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Abstract

Mental disorders are diagnosed on the basis of reported symptoms and externally

observed clinical signs. Nonetheless, these cannot be evaluated by means of clinical

tests. This is the case for schizophrenia, a complex disease characterized by pertur-

bations in language, perception, thinking, social relationships and will that affects

about 1% of the U.S. population. Besides the absence of an objective assessment

of symptoms to diagnose schizophrenia, not even a set of symptoms that uniquely

characterize this disorder have been found.

Given the absence of a biologically-based diagnosis of schizophrenia, several stud-

ies have used different brain imaging techniques in an attempt to characterize the

biological abnormalities found on patients. One of those techniques is functional

magnetic resonance imaging (fMRI), a non-invasive technique that captures brain
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images that reflect neuronal activity. While fMRI studies have been able to provide

significant information about schizophrenia, the acquired data present some techni-

cal challenges. FMRI characterizes the dynamics of brain activity in time for several

brain volumetric elements (voxels), thus generating massive amounts of data. On

the other hand, fMRI studies acquire images from tens or hundreds of subjects, the

rate between the data dimensionality and the sample size being very high. One

way of dealing with this issue is to use univariate approaches to analyze the data,

i.e., analyze each voxel individually. However, such approaches neglect the spatial

correlation in the data.

Machine learning algorithms can be used to do a multivariate analysis of fMRI

data and predict a condition of interest. In addition, the contribution of the analyzed

features (in this case voxels) to the learning task can be estimated. Nonetheless, these

algorithms’ performance is also precluded by the high dimensionality of fMRI data,

making whole-brain approaches prone to poorly fit the data. For this reason, some

studies restricted their analyses to sets of voxels within certain regions of interest

(ROIs). While such approaches are able to solve the dimensionality problem, they

do it at the expense of losing information from other potentially informative regions.

Furthermore, these studies perform an interpretation of the results at a voxel level

and not at a brain region level, which could potentially be richer and more meaning-

ful. Under the assumption that activation is sparsely distributed across the brain,

methods that are capable of performing a sparse region selection would be able to

address the dimensionality problem and provide a better interpretation of brain acti-

vation patterns. Such functionality can be attained by using multiple kernel learning

approaches.

This dissertation proposes a machine learning framework based on a multiple-

kernel data representation to distinguish groups of schizophrenia patients from healthy

controls using fMRI data, the activation patterns of each brain region being char-
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acterized by a kernel. This approach is capable of performing a sparse selection of

informative regions and it is flexible enough to exploit linear or nonlinear relation-

ships among the voxels within them. Two algorithms that follow this framework

are presented: recursive composite kernels (RCK) and ν-multiple kernel learning

(ν-MKL). This work evaluates these algorithms in terms of their prediction perfor-

mance, the validity of the brain regions that are deemed relevant and their capacity

to analyze diverse data sources.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, medicine can detect several diseases by means of objective clinical tests,

as certain biomarkers have been found to be associated to specific pathogenic pro-

cesses. Unfortunately, this is not the case for several mental disorders, which are

diagnosed on the basis of reported symptoms and externally observed clinical signs.

Schizophrenia, a chronic, severe, and disabling illness, is one of such disorders. It

is characterized by deficits in thought processes, perceptions, and emotional respon-

siveness and affects about 1% of the U.S. population [1].

Functional magnetic resonance imaging (fMRI) is a non-invasive technique that

captures brain images that reflect neuronal activity. It has been extensively used

on different experimental tasks and resting-state conditions to better understand

the dynamics of normal and pathological brain function. Specifically, it has been

widely used to study schizophrenia. Despite these efforts, the etiology of this disease

remains unclear.
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Chapter 1. Introduction

Machine learning has emerged as a valuable field of study that can predict a

condition of interest by analyzing the interactions of different regions of the brain.

However, most machine learning based studies applied to fMRI data are restricted

to the analysis of subsets of voxels on regions of interest. Furthermore, these studies

perform an interpretation of the results at a voxel level. Yet, a more robust under-

standing of cognitive processes can be obtained by parcellating whole brain data into

brain regions, since different areas in the brain are specialized for different functions.

This provides the motivation of this study, which supplies the derivation and

implementation of machine learning algorithms that detect the degree of abnormal

activity on functional regions of the brain to achieve a better understanding of the

cognitive processes involved in schizophrenia. By doing so, not only can the proposed

algorithms obtain a more accurate schizophrenia detection rate, but they can also

detect the most informative regions that characterize this disorder.

1.2 Thesis Statement

This PhD dissertation research presents a machine learning framework based on a

multiple-kernel data representation to distinguish groups of schizophrenia patients

from healthy controls using fMRI data. The activation patterns of each brain re-

gion are characterized by a kernel, which enables this approach to perform a sparse

selection of informative regions and estimate the degree of abnormal activity in

them. In addition, this framework is capable of achieving a better characterization

of schizophrenia by analyzing diverse fMRI data sources.

2



Chapter 1. Introduction

1.3 Innovations and Contributions

A list of the primary innovations and contributions of this dissertation includes:

• The development of algorithms capable of detecting linear/nonlinear relation-

ships between voxels within brain regions. These algorithms are capable of

detecting a sparse set of informative regions for schizophrenia characterization,

being less sensitive to the noise inherent to fMRI data.

• The intrinsic capability of these algorithms to analyze data from diverse sources,

such as information retrieved from different fMRI data analysis methods.

• The capacity of these algorithms to better characterize schizophrenia by incor-

porating the phase of the fMRI signal in the classification task.

1.4 Organization

This dissertation is organized as follows:

Chapter 2 provides fMRI background and an overview of machine learning. Later,

it provides a list of feature selection and classification approaches applied to fMRI

and a review of multiple kernel learning algorithms.

Chapter 3 introduces the proposed machine learning framework and explains the

rationale and the formulation of the algorithms devised under this structure. These

algorithms are recursive composite kernels (RCK) and ν-multiple kernel learning

(ν-MKL).

Chapter 4 presents the results obtained by RCK and ν-MKL on a simulated fMRI

dataset where the amount of information present on different brain regions is known

3



Chapter 1. Introduction

beforehand. By knowing this ground truth, the performance of both algorithms can

be properly evaluated.

