Algorithm 1. In DPMM, knowing the family of noise distribution

is useful enough to estimate the parameters related to the distribution. Also the proposed

algorithm is computationally less expensive than the MLE. For a particular iteration of any

iterative optimization techniques used for the MLE, computational complexity of solving

the likelihood function is O (d2N), where d is the dimension of the unknown vector to be

estimated and N is the sample size. On the other hand, at a particular iteration of the

proposed algorithm, the computational complexity of obtaining θ̂ is O (dN). The compu-

tational complexity of of Algorithm 1 is mainly dominated by the 2nd term in (4.6) which

requires the evaluation of N − 1 likelihood functions qi’s.

4.6.2 Multiple Diffusive Source Localization

In this case, we assumed that there are two static diffusive sources of same kind present in

the diffusive field of interest. Parameters used for simulations are: number of nodes N =64,
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Figure 4.2: Performance of the proposed Algorithm 1.

location of the first source rs
1 = [0.01, 0.01]T and the same for the second diffusive source

is rs
2 = [−20,−20]T , mass release rates are µ1= 1000 Kg/s and µ2= 100 Kg/s respectively,

nuisance parameter b = 0, tI = 0 sec and κ = 25m2/s. The observation noise is assumed

to have Gaussian distribution with mean 0 and variance σ2 = (1 × 10−5)2 Kg2/m4. The

measurements are taken at every 1 sec time-step starting from 1 sec and ending at 20 sec.

Number of learning iterations at each time instant is taken to be 90000. Other learning

parameters are: Sj = 1, ∀j, s = 3, τ = 1 and m = 0.

Figure 4.3 shows the estimated distance using the BLUE estimator based proposed

method and the actual distances. It is to be noted that the proposed method for multiple

distance estimation is somewhat similar to ICA based source separation problem (cocktail

party problem), where source mass release rates are considered as signal inputs and the rest

of the product term in (4.9) can be considered as mixing terms, which in this case is time-

varying. Similar to the ICA-case, the estimated distances from noisy observations are in
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Figure 4.3: Estimated source-to-node distances for diffusive source (a) One, (b) Two.

fact attenuated version of the actual distances (while the estimated trend in the distances

are almost the same). As a result post-magnification is needed to obtain a closer solution

before the estimated distances are fed into the DPMM-based localization method. It is to be

noted that since the maximum distance for our diffusive field of interest can not go beyond

20
√

10m, the post-magnification can be done accordingly.

The obtained cluster formations and estimated location of the first source from DPMM-

based learning process at times t = 5s and t = 10s are given in Figure 4.4 for a single random

realization. Cluster formations and estimated location for the second source from DPMM-

based learning process at times t = 5s and t = 10s are given in Figure 4.5. At each time

instant, cluster location with the highest probability is considered as the estimated source

location. Figure 4.4 and 4.5 show the clusters formed with their corresponding probabilities

and estimated source locations. It can be seen that the diffusive source locations were

successfully estimated in each case.

Figure 4.6 shows performance of the proposed algorithm 2 in terms of the total normalized

root-mean-squqred-error (RMSE) as a function of number of sensing nodes, and compares
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Figure 4.4: Clustering with associated probabilities at time (a) t = 5 sec and (b) t = 10 sec
for source 1 with actual location being [0.01, 0.01]T for a single random realization.
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Figure 4.5: Clustering with associated probabilities at time (a) t = 5 sec and (b) t = 10 sec
for source 1 with actual location being [−20,−20]T for a single random realization.

the same with that of the MLE along with the CRLB. As one would expect, although the

performance of Algorithm 2 is satisfactory, it is not as good as its parametric competitor

MLE. Also because of the curse of dimensionality (increases with the number of sources),
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the number of iterations required to reach convergence is higher than that for single diffusive

source localization in Algorithm 1. For a particular iteration of any iterative optimization

techniques used for the MLE, computational complexity of solving the likelihood function

for M number of diffusive sources is O (Md2NT ), where d is the dimension of the unknown

vector to be estimated, N is the sample size and T is the number of time samples. On

the other hand, at a particular iteration of the proposed algorithm 2, the computational

complexity of obtaining θ̂ is O (Md max(N, T )).
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Figure 4.6: Performance of the proposed Algorithm 2.

4.7 Conclusion

In this chapter, we proposed two non-parametric diffusive source localization algorithms

based on DPMM for single and multiple diffusive sources respectively. We also analytically

proved convergence of the proposed algorithms in terms of total variation norm when the
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number of iterations in the learning process approach infinity. The performance of the

proposed localization methods are shown to be satisfactory using numerical simulations. For

the proposed algorithms, knowledge of the family of distribution of the likelihood function

is enough. On the other hand, parametric estimation technique would require complete and

suitable description of the system model and the likelihood function. It was also found that

the proposed algorithms offer low computational complexity for implementation.

Appendix 4A

Proof of Convergence for Algorithm 1

To prove the convergence of the proposed Algorithm 1, we will exploit the results given

in [81, 83].

Let QI (θ1:N(0), A) be the probability, with initial value θ1:N(0), and after one iteration

of the algorithm, it produces sample value that is contained in the measurable set A, i.e.

QI (θ1:N(0), A) = P {θ1:N(1) ∈ A|θ1:N(0)}, where QI(., .) is called the transition kernel of

the Markov chain. Also, let Qu
I (θ1:N(0), A) = P {θ1:N(u) ∈ A|θ1:N(0), u} after u number of

iterations, and denote the posterior distribution of θ1:N by P (θ1:N |y1:N).

In [81], Theorem 1 states that, for almost all starting values of θ1:N(0), the probability

measure Qu
I defined over the measurable space Ω ⊃ A, converges in total variation norm

to the posterior distribution as u goes to infinity. That is, for almost all θ1:N(0), limu→∞ ‖

Qu
I (θ1:N(0), A)−P (θ1:N |y1:N) ‖= 0. Since doing the maximum operation does not effect the

convergence of the algorithm itself, therefore the convergence of the algorithm is ensured. "
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Appendix 4B

Proof of Convergence for Algorithm 2

To prove the convergence of the proposed Algorithm 2, we resort to the proof given in

Appendix 4A for Algorithm 1.

As convergence was proven for single diffusive source case, likewise in this case, once

the estimate of source-to-node distances are obtained using BLUE estimator in step 2

of Algorithm 2, the multiple diffusive source localization problem becomes equivalent to

multiple single diffusive source localization in parallel. Therefore, based on Theorem 1

in [81], for almost all starting values of θm
1:N(0), the probability measure Qu

m,I , ∀m, de-

fined over the measurable space Ω ⊃ A, converges in total variation norm to the pos-

terior distribution P (θm
1:N |y1:N) as u goes to infinity. That is, for almost all θm

1:N(0),

limu→∞ ‖ Qu
m,I (θm

1:N(0), A) − P (θm
1:N |y1:N) ‖= 0, ∀m. Again, since taking the maximum

does not effect the convergence of the algorithm itself, and therefore the convergence of

Algorithm 2 is ensured. "
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Moving Diffusive Source Tracking

5.1 Introduction

Tracking the state of a moving source/target is an important application of WSN which has

garnered tremendous attention in signal processing community. In the Bayesian approach,

the key is to construct the posterior probability density function (PDF) of the underlying

state vector based on all available information. For linear and Gaussian state dynamics

and observation models, the optimal minimum mean squared error (MMSE) solution is

tractable and is given by the well-known Kalman filter [40]. However, for most of the real

world scenarios, dynamic state estimation problems are nonlinear and non-Gaussian, and

obtaining optimal closed-form solution is not tractable under the Bayesian approach. In

these cases, suboptimal approached such as extended Kalman filter, Gaussian-sum filter [84]

are used with certain approximations. These sub-optimal algorithms become inefficient for

highly nonlinear and non-Gaussian systems. In these cases, numerical techniques based on

sequential Monte-Carlo methods are used to achieve better performance for highly nonlinear

systems. To that end, the idea of particle filtering was introduced in [85] as an effective

method of representing PDF in terms of a set of random sampling.
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In case of a moving diffusive source tracking, the problem is challenging mainly for

two reasons. First, the spatio-temporal concentration distribution is highly nonlinear in

terms of the source location. Secondly, the concentration at any time is affected by all past

values of the source position. Therefore, time-cumulation effects on the concentrations (i.e.

observations) must be taken into account to estimate time-varying parameters. Though use

of particle filters for target tracking applications is addressed by many authors in different

contexts [35,37,38,41], to the best of our knowledge, moving diffusive source tracking using

particle filtering approach has not been attempted before. In this chapter, we propose

a particle filter (PF) based target tracking method for moving diffusive source using WSN

with a fusion center (FC). The Posterior Cramér-Rao Lower Bound (PCRLB) for the moving

source state estimates is also derived as a theoretical performance bound [66].

The remainder of this chapter is organized as follows: Section 5.2 presents the problem

formulation and system model.Proposed FC-based moving diffusive source tracking by parti-

cle filtering is discussed in detail in section 5.3. Section 5.4 discusses the analytical derivation

of the PCRLB as a theoretical performance bound for our proposed tracking scheme. Sec-

tion 5.5 shows the validity and effectiveness of our proposed methods for diffusive source

localization and tracking through numerical simulations. Finally, section 5.6 concludes this

chapter by summarizing our results.

5.2 Problem Formulation and System Model

5.2.1 State Dynamics Model

For the simplicity of exposition and computation, we consider the problem of tracking a diffu-

sive source moving in a 2-dimensional X-Y plane. The assumption can be easily extended to

3-dimensional case without any loss of generality. Let us denote by sk = [xs,k ys,k ẋs,k ẏs,k]
T ,

the state vector associated with the moving source at time tk, where the first two elements
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represent the source position in 2D and the next two elements represent the speed of the

moving source respectively. We assume linear dynamic model for the source state vector:

sk = Fsk−1 + uk, (5.1)

for k = 1, 2, ..., with the initial known distribution p(s0) for sk, where F is a 4 × 4 matrix

that models the state kinematics [86]:

F =










1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1










, (5.2)

where Ts is the time difference between two consecutive measurements. The noise vector uk

is assumed to be zero mean Gaussian with covariance matrix Q [86]:

Q = σ2
u










T 3
s

3 0 T 2
s

2 0

0 T 3
s

3 0 T 2
s

2

T 2
s

2 0 Ts 0

0 T 2
s

2 0 Ts










, (5.3)

which models the acceleration terms in the spatial directions, and σ2
u is the variance of the

process noise.

5.2.2 Observation Model

In case of a moving diffusive source continuously emitting diffusing substance in 2D, we may

obtain a measurement model for a sensor at a position rj,k and at time tk as:

zj,k = c(rj,k, tk) + ν(rj,k, tk) + b, for j ∈ N

= cj,k + νj,k + b, (5.4)
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where zj,k is the j-th node’s observation at time tk, cj,k # c(rj,k, tk) is the substance con-

centration at j-th node location at time tk with c(rj,k, tk) =
∫ tk

tI
µ(τ)cG (rj,k − rs(τ), t − τ),

moving diffusive source location at time tk is rs,k = s̃k = [xs,k, ys,k]
T , location of j-th node

at time tk is rj,k = [xj,k, yj,k]
T and νj,k ∼ N (0, σ2

ν) is the sensor measurement noise assumed

to be independent in both time and space. Note that for static sensor node locations, we

use rj,k = rj = [xj , yj]
T , by dropping the time index since node locations do not change over

time. Assuming additive white Gaussian noise (AWGN) channel for the sake of simplicity,

the received signal at the FC from the j-th node at time tk can be written as:

yj,k = zj,k + εj,k, for j ∈ N

= cj,k + b + εj,k + νj,k = cj,k + b + ej,k,

where εj,k is the received noise which is assumed to be Gaussian with mean zero, variance

σ2
ε and ej,k = εj,k + νj,k and σ2 = σ2

ν + σ2
ε . We denote yj,1:k as the measurement vector

from j-th node upto time tk, and yc,1:k # {y1,1:k, y2,1:k, . . . , yN,1:k}T as the collection of all

measurements at the FC from N distributed sensor nodes.

In a realistic moving source scenario, the instantaneous velocity is restricted by some

practical upper limit. Hence, for lower sampling time Ts, we can assume that the moving

diffusive source moves in a linear fashion between two observations with an average velocity

determined by the source locations rs,k and rs,k+1. For 2D moving diffusive source tracking

with no external force in action, the Green’s function can be obtained from (2.10) and (2.11)

as:

cG (rj, tk) =
1

4πκ(tk − tI)
exp

[

− ||rj − r0(tk)||2

4κ(tk − tI)

]

.

Therefore, for a continuous moving diffusive source with constant mass rate µ(t) = µ, obser-

vations taken by the j-th node at k-th time instant can be written as,

yj,k = cj,k−1 + ζj,k + b + ej,k, (5.5)
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where

ζj,k = µ

∫ tk

tk−1

cG (rj − rs(τ), tk − τ) dτ,

=
µ

4πκ

∫ tk

tk−1

(
1

tk − τ

)

exp




−

∣
∣
∣

∣
∣
∣rj −

{

rs,k−1 +
(

rs,k−rs,k−1

Ts

)

(τ − tk−1)
}∣
∣
∣

∣
∣
∣

2

4κ(tk − τ)




 dτ.

(5.6)

5.3 Target Tracking using Particle Filters

In Bayesian belief update, to estimate state vector sk at time instant k, we need to construct

posterior distribution p (sk|yc,1:k) with initial PDF p(s0). The Bayesian belief update is done

in two stages: prediction and update.

Prediction: Considering that p (sk−1|yc,1:k−1) is available at time k, the PDF p (sk|yc,1:k−1)

can be obtained as [41]:

p (sk|yc,1:k−1) =

∫

p (sk|sk−1) p (sk−1|yc,1:k−1) dsk−1.

Update: If observations yc,1:k are available at time instant k, the posterior distribution

to estimate the state vector sk is given by [41]:

p (sk|yc,1:k) =
p (yc,k|sk) p (sk|yc,1:k−1)

p (yc,k|yc,1:k−1)
. (5.7)

Since the observation model is highly nonlinear, analytical solution for the optimal estimator

is not tractable in our case. Hence, we use sequential Monte Carlo method to approximate

the posterior PDF (5.7) with particle filters [85].

Let us denote Xk = {si
k, w

i
k}

P
i=1 to be the random measure that characterizes the posterior

PDF p (sk|yc,1:k), where P is the number of particles. Then p (sk|yc,1:k) ≈
∑P

i=1 wi
kδ (sk − si

k),
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where δ(.) is the Dirac delta function. The state vector estimate at time tk can be ob-

tained as ŝk|k ≈
∑P

i=1 wi
ks

i
k, and the covariance matrix Uk|k of the estimate is Uk|k ≈

∑P
i=1 wi

k

(

si
k − ŝk|k

) (

si
k − ŝk|k

)T
. The predicted state ŝk+1|k and the corresponding covari-

ance matrix Uk+1|k can be obtained from the state dynamics in (5.1), as ŝk+1|k = Fŝk|k and

Uk+1|k = FUk|kFT + Q.

5.4 PCRLB Analysis

Analogous to the CRLB, the PCRLB provides a lower bound for the mean-squared error of

random parameter estimation [66]. Let us define the joint probability distribution of Sk and

yc,1:k for an arbitrary k as p (Sk,yc,1:k) = pk, where yc,1:k is the observation vector formed at

the FC at k-th time instant and Sk = (s0, s1, . . . , sk). Following (5.6), the concentration at

any time k + 1 for any node j can be written as:

c(rj, tk+1) # cj,k+1 = ζj,0:1 + ζj,1:2 + . . . + ζj,k−1:k + ζj,k:k+1.

