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Abstract

The purpose of this thesis is to develop a control architecture running at real-time

for a multi unmanned aerial vehicle test bed formed by three AscTec Hummingbird

mini quadrotors. The reliable and reconfigurable architecture presented here has a

FPGA-based embedded system as main controller. Under the implemented control

system, different practical applications have been performed in the Marhes Lab at

the University of New Mexico as part of its research in cooperative control of mobile

aerial agents.

This thesis also covers the quadrotor modeling, the design of a position controller,

the real-time architecture implementation and the experimental flight tests. A hy-

brid approach combining first-principles with system identification techniques is used

for modeling the quadrotor due to the lack of information around the structure of

the onboard controller designed by AscTec. The complete quadrotor model struc-

ture is formed by a black-box subsystem and a point-mass submodel. Experimental
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data have been gathered for system identification and black-box submodel validation

purposes; while the point-mass submodel is found applying rigid-body dynamics.

Using the dynamical model, a position control block based in lead-lag and PI

compensators is developed and simulated. Improvements in trajectory tracking per-

formance are achieved estimating the linear velocity of the aerial robot and incorpo-

rating velocity lead-lag compensators to the control approach. The velocity of the

aerial robot is computed by numerical differentiation of position data. Simulation

results to a variety of input signals of the control block in cascade with the complete

dynamic model of the quadrotor are included.

The control block together with the velocity estimation is fully programmed in

the embedded controller. A graphical user interface, GUI, as part of the architec-

ture is designed to display real-time data of position and orientation streamed from

the motion tracking system as well as to contain useful user controllers. This GUI

facilitates that a single operator conducts and oversees all aspects of the different

applications where one ore multiple quadrotors are used.

Experimental tests have helped to tune the control parameters determined by

simulation. The performance of the whole architecture has been validated through a

variety of practical applications. Autonomous take off, hovering and landing, target

surveillance, trajectory tracking and suspended payload transportation are just some

of the applications carried out employing the real-time control architecture proposed

in this thesis.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, Unmanned Aerial Vehicles, UAVs, have become promising mobile

platforms which are capable of navigating semi-autonomously or full-autonomously

within uncertain environments. In addition, the level of autonomy and the flexible

technology of these flying robots have rapidly evolved making it possible to accom-

plish successfully a wide spectrum of indoor and outdoor tasks. These include en-

vironmental monitoring and surveillance applications, disaster-response operations,

and search and rescue missions. For example, radio controlled UAVs carrying radi-

ation sensors and video cameras were employed recently to monitor, diagnose and

evaluate the situation at Japan’s Fukushima Daiichi nuclear plant facility [1], an

unmanned aircraft autonomous system has helped to monitor forest fires [2]; and

a UAV cooperating with a USV (unmanned surface vehicle) has carried out sea

robot-assisted inspection [3]. A detailed description of the current state of the art

in autonomous rotorcraft UAVs is presented in the comprehensive survey [4] where

also a classification of these aerial vehicles is included.
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Chapter 1. Introduction

One special type of aerial vehicle, the quadrotor (see Figure 1.1(a)), has not only

the capability of taking off and landing in a very limited area, but also of carrying

more weight than other aerial platforms thanks to its four propellers. Furthermore,

these unmanned rotorcraft vehicles have become one of the most popular platforms

for UAV research. In fact, diverse research groups [5, 6, 7, 8] have included quadrotors

as active part of their robotic test beds. Existing experimental results range from

basic hovering [9, 10] and trajectory tracking [11] to formation [12] and surveillance

[13], and including even aggressive maneuvers [14] and aerobatic flips [15]. Moreover,

there are some novel applications in the communications area where a quadrotor is

considered as an autonomous antenna relay [16] or a team of quadrotors is configured

as an array of antennas [17].

(a) The AscTec Hummingbird quadrotor. (b) Virtual Hummingbird quadrotor.

Figure 1.1: A real quadrotor during hovering and its virtual representation.

Most of the experiments mentioned above employ the UAV for passive observation

or simple motion without any physical interaction between the quadrotor and its

surrounding objects. Nevertheless, aerial manipulation has been extremely important

for military, and industrial purposes as wall as in emergency rescue missions such as

fire fighting (see Figure 1.2). For instance, the safe aerial transport of a victim from

a dangerous area is vital in an emergency response. Therefore, in the recent years,

2



Chapter 1. Introduction

the functionality of UAVs has advanced beyond simple environmental sensing to

manipulation of their external environment introducing a wide novel set of practical

applications. In fact, individual or cooperative transport of a suspend load [18,

19, 20], aerial grasping and manipulation [21, 22], applying force to a wall [23], and

building structures [24, 25] are some examples where aerial robotic platforms interact

with their surroundings and/or with external objects.

All these practical examples show how active the UAV research within the con-

trol community is. For that reason, this thesis presents a real-time control architec-

ture for a multi UAV test bed. Specifically, this architecture is implemented in the

Marhes Laboratory at the Electrical and Computer Department of the University

of New Mexico.

Figure 1.2: Quadrotor fire fighters in an virtual emergency mission.

3



Chapter 1. Introduction

1.2 Problem Statement

The main goal of this thesis is the development and implementation of a real-time

control architecture for a mini UAV quadrotor (according to the categories presented

in [4]) in an indoor environment. Furthermore, this architecture must be distributed

and modular such that more similar aerial vehicles can be easily added. In addition,

a graphical user interface, GUI, must be created for single-operator monitoring and

supervision purposes. This GUI displays real-time position and orientation data of

the aerial vehicle. Besides, it must include all the necessary controls to enter reference

values and desired waypoints as well as to load pre-generated 3D trajectories (position

and velocity data).

Diverse subgoals are involved around the previous main purpose. First, a viable

and adequate model of the quadrotor is obtained and simulated. After, a linear

position controller is designed and implemented. Indeed, the controller has to enable

the quadrotor to perform stable hovering, accurate waypoint tracking and reliable

trajectory tracking. Furthermore, diverse practical experiments should be carried out

to test the controller performance. In particular, a basic cooperative task using two

quadrotors should be outlined and implemented to prove the expansion capability of

the control scheme.

1.3 Related Work

The growing interest in mini and micro quadrotors has brought a lot of challenges

around the hardware and software within this aerial platform. Specifically, an

increasing demand is placed on developing its guidance, navigation and control

(GN&C) systems. In addition, the design of reliable and robust controllers for this

aerial vehicle is challenging due to its nonlinear, complex and underactuated dynam-

4



Chapter 1. Introduction

ical model. As a result, the quadrotor control problem has attracted the attention of

many researches from both the control and robotic communities because it presents

an excellent opportunity for developing and testing new control design methodologies

[4].

Most published papers on modeling and control of a mini or micro quadrotor

use a model obtained considering a rigid-body dynamics evolving in a 3D space

that is described by the Newton-Euler equations of motion [7, 6, 9, 11, 26]. On

the other hand, different approaches use a combination of the rigid-body dynamic

equations with a system-identification approach as a modeling technique [10, 27, 28,

29, 30]. A system-identification method is applied to estimate a linear model of some

uncertainties that could appear in the quadrotor dynamic model such as unknown

aerodynamic coefficients.

The literature includes a variety of linear and nonlinear control techniques for

controlling mini and micro quadrotors, . The most applied linear controllers are PID

(proportional-integral-derivative) or just PD (proportional-derivative) controllers [7,

11, 26, 28, 31], linear quadratic regulator (LQR) controllers [10, 28, 29, 30, 31] and

robust H∞ controllers [29]. Conversely, also nonlinear control systems have been

developed and tested. For instance, a backstepping technique is applied in [32, 33]

and a sliding mode control is employed in [32, 34, 35]. For this thesis, cascade lead-lag

compensators are principally used to implement a reliable position controller.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of the different systems, quadrotors, sensors and controllers, that are part of the

Marhes Laboratory and of the real-time control architecture. Subsequently, Chap-

ter 3 presents the quadrotor model that is used in this thesis. Since part of the
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quadrotor model was determined using system identification and parameter estima-

tion, this is discussed in Chapter 4. The controller design and its corresponding

simulations are described in Chapter 5. Chapter 6 outlines the control system imple-

mentation. The different experiments and applications to evaluate the performance

of the control architecture and their results are given in Chapter 7. Finally, Chap-

ter 8 discusses the conclusions and future possible improvements to the real-time

architecture proposed herein.
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Chapter 2

System Overview

2.1 The Marhes Laboratory

The Multi-Agent Robotic Hybrid and Embedded Systems, Marhes, Laboratory is

a clear example of a heterogeneous mechatronic system since its test bed consists

of unmanned aerial vehicles and unmanned ground vehicles, UGV. Indeed, five Pi-

oneer P3-AT [36] and 10 TXT (under development) [37] are part of the ground

robotic platform; while, three AscTec Hummingbird Autopilot quadrotors [38] and

one AR.Drone Parrot [39] are part of the aerial robotic platform. Because this thesis

is focus on the aerial robotic platform, specifically the AscTec Hummingbird quadro-

tor, no more explanation about the other platforms will be presented. In addition,

the laboratory is equipped with a VICON MX system [40] that is a high-precision

motion capture system. This system is installed within a capture room surrounded

by a protective net. Figure 2.1 shows one of the Hummingbird quadrotors hovering

over a Pioneer robot while they are overseen by a motion tracking system within the

capture room.

The laboratory also counts with five NI CompactRio (cRIO) systems, that could
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Chapter 2. System Overview

be employed as reconfigurable control and monitoring systems [41]. In fact, the

embedded real-time controller of this system will be used as part of the architecture

implemented in this work.

Figure 2.1: The Marhes test bed.

2.2 The AscTec Hummingbird Autopilot

Figure 1.1(a) shows this aerial system flying in the capture room. This system is

a fusion between the robust Hummingbird frame with the AscTec AutoPilot sensor

board [38]. The aerial vehicle consists of a carbon fiber-balse wood sandwich material

with two pairs of counter-rotating fixed-pitch blades. Indeed, a general overview of

the most relevant specifications and components are summarized in the Table 2.1.

Based on these specifications, the AscTec Hummingbird is a Mini RUAS (Rotorcraft

Unmanned Aerial System) according to the categories proposed in [4].
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Size (Diameter) 36.5 cm
Propellers Size 19.8 cm
Weight (without battery) 353 g
Payload up to 350 g
Maximum Thrust 1320 g at 12.6 V
Flight Time up to 30 min. (without Payload, 1.8 Ah battery)

• X-CSM mechanical frame

• AscTec Hummingbird PowerBoard

• AscTec Autopilot (sensing and flight control unit)

Components • AscTec 3D-MAG (triple axial compass module)

• X-BL-52 motors

• X-BLDC brushless motor controller

• XBee 2.4 GHz Module

Table 2.1: General specifications and components of the AscTec Hummingbird Au-
topilot.

