
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-14-2014

Randomly Spaced Smart Antennas
Maialen Ciaurriz Velasco

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Ciaurriz Velasco, Maialen. "Randomly Spaced Smart Antennas." (2014). https://digitalrepository.unm.edu/ece_etds/54

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/54?utm_source=digitalrepository.unm.edu%2Fece_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

� � � � �
� �

������ � � � � �
�������&DQGLGDWH��
������
������ � � � � �
�����'HSDUWPHQW�
������
�
�����7KLV�WKHVLV�LV�DSSURYHG��DQG�LW�LV�DFFHSWDEOH�LQ�TXDOLW\�DQG�IRUP�IRU�SXEOLFDWLRQ��
�
�����$SSURYHG�E\�WKH�7KHVLV�&RPPLWWHH��
�
�������� � � � � � � �
������ � � � � � � � � � � � � � ��&KDLUSHUVRQ�
��
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������� � � � � �
�
�
������� � � � � �
�
�
������� � � � � �
�
�
��

Maialen Ciaurriz Velasco

Electrical and Computer Engineering

Christos Christodoulou

Manel Martinez-Ramón

Zhen Peng

Randomly Spaced Smart Antennas

by

Maialen Ciaurriz Velasco

Telecommunication Engineering, ”Universidad Pública de Navarra”

University, 2010

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2013

c�2013, Maialen Ciaurriz Velasco

iii

Dedication

To my Basque and New Mexico Family. Concretely to my amatxo, aitatxo and

Garbanzo Beam.

iv

Acknowledgments

I would like to thank my family, who pushed my to this adventure, and of course my
Apodaca-Jo↵e family, who treat my as heir Spanish daughter and sister.

I would like to thank my advisor Dr. Christodoulou, who gave me this incredi-
ble opportunity of being member of his group.

In addition, I would like to thank Dr. Mart́ınez-Ramón for all his work during
the last month.

Also my thanks to all the lab members, specially to Elizabeth, who was there listen-
ing my doubts and issues with the thesis.

Finally, I would like to thank the University of New Mexico Electrical and Com-
puter Engineering Department, concretely Elmyra Grelle for all her hard work.

Eskerrik asko.

v

Randomly Spaced Smart Antennas

by

Maialen Ciaurriz Velasco

Telecommunication Engineering, ”Universidad Pública de Navarra”

University, 2010

M.S., Electrical Engineering, University of New Mexico, 2013

Abstract

The goal of this thesis is to develop “adaptive array” features out of randomly spaced

antenna elements. Most optimization techniques that have been presented so far for

non-equidistant antenna arrays have been restricted to the analysis of symmetric or

linear geometries. Several direction of arrival (DOA) and adaptive beamforming al-

gorithms are implemented and analyzed for both linear and planar randomly spaced

antenna configurations; such as Capon and MUSIC for direction of arrival, and LMS,

normalized LMS, leaky LMS, generalized normalized LMS, RLS and variable forget-

ting factor RLS algorithms for the adaptive beamforming.

The advantages and disadvantages of smart antennas based on random array con-

figuration are presented and discussed. Several algorithms have been investigated to

study the most suitable ones for optimizing the distribution of the excitation coe�-

cients.

The work discussed herein can be extended to space applications using a cluster

of small satellites, UAVs, or any array of sensors that are not aligned together in

a standard linear or planar geometrical configuration. Furthermore, the proposed

vi

approach can also be extended to standard, two-dimensional linear arrays when one

or more elements fail.

vii

Contents

List of Figures x

List of Tables xiv

1 Introduction and Motivation 1

2 Fundamental Concepts of Smart Antennas 3

3 Array Processing 8

3.1 Signal Model . 8

3.2 Direction-of-Arrival Estimation . 13

3.2.1 Capon Algorithm . 13

3.2.2 MUSIC Algorithm . 14

3.3 Adaptive Beamforming Fundamentals 15

3.3.1 LMS Algorithm . 15

3.3.2 Leaky LMS Algorithm . 17

viii

Contents

3.3.3 Normalized LMS Algorithm 20

3.3.4 Generalized Normalized LMS Algorithm 21

3.3.5 Constrained LMS Algorithm 22

3.3.6 Recursive Least-Squares Algorithm 24

3.3.7 Variable Forgetting Factor Recursive Least Squares Algorithm 28

4 Experiments 30

4.1 Study of Array Processing Algorithms for

Random Arrays . 30

4.1.1 Comparison of DOA Algorithms 30

4.1.2 Comparison of: Adaptive Beamforming Algorithm 38

4.2 Algorithm Robustness Analysis . 55

4.2.1 Rectangular Array vs Random Planar Array 55

4.2.2 The Necessary Elements . 63

4.2.3 Analysis for the Number of Nulls 67

5 Conclusions and Future Work 72

References 75

Appendix 78

A MATLAB ALGORITHMS 79

ix

List of Figures

2.1 Switched-beam system [1] . 5

2.2 Smart antenna: (a) switched-beam, and (b) adaptive array [1]. . . . 6

2.3 Adaptive array system block diagram 7

3.1 Random smart antennas: (a) random linear array, and (b) random

planar array . 9

3.2 Random signal model for: (a) a random linear array , and (b) a

random planar array. 12

4.1 Random linear antenna distribution. 31

4.2 Capon angular power spectrum for ✓0 = 0 �, ✓1 = �30 � and ✓2 = 30 �. 32

4.3 MUSIC angular power spectrum for ✓0 = 0 �, ✓1 = �30 � and ✓2 = 30 �. 32

4.4 Capon and MUSIC algorithm comparison for the first scenario. . . . 33

4.5 Element distribution for the second scenario. 34

4.6 Capon DOAs: (a) elevation angles , and (b) Azimuth angles. 35

4.7 MUSIC DOAs: (a) elevation angles, and (b) azimuth angles. 36

x

List of Figures

4.8 Capon and MUSIC comparison: (a) elevation angles, and (b) az-

imuth angles. 37

4.9 Weight vector for LMS algorithm with µ1 = 0.01, µ2 = 0.001, and

µ3 = 0.0001. 38

4.10 Average mean-square error for LMS algorithm with µ1 = 0.01, µ2 =

0.001, and µ3 = 0.0001. 39

4.11 Adaptive beamforming LMS algorithm for ✓0 = 0 �, ✓1 = �30 �, and

✓2 = 30 �. 40

4.12 Antenna elements position for the 100 simulations 41

4.13 LMS Adaptive beamforming for the 100 simulations 41

4.14 The statistical LMS adaptive beamforming for mean and variance . 42

4.15 Weight vector for leaky LMS algorithm with � = 0.1, � = 0.3, and

� = 1. 43

4.16 Average mean-square error for leaky LMS algorithm with µ1 = 0.01,

µ2 = 0.001, and µ3 = 0.0001. 44

4.17 Adaptive beamforming leaky LMS algorithm for ✓0 = 0 �, ✓1 = �30 �,

and ✓2 = 30 �. 44

4.18 Optimum weight vector for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 = 0.01,

µ5 = 0.001, and µ6 = 0.0001. 45

4.19 Mean square error for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 = 0.01,

µ5 = 0.001, and µ6 = 0.0001. 46

4.20 NLMS adaptive beamforming for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1,

µ4 = 0.01, µ5 = 0.001, and µ6 = 0.0001. 47

xi

List of Figures

4.21 Optimum weight vector for �1(k) = 1, �2(k) = 0.01, and �3(k) =

0.001. 48

4.22 Mean square error for �1(k) = 1, �2(k) = 0.01, and �3(k) = 0.001. . 48

4.23 GNLMS adaptive beamforming for �1(k) = 1, �2(k) = 0.01, and

�3(k) = 0.001. 49

4.24 Optimum weight vector for µ1 = 0.1, µ2 = 5, µ3 = 10, and µ4 = 5000. 50

4.25 Constrained LMS adaptive beamforming for µ1 = 0.1, µ2 = 5, µ3 =

10, and µ4 = 5000. 50

4.26 Optimum weight vector for �1 = 0.8, �2 = 0.9, and �3 = 0.99. . . . 51

4.27 Mean square error for �1 = 0.8, �2 = 0.9, and �3 = 0.99. 52

4.28 RLS adaptive beamforming for �1 = 0.8, �2 = 0.9, and �3 = 0.99. . 52

4.29 Optimum weight vector for �1(1) = 0.8, �2(1) = 0.9, and �3(1) =

0.999. 54

4.30 Mean-square error for �1(1) = 0.8, �2(1) = 0.9, and �3(1) = 0.999. . 54

4.31 VFF-RLS adaptive beamforming for �1(1) = 0.8, �2(1) = 0.9, and

�3(1) = 0.999. 55

4.32 Element position for URA vs RPA. 56

4.33 Adaptive beamforming � = 0 � plane for URA and RPA. 57

4.34 Adaptive beamforming � = 90 � plane for URA and RPA. 57

4.35 Elements position for URA vs RPA. 58

4.36 Adaptive beamforming � = 0 � plane for URA and RPA. 58

xii

List of Figures

4.37 Adaptive beamforming � = 90 � plane for URA and RPA. 59

4.38 Elements position for URA vs RPA. 60

4.39 Adaptive beamforming � = 0 � plane for URA and RPA. 60

4.40 Adaptive beamforming � = 90 � plane for URA and RPA. 61

4.41 Elements position for URA vs RPA. 61

4.42 Adaptive beamforming � = 0 � plane for URA and RPA. 62

4.43 Adaptive beamforming � = 90 � plane for URA and RPA. 62

4.44 RLS algorithm for N=8 elements. 63

4.45 RLS algorithm for N=20 elements. 64

4.46 RLS algorithm for N=50 elements. 64

4.47 LMS algorithm for N=8 elements. 65

4.48 LMS algorithm for N=20 elements. 66

4.49 LMS algorithm for N=50 elements. 66

4.50 Element linear distribution N=10. 68

4.51 Constrained LMS algorithm for N=10 elements. 68

4.52 Element linear distribution N=10. 70

4.53 Constrained LMS algorithm for N=10 elements. 70

xiii

List of Tables

4.1 Capon detection DOAs: . 31

4.2 MUSIC detection DOAs: . 33

4.3 Capon detection DOAs . 34

4.4 MUSIC detection DOAs . 36

4.5 Minima values . 42

4.6 Obtained Array Pattern Value 1st Scenario (dB): 65

4.7 Obtained Array Pattern Value 2nd Scenario (dB): 67

4.8 Obtained Array Pattern Values 8-element (dB): 69

4.9 Obtained array pattern values 8-element (dB): 71

xiv

Chapter 1

Introduction and Motivation

Extensive literature is available on the subject of uniform and nonuniform array

processing [2], [3], and [4]. However, the techniques have been restricted to symmetric

or linear geometries. Therefore, the main objective of this thesis is to implement

and study array processing for randomly spaced antenna array elements. In this

thesis, several algorithms for the direction of arrival (DOA) and beamforming are

investigated to study the advantages and disadvantages of randomly spaced smart

antennas.

This thesis is organized as follows: Chapter 2 first provides an overview of smart

antennas in general. The di↵erences between the adaptive array system and the

switched-beam system are presented. The adaptive array system was chosen as the

main smart system for randomly spaced antenna arrays. Chapter 3 presents an anal-

ysis of a theoretical model of array processing. First, it illustrates and explains the

signal model for randomly spaced arrays. Afterwards, it continues by analyzing var-

ious methods of estimating the direction of arrival. The last section of this chapter

reviews the adaptive beamforming techniques used to achieve the desired radiation

pattern. Chapter 4 presents the performance of the analyzed algorithm for ran-

1

Chapter 1. Introduction and Motivation

domly spaced antenna arrays and illustrates some of the corresponding comparisons.