Based on the assumed observation model in (5.5), the log-likelihood function Lk+1 at (k+1)-

th time instant formed at the FC is given by

Lk+1 = log p (yc,k+1|sk+1,Sk) ,

= −N

2
log(2πσ2) −

N∑

j=1

1

2σ2
(yj,k+1 − c (rj, tk) − ζj,k+1 − b)2 .

Let I(Sk) ∈ R4k×4k be the information matrix derived from the joint distribution pk. We

wish to solve for the information submatrix for estimating sk, denoted by Ik. The following

theorem gives a two-step recipe for computing Ik.

Theorem 3 : The sequence {Ik+1} of the posterior information submatrices for estimating
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state vectors sk+1 can be computed as follows:

Ik+1 = Dk+1 −
[

Lk+1 −Q−1F + Mk+1

]

[I(Sk) + Rk+1]
−1




LT

k+1

−FT Q−1 + MT
k+1



 ,(5.8)

where Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

, Dk+1 = −E
{

∆
sk+1
sk+1 log pk+1

}

,

Lk+1 =
[

−E

{

∆s0
sk+1

Lk+1

}

− E

{

∆s1
sk+1

Lk+1

}

. . . − E
{

∆
sk−1
sk+1Lk+1

}
]

,

Rk+1 =











−E
{

∆s0
s0
Lk+1

}

−E
{

∆s1
s0
Lk+1

}

. . . −E
{

∆sk
s0
Lk+1

}

−E
{

∆s0
s1
Lk+1

}

−E
{

∆s1
s1
Lk+1

}

. . . −E
{

∆sk
s1
Lk+1

}

...
...

. . .
...

−E
{

∆s0
sk
Lk+1

}

−E
{

∆s1
sk
Lk+1

}

. . . −E
{

∆sk
sk
Lk+1

}

+ FT Q−1F











,(5.9)

and ∆Θ
Φ = ∇Φ∇T

Θ with ∇ being the Laplacian operator.

Proof : See Appendix 5A.

Note that the information submatrix computation in (5.8) involves computation of the

inverse of a matrix of size 4k × 4k. This is because of the output yj,k+1 at the j-th node at

(k + 1)-th time instant being a function of all the previous states Sk+1.

5.5 Simulation Results

In this section, we analyze the performance of our proposed moving diffusive source track-

ing scheme. For the sake of simplicity, we consider a 2D diffusive field volume of Λ =

[−50, 50] × [−50, 50] m2. We assume that the sensors are placed in a uniform 2D grid such

that the distance between adjacent sensors along the same ordinate is approximately 14.3 m.

Parameters used for simulations are: number of nodes N =64, r0 = [0, 0]T , µ= 1000 Kg/s,

b = 10−4 Kg/m2, tI = 0 sec and κ = 25m2/s. The observation noise is assumed to have
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Gaussian distribution with mean 0 and variance σ2 = 1× 10−4 Kg2/m4. The measurements

are taken at every 0.5 sec time-step starting from 0.5 sec and ending at 30 sec.

The initial source state vector is assumed to be Gaussian with mean µ = [0, 0, 0, 0]T and

covariance matrix Σ0 = diag
(

[0.01, 0.01, 0.01, 0.01]T
)

. The intensity of the state process

noise is σ2
u = 0.1. Sampling time is assumed to be Ts = 0.5sec. Total number of random

realizations used for simulations is 50. The tracking is performed for 30 sec and the number

of particles in the particle filter (PF) is Np = 1000. The performance measure is taken

as the root-mean-squared-error (RMSE) of the moving source position estimate given by

RMSEk =
√

(xs,k − x̂s,k)
2 + (ys,k − ŷs,k)

2. The RMSE is compared with the square root of

the PCRLB components of the position error, PCRLBk ≈
√
[

I−1
k

]

11
+
[

I−1
k

]

22
.

Figure 5.1 and 5.2 show the tracking performances of the proposed tracking scheme

using particle filter for grid-based and random node deployment strategies respectively. It

can be seen that the target trajectory can be tracked with better accuracy in Figure 5.2

with compared to that in Figure 5.1. Figure 5.2(b) and 5.1(b) show the RMSE’s on the

tracking performances for the aforementioned two node deployment strategies respectively.

The obtained RMSE with the random node deployment case is better and closer to the

derived PCRLB than those for the grid-based node deployment case. This is because for a

fixed node density, the expected nearest neighbor node distance (from the source) in case of

random node deployment is less than the inter-node spacing in grid-based node deployment,

which in our case is 14.3 m. The random node deployment is specially suitable when there

is no pre-designed infrastructure for sensor network and also when the diffusive field is

hazardous for human deployment.

It is of interest also to investigate the performance of the proposed target tracking method

when the sampling time Ts is varying. Figure 5.3 shows the effect of sampling time Ts on

the tracking performances of the proposed moving diffusive source tracking scheme using

grid-based node deployment strategy keeping all the other parameters same as mentioned

before. As one would expect, the tracking performance decrease with the increase of sampling
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Figure 5.1: (a) Actual and estimated trajectories of the moving diffusive source, and (b)
RMSE (dB) for grid-based sensor node deployment.

time Ts. This is because for higher values of Ts, the process noise will increase according

to (5.3). Since we are also assuming that the movement of the diffusive source is almost

linear between two successive time instant, the lower Ts will result in better accuracy of the

proposed tracking scheme.

5.6 Conclusion

In this chapter, we proposed a particle filter based target tracking method for moving diffusive

source emitting substance continuously into a dispersive medium. The PCRLB correspond-
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Figure 5.2: (a) Actual and estimated trajectories of the moving diffusive source, and (b)
RMSE (dB) for random sensor node deployment.

ing to moving diffusive source tracking was obtained as a theoretical performance measure

and compared with the simulation results. Both grid-based and random node deployment

strategies were investigated for our proposed tracking scheme. The effect of sampling time

on the moving source tracking was also studied. The performance of the proposed estimation

and tracking methods are shown to be excellent using numerical simulations.
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Figure 5.3: (a) Actual and estimated trajectories of the moving diffusive source, and (b)
RMSE (dB) for different values of sampling time Ts.

Appendix 5A

Proof of Theorem 3

The joint probability distribution of Sk and yc,1:k at k-th time instant can be written as:

p (Sk,yc,1:k) = pk = p(s0)
k
∏

m=1

p (yc,1:k | s1:m)
k
∏

n=1

p (sn | sn−1) .
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For p (s0) ∼ N (µ0,Σ0), the initial condition for the FIM is I(S0) = E
{

−∆s0
s0

log p (s0)
}

=

Σ−1
0 . Decomposing S1 as S1 = [sT

0 , sT
1 ]T , I(S1) can be obtained as

I(S1) =




E
{

−∆s0
s0

log p1

}

E
{

−∆s1
s0

log p1

}

E
{

−∆s0
s1

log p1

}

E
{

−∆s1
s1

log p1

}



 ,

=




I(S0) + R1

[

E
{

−∆s1
s0
L1

}

−Q−1F
]T

E
{

−∆s1
s0
L1

}

− Q−1F E
{

−∆s1
s1
L1

}

+ Q−1



 #




A1 BT

1

B1 D1



 .

Since error is independent across space and time, using concept from block matrix inversion,

the information submatrix that provides the mean square error estimate of s1 is given by

I1 = D1 − B1A
−1
1 BT

1 = D1 − B1 [I(S0) + R1]
−1 BT

1 ,

where D1 = E
{

−∆s1
s1
L1

}

+ Q−1, R1 = E
{

−∆s0
s0
L1

}

+ FTQ−1F and B1 = E
{

−∆s0
s1
L1

}

−

FTQ−1. Similarly, decomposing S2 as S2 = [sT
0 , sT

1 , sT
2 ]T , the FIM I(S2) can be written as

follows:

I(S2) =








E
{

−∆s0
s0

log p2

}

E
{

−∆s1
s0

log p2

}

E
{

−∆s2
s0

log p2

}

E
{

−∆s0
s1

log p2

}

E
{

−∆s1
s1

log p2

}

E
{

−∆s2
s1

log p2

}

E
{

−∆s0
s2

log p2

}

E
{

−∆s1
s2

log p2

}

E
{

−∆s2
s2

log p2

}








,

=








A1 + E
{

−∆s0
s0
L2

}

BT
1 + E

{

−∆s1
s0
L2

}

E
{

−∆s2
s0
L2

}

B1 + E
{

−∆s0
s1
L2

}

D1 + FT Q−1F + E
{

−∆s1
s1
L2

}

−FT Q−1 + E
{

−∆s2
s1
L2

}

E
{

−∆s0
s2
L2

}

−Q−1F + E
{

−∆s1
s2
L2

}

Q−1 + E
{

−∆s2
s2
L2

}








,

#




I(S1) + R2 BT

2

B2 D2



 . (5.10)

The information submatrix I2 can be found as an inverse of the right-lower 4× 4 submatrix

of [I(S2)]
−1:

I2 = D2 − B2 [I(S1) + R2]
−1 BT

2 ,

77



Chapter 5. Moving Diffusive Source Tracking

where D2 = Q−1 + E
{

−∆s2
s2
L2

}

, B2 =
[

E
{

−∆s0
s2
L2

}

−Q−1F + E
{

−∆s1
s2
L2

}]

, and

R2 =




E
{

−∆s0
s0
L2

}

E
{

−∆s1
s0
L2

}

E
{

−∆s0
s1
L2

}

FT Q−1F + E
{

−∆s1
s1
L2

}



 .

By extending the above procedure and decomposing Sk+1 =
[

sT
0 , sT

1 , . . . , sT
k+1

]T
, I (Sk+1) can

be obtained as:

I(Sk+1) =











−E
{

∆s0
s0

log pk+1

}

−E
{

∆s1
s0

log pk+1

}

. . . −E
{

∆
sk+1
s0 log pk+1

}

−E
{

∆s0
s1

log pk+1

}

−E
{

∆s1
s1

log pk+1

}

. . . −E
{

∆
sk+1
s1 log pk+1

}

...
...

. . .
...

−E

{

∆s0
sk+1

log pk+1

}

−E

{

∆s1
sk+1

log pk+1

}

. . . −E
{

∆sk+1
sk+1 log pk+1

}











,

#








I(Sk) + Rk+1




LT

k+1

−FT Q−1 + MT
k+1





[

Lk+1 −Q−1F + Mk+1

]

Dk+1








. (5.11)

The information submatrix Ik+1 can be generalized as an inverse of the right-lower 4 × 4

submatrix of [I(Sk+1)]
−1 in (5.11), where Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

,

Dk+1 = −E
{

∆
sk+1
sk+1 log pk+1

}

= Q−1 + E
{

−∆
sk+1
sk+1Lk+1

}

# Q−1 + D̃k+1,

Lk+1 =
[

−E

{

∆s0
sk+1

Lk+1

}

− E

{

∆s1
sk+1

Lk+1

}

. . . − E
{

∆
sk−1
sk+1Lk+1

}
]

, and Rk+1 is defined in

(5.9). The only non-zero elements of D̃k+1 = E
{

−∆
sk+1
sk+1Lk+1

}

∈ R4×4 are given by,

[

D̃k+1

]

11
=

1

σ2

N
∑

j=1

[
∂ζj,k:k+1

∂sk+1(1)

]2

,

[

D̃k+1

]

12
=

[

D̃k+1

]

21
=

1

σ2

N
∑

j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k:k+1

∂sk+1(2)

]

,

[

D̃k+1

]

22
=

1

σ2

N
∑

j=1

[

∂ζj,k:k+1

∂sk+1(2)

]2

.
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Similarly the only non-zero elements of Mk+1 = −E

{

∆sk
sk+1

Lk+1

}

∈ R4×4, can be obtained

as

[Mk+1]11 =
1

σ2

N
∑

j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k−1:k

∂sk(1)
+
∂ζj,k:k+1

∂sk(1)

]

,

[Mk+1]12 =
1

σ2

N
∑

j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k−1:k

∂sk(2)
+
∂ζj,k:k+1

∂sk(2)

]

,

[Mk+1]21 =
1

σ2

N∑

j=1

[
∂ζj,k:k+1

∂sk+1(2)

] [
∂ζj,k−1:k

∂sk(1)
+
∂ζj,k:k+1

∂sk(1)

]

,

[Mk+1]22 =
1

σ2

N
∑

j=1

[
∂ζj,k:k+1

∂sk+1(2)

] [
∂ζj,k−1:k

∂sk(2)
+
∂ζj,k:k+1

∂sk(2)

]

,

where the partial-derivative components are defined as follows using (5.6):

∂ζj,k:k+1

∂sk(1) = µ
8πTsκ2

∫ tk+1

tk

|xj−x0(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛
rj−

n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o
˛

˛

˛

2

4κ(tk+1−τ)

]

(tk+1 − τ)dτ,

∂ζj,k:k+1

∂sk(2) = µ
8πTsκ2

∫ tk+1

tk

|yj−ys(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛
rj−

n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o
˛

˛

˛

2

4κ(tk+1−τ)

]

(tk+1 − τ)dτ,

∂ζj,k:k+1

∂sk+1(1) = µ
8πTsκ2

∫ tk+1

tk

|xj−xs(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛
rj−

n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o
˛

˛

˛

2

4κ(tk+1−τ)

]

(τ − tk)dτ,

∂ζj,k:k+1

∂sk+1(2)
= µ

8πTsκ2

∫ tk+1

tk

|yj−ys(τ)|
(tk+1−τ)2 exp

[

−
˛

˛

˛
rj−

n

rs(tk)+
“

rs(tk+1)−rs(tk)

Ts

”

(τ−tk)
o
˛

˛

˛

2

4κ(tk+1−τ)

]

(τ − tk)dτ,
































,(5.12)

and

xs(τ) =

(

tk+1 − τ

Ts

)

xs(tk) +

(

τ − tk
Ts

)

xs(tk+1),

ys(τ) =

(
tk+1 − τ

Ts

)

ys(tk) +

(
τ − tk

Ts

)

ys(tk+1).

Following the same approach as above, the elements of the matrix Lk+1 ∈ R4×4k can easily

be obtained at each time instant. "
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Chapter 6

Game Theoretic Lifetime

Improvement of WSN in Estimation

6.1 Introduction

Wireless Sensor networks tend to experience premature failure since some nodes might run

out of their batteries rapidly due to work load variations, communication environments or

hardware setup. It is undesirable for a sensor node to waste power as excessive use of battery

power can shorten the lifetime of a node. Resource-constrained WSNs rely on collaborative

signal and information processing for efficient handling of large volumes of data collected by

distributed sensor nodes. Node collaboration, however, requires inter sensor communication.

Payoff and cost of collaboration can be modeled, respectively, as the improved quality of

processed outputs and the required power or bandwidth for communication. Thus there

needs to be a trade-off between performance and cost of collaborative information processing.

The rich collection of tools from cooperative game theory can be very useful in approach-

ing such collaborative signal processing problems in a sensor network. Unlike non-cooperative

game theory, where individual players compete with each other to achieve their goals of max-
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imizing individual payoffs, cooperative game theory allows competing players (or nodes) to

form coalitions so as to efficiently achieve their individual goals. For a resource constrained

WSN, cooperative game theory can be a natural choice and comes in handy when estimating

a parameter with desired estimator quality is the ultimate goal. In current literature, very

few attempts have been made to exploit the rich collection of cooperative game theory in

power/energy-constrained WSNs tasked with estimating a parameter. For example, in [60],

a novel concept of incompletely cooperative game theory was used to simultaneously achieve

energy conservation and throughput for WSNs. On the other hand, [61,62] used cooperative

game theory for channel/bandwidth allocation problem. In this chapter, we use tools from

cooperative game theory to develop a formal analytical framework for fair allocation of power

among participating sensor nodes to achieve a sequential estimation task while at the same

time maximizing overall network lifetime. In particular, we use the concept of the Shapley

value [65] to achieve power allocation among distributed nodes with power constraints.