2.2.1 Main Components

In this section, some information about the main parts of the AscTec Hummingbird

Autopilot quadrotor are provided. This information as well as of the different fig-

ures are obtained from the Hummingbird user’s manual [42] and they are presented

here just as a reference to understand how this aerial platform can be controlled.

Additional details about the quadrotor parts and its on-board controller can be also

obtained in [43].

X-CSM

X-CSM is the mechanical frame of the quadrotor. It consists of four light weight

carbon fiber booms and a magnesium core structure. The magnesium core improves

the structural integrity and houses the electronics and battery. In fact, the use of
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light weight but sturdy material renders the platform durable and rigid. For that

reason, the quadrotor is capable of enduring small crashes without permanent dam-

age. Figure 2.2 illustrates one the complete frame with a close up of the magnesium

core.

(a) Complete frame. (b) Magnesium core.

Figure 2.2: The X-CSM mechanical structure.

Power Board

It is used to distribute power and communication lines to all motor controllers.

Figures 2.3(a) and 2.3(b) depicts the power board module. It comprises a switching

power regulator to generate a stable 6V supply for the AscTec AutoPilot board, a

high-power MOSFET to switch the motor current and a 5V regulator to supply any

custom payload. The ON-OFF switch is designed active low, so if for some reason

it breaks or loses connection the vehicle is switched ON by default.

AscTec AutoPilot

The AscTec Autopilot is the flight control unit (see Figure 2.3(c)) that reads sensor

data, compute angular velocities and angles in all axes (roll, pitch and yaw) and

10
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(a) Top side of the power
board.

(b) Bottom side of the power
board.

(c) The AscTec AutoPilot.

Figure 2.3: The AscTec Hummingbird power board and the AutoPilot board.

runs three independent PD loops for each axis. Subsequently, the control outputs

are combined to compute a desired speed for each motor which is transmitted to

the respective motor controller. All these processes are done with a control loop

frequency of 1 kHz.

3D-MAG

It is the triple-axial compass module used to determine the vehicle heading by mea-

suring the Earth’s magnetic field. The AscTec AutoPilot mathematically transforms

the measured vector into the horizontal plane and can thus determine the correct
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heading even if the vehicle is tilted in pitch or roll. The 3D-MAG is shown in Figure

2.4(a).

GPS unit

The GPS unit (Figure 2.4(b)) is mounted on top of the X-CSM core and used for

autonomous outdoor flight. However, this unit will be disconnected for the current

implementation.

(a) The 3D-MAG (b) The GPS unit

Figure 2.4: The AscTec 3D-MAG and the GPS unit.

Motors and Drivers

The X-BL-52S motors are custom-built for the AscTec Hummingbird. Every motor

(in total four motors on the platform) is controlled by an independent brushless

motor controller. One of the four drivers along with one of the motors are shown in

Figure 2.5.
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(a) The X-BL-52S motor. (b) The X-BLDC motor driver.

Figure 2.5: The X-BL-52S motor and the X-BLDC brushless motor controller.

2.2.2 On-board Serial Interface

The system is designed to be manually operated through a six or more channels

R/C transmitter or to be autonomously controlled through a wireless serial link.

Furthermore, it can be used indoors by employing an external optical positioning

system. For the purpose of this thesis, the Hummingbird quadrotor will be controlled

through the wireless serial link and its on-board attitude controller will be enabled.

Therefore, a summary about the operation and data protocol of the on-board serial

interface is explained next. A complete discussion of this interface could be found in

[42].

The wireless serial link is established by using a pair of cost-effective XBee ZB

ZigBee modules [44] (see Figure 2.6) which manage a serial data interface. One

module is connected directly to the serial port 0 of the low-level controller in the

AscTec Autopilot Board and the other should be connected to the base station that

sends the control commands. For a complete description, please refer to Section 4

of the User’s Manual [42]. Moreover, the connection settings of the serial interface

with the module connected to the ground station are reproduced here in the Table

2.2.

As indicated in [42], the serial communication must be enabled by its corres-
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(a) XBee module. (b) RS232 adapter.

Figure 2.6: An XBee module and its adapter to RS232.

Baudrate 57600
Data Bits 8
Parity None
Stop Bits 1
Flow Control Hardware

Table 2.2: Connection settings for the serial interface.

ponding switch in the R/C transmitter. Furthermore, during operation through the

serial command interface the R/C transmiter has to stay ON all the time to enable

manual operation if the autonomous control is not working as desired. In addition,

the command data should be sent to the vehicle with a minimum rate of 10 Hz over

the wireless link. If the data frequency is less than 10 Hz or the transmission stops

completely, the system will automatically switch back to manual operation over the

R/C transmitter.

Figure 2.7: Command frame over the serial link.

The command frame that should be sent over the serial link is shown in Figure
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2.7. Besides, each field of this frame has the following format:

Start String > ∗ >di

Pitch Input is a signed integer between −2047 and 2047 with the value of 0 as

neutral.

Roll Input is a signed integer between −2047 and 2047 with the value of 0 as

neutral.

Yaw Input is a signed integer between −2047 and 2047 with the value of 0 as

neutral.

Thrust Input is an unsigned integer between 0 and 4095.

Control is a byte whose bits can be used to enable only one axis at a time and thus

to control manually the other axes. This is:

bit 0: pitch control enabled.

bit 1: roll control enabled.

bit 2: yaw control enabled.

bit 3: thrust control enabled.

Checksum is calculated by Checksum = Pitch Input + Roll Input + Yaw Input +

Thrust Input + Control + 0xAAAA.

2.2.3 Control Input Ranges

Because of the reduced free space available in the capture room, the values for each

one of the previous inputs have been constrained except for the yaw input. The pitch

and roll inputs are constrained to signed integers between −1200 and 1200; while the
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thrust input to an unsigned integer between 0 and 2700. The range of the yaw input

is maintained. All these values have been determined by experimental tests within

the capture room. Furthermore, outside these limits, there is no guarantee that the

quadrotor’s maneuver has enough room to avoid crashes against the walls or ceiling.

2.3 The VICON MX System

The VICON MX system is a precise optical motion capture system that consists of

special cameras, a controlling hardware module (known as the MX Giganet) and a

host computer where a software is installed to analyze and present the data [40].

With the combination of these components, the system can track the position and

orientation of any object with high precision at a data rate of 225 Hz. In fact,

the VICON MX system works by tracking special reflective markers that should

be mounted on the desired object. Furthermore, the system is capable of tracking

multiple objects simultaneously.

Figure 2.8: Scheme of the VICON MX system installed in the Marhes Lab.
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In the capture room at the Marhes laboratory, a total of eight cameras have

been installed. These cameras are connected to the MX Giganet controlling module.

At the same time, this module is connected to the host computer through a Gigabyte

Ethernet interface. With the software installed on the host computer, the VICON

Tracker, it is possible to manage, record and display the acquired data in real-

time. Moreover, using the VICON SDK [45], it is possible to access to the VICON

DataStream created by the VICON Tracker and stream these data in real time to

third-party computer graphics software such as MATLAB or LabVIEW via TCP/IP.

A scheme of the architecture of the system installed in the laboratory is presented

in Figure 2.8 and two screen shots showing the capture room and a close up of the

3D object from the VICON Tracker software are shown in Figure 2.9.

(a) The 3D Perspective of the
capture room.

(b) The 3D Perspective of the quadrotor.

Figure 2.9: Screen shots from the VICON Tracker software.

2.4 The NI CompactRIO System

The NI CompactRIO system, NIcRIO, consists of an embedded controller for com-

munications and processing, a reconfigurable chassis housing the user-programmable

FPGA, hot swappable I/O modules, and NI LabVIEW graphically programming
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tools [41]. In addition, this system offers powerful stand-alone embedded execu-

tion for LabVIEW Real-Time (RT) applications. Indeed, the LabVIEW Real-Time

Module is an add-on installable component for the LabVIEW Development System

that compiles and optimizes the LabVIEW graphical code for the selected real-time

target.

(a) The NI cRIO-9024 RT controller. (b) Controller, chassis and modules.

Figure 2.10: The NI CompactRIO system.

In the case of the Marhes Lab, each one of the NI cRIO systems is composed

by the NI cRIO-9024 real-time controller (see Figure 2.10). In addition, the lab has

available chassis, analog input modules, analog output modules, bidirectional digital

I/O modules and brushed DC servo driver modules for each system. Specifically for

the purpose of this thesis, just the real-time controller is required. Therefore, its

most relevant characteristics of this controlled are enumerated next:

• Embedded controller that runs LabVIEW Real-Time for deterministic control,

data logging, and analysis,

• 800 MHz processor, 4 GB nonvolatile storage, 512 MB DDR2 memory,

• Dual Ethernet ports with embedded Web and file servers for remote user in-

terfacing,
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• Hi-Speed USB host port for connection to USB flash and memory devices,

• RS232 serial port for connection to peripherals; dual 9 to 35 VDC supply

inputs.

In this Chapter, an overview of the elements that are going to be part of the

control architecture has been presented. Moreover, the most relevant details around

the AscTec Hummingbird Autopilot quadrotor, have been included. The following

Chapter will address the quadrotor modeling and supply a valid nonlinear system

model for this aerial platform.
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Chapter 3

Quadrotor Modeling

A model for the quadrotor is necessary not only to develop a model based controller

but also to understand the physical principles around how this aerial vehicle can be

commanded. Thus, some general concepts and assumptions need to be introduced

before modeling.

3.1 Basic Concepts and Assumptions

A quadrotor is considered as a single rigid body with 6 degrees of freedom (DOF): 3

DOF for translation and 3 DOF for orientation. In fact, this assumption is common

in the literature as it is stated in different theses [10, 27, 28, 29, 30] and papers

[5, 6, 7, 9, 26, 46]. Furthermore, the basic model of a quadrotor is composed just by

a thin cross structure with four propellers on its ends (see Figure 3.1). Moreover, all

the propellers have fixed-pitch blades and the air-flow points downwards obtaining

an upward lift. Therefore, the only parameter that can vary is the speed of each

propeller.

20



Chapter 3. Quadrotor Modeling

3.1.1 Coordinate Systems

To describe the position and orientation of an object in a 3D space, it is desired to

define coordinate systems and to develop conventions for representation.

The two right-handed coordinate systems used in this thesis are illustrated in

Figure 3.1. The world or inertial coordinate system, {W}, is defined by the axes

XW , YW , and ZW and it is related to the capture room in the Marhes Lab. This

system is oriented so the plane XYW is in the room floor and the ZW axis is pointing

upwards. On the other hand, the body-fixed coordinate system, {B}, coincides with

the center of mass of the quadrotor and is defined by the axes XB, YB, and ZB. This

helps to follow the attitude of the quadrotor at any instant. The x-body axis, XB,

is always aligned with the front of the aerial robot. On the Asctec Hummingbird

quadrotor, the front is marked with an orange tape to identify the attitude of the

vehicle when it is flown by a human operator.