Chapter 5 presents the results of RCK and ν-MKL on the classification of healthy

controls and schizophrenia patients on two different fMRI datasets acquired from an

auditory task experiment. The first dataset is composed of data generated using

different analysis methods. The study that applied RCK on this dataset is available

in the following publication:

• E. Castro, M. Mart́ınez-Ramón, G. Pearlson, J. Sui, and V. D. Calhoun, “Char-

acterization of groups using composite kernels and multi-source fMRI analysis

data: Application to schizophrenia,” NeuroImage, vol. 58, no. 2, pp. 526–536,

2011.

The second dataset incorporates phase information in addition to fMRI magni-

tude data. A preliminary analysis based on RCK was applied to this dataset. Then,

subjects from the same dataset were selected to better match controls and patients

in terms of age and a more solid framework based on ν-MKL was applied to this

dataset to further improve schizophrenia characterization. The studies which used

the second dataset are available on the following publications:

• E. Castro, M. Mart́ınez-Ramón, A. Caprihan, K. Kiehl, and V. D. Calhoun,

“Complex fMRI data classification using composite kernels: Application to

schizophrenia,” Organization of Human Brain Mapping, 17th Annual Meeting,

Canada, 2011.

• E. Castro, M. Mart́ınez-Ramón, K. Kiehl, and V. D. Calhoun, “A multiple

kernel learning approach for schizophrenia classification from complex-valued

fMRI data,” Organization of Human Brain Mapping, 19th Annual Meeting,

Seattle, 2013.
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Chapter 1. Introduction

• E. Castro, V. Gómez-Verdejo, M. Mart́ınez-Ramón, K. A. Kiehl, and V. D. Cal-

houn, “A multiple kernel learning approach to perform classification of groups

from complex-valued fMRI data analysis: Application to schizophrenia,” Neu-

roImage (in press).

Finally, conclusions, future work, and recommendations are presented on Chapter

6.
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Chapter 2

Literature Review

This chapter provides a discussion of feature selection and classification approaches

applied to fMRI as well as a review of multiple kernel learning algorithms, which

can potentially be applied to fMRI. Prior to the discussion, an overview of fMRI and

machine learning is presented.

2.1 fMRI Background1

This section gives an introduction to the fMRI, as well as an overview of fMRI data

processing.

1The information provided in this section has been mainly retrieved from [2]
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Chapter 2. Literature Review

2.1.1 Introduction to fMRI

BOLD fMRI

FMRI is an MRI procedure that detects changes in blood flow or oxygenation in re-

sponse to task activation. The most popular fMRI technique uses blood oxygenation

level dependent (BOLD) contrast, which is based on the differing magnetic prop-

erties of oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. This

approach takes advantage of the phenomenon that increases in neuronal activity are

accompanied by local increases in perfusion.

The BOLD response dynamics can be explained as follows: Following an increase

in neuronal activity, local blood flow increases. The increase in perfusion, in ex-

cess of that needed to support the increased oxygen consumption due to neuronal

activation, results in a local decrease in the concentration of deoxyhemoglobin. As

deoxyhemoglobin is paramagnetic, a reduction in its concentration results in an in-

crease in the homogeneity of the static magnetic field, which yields an increase in

the MRI signal (see Fig. 2.1).

However, the detected signal changes are small. Relatively low image signal-to-

noise ratio (SNR) of the BOLD effect, head movement, and undesired physiological

sources of variability (cardiac, pulmonary) make detection of the activation-related

signal changes difficult.

The change in the MR signal from neuronal activity is called the hemodynamic

response. This hemodynamic response is temporally delayed relative to neuronal

activation by about 1 to 2 seconds.

7



Chapter 2. Literature Review

Figure 2.1: The BOLD response dynamics. As neural activity increases, local blood
flow increases too. The increase of perfusion, in excess to what is needed to support
increased neuronal oxygen consumption, results on a decrease in the concentration
of deoxyhemoglobin. This, in turn, increases the homogeneity of the static magnetic
field, yielding an increase in the MRI signal. (Extracted from [3])

Acquisition

The MRI signal is acquired as a quadrature signal. That is, two orthogonal “de-

tectors” are used to capture the MRI signal. The two outputs from such a system

are often put in a complex form, with one output being treated as the real part and

the other one as the imaginary part. These are located in the frequency space, the

data on the complex image space being obtained by means of the inverse Fourier

transform.

Even though this complex-valued spatiotemporal data has been shown to contain

physiologic information [4], virtually all fMRI studies analyze the magnitude images

only. The analysis of complex fMRI data is discussed later on chapter 5. For the

moment, only fMRI magnitude data will be discussed.
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Noise

There are several types of signals that can be encoded within the hemodynamic

signals measured by fMRI. They may be grouped into signals of interest and signals

not of interest. The signals of interest include task-related and some others.

The signals not of interest (noise) include physiology-related, motion-related, and

scanner-related signals. Physiology-related signals such as breathing and heart rate

tend to come from the brain ventricles (fluid filled regions of the brain) and areas of

the brain with large blood vessels present, respectively.

Motion-related signals can also be present and tend to be changes across large

regions of the image (particularly at the edges of images). Head motion is a problem

for fMRI acquisition since images are acquired at millimeter scale on absolute spatial

locations. For this reason, even if the subject makes slight head movements of a few

millimeters, this can have drastic effects upon the data.

Finally, there are scanner-related signals that can be varying in time (such as

scanner drift and system noise) or varying in space (such as susceptibility and radio-

frequency artifacts).

2.1.2 fMRI Data Processing

fMRI data processing is performed in several stages, which can be divided in two

main blocks: preprocessing and data analysis. The upcoming sections discuss these

two processing steps.
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Preprocessing

The main preprocessing stages are: slice-timing correction, realignment, coregistra-

tion and normalization. Timing correction is necessary because each slice is typically

acquired sequentially, rather than acquiring all slices simultaneously. This results in

a slight phase shift between the slices and within each volume.

Realignment is required to correct for motion correction. A successful realign-

ment ensures that the source of the signal in one voxel originates from the same

location within each scan. This is usually done by applying rigid-body motion cor-

rection. The goal of coregistration is to obtain an overlap between functional images

and the anatomical image, so that the activation areas are located at their correla-

tion anatomical positions. Finally, since the brain of every individual is different,

normalization is of extreme importance for group analyses. In addition, it helps to

use standardized atlases to identify particular brain regions for comparisons between

studies. Often a spatial smoothing stage is introduced following the normalization

stage to reduce high frequency noise and increase the signal-to-noise ratio.

Data Analysis

FMRI data analysis methods can be broadly classified in two categories: model-based

analysis and non model-based analysis methods. In this case, model-based refers to

an explicit a priori model for the hemodynamic response.