Chapter 5 summarizes the obtained results and provides some suggestions for fur-

ther research. This thesis concludes with Appendix A, which shows the implemented

algorithms for the randomly spaced smart antennas using MATLAB R� software.

2

Chapter 2

Fundamental Concepts of Smart

Antennas

Over the few last decades, wireless technology has taken on an important role in the

field of communication. The accelerated growth of mobile industries has resulted in

an unprecedented demand for better coverage, capacity, and spectrum e�ciency [2].

Smart antennas, also known as adaptive array antennas, have been selected as one

of the most important technologies to fulfill these requirements, principally due to

their ability to control the process of generated beamforming.

Although smart antennas have been used recently for commercial purposes, the

Bartlett beamformer was already implemented during the Second World War as an

application of the Fourier-based spectral analysis for spatio-temporally sampled data

[5].

In addition, to the required demand, the improvements on low-cost digital sig-

nal processors, application specific integrated circuits (ASIC), and signal processing

techniques have contributed to the commercialization of smart antennas [1].

3

Chapter 2. Fundamental Concepts of Smart Antennas

Despite the fact that these antennas are known as smart antennas, the antennas

that are used are not actually smart themselves; the digital signal processing is what

makes them intelligent. Using adequate signal processing, adaptive array antennas

are able to adapt their radiation pattern in accordance with desired signals and

interference signals. Adaptive beamforming algorithms enhance the desired signal

while suppressing interference signals or jammers when outputting array antennas.

An antenna array is a combination of antenna elements (identical elements in

most cases) whose main objective is to improve the performance of a single element.

The total electromagnetic field of the array is obtained by the coherent or incoher-

ent combination of each element [6]. Accordingly, the performance of the array is

determined by the distance between each element, the phase excitation, and the am-

plitude excitation. In the case of adaptive array antennas, digital signal processing

calculates the desired amplitude excitation, also known as the weight vector, in order

to obtain optimum beamforming.

Generally, smart antennas are categorized according to two major configurations:

switched-beam and adaptive array systems.

A switched-beam system is formed by multiple fixed beams and is considered

an extension of the cell sectoring system. The desired signal is detected by one

of the predetermined fixed beams, and as the desired signal moves throughout the

sectored area, the system moves from one beam to another by changing the phase

di↵erence of the signals used to feed the antenna elements (as illustrated in Figure

2.1). The switched-beam system increases the gain compared to the conventional

sectored system; however, due to the fact that the beams are fixed, the desired signal

may not be located in the middle of the main beam. Therefore, the desired signal

or signal of interest (SOI) may receive less intensity than the interference signals or

signals not of interest (SNOI).

4

Chapter 2. Fundamental Concepts of Smart Antennas

Figure 2.1: Switched-beam system [1]

An adaptive array system adapts the radiation pattern by optimizing the perfor-

mance of the system in real time. In other words, an adaptive array system has the

ability to create a radiation pattern that enhances the desired signals while at the

same time suppressing the interference signals [2].

The di↵erence between the radiation pattern of these two configurations is shown

in Figure 2.2. Both cases adapt their main beam in the direction of the desired

signal; nevertheless, the switched-beam system detects interference signals while the

adaptive array system creates nulls at those positions. For this reason, the adaptive

array system obtains better performance when a high level of interference is present.

The use of smart antennas has grown exponentially principally due to their ca-

pability to reject the interference signals from the desired signal, thus increasing the

capacity and the range of these systems. In addition to these advantages, smart

antennas have improved security problems because generated beams are more di-

5

Chapter 2. Fundamental Concepts of Smart Antennas

(a) (b)

Figure 2.2: Smart antenna: (a) switched-beam, and (b) adaptive array [1].

rectional; for this reason, intruders have to be located in the same direction as the

user. Nevertheless, these systems require more powerful numeric processors and con-

trol systems, making them more complicated than the omnidirectional or sectorized

systems.

Digital signal processing (DSP) plays an important role in adaptive beam systems.

After the array antenna elements receive the incoming signals and the system digitizes

them, DSP algorithms are applied to estimate the direction of arrival of the desired

and interference signals and to create the optimum beamforming, direction-of-arrival

(DOA) and adaptive beamforming algorithm respectively. An adaptive array system

block diagram is shown in Figure 2.3.

6

Chapter 2. Fundamental Concepts of Smart Antennas

Figure 2.3: Adaptive array system block diagram

7

Chapter 3

Array Processing

The main objective of digital signal processing is to obtain the most information pos-

sible from the signals arriving into the system. In the special case of adaptive array

antennas, digital signal processing uses the incoming data to predict the direction of

arrival of the signals, and that estimation is used to create the desired beamforming,

maximizing the power towards to the users and suppressing any interference.

In this chapter, di↵erent DOA and adaptive beamforming algorithms will be ex-

plained and analyzed with respect to the randomly spaced antenna array model.

3.1 Signal Model

Within the framework of this thesis, a randomly spaced linear and planar array

antenna will be considered for the main beamforming model. Unlike regular smart

array antennas in which the elements are spaced apart by a constant uniform value d,

random array antennas are composed of randomly distributed elements. A random

linear array (RLA) and a random planar array (RPA) are illustrated in Figure 3.1.

8

Chapter 3. Array Processing

(a)

(b)

Figure 3.1: Random smart antennas: (a) random linear array, and (b) random planar
array

9

Chapter 3. Array Processing

For both cases, RLA and RPA, the array will be composed of N isotropic antenna

elements, and K narrowband signals arriving from di↵erent directions

({✓0,�0}; {✓1,�1}; ...; {✓K�1,�K�1}).

Due to the assumption that the incoming signals are located in the far-field and

can be considered point sources, the arrival signals can be written as a uniform plane

wave:

e
Si(t) = SiI(t)cos(!ct)� SiQ(t)sin(!ct) = R{Si(t)e

j!
c

t} (3.1)

where SiI(t) and SiQ(t) are phase and quadrature components respectively for each

i-source, Si(t) =
p

(SiI(t)2 + SiQ(t)2 is the envelope of the signal, and !c is the

angular frequency of the signal.

Having a reference antenna, the signals arriving at the other antennas are related

to the reference by a time delay:

⌧1D =
dxsin(✓i)

⌫0
For 1�Dimension random linear array and (3.2a)

⌧2D =
dxsin(✓i)cos(�i) + dysin(✓i)sin(�i)

⌫0
(3.2b)

For 2�Dimension random planar array

where dx and dy are the distances between elements. In general, the reference antenna

is set at the origin to have zero phase.

As a consequence of this phase di↵erence, the total signal arriving at the nth

antenna element in snapshot t is calculated as follows:

Xn(t) =
K�1X

i=0

Si(t)e
�jk

i

⌧
n + n(t) (3.3)

where ki =
2⇡
�
i

is the wavenumber vector, ⌧n is the time delay for the nth element,

and n(t) is the noise signal.

10

Chapter 3. Array Processing

The steering vector is defined as follows:

a(✓i,�i) = [1, e�
2⇡j

�

i

⌧1
, ..., e

� 2⇡j

�

i

⌧
N�1]T

As the vector that contains the responses of all of the array’s elements for a certain

source, the total signal can be expressed as a superposition of signals from all the

sources by:

X(t) = A(✓,�)S(t) + n(t) (3.4)

where X(t) = [x1(t),x2(t), ...,xN(t)]T is the total baseband signal matrix, and

A(✓,�) = [a(✓0,�0), a(✓,1 �1), ..., a(✓K�1,�K�1)] is the steering matrix containing

all of the incoming sources. Considering all the snapshots, the total signal can be

rewritten as follows:

X = A(✓,�)S+N (3.5)

where

X = [x(1),x(2),,x(L)] (3.6a)

S = [s(1), s(2),, s(L)] (3.6b)

N = [n(1),n(2),,n(L)] (3.6c)

The described signal model is illustrated in the Figure 3.2:

11

Chapter 3. Array Processing

(a)

(b)

Figure 3.2: Random signal model for: (a) a random linear array , and (b) a random
planar array.

12

Chapter 3. Array Processing

3.2 Direction-of-Arrival Estimation

The direction-of-arrival (DOA) estimation of multiple signals poses a large problem

in array signal processing. DOA estimation techniques are divided into four dif-

ferent categories according to the data analysis and implementation used. In this

thesis, conventional methods and the subspace-based method will be applied to the

randomly distributed array.

3.2.1 Capon Algorithm

One of the most well-known high-resolution non-parametric spectral estimation algo-

rithms is Capon’s minimum variance method, also known as the minimum variance

distortionless response (MVDR) [7], [4]. The Capon algorithm is an optimization of

the delay-and-sum method, or the Bartlett method, and belongs to the conventional

methods [1]. Capon’s method minimizes the output power with the constraint that

the gain in the desired direction is equal to one [8]:

min
w

wHR
x(k)x(k)w (3.7a)

subject to wHaH(✓i,�i) = 1 (3.7b)

By applying the Lagrange multipliers and optimizing with respect to all the

parameters, the optimum weight vector is calculated by [9]:

w =
R�1

x(k)x(k)a(✓,�)

aH(✓,�)R�1
x(k)x(k)a(✓,�)

(3.8)

and consequently, the output Capon power can be obtained by:

PCapon = wHR
x(k)x(k)w =

1

aH(✓,�)R�1
x(k)x(k)a(✓,�)

(3.9)

13

Chapter 3. Array Processing

Capon’s method improves the resolution problem presented by the Bartlett method.

Nevertheless, this method fails when the incoming signals are correlated or when the

SOI and the SNOI have the same angle of arrival.

3.2.2 MUSIC Algorithm

The MUltiple SIgnal Classification (MUSIC) method is the most studied algorithm

within the signal subspace category. MUSIC is based on the decomposition of the

eigenvector structure for the input covariance matrix [10].

After the antenna elements receive the desired signals and the interference signals,

in addition to the noise signal, the MUSIC algorithm calculates the input covariance

matrix.

R
x(k)xk) = E[x(k)x(k)] = AR

s(k)s(k)A+ �

2
nI (3.10)

where A = [a(✓0,�0), a(✓1,�1), ..., a(✓K�1,�K�1)] is the steering vector,

S = [S0, S1, ..., Sk�1] is the signal vector, �2
n is the noise variance, and I is the identity

matrix. By applying the eigendecomposition of the covariance matrix, Equation 3.10

can be rewritten as follows [11]:

R
x(k)xk) = bQx⇤bQ

H

x = bQs⇤s
bQ

H

s + bQn⇤n
bQ

H

n (3.11)

where Qx = [q1, q2, ..., qN] is the eigenvector of the R
x(k)xk), Qs = [q1, q2, ..., qk] is

the eigenvector of the Rs, Qn = [qk+1, qk+2, ..., qN] is the eigenvector of the noise

covariance, Rn, ⇤s = diag[�1,�2, ...,�k] is the eigenvalue of the signal S, and ⇤n =

diag[�k+1,�k+2, ...,�N] is the eigenvalue of the noise [9]. The eigenvectors Qs and

Qn form an orthogonal base. When determining the subspace, the DOAs of the

incoming signals are estimated by calculating the power spectrum.

PMUSIC =
aH(✓,�)a(✓,�)

aH(✓,�)QnQ
H
n a(✓,�)

(3.12)

14

Chapter 3. Array Processing

Due to the orthogonality between the steering vector and noise vector, the MU-

SIC power spectrum shows the estimated DOA for the incoming signals. The MUSIC

algorithm is a modification of the Capon algorithm in which the eigendecomposition

of the signal is considered zero [9]:

PCapon =
1

aH(✓,�)R�1
x(k)x(k)a(✓,�)

=
1

aH(✓,�)(bQs⇤s
bQ

H

s + bQn⇤n
bQ

H

n)a(✓,�)

=
1

aH(✓,�)(bQn⇤n
bQ

H

n)a(✓,�)
(3.13)

The MUSIC algorithm obtains optimum and very precise DOAs; however, this

algorithm requires knowledge of the incoming data in addition to the second-order

spatial statistics of the interference field and noise.