Figure 3.1: Fixed-body and world coordinate systems.

The vectors in the coordinate system {W} will be denoted with a W in front of

the vector variable and those in {B} with a B. Hence, the position vector of the
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origin of the body-fixed coordinate system i.e., the position of the quadrotor’s center

of mass respect to {W} is given by W rcg = [rx ry rz]
T or just W r = [x y z]T .

3.1.2 Orientation and Rotations

The quadrotor is able to rotate around all three fixed-body axes and the sign of

the rotations are according to the right-hand convention. In fact, the orientation of

one Cartesian coordinate system with respect to another can always be described by

three successive rotations. The Tait-Bryan or Cardan angle rotation description [47]

is mainly used in the different quadrotor papers, theses and reports, but there is no

agreement about the sequence of the three successive rotations. In this thesis, the

rotation sequence Z−Y −X or 3−2−1 is employed because this is the most typical

sequence used in the different quadrotor references such as in [9, 10, 26, 27, 28].

Thus, the rotation sequence is given as follows: first a rotation about the XW axis

by the roll angle, φ, a then rotation about the intermediate Y axis by the pitch angle,

θ, and, finally, a rotation about the ZB axis by the yaw angle, ψ [47]. Consequently,

the rotational matrix from the fixed-body coordinate system to the world coordinate

system, WRB, is defined as

WRB = RZ (ψ)RY (θ)RX (φ) ,

WRB =










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, (3.1)

where c and s are abbreviations for cosine and sine, respectively.

The angular velocity of the fixed-body coordinate system is given by B
ω =
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[p q r]T and it is related to the time derivatives of the roll, pitch and yaw an-

gles according to [29]
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Inverting the relation in (3.2) provides the relation between the time derivatives of

the roll, pitch, and yaw angles with the angular velocity of the fixed-body coordinate

system.
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where t is an abbreviation of tangent. This representation has a singularity at θ =

±π
2
, but this limitation does not affect the quadrotor performance in normal flight

[9].

3.1.3 Quadrotor Basic Maneuvers

Figure 3.2 shows the quadrotor structure at hovering position where all the propellers

have the same speed to counterbalance the acceleration due to gravity and the aerial

vehicle is aligned with the XYW plane. In this figure, two arrows are drawn, one in

blue and one in red, and they are related with the angular speed of the propellers.

The red curved arrow represents the direction of rotation, while the blue straight

arrow represents the thrust. This arrow always points upwards because it would be
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confusing to have two vectors pointing upwards and the other pointing downwards.

In addition, the front and rear propellers rotate counter-clockwise while the left and

the right ones turn clockwise. This assumption is made since the rotors of the AscTec

Hummingbird quadrotor present this configuration. Indeed, this format of opposite

directions in pairs removes the need for a tail rotor that is needed in a standard

helicopter.

Figure 3.2: Quadrotor structure at hovering position.

Since the UAV is equipped with four propellers, it is not possible to reach a

desired set-point for all the 6 degrees of freedom. Consequently, the quadrotor is an

under-actuated system and there are just four basic maneuvers. These maneuvers

allow the aerial vehicle to reach a certain height and attitude. These four basic

maneuvers are [27]:

Thrust or Collective This command is provided by increasing (or decreasing) all

the propellers speeds by the same amount. It leads to a vertical force, U, with

respect to the body-fixed frame which raises or lowers the quadrotor.

Roll This command is provided by increasing (or decreasing) the left propeller speed

and by decreasing (or increasing) the right one. It leads to a torque with respect

to the XB axis which makes the quadrotor turn.
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Pitch This command is very similar to the roll and is provided by increasing (or

decreasing) the rear propeller speed and by decreasing (or increasing) the front

one. It leads to a torque with respect to the YB axis which makes the quadrotor

turn.

Yaw This command is provided by increasing (or decreasing) the front-rear pro-

pellers speed and by decreasing (or increasing) the left-right couple. It leads

to a torque with respect to the ZB axis which makes the quadrotor turn. The

yaw moment is generated thanks to the fact that the left-right propellers rotate

clockwise while the front-rear ones rotate counter-clockwise. Indeed, the rotor-

craft vehicle turns on itself around ZB when the overall torque is unbalanced.

Figure 3.3: Quadrotor movement in the XYW plane.

Based on this basic maneuvers, the quadrotor can reach a desired position in

a 3D space with a desired heading (yaw angle) i.e., a desired set-point of 4 DOF

[x y z ψ]T . The movement in the XYW plane is done by tilting the quadrotor in

the desired direction. When the quadrotor is tilted, the direction of the total thrust,

U, is no longer aligned with the ZW axis as it is during hovering. Furthermore, U

can be decomposed in a ZW axis component and in a XYW plane component (see

Figure 3.3). This last component results in an acceleration in the XYW plane.
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3.2 Model Structure

The most applied technique to model a quadrotor is the first principle modeling

technique. This method involves deriving the mathemathical equations of motion

using the fundamental laws of mechanics and aerodynamics. The resulting model is

nonlinear and coupled, and describes the aerial vehicle dynamics in a large portion

of its flight envelope. However, it contains a number of unknown physical param-

eters such as geometrical data and aerodynamics coefficients [4]. Consequently, a

combination between this technique and system identification is an option presented

in the literature about quadrotors [10, 27, 28, 29, 30]. Hence, this approach is used

in this thesis.

The structure of the dynamical model is presented in Figure 3.4. The inputs

are the roll, Sφ, pitch, Sθ, yaw, Sψ, and thrust, STh, values that are sent via the

wireless serial link as it is presented in Section 2.2.2. Meanwhile, the outputs are the

position vector, W r, and the orientation vector, WΘ, both with respect to the world

coordinate system.

Figure 3.4: Structure of the quadrotor model.

As it is also shown in Figure 3.4, the model is split into two main components: the

Point-Mass model and the Black-Box model. The first one involves the translational
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part of the rigid body dynamics; while the second represents the onboard controller,

the motor dynamics, the aerodynamics forces and momentums, and the rotational

part of the rigid body dynamics.

3.2.1 Point-Mass Model

Since the quadrotor has small size and it is symmetric, it is possible to model it as

a point-mass [30]. Thus, applying Newton’s Second Law at the world coordinate

system, {W} , one can obtain

mW r̈ =
∑

WFi,

where m is the quadrotor mass, W r̈ denotes the acceleration of the center of gravity

respect to the world frame and WFi represents any outer force acting on the point-

mass.

Figure 3.5 shows the forces, the momentums acting on the quadrotor and the

position vector of the center of gravity of the aerial vehicle respect to the world

frame, W r. The forces are the gravitational force and the upward forces generated

by each rotor (F1 to F4). Thus,

mW r̈ = −m


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Figure 3.5: Forces and momentums acting on the quadrotor.

Considering the body-fixed coordinate system, it is clear that the forces F1 to F4

are always directed along the ZB axis, so it is possible to define
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where U, the total thrust, is depicted in Figure 3.3. Consequently,

mW r̈ = −m


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

. (3.4)
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3.2.2 Black-Box Model

In Equation (3.4), there is the requirement of calculating the Euler angles, (φ, θ, ψ),

and the total thrust force, U. These values depend on the onboard controller designed

by Ascending Technologies [42, 43], so an exact description of the internal controller

is necessary. Nevertheless, there is not a complete explanation of the controller

configuration and how the control-outputs are combined to compute a desired speed

of each motor. For that reason, a system identification approach is chosen to derive

decoupled closed-loop transfer functions for the Euler angles and a polynomial for

the total thrust force.

Total Thrust, U

The force generated for each rotor depends on its angular velocity. Since the angular

velocity of the rotors is controlled by the onboard controller, the resultant force, U,

is modeled as a function of the thrust input STh [28]. The procedure to estimate

the linear function related to the total thrust is explained in Section 4.1 and just its

equation is reproduced next,

U =− 0.117× 10−12 (STh)
4 + 0.32809× 10−9 (STh)

3 (3.5)

+ 1.306× 10−6 (STh)
2 + 0.4929× 10−3 (STh) + 0.61485.

Estimated Transfer Functions

The main idea of black-box modeling is to approximate the dynamics of the system

with an educated guess [30]. The system parameters are identified and validated

with an adequate method using flight data sets. Furthermore, the three decoupled
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estimated subsystems are:

HφB (s) =
28.8832

s2 + 347.8345 s + 991.0803
,

HθB (s) =
34.5702

s2 + 470.7944 s + 834.5643
, (3.6)

Hr (s) =
−0.25095

s + 4.180619
.

A detailed explanation about the procedure to identify and to validate these

transfer functions is described in Section 4.2.

3.2.3 Complete Dynamical Model

A summary of the quadrotor dynamical equations is presented next. Moreover, the

final model structure is illustrated in Figure 3.6. From Section 3.1.2 and applying

(3.1) on (3.4), one can get

ẍ =
1

m
(cφsθcψ + sφsψ) U,

ÿ =
1

m
(cφsθsψ − sφcψ) U, (3.7)

z̈ = −g +
1

m
cφ cθU

The system of equations (3.7) requires the values of the Euler angles φ, θ, and ψ.

Thus, these can be calculated using (3.2)

φ̇ = p+ (sφtθ) q + (cφtθ) r,

θ̇ = cφ q − sφ r, (3.8)

ψ̇ =

(

sφ

cθ

)

q +

(

cφ

cθ

)

r,

where, the angular velocities respect to frame {B} (p, q and r) could be found by
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transforming the transfer functions in (3.6) into differential equations.

ṗ = −347.8345 p− 991.0803φB + 28.8832 Sφ

q̇ = −470.7944 q − 834.5643 θB + 34.572 Sθ (3.9)

ṙ = −4.180619 r − 0.25095 Sψ

Subsequently, Equations (3.7), (3.8) and (3.9) define the dynamical model of the

quadrotor. In fact, the model equations are summarized in (3.10).


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



ẍ = 1
m
(cφsθcψ + sφsψ) U

ÿ = 1
m
(cφsθsψ − sφcψ) U

z̈ = −g + 1
m
(cφcθ) U

φ̇ = p+ (sφtθ) q + (cφtθ) r

θ̇ = cφ q − sφ r

ψ̇ =
(

sφ

cθ

)

q +
(

cφ

cθ

)

r

ṗ = −347.8345 p− 991.0803φB + 28.8832 Sφ

q̇ = −470.7944 q − 834.5643 θB + 34.572 Sθ

ṙ = −4.180619 r − 0.25095 Sψ

(3.10)

where U is given by Equation (3.5).

3.3 Modeling for Control Purposes

The model given in (3.10) can be rewritten in state-space form with the state vector,

X, chosen as in (3.11). The extra states φB and θB are required to express (3.9) on

state-space form.

X = [x y z ẋ ẏ ż φ θ ψ φB θB p q r]T (3.11)

= [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14]
T
,
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Figure 3.6: Complete quadrotor dynamic model.