Model-based Model-based methods assume a fixed hemodynamic model over time

for the fMRI data. The most widely used method is an implementation of the general

linear model (GLM), the simplest of which reduces to a simple correlation with a

predicted temporal waveform. Often there is a hypothesized task-related waveform

that may be convolved with an estimate of the hemodynamic point spread function

10
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prior to the analysis. This estimate is known as the hemodynamic response function

(HRF). The primary limitation of this method is that the HRF and other regressors

that can be included in the analysis must be specified a priori. Non model-based

approaches provide additional flexibility and can potentially reveal new information

in the fMRI data.

Non-model based2 This section will focus on a specific non model-based ap-

proach: independent component analysis (ICA).

ICA is an application of blind source separation that attempts to decompose a

data set into statistically independent components. For fMRI, it is usually used to

extract spatial brain networks that are assumed to be systematically non-overlapping.

Furthermore, temporal coherence of brain networks is usually assumed.

ICA is used in fMRI modeling to understand the spatio-temporal structure of the

signal. Most applications of ICA to fMRI look for spatially independent components

that are maximally independent. Given an observation data matrix, the aim of

fMRI component analysis is to factor the data matrix into a product of a set of time

courses and a set of spatial patterns, where the latter are assumed to be independent.

Contrary to GLM, ICA does not attempt to explicitly parameterize the fMRI time

course, which is estimated implicitly in the source separation algorithm (see Fig. 2.2).

Machine Learning and fMRI

The interpretation of fMRI requires analysis of high-dimensional, multivariate data.

The inherent challenges of fMRI data gave rise to the application of machine learning

algorithms to train classifiers to decode stimuli, mental states, behaviors and other

variables of interest from it [6]. In order to provide a better understanding of the

2The information provided in this section has been mainly extracted from [5]
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Figure 2.2: A comparison of GLM and ICA. To apply GLM (top) one needs a model
for the fMRI time course, whereas in spatial ICA (bottom), there is no explicit tem-
poral model for the fMRI time course (this is estimated along with the hemodynamic
source locations). (Extracted from [5])

analyzed problem, machine learning is usually applied along with feature selection.

The next section provides an overview of machine learning.

2.2 Introduction to Machine Learning3

Our world can be characterized by very diverse kinds of data, where any entity on it

can be represented as a datum. More specifically, a datum (or data point) is a set of

3The information provided in this section has been mainly retrieved from the following

textbooks: [7], [8] and [9]
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numerical and/or categorical features that characterizes an object, a subject or an

observation of a physical phenomenon.

This concept can be better visualized by means of an example. Let us assume

that we need to characterize motor wheeled vehicles. To characterize a single vehicle,

which would represent a data point, certain features would need to be extracted from

it. These could be its color, average speed, number and size of wheels, number of

occupants, size, weight, engine noise level, horsepower, etc.

Let us further assume that the task of interest is to identify the category to

which the observed vehicle belongs to based on its data representation. In other

words, classify the vehicle as a motorcycle, a car, a bus or a truck, being this an

arbitrary categorization. Such a task would be trivial for an individual living on

the city, who would do a one-to-one association between the vehicle and its category

at first glance by instantly processing the information embedded on these features.

However, this task would be much more complex if it had to be done for all the

vehicles commuting at a given location of a highway on certain time periods to

estimate its traffic congestion and the suitability of its pavement material. As the

number of vehicles to be analyzed increases, the problem becomes less tractable for a

human being. It would become even more intricate if this had to be done at multiple

locations of this highway. Employing several thousands of people to perform such

an assignment would be out of the question, as it would be cost-prohibitive and

inaccurate. Machine learning would be an effective and sensible solution to this

problem.

So what exactly is machine learning? By definition, it is a discipline related to the

construction and study of systems that can learn data, where learning involves re-

trieving information from the data to generate knowledge. Let us revisit our example

to better understand these concepts.

13
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Figure 2.3: Machine learning generates knowledge from the input data.

Recall the aforementioned features that would be used to represent a vehicle.

These were: color, average speed, number and size of wheels, number of occupants,

size, weight, engine noise level and horsepower. Assuming an automated system

could estimate a vehicle’s horsepower, this feature would most probably be highly

correlated to the engine noise level and its average speed. Similarly, the size and

weight of the vehicle would be closely related to its wheel’s size and its number of

wheels. In fact, one or more of these features may be redundant, and therefore un-

necessary to increase the amount of available information to characterize the vehicle

properly. On the other hand, the number of occupants is an irrelevant feature as

it is not strictly related to the loading capacity of the vehicle, thus giving no help-

ful information to determine the vehicle’s category. Likewise, the color provides no

information whatsoever about the class of the vehicle.

The next concept is knowledge. What kind of knowledge is it obtained with this

task? This knowledge can be estimated using two criteria:

• The capacity of the trained machine to determine the category of a new, unseen

vehicle.

• The capacity of the machine to determine which features are relevant to prop-
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erly identify the different vehicle categories.

2.2.1 Types of Machine Learning

There are several branches of machine learning, out of which two will be discussed

here. In supervised learning, the goal is to learn a mapping from inputs x to outputs

y, given a labeled set of input-output pairs D = {(xi, yi)}i=1...N . An instance of

supervised learning is the previously discussed vehicle classification task. In this

setup, D is called the (labeled) training set, training data or training sample, and N

is the number of training observations. In addition, xi lies in some input space X

and yi ∈ Y , the output space.

In the simplest setting, each training example xi (also called pattern or input

vector) is a d-dimensional vector of features that represent an object (xi ∈ Rd). In

general, however, xi could be a complex structured object, such as a sentence, an

email message, a molecular shape, etc.

Similarly the form of the output or response variable can in principle be anything,

but most methods assume that yi is a categorical or nominal variable from some finite

set, Y = {1, . . . , C}, or that yi is a real-valued scalar (Y = R). When yi is categorical,

the problem is known as classification or pattern recognition, and when yi is real-

valued, the problem is known as regression. In the case of classification, the elements

of Y are called class labels, or classes, for short. In fact, yi is usually referred to as

the class associated to xi.