The remainder of this chapter is organized as follows. In section 6.2, we present the

sensor network model for the sequential estimation problem. Section 6.3 discusses about the

basic concepts and theorems for the Shapley value based solution method. The proposed

power allocation algorithm with a combined objectives of network lifetime improvement and

estimation, is discussed in section 6.4. Section 6.5 evaluates the performance of the proposed

solution via simulations. Finally, Section 6.6 concludes the chapter by summarizing our

results.

6.2 Sensor Network Model for Sequential Estimation

We consider a sensor network consisting of a Fusion Center (FC) and N nodes tasked with

estimating a non-random parameter θ sequentially as shown in Fig. 6.1. We consider the

FC itself as a node with its own estimate of the parameter θ and is denoted as node-0. The

set of distributed nodes are denoted as N = {1, 2, · · · , N}. Objective of each node, or a
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set of nodes, is to obtain a reliable estimation of θ. Sensor network may consists of mobile

nodes or a hybrid of fixed and mobile nodes and the wireless channel can be time-varying.

However, only a quasi-static network is considered here, in which node locations as well as

fading coefficients can be assumed fixed for a certain period of time, whereas from block to

block they could be varying.

Figure 6.1: A typical WSN architecture with a FC.

Local estimator at node i is denoted by θ̂i, for i = 0, 1, 2, · · · , N . All local estimators

are assumed to be unbiased and their respective variances denoted by Vi. Under the quasi-

static assumption, we may assume that at the beginning of each block, the FC (node-0)

has access to the quality of estimates at the distributed nodes as given by Vi’s for i ∈ N .

It is assumed that the FC forms its updated estimator sequentially (in a predetermined

order or randomly) by combining its own observation with the noise-corrupted estimates

of the selected distributed nodes received over noisy communication links. The FC keeps

on sequentially updating its estimator until it achieves a certain predetermined estimation

quality denoted by Vt. We consider the case when the distributed nodes are not supposed to

transmit at their maximum powers, while the goal is to achieve a desired quality of estimate

at the FC using as fewer a number of nodes as possible, and at faster a rate as possible. The

82



Chapter 6. Game Theoretic Lifetime Improvement of WSN in Estimation

objective is to define a fair allocation of network resources for collaborating nodes in terms

of their transmit powers. The sensor nodes in the assumed WSN are powered by batteries

with limited lifetime, which is dissipated during the data transmission/reception. Note that,

we define the lifetime of a sensor network as the time after which at least one or a certain

fraction of sensor nodes run out of their batteries, resulting in a hole within the network. We

assume that the FC is equipped with sufficient energy, hence we are only concerned about

the distributed nodes in the set N .

For simplicity, AWGN channel with quasi-static fading is considered. Signal received at

the FC from node jεN can be expressed as

xj = θ̂j + wj, (6.1)

where wj is the zero-mean receiver noise with variance 1
Pj |hj |2 , Pj and hj are the transmit

power of node j and the quasi-static fading coefficient from node j to the FC, respectively.

For N nodes, the data vector available at the FC can be written as

X0 =











θ̂0

x1

...

xN











=











1

1
...

1











θ +











θ̃0

θ̃1

...

θ̃N











+











0

w1

...

wN











,

so that

X0 = 1θ + Θ̃0 + w0. (6.2)

where θ̃i = θ̂i − θ is zero-mean with variance Vi for all i, 1 is the vector of all ones, Θ̃0 =

[θ̃0, θ̃1, ..., θ̃N ]T and w0 = [0, w1, ..., wN ]T . Let us denote by Σ0 = Σ0
θ + Σ0

w the covariance

matrix of X0, where Σ0
θ and Σ0

w are the covariance matrices of Θ̃0 and w0 respectively. The

optimal BLUE estimator formed at the FC is given by θ̂0,n =
1T [Σ0]

−1
X0

1T [Σ0]−11
with the updated
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estimator variance V up
0 =

(

1T [Σ0]−1 1
)−1

. The covariance matrix of the observation vector

X0 at the FC is given by (6.3),

Σ0 =











V0 C01 . . . C0N

C10 V1 + (P1|h1|2)−1 . . . C1N

...
...

. . .
...

CN0 CN1 . . . VN + (PN |hN |2)−1











, (6.3)

where Cij = Cov{θ̂i, θ̂j} is the covariance between the random variables θ̂i and θ̂j .

6.3 Basics of The Shapley Function

For game theoretic formulation of our sequential estimation problem, we consider a game in

which the players (sensor nodes) may choose to cooperate by forming coalitions. Cooperative

game theory allows competing agents to form coalitions so as to further their individual

objectives. In this section, we use the concept of Shapley function [65] as an average measure

of fairness for each node.

Definition 1 A Shapley function φ(v) is a function that assigns to each possible characteristic

function υ a real number, i.e.,

φ (υ) = [φ1 (υ) ,φ2 (υ) , · · · ,φN (υ)] , (6.4)

where φi (υ) represents the worth or value of player i in the game. Note that, the charac-

teristic function of a coalition S ⊂ N is the largest guaranteed payoff to the coalition and is

defined as follows:

Definition 2 Let 2N denote the set of all possible coalitions for the players N . Any function

υ : 2N → R satisfying

υ(φ) = 0 and υ(N) ≥
N
∑

i=1

υ(i) (6.5)

84



Chapter 6. Game Theoretic Lifetime Improvement of WSN in Estimation

is a characteristic function of an N-person cooperative game. The Shapley axioms for φ (υ)

are [64]:

1. Efficiency:
∑

i∈N φi (υ) = υ (N).

2. Symmetry: If i and j are such that υ (S ∪ {i}) = υ (S ∪ {j}) for every condition S

not containing i and j, then φi (υ) = φj (υ).

3. Dummy axiom: If i is such that υ (S) = υ (S ∪ {i}) for every coalition S not

containing i, then φi (υ) = 0.

4. Additivity: If u and υ are characteristic functions, then φ (u + v) = φ (v + u) =

φ (u) + φ (v).

It can be proved that there exists a unique function φ satisfying the above axioms, and

this Shapley function can be written as [65]

φi =
∑

S⊆N−i

(|S|)! (N − 1 − |S|)!
N !

[υ (S ∪ {i}) − υ (S)] . (6.6)

The physical meaning of the Shapely function can be interpreted as follows: suppose that

N sensor nodes form a coalition, in which each node joins the coalition in random order.

There are N ! different ways that the nodes might be ordered in joining the coalition, For

any coalition S that does not include node i, there are |S|! (N − 1 − |S|)! different ways

to order the nodes so that S is the set of nodes who enter the coalition before node i. If

various orderings are equally likely, (|S|)!(N−1−|S|)!
N ! is the probability that, when node i enters

the coalition, the coalition S of size |S| is already formed. When node i finds S ahead of

it as it joins the coalition, then its marginal contribution to the worth of the coalition is

υ (S ∪ {i}) − υ (S). Thus under the assumption of randomly-ordered joinings, the Shapley

value of each node is its expected marginal contribution when it joins the coalition.
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6.4 Shapley Value-based Power Allocation

For simplicity of exposition, in this section, we consider the case when all local estimators

are uncorrelated and communication is over orthogonal channels. In this chapter, our goal

is to estimate a non-random parameter sequentially and at the same time allocate powers

among the transmitting/participating nodes in a way that the overall lifetime of the sensor

network is maximized. Let P̄n be the maximum possible transmit power of node n and Pn

be the actual transmit power to be obtained from game-theoretic solution. Let us define the

lifetime of node n at P̄n transmit power as Tn. Hence according to the definition of lifetime

given before, network lifetime, Tnet = Tmin = minn Tn. Then the available power of n-th

node if all nodes are to have the same Tmin lifetime is ψn = P̄nTn

Tmin
. We define the coalitional

gain of a coalition S = {i, j, k} of nodes as:

υ (S) =







∑

n=i,j,k λnψn if Ti = Tj = Tk
∑

n=i,j,k

(

ψn − P̄n

)

otherwise






, (6.7)

where λn is a suitably chosen weighting parameter which is proportional to the inverse of

the variance Vn of the local estimate at node n. According to the definition of υ(S) given

above, υ(∅) = 0. The Shapley value for any node n in the coalition S can be found to be

φn =
1

6

∑

m)=n
m∈S

υ({n, m}) +
1

3
[υ(S) − υ(S\{n})] . (6.8)

A possible fair allocation of node transmit power can be based on the Shapley value of each

node as defined below:

Pj

Pi
=
φj

φi
and

Pk

Pi
=
φk

φi
, (6.9)

where Pi, Pj and Pk are the powers to be committed by the sensor nodes i, j and k re-

spectively. The rationale is that a node with higher Shapley value corresponds to having

86



Chapter 6. Game Theoretic Lifetime Improvement of WSN in Estimation

higher available battery life and better local estimate because of the way the characteristic

function υ(S) is formulated. Hence, a node with longer remaining battery life or a better

local estimate is allowed to transmit at a higher power than a node with shorter residual

battery life, thereby extending the overall lifetime of the sensor network and at the same

time achieving the estimation goal.

For the monotonic decrease in the updated variance at the FC, we need V up
0 < V0, where

V up
0 =

(
1
V0

+
∑

n=i,j,k
1

Vn+(Pnh2
n)−1

)−1
. Let us define V up

0 = εV0 where 0 < ε < 1. The

parameter ε can be used to control the rate at which the updated estimator variance at the

FC improves. It also determines the existence of valid solutions for Pn’s. The criterion for

monotonic decrease of V up
0 as more nodes are included in the sequential estimation can be

written as

∑

n=i,j,k

1

Vn + (Pnh2
n)−1

+
1

V0

(

1 − 1

ε

)

= 0. (6.10)

If ε is too low, the required rate of monotonic decrease in V up
0 is too high, and in that case

there might not be a feasible solution. On the other hand, if ε is too high, rate of sequential

estimation quality at the FC may not be satisfactory. Pi, Pj and Pk can easily be solved

from (6.9) and (6.10) for the nodes i, j and k.

We propose the Shapley value based algorithm below to solve for the sequential estimation

problem. The details of the algorithm is described in Fig. 6.2. The proposed algorithm is

particularly suitable for sensor networks in which it is necessary to control the rate at which

FC reaches the target quality of estimation, while at the same time achieving increased

network lifetime.

Our proposed algorithm guarantees that when the three nodes satisfy the criteria V up
0 <

V0, the nodes with longer battery lives transmit at higher power levels. Since FC has the

knowledge of the quality of estimates at nodes i, j and k, all the calculations can be done at

the FC. Then it sends control signals to selected nodes informing them the allocated power
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Algorithm 3 Shapley value based Power Allocation
1. FC (node-0) picks any three nodes i, j, k ∈ N , i 1= j 1= k randomly or in a predetermined

order. Calculate Pi, Pj and Pk from (6.9) and (6.10).

2. FC sends control signals to nodes i, j, k, and ask them to transmit their signals with

the allocated powers. Rest of the nodes are in sleep mode. Update the estimator variance

V UP
0 at the FC and remove i, j and k from the set N .

3. Repeat the same procedures until V UP
o ≤ Vt or N = ∅ where Vt is the desired quality

of estimate at the FC.

Figure 6.2: Sequential estimation using the proposed algorithm.
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levels.

6.5 Simulation Results

In this section, we investigate the performance obtained by our proposed algorithm. We

will compare the performance with the case when all nodes transmit at their maximum

powers. Parameters used for simulations are: number of distributed nodes N = 51, estimator

variances Vi ∼ U [1, 20]. We assume that all channel gains follow Rayleigh distributions with

all channel coefficients normalized so that E {h2} = 1. For our simulation, we have chosen

λn = Vmax

Vn
, where Vmax = maxn Vn.
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Figure 6.3: Updated variance at the FC using Shapley value-based algorithm for different
values of ε.

Figure 6.3 shows the performance of the proposed algorithm as local estimates from the

distributed nodes are used by the FC to sequentially update its own estimates. For each

iteration in Fig. 6.3, local estimates from 3 different nodes are considered. As it can be seen,

the quality of estimate at the FC improves as more nodes are incorporated into estimation
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process. Algorithm 3 provides the system manager with the flexibility to control the rate

at which the variance of estimate at the FC decreases. In Fig. 6.3, we have shown how

the values of ε can affect the rate of improvement of the quality of estimate at the FC.

The monotonic decrease in variance at the FC center is also shown for the case when all

nodes transmit at their maximum powers (MPA) with the proposed algorithm. By MPA

(Maximum Power Allocation), we mean to follow all the steps in the proposed algorithm

except for setting Pi = P̄ , ∀i ∈ N , where N is the set of all nodes.

Figure 6.4 shows network lifetime improvement at the end of each time period or esti-

mation block using the proposed algorithms. By each time period or estimation block, we

mean that all distributed sensor nodes monitor/sense a PoI and the data collected by the

sensor nodes are sent to the FC for estimation purpose. We assume that each distributed

node is provided with fixed limited energy at the beginning of the estimation process. After

each estimation block, some amount of node energy is dissipated due to data communication

and processing, and new lifetime of the sensor network is updated by the FC. At the end of

the j-th time block, the network lifetime can be defined as T j
net = mini

(
Ej−1

i −P j
i tp

P̄

)

, where

Ej−1
i is the energy available at the sensor node i at the end of (j − 1)-th time period, P j

i

is the power to be spent by the node i during the j-th estimation block and tp is the time

each node spends transmitting to the FC. For our simulation, we have used tp = 1 sec,

P̄ = 1 watt and initial node energy E0
i = 10 joule for i ∈ N . It can be seen that there is

considerable increase in the overall network lifetime using the proposed algorithm. This is

because: Algorithm 1 ensures that node with comparatively higher battery life is allowed to

transmit at a higher power than that with less battery life, which leads to an overall increase

of the network lifetime.

In Fig. 6.5, we assume that sensor nodes’ lifetimes are uniformly distributed as U ∼

[0, 10]. Network lifetime using our proposed algorithm and MPA are obtained by averaging

over 100 initial lifetime realizations. Figure 6.5 shows the average lifetime performance and

improvement in the updated variance at the FC as a function of the time period/estimation
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Figure 6.4: Network lifetime improvement using the proposed algorithm for equal initial
node energy with ε = 0.85.

block. We have used tp = 0.1 sec and P̄ = 1 watt. It can be seen that although MPA reaches

the desired quality of estimate at the FC faster than that with the proposed algorithm,

our proposed algorithm outperforms MPA as far as network lifetime improvement is the

objective.

Figure 6.6 shows network lifetime as a function of processing time tp. Network lifetime is

represented in terms of the number of estimation tasks the sensor network can perform before

at least one node runs out of energy. In obtaining Fig. 6.6, we have fixed the rate controlling

parameter ε = 0.85 and target final variance at the FC Vt = 0.15×(initial variance at the

FC ). At the end of each estimation task node lifetimes are updated by subtracting the energy

spent. It can be seen from Fig. 6.6 that the proposed algorithm performs better than the

MPA in terms of network lifetime improvement. As one would expect while the processing

time tp increases, network lifetime in both cases decreases. Note that, MPA might achieve

the target quality of estimate at the FC with a few nodes transmitting at a higher power

while the proposed algorithm might use a large number of nodes transmitting at a lower

power levels.
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Figure 6.5: Improvement in the (a) Network lifetime, (b) Variance of estimation at the FC
for random initial node energy with ε = 0.85.
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Figure 6.6: Network lifetime in number of estimation task as a function of processing time
(tp) for random initial node energy.