Under these definitions, the state-space description of the quadrotor is given by
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ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 =
1
m
[c (x7) s (x8) c (x9) + s (x7) s (x9)] U

ẋ5 =
1
m
[c (x7) s (x8) s (x9)− s (x7) c (x9)] U

ẋ6 = −g + 1
m
[c (x7) c (x8)] U

ẋ7 = x12 + [s (x7) t (x8)] x13 + [c (x7) t (x8)] x14

ẋ8 = c (x7) x13 − s (x7) x14

ẋ9 =
[

s(x7)
c(x8)

]

x13 +
[

c(x7)
c(x8)

]

x14

ẋ10 = x12

ẋ11 = x13

ẋ12 = −347.8345 x12 − 991.0803 x10 + 28.8832 Sφ

ẋ13 = −470.7944 x13 − 834.5643 x11 + 34.572 Sθ

ẋ14 = −4.180619 x14 − 0.25095 Sψ

(3.12)
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In addition, the system input, Ui, is given by

Ui = [U Sφ Sθ Sψ]
T
, (3.13)

Meanwhile, the system output, Y, is formed by the states that can be measured

using the VICON system (Section 2.3). These states are the position and orientation

of the flying robot in the capture room respect to the {W} frame. Thus, the output

of the system is

Y = [x1 x2 x3 x7 x8 x9]
T
. (3.14)

3.3.1 Linear Model

In order to use the state-space representation (3.12) in designing a based linear

controllers, the system needs to be linearized. Consequently, a first order Taylor

approximation is used and the hovering condition is the operating point selected for

the linearization. The angles, the angular velocities and the translational velocities

are supposed equal to zero. This is

x4 = ẋ = 0, x7 = φ = 0, x10 = φB = 0, x12 = p = 0,

x5 = ẏ = 0, x8 = θ = 0, x11 = θB = 0, x13 = q = 0,

x6 = ż = 0, x9 = ψ = 0, x14 = r = 0,

Linearizing (3.12) around the operating point and considering the system input

(3.13) and the system output (3.14), the linear state-space model (3.15) can be found.

Ẋ = AX+BUi, (3.15)

Y = CX.
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where the matrices A, B and C are given by Equations (3.16), (3.17) and (3.18),

respectively.

A =
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
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 a2 0 a3 0 0

0 0 0 0 0 0 0 0 0 0 a4 0 a5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a6
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(3.16)

with a0 = Uh

m
, a1 = −a0, a2 = −991.0803, a3 = −347.8345, a4 = −834.5643,

a5 = −470.7944 and a6 = −4.180619. Uh is the total thrust for hovering and m is

the total mass of the quadrotor. The value of Uh is supposed to be equal to the total

weight of the quadrotor. The mass of the AscTec Hummingbird without battery is

353 g (see Table 2.1) and the mass of its battery is 152 g. As a result, the total mass

of the quadrotor, m, is 505 g and the value of the total thrust during hovering, Uh,
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is 4.95 N.
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(3.17)

with b0 =
1
m
, b1 = 28.8832, b2 = 34.572, and b3 = −0.25095.
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(3.18)

A quadrotor nonlinear dynamical model has been formulated in this Chapter

combining classical modeling techniques with system identification. Indeed, the pro-

cedure and results around the system identification of the black-box component of

the complete dynamical model is the main focus of the next Chapter.

35



Chapter 4

System Identification and

Parameter Estimation

System identification and parameter estimation involve building mathematical mod-

els of a dynamic system based on a set of measured stimulus and response data

samples [48]. Consequently, a mathematical representation that describes the black-

box part of the model structure (see Figure 3.4) is explained and obtained in this

chapter.

4.1 Thrust Force Relation

The thrust force acting on the quadrotor in near hover flight, U, can be found

empirically from measuring how it changes as the Thrust input, STh, changes. This

polynomial relation of U with respect to STh can be estimated by measured data.

This approach avoids the application of an aerodynamic model of the rotor. In

fact, this method is described and employed in [10, 28, 29]. Some details about its

procedure and results are described next.
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4.1.1 Experimental Test

The quadrotor is attached to a load heavy enough to be lifted. Thus, measurements

of changes in the total weight are recorded while the Thrust input is increased.

Since the maximum thrust depends on factors such as the type and condition of the

propeller and battery level, the experiments should be carried out with a full charged

battery and with a new set of propellers.

The steps of the experiment are as follows:

1. The quadrotor attached to the load mass is placed on a scale that is over an

elevated platform (0.75 m). This platform helps to minimize any ground effect

during the test.

2. The initial weight is registered before starting the motors.

3. After starting the quadrotor, thrust input values are sent using the wireless

serial link described in Section 2.2.2. Values from 0 to 4095 in steps of 250 are

transmitted. Meanwhile, the changes on the weight are recorded at each sent

value.

4. Once the experiment is concluded, the quadrotor is returned to idle mode.

The test was carried out ten times and the measured raw data are provided in

Appendix A. These data should be processed to determine the Thrust force, U.

Indeed, the force is evaluated by first calculating the weight loss in kg and then

inferring the generated force. Thus, for the weight loss, one has ∆m = mini−mmeas,

where mini is the initial value of weight and mmeas is the measured value for each

transmitted thrust input. Meanwhile the generated force is determined by applying

Newton’s second law U = ∆mg, where U is in N and g is the acceleration due to

gravity, 9.81 m/s2. Moreover, extra columns in the tables in Appendix A present
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Thrust Input Thrust Force, U
STh [N]

0 0.529
250 0.817
500 1.273
750 1.881
1000 2.756
1250 3.645
1500 4.677
1750 5.911
2000 7.434
2250 8.887
2500 10.531
2750 12.212
3000 13.724
3250 14.281
3500 14.433
3750 14.372
4000 14.374
4095 14.369

Table 4.1: Mean of the Thrust Force, U for each value of Thrust Input, STh.

the results after employing these two equations. Furthermore, from the thrust force

valued calculated for each experiment, the mean value of U for each thrust input is

obtained. These results are shown in Table 4.1.

4.1.2 Polynomial Relation

Based on the data from Table 4.1, it is possible to estimate a polynomial relationship

between U and STh. In order to find the polynomial coefficients, the General Polyno-

mial VI (Virtual Instrument) of LabVIEW [49] is used with the Least Square method

as fitting method. This VI returns the polynomial coefficients and the weighted mean

absolute error of the fitted model, generally known as residue. A third order poly-
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nomial is selected as first choice and its resulting equation is

U =− 0.6398× 10−9 (STh)
3 + 3.8218× 10−6 (STh)

2

+ 1.6588× 10−3 (STh) + 0.9291,

and Figure 4.1 presents the resulting plot. Also, the residue for this case is 0.0924.
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Figure 4.1: U and STh relation based in the third order polynomial approximation.

It is clear from Figure 4.1 that the third order polynomial estimation does not

fit correctly with the values at the beginning and at the end of the curve. Since it is

important to have a better approximation specially for the starting values (normally,

the quadrotor will not be commanded using the upper section of the thrust input
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range), a fourth order polynomial is employed whose resulting equation is

U =− 0.117× 10−12 (STh)
4 + 0.32809× 10−9 (STh)

3 (4.1)

+ 1.306× 10−6 (STh)
2 + 0.4929× 10−3 (STh) + 0.61485

Figure 4.2 shows the corresponding plot for the fourth order polynomial estima-

tion and its residue is 0.056966. Therefore, this last polynomial equation is the thrust

force relation using for modeling purposes, see Section 3.2.2.
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Figure 4.2: U and STh relation based in the fourth order polynomial approximation.
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4.2 Black-Box Model Identification

In this section, the models for roll, pitch and yaw input-output relation are identified

and estimated. As it was stated in Section 3.2, a black-box system identification

approach is employed in order to accomplish this goal. A black-box model from

experimental data proposes a mathematical representation that allows sufficient de-

scription of any observed input and output measurements [50]. Indeed, system iden-

tification is a process that includes acquiring, formatting, processing and of course

identifying mathemathical models based on raw data from real-world systems. In

addition, the resulting model should be validated by checking that it fits the observed

system behavior. If the results are unsatisfactory, the parameters should be changed

and iterated through the process [48].

Figure 4.3: Scheme of the system identification procedure.
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A diagram that summarizes the system identification procedure is presented in

Figure 4.3. This diagram has been adapted from [51]. Furthermore, the procedure

steps: acquiring and preprocessing data, estimating the model and model validation,

have been implemented employing the LabVIEW System identification Toolkit [48].

In this thesis, the main idea is to estimate models that describe the dynamics

from the command input values, sent through Zig-Bee, to the changes in the roll,

pitch and yaw angles. From initial experimental tests, it is clear that changes in the

roll and pitch input values are related to changes in the roll and pitch angle values,

respectively. However, the yaw input value is related to change in the yaw rate value.

Besides, it is assumed that the models are decoupled due to the internal controllers

as in [28, 30]. Consequently, the models that should be estimated are:

• From roll input value, Sφ, to roll angle respect to the body fixed coordinated

system, φB,

• From pitch input value, Sθ, to pitch angle respect to the body fixed coordinated

system, θB, and

• From yaw input value, Sψ, to yaw rate respect to the body fixed coordinated

system, ψ̇B = r.

4.2.1 Acquiring Data

The first step in identifying an unknown system is data acquisition. In fact, identi-

fying a system involves a number of choices with regard to the system output signals

to measure and the input signals to manipulate. Moreover, the choices are about

how to manipulate system inputs, the type of stimulus signal and signal ranges [48].

As it was explained, the inputs of the system are the command values sent through

the serial wireless link explained in Section 2.2.2. On the other hand, the outputs
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of the system are the roll angle, the pitch angle and the yaw rate, all these respect

to the body fixed coordinated system. Thus, it is required to get these values from

the onboard gyroscopes. As it is explained in [42], the data structure IMUCalcData

that includes calibrated sensor outputs and data fusion results can be polled using

the serial wireless interface. Indeed, this structure contains the roll angle, the pitch

angle and the yaw rate derived by integration of the gyro readings. Consequently,

this data structure is requested after each command input and stored together with

the corresponding input command value.

The stimulus signal needs to cover the operation range of the system inputs,

see Section 2.2.2, and deliver as much input power to the system as possible [48].

Therefore, a filtered Gaussian white noise is used as stimulus signal for each one of

the commands i.e., roll, pitch and yaw. An example of the stimulus signal and of

the acquired response for yaw are shown in Figure 4.4. Furthermore, plots of each

command input signal and its corresponding response are shown in Appendix B.

In order to prevent some possible crashes since the stimulus signal is random, the

quadrotor is attached to a metal support during the experiments as it is shown in

Figure 4.5. Attached to this support, the quadrotor can rotate freely but it cannot

gain height. However, the system identification experiments are carried out with the

quadrotor attached to the metal support, these leads to suitable results, as can be

seen in Chapter 7.