The second main type of machine learning is unsupervised learning. Here we

are only given inputs, D = {xi}i=1...N , and the goal is to find hidden structure

in unlabeled data. A slight change in the proposed vehicle classification task can

provide an instance of unsupervised learning. Let us assume that instead of capturing

information at different locations of the highway, the vehicle identification approach
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would use satellite images of the highway to represent the vehicles. The training set

would not provide any information about the types of vehicles on the road, so the

machine would need to discover the four types of vehicles (motorcycles, cars, buses

or trucks) by generating four data clusters, the vehicles within a cluster being more

similar to those on the same cluster than the rest of the vehicles in the training set.

Such an approach is known as clustering.

In what follows, this section will only discuss supervised learning. More precisely,

it will be focused in classification.

2.2.2 Classification Problem

In classification the goal is to learn a mapping from inputs x to outputs y, where

Y = {1, . . . , C}, with C being the number of classes. If C = 2, this is called binary

classification (in which case we assume Y = {±1}); if C > 2, this is called multi-class

classification.

One way to formalize the problem is by using a function approximation. Given

a class of parametric functions f(x,θ) we have

y = f(x,θ) + ε, (2.1)

where ε is the approximation error. The goal of learning is to estimate the optimal

parameters θ∗ that minimize a loss function l(θ, ε) on the training sample, i.e.,

θ∗ = arg min
θ

N∑
i=1

l(εi,θ), (2.2)

where the best function approximation is defined by f(x,θ∗).

A good classifier is capable of achieving good generalization, which is the ability

of the estimator to perform accurately on new, unseen examples after being trained.
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Example: a simple classifier

Let us assume that the training data is linearly separable in input space X , which

for simplicity is assumed to be Rd. Then, a linear classifier, which predicts the class

of an input vector based on the value of a linear combination of its features, would

give the following estimate:

ŷ = sgn(f(x,w, b)) = sgn(wTx + b). (2.3)

Since this is a non-differentiable function, an approximation of the form (2.1) is used

y = f(x) + ε

= wTx + b+ ε,
(2.4)

where ε is the residual of the fitted value of x. One way of solving this problem is to

find the least-squares solution, i.e., the solution that minimizes the expected value of

the residual, which is estimated in the training sample as the the sum of the squared

residuals for all the observations in it. Equivalently,

minE
[
ε2
]

= minE
[
(y −wTx− b)2

]
= min

N∑
i=1

(yi −wTxi − b)2.
(2.5)

A more compact representation of (2.4) can be obtained by rewriting it as

y = f(x) + ε

= w̃T x̃ + ε,
(2.6)

where w̃ = [wT b]T and x̃ = [xT1]T . Let X̃ be a (d + 1) × N matrix where each

column is an input vector of the training set, the last row being a vector of elements

equal to 1. Then (2.6) can be expressed as

y = X̃T w̃ + ε, (2.7)
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where y = {yi}Ni=1 is the vector with the classes of each data point in the training

set and ε is the residuals vector. Then, the least squares estimate of the coefficients

of the linear classifier is

w̃ =
(
X̃X̃T

)−1

X̃y (2.8)

By virtue of the representer theorem [10], w̃ can be expressed as a function of

the training examples

w̃ =
N∑
i=1

αix̃i = X̃α, (2.9)

where α = {αi}Ni=1. By incorporating (2.9) in (2.8), the coefficients αi can be esti-

mated by

X̃α =
(
X̃X̃T

)−1

X̃y

X̃X̃T X̃α = X̃y

X̃T X̃α = y

α =
(
X̃T X̃

)−1

y.

(2.10)

If (2.9) is replaced in (2.6) we get

f(x) = αT X̃T x̃ =
N∑
i=1

αix̃
T
i x̃ =

N∑
i=1

αix
T
i x +

N∑
i=1

αi, (2.11)

so the linear classifier can be expressed in terms of a dot product between the training

examples xi and the test example x.

2.2.3 Kernel Functions and Hilbert Spaces

It has been shown in the previous section that the predicted class of an unseen

example x using a least-squares classifier can be estimated by computing the dot
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product between x and the the training examples xi. A geometrical interpretation

of the dot product is that it computes the cosine of the angle between the vectors.

In that sense, the dot product estimates the similarity between two vectors. By

the same token, it can be said that the least-squares classifier estimates the class

associated to x based on its similarity to the training examples.

Broadly speaking, a kernel function is analogous to the dot product in the sense

that given two vectors x, x
′
, it outputs a scalar characterizing their similarity [11].

That is the intuitive idea behind kernels used in the context of machine learning.

The remainder of this section provides some definitions required to define Hilbert

spaces. Then, an overview of kernels is presented, after which a formal description

of kernels and related concepts is provided. Finally, these concepts are incorporated

in the previously introduced least-squares classifier example.

Hilbert spaces4

Definition 1. (Norms and Normed spaces). Let H be a vector space over the field

R of real scalars. Then H is a normed vector space if for every f ∈ H there is a

real number ‖f‖, called the norm of f , such that:

(a) ‖f‖ ≥ 0,

(b) ‖f‖ = 0 if and only if f = 0,

(c) ‖cf‖ = |c| ‖f‖ for every scalar c, and

(d) ‖f + g‖ ≤ ‖f‖+ ‖g‖

Definition 2. (Convergent and Cauchy sequences). Let H be a normed space, and

let {fn}n∈N be a sequence of elements of H.

4The information provided in this section has been retrieved from [12]
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(a) {fn}n∈N converges to f ∈ H if limn→∞ ‖f − fn‖ = 0, i.e., if

∀ε > 0, ∃N > 0, ∀n ≥ N , ‖f − fn‖ < ε.

(b) {fn}n∈N is Cauchy if

∀ε > 0, ∃N > 0, ∀m,n ≥ N , ‖fm − fn‖ < ε.

Definition 3. (Completeness). A normed vector space H which does have the prop-

erty that all Cauchy sequences are convergent is said to be complete.

Definition 4. (Inner products and inner product spaces). Let H be a vector space.

Then H is an inner product space if for every f, g ∈ H there exists a real number

〈f, g〉 called the inner product of f and g, such that:

(a) 〈f, f〉 is real and 〈f, f〉 ≥ 0.

(b) 〈f, f〉 = 0 if and only if f = 0.

(c) 〈g, f〉 = 〈f, g〉,

(d) 〈af1 + bf2, g〉 = a〈f1, g〉+ b〈f2, g〉.

Each inner product determines a norm by the formula ‖f‖ = 〈f, f〉1/2. Hence every

inner product space is a normed vector space.

Definition 5. (Hilbert space). A complete inner product space is called Hilbert

space.