3.3 Adaptive Beamforming Fundamentals

3.3.1 LMS Algorithm

The least-mean-squares (LMS) algorithm is based on the approximation of the

steepest-descent method [12]. The optimum weight vector, woptimum=

[w1, w2, ..., wN]T generally called the Wiener weight vector, is obtained by applying

the minimum mean-square error (MMSE) criteria, which minimize the mean square

error of the reference signals and the outputs of the antenna array, also known as

the cost factor.

JMMSE = min
w

{E|"(k)2|}

15

Chapter 3. Array Processing

where ✏(k) is the error for each observation and is derived from

"(k) = S(k)� y(k) = S(k)�wHx(k) (3.14)

Substituting 3.14 into the cost function:

JMMSE = min
w

[E{|"(k)2|}]

= min
w

[E{|S(k)�wHx(k)|2}]

= min
w

[E{S(k)2}� 2wH
E{S(k)x(k)}+wH

E{x(k)x(k)H}w]

= min
w

[S(k)2 � 2wHr
x(k)S(k) +wHR

x(k)x(k)w] (3.15)

where r
x(k)S(k) is the cross-correlation vector between the input signal x(k) and the

desired response S(k) and R
x(k)x(k) is the correlation matrix of the input vector x(k).

In order to minimize the cost function 3.15, it is necessary to set the first derivative

equal to zero. Thus obtaining Equations 3.16a and 3.16b:

dJMMSE

dw
=0 , �2r

x(k)S(k) +R
x(k)x(k)w = 0 (3.16a)

woptimum =R�1
x(k)x(k)rx(k)S(k) (3.16b)

The steepest-decent method adjusts the optimum weight vector in the direction

of the gradient at each step as follows:

wk+1 = wk + µ(�rk)

where µ is a scalar constant that regulates the step constant and r is the gradient

vector calculated in Equation 3.16a. As a consequence of substituting the gradient

of the cost function vector into the steepest-decent, the LMS algorithm updates the

weight vector as the following expression:

w(k + 1) =w(k) + µ[�(�2r
x(k)S(k) +R

x(k)x(k)w(k))]

=w(k) + 2µr
x(k)S(k) � µR

x(k)x(k)w(k) (3.17)

16

Chapter 3. Array Processing

By considering the instantaneous estimates for the cross-correlation and correla-

tion matrices, r
x(k)S(k) = E{S(k)x(k)} = S(k)x(k) and R

x(k)x(k) = E{x(k)x(k)H} =

x(k)x(k)H respectively, Equation 3.17 can be rewritten as follows:

w(k + 1) =w(k) + 2µS(k)x(k)� µx(k)x(k)Hw(k)

=w(k) + µx(k)[S(k)� x(k)Hw(k)]

=w(k) + µx(k)[S(k)�w(k)Hx(k)] (3.18)

Replacing Equation 3.14 with 3.18 obtains the recursive relation for updating the

weight vector:

w(k + 1) = w(k) + µ"(k)x(k)

By rearranging these equations, the LMS algorithm can be written accordingly:

y(k) =w(k)Hx(k) (3.19a)

"(k) =S(k)� y(k) (3.19b)

w(k + 1) =w(k) + µ"(k)x(k) (3.19c)

The necessary and su�cient condition for the LMS algorithm convergence in the

mean-squared sense, which is derived by choosing the step constant, µ, bounded by

the following interval [13]:

0 < µ <

2

�max

where �max is the largest eigenvalue of the correlation matrix R
x(k)x(k). The maxi-

mum eigenvalue is related to the total power of signal x by the following expression:

�max  trace{R
xx

} where trace{R
xx

} =
NP
i=1

"{x2
i }

3.3.2 Leaky LMS Algorithm

The leaky least-mean-square (Leaky LMS) algorithm is a variation of the LMS al-

gorithm, which stabilizes the LMS algorithm’s undamped modes, forcing them to

17

Chapter 3. Array Processing

zero by introducing a leakage coe�cient. These undamped modes appear when the

largest eigenvalue is equal to zero, �max = 0; as a consequence, the step constant

will be infinity, µ = 1 [14]. To overcome this problem, the Tikhonov regularization

method is applied, which consists of adding a scaled identity matrix [15].

As a consequence, the leaky LMS algorithm’s cost function used to obtain the

optimum weight vector, woptimum = [w1, w2, ..., wN]H , is obtained by [16]:

JMMSE = min{✏(k)2 + �w(k)Hw(k)}

where the term �w(k)Hw(k) is the Tikhonov regularization, and 0 < � ⌧ 1 is the

regularization parameter, also known as the leakage coe�cient. As with the LMS

algorithm, the leaky LMS algorithm is based on the steepest-decent method; for this

reason, the optimum weight vector is obtained by following a similar procedure as in

Section 3.3.1:

w(k + 1) = w(k) + µ(�rkJMMSE)

In this case, rk has the following expression:

rk =
dJMMSE

dw

= �2x(k)d(k) + x(k)x(k)Hw(k) + �w(k) (3.20)

By substituting this equation into the steepest-decent equation:

w(k + 1) =w(k) + µ(+2x(k)d(k)� x(k)x(k)Hw(k)� �w(k)) (3.21a)

= (1� µ�)w(k) + µx(k)d(k)� µx(k)x(k)Hw(k) (3.21b)

= (1� µ�)w(k) + µx(k)(d(k)� x(k)Hw(k)) (3.21c)

= (1� µ�)w(k) + µx(k)✏(k) (3.21d)

By taking the expected value of both sides of Equation 3.21a and considering the

limit as n approaches infinity, one can observe that the tap-weight converges in mean

18

Chapter 3. Array Processing

to a biased solution:

E{w(k + 1)} =E{w(k) + µ(2x(k)d(k)� x(k)x(k)Hw(k)� �w(k))}

=(1� µ(� + x(k)x(k)H))E{w(k)}+ µ(x(k)d(k))

= (1� µ(� +R
x(k)x(k)))E{w(k)}+ µr

x(k)S(k)

=(R
x(k)x(k) + �)�1r

x(k)S(k) (3.22)

As n ! 1) w(k + 1) ⇠= w(k) consequently:

lim
n!1

E{w(k + 1)} =(R
x(k)x(k) + �)�1r

x(k)S(k)

By comparing this equation to Equation 3.18, one observes that the correlation

matrix R
x(k)x(k) of the LMS algorithm is substituted with R

x(k)x(k) + �I; for this

reason, the leaky LMS algorithm’s step constant µ is bounded by the following

interval:

0 < µ <

2

�max + �

Due to the leakage coe�cient condition, 0 < � ⌧ 1, the leaky LMS algorithm sup-

presses the LMS unstable modes.

By reorganizing all of the equations, the leaky LMS algorithm can be written as

follows:

y(k) =w(k)Hx(k) (3.23a)

"(k) =S(k)� y(k) (3.23b)

w(k + 1) = (1� µ�)w(k) + µx(k)✏(k) (3.23c)

19

Chapter 3. Array Processing

3.3.3 Normalized LMS Algorithm

A normalized LMS algorithm (NLMS) is an adaptation of the LMS algorithm, which

overcomes the LMS algorithm’s stability problems due to its weight vector’s actual-

ization, w(k + 1), being directly proportional to the input vector x(k) [3]. For this

reason, if the total power of the input signal (trace{R
xx

} =
NP
i=1

"{x2
i }) is high, then

the step constant will not be bounded, thus making the algorithm stable. To correct

this problem, the weight vector must be normalized in each iteration with respect to

the squared Euclidean norm of the input signal as follows:

w(k + 1) = w(k) +
µ̃

kx(k)k2x(k)✏(k) (3.24)

In this actualization, one observes that the weight vector at time k+1,w(k+1),

updates with minimum variation with respect to the known value at time k,w(k).

Equation 3.24 can be seen as the 3.19c of the LMS algorithm with a time-varying

step-size parameter:

w(k + 1) = w(k) + µ(k)x(k)✏(k) (3.25)

where µ(k) = µ̃
kx(k)k2 . The NLMS algorithm converges in the mean square sense only

if the constant µ̃ satisfies the following condition:

0 < µ̃ < 2

To overcome the undamped modes that occur when the input signal, x(k), is

very small, it is recommended that one introduce an o↵set parameter, � > 0, into

the time-varying step-size parameter:

µ(k) =
µ̃

kx(k)k2 + �

20

Chapter 3. Array Processing

In comparison to the LMS algorithm, the normalized LMS algorithm improves

the time of convergence of the weight vector; however, the computational complexity

of the NLMS is higher.

3.3.4 Generalized Normalized LMS Algorithm

To overcome the divergence and low performance problems of LMS and NLMS al-

gorithms respectively when the input signal has a large dynamic range, Mandic [17]

derived the generalized normalized LMS algorithm (GNLMS) based on the NLMS al-

gorithm. The GNLMS algorithm makes the o↵set or compensation term, �, step-size

gradient adaptive as follows:

�(k + 1) = �(k)� ⇢r�(k�1)E(k) (3.26)

By applying the chain rule, the gradient r�(k�1)E(k) is expressed as:

@E(k)

@�(k � 1)
=

@E(k)

@✏(k)

@✏(k)

@y(k)

@y(k)

@w(k)

@w(k)

@µ(k � 1)

@µ(k � 1)

@�(k � 1)

=
✏(k)✏(k � 1)xT (k)x(k � 1)

(kx(k � 1)k22 + �(k � 1))2
(3.27)

As a consequence, the GNLMS algorithm can be expressed as:

y(k) =w(k)Hx(k) (3.28a)

✏(k) =S(k)� y(k) (3.28b)

w(k + 1) =w(k) + µ(k)x(k)✏(k) (3.28c)

µ(k) =
µ̃

kx(k)k22 + �(k)
(3.28d)

�(k) = �(k � 1)� ⇢

✏(k)✏(k � 1)xT (k)x(k � 1)

(kx(k � 1)k22 + �(k � 1))2
(3.28e)

Equation 3.28e shows that the GNLMS algorithm adapts to the learning rate in

accordance with the dynamics of the input signal, thus resulting in faster convergence.

21

Chapter 3. Array Processing

The convergence in the mean square sense of the GNLMS algorithm is obtained if

the adaptive step size µ(k) is bounded by the limits of the step size of the NLMS

algorithm, 0 < µ̃ < 2. Optimizing the convergence point doubles the computational

complexity of the NLMS algorithm.

3.3.5 Constrained LMS Algorithm

A constrained LMS algorithm, also known as Frost’s algorithm, is based on the

approximation of the stochastic gradient-descent algorithm [18], which minimizes

the expected value of the output power subject to a specific restriction:

min
w

wHR
x(k)x(k)w (3.29a)

subject to CHw = F (3.29b)

where C is the constraint matrix defined as: C , [c1, ..., cJ] with J being the num-

ber of restrictions and F being a J-dimensional vector of the weights of the angle

of arrival of the signals: F ,

2

666664

f1

f2

...

fJ

3

777775
. For this reason, a constrained LMS algorithm

requires that the DOA and the frequency band of interest be known.

The constrained cost function is obtained by applying Lagrange multipliers to

constraint function 3.29b:

Jconstrained(w) =
1

2
wHR

x(k)x(k)w+ �

H(CHw� F) (3.30)

where � 2 CK is the Lagrange multiplier vector.