Let us also define the lifetime of the sensor network as the time at which a certain

fraction α ∈ [0, 1] of the distributed nodes have the remaining energy/lifetime below a certain

threshold value. For our simulation we assume that the initial lifetimes are distributed as
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U ∼ [5, 10], processing time tp = 2 sec and lifetime threshold to be 4.8 sec. We have fixed the

rate controlling parameter ε = 0.85 and target final variance at the FC Vt = 0.75×(initial

variance at the FC ). Node lifetimes are updated at the end of each estimation task. It can

be seen from Fig. 6.7 that the proposed algorithm performs better than the MPA in terms of

network lifetime improvement. Figure 6.7 shows that for both of the cases, network lifetime

increases with the increase of α which is expected. Note that the improvement in network

lifetime is more with the proposed algorithm because of the power allocation strategy used

in the proposed Algorithm 1.
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Figure 6.7: Network lifetime in number of estimation task as a function of α for random
initial node energy.

6.6 Conclusion

In this chapter, a cooperative game-theoretic framework has been proposed to achieve a fair

allocation of transmit power for collaborating nodes in a Fusion center (FC) based wireless

sensor network tasked with sequential estimation of a non-random parameter. In particular,
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we proposed an algorithm based on the concept of the Shapley function to arrive at a fair

allocation of power for the nodes. The proposed method offers a system designer with a

estimation quality vs. network lifetime trade-off by allowing for tweaking a suitable design

parameter. Through simulation results, we have shown that the proposed algorithm achieves

target quality of estimate at the FC while improving the overall network lifetime.
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Chapter 7

Fair Resource Allocation in WSNs for

Sequential Estimation

7.1 Introduction

Collaborative information processing has a key role to play in efficient handling of large

volumes of data collected by mobile sensor nodes in a sensor network. While collaborative

information processing for resource-constrained sensor networks has been explored over the

last several years [54, 55], still there is a lack of a formal analytical framework for designing

collaborative information processing that allows tradeoff between resource and performance.

In this chapter, we show that cooperative game theoretic concepts can be applied in ap-

proaching such collaborative signal processing problems in WSN. Power management in

wireless sensor networks using a non-cooperative game theoretic approach was addressed

in [57, 58]. While there is much literature on sequential estimation in WSNs [87, 88], very

few attempts have been made to exploit the rich collection of cooperative game theory in

power/energy-constrained WSNs tasked with estimating a Phenomenon of Interest (PoI).

In this chapter, the problem of sequential estimation in a WSN is formulated in a coop-
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erative game theoretic framework, in particular, using Nash Bargaining [61]. While most of

the existing literature mentioned in section [54, 55, 57, 58, 87, 88] deal the power allocation

and parameter estimation as separate problems, in this chapter we formulate and solve the

problems of sequential estimation and power allocation in WSNs as a combined problem.

We propose a simple Nash bargaining based solution to the problem of power allocation for

sensing nodes that are subjected to power constraints.

The remainder of this chapter is organized as follows: Section 7.2 presents the assumed

sensor network model for the sequential estimation problem. Section 7.3 introduces the

bargaining problem and summarizes the Nash bargaining solution (NBS). In Sections 7.4

and 7.5, we introduce two fair power allocation algorithms based on the NBS. Section 7.6

evaluates the performance of the proposed algorithms via simulations. Finally, Section 7.7

concludes the chapter by summarizing our results.

7.2 Sensor Network Model for Sequential Estimation

In this chapter, we use the same system model described in section 6.2 except for different

representation of the received signal. Similar as before, we assume that the FC updates its

estimator sequentially by combining its own observation with the noise-corrupted estimators

of the other selected nodes received over noisy communication links. We consider the case

when the FC does not want the distributed nodes to transmit at their maximum powers, while

achieving a target estimator quality using a few number of nodes, and/or less total consumed

power possible. For simplicity, AWGN channel with quasi-static fading is considered. Signal

received at the FC from node jεN can be expressed as

xj =
√
αj θ̂j + wj, (7.1)

where wj is the zero-mean receiver noise with variance
ν2

j

P |hj|2 , αj = Pj

P is the ratio of the

transmit power Pj of node j to the maximum allowed transmit power P , and hj is the fading
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coefficient between the communication link from node j to the FC. For N nodes, the data

vector available at the FC can be written as

X0 =











1
√

α1

...
√

αN











θ +











θ̃0

√
α1θ̃1

...
√

αN θ̃N











+











0

w1

...

wN











, (7.2)

so that X0 = a0θ + Θ̃0 + w0, where θ̃i = θ̂i − θ is zero-mean with variance Vi for all i,

a0 = [1,
√
α1, · · · ,

√
αN ]T , Θ̃0 = [θ̃0,

√
α1θ̃1, · · · ,

√
αN θ̃N ]T and w0 = [0, w1, · · · , wN ]T . Let

us denote by Σ0 = Σ0
θ +Σ0

w the covariance matrix of X0, where Σ0
θ and Σ0

w are the covariance

matrices of Θ̃0 and w0 respectively. Thus, the optimal BLUE estimator formed at the FC

is given by θ̂1
0 =

aT
0 [Σ0]

−1
X0

aT
0 [Σ0]−1a0

with the updated estimator variance V 1
0 =

(

aT
0 [Σ0]−1 a0

)−1
.

7.3 Basics of Nash Bargaining Solution

In this section, we briefly introduce the concept of Nash bargaining solution (NBS) [64] and

then apply it to achieve a fair allocation of power among nodes in our sensor network.

The bargaining problem in a cooperative game can be described as follows [64]: Let N =

{1, 2, · · · , N} be the set of players, and let S be a closed and convex subset of RN representing

the set of feasible payoff allocations that the players can get if they all cooperate. Let ui
min be

the minimum expected payoff for the i-th player, below which it will not cooperate. Suppose

{ui ∈ S|ui ≥ ui
min, ∀i ∈ N} is a nonempty bounded set. Define umin = (u1

min, . . . , u
N
min);

then the pair (S,umin) is called the N -person bargaining problem. NBS provides a unique

and fair Pareto optimal point under the conditions given in [64].

Theorem 4 (Existence and Uniqueness of NBS ) [64]: If ū is said to be an NBS in S for

umin, i.e., ū = ψ(S,umin), then the solution function ψ(S,umin) is unique, and the following

axioms are satisfied:
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1. Individual rationality: ūi ≥ ui
min, ∀i.

2. Feasibility: ū ∈ S.

3. Pareto optimality: For every û ∈ S, if ûi ≥ ūi, ∀i, then ûi = ūi, ∀i.

4. Independence of irrelevant alternatives: If ū ∈ S′ ⊂ S, ū = ψ (S,umin), then

ū = ψ (S′,umin).

5. Independence of linear transformations: For any linear scale transformation Ψ,

Ψ [ψ (S,umin)] = ψ [Ψ (S) , Ψ (umin)].

6. Symmetry: If S is invariant under all exchanges of agents,

ψj (S,umin) = ψj′ (S,umin) , ∀j, j′.

And it also satisfies

ψ(S,umin) ∈ arg max
ū∈S,ūi≥ui

min,∀i

N
∏

i=1

(

ūi − ui
min

)βi , (7.3)

where βi is the bargaining weight associated with the payoff of player i. Intuitively, it means

how much importance is given to a particular player in the bargaining process.

The cooperative game for the sequential estimation problem can be described as follows:

Each player (sensor) has ui as its objective function, where ui is non-negative, bounded

from above and has a nonempty, closed and convex support. The goal is to maximize all

ui’s simultaneously. ui
min is the minimal payoff that player i would obtain if it had not

cooperated with other players.

7.4 NBS-based Solution Using Algorithm 4

For simplicity of exposition, in this section, we consider the case when all local estimators are

uncorrelated and communication is over orthogonal channels. Let us assume that ν2
i = σ2
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for i ∈ N . Hence the covariance matrix at the FC can be written for node i and j, as

Σ0 = diag
(

V0,αiVi + σ2

P |hi|2 ,αjVj + σ2

P |hj|2

)

.

In this chapter, the utility of a node i is defined as the inverse of the quality of its

local estimator: ui = 1
Vi

. Hence, the optimization goal is to determine nodes i and j’s

transmission powers to the FC, with the precondition that none of these nodes transmit at

their full powers. To that end, we proposed the following objective function to be maximized:

U = u0 − u0
min =

αi

αiVi + σ2

P |hi|2
+

αj

αjVj + σ2

P |hj|2
, (7.4)

where u0 is the utility corresponding to the updated estimator at the FC when node i and j

share their estimators with node 0, and u0
min is the minimum possible payoff of node-0 that

it would expect from the bargaining process. Thus, the optimization problem is

min
αi,αj

−U s.t.







−αi ≤ 0,−αj ≤ 0

αi + αj − 1 ≤ 0






. (7.5)

Note that, we have defined the power constraint to be αi + αj ≤ 1. The assumption is

reasonable because we do not want node i and j to transmit at their maximum powers. Thus,

we would like to allocate the total power P between nodes i and j in a fair way (in this case,

using NBS) for sequentially estimating the parameter θ provided that no node transmits at

its maximum power. To that end, we propose the following NBS based Algorithm 4 to solve

the power allocation problem. The proposed sequential estimation process is summarized in

Algorithm 4 and described in detail in Fig. 7.1.
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Figure 7.1: Sequential estimation process using Algorithm 4.

Algorithm 4 NBS based Power Allocation
1. FC picks any two nodes i, j ∈ N , i 1= j randomly or in a predetermined order.

2. Calculate αi and αj from (7.6). Assign powers Pi and Pj to nodes i and j respectively.

Update the estimator variance at FC V up
0 and remove i and j from the set N .

3. Consider nodes i and j as a single node with combined variance obtained by using αi

and αj , and assign i = i ∪ j. FC picks a new node j from the set N and calculate new αi

and αj . Assign power Pj to new node j and update the estimator variance at FC V up
0 .

4. Repeat the same procedures from step 3 until V UP
o ≤ ε or N = ∅, where ε is the desired

quality of estimate at the FC.

Since U is concave in αi, αj and optimization constraints are linear, the Karush-Kuhn-

Tucker (KKT) [89] conditions are both necessary and sufficient. Solving for αi and αj from
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(7.5), we get the solution:

αi =
Vj |hj |+ σ2

P

„

1
|hj |

− 1
|hi|

«

Vi|hi|+Vj |hj | ,

αj =
Vi|hi|+ σ2

P

„

1
|hi|

− 1
|hj |

«

Vi|hi|+Vj |hj | .











(7.6)

For |hi|2 = |hj|2, αi = Vj

Vi+Vj
and αj = Vi

Vi+Vj
. Hence, node with more accurate estimation

are allowed to transmit at a higher power than that with less accurate estimation, which

intuitively makes sense. Since FC has the knowledge of the quality of estimates at nodes i

and j, all the calculations can be done at the FC and it can send control signals to nodes i

and j to transmit at powers Pi = αiP and Pj = αjP respectively.

7.5 NBS-based Solution Using Algorithm 5

It is to be noted that for the NBS-based Algorithm 4 above, an explicit analytical solution

in the case of correlated observations could not be obtained. This motivated us to propose

an NBS-based Algorithm 5 to solve the problem of power allocation for collaborating nodes

with correlated observations. We assume that all local estimators are correlated such that

Cij = Cov{θ̂i, θ̂j} = ρ, ∀i, j, where Cij is the covariance between the random variables

θ̂i and θ̂j . The covariance matrix at the FC and at node i (if i-th node were to receive

signal from the FC) can be written respectively as: Σ0 =




V0

√
αiρ

√
αiρ αiVi + σ2

P |hi|2



, and

Σi =




Vi

√
α0ρ

√
α0ρ α0V0 + σ2

P |hi|2



 for i ∈ N . Hence we have

u0 − u0
min = (1

√
αi)[Σ

0]−1(1
√
αi)

T − 1

V0
, (7.7)

and ui − ui
min = (1

√
α0)[Σ

i]−1(1
√
α0)

T − 1

Vi
. (7.8)
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As a result, the optimization problem becomes:

min
α0,αi

−
∏

j=0,i

(

uj − uj
min

)

s.t.







−α0 ≤ 0,−αi ≤ 0

α0 + αi − 1 ≤ 0






(7.9)

Since the optimization problem is again convex in α0, αi and constraints are linear, the

KKT conditions are again both necessary and sufficient. Solving for αi from (7.9), the only

non-zero solutions that satisfy all the KKT conditions can be obtained as:

αi =

[

1 + Q∓
√

1 + Q
Q

]+

, (7.10)

where Q = (V0−Vi)(V0Vi−ρ2)

Vi

„

V0
σ2

P |hi|
2 +V0Vi−ρ2

« with V0 > 0, Vi > 0 and 0 ≤ ρ ≤ 1, and [.]+ means only the

non-negative bounded values are considered. It is to be noted that the FC only helps to

calculate αi and it discards the value α0, as it only transmits control signals. Since all the

calculations are done at the FC, the only parameters the FC needs to know are Vi and σ2

P |hi|2 .

The details of the sequential estimation process using NBS-based Algorithm 5 is described

in Fig. 7.2.

Algorithm 5 NBS based Power Allocation
1. FC (node-0) picks any node i ∈ N , randomly or in a predetermined order.

2. Calculate αi from (7.10). Assign power Pi to node i. Update the estimator variance at

FC V up
0 and remove node i from the set N .

3. Repeat the same procedures until V up
o ≤ ε or N = ∅.

7.6 Simulation Results

In this section, we investigate the performance obtained by our proposed algorithms. Pa-

rameters used for simulations are: number of distributed nodes N = 50, estimator variances
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Figure 7.2: Sequential estimation process using Algorithm 5.

Vi ∼ U [1, 20], and σ2

P = 0.5. We assume that all channel gains follow Rayleigh distribu-

tions with all channel coefficients normalized so that E {h2} = 1. All simulation results are

obtained by averaging over 500 fading realizations.

Figure 7.3 shows the updated estimator variance V up
0 at the FC as a function of number

of nodes. As it can be seen from Fig. 7.3, V up
0 monotonically decreases for both algorithms

as more nodes are incorporated into the estimation process. The monotonic decrease in

variance at the FC center is almost as good as the case when all the nodes transmit at their

maximum powers (MPA) with each of the proposed algorithms. By MPA (Maximum Power

Allocation), we mean to follow all the the steps in each of the proposed algorithms except

for setting αi = 1, ∀i. As it can be seen from Fig. 7.3, Algorithm 4 outperforms Algorithm

5 in terms of the rate of improvement of the estimator quality at the FC. This is because
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Figure 7.3: Updated variance at the FC vs. number of nodes with ρ = 0.

of the formation of Nash product (NP) of the optimization problems in (7.5) and (7.9). NP

in (7.5) was obtained by setting β0 = 1 and βi = βj = 0. Hence, the emphasis is only on

maximizing the payoff of node 0 (FC). On the other hand, in (7.9), we have set β0 = 1 and

βi = 1. As a result, the optimization problem tries to maximize the payoffs of both nodes 0

and i. Since the payoff of a node is defined as the inverse of the quality of estimate, better

rate of improvement of the estimator quality is achieved by maximizing the payoff.