Overview of kernels

Generally speaking, a Mercer’s kernel in a Hilbert space H is a function that de-

termines the inner product between vectors in H. These vectors are maps of input

vectors in X , where the mapping function can be nonlinear. The possibility of using

nonlinear transformations of the data gives the analytical power to kernel methods.
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Kernel methods for machine learning have become an attractive alternative to

traditional methods in machine learning for three main reasons: First, if the feature

space is rich enough, then simple linear estimators with decision functions such as

hyperplanes and half-spaces in feature space may be sufficient. For instance, to clas-

sify the examples in Fig. 2.4, a nonlinear decision boundary is needed, but once the

points are mapped to a 3-dimensional space a hyperplane suffices. Second, kernels

allow us to construct machine learning algorithms in Hilbert space H without explic-

itly computing the mapping of the input vectors. This makes it possible to kernelize

linear algorithms provided that they can be expressed in terms of dot products be-

tween the data. Third, there is no need to make any assumptions about the input

space X other than for it to be a set. This makes it possible to compute similarity

between discrete objects such as strings, trees and graphs.

Kernel functions and mappings

Kernel methods rely on the properties of kernel functions, which are inner products of

vectors mapped to Hilbert spaces through implicit (not necessarily known) mapping

functions. The conditions that need to be met by kernel functions for this setting to

hold are described in this section.

Reproducing kernel Hilbert spaces The notion of reproducing kernel Hilbert

spaces (RKHS) through the reproducing property is explained here. Kernel proper-

ties following from RKHS will then be discussed.

Let H be a Hilbert space, whose elements are functions, that is provided with an

inner product < ·, · >. Let f(·) be an element of this space and f(x) its value at a

particular argument. We will assume that the arguments belong to the Euclidean

space, i.e., x ∈ Rd
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(a) (b)

Figure 2.4: Nonlinear mapping from input space to feature space. On the input space
(a) the examples are not linearly separable. By choosing a map ϕ : R2 → R3 such
that z = ϕ(x) = [x2

1

√
2x1x2 x

2
2]T , a linear decision boundary in feature space (b)

splits patterns from both classes. It can be shown that this feature space possesses
the structure of an inner product that can be characterized by a kernel function

k(x,x
′
) = 〈x,x′〉2 = 〈ϕ(x), ϕ(x

′
)〉. (Extracted from [13])

Definition 6. (Reproducing Kernel Hilbert Space). A Hilbert space H is said to be

an RKHS if [14]:

1. The elements of H are real valued functions f(·) defined on any set of elements

x.

2. For every element x, f(·) is bounded.

The name of these spaces come from the so called reproducing property. Indeed,

in an RKHS H, there exists a function k(·, ·) such that

f(x) =< f(·), k(·,x) >, f ∈ H (2.12)
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by virtue of the Riesz Representation theorem [15]. The function k(·, ·) is called

kernel.

It can be shown that the kernel k(·, ·) that generates the RKHS is a symmetric

and positive definite function. In addition, this kernel fully generates the space.

Furthermore, for a given kernel there is a unique RKHS; conversely, every RKHS

contains a single kernel.

The Mercer’s theorem The Mercer’s theorem is of crucial importance because

it expresses the analytical power of kernel methods. It embeds the idea behind the

so called kernel trick, which makes it feasible to solve several nonlinear optimization

problems through the construction of kernelized counterparts of linear algorithms.

Assume that k(·, ·) is a continuous kernel function that satisfies the properties

of an RKHS, which have been recently discussed. Assume further that the kernel

belongs to the family of square integrable functions. Also, let us define the following

integral operator:

Lkf(x) =

∫
x

K(x, z)f(z)dµ(z), (2.13)

µ being any Borel measure. The eigenfunctions ϕk of the operator form an orthonor-

mal basis such that the corresponding eigenvalues λk form a nonnegative sequence.

Theorem 1. (Mercer’s) The aforementioned kernel can be expressed as

k(x1,x2) =
∞∑
k=1

λkϕk(x1)ϕk(x2) (2.14)

where the series converges uniformly for each pair x1,x2.

It follows from the Mercer’s theorem that a mapping ϕ : X → H can be expressed

as a (possibly infinite dimension) row vector

ϕ(x) = {λ1/2
i ϕi(x)}∞i=1 (2.15)
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From now on, we will only consider the case where X = Rd. The inner product

between two of these maps ϕ(x1) and ϕ(x2) is defined then as the kernel function of

vectors x1 and x2 as

ϕ(x1)Tϕ(x2) =
∞∑
i=1

λiϕi(x1)ϕi(x2) = k(x1,x2). (2.16)

The Mercer’s theorem shows that a mapping function into an RKHS and an inner

product k(·, ·) exist if and only if k(·, ·) is a positive definite function. Therefore, if a

function X ×X → R is proven to be positive definite, then it is the kernel of a given

RKHS.

Regularization properties of kernels

Tikhonov regularization Regularization methods are designed to turn an ill-

posed problem into a well-posed one such that a stable solution exists. A problem is

well-posed if it meets 3 conditions: a solution to the problem exists, this solution is

unique and it is stable to perturbations.

In particular, if a parameter estimation problem does not meet those conditions

it is said to be unstable. Tikhonov minimization [16] is a regularization method that

assures that such problems are well-posed.

Assume that we want to find a predictor f(x) according to (2.4). Then the

regularization procedure consists of constructing the functional

L =
N∑
i=1

V (f(xi), yi) + CR (f) , (2.17)

where V is a cost function over the empirical error of the estimation procedure, and R

plays the role of a regularizer over the parameters of the predictor f . While the first

term of the functional is used to choose the parameters that minimize the training

error, the regularizer is used to account for a smooth solution.
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The next section shows the extension of regularization to the field of RKHS.

The representer theorem The representer theorem [10] generalizes the idea of

regularization to RKHS. This theorem provides two important findings. First, that

given a training set, a solution of the regularization functional exists, which can be

expressed as a linear combination of the maps of the training data points on the

RKHS. Second, the smoothness of the solution is carried out by the particular kernel

used to solve the estimation problem.