22

Chapter 3. Array Processing

The optimum weight vector,woptimum, is obtained by minimizing the cost function

and setting it equal to zero.

@Jconstrained(w)

@w
= 0 , (3.31)

@Jconstrained(w)

@w
= R

x(k)x(k)w+ �

HCH = R
x(k)x(k)w+C� = 0 (3.32)

woptimum = �R�1
x(k)x(k)C� (3.33)

By substituting this equation into constraint equation 3.29b, which must satisfy the

weight vector, the Lagrange multiplier vector can be obtained as follows:

CHx = F = CH(�R�1
x(k)x(k)C�))

� = � [CHR
x(k)x(k)C]�1F (3.34)

As a consequence, Equation 3.32 can be rewritten as follows:

woptimum = R�1
x(k)x(k)C[CHR

x(k)x(k)C]�1F (3.35)

The optimum weight vector is updated recursively by the gradient-descent algorithm

as follows:

w(k + 1) = w(k) + µ(�rkJconstrained) (3.36)

Replacing Equation 3.32 into the equation above results in:

w(k + 1) = w(k)� µ(R
x(k)x(k)w(k) +C�) (3.37)

It is necessary to choose Lagrange multipliers that satisfy the constraints at time

k + 1:

F =CHw(k + 1) = CH(w(k)� µ(R
x(k)x(k)w(k) +C�))

=CHw(k)� µCHR
x(k)x(k)w(k)� µCHC� (3.38)

Lagrange multipliers can be obtained from this equation as follows:

� = �[F �CHw(k) + µCHR
x(k)x(k)w(k)](µCHC)�1 (3.39)

23

Chapter 3. Array Processing

Using this equation, the weight update vector can be rewritten as:

w(k + 1) =w(k)� µR
x(k)x(k)w(k)

� µC[F �CHw(k) + µCHR
x(k)x(k)w(k)](µCHC)�1

=w(k)� µ[I �C(CHC)�1CH]R
x(k)x(k)w(k)

+C(CHC)�1[F �CHw(k)] (3.40)

By defining P , I � C(CHC)�1CH and F , C(CHC)�1F , Equation 3.40 can be

expressed as:

w(k + 1) = P [w(k)� µR
x(k)x(k)w(k)] + F (3.41)

By rearranging all of the equations, the constrained LMS algorithm can be written

as follows:

Initialization) w(0) = F = C(CHC)�1F (3.42a)

w(k + 1) = P [w(k)� µy(k)x(k)] + F (3.42b)

The constrained LMS algorithm is considered a blind-algorithm because it does

not required the knowledge of the desired signal. However, the computational imple-

mentation of this algorithm is more complex. Frost demonstrates that a constrained

LMS algorithm will converge if step-size constant µ satisfies this bound condition

[18]:

0 < µ <

2

3trace(R
x(k)x(k))

3.3.6 Recursive Least-Squares Algorithm

A recursive least-squares (RLS) algorithm calculates the Wiener solution by using

the method of least squares (LS) [19], which recursively minimizes the sum of error

24

Chapter 3. Array Processing

squares over a particular period of time [3]:

min
w

{JLS} = min
w

kX

i=1

�(k)|e(k)|2 (3.43)

where �(k) is the forgetting factor and e(k) is the di↵erence between the desired

signal S(k) and the output signal y(k) = wHx(k).

The forgetting factor provides di↵erent weights according to the time instant.

In this case, the exponential weight factor or forgetting factor is considered, which

emphasizes the most recent data and forgets the past data:

�(k) = �

k�i
, i = 0, 1, ..., k (3.44)

where 0 < � 6 1. In the case where � = 1, the stationary environment, all data past

and present have the same weight in accordance with an infinite memory system.

Placing Equation 3.44 into the cost function produces the following result:

JLS =
kX

i=1

�

k�i|S(k)�wHx(k)|2 (3.45)

The optimum weight vector is obtained by di↵erentiating the cost function with

respect to w and setting it equal to zero:

@JSL

@w
= �

kX

i=1

�

k�1
S(k)x(k) +

kX

i=1

x(k)x(k)Hw(k) = 0 (3.46)

woptimum(k) =
kX

i=1

�

k�i
S(k)x(k)[

kX

i=1

�

k�ix(k)x(k)Hw(k)]�1 (3.47)

After defining the correlation matrix as R(k) =
kP

i=1
�

k�ix(k)x(k)H and the cross-

correlation matrix as p(k) =
kP

i=1
�

k�1
x(k)d⇤(k), Equation 3.47 can be rewritten as:

woptimum(k) = R�1(k)p(k) (3.48)

25

Chapter 3. Array Processing

In order to obtain the recursive implementation of the weight vector, it is neces-

sary to write the correlation and cross-correlation matrix recursively:

R(k) =
kX

i=1

�

k�ix(k)x(k)H = �

k�1X

i=1

�

k�i�1x(k)x(k) + x(k)xH(k)

= �R(k � 1) + x(k)xH(k) (3.49)

p(k) =
kX

i=1

�

k�1
S(k)x(k) = �p(k � 1) + x(k)d⇤(k) (3.50)

Applying the matrix inversion lemma to the correlation matrix, R(k), results in the

following:

R�1(k) = �R�1(k � 1)� �

�2R�1(k � 1)x(k)x(k)HR�1(k � 1)

(1 + �

�1x(k)HR�1(k � 1)x(k))
(3.51)

After defining the gain vector as:

k(k) , �

�1R�1(k � 1)x(k)

1 + �

�1x(k)HR�1(k � 1)x(k)
(3.52)

) k(k)[1 + �

�1x(k)HR�1(k � 1)x(k)] = �

�1R�1(k � 1)x(k)

) k(k) = �

�1R�1(k � 1)x(k)� k(k)��1x(k)HR�1(k � 1)x(k) (3.53)

the recursive correlation matrix can be rewritten as follows:

R�1(k) = �

�1R�1(k � 1)� �

�1k(k)x(k)HR�1(k � 1) (3.54)

Replacing Equation 3.54 demonstrates that the gain vector can be expressed by:

k(k) = R�1(k)x(k) (3.55)

Substituting Equations 3.50, 3.54, and 3.55 into the optimum weight vector, produces

the following result:

woptimum = R�1(k)�p(k � 1) +R�1(k)x(k)d⇤(k)

= R�1(k � 1)p(k � 1)� k(k)x(k)HR�1(k � 1)p(k � 1) + k(k)d⇤(k)

= w(k � 1) + k(k)[d⇤(k)� xH(k)w(k � 1)]

= w(k � 1) + k(k)✏⇤(k) (3.56)

26

Chapter 3. Array Processing

where ✏(k) = d(k)�wH(k � 1)x(k) is the estimation error.

After rearranging all of the equations, the RLS algorithm can be summarized as

follows:

k(k) =
�

�1R�1(k � 1)x(k)

1 + �

�1x(k)HR�1(k � 1)x(k)
(3.57a)

✏(k) = d(k)�wH(k � 1)x(k) (3.57b)

w(k) = w(k � 1) + k(k)✏⇤(k) (3.57c)

R�1(k) = �

�1R�1(k � 1)� �

�1k(k)x(k)HR�1(k � 1) (3.57d)

The forgetting factor, �, determines the convergence rate and the stability of the

system. On the one hand, when the forgetting factor is close to one, the algorithm

obtains low misadjustment and good stability, but it is not able to track the input

signal correctly. On the other hand, when the forgetting factor is close to zero, the

RLS algorithm improves its tracking capability by having increased the misadjust-

ment and stability problems. Nevertheless, the complexity has been increased.

When comparing the LMS algorithm to the RLS algorithm, LMS algorithm con-

verges to the Wiener solution in mean, but the weight vector presents a variance that

is directly proportional to the step-size parameter, µ. Nevertheless, the RLS algo-

rithm converges both in mean and variance; thus, the RLS algorithm improves the

slow performance of the LMS algorithm. In general, the RLS algorithm converges one

order of magnitude faster than the LMS algorithm; nevertheless, the computational

complexity has been increased.

27

Chapter 3. Array Processing

3.3.7 Variable Forgetting Factor Recursive Least Squares

Algorithm

A variable forgetting factor recursive least squares (VFF-RLS) algorithm is an adap-

tation of the RLS algorithm, which considers a time-variable forgetting factor, �(k),

with the unique purpose of improving RLS performance [20].

The derivation of the VFF-RLS algorithm is based on recovering the system noise

in the error signal of the adaptive filter. Considering the a priori estimation error and

the weight vector update from the RLS algorithm, in Equation 3.57b and Equation

3.57c respectively, the posteriori error can be expressed as follows:

e(k) =d(k)�wH(k)x(k) = d(k)�wH(k � 1)x(k) + ✏(k)xH(k)k(k)

= ✏(k)[1� xH(k)k(k)] (3.58)

Defining E{e2(k)} = �

2
v , where E{v2(k)} = �

2
v is the power of the system noise

and considering the Equation 3.57a, the expected value of the a posteriori error

estimation can be obtained by:

E

(
1� xH(k)R�1(k � 1)x(k)

�(k) + xH(k)R�1(k � 1)x(k)

�2)

=

(
1� q(k)

�(k) + q(k)

�2)
=

�

2
v

�

2
e(k)

(3.59)

where q(k) = xH(k)R�1(k � 1)x(k).

After solving the equation above, the time-variable forgetting factor can be obtained

by:

�(k) =
�q(n)�v

�e(n)� �v

(3.60)

where E{q2(k)} = �

2
q .

28

Chapter 3. Array Processing

To recursively estimate these power vectors, the following expressions can be used:

b�2
e(k) = ↵b�2

e(k � 1) + (1� ↵)e2(k) (3.61a)

b�2
q (k) = ↵b�2

q (k � 1) + (1� ↵)q2(k) (3.61b)

b�2
v(k) = �b�2

v(k � 1) + (1� �)e2(k) (3.61c)

Where ↵ = 1 � 1
K

↵

L
and � = 1 � 1

K
�

L
, with K� > K↵ > 2 being the weighting

factors. Rearranging all of these equations, the VFF-RLS algorithm can be expressed

as follows:

k(k) =
R�1(k � 1)x(k)

�(k) + x(k)HR�1(k � 1)x(k)
(3.62a)

✏(k) = d(k)�wH(k � 1)x(k) (3.62b)

�(k) =
�q(n)�v

�e(n)� �v

(3.62c)

b�2
e(k) = ↵b�2

e(k � 1) + (1� ↵)e2(k) (3.62d)

b�2
q (k) = ↵b�2

q (k � 1) + (1� ↵)q2(k) (3.62e)

b�2
v(k) = �b�2

v(k � 1) + (1� �)e2(k) (3.62f)

w(k) = w(k � 1) + k(k)✏⇤(k) (3.62g)

e(k) = d(k)�wH(k)x(k) (3.62h)

R�1(k) = �

�1(k)R�1(k � 1)� �

�1(k)k(k)x(k)HR�1(k � 1) (3.62i)

As Paleologu states in ”A Robust Variable Forgetting Factor Recursive Least-

Squares Algorithm for System Identification” [20], the VFF-RLS algorithm improves

the LMS and RLS algorithms’ performance for tracking and misadjustment for sta-

tionary and non-stationary input signals.

29

Chapter 4

Experiments

In order to analyze and study the performance of the DOA and the adaptive beam-

forming algorithms for a randomly spaced smart antenna array, the algorithms stud-

ied in the Chapter 3 were tested using MATLAB R�. The DOA and adaptive beam-

forming algorithms are illustrated in the Appendix A.