4.2.2 Estimating the Model

Similarly to what is assumed in [28, 30], the structure of the models is chosen to be a

linear transfer function and the dynamics can be described as a low-pass filter since

the quadrotor reacts with delay to fast changes of the input.

For the yaw dynamics, a first order transfer function is considered since it des-
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Figure 4.5: Quadrotor attached to the metal support.

cribes adequately the system. However, second order transfer functions are employed

for the roll and pitch dynamics. In fact, a first order approach for the roll and pitch

transfer functions does not accurately characterize accurate the system behavior.
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The SI Estimate Transfer Function Model VI

The System Identification Toolkit of LabVIEW is used. A component of this toolkit,

the SI Estimate Transfer Function Model VI estimates the parameters of a con-

tinuous time or discrete time transfer function model for an unknown system. For

continuous models, this VI internally performs three consecutive steps to estimate a

model:

1. Calculates a discrete model with the prediction error method.

2. Applies the Zero-Order-Hold method to convert the discrete model to a con-

tinuous model.

3. Uses the Gauss-Newton method to optimize the continuous model found in

step 2.

The prediction error method minimizes a cost function that consists of a weighted

sum of squares of the errors using an iterative nonlinear least-squares algorithm. For

the second step, the converted model might have a numerator of higher order than

the one selected, so the VI truncates unnecessarily high order coefficients. Moreover,

these coefficients are the initial estimates for minimization in step 3. While in the

third step, the initial estimates are tuned by the Gauss-Newton optimization method

to minimize the following cost function [52]:

VN =
1

N

N
∑

i=1

1

2
e2(k), (4.2)

then the estimate parameters, â, are given by

â = argmin
(a)

VN , (4.3)

where e(k) denotes the error between the measured output and the output calculated

with the estimated parameters, and N is the number of samples in the measurement

used for estimation.
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The three estimated transfer functions are shown in Equations (4.4) - (4.6). The

relation that each transfer function represents is also indicate in this equations.

HφB (s) =
φB

Sφ
=

28.8832

s2 + 347.8345 s + 991.0803
, (4.4)

HθB (s) =
θB

Sθ
=

34.5702

s2 + 470.7944 s + 834.5643
, (4.5)

Hr (s) =
r

Sψ
=

−0.25095

s + 4.180619
. (4.6)

For a more detailed explanation about the prediction error method and the Sys-

tem Identification LabVIEW Toolkit, the reader is referred to [48, 51, 52, 53].

4.2.3 Model Validation

Simulating the model response for a given output and comparing it with the ac-

tual response is the most useful and intuitively approach for validating an estimated

model. Looking at the simulation results, one can inspect visually what features

have been reproduced and what features have not been captured [53]. Generally, the

acquired data for estimation purposes are splited in estimation data and in validation

data. Furthermore, this technique was applied during the system identification pro-

cedure of the transfer functions (4.4) - (4.6). Nevertheless, the real test is checking if

the model will be capable of also describing new data sets obtained from the system.

To this end, a new experimental command signals formed by step and ramp inputs

were sent to the quadrotor while it was attached to the support. One more time,

measured data from the internal gyroscopes was acquired for comparison purposes.

The stimulus signal, the measured output and the comparison with the simulated

response for the roll angle are depicted in Figure 4.6. The plots for additional data

included the roll angle are provided in Appendix B.

As can be seen in Figure 4.6 and in Appendix B that the models resemble the
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Figure 4.6: Input Signal, Acquired Data and Model Validation for the roll angle φB.

dynamics of the measured signal. Nonetheless, there are some deviations comparing

the acquired response and the simulated response. These differences are due to

the effects of noise in the measurement from the gyroscopes and/or possible model

errors. The parameter estimation procedure picks out the best model within the

chosen model structure, but the crucial question is whether this best model is good

enough for control purposes [53]. As it will be explained in the next chapters, the

estimated models help to find satisfactory controllers. Thus, the models are possible

valid ones for the problem that motivates the identification exercise.
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Controller Design

As it was mentioned in Section 2.2, an onboard controller that maintains the de-

sired thrust and runs an attitude controller is already implemented by AscTec [38].

This controller consists of one independent PD loop for each axis. Moreover, system

identification was used to estimate this part of the model, see Figure 3.4. An outer

position controller should be designed and implemented for a complete flight con-

trol. The complete cascade control structure taking in count the model described in

Section 3.2 is illustrated in Figure 5.1.

Figure 5.1: Main cascade control diagram.
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5.1 Position and Heading Controller

The linear model of the system obtained in Section 3.3 is used in this section to

design the required position controller. Even though the main objective is to control

the X−Y −Z movement of a flying object, the heading (yaw angle) is maintained at

0 ◦ constantly. For that reason, the linear controller is formed by a position controller

and a heading controller.

Figure 5.2: Block diagram of the position and heading controller.

Figure 5.2 illustrates the configuration details of the controllers. Furthermore,

A lead-lag controller is introduced for each position axis and a PI controller for the

heading. In fact, Equation (5.1) corresponds to the lead-lag controller while Equation

(5.2) to the PI controller. For both equations, V (s) is the control signal and E(s) is

the error signal.

V (s) = K

(

1 + τld s

1 + τlg s

)

E(s), (5.1)
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where K is the gain, τld is the lead time and τlg is the lag time,

V (s) = Kp

(

1 +
1

Ti s

)

E(s), (5.2)

where Kp is the gain, Ti is the integral time.

Specifically, the X and Y position controllers are formed by the lead-lag com-

pensator 5.1 in cascade with a saturation block. The same configuration is used for

the yaw angle with a PI function (5.2) instead of lead-lag. The limits of the satu-

ration blocks are set up according to the explanation in Section 2.2.3. Meanwhile,

the value of STh for hovering (denoted as working point WP) should be added to the

output of the Z position controller since the hovering condition is considered as the

operating point of the system. Since the total weight of the quadrotor is 4.954 N

and from (3.5), the WP is equal to 1604. Moreover, a saturation block is used with

the maximum and minimum values indicated in Section 2.2.3.

5.1.1 Simulations

Several simulations using the LabVIEW Simulation Module [54] have been performed

in order to tune the controller parameters. The linear model, Section 3.3.1, and the

complete model, Equation (3.10), have been used during these simulations. Indeed,

the linear model is selected as initial point to determine the parameters of the con-

trollers and then these were tuned considering the complete model. For that reason,

only the results obtained with the complete model are presented.

Table 5.1 contains the parameters of the different controllers obtained by simul-

lation. Furthermore, Figure 5.3 shows the corresponding step responses for the X,

Y and Z positions. Other simulation results are also shown in Appendix C. The

response for the yaw angle is not included since this compensator just maintained

the angle at 0 ◦. These parameters and responses have been obtained by simulation.
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Parameter X Controller Y Controller Z Controller
K 0.303 0.532 4.929
τld [s] 1.342 1.023 0.625
τlg [s] 0.0166 0.0153 0.0943

Parameter Yaw Controller
Kp 35
Ti [s] 1.4993

Table 5.1: Parameters of the position and heading controllers - simulation results.

The simulated performance is satisfactory regarding the simple control synthesis ap-

proach, specially for the Z position.

5.2 Modified X and Y Controllers

From the results obtained in the simulations, see Figure 5.3 and Appendix C, and

from the experimental results in Chapter 7, the performance of the X and Y con-

trollers needs to be improved specially for trajectory tracking purposes. Besides,

an accurate trajectory tracking in the XY plane requires to determine the velocity

around these axes. However, the VICON sensor does not provide directly veloc-

ity measurements. Consequently, the structure of these two controllers should be

modified and the X and Y velocities should be estimated.

5.2.1 Velocity Estimation

In order to simplify the estimation of the velocity, the Al-Alaoui differentiator [55, 56]

is applied in the context of this work. In [55, 56], a novel first order digital differ-

entiator is presented. This is eminently suitable for real-time applications. The

resulting differentiator is obtained by taking the inverse on the transfer function of a

integrator derived interpolating the rectangular and the trapezoidal digital integra-
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(c) Z position reference and response.

Figure 5.3: Simulations of the step response for the position controllers.

tion techniques. In fact, the resulting transfer function of the digital differentiator is

given by

G(z) =
Vx(z)

X(z)
=

8 (z − 1)

7Ts
(

z + 1
7

) (5.3)
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Parameter
X Controller Y Controller

Position Velocity Position Velocity
K 0.591 0.258 1.173 0.378
τld [s] 1.002 0 0.656 0
τlg [s] 0.0087 0.0057 0.0107 0.0083

Table 5.2: Parameters of modified controllers - simulation results.

where X(z) is the input, Vx(z) is the output, and Ts is the sampling time. From

Equation (5.3), the following difference equation is obtained

vx[k] = −
1

7
vx[k − 1] +

8

7Ts
(x[k]− x[k − 1]) , (5.4)

where x and vx denote the position and velocity at the corresponding time instant,

respectively. As a result, (5.4) is used to estimate the velocity in X and Y axes of

the quadrotor at time k.

5.2.2 Modifications

Some modifications were made to the control scheme illustrated in Figure 5.2 to

introduce the velocity estimator and to use this value as part of the controller. These

additions can be seen in Figure 5.4. The velocity in X and Y are calculated using the

Al-Alaoui differentiator in (5.4). Note that, the X and Y controllers are split in two

parts: one lead-lag compensator for the position and one lead-lag for the velocity

whose outputs are added and limited by a saturation block to obtain the control

signal. The configuration for the Z and Yaw Controllers is kept unchanged.

5.2.3 Simulations

Extensive simulations have been performed using the modified controller in cascade

with the complete dynamical model in (3.10) in order to tune the parameters. Table
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Figure 5.4: Block diagram showing the controller modifications.

5.2 presents the parameter values tuned by simulation. In addition, Figure 5.5 shows

the step response using the modifications where the plots for the velocity response

are also included. Appendix C contains a compilation of the simulation responses to

different types of input.

The control strategy of designing a position controller for the quadrotor has been

developed in this Chapter. Simulation results of the proposed controllers and their

modifications for suitable trajectory tracking have been also provided. The control

architecture where these controllers are going to be implemented and tested will be

presented in the next chapter.
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Figure 5.5: Simulations of the step response for the X and Y modified controllers.
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Control System Implementation

The main components of the control system, the VICON MX and the NI Com-

pactRIO, were introduced in Chapter 2 together with a description of the aerial

platform used in this thesis, the AscTec Hummingbird quadrotor. All these devices

are part of the Marhes Laboratory at University of New Mexico where the control

system has been implemented and tested.

6.1 Hardware Architecture

The hardware architecture is based in the VICON MX System architecture described

in Section 2.3 and shown in Figure 2.8. This system tracks the orientation and

position of the quadrotor within the capture room. Therefore, a real-time engine

should be added to this scheme to acquire the data from VICON, implement the

position controllers and transmit the control signals to the aerial vehicle creating

a real-time control loop. For this reason, the NI cRIO system, Section 2.4, and

a base station are included as part of the hardware architecture. Moreover, the

wireless serial communication between the quadrotor and the NI cRIO is established
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via XBee embedded RF modules providing cost-effective wireless connectivity in a

ZigBee network. The complete hardware architecture is shown in Figure 6.1.