Theorem 2. Assume an RKHS H provided with a kernel k(·, ·), and a dataset

{xi, yi}Ni=1. Let us define an estimation problem as the selection of the function

f ∗ over a given family of functions F

F =

{
f(·) =

∞∑
i=1

βik(·,xi), βi ∈ R

}
(2.18)

that better approximates the data. Assume an arbitrary convex function V (f(xi), yi)

and a non-decreasing function R. Then, the function f ∗ that minimizes the functional

f ∗ = arg min
f

N∑
i=1

V (f(xi, yi)) +R(‖f‖) (2.19)

has a representation of the form

f ∗(·) =
N∑
i=1

αik(·,xi) (2.20)

This is, the function that minimizes functional (2.19) is a linear function of inner

products between training data points mapped into the RKHS.
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A simple classifier revisited

Recall the least-squares classifier presented in section 2.2.2. The estimator can be

expressed as

f(x) =
N∑
i=1

αi〈xi,x〉+
N∑
i=1

αi, (2.21)

which is defined by a dot product between data points.

According to Mercer’s theorem, if a kernel function k : Rd × Rd → R is positive

definite, then there exists a mapping function ϕ : Rd → H, where H is an RKHS.

Furthermore, k(·, ·) is the inner product of H, such that ϕ(x1)Tϕ(x2) = k(x1,x2).

By replacing the dot product in (2.21) by this kernel function we get

f(x) =
N∑
i=1

αik(xi,x) +
N∑
i=1

αi. (2.22)

This kernelized version of the linear least-squares classifier implicitly maps the train-

ing data points to H. By doing so, the linear classifier can be extended to a nonlinear

one with a nontrivial decision boundary.

2.2.4 Feature scaling

One thing to keep in mind is that features represent different properties of an object

and as such, their values are most probably in different numeric ranges. Since some

kernels depend on dot products of input vectors, features with big values may dom-

inate those in smaller numeric ranges. For this reason, it is advisable to do feature

scaling (normalization) prior to training the classifier.

There are several approaches to do feature scaling, among which the most widely

used is feature standardization. This procedure makes the values of each feature in

the data have zero mean and unit standard deviation.
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2.2.5 Introduction to Support Vector Machines

From this point on we will change the notation used to represent the inner product

for consistency purposes. Hence given x, z ∈ H, where H is an inner product space,

the inner product of x and z is represented as

〈x, z〉 := xTz (2.23)

Consider a binary classification task, where we are given N labeled training data

(xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}. Our goal is to find a linear decision boundary

parameterized by (w, b) with w ∈ Rd and b ∈ R such that wTxi + b > 0 whenever

yi = +1 and wTxi + b < 0 whenever yi = −1. Based on the rationale used to define

the linear decision boundary, the separating hyperplane that determines it is defined

by Π0 := wTx + b = 0.

Let us assume that w is scaled such that mini={1,...,N}
∣∣wTxi + b

∣∣ = 1. If that

is the case, the closest positive example to the separating hyperplane lies in Π1 :=

wTx + b = 1; similarly, the closest negative example lies in Π−1 := wTx + b = −1

(see Fig. 2.5). Furthermore, every training example would satisfy yi(w
Txi + b) ≥ 1.

Also let d+(d−) be the distance from Π1(Π−1) to the separating hyperplane. Define

the margin of a separating hyperplane to be d+ +d−. For the linearly separable case,

support vector machines (SVMs) look for the separating hyperplane that achieves

the maximum margin. The distances from Π1 and Π−1 to the separating hyperplane

equal |1− b| / ‖w‖ and |−1− b| / ‖w‖, respectively. Hence d+ = d− = 1/ ‖w‖ and

the margin is 2/ ‖w‖5. The problem of maximizing the margin therefore reduces to

min
w,b

1

2
‖w‖2

s.t. yi
(
wTxi + b

)
≥ 1 ∀i.

(2.24)

5Text excerpt extracted from [17]
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Figure 2.5: A linearly separable toy binary classification problem of separat-
ing the diamonds from the circles. The pair (w, b) is normalized to ensure
mini={1,...,N}

∣∣wTxi + b
∣∣ = 1. (Extracted from [9])

In deriving Eq. 2.24, we implicitly assumed that the data is linearly separable,

that is, there is a hyperplane which correctly classifies the training data. Such a

classifier is called a hard margin classifier. If the data is not linearly separable, then

Eq. 2.24 does not have a solution. To deal with this situation Cortes and Vapnik

[18] introduced non-negative slack variables ξi to relax the constraints:

yi(w
Txi + b) ≥ 1− ξi. (2.25)

The work in [18] also required the reformulation of the optimization problem to

penalize large values of ξi. This is done through this modified optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi
(
wTxi + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i,

(2.26)

28



Chapter 2. Literature Review

where C > 0 is a penalty parameter. The resulting classifier is said to be a soft

margin classifier and Eq. 2.26 is called the SVM primal problem.

It can be demonstrated that the SVM dual problem can be expressed in terms

of a dot product. As a consequence, an SVM can be kernelized, i.e., there exists a

mapping ϕ : Rd → H, where H is a Hilbert space whose inner product is defined by

k(x,x
′
) = 〈ϕ(x), ϕ(x

′
)〉. In essence, Eq. 2.26 can be extended to

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi
(
wTϕ(xi) + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i.

(2.27)

The objective function and the inequality constraints can be combined in the

Lagrangian as

LP =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi
{
yi
[
wTϕ(xi) + b

]
− 1 + ξi

}
−

N∑
i=1

µiξi. (2.28)

Finally, the application of the Karush-Kuhn-Tucker (KKT) optimality conditions on

the Lagrangian yield the following dual formulation:

min
α

1

2

N∑
i,j=1

αiαjyiyjk(xi,xj)−
N∑
i=1

αi

s.t. 0 ≤ αi ≤ C ∀i
N∑
i=1

αiyi = 0.

(2.29)

Different optimization strategies have been proposed for this problem. The most

popular approach to solve this optimization problem is the Sequential Minimal Op-

timization [19]. This algorithm works on the dual formulation and breaks the overall

quadratic problem (QP) of (2.29) on smallest subproblems composed of two La-

grange multipliers at each step. Solving for two Lagrange multipliers can be done

analytically, so numerical QP optimization is avoided entirely.
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Another optimization strategy, the iterative re-wighted least squares (IRWLS),

rearranges (2.28) to incorporate a weighted least squares error term on the formu-

lation, these weights being updated iteratively. This modified primal formulation is

used to solve linear SVMs. For non-linear variants, this method uses the dual. Fi-

nally, [20] proposes a method to find the SVM solution in the primal and highlights

the benefits of doing so when the machine needs to be trained with large amounts of

data.

In summary, solutions in the primal are advantageous when linear kernels are

used for a large scale optimization problem. In other cases, it is usually better to

solve the SVM using the dual formulation.