This chapter presents the results obtained by applying the DOA and adaptive beam-

forming algorithms into a di↵erent array environments and applications.

4.1 Study of Array Processing Algorithms for

Random Arrays

4.1.1 Comparison of DOA Algorithms

Two di↵erent scenarios were taken into consideration for analyzing and studying the

Capon and the MUSIC algorithms in a random array environment.

30

Chapter 4. Experiments

Scenario 1:

In the first scenario, the signal model was composed by N = 8 isotropic antenna

elements randomly spaced along the x-axis (LRA model) and 3-narrowband signals,

one desired and two interferences, arriving from ✓0 = 0 �, ✓1 = �30 �, and ✓2 = 30 �

at 2-GHz frequency. The power of the incoming signals was 20dB and 10dB for the

desired and interference signals respectively.

The distribution of the element was obtained as shown in Figure 4.1:

Figure 4.1: Random linear antenna distribution.

One observes that the elements in a randomly spaced array may be separated by

more than �
2 unlike the linear array model.

Capon Algorithm

The power spectrum obtained by applying the Capon method for this concrete sce-

nario is shown in the Figure 4.2. When analyzing the Capon power spectrum, one

can observe that the obtained peaks coincide with the DOA of the incoming signals

to the system. These peaks have the following normalized power values:

Table 4.1: Capon detection DOAs:

✓0 = 0 � 0 dB
✓1 = �30 � -9.384 dB
✓2 = 30 � -9.825 dB

31

Chapter 4. Experiments

Figure 4.2: Capon angular power spectrum for ✓0 = 0 �, ✓1 = �30 � and ✓2 = 30 �.

MUSIC Algorithm

The MUSIC algorithm detects the DOAs of the incoming signals for a randomly

spaced antenna array, as shown in Figure 4.3. In this case, the peaks obtained by

Figure 4.3: MUSIC angular power spectrum for ✓0 = 0 �, ✓1 = �30 � and ✓2 = 30 �.

32

Chapter 4. Experiments

applying MUSIC algorithm are shown in Table 4.2.

Table 4.2: MUSIC detection DOAs:

✓0 = 0 � -0.82 dB
✓1 = �30 � -11.32 dB
✓2 = 30 � -18.69 dB

When comparing the Capon and MUSIC algorithms for the first scenario, one ob-

serves that the MUSIC algorithm improves the accuracy of the DOAs in addition

to arranging them according to their corresponding input power as shown in Figure

4.4.

Figure 4.4: Capon and MUSIC algorithm comparison for the first scenario.

Scenario 2:

For the second scenario, a 8-element RPA was considered. In this case the in-

coming signals arrived from (✓0 = �20 �
,�0 = 10 �), (✓1 = 15 �

,�1 = 0 �) and

33

Chapter 4. Experiments

(✓2 = 48 �
,�2 = 45 �). The obtained element distribution is shown in Figure 4.5.

Figure 4.5: Element distribution for the second scenario.

Capon Algorithm

For this planar case, the Capon algorithm detected the following DOAs for the

incoming signal as shown in Table 4.3 and Figures 4.6a and 4.6b.

Table 4.3: Capon detection DOAs

(a) DOA’s for the elevation angles ✓

✓0 = �20 � 0 dB
✓1 = 15 � -9.56 dB
✓2 = 48 � -9.47 dB

(b) DOA’s for the azimuth angles �

�0 = 10 � 0 dB
�1 = 0 � -9.56 dB
�2 = 45 � -9.44 dB

34

Chapter 4. Experiments

(a)

(b)

Figure 4.6: Capon DOAs: (a) elevation angles , and (b) Azimuth angles.

MUSIC Algorithm

The results obtained by applying the MUSIC algorithm are illustrated in the Table

4.4 and Figure 4.8:

35

Chapter 4. Experiments

Table 4.4: MUSIC detection DOAs

(a) DOA’s for the elevation angles ✓

✓0 = �20 � 0 dB
✓1 = 15 � -12.72 dB
✓2 = 48 � -15.55 dB

(b) DOA’s for the azimuth angles �

�0 = 10 � 0 dB
�1 = 0 � -14.65 dB
�2 = 45 � -13.55 dB

(a)

(b)

Figure 4.7: MUSIC DOAs: (a) elevation angles, and (b) azimuth angles.

When comparing the Capon and MUSIC algorithm for the second scenario, one

36

Chapter 4. Experiments

can observe that as in the linear case, the MUSIC algorithm obtains more accurate

DOAs; however, this case does not present a significant improvement as in the LRA

case.

(a)

(b)

Figure 4.8: Capon and MUSIC comparison: (a) elevation angles, and (b) azimuth
angles.

37

Chapter 4. Experiments

4.1.2 Comparison of: Adaptive Beamforming Algorithm

This section examines the adaptive beamforming studied in Chapter 3.3 with respect

to randomly spaced smart antennas. In addition, in order to demonstrate that these

algorithms can be applied in a random environment, the performance for di↵erent

parameters are shown for the linear case.

LMS Algorithm

The LMS algorithm, as previously stated, converges to the Wiener solution in mean

with a step-size µ, which controls the rate of the convergence and stability of the

algorithm. Three di↵erent µ parameters were considered in order to study this con-

vergence rate in a randomly spaced antenna array: µ1 = 0.01, µ2 = 0.001, and

µ3 = 0.0001.

Figure 4.9: Weight vector for LMS algorithm with µ1 = 0.01, µ2 = 0.001, and
µ3 = 0.0001.

38

Chapter 4. Experiments

The optimum weight vector performance is illustrated in Figure 4.9. One observes

that the smaller the step-size, the slower the convergence. Nevertheless, the step-size

needs to satisfy the bound condition, 0 < µ <

2
µ
max

, in order to have a stable system.

In this concrete case, when µ = 0.01, the system needs less than 50 snapshots in

order to obtain the optimum weight vector; however, when µ = 0.0001, more than

1000 snapshots are required.

The average mean-square error for the di↵erent step-size is shown in Figure 4.10.

The average mean-square error is directly related to the weight vector; when the sys-

tem converges to the optimum weight vector values, the mean-square error asymp-

totically converges to the minimum error.

Figure 4.10: Average mean-square error for LMS algorithm with µ1 = 0.01, µ2 =
0.001, and µ3 = 0.0001.

The adaptive beamforming for the di↵erent step-sizes is shown in Figure 4.11. These

three beamforming actions do not present a significant variation since the last snap-

shot is considered to create the array pattern. However, one can notice that the

39

Chapter 4. Experiments

Figure 4.11: Adaptive beamforming LMS algorithm for ✓0 = 0 �, ✓1 = �30 �, and
✓2 = 30 �.

beamforming for µ = 0.01 obtains better performance in suppressing the interfer-

ence signals.

When considering the variability of the antenna element position due to the

random distribution, a statistical study was applied to analyze the generated beam-

forming according to the antenna position. For this analysis the signal model is

composed by 10-elements randomly spaced along x-axis and 3-narrowband incoming

signals, one desired at ✓0 = 0 �, and interference signals at ✓1 = �20 �, ✓2 = 20 �.

After simulating the implemented LMS algorithm 100 times, the ensuing results are

illustrated in Figures 4.12 and 4.13.

40

Chapter 4. Experiments

Figure 4.12: Antenna elements position for the 100 simulations

Figure 4.13: LMS Adaptive beamforming for the 100 simulations

The average and the average plus and minus the variance LMS adaptive beam-

41

Chapter 4. Experiments

Figure 4.14: The statistical LMS adaptive beamforming for mean and variance

forming are shown in Figure 4.14. Table 4.5 shows the main and secondary minima

positions obtained for each case.

Table 4.5: Minima values

(a) Mean minima

✓0 = �19 � -84.61 dB
✓1 = 19 � -85.87 dB
✓2 = �38 � -74.83 dB
✓2 = 39 � -69.29 dB

(b) Mean + variance minima

✓0 = �19 � -86.83 dB
✓1 = 19 � -74.92 dB
✓2 = �36 � -41.74 dB
✓2 = 37 � -40.29 dB

(c) Mean - variance minima

✓0 = �19 � -71.69 dB
✓1 = 19 � -79.45 dB
✓2 = �45 � -103.6 dB
✓2 = 45 � -92.11 dB

As expected, the obtained radiation patterns have a good performance for suppress-

ing the interference signals at ✓1 = �20 � and ✓2 = 20 � despite the fact that the

minima are not located at the exact position.

42

Chapter 4. Experiments

Leaky LMS Algorithm

The leaky LMS algorithm improves the LMS stability problems by introducing a

leaky coe�cient; thus, the performance of the leaky coe�cient is analyzed in this

section. Three di↵erent leaky coe�cients were considered: � = 0.1, � = 0.3, and

� = 1.

Figure 4.15: Weight vector for leaky LMS algorithm with � = 0.1, � = 0.3, and
� = 1.

When analyzing Figures 4.15, 4.16, and 4.17, one observes that for this case the leaky

coe�cient does not generate a significant variation in the optimum weight vector;

and as a consequence, in the generated beamforming. One of the main reasons for

which this might happens is because the eigenvalues of the system are not very small,

which means that the system is already stable.

43

Chapter 4. Experiments

Figure 4.16: Average mean-square error for leaky LMS algorithm with µ1 = 0.01,
µ2 = 0.001, and µ3 = 0.0001.

Figure 4.17: Adaptive beamforming leaky LMS algorithm for ✓0 = 0 �, ✓1 = �30 �,
and ✓2 = 30 �.

44

Chapter 4. Experiments

Normalized LMS Algorithm

As stated in Section 3.3.3, the normalized LMS algorithm actualizes the weight vec-

tor by normalizing in each iteration with respect to the squared Euclidean norm,

kx(k)k2. As a consequence of this normalization, the step-size for the NLMS al-

gorithm, µ, is not bounded by the input power, 0 < µ < 2. In this section, six

di↵erent step-size are considered for analyzing the performance of the NLMS algo-

rithm: µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 = 0.01, µ5 = 0.001, and µ6 = 0.0001.

Figure 4.18: Optimum weight vector for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 = 0.01,
µ5 = 0.001, and µ6 = 0.0001.

Figure 4.18 illustrates the performance of the NLMS algorithm for the di↵erent step-

45

Chapter 4. Experiments

sizes. One can observe that the bigger the step-size, the faster the converge to the

optimum value. When µ1 = 1.5 is applied, the algorithm only needs 1 iteration in

order to obtain the optimum weight vector; however when the step-size is less than

0.001, more than 1000 iterations are required.

Figure 4.19: Mean square error for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 = 0.01,
µ5 = 0.001, and µ6 = 0.0001.

When analyzing the mean square error, Figure 4.19, one observes that the mean-

square error is stabilized when the optimum weight vector is obtained. Nevertheless,

the obtained MSE for µ = 0.5 is more stable than the obtained MSE for µ = 1.5; it

presents less fluctuations.

The generated array patterns are illustrated in Figure 4.20. Considering these pat-

terns, better beamforming is obtained when µ = 1.5.

46

Chapter 4. Experiments

Figure 4.20: NLMS adaptive beamforming for µ1 = 1.5, µ2 = 0.5, µ3 = 0.1, µ4 =
0.01, µ5 = 0.001, and µ6 = 0.0001.

Generalized Normalized LMS Algorithm

The GNLMS algorithm introduces an adaptive step-size, whose value is updated at

each iteration. In this way, the step-size varies according to dynamics of the input

signal. In order to analyze the performance of the GNLMS algorithm, three di↵erent

initial �(k) were considered: �1(k) = 1, �2(k) = 0.01, and �3(k) = 0.001

The obtained optimum weight vector, mean-square error and the adaptive beam-

forming are shown in Figures 4.21, 4.22, and 4.23 respectively. When analyzing

these figures, one can notice that the di↵erent values of �(k) do not result in evident

changes. As with the leaky LMS algorithm, the cause of this lack of variation may

be caused by the stability of the signal.