Figure 6.1: Hardware architecture.

6.2 Software Architecture

Based on the hardware configuration, the controllers designed and simulated in Chap-

ter 5 can be implemented. The entire control application is created in LabVIEW

building as Virtual Instruments (front panel plus block diagram), VIs, to acquire

data from VICON, to calculate the control commands and to send these commands

to the quadrotor via an XBee module. The basic software architecture shown in

Figure 6.2 includes two VIs that are interacting within a LabVIEW Project.

Through this architecture, delays similar to the ones presented in [14] are ob-

served. The pose of the flying robot is acquired and stored by the VICON Interface
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VI that runs on the Base Station at 225 Hz, see Section 2.3. The pose stored data is

read by the Quadrotor Interface VI running in the NI cRIO. Also, this VI computes

the control commands and sends them to the quadrotor at a fixed rate of 100 Hz.

Even though the scan engine period of the cRIO is configurable and set up at 1 ms

(1 kHz), this fixed rate is due to the limitation in the serial interface data rate with

the XBee modules (57.6 kbps). Thus, the command data is sent with a frequency

over the critical limit of 10 Hz, see Section 2.2.2.

Under this system architecture, it is possible to manage more than one quadrotor

simultaneously adding extra NI cRIOs to the network. For multiple vehicles, the

required modifications are outlined in Section 6.3.3 while an experimental application

is described in Section 7.3.4.

Figure 6.2: Software architecture - basic structure.
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Figure 6.3: Front panel of the VICON interface VI.

6.2.1 VICON Interface VI

LabVIEW offers the required tools to create a friendly GUI with adequate indicators

to display real-time data during flight tests. Also, LabVIEW has the necessary user

controls to allow that a single operator can execute a desired application. In fact,

this and the next section describe the functionality of the two VIs that are part of

the software architecture.

A screen shot of the front panel of this VI is presented in Figure 6.3 where

an artificial horizon, a XY graph and a height indicator are used to display the

orientation, XY position and Z position of the quadrotor, respectively.

This VI acquires the pose data from the VICON System, reads the data from the

user controllers located at the front panel and stores all this information in global

variables. To set up the VICON Data SDK in LabVIEW, the steps described in
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[57] should be followed. The DS-SDK dll file, (ViconDataStreamSDK DotNET.dll)

should be included in the LabVIEW Project. Consequently, the function calls within

the SDK allow to connect to and request data from the VICON DataStream. The

manual for developers [45] includes the list and parameters of all the SDK functions.

The VICON DataStream block in Figure 6.2 represents the different functions to

establish connection with the Host VICON Station, select the desired subject created

in the VICON Tracker and acquire its position and orientation data. Subsequently,

the position and heading angle (yaw angle) are saved in global variables together with

the desired values (X desired, Y desired, Z desired, Yaw desired, Working Point and

Land Height). Once the VI is running, it constantly acquires and stores pose data

and desired values.

6.2.2 Quadrotor Interface VI

Figure 6.4 is a screen shot of the front panel of this VI. All the indicators of the

global variable readings, the controllers for the lead-lag and PI compensators, the

configuration controllers and frame-to-send indicator of the communication with the

quadrotor, and helpful charts to tune the controllers are included in the front panel.

This VI accesses the global variables, implements the controllers and sends the

calculated control commands to the quadrotor. The Lead-Lag controllers and the

PI controller designed in Chapter 5 are implemented using the PID Lead-Lag VI

and the PID VI, respectively. These VIs are available in the LabVIEW PID Control

Toolkit [58]. The inputs to these controllers are the values read from the global

variables and their outputs are used to create the frame depicted in Figure 2.7 that

is transmitted to the quadrotor according to the protocol explained in Section 2.2.2.

Indeed, this protocol has been implemented in a SubVI to facilitate the control

commands transmission. For future plotting purposes, the reference, response, error

and control values for X, Y and Z positions and Yaw angle are stored in a text file
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in an external USB drive that can be connected to the NIcRIO.

Figure 6.4: Front panel of the quadrotor interface VI.

6.3 System Adaptations

A variety of modifications, specially around the software architecture, have been

made to accomplish a variety of tasks that will be explained in the next Chapter.

These modifications do not affect the whole system and in most of the different cases,

only the VICON Interface VI needs some minor modifications.
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6.3.1 Trajectory Tracking

As in Section 5.2, the performance of the X and Y controllers needs to be improved

specially for trajectory tracking purposes. Furthermore, the modified configuration is

shown in Figure 5.4. Hence, the numerical differentiation given by (5.4) to compute

the velocities is added to the VICON Interface VI and the controllers in the Quadro-

tor Interface VI are updated with the ones in Section 5.2. Moreover, the desired

trajectory (position & velocity) is read from a text file that contains the data gen-

erated previously. Figure 6.5 presents the modifications to the software architecture

to implement trajectory tracking.

Figure 6.5: Software architecture - trajectory tracking.

6.3.2 Adding a Mobile Target

Since the VICON System has the capability of tracking more than one object within

the capture room at the same time, a second moving object could be used as XY Z

reference mobile point. In order to do this, the changes in the software architecture
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shown in Figure 6.6 are introduced. Notice that now the reference values for the

position are taken from the mobile object defined as Intruder. Additionally, an

offset value in each direction could be added to avoid possible collisions with the

mobile target.

Figure 6.6: Software architecture - adding a mobile target.

6.3.3 Managing Multiple Quadrotors

One of the purposes of this thesis is to develop an architecture capable of easily adding

similar UAVs to be controlled at the same time. As it was indicated before, the

system can manage more than one quadrotor simultaneously adding extra NI cRIOs

to the network. Therefore, the required modifications to achieve this goal affect both

the hardware and software parts of the architecture. Pertaining to the hardware,

see Figure 6.7, a NI cRIO per quadrotor should be connected to the network. For

the software part, the VICON Interface VI is updated to define the necessary global

variables according to the number of quadrotors. In addition, the Quadrotor Interface
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VI should be should be downloaded to each NI cRIOS updating the corresponding

variables. A scheme of the modifications of the software is illustrated in Figure 6.8.

Figure 6.7: Hardware architecture - multiple UAVs.

In this Chapter, the implementation of the real-time control system architecture

has been described including the possible variations that it can have. Different

experiments and applications have been performed using this system and they will

be presented in the next Chapter.
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Figure 6.8: Software architecture - multiple UAVs.
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Experimental Results and

Applications

To evaluate the performance of the real-time control architecture, extensive flight

tests have been performed and their results are described here. Also, the four appli-

cations presented in this Chapter demonstrate the architecture flexibility to adapt to

different practical tasks. These applications taken together show that the objective

of this work, outlined in Chapter 1, has been achieved successfully.

To perform a test or application, the next procedure is followed:

1. Turn the motors on;

2. take off vertically and reach a desired height at the current XY position;

3. hover at the current XY Z position during a fixed time;

4. run the experiment or application;

5. land at the final location determined by the experiment or application;

6. turn off the motors.
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Parameter X Controller Y Controller Z Controller
K 1.31 1.32 1.05
τld [s] 0.852 0.87 0.72
τlg [s] 0.048 0.054 0.06

Parameter Yaw Controller
Kp 50
Ti [s] 1.5

Table 7.1: Parameters of the position and heading controllers - experimental tuning.

Parameter
X Controller Y Controller

Position Velocity Position Velocity
K 1.115 0.545 1.113 0.535
τld [s] 0.72 0 0.75 0
τlg [s] 0.012 0.012 0.012 0.012

Table 7.2: Parameters of the modified controllers - experimental tuning.

Before proceeding with the flight tests and applications, the controller parameters

found by simulation, Table 5.1 and Table 5.2 should be tested and tuned.

7.1 Tuning the Controllers

The controller gains can be tuned empirically by trial and error, but this is a time-

consuming process. However, this process was improved using as a reference the

controllers found by simulation and described in Sections 5.1 and 5.2.

Thanks to the control field in the serial communication frame, see Section 2.2.2,

the controllers can be tested and tuned individually with a pilot controlling the

remaining three input signals. Once a stable hovering is achieved, a fine tuning is

done by giving step inputs individually to each one of the three axes. Table 7.1 and

Table 7.2 show the control parameters for the different controllers.
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Comparing the values of the controller parameters in Table 7.1 and Table 7.2

with the ones obtained by simulation in Chapter 5, the differences are small. In fact,

tuning by simulation before facilitates the hand tuning over the real platform.

7.2 Experimental Tests

Once the controllers are tuned, experimental flights have tested the performance

of the whole architecture. These tests include autonomous take off and landing,

hovering, aerial target tracking, and trajectory tracking.

7.2.1 Autonomous Take off and Landing

During the experiments for tuning, an experienced pilot starts the motors and takes

off the quadrotor reaching the desired height where the controllers are activated.

Also, the pilot lands the quadrotor once the experiment is over and the controllers

are deactivated. Therefore, there is the need of implementing an autonomous take

off and landing. To accomplish these goals, only the Z controller is modified and

implemented as a state machine that employs three different states: take off, normal

controller, and landing.

The take off is started once the START button in the GUI in Figure 6.3 is pressed.

First, the motors are turned on sending the respective command explained in [42].

Second, an incremental value of STh in steps of 5 units is sent to the quadrotor while

the X, Y and Yaw controller are working. This value is incremented until it reaches

the WP value. This value was calculated in Section 5.1 using (3.5) and it is equal

to 1604. However, experimentally this value has been modified to 1650. In fact, this

parameter should be checked every time that the quadrotor’s propellers are changed

or a payload is attached to the quadrotor. Once the WP is reached, it is maintained
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until the Z position error respect to the desired height is less than 10 mm when the

Normal Controller is activated.
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Figure 7.1: Experimental results for the take off maneuver.

The Normal Controller, the Z position controller explained in Section 5.1, will

continue working to the end of the experiment. Once the experiment or applica-

tion is over, the LAND button should be pressed and the quadrotor will descend

autonomously until its altitude reaches a desired land height. Thus, the value of

reference of the Z position is decreased by 3 units every cycle. When the Z position
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error with the desired land height is less than 10 mm, the STh is set up to 0 and the

motors are turned off after 1 second.
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Figure 7.2: Experimental results for the landing maneuver.