Figure 7.4 shows network lifetime improvement at the end of each time period or esti-

mation block using the proposed algorithms. Note that, we define the lifetime of a sensor

network as the time after which at least one or a certain fraction of sensor nodes run out of

their batteries, resulting in a hole within the network. Since FC is equipped with sufficient

energy, we are only concerned about the distributed nodes. We assume that each distributed

node is provided with limited energy at the beginning of the estimation process. At the end

of the j-th time block, the network lifetime can be defined as T j
N = mini

(
Ej−1

i −P j
i tp

P

)

, where

Ej−1
i is the energy available at the sensor node i at the end of (j − 1)-th time period, P j

i is

the power to be spent by the node i during the j-th estimation block and tp is the time each

104



Chapter 7. Fair Resource Allocation in WSNs for Sequential Estimation

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Time period

N
et

w
or

k 
lif

et
im

e

 

 

Algorithm−4 (NBS)
Algorithm−5 (NBS)
Without Node Cooperation

Figure 7.4: Network lifetime improvement using Algorithm 4 and 5.

node spends transmitting to the FC. For our simulation, we have used E0
i = 10 Joules, tp = 1

sec and P = 1 watt. As it can be seen from Fig. 7.4, Algorithm 5 is slightly better than

the Algorithm 4 as far as network lifetime improvement is concerned. This is again because

of the formation of the optimization problems for Algorithms 4 and 5: the obtained value

of maxi αi for Algorithm 4 can be higher than that for the Algorithm 5 most of the time,

which reduces the lifetime of WSN using Algorithm 4 compared to that with Algorithm 5.

7.7 Conclusion

In this chapter, a NBS based framework has been proposed to achieve a fair allocation of

transmit power for collaborating nodes in a FC-based wireless sensor network tasked with

sequential estimation of a non-random parameter. In particular, we proposed two algorithms

based on the concept of Nash bargaining to arrive at a fair allocation of power for the nodes.

Simulation results show that the proposed algorithms sequentially achieve the desired quality

of estimate at the FC, and increase the overall network lifetime.
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Chapter 8

Summary of Dissertation and Future

Works

In this dissertation, we proposed parametric and nonparametric-based diffusive source lo-

calization and tracking schemes using wireless sensor network. We also addressed research

challenges in a resource constrained sensor network tasked with estimating a desired PoI. In

this chapter, we summarize our contributions by highlighting the main results, and further

discuss some possible research directions that this work can be extended to.

8.1 Summary of Results

In Chapter 2, we derived the space-time concentration distribution for a special diffusion

phenomenon, i.e., an underwater oil spill, by modeling and solving corresponding diffusion

equations with appropriate initial, boundary conditions, and pragmatic assumptions. The

physical modeling and solution techniques used in this chapter, are applicable (with appro-

priate modifications) to many other similar contexts of practical importance as well. Our

main objective was to obtain an analytical solution to the diffusion problem, rather than
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using non-model based sophisticated numerical techniques.

In Chapter 3, two parametric estimation methods based on the MLE and BLUE for

estimating static diffusive source location are proposed. We obtained the Cramér-Rao lower

bound as theoretical performance bound for source localization. The pros and cons of the

two proposed methods are also mentioned. While the MLE requires complete knowledge

of the pdf, knowing only 1st and 2nd order information of data are enough for BLUE-

based technique. On the other hand, since BLUE can only be used for linear observation

models, hence linearization is necessary before using BLUE for parameter estimation. It

was observed that performance of the MLE is slightly better than the CRLB in some cases.

This is an example of a typical bias-variance trade-off, and therefore MLE outperform the

CRLB by trading variance for bias. As one would expect, the MLE performs better than

the BLUE-based diffusive source localization method. However, the later shows satisfactory

performance trend for large number of sensing nodes and time samples.

Although performance of our proposed parametric source localization methods in Chapter

3 were demonstrated to be satisfactory, they do, however, come with an important drawback,

i.e., knowledge of complete parametric description of the underlying statistical model. In

many complex practical problems, complete knowledge of the likelihood function, is some-

times, a strict requirement. To that end, in Chapter 4, we proposed novel non-parametric

diffusive source localization methods based on DPMM for both single and multiple diffusive

sources. We exploited the excellent features of DPMM as a classifier, for our source estima-

tion problem. We analytically proved convergence of the proposed algorithms in terms of

total variation norm. For the proposed algorithms, knowledge of the family of distribution

of the likelihood function is enough, contrary to the parametric estimation technique that

requires complete and suitable description of the system model and the likelihood function.

It was also observed that the proposed algorithms offer low computational complexity for

implementation.

In Chapter 5, we developed a particle filter based target tracking method for moving
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diffusive source in a dispersive medium. The PCRLB corresponding to moving diffusive

source tracking was obtained as a theoretical performance measure and compared with the

simulation results. The quality of the tracking performance with the proposed tracking

scheme was found to be satisfactory. A recursive formula for the derivation of the PCRLB

is presented. Both grid-based and random node deployment strategies were investigated for

our proposed tracking scheme. The effect of sampling time on the moving source tracking

was also studied.

In Chapter 6, a sequential methodology for parameter estimation along with fair power

allocation is developed from game-theoretic perspective. The Shapley value based cooper-

ative game-theoretic framework has been proposed to achieve a fair allocation of transmit

power for collaborating nodes in a Fusion center (FC) based wireless sensor network tasked

with sequential estimation of a non-random parameter. The proposed method offers a system

designer with a estimation quality vs. network lifetime trade-off by allowing for tweaking

a suitable design parameter. We have shown that the proposed algorithm achieves target

quality of estimate at the FC while improving the overall network lifetime through numerical

simulations.

Finally, in Chapter 7, NBS based framework has been proposed to achieve a fair allocation

of transmit power for collaborating nodes in a FC-based wireless sensor network tasked with

sequential estimation of a non-random parameter. In particular, we proposed two algorithms

based on the concept of Nash bargaining to arrive at a fair allocation of power for the nodes.

The novelty of the proposed framework is that it combines the estimation and resource

allocation problem together, and provides a single solution to the sequential estimation and

fair power allocation problems.

8.2 Future Work

This dissertation can lead to the following possible future research directions:
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Modeling of more complex and realistic diffusion phenomena: In Chapter 2, we discussed

the physical modeling and mathematical formulation of a special diffusion phenomenon, i.e.,

an underwater oil spill scenario, and obtained the spatio-temporal concentration distribution.

In our formulation, we considered laminar water velocity as the turbulent effect [90]. For

realistic scenario, one should also consider the external velocity acting in the diffusion field

including the turbulence effects which is highly chaotic in nature, also space and time depen-

dant. Hence, the concept of stochastic diffusion and high performance numerical techniques

will come handy for this type of transport and turbulence modeling. In future research, it

is interesting to combine our obtained analytical results with non-model based numerical

techniques to make them applicable for more realistic and complex scenarios.

Detection or estimation in the presence of intelligent threats : In Chapter 3 and 4, we

investigated parametric and non-parametric diffusive source localization approaches. The

techniques can be further modified and extended to detect or estimate smart/intelligent

threats. One problem that could be challenging for a WSN is when an agent behind the

threat tries to deceive the WSN by strategically deploying different types of diffusive sources,

i.e., impulsive vs continuous sources, or sources of different chemical compounds. In these

scenarios, if the WSN tries to locate or track either of the sources based on concentration

measurements, then the WSN could be deceived by the perturbations caused by the other

sources.

Another possible threatening strategy could be the generation of virtual diffusive sources

by combining the effects of several different sources. For example, we can recall the Sarin

gas attack that happened on the Tokyo subway in 1995 [91], in which the perpetrator used

Sarin ([(CH3)2CHO]CH3P(O)F) liquid which can be made by chemical reaction between

Methylphosphonyl Difluoride and a mixture of isopropyl alcohol:

CH3P(O)F2 + (CH3)2CHOH −→ [(CH3)2CHO]CH3P(O)F + HF

Hence, there is always some possibility that some chemical compounds which may not be

harmful acting alone, but when they are mixed in right proportion with each other, then they
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could react to produce chemical threats. These kind of problems can possibly be tackled by

making the WSN smart enough to be able to classify and identify the type of the sources

in the surrounding region. This could be achieved by using sophisticated machine learning

algorithms at the WSN so that the network can learn and adapt in such situations.

Effect of realistic channel conditions on WSNs for diffusive source estimation: Even

though a static sensor network meets the performance criteria at the initial deployment stage,

it may not adapt to the highly unpredictable dynamics in network conditions such as coverage

holes caused by node failures and changing dynamics of the phenomenon being sensed over

space and time. For instance, in case of an underwater WSN, it is interesting to study the

performance of the proposed source localization and tracking methods in the presence of

the problems and requirements for underwater wireless communications. Therefore, it is an

important and interesting problem to consider the realistic channel scenarios based on the

diffusive field in question so that the effect of the medium-specific conditions are reflected

on the obtained solution.

Similar studies can be done in case of our proposed solutions to sequential parameter

estimation and fair power allocation for resource constrained WSNs in Chapter 6 and 7.

In such scenarios, it would be interesting to see the performance trend when the effect of

imperfect channel conditions, such as, channel connectivity, coverage, signal attenuation etc.

are taken into account.
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Chapter 9

Research Work Done in Cognitive

Radios

9.1 Efficient Dynamic Spectrum Sharing in Cognitive

Radio Networks: Centralized Dynamic Spectrum

Leasing (C-DSL)

9.1.1 Introduction

As wireless applications are becoming more widely used, demand for bandwidth is also ex-

pected to increase in future years. Under the long-adhered regulatory framework, spectrum

appears to be a scarce resource. On the other hand, it has been observed that the per-

ceived scarcity of radio spectrum is mainly due to the inefficiency of traditional spectrum

allocation policies [92, 93]. This led the FCC to recommend three broad solutions to im-

prove the spectrum utilization in its 2002 Spectrum Policy Task Force Report: a) spectrum

reallocation, b) spectrum leasing, and c) spectrum sharing. The first of these was meant
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to be a long-term solution. Perhaps, the best example is the opening of the 700MHz TV

band for cognitive radio operation. Spectrum leasing in [92] was mostly interpreted to be

a static, or off-line, solution, at least according to the current literature. As an alternative

to the traditional static spectrum management policy, the dynamic spectrum sharing (DSS)

in [94–98] is considered as an effective way to improve inefficient static spectrum utilization

by allowing secondary users to dynamically access the so-called white spaces in spectrum

already licensed to the primary users. Some of these spectrum sharing proposals can be

identified as being hierarchical-access methods, in that there is usually a primary system

that owns the spectrum rights and a secondary system that is interested in accessing this

spectrum whenever possible [56, 99]. In almost all existing hierarchical spectrum sharing

proposals, the burden of interference management and coexistence is squarely placed on the

secondary system. As in [100], we term these proposals as dynamic spectrum access (DSA).

Cognitive radios, which can be defined as smart radios with built in cognition [101], are

especially suited for realizing such dynamic spectrum sharing due to their ability to assess,

learn from and orient to the observed RF environment.

Recently [100, 102–105] introduced the concept of dynamic spectrum leasing (DSL) as

a new paradigm for spectrum sharing in cognitive radio networks. The authors identified

that the passive primary systems/users that are oblivious to the existence of secondary

users is incomplete at the best, and inefficient at the worst, if the objective is to achieve

efficient spectrum utilization via DSS. In [102, 103], the primary users were allowed to dy-

namically manage the interference they experience from the secondary transmissions by

adapting their interference cap (IC) according to the observed RF environment and required

Quality-of-Service (QoS). Simultaneously, the secondary users aim to achieve energy effi-

cient transmissions, while not causing excessive interference to the primary users. In this

chapter, we extend the DSL framework for spectrum sharing by introducing the centralized

dynamic spectrum leasing (C-DSL) as a new game theoretic model for dynamic spectrum

sharing in cognitive radio networks. In particular, we allow for multiple primary users to be

simultaneously present in the primary frequency band of interest. In the proposed C-DSL
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based DSS networks all primary users participate in the spectrum sharing process as a single

system under a central control. We develop an alternative game-theoretic framework for

C-DSL based spectrum sharing by identifying new payoff functions for both primary system

and secondary users that are motivated by network spectrum utilization considerations. We

introduce a general structure for a suitable class of utility functions for the primary system

that reflects the demand for spectrum access from the secondary users, the primary sys-

tem QoS requirements, and analyze the conditions for reaching a desired equilibrium under

greedy adaptations. We also generalize the proposed non-cooperative C-DSL game to allow

for linear multiuser detectors, in particular the matched filter (MF) and the linear minimum

mean squared error (LMMSE) receivers, at the secondary base stations, and establish the

existence of an equilibrium in this primary-secondary spectrum-leasing game. Several DSS

radio networks based on the proposed C-DSL framework are investigated via simulations to

analyze the equilibrium behavior and to identify design guidelines. As in previous work on

DSL, we emphasize the need to minimize the need for conscious effort by the primary system

to exchange inter-system control information. Indeed, as we will show later, the proposed C-

DSL can be implemented with the same two broadcast parameters from the primary system

assumed in [100,103]. The robustness of the C-DSL based spectrum sharing to time-varying

fading is also investigated.

Contributions of this chapter that distinguishes it from previous literature are as follows:

(i) a novel game-theoretic approach centralized dynamic spectrum leasing (C-DSL) is pro-

posed for dynamic spectrum sharing in the presence of multiple primary users extending the

model in [103], (ii) we generalize the primary system utility function defined in [100,103] and

introduce a new utility function for the secondary users that leads to efficient utilization of

the network spectrum, (iii) the proposed non-cooperative C-DSL game is generalized to allow

for linear multiuser detectors, such as the linear minimum mean squared error (LMMSE) re-

ceivers at the secondary receivers, and (iv) the robustness of the proposed C-DSL framework

is investigated in the presence of slow time varying fading.
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The remainder of this chapter is organized as follows: Section 9.1.2 describes the C-DSL

based spectrum leasing cognitive radio network model. Section 9.1.3 presents the proposed

game-theoretic model for C-DSL in a DSS based cognitive radio network. Sections 9.1.4

and 9.1.5 discuss the existence of unique Nash equilibria under MF and LMMSE receivers,

respectively. Section 9.1.6 evaluates the performance of a spectrum sharing network based

on the proposed C-DSL under various conditions and discusses the performance trends and

design guidelines. Finally, Section 9.1.7 concludes the chapter by summarizing our results.

9.1.2 C-DSL-based Spectrum Sharing Cognitive Radio Network

Model

We assume there is one primary wireless communication system that owns the exclusive

rights to use the spectrum band of interest. In a bid to improve the spectrum usage efficiency

while earning extra revenue, the primary system is willing to allow a secondary system to

access this spectrum band whenever it can tolerate and to the maximum possible extent.

It is further assumed that there are Kp primary users in the primary system and there are

Ks secondary links of interest. For simplicity of exposition, all these secondary links are

assumed to belong to the same secondary system. We will refer to j-th transmitter or j-th

receiver to mean the transmitter and receiver of the j-th link. The channel gain between the

j-th transmitter and the k-th receiver, either primary or secondary, is denoted by hjk. We

use pj to represent transmission power of the j-th user. Note that, depending on the type of

wireless networks assumed, the receivers of each link may or may not be physically distinct.

For simplicity we will assume that all primary users communicate with the same primary

receiver (for example, a base station) although this assumption can easily be dropped at the

expense of notational complexity.

In a C-DSL network, the primary system is assumed to adapt its interference cap (IC),

denoted by Q0, which is the maximum interference the primary system is willing to tolerate
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from all secondary transmissions at a given time, and thus its reward can be an increasing

function of the interference cap. However, in reality, the primary user should maintain a

target signal-to-interference-plus-noise ratio (SINR) to ensure its required QoS. Moreover,

an unnecessarily large interference cap by the primary user could hinder the performance of

both systems due to resulting high primary interference. The goal of the secondary system,

on the other hand, is to fully utilize the spectrum activity allowed by the primary user.

Each secondary user may be assumed to act in its own interest to maximize its own utility.

However, their transmission powers must be carefully self-regulated in order to ensure low

interference to the primary user (within the IC) as well as to other secondary users.