47

Chapter 4. Experiments

Figure 4.21: Optimum weight vector for �1(k) = 1, �2(k) = 0.01, and �3(k) = 0.001.

Figure 4.22: Mean square error for �1(k) = 1, �2(k) = 0.01, and �3(k) = 0.001.

Constrained LMS Algorithm

The constrained LMS algorithm obtains the optimum weight vector by applying a

constraint. According to the step-size, µ, the constrained LMS algorithm obtains

48

Chapter 4. Experiments

Figure 4.23: GNLMS adaptive beamforming for �1(k) = 1, �2(k) = 0.01, and �3(k) =
0.001.

di↵erent weight vectors and as a consequence, di↵erent array patterns. In order to

analyze the performance of Frost’s algorithm, four di↵erent step-sizes were consid-

ered: µ1 = 0.1, µ2 = 5, µ3 = 10, and µ4 = 5000. These values were chosen taking

into account the bound limits: 0 < µ <

2
3trace(R

x(k)x(k))
.

The obtained optimum weight vector and beamforming are illustrated in Figures

4.24 and 4.25.

Frost’s algorithm obtains the optimum weight vector at the first iteration. For

this reason, Frost’s algorithm has very precise results; however, the optimum weights

vary according to the step-size. When the step-size is not choose correctly, the ob-

tained beamforming does not satisfy the requirements. When analyzing Figure 4.25,

one can notice that the array pattern obtained with µ = 5000 does not satisfy the

condition of having the desired signal at ✓ = 0 �. The smaller the step-size, the better

the array pattern.

49

Chapter 4. Experiments

Figure 4.24: Optimum weight vector for µ1 = 0.1, µ2 = 5, µ3 = 10, and µ4 = 5000.

Figure 4.25: Constrained LMS adaptive beamforming for µ1 = 0.1, µ2 = 5, µ3 = 10,
and µ4 = 5000.

50

Chapter 4. Experiments

RLS Algorithm

The RLS algorithm introduces a forgetting factor in order to improve the conver-

gence rate and the stability of the system. In this case, three di↵erent forgetting

factor were considered to evaluate the performance of the RLS algorithm: �1 = 0.8,

�2 = 0.9, and �3 = 0.99.

When analyzing the optimum weight vector (Figure 4.26), one notices that for for-

getting factors closer to zero, the optimum weight vector is obtained more quickly;

however, the stability decreases, ergo this system is more unstable. On the other

hand, when the forgetting factor is closer to one, � = 0.99, the optimum weight

vector is obtained after 300 iterations, making the system more stable and obtaining

better beamforming 4.28.

Figure 4.26: Optimum weight vector for �1 = 0.8, �2 = 0.9, and �3 = 0.99.

51

Chapter 4. Experiments

Figure 4.27: Mean square error for �1 = 0.8, �2 = 0.9, and �3 = 0.99.

Figure 4.28: RLS adaptive beamforming for �1 = 0.8, �2 = 0.9, and �3 = 0.99.

52

Chapter 4. Experiments

Variable Forgetting Factor RLS Algorithm

The VFF-RLS algorithm is a modification of the RLS algorithm, which considers

a time-variable forgetting factor, �(k), that varies at each iteration. Three di↵er-

ent initial forgetting factor were considered to evaluate and analyze the VFF-RLS

algorithm: �1(1) = 0.8, �2(1) = 0.9, and �3(1) = 0.99.

As with the RLS algorithm case, the VFF-RLS obtains a more stable system

as the step-size gets closer to the unity. Nevertheless, the VFF-RLS algorithm has

improved the convergence rate for all of the forgetting factors: in the case of �1 =

0.8, the RLS algorithm requires approximately 300 iterations in order to obtain the

optimum weight vector, while the VFF-RLS requires less than 50.

When analyzing the MSE and the adaptive beamforming in Figures 4.30 and 4.31

respectively, one can observe that higher forgetting factors obtain higher MSEs and

a more optimal array pattern. However, if the forgetting factor is close to one, the

system is not able to track the input signal correctly as with lower forgetting factors.

53

Chapter 4. Experiments

Figure 4.29: Optimum weight vector for �1(1) = 0.8, �2(1) = 0.9, and �3(1) = 0.999.

Figure 4.30: Mean-square error for �1(1) = 0.8, �2(1) = 0.9, and �3(1) = 0.999.

54

Chapter 4. Experiments

Figure 4.31: VFF-RLS adaptive beamforming for �1(1) = 0.8, �2(1) = 0.9, and
�3(1) = 0.999.

4.2 Algorithm Robustness Analysis

4.2.1 Rectangular Array vs Random Planar Array

This section will evaluate and analyze the di↵erence between URAs (Uniformly

spaced array) and RPAs. For the URA system, the elements are uniformly spaced;

therefore, the distance between elements must be less than �
2 , d <

�
2 , in order to

satisfy the Nyquist criterion to avoid aliasing. Nevertheless, the RPA elements do

not need to satisfy this criterion in order to be able to have separation between them.

55

Chapter 4. Experiments

The following section, 4.2.2, will provide a complete analysis of this random sepa-

ration and the number of elements between this distance is studied. Furthermore,

it will compare the URA and RPA systems, exploring the possibility of obtaining a

desired or similar array pattern with the RPA system by using less randomly spaced

elements.

For the uniform case, the signal model is composed of 16-isotropic elements with

a constant distance, �
2 , between them and 3 narrowband signals, one desired and

two interference, arriving from (✓0 = 0 �
,�0 = 0 �), (✓1 = �30 �

,�1 = 0 �) and

(✓2 = 30 �
,�2 = 0 �) at a 2-GHz frequency. The random signal model is applied to

the same signal model, but the number of elements is variable.

CASE 1: URA and RPA with 16 elements.

Figure 4.32: Element position for URA vs RPA.

In the first case, Figures 4.32, 4.33, and 4.34 are obtained. The obtained array pat-

tern for the � = 0 � plane satisfies the requirements of suppressing the interference

signals at (✓1 = �30 �
,�1 = 0 �) and (✓2 = 30 �

,�2 = 0 �) by having -25 dB and -21

dB respectively. For the � = 90 � plane, the randomly spaced antenna array has a

less restrictive pattern emitting / receiving with a 60 � main beam.

56

Chapter 4. Experiments

Figure 4.33: Adaptive beamforming � = 0 � plane for URA and RPA.

Figure 4.34: Adaptive beamforming � = 90 � plane for URA and RPA.

57

Chapter 4. Experiments

CASE 2: URA with 16 elements and RPA with 12.

Figure 4.35: Elements position for URA vs RPA.

Figure 4.36: Adaptive beamforming � = 0 � plane for URA and RPA.

When analyzing Figures 4.36 and 4.37, one can observe that the obtained beam-

forming for � = 0 � and � = 90 � demonstrates good performance. The interference

58

Chapter 4. Experiments

Figure 4.37: Adaptive beamforming � = 90 � plane for URA and RPA.

signals are suppressed by -19 dB and -18 dB.

CASE 3: URA with 16 elements and RPA with 8.

Considering the figures obtained for this case, where the randomly spaced array is

composed of half of the URA elements, 8, the plane � = 0 �, (Figure 4.39), demon-

strates adequate performance by suppressing the interference signals with -16 dB

and -19 dB respectively. In this case, the � = 90 � plane transmits / receives along

the entire band, Figure 4.40.

59

Chapter 4. Experiments

Figure 4.38: Elements position for URA vs RPA.

Figure 4.39: Adaptive beamforming � = 0 � plane for URA and RPA.

CASE 4: URA with 16 elements and RPA with 4.

In the last case, the RPA system is composed of one quarter of the URA elements, 4.

When analyzing Figure 4.42 for this particular case, both the rectangular and pla-

nar array obtain very similar beamforming: -31.7 and -31.96 dB for the interference

signal at ✓ = �30 � and -26,49 and -33.69 dB for ✓ = 30 �. Nevertheless, the obtained

beamforming for � = 90 � plane in the RPA is less restrictive than the rectangular

60

Chapter 4. Experiments

Figure 4.40: Adaptive beamforming � = 90 � plane for URA and RPA.

Figure 4.41: Elements position for URA vs RPA.

beamforming.

This section conducts a comparison between URA and RPA systems both for

the same number of elements and for di↵erent number of elements illustrated. One

can observe that the obtained array patterns for the case of fewer elements satisfies

the condition of maximizing the beamforming towards the desired signal while at

the same time suppressing towards the interference signals. However, the obtained

61

Chapter 4. Experiments

Figure 4.42: Adaptive beamforming � = 0 � plane for URA and RPA.

Figure 4.43: Adaptive beamforming � = 90 � plane for URA and RPA.

beamforming � = 90 � does not present any restriction as URA does. As a conse-

quence, depending on the application and the importance of the restriction towards

� = 90 � plane, one can consider using less antenna elements, thus making an RPA

more economic and more simple to implement.

62

Chapter 4. Experiments

4.2.2 The Necessary Elements

Considering a fixed length for the dimensions of an RLA or RPA, one can logically

assume that as the number of elements within this length increases, the beamforming

performance improves. This section considers two di↵erent scenarios in both envi-

ronments (linear and rectangular)in order to demonstrated this assumption.

SCENARIO 1:

In the first case, a 10-� RLA system was considered. The RLS algorithm was applied

for three di↵erent element numbers: N1 = 8, N2 = 20, and N3 = 50. The system is

composed of 3-narrowband signals arriving at ✓0 = �20 �, ✓1 = 15 �, and ✓2 = 56 �.

The obtained beamforming and the element positions are illustrated in Figures 4.50,

4.51, and 4.52.

Figure 4.44: RLS algorithm for N=8 elements.

As expected, the beam pattern’s performance improves as the number of elements

increases, as shown in Table 4.6. The three di↵erent cases satisfy the requirements

for the DOAs; however, from N1 to N2 the performance improves significantly.

63

Chapter 4. Experiments

Figure 4.45: RLS algorithm for N=20 elements.

Figure 4.46: RLS algorithm for N=50 elements.

SCENARIO 2:

For the second scenario, a 10-� RPA system was considered. The LMS algorithm

64

Chapter 4. Experiments

Table 4.6: Obtained Array Pattern Value 1st Scenario (dB):

N1 = 8 N2 = 20 N3 = 50
✓0 = �20 � 0 0 0
✓1 = 15 � -12.51 -46.47 -34.39
✓2 = 56 � -10.18 -19 -32.6

was applied to three di↵erent element numbers: N1 = 8, N2 = 20, and N3 = 50.

The system is composed of 3-narrowband signals arriving at (✓0 = 0 �,�0 = 0 �),

(✓1 = 15 �,�1 = 0 �), and (✓2 = 56 �,�2 = 0 �). The obtained beamforming and the

element positions are illustrated in Figures 4.50, 4.51, and 4.52.

Figure 4.47: LMS algorithm for N=8 elements.

When analyzing Table 4.8, one observes that the beamforming obtained satisfies the

system requirements by suppressing the interference signals while at the same time

enhancing the desired signal.

65

Chapter 4. Experiments

Figure 4.48: LMS algorithm for N=20 elements.

Figure 4.49: LMS algorithm for N=50 elements.