Figure 7.1 and Figure 7.2 illustrate the results for the take off and landing, res-

pectively. In the experiment, the quadrotor is located at the XY position (0, 0) and

it had to reach a desired height of 1 m. The take off maneuver is achieved in about

3 s once it is initiated and the land maneuver in about 10 s. The motion in the XY
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plane is accurately controlled during the take off and landing maneuvers. During the

take off, the X position error is less than 0.16 m and the Y position error less than

0.06 m. Meanwhile for the landing, the X position error is less than 0.06 m and the

Y position error less than 0.08 m.
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Figure 7.3: Experimental results during hovering.
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7.2.2 Hovering Performance

The reference during the test is set to (0, 0, 1) m. The results for 20 s of a total of

around 450 s, that corresponds to the flight time with a fully charged battery, are

presented in Figure 7.3. From these results, the quadrotor achieved a stable and

accurate hovering and was able to stay within of a circle of radius of 0.08 m in the

XY plane. At the same time, the error in the Z position is less than 0.025 m.

7.2.3 Aerial Tracking of a Mobile Target

Instead of giving a sequence of way-points to follow, a mobile ground robot is used

as ground reference as shown in Figure 7.4(a). Using the modifications depicted in

Figure 6.6, the position of a ground vehicle is acquired and used as reference input

for X and Y . Furthermore, two quadrotors working under the schemes of Figures

6.7 and 6.8 have been used to track a mobile ground target as illustrated in Figure

7.4(b).

(a) By one quadrotor. (b) By two quadrotors.

Figure 7.4: Aerial tracking of a mobile ground robot.
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(d) 2D plot.

Figure 7.5: Results from tracking a ground robot that is describing a circular trajec-
tory.

For moving the ground vehicle, two options have been employed: (i) moving

according to a defined trajectory, and (ii) being driven by a human operator using

a joystick. Figure 7.5 includes the results when the ground target follows a circular

path with a constant speed of 0.4 m/s. As it can be seen, the position error is less

than 0.16 m for the X and Y axes.

Figure 7.6 shows the results when the target is driven manually. In this scenario,
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the target moves freely around the capture room having the ability of going faster or

slower at any moment. In this case, the position error is less than 0.5 m for X and

0.6 m for Y . The increment in the error is due to the ability of the ground vehicle

of fast changes in its speed and direction. As it can be seen in the video for this

test, see [59], the ground vehicle even can go backwards. Similar results are obtained

when two quadrotors track the mobile target.
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(d) 3D plot.

Figure 7.6: Results from tracking a ground robot that is describing an arbitrary
trajectory.
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(a) X position and velocity.
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(b) Y position and velocity.
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(c) Position and velocity error.
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(d) 2D plot.

Figure 7.7: Results from tracking a square path.

7.2.4 Trajectory Tracking

Based on the modifications presented in Figure 6.5, a trajectory tracking experiment

is tested. In this experiment, cubic trajectories have been used to generate a path

that is a square of 2 m per side. The whole trajectory lasts 12 s (3 s per side). The

results are shown in Figure 7.7 where also the velocity data is included. The results

demonstrate an acceptable tracking error since the position error is under 0.3 m and
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the velocity error is under 0.5 m/s. An overshoot of less than 20% occurs on the

corners of the square due to the sudden change in the desired direction of travel.

7.3 Practical Applications

The architecture presented in this this work has been used to validate experimentally

the results of different research topics. In fact, four applications are briefly described

this section. In the first three cases, the experimental verification has been included

in their respective publications. In addition, the theory and autonomous imple-

mentation of the last application is under development. Videos about the different

applications are available at [59].

7.3.1 Mobile Wireless Heterogeneous System

The term heterogeneous implies the synergy of multiple robotic platforms charac-

terized by different dynamics and specialized sensing capabilities. In this type of

robotic systems, the communication in the network is fundamentally important due

to the uncertainties of the wireless channels. Search and rescue missions, disaster

relief operations, and surveillance are just a few common examples of scenarios where

wireless communications need to be reliable over the robotic network.

In [60], a couple of problems related to communication, centered around two

types of platforms: unmanned ground vehicles (UGVs), and unmanned aerial vehicles

(UAVs) are analyzed. Indeed, strategies to enhance the connectivity of a network

made of robotic agents, fixed base stations and human interactions are pursued.

Furthermore, this article describes an architecture presented in Figure 7.8(a) for

controlling a heterogeneous wireless robotic network consisting of aerial and ground

vehicles. In addition, the implementation of aerial target tracking by using a Pioneer
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(a) Block diagram with the test bed and the
communication links for experimental purposes.

(b) A quadrotor tracking a ground vehicle in a
circular trajectory.

Figure 7.8: A cooperative heterogeneous mobile wireless mechatronic system.
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robot as a mobile ground reference is included to validate the embedded hardware

controller.

Figure 7.8(b) shows overlapped multiple snapshots of the experiment in which a

Pioneer UGV move in a circular pattern and a quadrotor hovers on top of the vehicle

following its trajectory. The subfigure within Figure 7.8(b) displays the trajectories

of the UGV and the quadrotor. The Pioneer robot was moved with a speed of 0.4

m/s and the experiment shows that the aerial vehicle follows the reference trajectory

with a small error (< 0.15 m). For more details please refer to [60].

7.3.2 Surveilling using Mobile Sensor Agents

The paradigm of the moving target surveillance using a network of mobile sensor

agents (MSAs) is found in a variety of applications, including the monitoring of

urban environments, tracking anomalies in merchandise, manufacturing plants and

tracking of endangered species in a wild area. Modern surveillance systems often

consist of MSAs deployed to detect and track moving targets in a complex and

unstructured environment.

A novel potential function method is developed in [61] for planning the MSA

path based on the feedback provided by the target tracking algorithm. A physical

experiment demonstrating preliminary results for the simplest scenario and testing

various aspects of the theory is conducted at the Marhes Lab. A quadrotor is

employed in the experiment as the sensing agent, and a robotic hybrid electric vehicle

is used as the target, see Figure 7.9(a). The target vehicle is driven by a human

operator. The VICON data is used both in the low level controller for the quadrotor

for positioning data for feedback control, and in the artificial simulated sensor for

the sensing agent that is used to measure target states. The high-level sensing

agent control for conducting the target tracking experiment is written in Matlab
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and embedded in LabVIEW. The sensing agents tracking behavior of the inferred

target position, once the target begins moving, is easily seen in Figure 7.9(b). This

preliminary experiments successfully demonstrate the proposed algorithm. For a

more detailed explanation, please refer to [61].

(a) Target and sensor agents.
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Figure 7.9: Mobile agents and experimental results for surveilling using MSA.
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7.3.3 Agile Load Transportation

Aerial transportation and manipulation have a great practical significance. However,

flying with a suspended load is a very challenging task since the load significantly

changes the flight characteristics of the aerial vehicle. Hence, it is essential that

the flight controllers can reduce the effects of the changes in the system dynamics.

For that reason, an optimal trajectory generation based on dynamic programing

for swing-free maneuvers is introduced in [62] and an extension of its experimental

verification is presented in [63].

The experiment emulates a swing-free trajectory tracking in a urban environ-

ment. For that reason, a maze of obstacles shown in Figure 7.10(a) is built. A

quadrotor is flying above the obstacles while carrying the suspended load through

narrow corridors. The mass of the suspended load used is 47 g and the length of

the suspension link is 0.62 m. First, the quadrotor tracks an initial 3D trajectory

with cubic profile with respect to time. Then, using a dynamic programming based

algorithm, a 3D trajectory with an optimal swing-free profile with respect to time

is tracked by the aerial vehicle. The quadrotor position is shown in Figure 7.10(b).

The spectral analysis of the data shows less energy for the load displacement while

tracking the optimal trajectory. Please refer to [62, 63] for details of this approach

and its experimental results.

7.3.4 Cooperative Lifting of a Suspended Payload

In this section, the capability of the developed GUI to work with two quadrotors at

the same time is demonstrated. Two aerial vehicles lift a suspend load whose weight

exceeds the individual payload that each quadrotor can carry. In other words, one

quadrotor cannot lift alone the load used in this experiment. The over-weighted

payload is a LEGO robot that weights 514 g (the quadrotor’s payload is 350 g, see
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(a) Experimental set-up.
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(b) Quadrotor position.

Figure 7.10: Set-up and experimental results for swing-free trajectory tracking.

Section 2.2). Figure 7.11(a) shows a picture of the two quadrotors lifting the LEGO

robot and a video can be found in [59].

In this experiment, the maneuver is executed manually while the developed con-

trollers are running. Therefore, following the steps explained at the beginning of this

chapter, a single operator can command both quadrotors in way that they can lift

the suspended load. Once, both quadrotors are in hovering at a height of 0.7 m using

a WP of 1700, the operator follows the steps given in Figure 7.11(b). The value of
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2230 for the WP is obtained considering that each quadrotor will lift half of the total

mass and then applying Equation (3.5). Using these steps, a single operator needs

around 2 min to execute the whole maneuver and finally lift the load. The automa-

tion of the maneuver and the theory around this experiment is under development.

(a) Two quadrotors lifting a LEGO
robot.

(b) Block diagram of the maneuver.

Figure 7.11: Picture and block diagram of the application about lifting an over-
weighted payload.

The experiments and applications together with their results have been described

and presented in this Chapter. In fact, the real-time control architecture has been

part of the experimental section of three journal papers [60, 61, 63] and one confer-

ence paper [62]. The conclusions, contributions and improvements of this work are

outlined in the next Chapter.
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Conclusions, Contributions and

Improvements

8.1 Conclusions

In this thesis, a real-time control architecture for an AscTec Humingbird quadrotor

was developed. Moreover, multiple quadrotors can be managed with sligh changes

in the proposed architecture. In addition, the control system has demonstrated

its flexibility of being easily adaptable to implement different applications. There-

fore, this work has provided to the Marhes Lab with a control system to perform

experimental tests related with its research in cooperative control in multi-vehicle

coordination.

The quadrotor model derived in this work involved a combination between a

point-mass submodel derived from rigid-body dynamics and a black-box submodel.

The black-box model was obtained by applying system identification and validated

employing experimental data. This model configuration has been adopted due to the

lack of information about the structure of the internal attitude and thrust controller
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designed by AscTec.

Using the identified model, a linear position controller was determined by simu-

lation. Moreover, the basic configuration of the linear controller is formed by three

lead-lag position compensators, one for each axis, and one PI heading stabilizer. For

trajectory tracking purposes, the linear velocity along the X and Y axes is calculated

by numerical differentiation and two velocity lead-lag controllers, one for X and one

for Y , were added to the basic linear controller configuration.

The linear position controller and its modifications were implemented within

the real-time engine that is the hearth of the control architecture. A variety of

experimental tests showed that the control system is able to achieve autonomous take

off and landing, stable hovering, trajectory tracking and target surveillance. Also,

two applications employing simultaneously two quadrotors were performed exhibiting

how easily a single operator can execute and supervise the desired maneuver.

8.2 Contributions

The contributions of this thesis are summarized as follows:

Quadrotor Model This thesis presented a hybrid approach on modeling a quadro-

tor combining a first-principle technique and a system identification approach.

Moreover, satisfactory results were obtained utilizing the derived model for

control purposes.