The signal received at the primary receiver can be written as r(p)(t) =
∑

i∈Kp
Ap,ibisi(t)+

∑

j∈Ks
Ap,jbjsj(t) + σpn(t), where Ap,l = hpl

√
pl for l ∈ Kp

⋃

Ks, n(t) is AWGN with

unit spectral height and σ2
p is the variance of the zero-mean, additive noise at the pri-

mary receiver. Assuming M discrete-time projections r(p)
m = 〈r(p)(t),ψ(p)

m (t)〉, for m =

1, · · · , M , of the continuous time signal on to a set of M orthonormal directions specified

by
{

ψ(p)
1 (t), · · · ,ψ(p)

M (t)
}

, called the primary basis, and letting r(p) =
(

r(p)
1 , · · · , r(p)

M

)T

, we

may obtain the following discrete-time representation of the received signal at the primary

receiver: r(p) =
∑

i∈Kp
Ap,ibis

(p)
i +

∑

j∈Ks
Ap,jbjs

(p)
j +σpn(p), where s(p)

k =
(

s(p)
k1 , · · · , s(p)

kM

)

, for

k ∈ Kp, is the M-vector representation of the k-th secondary user signalling waveform sk(t)

w.r.t. the M-dimensional basis employed by the primary system, where s(p)
km = 〈sk(t),ψ

(p)
m (t)〉,

and n(p) ∼ N (0, IM). With the conventional matched-filter (MF) detector at the primary

receiver, and assuming that primary modulation is BPSK so that bi ∈ {+1,−1}, the i-th

primary user symbols are detected as b̂i = sgn
(

y(p)
i

)

where y(p)
i =

(

s(p)
i

)T

r(p) = Ap,ibi +
∑

l∈Kp\{i} ρ
(p)
il Ap,lbl +

∑

j∈Ks
ρ(p)

ij Ap,jbj + σpη
(p)
i , with ρ(p)

kl =
(

s(p)
k

)T
s(p)
l for k, l ∈ Ks

⋃

Ks and

η(p)
i ∼ N (0, 1). It is straightforward to observe that the total secondary interference (SI)

from all secondary transmissions to the i-th primary user decisions is given by

Ii =
∑

j∈Ks

(

ρ(p)
ij

)2
h2

pjpj =
∑

j∈Ks

Ã2
i,jpj, (9.1)
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where Ãi,j = ρ(p)
ij hpj. We denote the maximum of these interference at any given time over

all primary users as I0, so that I0 = maxi∈Kp Ii =
∑

j∈Ks
Ã2

jpj where Ãj = Ãi∗j , for some

i∗ ∈ Kp. This total interference parameter I0 plays a key role in the C-DSL based DSS

systems, as we will see below.

Similarly, the received signal at the j-th secondary-system receiver can be written as

r(s)
j (t) =

∑

k∈Ks
Bj,kbksk(t) +

∑

i∈Kp
Bj,ibisi(t) + σsnj(t), where Bj,k = hjk

√
pk, for k ∈

Ks, Bj,i = hji
√

pi, for i ∈ Kp and σ2
s is the variance of secondary receiver noise. A

discrete-time representation of r(s)
j (t) with respect to an N -dimensional orthonormal ba-

sis
{

ψ(s)
1 (t), · · · ,ψ(s)

N (t)
}

used by the secondary system, termed the secondary basis, can be

written as r(s)
j =

∑

k∈Ks
Bj,kbks

(s)
k +

∑

i∈Kp
Bj,ibis

(s)
i + σsn

(s)
j , where r(s)

j =
(

r(s)
j1 , · · · , r(s)

jN

)T
,

r(s)
jn = 〈rj(t),ψ

(s)
n (t)〉, for n = 1, · · · , N , is the projection of the received signal at the sec-

ondary receiver j on the the n-th orthonormal basis function, s(s)
l =

(

s(s)
l1 , · · · , s(s)

lN

)

, for

l ∈ Kp

⋃

Ks, is the N -vector representation of sl(t) with respect to the N -dimensional basis

employed by the secondary system with s(s)
ln = 〈sl(t),ψ

(s)
n (t)〉, and n(s)

j ∼ N (0, IN).

9.1.3 C-DSL Game Model for Dynamic Spectrum Sharing

In the proposed C-DSL-based DSS networks, the primary system and secondary users in-

teract with each other by adjusting their interference cap and transmit power levels, re-

spectively, in order to maximize their own gains. The primary system action is to set the

interference cap Q0 which specifies the maximum interference it is willing to tolerate from

all secondary users. We model the above system as in the following noncooperative C-DSL

game (K,Ak, uk(.)):

1. Players: K = {0, 1, 2, · · · , Ks}, where we assume that the 0-th user is the primary

system consisting of multiple primary users and k ∈ Ks represents the k-th secondary

user.
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2. Action space: P = A0 × A1 × A2 · · · × AKs, where A0 = Q = [0, Q̄0] represents the

primary system’s action set and Ak = Pk = [0, P̄k], for k ∈ Ks, represents the k-th

secondary user’s action set. Note that Q̄0 and P̄k represent, respectively, the maximum

IC of the primary system and the maximum transmission power of the k-th secondary

user. We denote the action vector of all players in the noncooperative C-DSL game by

a = [Q0, p1, · · · , pKs]
T , where Q0 ∈ Q and pk ∈ Pk. The action vector excluding that

of the k-th user is denoted as a−k.

3. Utility function: We denote by u0 (Q0, a−0) the primary system’s utility function and

by uk (pk, a−k), for k ∈ Ks, the k-th secondary user’s utility function.

At any given time the target SINR of the i-th primary link is defined in terms of its

assumed worst-case secondary interference γ̄i =
h2

pipi

Q0+MAI(i)+σ2
p
, where

MAI(i) =
∑

l∈Kp\{i}

(

ρ(p)
il

)2

h2
plpl =

∑

l∈Kp\{i}

(

ρ(p)
il

)2

A2
p,l is the multiple access interference

(MAI) from all other primary transmissions to the i-th primary-user. Our proposed model

allows primary users to adapt their actions so as to control their throughput. We could allow

γ̄i to be time-varying. In that case Q0(t) would have to be chosen in such a way so that

γi(t) ≥ γ̄i(t) and secondary interference I0(t) would change according to I0(t) ≤ Q0(t). On

the other hand, the i-th primary user’s actual instantaneous SINR is given by

γi =
h2

pipi

∑

l∈Kp\{i}

(

ρ(p)
il

)2
h2

plpl +
∑

j∈Ks

(

ρ(p)
ij

)2
h2

pjpj + σ2
p

≥ γ̄i

(

1 +
Q0 − I0

I0 + MAI(i) + σ2
p

)

. (9.2)

Thus, as seen from (9.2), each primary user’s instantaneous SINR will be above the least

acceptable SINR threshold as long as the primary system’s interference cap Q0 ≥ I0. It is to

be noted that each primary user under the primary system choose its transmit power from

least acceptable SINR threshold as pi = γ̄i

(
Q0+MAI(i)+σ2

p

h2
pi

)

. Since I0 ≤ Q0, instantaneous

SINR of i-th primary user would be, in general, greater than the least acceptable SINR as

seen from (9.2). If sharing is not enabled, i.e., Q0 = 0 and I0 = 0, i-th primary user’s
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power would be pi = γ̄i

(
MAI(i)+σ2

p

h2
pi

)

, which is less than the power, the i-th primary user had

to transmit if sharing were enabled. According to (9.2), the instantaneous SINR would be

exactly equal to the least acceptable SINR in this case. On the other hand, if sharing is

enabled, i.e. Q0 1= 0 and I0 1= 0, rate achieved by i-th primary user is Wi log(1+γi), which is

at least greater than least acceptable data rate Wi log(1 + γ̄i). Hence, if sharing is enabled,

as long as I0 ≤ Q0, data rate of i-th primary user is guaranteed to be above the minimum

required threshold, but of course at the expense of transmitting at a higher power.

By generalizing the approach proposed in [100, 103], we propose the following utility

function for the primary system:

u0 (Q0, a−0) = u0 (Q0, I0)

=
(

Q̄0 − (Q0 − I0(a−0))
)

F (Q0), (9.3)

where F (.) is a suitable continuous reward function for the primary system. For example,

in [103] the authors proposed a linear reward function F (Q0) = Q0 assuming that the reward

for the primary system is directly proportional to the interference cap it chooses. In this

chapter, we establish conditions on F (.) so that the proposed C-DSL game has desired

equilibrium properties. Note that, (9.3) also assumes that the utility of the primary system

is proportional to the demand in addition to the reward function F (.). The demand is taken

to be decreasing when extra interference margin Q0 − I0 increases. This discourages the

primary system from swamping all other transmissions by setting too large an interference

cap that will lead to higher transmission powers according to (9.2). As a special case of (9.3),

we choose F (Q0) = log(1 + Q0) so that the primary utility is proportional to the capacity

attained by the secondary system with respect to the primary receiver. We believe this model

for the primary system utility is more sensible in a dynamic spectrum leasing cognitive radio

network, compared to [103], when the secondary system is concerned about the rate its users

achieve rather than their transmission powers. By choosing a reasonable revenue/utility rate

based on the market value, the revenue earned by the primary system could be increased, and

the revenue achieved in that case would reflect actual capacity achieved by the secondary
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system more compared to that in [103]. Figure 9.1 shows the above primary utility as a

function of the interference cap Q0 for a fixed total secondary interference I0. Observe from

Fig. 9.1 that the primary system utility u0 is quasi-concave in interference cap Q0.
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Figure 9.1: Primary utility u0 for a fixed secondary interference I0 with Q0 = Qmax
0 = 10,

hp1 = 1, ρ(p)
01 = ρ(s)

10 = 1 and λ = 1.

As can be seen from (9.2) as long as the secondary user interference I0 ≤ Q0, the primary

system quality of service will be guaranteed for all its users. To ensure this the utilities of

secondary users must be fast decaying functions of I0 − Q0 when this difference is positive.

Thus, if f(pk) is the reward achieved by the k-th secondary user by transmitting at a power

pk, then a suitable utility function for it would be f(pk)q(Q0 − I0) where q(.) is the unit

step function. Motivated by these arguments, and in an attempt to avoid the discontinuity

of the step function, in this chapter we propose the following utility function for the k-th

secondary user, for k ∈ Ks:

uk (pk, a−k) =
f(pk)

1 + eλ(I0−Q0)

=
f(pk)

1 + eλ(I0,−k(a−k)−Q0)eckpk

, (9.4)
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where f(.) is a suitable reward function chosen by the secondary system and the weighting

term 1
1+eλ(I0−Q0) in (9.4) is a sigmoidal function used to approximate the unit step with the

property that it goes to either +1 or 0, as I0−Q0 tends to either negative or positive infinity,

respectively, while the parameter λ can be used to adjust the steepness of the transition

region. Note that I0,−k = I0 − Ã2
kpk is the interference from all secondary transmissions to

the worst-hit primary user excluding that from the k-th secondary user and that we have

defined ck = λÃ2
k ≥ 0 in (9.4).

In a dynamic spectrum leasing system a suitable objective for the secondary system would

be to maximize the sum capacity of all its users in the shared primary spectrum. However,

from the perspective of a particular secondary user, it would be interested in gaining the

maximum possible rate it can achieve. As a result, we will use f(pk) = Wk log
(

1 + γ(s)
k

)

throughout this chapter as a special case of (9.4) where γ(s)
k is the received SINR of the

k-th secondary link for k ∈ Ks and Wk > 0 can be taken as proportional to the bandwidth.

Hence, in the remainder of this chapter we will limit ourselves to investigating equilibrium

strategies of the game G = (K,Ak, uk) where users are interested in maximizing the utility

functions defined in (9.3) and (9.4) with F (Q0) = log(1+Q0) and f(pk) = Wk log
(

1 + γ(s)
k

)

respectively.

Definition 1 A strategy vector p = (a0, a1, · · · , ak) is a Nash equilibrium of the primary-

secondary user power control game G = (K,Ak, uk) if, for every k ∈ K, uk (ak, a−k) ≥

uk (a′
k, a−k) for all a′

k ∈ Ak.

The best response correspondence of a user in a game is the best reaction strategy a

rational user would choose in order to maximize its own utility, in response to the actions

chosen by other players.

Definition 2 The user k’s best response rk : A−k −→ Ak is the set

rk (a−k) = {ak ∈ Ak : uk (ak, a−k) ≥ uk (a′
k, a−k) for all a′

k ∈ Ak} . (9.5)
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Clearly both the primary system and secondary user action sets are both compact and

convex being closed and bounded intervals on the real line. Further, according to our con-

struction, both u0(a) and uk(a) are continuous in the action vector a. The usefulness of the

best-response strategies come handy in establishing the uniqueness of the Nash equilibrium

of a C-DSL game, as we will see later. Indeed it has been shown that if the best response

correspondences rk(a−k) of a game are so-called standard functions for every k ∈ K, then

the game has a unique Nash equilibrium [106], where

Definition 3 A function r(a) is said to be a standard function if it satisfies the following

three properties [106]: (i) Positivity : r(a) > 0, (ii) Monotonicity : If a ≥ a′, then r(a) ≥

r(a′), (iii) Scalability : For all µ > 1, µr(a) ≥ r(µa).

9.1.4 Analysis of The Proposed C-DSL Game with The MF Sec-

ondary Receiver

We assume that all secondary transmissions are BPSK and all secondary detectors are

based on the MF. Then, the j-th secondary link receiver detects the corresponding j-th

secondary transmitter’s symbols as b̂j = sgn
(

y(s)
j

)

where, for j ∈ Ks, y(s)
j =

(

s(s)
j

)T
r(s)

j =

Bj,jbj +
∑

l∈Ks {j} ρ
(s)
jl Bj,lbl +

∑

i∈Kp
ρ(s)

ji Bj,ibi + σsη
(s,j)
j with ρ(s)

kl =
(

s(s)
k

)T

s(s)
l and η(s,j)

k =
(

s(s)
k

)T
n(s)

j ∼ N (0, 1). Hence, the j-th secondary link’s SINR is given by

γMF
j =

|hjj |2pj

∑

l∈Ks\{j}

(

ρ
(s)
jl

)2
|hjl|2pl +

∑

i∈Kp

(

ρ
(s)
ji

)2
|hji|2pi + σ2

s

=
|hjj |2pj

i
(j)
j + σ̃2

s,j

=
pj

Nj
, (9.6)

where i(j)k =
∑

l∈Ks\{k}

(

ρ(s)
kl

)2
h2

jlpl is the total interference from all other secondary users to

the k-th secondary link signal at the j-th secondary receiver, σ̃2
s,j =

∑

i∈Kp

(

ρ(s)
ji

)2
|hji|2pi+σ2

s
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is the effective primary interference plus noise seen by the j-th link and Nj =
i(j)j +σ̃2

s,j

|hjj |2 . It

can be easily seen that
∂γMF

j

∂pj
=

γMF
j

pj
when the secondary system employs the MF receiver.
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Figure 9.2: Secondary-link utility uk for (a) fixed interference cap Q0 and (b) fixed λ with
Q0 = 5. Other parameters used are: Wk = W = 1, h2

p1 = h2
11 = 1, σ2

p = σ2
s = 1 and all the

cross-correlations are assumed to be unity.

Assuming single-user primary and secondary systems, the proposed secondary user utility

in (9.4) with γ(s)
j = γMF

j is shown in Fig. 9.2(a) parameterized by the primary interference

cap, while Fig. 9.2(b) shows the effect of parameter λ on the utility function. It can be seen

from Fig. 9.2(a) that the proposed secondary user utility function uj is quasi-concave in

pj, and the unique maximum of uj is an increasing function of primary interference cap Q0.