These two scenarios, prove that increasing the number of elements for a fixed length,

improves the overall performance of the system. This demonstration was concluded

66

Chapter 4. Experiments

Table 4.7: Obtained Array Pattern Value 2nd Scenario (dB):

N1 = 8 N2 = 20 N3 = 50
✓0 = 0 � 0 0 0
✓1 = 15 � -17.44 -24.99 -32.72
✓2 = 56 � -18.68 -41.53 -37.8

with an RLA and an RPA environment by applying RLS and LMS algorithms.

4.2.3 Analysis for the Number of Nulls

As Balanis states in his book, Introduction to Smart Antennas : “In theory, with M

antenna elements M � 1 sources of interference can be nulled out, but this number

will normally be lower due to the multipath propagation environment” [1]. Knowing

that mathematically that statement is true due to the fact that the number of equa-

tions is reduced to the number of antennas, in a system composed by M antenna

elements, 1 desired signal and an M-1 interference can be considered, producing M

equations for M unknowns.

This section takes two di↵erent cases into consideration for evaluating and analyzing

this condition for randomly spaced antenna arrays.

CASE 1:

In the first case, a 10-element RLA composed of 11 narrowband signals, two desired

and 9 interference is considered. Desired signals arrive at ✓0 = �45 � and ✓01 = 45 �.

The interference signals arrive at ✓1 = �75 �
✓2 = �60 �, ✓3 = �30 �, ✓4 = �20 �,

✓5 = 0 �, ✓6 = 20 �, ✓7 = 30 �, ✓8 = 60 �, and ✓9 = 75 �.

One can observe by applying the constrained LMS algorithm, that the obtained ar-

ray pattern satisfies the system requirements regarding interference signals; however,

half of the power is lost for the desired signals. Depending on the application and

67

Chapter 4. Experiments

Figure 4.50: Element linear distribution N=10.

Figure 4.51: Constrained LMS algorithm for N=10 elements.

the situation, it may be preferable to lose this power towards the desired signals.

68

Chapter 4. Experiments

Table 4.8: Obtained Array Pattern Values 8-element (dB):

✓0 = �45 � -3.11
✓01 = 45 � -3.34
✓1 = �75 � -16.17
✓2 = �60 � -23.1
✓3 = �30 � -19
✓4 = �20 � -26.57
✓5 = 0 � -23.98
✓6 = 20 � -27.23
✓7 = 30 � -22.65
✓8 = 60 � -22.48
✓9 = 75 � -17.71

CASE 2:

In the second case, the system is composed of 10 isotropic elements randomly dis-

tributed along the x-axis. 11 narrowband signals arrive at the system, 1 desired and

10 interference. ✓0 = 0 �, ✓1 = �68 �
✓2 = �60 �, ✓3 = �50 �, ✓4 = �45 �, ✓5 = �10 �,

✓6 = 25 �, ✓7 = 45 �, ✓8 = 50 �, ✓9 = 68 �, and ✓10 = 72 �.

In this second case, the obtained results are shown in Figure 4.53 and Table 4.9.

The system composed of 10-elements is able to detect 11 signals, suppressing the

10-interference signals and generating a maximum towards the desired signal.

One can observe that the randomly spaced antenna array is able to create a desired

beam pattern when the number of elements is less than the number of incoming

DOAs. However, the obtained beamforming may not be optimal. Depending on the

applications, one may consider it more important to detect more interference signals,

69

Chapter 4. Experiments

Figure 4.52: Element linear distribution N=10.

Figure 4.53: Constrained LMS algorithm for N=10 elements.

thus reducing the optimal beamforming, or to obtain a more precise pattern, thus

decreasing the number of detectable signals. Therefore, this is a compromise between

the number of signals detected and the obtained beamforming.

70

Chapter 4. Experiments

Table 4.9: Obtained array pattern values 8-element (dB):

✓0 = 0 � -1.33
✓1 = �68 � -49.74
✓2 = �60 � -40.58
✓3 = �50 � -32.16
✓4 = �45 � -35.32
✓5 = �10 � -48.96
✓6 = 75 � -17.71
✓7 = 45 � -34.59
✓8 = 50 � -33.37
✓9 = 68 � -34.81
✓10 = 72 � -31.95

71

Chapter 5

Conclusions and Future Work

This study presented an analysis of randomly spaced smart antennas. First, ran-

domly spaced linear and planar signal models were studied. After understanding the

nonuniform model, several DOAs and adaptive beamforming algorithms were theo-

retically analyzed; such as the Capon and MUSIC algorithms for direction of arrival,

and the LMS, normalized LMS, leaky LMS, generalized normalized LMS, RLS and

variable forgetting factor RLS algorithms for the adaptive beamforming.

These algorithms were implemented by using MATLAB R�. The first part of the

experiments analyzes the DOA algorithms (Capon and MUSIC) by considering

two di↵erent scenarios. Both algorithms yield a good results for detecting DOAs;

however, the MUSIC algorithm yields more accurately. Within this section, the per-

formance of adaptive beamforming algorithms also illustrated, while varying the step

size and the forgetting factor for LMS algorithms and RLS algorithms, respectively.

It was shown that the performance of the adaptive beamforming algorithms is di-

rectly proportional to the step-size and forgetting factor. Also, the variability of the

elements due to the randomness was studied for the LMS algorithm. A complete

72

Chapter 5. Conclusions and Future Work

statistical analysis for all the algorithms was not implemented because of computer

limitations; however, this analysis is proposed as a possible extension for future work.

The second section focus on the algorithm robustness. These cases included: a com-

parison between linearly spaced rectangular and randomly spaced antenna arrays, a

demonstration to show that the improvement of radiation patter is directly propor-

tional to the number of elements that compose it, and an analysis of the possible

number of nulls in a radiation pattern. As a summary of these cases, one observed

that a trade o↵ between the number of elements and radiation pattern needs to be

considered. A system with fewer antenna elements may satisfy the necessary require-

ments for suppressing and enhancing the interference and desired signals; however,

the obtained beamforming is not necessary optimized.

Future work includes new implementations of these beamforming and DOA ap-

proaches based on machine learning theory. In particular, it is interesting to change

the well known Least Squares (LS) approach used in all the algorithms presented in

this work by other criteria. Indeed, LS is maximum Likelyhood only in the presence

of Gaussian statistics, but it will lead to suboptimal solutions when the statistics is

nongaussian. Also, in communications and related areas, only small data samples

are often available for training the systems, which can lead to numerically ill-posed

problems and, in general, produce over fitted solutions, a situation that produces

solutions biased from the optimal ones.

Alternative solutions include regularized functionals with non quadratic objective

functions, that can be closer to optimal in non Gaussian environments. A prominent

example of such solutions are SVMs, whose optimization strategy is based on a lin-

ear cost function (actually a function similar to the Huber cost function [21]) plus a

quadratic regularization. This and other solutions also regularized can include non-

73

Chapter 5. Conclusions and Future Work

linear processing that, in many situations, enhance the performance of algorithms.

This is the case of kernel [22] and [23] versions of linear methods.

74

References

[1] C. A. Balanis and P. Ioannides, Introduction to Smart Antennas. Morgan &
Claypool Publishers, 2007.

[2] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition. Wiley-
Interscience, 2005.

[3] S. Haykin, Adaptive Filter Theory (3rd ed.). Upper Saddle River, NJ, USA:
Prentice Hall, 1996.

[4] H. Van Trees, Detection, Estimation, and Modulation Theory. New York: John
Wiley & Sons, 2002.

[5] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” Signal Processing Magazine, IEEE, vol. 13, no. 4, pp. 67–
94, 1996.

[6] R. Haupt, Antenna Arrays:A Computational Approach. Wiley-IEEE Press,
2010.

[7] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceed-
ings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[8] E. Khan and D. T. M. Slock, “Direction of arrival estimation using quadratic
time frequency distributions,” in IST 2003, 12th IST Mobile and wireless com-
munications Summit, June 15-18, 2003, Aveiro, Portugal, (Aveiro, PORTU-
GAL), 06 2003.

[9] A. El Gonnouni, M. Martinez-Ramon, J. Rojo-Alvarez, G. Camps-Valls,
A. Figueiras-Vidal, and C. Christodoulou, “A support vector machine music
algorithm,” Antennas and Propagation, IEEE Transactions on, vol. 60, no. 10,
pp. 4901–4910, 2012.

75

References

[10] L. Gupta and R. P. Singh, “Array signal processing: Doa estimation for missing
sensors,” in Power, Control and Embedded Systems (ICPCES), 2010 Interna-
tional Conference on, pp. 1–4, 2010.

[11] P. Stoica and K. Sharman, “Novel eigenanalysis method for direction estima-
tion,” IEE Proceedings F, Radar and Signal Processing, vol. 137, no. 1, pp. 19–
26, 1990.

[12] B. Widrow, J. McCool, and M. Ball, “The complex lms algorithm,” Proceedings
of the IEEE, vol. 63, no. 4, pp. 719–720, 1975.

[13] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Upper Saddle River,
New Jersey, USA: Prentice-Hall, Inc., 1985.

[14] A. D. Poularikas and Z. M. Ramadan, Adaptive Filtering Primer with MAT-
LAB. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, Florida, USA:
CRC/Taylor & Francis, 2006.

[15] T. van Waterschoot, G. Rombouts, and M. Moonen, “Optimally regularized
adaptive filtering algorithms for room acoustic signal enhancement,” Signal Pro-
cessing, vol. 88, no. 3, pp. 594 – 611, 2008.

[16] K. Mayyas and T. Aboulnasr, “Leaky lms: a detailed analysis,” in Circuits and
Systems, 1995. ISCAS ’95., 1995 IEEE International Symposium on, vol. 2,
pp. 1255–1258 vol.2, 1995.

[17] D. Mandic, “A generalized normalized gradient descent algorithm,” Signal Pro-
cessing Letters, IEEE, vol. 11, no. 2, pp. 115–118, 2004.

[18] O. I. Frost, “An algorithm for linearly constrained adaptive array processing,”
Proceedings of the IEEE, vol. 60, pp. 926–935, Aug 1972.

[19] R. Plackett, “Some theorems in least squares,” Biometrika, vol. 37, pp. 149–157,
1950.

[20] C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable forgetting factor
recursive least-squares algorithm for system identification,” Signal Processing
Letters, IEEE, vol. 15, no. 2, pp. 597–600, 2008.

[21] J. L. Rojo-Álvarez, M. Mart́ınez-Ramón, M. de Prado-Cumplido, A. Artés-
Rodŕıguez, and A. R. Figueiras-Vidal, “Support vector method for robust arma
system identification,” IEEE TRANSACTIONS ON SIGNAL PROCESSING,
vol. 52, pp. 155–164, JAN 2004.

76

References

[22] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[23] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge, UK: Cambridge Univ.
Press, 2000.