Lead-Lag Position Controller Most of the linear position controllers for UAVs

described in the literature consider PID compensators. However, lead-lag con-

trollers were used in this project for position and velocity compensation with

very good results.
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Velocity Estimation For adequate trajectory tracking, the value of the linear ve-

locity needs to be estimated from position data. One available option to ac-

complish this task is numerical differentiation. Therefore, the Al-Alaoui differ-

entiator was selected and implemented for velocity estimation.

Single Software Platform The whole analysis and implementation were achieved

employing a single platform, NI LabVIEW. The NI LabVIEW toolkits for

controller design, system identification, simulation and implementation have

facilitated the realization of a hierarchical real-time architecture for UAV co-

ordination.

8.3 Limitations and Improvements

The range of the VICON System limits the movement of the UAV’s and the capture

room is an additional space limitation. Unfortunately, the available space in this

room is not enough to safely develop experiments using simultaneously the three

Hummingbird quadrotors available at the Marhes Lab.

Another limitation is presented by the internal controller developed by AscTec.

This controller behaves as a low pass filter introducing an additional lag to the

system and reducing its bandwidth. In applications that require fast trajectories,

this lag in the response would deteriorate the performance of the closed-loop system.

According to the User’s Manual [42], it is possible to disable the internal controller, to

read sensor values from the on board instrumentation and to send directly commands

to the motor drivers. This means that an inner loop attitude controller can be also

designed.

In addition, different linear controllers (e.g., a LQR) or nonlinear controllers

based on feedback linearization could be designed and implemented using the current
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architecture. Besides, the execution in the applications involving two quadrotors were

made manually so far. Consequently, autonomous cooperative applications or vehicle

coordination algorithms could be investigated and tested under the real-time control

architecture presented in this work.
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Appendix A

Thrust Measurement Data

The measurement data tables and a summary plot are included next.
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Figure A.1: Thrust measurement data plot for the ten experimental tests.
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Experiment 1 Experiment 2
Initial Value [kg]: 2.081 2.082

Thrust Input m ∆m U m ∆m U
STh [kg] [kg] [N] [kg] [kg] [N]
0 2.027 0.054 0.529 2.028 0.054 0.529
250 1.997 0.084 0.824 1.994 0.088 0.863
500 1.948 0.133 1.305 1.950 0.132 1.295
750 1.887 0.194 1.903 1.894 0.188 1.844
1000 1.797 0.284 2.786 1.801 0.281 2.757
1250 1.706 0.375 3.679 1.708 0.374 3.669
1500 1.607 0.474 4.650 1.602 0.480 4.709
1750 1.477 0.604 5.925 1.466 0.616 6.043
2000 1.327 0.754 7.397 1.325 0.757 7.426
2250 1.178 0.903 8.858 1.162 0.920 9.025
2500 1.027 1.054 10.340 1.002 1.080 10.595
2750 0.835 1.246 12.223 0.813 1.269 12.449
3000 0.664 1.417 13.901 0.689 1.393 13.665
3250 0.611 1.470 14.421 0.618 1.464 14.362
3500 0.607 1.474 14.460 0.612 1.470 14.421
3750 0.612 1.469 14.411 0.614 1.468 14.401
4000 0.615 1.466 14.381 0.611 1.471 14.431
4095 0.615 1.466 14.381 0.611 1.471 14.431

Table A.1: Measurement data experiments 1 and 2.
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Experiment 3 Experiment 4
Initial Value [kg]: 2.082 2.082

Thrust Input m ∆m U m ∆m U
STh [kg] [kg] [N] [kg] [kg] [N]
0 2.030 0.052 0.510 2.027 0.055 0.539
250 2.002 0.080 0.785 2.005 0.077 0.755
500 1.952 0.130 1.275 1.954 0.128 1.256
750 1.885 0.197 1.933 1.889 0.193 1.893
1000 1.798 0.284 2.786 1.798 0.284 2.786
1250 1.707 0.375 3.679 1.711 0.371 3.640
1500 1.602 0.480 4.709 1.604 0.478 4.689
1750 1.471 0.611 5.994 1.475 0.607 5.955
2000 1.327 0.755 7.407 1.319 0.763 7.485
2250 1.184 0.898 8.809 1.173 0.909 8.917
2500 1.005 1.077 10.565 1.007 1.075 10.546
2750 0.830 1.252 12.282 0.843 1.237 12.135
3000 0.748 1.334 13.087 0.645 1.437 14.097
3250 0.689 1.393 13.665 0.594 1.488 14.597
3500 0.654 1.428 14.009 0.604 1.478 14.499
3750 0.633 1.449 14.215 0.614 1.468 14.401
4000 0.637 1.445 14.175 0.611 1.471 14.431
4095 0.637 1.445 14.175 0.614 1.468 14.401

Table A.2: Measurement data experiments 3 and 4.
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Experiment 5 Experiment 6
Initial Value [kg]: 2.080 2.081

Thrust Input m ∆m U m ∆m U
STh [kg] [kg] [N] [kg] [kg] [N]
0 2.026 0.054 0.529 2.027 0.054 0.529
250 2.002 0.078 0.765 1.996 0.085 0.834
500 1.954 0.126 1.236 1.953 0.128 1.256
750 1.888 0.192 1.884 1.887 0.194 1.903
1000 1.798 0.282 2.766 1.801 0.280 2.747
1250 1.716 0.364 3.571 1.707 0.374 3.669
1500 1.594 0.486 4.768 1.604 0.477 4.679
1750 1.476 0.604 5.925 1.485 0.596 5.847
2000 1.332 0.748 7.338 1.314 0.767 7.524
2250 1.166 0.914 8.966 1.178 0.903 8.858
2500 0.996 1.084 10.634 1.007 1.074 10.536
2750 0.827 1.253 12.292 0.846 1.235 12.115
3000 0.642 1.438 14.107 0.642 1.439 14.117
3250 0.594 1.486 14.578 0.581 1.500 14.715
3500 0.606 1.474 14.460 0.586 1.495 14.666
3750 0.607 1.473 14.450 0.611 1.470 14.421
4000 0.611 1.469 14.411 0.614 1.467 14.391
4095 0.611 1.469 14.411 0.614 1.467 14.391

Table A.3: Measurement data experiments 5 and 6.
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Experiment 7 Experiment 8
Initial Value [kg]: 2.081 2.080

Thrust Input m ∆m U m ∆m U
STh [kg] [kg] [N] [kg] [kg] [N]
0 2.027 0.053 0.519 2.027 0.054 0.529
250 1.995 0.085 0.834 1.996 0.085 0.834
500 1.949 0.131 1.285 1.953 0.128 1.256
750 1.887 0.193 1.893 1.887 0.194 1.903
1000 1.805 0.275 2.698 1.801 0.280 2.747
1250 1.706 0.374 3.669 1.707 0.374 3.669
1500 1.605 0.475 4.660 1.604 0.477 4.679
1750 1.493 0.588 5.768 1.485 0.596 5.847
2000 1.322 0.758 7.436 1.314 0.767 7.524
2250 1.181 0.899 8.819 1.178 0.903 8.858
2500 0.994 1.086 10.654 1.007 1.074 10.536
2750 0.846 1.234 12.106 0.846 1.235 12.115
3000 0.692 1.388 13.616 0.642 1.439 14.117
3250 0.676 1.404 13.773 0.581 1.500 14.715
3500 0.613 1.467 14.391 0.586 1.495 14.666
3750 0.616 1.464 14.362 0.611 1.470 14.421
4000 0.609 1.471 14.431 0.614 1.467 14.391
4095 0.611 1.469 14.411 0.614 1.467 14.391

Table A.4: Measurement data experiments 7 and 8.
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Experiment 9 Experiment 10
Initial Value [kg]: 2.081 2.080

Thrust Input m ∆m U m ∆m U
STh [kg] [kg] [N] [kg] [kg] [N]
0 2.026 0.055 0.539 2.025 0.055 0.539
250 1.996 0.085 0.834 1.995 0.085 0.834
500 1.952 0.129 1.265 1.956 0.124 1.216
750 1.891 0.190 1.864 1.887 0.193 1.893
1000 1.805 0.276 2.708 1.802 0.278 2.727
1250 1.712 0.369 3.620 1.715 0.365 3.581
1500 1.611 0.470 4.611 1.605 0.475 4.660
1750 1.480 0.601 5.896 1.491 0.589 5.778
2000 1.315 0.766 7.514 1.327 0.753 7.387
2250 1.175 0.906 8.888 1.187 0.893 8.760
2500 1.012 1.069 10.487 1.014 1.066 10.457
2750 0.854 1.227 12.037 0.827 1.235 12.292
3000 0.676 1.405 13.783 0.735 1.345 13.194
3250 0.591 1.490 14.617 0.664 1.416 13.891
3500 0.586 1.490 14.666 0.621 1.459 14.313
3750 0.604 1.477 14.489 0.627 1.453 14.254
4000 0.611 1.470 14.421 0.621 1.459 14.313
4095 0.611 1.470 14.421 0.621 1.459 14.313

Table A.5: Measurement data experiments 9 and 10.
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Data for System Identification

B.1 Stimulus Signals and Acquired Data

The corresponding plots for each command: roll, pitch and yaw rate are given next.
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Figure B.1: Stimulus signal and acquired data for the roll angle φB.
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Figure B.2: Stimulus signal and acquired data for the pitch angle θB.
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Figure B.3: Stimulus signal and acquired data for the yaw rate ψ̇B.

B.2 Model Validation Data

The plots related with the model validation for each case: roll, pitch and yaw rate

are presented here.

94



Appendix B. Data for System Identification

Se
ria

l C
om

m
an

d 
Va

lue

600

-600

-400

-200

0

200

400

Time [s]
250100 125 150 175 200 225

Stimulus Signal-Roll Command Input

(a) Input signal
An

gl
e 

[°]

25

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Time [s]
250100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Measured Roll Angle

(b) Acquired data

An
gle

 [°
]

25

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Time [s]
250100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Measured
Simulated

Model Verification-Roll

(c) Model verification

Figure B.4: Input signal, acquired data and model validation for the roll angle φB.
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Figure B.5: Input signal, acquired data and model validation for the pitch angle θB.
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Simulation Results

The complete dynamical system (3.10) in cascade with the controllers described in

Chapter 5 was simulated using the LabVIEW Simulation Module [54]. The results

are presented in this appendix.
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Figure C.1: Simulation responses for different inputs-X controller.
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Figure C.2: Simulation responses for different inputs-Y controller.
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Figure C.3: Simulation responses for different inputs-Z controller.
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Appendix C. Simulation Results
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Figure C.4: Simulation responses for step and square input-Modified X controller.
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Figure C.5: Simulation responses for sawtooth and sinusoidal input-Modified X

controller.
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Figure C.6: Simulation responses for step and square input-Modified Y controller.
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Figure C.7: Simulation responses for sawtooth and sinusoidal input-Modified Y con-
troller.
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