2.3 Feature Selection and Classification

2.3.1 Feature Selection

One of the main difficulties of applying pattern recognition to certain problems is that

the ratio between the number of collected features and the size of the training sample

can be very high. The significant difference between the data dimensionality and the

number of available observations can affect the generalization performance of the

classifier or even preclude its use due to the low average information per dimension

present in the data. Thus, it is desirable to reduce the data dimensionality with

an algorithm that loses the least amount of information possible. This approach is

consistent with the assumption that the data contains many redundant or irrelevant

features.

There are two ways of performing dimensionality reduction: feature extraction

and feature selection. The former approach transforms the input data into a reduced

representation set of features to extract the relevant information of the data. On
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the other hand, feature selection picks a subset of relevant features on the input

space. One advantage of feature selection is that it keeps the original features, thus

providing better interpretability of the analyzed data.

Feature selection methods can be divided into three categories: filters, wrappers

and embedded methods [21]. Filters select a subset of features as a preprocessing

step to classification. On the other hand, wrappers and embedded methods use

the classifier itself to find the optimal feature set. The difference between them is

that while wrappers make use of the learning machine to select the feature set that

increases its prediction accuracy, embedded methods incorporate feature selection as

part of the training phase of the learning machine.

2.3.2 Application to fMRI

As it has been mentioned on section 2.1.2, fMRI studies have to deal with the high

dimensionality of the data, which is retrieved from a small set of subjects. Therefore,

feature selection is well-suited for the analysis of fMRI data. For this reason, different

methods that incorporate feature selection have been applied on this field. We briefly

mention some of them in what follows.

Mourão-Miranda et al. [22] proposed the application of temporal compression

and space selection to fMRI data from a visual experiment. This space selection

procedure extracted a subset of voxels with statistically significant activation for the

analyzed tasks, which is a clear example of a filtering approach. Similarly, Haynes

and Rees [23] applied filtering by selecting the top 100 voxels that had the strongest

activation in two different visual stimuli prior to the application of classification. In

both cases, these methods applied univariate strategies to perform feature selection.

This is a valid strategy that also has a fast execution time, but it does not account

for the multivariate relationships between voxels.
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Another work [24] used a hybrid filter/wrapper approach by applying univariate

voxel selection strategies prior to using recursive feature elimination SVM (RFE-

SVM) [25] on both simulated and real data. RFE-SVM provides an alternative

solution to univariate approaches, as it performs a multivariate ranking of features,

discarding the least informative one at each iteration of the algorithm. In this case,

the optimal feature subset is the one that achieves the best classification accuracy

on an independent validation dataset. Nonetheless, it is a computational intensive

method since it requires the SVM to be retrained M times, where M is the data

dimensionality. While it is possible to remove several features at a time, this could

come at the expense of classification performance degradation [25].

Another possibility is to use embedded feature selection methods such as the one

presented in [26], which has a smaller execution time since it does not require to be

repeatedly retrained. One class of algorithms that also fits the characterization of

embedded feature selection methods is multiple kernel learning. Despite its potential

to detect sets of relevant features, multiple kernel learning has not been applied to

fMRI data to date. The following section provides an introduction to multiple kernel

learning and reviews the evolution of this field.

2.3.3 Multiple Kernel Learning

Overview

Multiple kernel learning (MKL) algorithms aroused as developments on SVM and

other kernel-based methods emphasized the need to consider multiple kernels, or

parameterizations of kernels, and not a single fixed kernel. The incorporation of

multiple kernels provides a flexible framework to solve practical problems that often

involve multiple, heterogeneous data sources.

32



Chapter 2. Literature Review

Another issue of single-kernel approaches is that the resulting decision function is

hard to interpret, making it difficult to extract relevant knowledge about the problem

at hand. If a distinct set of features is used by each kernel and a sparse weighting

of the kernels is achieved, then one can quite easily interpret the resulting decision

function.

Camps et al. [27] evaluated composite kernels, a combination of kernels from

different data sources, as an unweighted or a convex linear combination of kernels

applied to spatial and spectral information for hyperspectral image classification.

The approach presented in [28] is one of the first that tried to find an optimal

combination of kernels on a real-world data set and embedded the kernel coefficients

estimation on its optimization formulation. Based on a formulation presented in

[29], kernels were generated using different genetic data sources such as gene ex-

pression data, known protein-protein interactions and others, casting this problem

as a convex optimization one (semi-definite programming). If the kernel coefficients

were constrained to be non-negative, the semi-definite program (SDP) reduced to

a quadratically-constrained quadratic program (QCQP). They proposed the appli-

cation of seven kernel functions to generate kernel matrices depending on the data

source and claimed that their SDP-based approach performed better than a classifier

trained using a naive, unweighted combination of kernels.

Later, Bach et al. [30] proposed a dual formulation of the QCQP presented in

[29] as a second-order cone programming (SOCP) problem [31], which can be solved

using sequential minimal optimization (SMO) techniques [32].

The rationale of the proposed algorithm is introduced through the formulation of

a linear classifier that is an extension of the linear SVM. Specifically, given n labeled

data (xi, yi), where xi ∈ X and yi ∈ {−1, 1}, the input space X = Rk is decomposed

as the product of m blocks: Rk = Rk1 × · · · ×Rkm . The idea is to find a classifier of
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the form y = wTx + b such that w is block-sparse. In order to achieve a classifier

with maximum margin and block-sparsity, the structural risk term ‖w‖2 of the SVM

formulation (see Eq. 2.26) is replaced by (
∑m

j=1 dj ‖wj‖)2, which is the square of a

weighted block l1-norm of w. From this primal problem, the authors derived the

following dual problem:

min
1

2
γ2 −αTe

w.r.t. γ ∈ R, α ∈ Rn

s.t. 0 ≤ α ≤ C, αTy = 0∥∥∥∥∥∑
i

αiyixji

∥∥∥∥∥ ≤ djγ, ∀j ∈ {1, . . . ,m},

(2.30)

where e ∈ Rn is a vector of all ones and the resulting formulation is an SOCP. After

the analysis of the KKT optimality conditions, they demonstrated that the solution

of this problem yielded that ∃ηj : wj = ηj
∑

i αiyixji, where ηj = 0 for some values

of j. In other words, by solving the dual problem w was block-sparse.