Hence pushing the primary interference cap to a higher value encourages the secondary users

to transmit at higher powers and thus allow the primary user to achieve higher leasing gains.

From Fig. 9.2(b), it can be seen that the parameter λ can be used to adjust the steepness of

the transition region of the secondary utility function. The higher the value of λ, the steeper

the transition, and indicates that the primary system expects the secondary users to strictly

adhere to the I0 ≤ Q0 requirement. The following proposition guarantees the existence of

a Nash equilibrium in the proposed centralized DSL game under certain conditions on the
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primary reward function F (Q0):

Proposition 1 With Ak’s and uk’s as defined above, the dynamic spectrum leasing (DSL)

game G = (K,Ak, uk) has a Nash Equilibrium when γ(s)
k = γMF

k if F (Q0) satisfies the

following conditions:

1. F (Q0) is continuous and strictly monotonic for Q0 > 0

2. F (0) = 0, F ′(0) > 0 and limQ0→∞
F (Q0)
F ′(Q0) > −∞

3. F (Q0)F ′′(Q0)

(F ′(Q0))2
< 2 for Q0 > 0

4. 0 ≤ Q̄0 + I0 (a−0) < ∞.

Proof: See Appendix 9A. "

In a non-cooperative game if all users are allowed to adapt their actions sequentially

according to their best-response correspondences, then they are guaranteed to converge to

a Nash equilibrium of the game. The unique interior best response of primary system is

given by the solution to Q∗
0 (I0) =

(

Q̄0 + I0

)

− F (Q∗
0)

F ′(Q∗
0) . Since u0 (Q0) is monotonic increasing

for Q0 < Q∗
0, if the maximum interference cap is such that Q̄0 < Q∗

0, then the primary

system best response is given by r0 (a−0) = min{Q̄0, Q∗
0 (I0)}. In order to determine this

best response r0 (a−0) for a chosen power vector by the secondary links, the only quantity

the primary system needs to know is the maximum total secondary interference experienced

by any user at the primary receiver, denoted by I0 = maxi∈Kp Ii. This total interference

can easily be estimated at the primary receiver without much difficulty. It is to be noted

that the simplification I0 = maxi Ii may lead to not fully capitalizing on different channel

conditions on different primary users, as different primary users may experience different

interference from secondary users in general1. However, the context to which the proposed

1Exploiting the channel variations over different primary channels/frequency bands is considered
in our follow-up paper [107].
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C-DSL applies is when a set of primary users share the same frequency band (e.g. CDMA)

and communicate to a single receiver. In that case, the receiver needs to be able to work

with the worst-hit primary user conditions.

On the other hand, the best response of the j-th secondary link to the transmit powers of

other secondary users as well as IC set by the primary user is given by the (unique) solution

pj = p∗j

(

Q0, I0,−j, i
(j)
j

)

to the equation gMF
j (pj) = 0 defined in Appendix 9.1.7. Again,

since uj is quasi-concave in pj , if p∗j

(

Q0, I0,−j, i
(j)
j

)

> P̄j, then its best response is to set its

transmit power to pj = P̄j . Hence, we have the best response of the j-th secondary link, for

j ∈ Ks: rj (a−j) = min{P̄j, p∗j

(

Q0, I0,−j, i
(j)
j

)

}.

Observe that in general the best response of the j-th secondary link is a function of the

residual interference Q0 − I0,−j of all other secondary users at the primary receiver and the

total interference from all secondary and primary users to the j-th link at its receiver. The

j-th secondary link receiver can easily estimate the latter quantity. However, to obtain the

residual interference Q0−I0,−j the secondary receiver needs to know the current interference

cap Q0 as well as the secondary interference I0,−j at the primary receiver. In this work,

we assume that the primary base station broadcasts both Q0 and I0 whenever it adjusts

its interference cap to a new value. This is the only conscious interaction the primary

system is assumed to be having with the secondary system if decentralized optimization

is considered. Observe that knowing I0, each secondary user can compute the residual

interference I0,−j = I0 − Ã2
jpj since it knows its own transmit power and it may estimate the

channel state information Ãj if the reverse link signals are available on the same frequency

band. On the other hand, if the optimization were to be centralized, then the central system

had to be aware of the channel state information and powers of all the secondary users.

In addition to that it had to inform each individual secondary user about its new transmit

power pk, which would cost sufficient amount of bandwidth dedicated to control signals.
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9.1.5 Analysis of The Proposed C-DSL Game with the LMMSE

Secondary Receiver

In this section we assume that the secondary system is equipped with so-called LMMSE

receivers. Note that, to make fair comparisons with the case of MF-based secondary receivers

as discussed in the previous section, we hold the primary receiver to be still based on the

MF. Of course it is also possible for the primary system to be equipped with an LMMSE (or

any other MUD) detector. The effect of that would be for the primary system to be able to

tolerate higher I0 values, for the same primary transmission powers.

For detecting signals of the j-th secondary link, the j-th secondary link receiver employs

the LMMSE filter defined by minwj,j
E

[(

bj − wj,jr
(s)
j

)2
]

, where wj,j ∈ RN is the vector of

LMMSE filter coefficients at the j-th receiver that achieves minimum mean-squared error in

estimating j-th link symbols. It is well-known that the solution to the above optimization

problem is given straightforwardly by wj,j = E

[

r(s)
j

(

r(s)
j

)T
]−1

E

[

bjr
(s)
j

]

. It can be veri-

fied that E

[

r(s)
j

(

r(s)
j

)T
]

=
∑

l∈Ks
B2

j,ls
(s)
l s(s)

l

T
+
∑

i∈Kp
B2

j,is
(s)
i s(s)

i

T
+ σ2

sI and E

[

bjr
(s)
j

]

=

Bj,js
(s)
j , resulting in the following LMMSE filter coefficient vector for the j-th link: wj,j =

Bj,j

1+B2
j,js

(s)
j

T
Σ−1

j,j s
(s)
j

Σ−1
j,j s

(s)
j , where Σj,j = σ2I +

∑

i∈Kp
B2

j,is
(s)
i s(s)

i

T
+
∑

l∈Ks\{j} B2
j,ls

(s)
l s(s)

l

T
. Note

that although we omit details due to space constraints, the above LMMSE filter coefficient

vector can easily be adapted without explicit knowledge of primary or the other secondary

signaling waveforms. We refer the interested readers to [108]. The received output SINR of

the j-th secondary link can be written as:

γMMSE
j = B2

j,j

(

s(s)
j

)T
Σ−1

j,j s
(s)
k

= h2
jjpj

(

s(s)
j

)T

Σ−1
j,j s

(s)
j . (9.7)

Due to the LMMSE detector’s well known property of maximizing the output SINR, the

linear MMSE receiver may require secondary radios to transmit at a lower power than

that with the MF receiver to achieve the same QoS. Note that, since s(s)
j , Σ−1

j,j and hjj are
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independent of pj, it follows that
∂γMMSE

j

∂pj
=

γMMSE
j

pj
as in the case of MF based receivers. In

fact, it should be pointed out that the only difference between the C-DSL game with the

LMMSE receiver and that with the MF receiver is in the above SINR expression of secondary

users. As a result we have the following proposition, whose proof has been deferred to the

Appendix 9.1.7, that establishes the existence and uniqueness properties of the equilibrium

of the C-DSL game when secondary receivers are equipped with LMMSE detectors:

Proposition 2 With Ak’s and uk’s as defined before, the centralized dynamic spectrum leas-

ing game G = (K,Ak, uk) still has a unique Nash Equilibrium when γ(s)
k = γMMSE

k , if con-

ditions (1) − (4) in Proposition 1 are satisfied.

Proof: See Appendix 9B. "

9.1.6 Performance Analysis of a Centralized Dynamic Spectrum

Leasing System

In this section, our goal is to investigate the behavior of the primary and secondary systems

at the equilibrium and delineate the key characteristics emerging from our framework for

spectrum leasing. We will compare performance of our proposed framework for both MF and

LMMSE secondary receivers. The performance of the system is considered as its performance

at the Nash equilibrium. For simplicity of exposition, we assume that both primary and

secondary systems are equipped with only one receiver each in the uplink.

Identical links: AWGN Channels

To illustrate the characteristics of the Nash equilibrium in this primary-secondary user C-

DSL game, it is interesting to look at perhaps the most simple situation in which there are

identical secondary links (Ks > 1) and a single primary user (Kp = 1). We assume that all
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secondary links’ have the same cross-correlation coefficients ρ(p)
0k = ρ(p)

0 , ρ(s)
k0 = ρ(s)

0 , ρ(s)
kj = ρ(s),

for all k, j ∈ Ks and all channels are additive white Gaussian noise (AWGN): hsk = hpk = 1

for all k ∈ Ks so that Ãk = Ã for all k. By symmetry, in this case all secondary users must

have the same power pk = p∗ at the Nash equilibrium (equivalently, the same SINR γk = γ∗).

Thus when the secondary system employs MF receiver, with F (Q0) = log (1 + Q0), the Nash

equilibrium is characterized by the intersection (Q∗
0, p

∗) of the following two curves:

Q0 = r0 (p) = (solution to equation ψQ0(p) = 0) , (9.8)

p = rs (Q0) =
(

solution to equation gMF (p) = 0
)

, (9.9)

where ψQ0(p) = Q0 + (1 + Q0) log (1 + Q0) − Q̄0 − KÃ2p, and

gMF (p) = 1
N e−cp + 1

N e−λQ0e(K−1)cp − c
(

1 + p
N

)

log
(

1 + p
N

)

e−λQ0e(K−1)cp. In the case of a

secondary system with the LMMSE receiver, the Nash equilibrium is given by the intersection

(Q∗
0, p

∗) of (9.8) and the curve: p = rs (Q0) =
(

solution to equation gMMSE (p) = 0
)

, where

gMMSE(.) is defined in Appendix 9.1.7 for identical secondary links.

Figure 9.3 shows the C-DSL game outcomes when the secondary system is equipped with

the MF as well as the LMMSE receiver. Note that we have set Wk = W = 1, Q̄0 = 10,

P̄k = 20, γ̄0 = 1, h2
pk = h2

sk = 1, for all k ∈ Ks, σ2
s = σ2

p = 1, and all cross-correlations being

0.5. While the system shows similar performance trends with both receivers, the effect of

having LMMSE receiver is that the safety margin Q0 − I0 is slightly larger compared to that

with the MF receiver. As can be seen from Fig. 9.3, with the MF-based secondary receiver,

the primary system can support only up to Ks ≤ 13 secondary users before the secondary

system violates the primary interference cap. On the other hand, with an LMMSE-based

secondary receiver, the primary system can support up to Ks ≤ 15 secondary users due to

the superior interference suppression capability of the LMMSE receiver [108].

Figure 9.4 shows the primary and secondary utilities at the Nash equilibrium of the

system as a function of the secondary system size Ks. It is observed from Fig. 9.4(a) that the
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Figure 9.3: Outcome of the C-DSL game at the system NE, with MF and LMMSE receiver,
as a function of secondary system size Ks assuming identical secondary links, when λ = 5.
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Figure 9.4: Primary and secondary utilities at the system NE as a function of secondary
system size Ks for λ = 5 and assuming identical secondary user. (a) Primary system utility,
(b) Sum-rate and the per-user rate achieved by the secondary system at the NE.

equilibrium utility of the primary system is decreased when the secondary system is equipped

with the LMMSE receiver. This is because with the LMMSE receiver, the secondary system
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can better manage its transmit power and thus total secondary interference to the primary

system is reduced, which in turn reduces the primary utility. If one were to interpret the

primary utility as proportional to a leasing payment the secondary system needs to make to

the primary system, this shows how the secondary system can benefit by employing better

receiver techniques.

Figure 9.4(b) shows both the sum-rate
∑Ks

k=1 log
(

1 + γ(s)
k

)

as well as the per-user rate

1
Ks

∑Ks

k=1 log
(

1 + γ(s)
k

)

achieved by the secondary system at the Nash equilibrium. As we

observe from Fig. 9.4(b), the secondary sum-utility and per-user utility with the LMMSE

receiver are higher compared to those achieved with the MF receiver. It can also be seen

that the sum-utility of all the secondary users with LMMSE receiver has a unique maximum

at Ks = 6. As the secondary system attempts to include more users into the system, the

sum-utility of the secondary system starts to monotonically decrease. This is because, as the

number of secondary users increases, users in both primary and secondary system experience

additional interference. In response to that, each secondary user attempts to transmit at a

higher power to achieve their target SINR’s, thereby causing an overall degradation of both

sum- and per-user rate. Note that, from a system point of view the secondary system would

prefer to maximize the sum-rate. Thus from the secondary system’s perspective, it may

prefer to operate at Ks = 6 with the LMMSE receiver. As we see from Fig. 9.4(b), the sum-

rate first increases and then decreases with K for LMMSE-based receiver, but stays almost

the same for MF-based receiver. Thus, at a first glance, allowing more secondary users

to operate simultaneously seems to be the preferred solution with the MF-based receiver.

However, Figure 9.4(b) also shows that the per-user rate is monotonically decreasing in

Ks for both MF and LMMSE-based secondary system, leading to decreasing incremental

gains in sum-rate (with the MF receiver) as additional secondary users are added to the

system. Depending on the application and the QoS requirement of the secondary system,

each secondary user may have a minimum required rate (in bits per transmission) below

which the transmissions would be useless. Thus we note that this QoS requirement will

determine the maximum number of secondary users, the system would want to support at
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any given time. For example, with the LMMSE-based secondary system, if the minimum

per-user rate required is 2 bps, the optimal Ks would be K∗
s = 8. If, on the other hand,

the rate threshold was reduced to 1 bps, the secondary system might allow up to K∗
s = 12

secondary users to operate simultaneously. Note that on the other hand, if maximizing the

sum-rate were to be the objective, then as noted above the optimum Ks would be K∗
s = 6.

Non-identical links: Fading Channels

In the presence of wireless channel fading, the Nash equilibrium power profile of the C-

DSL based dynamic spectrum sharing system will depend on the observed channel state

realizations as well as on the type of receivers used in the secondary system. It is expected

that in this case the Nash equilibrium transmit powers of individual secondary users will be

different for each user. We assume that all channel gains follow Rayleigh distributions with

all channel coefficients normalized so that E {h2} = 1. Other parameters used for simulations

are: Wk = W = 1, Q̄0 = 10, P̄k = 20, λ = 5, γ̄0 = 1, σ2
p = σ2

s = 1 and all cross-correlations

being 0.5. We investigate the performance with both quasi-static (QS) fading (channel state

information is constant for the duration of a block) and slow time varying fading. For slow

time varying (TV) fading, the temporal correlation is modeled as a first order Gauss-Markov

process [109], and is described via h(.,.)(i) =
√

1 − ε2h(.,.)(i− 1) + εw(.,.)(i), where the driving

noise w(.,.)(i) are iid CN (0, σ2
h(.,.)

) and ε is the channel variation rate. We assume that the

channel state information (CSI) is not instantaneously available to the receivers, and each

receiver updates the CSI periodically every L samples. The detectors’ decisions will use the

estimated CSI defined as: ĥ(.,.)(i) = h(.,.) (<i/L=L). For our simulations, we used L = 10 and

ε = 0.1. All simulation results are obtained by averaging over 2000 fading realizations.

In Fig. 9.5(a), we have shown the C-DSL game outcome at the Nash equilibrium as a

function of number of secondary users Ks in the presence of both time-varying and quasi-

static channels. It can be seen from Fig. 9.5(a) that for quasi-static channel and with

secondary MF receiver, the primary system can support up to Ks ≤ 13 secondary users before
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Figure 9.5: (a) Outcome of the C-DSL game at the system NE, with MF and LMMSE
secondary receiver, as a function of secondary system size Ks in the presence of channel
fading, (b) Average sum-rate and the per-user rate achieved by the secondary system at the
NE.

the secondary system violates the primary interference cap. With the secondary LMMSE

receiver, the primary system can support up to Ks ≤ 16 secondary users in this channel

scenario. On the other hand, for time-varying channel, the primary system can support

up to Ks ≤ 12 and Ks ≤ 15 with the secondary MF and LMMSE receivers respectively.