77

Appendices

A MATLAB ALGORITHMS 72

A.1 Generate Input Data MATLAB . 72

A.1 DOA MATLAB Algorithms . 74

A.2 Adaptive Beamforming MATLAB Algorithms 75

78

Appendix A

MATLAB ALGORITHMS

Generate Input Data MATLAB

1 F=input (’ S i gna l Frequency (GHz) = ’) ;

2 F=F⇤1⇤10ˆ9; Fs=2.5⇤F;

3 T=1/F ; lambda=(3⇤10ˆ8)/F ;

4 Samples=input (’Number o f Samples = ’) ;

5 t =[0 : Samples�1]⇤(1/Fs) ;

6 N=input (’Number Elements o f the array = ’) ;

7 Jammers=input (’ Int roduce the number o f i n t e r f e r e n c e s i g n a l s

= ’) ;

8 Dx=input (’ Array Dimension x d i r e c t i o n (\ lambda) = ’) ;

9 Dx=Dx⇤ lambda ;

10 Dxnorm=Dx/lambda ;

11 Dy=input (’ Array Dimension y d i r e c t i o n (\ lambda) = ’) ;

12 Dy=Dy⇤ lambda ;

13 Dynorm=Dy/lambda ;

79

Appendix A. MATLAB ALGORITHMS

14 dx=so r t (random(’ Uniform ’ , lambda/N,Dx, 1 ,N�1)) ;

15 dy=so r t (random(’ Uniform ’ , lambda/N,Dy, 1 ,N�1)) ;

16 dx=dx (randperm (l ength (dx))) ;

17 dy=dy (randperm (l ength (dy))) ;

18 dx=[0 ,dx] ;

19 dy=[0 ,dy] ;

20 Theta0=input (’ Angle o f a r r i v a l (AOA) (Degree) =’) ;

21 Theta0=Theta0⇤ pi /180 ;

22 Phi0=input (’ Angle o f a r r i v a l (AOA) Phi (Degree) =’) ;

23 Phi0=Phi0⇤ pi /180 ;

24 Power0=input (’Power d e s i r ed s i g n a l (dB) =’) ;

25

26 Thetai=input (’ Angle o f i n t e r f e r e n c e s i g n a l (Degree) =’) ;

27 Thetai=Thetai⇤ pi /180 ;

28 Phi i=input (’ Angle o f i n t e r f e r e n c e Phi s i g n a l (Degree) =’) ;

29 Phi i=Phi i ⇤ pi /180 ;

30 Poweri=input (’Power i n t e r f e r e n c e s i g n a l (dB) =’) ;

31

32 Theta i i=input (’ Angle o f i n t e r f e r e n c e s i g n a l (Degree) =’) ;

33 Theta i i=Theta i i ⇤ pi /180 ;

34 Ph i i i=input (’ Angle o f i n t e r f e r e n c e Phi s i g n a l (Degree) =’) ;

35 Ph i i i=Ph i i i ⇤ pi /180 ;

36 Power i i=input (’Power i n t e r f e r e n c e s i g n a l (dB) =’) ;

37

38 doas=[Theta0 Thetai Theta i i] ;

39 doas2=[Phi0 Phi i Ph i i i] ;

40 P=[Power0 Poweri Power i i] ;

41

80

Appendix A. MATLAB ALGORITHMS

42 S=cos (2⇤ pi ⇤F⇤ t) ;

43 u=rand (1 , l ength (S)) ;

44 v=rand (1 , l ength (S)) ;

45 u1=rand (1 , l ength (S)) ;

46 v1=rand (1 , l ength (S)) ;

47 I1=sq r t (�2⇤ l og (1�u)) .⇤ cos (2⇤ pi ⇤v) ;

48 I2=sq r t (�2⇤ l og (1�u1)) .⇤ cos (2⇤ pi ⇤v1) ;

49 S igna l =[S ; I (1 , :) ; I (2 , :)] ;

50 A=exp(�1 i ⇤2⇤ pi ⇤dx ’ ⇤ (lambdaˆ�1)⇤ s i n ([doas (:) . ’])�1 i ⇤2⇤ pi ⇤dy

’ ⇤ (lambdaˆ�1)⇤ s i n ([doas2 (:) . ’])) ;

51 S igna l =[S ; I (1 , :) ; I (2 , :)] ;

52 no i s e=sq r t (0.5⇤10ˆ(�20/20))⇤ randn (N, Samples) ;

53

54 X=A⇤diag (sq r t (P))⇤ S igna l + no i s e ;

DOA MATLAB Algorithms

1 %% Capon ALGORITHM

2 R=X⇤X’/ l ength (S) ;

3 Rinv=inv (R) ;

4 theta =(�90:0.1 :90) ⇤ pi /180 ;

5 C1=ze ro s (1 , l ength (theta)) ;

6 f o r t=1: l ength (theta)

7 Alf=exp(�1 i ⇤2⇤ pi /lambda⇤dx ’⇤ s i n (theta (t))) ;

8 C1(t)=(Alf ’⇤ Alf) . / abs (Alf ’⇤Rinv⇤Alf) ;

9 end

10 theta =(�90:0.1 :90) ⇤ pi /180 ;

11 C2=ze ro s (1 , l ength (theta)) ;

81

Appendix A. MATLAB ALGORITHMS

12 f o r t=1: l ength (theta)

13 Alf1=exp(�1 i ⇤2⇤ pi /lambda⇤dy ’⇤ s i n (theta (t))) ;

14 C2(t)=(Alf1 ’⇤ Alf1) . / abs (Alf1 ’⇤R1inv⇤Alf1) ;

15 end

1 %%MUSIC ALGORITHM

2 R=X⇤X’/ l ength (S) ;

3 [Q ,D]= e i g (R) ;

4 [D, J]= so r t (d iag (D) ,1 , ’ descend ’) ;

5 Q=Q (: , J) ;

6 % The s i g n a l e i g env e c t o r s

7 Qsignal=Q (: , 1 : l ength (doas)) ;

8

9 % The no i s e e i g env e c t o r s

10 Qnoise=Q(: , l ength (doas)+1:N) ;

Adaptive Beamforming MATLAB

Algorithms

1 %% ⇤⇤⇤⇤⇤⇤ LMS algor i thm ⇤⇤⇤⇤⇤⇤ %%

2 f o r n=2: l ength (S)

3 e r r o r (n)=S(n)�W(: , n�1) ’⇤Y(: , n) ;

4 W(: , n)=W(: , n�1)+mu⇤(Y(: , n)⇤ conj (e r r o r (n))) ;

5 MSELMS(n)=(e r r o r (n)) ˆ2 ;

6 end

1 %% ⇤⇤⇤⇤⇤⇤ Leaky LMS algor i thm ⇤⇤⇤⇤⇤⇤ %%

2 f o r n=2: l ength (S)

3 y (n)=w(: , n�1) ’⇤Y(: , n) ;

82

Appendix A. MATLAB ALGORITHMS

4 e (n)=S(n)�y (n) ;

5 w(: , n)=(1�mu⇤gam)⇤w(: , n�1)+ mu⇤ conj (e (n)) ⇤(Y(: ,

n)) ;

6 MSE(n)=e (n) ˆ2 ;

7 end

1 %% ⇤⇤⇤⇤⇤⇤ Normalized LMS algor i thm ⇤⇤⇤⇤⇤⇤ %%

2 f o r n=2: l ength (S)

3 muvariable (n)=(mu) /(Y(: , n) ’⇤Y(: , n)) ;

4 e r r o r (n)=S(n)�W(: , n�1) ’⇤Y(: , n) ;

5 W(: , n)=W(: , n�1)+muvariable (n) ⇤(Y(: , n)⇤ conj (e r r o r

(n))) ;

6 MSE(n)=(e r r o r (n)) ˆ2 ;

7 end

1 %% ⇤⇤⇤⇤⇤⇤ Adaptive S i z e Normalized LMS algor i thm ⇤⇤⇤⇤⇤⇤ %%

2 f o r n=2: l ength (S)

3 y (n)=w(: , n�1) ’⇤Y(: , n) ;

4 e (n)=S(n)�y (n) ;%ANLMS

5 c f a c t o r (n)=e (n)⇤e (n�1)⇤Y(: , n) ’⇤Y(: , n�1) ;

6 num=rho⇤mu⇤ c f a c t o r (n) ;

7 den=Y(: , n�1) ’⇤Y(: , n�1)+ beta (n�1) ;

8 beta (n)=beta (n�1)� num/den ;

9 c l e a r num den c f a c t o r y

10 eta (n)=(mu) / ((Y(: , n) ’⇤Y(: , n)) + beta (n)) ;

11 w(: , n)=w(: , n�1)+ eta (n)⇤Y(: , n)⇤ conj (e (n)) ;

12 MSE(n)=e (n) ˆ2 ;

13 end

1 %% ⇤⇤⇤⇤⇤⇤ Constrained LMS algor i thm ⇤⇤⇤⇤⇤⇤ %%

83

Appendix A. MATLAB ALGORITHMS

2 c1=ones (User , 1) ’ ;

3 c2=ze ro s (Jammers , 1) ’ ;

4 c=[c1 c2] ’ ;

5 Pa=eye (N)�A⇤ inv (A’⇤A)⇤A’ ;

6 Wa=A⇤ inv (A’⇤A)⇤c ;

7 W=zero s (N, l ength (S)) ;

8 W(: , 2)=Wa;

9 W1=ze ro s (N, l ength (S)) ;

10 W1(: , 2)=Wa;

11 W2=ze ro s (N, l ength (S)) ;

12 W2(: , 2)=Wa;

13 W3=ze ro s (N, l ength (S)) ;

14 W3(: , 2)=Wa;

15 f o r n=2: l ength (S)

16 Z (: , n)=W(: , n) ’⇤Y(: , n) ;

17 e r r o r (n)=S(n)�Z (: , n) ;

18 W(: , n)=Pa⇤(W(: , n�1)�mu⇤(Z (: , n�1)⇤Y(: , n�1)))+Wa;

19 MSE(n)=(e r r o r (n)) ˆ2 ;

20 end

1 %% ⇤⇤⇤⇤⇤⇤ RLS algor i thm ⇤⇤⇤⇤⇤⇤ %%

2 f o r n=2: l ength (S)

3 z=Rinv⇤Y(: , n) ;

4 g= z/ (lambda1 + Y(: , n) ’⇤ z) ;

5 alpha=S(n)�wRLS(: , n�1) ’⇤Y(: , n) ;

6 wRLS(: , n)=wRLS(: , n�1)+g⇤ conj (alpha) ;

7 y=wRLS(: , n) ’⇤Y(: , n) ;

8 e (: , n)=S(n)�y ;

9 Rinv = (lambda1ˆ(�1)⇤Rinv)� (lambda1ˆ(�1)⇤g⇤Y(: ,

84

Appendix A. MATLAB ALGORITHMS

n) ’⇤Rinv) ;

10 MSE1(n)=e (n) ˆ2 ;

11 end

12 %% ⇤⇤⇤⇤⇤⇤ VFF�RLS algor i thm ⇤⇤⇤⇤⇤⇤ %%

13 f o r n=2: l ength (S)

14 z1=Rinv1⇤Y(: , n) ;

15 g1=z1 / (lambda1 (n�1) + Y(: , n) ’⇤ z1) ;

16 alpha1=S(n)�wRLS1 (: , n�1) ’⇤Y(: , n) ;

17 wRLS1 (: , n)=wRLS1 (: , n�1)+g1⇤ conj (alpha1) ;

18 y1=wRLS1 (: , n) ’⇤Y(: , n) ;

19 e1 (: , n)=S(n)�y1 ;

20 q1 (n)=Y(: , n) ’⇤Rinv1⇤Y(: , n) ;

21 sigmae1 (n)=a⇤ sigmae1 (n�1)+(1�a)⇤e1 (n) ˆ2 ;

22 sigmaq1 (n)=a⇤ sigmaq1 (n�1)+(1�a)⇤q1 (n) ˆ2 ;

23 sigmav1 (n)=b⇤ sigmav1 (n�1)+(1�b)⇤e1 (n) ˆ2 ;

24 gamma1(n)=sigmae1/ sigmav1 ;

25 Rinv1 = (lambda1 (n�1)ˆ(�1)⇤Rinv1)� (lambda1 (

n�1)ˆ(�1)⇤g1⇤Y(: , n) ’⇤Rinv1) ;

26 h1=sigmaq1 (n)⇤ sigmav1 (n) /(c+abs (sigmae1 (n)�

sigmav1 (n))) ;

27 lambda1 (n)=min (h1 , lambdamax1) ;

28 MSERLS1(n)=e1 (n) ˆ2 ;

29 end

85