Note also that in the time-varying fading scenario, the safety margin Q0 − I0 decreases as

secondary system size increases. In the time-varying case, values of Q0 and I0 are slightly

higher than those for the quasi-static system. Figure 9.5(b) shows that the secondary link

utility is decreased in time varying channels compared to that with quasi-static channels.

This is because of the incomplete channel information forcing the system to deviate from the

actual Nash equilibrium. It also shows that the secondary sum-utility as well as the per-user

utility with the LMMSE receiver are also much better compared to those achieved with the

MF receiver. Note that, the monotonic reduction in per-user utility with Ks is common to

both LMMSE and MF-based receivers. However, with the LMMSE receiver, this monotonic

reduction is more than offset by the increased number of users in the secondary system.
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When f (pk) = log
(

1 + γ(s)
k

)

the reward for a secondary link is the rate (in bps) it

can achieve assuming all other transmissions (both primary and secondary) are purely

noise. The minimum transmission quality for the secondary system is defined as the av-

erage (over fading) minimum reward achieved by a link at the equilibrium. We denote this

minimum required QoS for secondary link k as fmin,k and in all simulation results below

assume that fmin,k = fmin for all secondary links. Figure 9.6 shows the outage probability
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Figure 9.6: Outage probability Pr (fk (p∗k) < fmin) of a typical secondary user at the NE of
the C-DSL game in fading channels as a function of secondary system size Ks for a required
QoS requirement fmin.

Pr (fk (p∗k) < fmin) of a typical secondary link as a function of Ks. It can be seen from

Fig. 9.6 that the outage probability increases with Ks as well as with the minimum QoS

requirement. Note also that in general outage probability increases for both secondary MF

and LMMSE receivers. Here also the LMMSE-based system ensures a higher QoS due to

efficient management of secondary links’ transmit powers. The maximum secondary system

size that can be supported according to Fig. 9.5(b) thus needs to be interpreted in conjunc-

tion with the outage probabilities shown in Fig. 9.6. For example, in quasi-static channels

with a MF-based secondary system, Fig. 9.5(b) shows that about 4 secondary links can
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(on average) meet the fmin = 0.5 bps QoS requirement with λ = 5. However, according to

Fig. 9.6 each of the these users may be in outage about 60% of time. On the other hand,

for the LMMSE-based secondary system, about 20 secondary links can (on average) meet

fmin = 0.5 bps QoS in Fig. 9.5(b), while also having an outage probability of about 50%

according to Fig. 9.6. This, of course, is the price of operating as the secondary system.

However, outage probabilities with the model proposed in this chapter are better than that

in [103]. The improvement in the outage probability fmin = 0.1 bps with secondary MF

receiver, is almost 8 times for Ks = 1 and 1.5 times for Ks = 20. On the other hand for the

same fmin, improvement in the outage probability with the secondary LMMSE receiver, is

almost 20 times for Ks = 1 and 7 times for Ks = 20. This is because of the difference in

the secondary utility functions uk’s in this chapter and in [103]. Since we approximate the

unit step function with a sigmoidal function, with a suitably chosen value of the parameter

λ and higher value of positive Q0 − I0, the secondary utility function uk converges to the

reward function f(pk). Thus unlike the secondary utility function uk in [103], the maximum

of our proposed secondary utility function uk also approximately corresponds to maximum

of f(pk). As a result, outage probability here is better than that in [103].

Figure 9.7 shows the primary and secondary rates achieved at the NE in a quasi-static

channel as a function of secondary system size Ks when the primary system has Kp = 3

users. It can be seen from Fig. 9.7(a), the primary user data rate is above the minimum

required threshold as long as I0 ≤ Q0 and it decreases as more secondary users are added

into the system. For Ks ≥ 13 (MF) and Ks ≥ 15 (LMMSE), I0 ≥ Q0 and the primary

user rate drops below minimum required threshold. Hence, operation beyond this points is

not desirable. As one would expect, in Fig. 9.7(b), the secondary sum and per-user rates

are decreased with both the MF and LMMSE detector for Kp = 3. This is because of the

increase in the total interference due to additional primary users in the system. As a result,

the secondary system with the MF detector suffers more than that with the LMMSE detector

when additional primary users are accommodated in the primary system. In Fig. 9.8, due

to the same reason given above, the QoS of the secondary system in terms of outage worsens
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with both the LMMSE and MF detectors for Kp = 3.
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9.1.7 Conclusion

In this chapter, we developed a new game-theoretic framework for dynamic spectrum sharing

in cognitive radio networks. In contrast to previously proposed hierarchical dynamic spec-

trum access networks, the proposed centralized dynamic spectrum leasing (C-DSL) networks

provide an incentive for the primary system (possibly containing multiple primary users)

to proactively accommodate secondary spectrum access whenever feasible. In our proposed

framework, motivated by the network utility considerations, we further generalized the pri-

mary system utility defined in [100,103] and have introduced a new utility function for the

secondary system. We generalized our proposed game to allow for linear multiuser detectors,

such as MF and LMMSE receivers at the secondary system. We established the conditions

on the existence and uniqueness of the Nash equilibrium. In particular, we have established

the general conditions on the primary system reward functions F (.) so as to ensure the

existence of a unique Nash equilibrium. We analyzed several examples of C-DSL networks

in detail to investigate the proposed system behavior at equilibrium. For such a system, we

observed that the proposed C-DSL game leads to a design that determines the maximum

number of secondary links based on the required minimum QoS along with the I0 ≤ Q0

criteria. We showed that the secondary system with the LMMSE receiver outperforms that

with the MF receiver in terms of both the allowed secondary system size and the outage

probability. It is to be noted that the meaning of best performance of the proposed C-DSL

game may depend on what performance aspect we are interested in. From the secondary

system point of view, C-DSL with LMMSE secondary receiver is better since it maximizes

the output SINR. However, the primary system utility decreases when the secondary receiver

is equipped with the LMMSE detector, which leads to loss in revenue. Hence, from primary

perspective LMMSE secondary receiver may not be preferred. We also investigated, through

simulations, the robustness of the proposed C-DSL game to slow time-varying fading, and

showed that the primary and secondary systems can still successfully coexist at the C-DSL

Nash equilibrium. Finally we showed that the proposed C-DSL game performs well even
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when there are more than one primary users active in the spectrum band of interest.

Appendix 9A

Existence and Uniqueness of a NE with The Secondary MF Re-

ceiver

With the assumed form of action sets Ak, the best response rk (a−k) is both compact and

convex for all k ∈ Ks. Further, both u0(p) and uk(p) are continuous in the action vector

p. Let us define a function Φ (Q0) as, Φ(Q0) = F (Q0)
F ′(Q0)

+ Q0. It can be seen that u0 has

a local maximum that is indeed a global maximum if Φ(Q0) = Q̄0 + I0 (a−0) has only

one solution for Q0 ∈ Q. Clearly this equation has a solution if Φ (Q0) is continuous and

limQ0→0 Φ(Q0) ≤ Q̄0 +I0 (a−0) < limQ0→∞ Φ(Q0). This solution would be a global maximum

if in addition Φ′(Q0) > 0 for Q0 > 0. It can be easily verified that Φ′(Q0) > 0 will

be true if F (Q0) is such that F (Q0)F ′′(Q0)

(F ′(Q0))2
< 2. Note also that limQ0→∞ Φ(Q0) = ∞ if

limQ0→∞
F (Q0)
F ′(Q0) > −∞.

As can be seen from (9.4), clearly uk (a) is continuous in a. Next, consider its first

order derivative of uk(pk) =
Wk log(1+γMF

k )
1+eλ(I0−Q0) w.r.t. pk where γMF

k is given by (9.6): ∂uk(pk)
∂pk

=
Weckpk gMF

k (pk)

(1+γMF
k )

 

1+e
λ(I0,−k−Q0)eckpk

!2 , where ck = λÃ2
k ≥ 0 and gMF

k (pk) = 1
Nk

(

e−ckpk + eλ(I0,−k−Q0)
)

− cke
λ(I0,−k−Q0) (1 + γMF

k

)

log
(

1 + γMF
k

)

. At an interior local extremum point for pk ∈

[0,∞), we should have gMF
k (pk) = 1

Nk
e−ckpk + 1

Nk
eλ(Ip,−k−Q0)

− cke
λ(I0,−k−Q0) (1 + γMF

k

)

log
(

1 + γMF
k

)

= 0. Since gMF
k (0) = 1

Nk

(

1 + eλ(I0,−k−Q0)
)

> 0,

gMF
k (∞) −→ −∞ and gMF

k (pk) is continuous in pk, clearly gMF
k (.) must have at least one

zero crossing. However, since g
′MF
k (pk) = − ck

Nk

[

e−ckpk + eλ(I0,−k−Q0)
(

1 + log
(

1 + pk

Nk

))]

<

0 for pk ≥ 0, there is exactly one zero of gMF
k (pk) on [0,∞), implying that uk(pk) only has

one local extremum point on pk ∈ [0,∞). It follows that the local extremum point pk = p∗
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is indeed a global maximum of uk(.) on [0,∞), implying that uk(pk) is quasi-concave in pk,

for each k ∈ Ks.

From the above discussion it follows that the above game G then has at least one Nash

equilibrium due to the well-known result that NE exists in game G = (K,Ak, uk), if for all

k = 0, 1, · · · , Ks (i) Ak is a non-empty, convex and compact subset of some Euclidean space

RN , (ii) uk (p) is continuous in action vector p, and (iii) u0 (Q0, a−0) and uk (pk, a−k) are

quasi-concave in Q0 and pk respectively [110]. "

Appendix 9B

Existence and Uniqueness of a NE with The Secondary LMMSE

Receiver

Since secondary receivers don’t influence the behavior of the primary system utility func-

tion, the quasi-concavity of the primary system utility function with the LMMSE secondary

receiver still holds. Thus for the existence of a NE, the only condition that we need to

establish anew is the quasi-concavity of secondary-user utility as a function of its power pk,

when the receiver is based on an LMMSE detector. We consider the first order derivative

of uk (pk, a−k) =
W log(1+γMMSE

k )
1+eλ(I0−Q0) w.r.t. pk, where γMMSE

k is given by (9.7): ∂
∂pk

{uk (pk)} =

WeckpkgMMSE
k (pk)

(1+γMMSE
k )(1+eλ(I0,−k(p−k)−Q0)eckpk)

2 , where ck = λÃ2
k ≥ 0 and gMMSE

k (pk) =
h2

kk

“

s
(s)
k

”T
Σ−1

k,ks
(s)
k

eckpk
+

h2
kk

(

s(s)
k

)T

Σ−1
k,ks

(s)
k eλ(I0,−k(p−k)−Q0) − ckeλ(I0,−k(p−k)−Q0)

(

1 + γMMSE
k

)

log
(

1 + γMMSE
k

)

. At an

interior local extremum point for pk ∈ [0,∞), we should have gMMSE
k (pk) = 0. Since

gMMSE
k (0) = h2

kk

(

s(s)
k

)T

Σ−1
k,ks

(s)
k

(

1 + eλ(I0,−k(p−k)−Q0)
)

> 0, gMMSE
k (∞) −→ −∞, and

gMMSE
k (pk) is continuous in pk, function gMMSE

k (pk) must have at least one zero crossing.

However, since g
′MMSE
k (pk) = −ckh2

kk

(

s(s)
k

)T

Σ−1
k,ks

(s)
k

[

e−ckpk + eλ(I0,−k(p−k)−Q0)
(

1 + γ(s)
k,k

)]

< 0 for pk ≥ 0, there is exactly one zero of gj,k(pk) on [0,∞), implying that uk(pk) only has
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one local extremum point on pk ∈ [0,∞). Similar to the argument given in Appendix 9.1.7,

it follows that uk(pk) is indeed quasi-concave in pk, for each k ∈ Ks. Hence the C-DSL game

has at least one Nash equilibrium due to the well known result of Debreu, Glicksberg and

Fan [110].

To establish the uniqueness of the NE of the proposed C-DSL game with secondary

LMMSE receiver, we show that the best response correspondence rk(a−k) is a standard

function for k = 0, 1, · · · , Ks [106]. For simplicity of exposition, below we assume Q̄0 −→ ∞

and p̄k −→ ∞. We adopt the convention that all the vector inequalities are component-wise.

Primary system best response

For F (Q0) = log(1 + Q0), the unique interior maximum of u0 is given by

Q∗
0 + (1 + Q∗

0) log (1 + Q∗
0) =

(

Q̄0 + I0

)

. (9.10)

Since u0 (Q0) is monotonic increasing for Q0 < Q∗
0, if the maximum interference cap is such

that Q̄0 < Q∗
0, the best response is given by r0 (a−0) = min{Q̄0, Q∗

0 (I0)}.

I. Positivity : From (9.10), for a−0 = 0, Q∗
0min > 0. So r0(a−0) > 0 for a−0 ≥ 0.

II. Monotonicity : Since the left and the right hand side of (9.10) are increasing functions

of Q0 and a−0, respectively, given a−0 ≥ a′
−0, r0(a−0) ≥ r0(a′

−0) .

III. Scalability : From (9.10), Q∗
0(I0) is concave in I0 since d2Q∗

0

dI2
0

= −1

(1+Q∗
0)(2+log(1+Q∗

0))
3 < 0

for Q∗
0 ≥ 0. It can be easily seen that positivity and concavity of Q∗

0(I0) together

implies scalability. So for µ > 1, we have µr0 (a−0) > r0 (µa−0).

Therefore, by Definition 3, the best response correspondence of the primary system is a

standard function.
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Secondary links’ best response

The best response correspondence of the k-th secondary link is the transmit power which

provides it with the optimum SINR γMMSE∗
given by the solution pk to the equation

gMMSE
k (pk) = 0. Thus the best response correspondence of the k-th secondary link is

rk (a−k) = min

{

γMMSE∗
I
(k)
k

h2
kk

, p̄k

}

, where I(k)
k =

[(

s(s)
k

)T
Σ−1

k,ks
(s)
k

]−1

. Since
∂γMMSE

k (pk)
∂pk

=

γMMSE
k

pk
, maximizing the utility function for each user is equivalent to finding optimum SINR

γMMSE∗. Note also that γMMSE∗
is independent of k as long as all secondary users have the

same reward function.

I. Positivity : Since γMMSE∗
> 0 and I(k)

k > 0, the best response correspondence of the

k-th secondary link rk (a−k) > 0 for all k ∈ Ks.

II. Monotonicity : By following a proof similar to [102], we have that for a−k ≥ a′
−k,

I(k)
k (a−k) > I(k)

k (a′
−k). Thus rk (a−k) =

γMMSE∗
I(k)
k (a−k)

h2
kk

≥ γMMSE∗
I(k)
k (a′

−k)

h2
kk

= rk (a′
−k),

for all k ∈ Ks.

III. Scalability : For µ > 1, µrk (a−k) =
µγMMSE∗

I(k)
k (a−k)

h2
kk

and rk (µa−k) =
γMMSE∗

I(k)
k (µa−k)

h2
kk

.

Similar to the proof given in [1], we have that µI(k)
k (a−k) > I(k)

k (µa−k). Hence,

µrk (a−k) > rk (µa−k), for all k ∈ Ks.

So, the noncooperative C-DSL game with secondary LMMSE receiver has a unique NE. "
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