Then they removed the assumption that the classifier worked directly on the

input space X and assumed that each input vector was mapped to a Hilbert space

via a mapping ϕ : X → H. They also assumed that, in correspondence with their

block-based formulation of the classification problem, ϕ(x) had m blocks ϕ(x) =

[ϕ1(x), . . . , ϕm(x)] and further assumed that this mapping was performed implicitly

using kernel functions kj(·, ·) for each block. Finally, they defined Kj as the Gram

matrices generated by the available input vectors for each kernel function kj(·, ·). By

doing so, they generalized their approach on feature space with this formulation

min
1

2
γ2 −αTe

w.r.t. γ ∈ R, α ∈ Rn

s.t. 0 ≤ α ≤ C, αTy = 0

(αTD(y)KjD(y)α)1/2 ≤ djγ, ∀j,

(2.31)
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where D(y) is the diagonal matrix with diagonal y.

The resulting classifier has the same structure as an SVM, but based on the sparse

kernel matrix combination K =
∑

j ηjKj. Later they demonstrated that by taking

dj =
√

trKj
c

, where tr
∑m

j=1 ηjKj = c and c > 0 is fixed, this formulation is in fact

the dual of the QCQP formulation in [29].

Some years later, Sonnenburg et al. [33] reformulated the binary classification

MKL problem in [28] as a semi-infinite linear program (SILP), which can be solved

using a linear program (LP) solver and a standard SVM implementation by means of

a wrapper method. Recall the formulation in [30], where the sparse kernel matrix is

represented as K =
∑

j ηjKj. Sonnenburg et al. reformulated Eq. 2.31 for dj = 1 ∀j,

thus generating the following SILP:

max θ

w.r.t. θ ∈ R, η ∈ Rm

s.t. η ≥ 0,
m∑
j=1

ηj = 1,
m∑
j=1

ηjSj(α) ≥ θ

∀α ∈ Rn : 0 ≤ α ≤ C, αTy = 0,

(2.32)

where Sj(α) = 1
2
αTD(y)KjD(y)α−αTe.

This is an LP in θ and η, but it has infinitely many constraints, one for each

α satisfying the constraints in Eq. 2.32. The proposed algorithm is solved using a

wrapper algorithm that finds α with an SVM solver for an initialized set of values of

η that generate the single kernel matrix K =
∑

j ηjKj, after which the values of η

and θ are updated. This procedure is iteratively repeated until a certain convergence

criterion is satisfied, yielding an approximate solution as no convergence rates for

this algorithm are known.

This work further generalized this algorithm to arbitrary strictly convex and

differentiable loss functions, for which their MKL SILP formulation were derived.
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This extension made it possible for this algorithm to solve regression problems too.

The algorithms mentioned so far attempted to achieve sparsity by using l1-norm

regularization terms, an approach that has exhibited certain disadvantages for lin-

ear SVM. As it is pointed out in [34, 35], l1-norm SVM presents two limitations:

first, when there are highly correlated features, it usually removes some of them;

and second, the maximum number of selected features is limited by the number of

available training data. Some approaches [36, 37, 38] have attempted to address

these shortcomings. These are discussed later in this section.

The work presented in [39] provides another MKL framework. However, its theory

was not conceived with the same motivation of the aforementioned MKL publications.

Its main motivation was to solve the problem of choosing a kernel function suitable

for estimation with a support vector machine. This was done by defining a RKHS

on the space of kernels itself and minimizing a risk functional to select the optimal

kernel: a regularized quality functional, which measured the ‘badness’ of the kernel

function.

The convergence point between this approach and the previous ones is that the

optimal kernel is not a single kernel, but a linear combination of them. The in-

troduced optimal kernel, which is a kernel on the space of kernels itself, is called

hyperkernel. The positive definiteness of the generated kernel function is ensured

using the positive definiteness of the kernel matrix, and the resulting optimization

problem is an SDP.

An extension of the work in [39] was presented in [40]. This work showed that the

hyperkernel method presented in [39] could be equivalently formulated as an SOCP.

They also mentioned that while the work in [29] was cast as an SDP too, it differed

from [39] in this sense: the former work looks for the optimal kernel matrix, whereas

the hyperkernel approach looks for the optimal kernel function from a given family
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of kernel functions. However, the problem setting is essentially the same as previous

approaches, i.e., learning from hyperkernels involves optimizing two sets of variables:

the set of coefficients of the training examples (α) and the set of coefficients on the

hyperkernel expansion (η).

The disadvantage of using hyperkernels is that learning arbitrary kernel combina-

tions is a problem too general to allow for a general optimal solution. If the problem

is further restricted, it is possible to achieve guaranteed optimality.

A work that tried to analyze the shortcomings of l1-norm MKL is presented in [36].

The authors empirically investigated the best tradeoff between sparse and uniformly-

weighted MKL on real and simulated data sets due to the evidence of sparse MKL

being frequently outperformed by the latter method [41]. This tradeoff was evaluated

using an elastic-net type regularization term, which is a smooth interpolation between

the sparse (l1-norm) MKL and the uniformly-weighted MKL. They discovered that

the best accuracy rate was obtained in between the sparse and uniformly weighted

MKL.

Some years later, Orabona and Jie [37] discussed several MKL algorithms, such

as those that suggest an alternating optimization of SVM parameters and kernel pa-

rameters, as it is proposed in [33]. They appraised the fact that these algorithms can

use existing SVM solvers for the SVM optimization step. However, they criticized

that these algorithms not always guarantee convergence, thus estimating approxi-

mate solutions provided an error tolerance. Furthermore, they criticized the usage

of such approaches on dual algorithms, as the obtained solution may be far from the

optimal one.

This work also reviewed the algorithms based on lp-norm constraints, such as

[38]. They emphasized that these algorithms are not designed to achieve sparsity. In

addition, they claimed that another limitation of such algorithms is that they rely
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on particular loss functions, and the entire algorithm has to be changed if the loss

function is changed.

They proposed an MKL algorithm that achieves a tunable level of sparsity and a

fast convergence rate that is independent on the particular convex loss function used.

They adapted [36], replacing the l2-norm regularization term by an lp-norm term, p

being selected to improve the convergence rate of the algorithm. In addition, they

multiplied the l1-norm term by their sparsity coefficient α. While this coefficient

certainly adjusts the sparsity level of their solution, it does not provide the actual

achieved sparsity, or at least a bound for it.

On the same year, a paper by Kloft et al. [38] presented three main contributions

to MKL: First, it proposed a general framework which, theoretically, consolidated the

MKL formulations proposed to date. Second, it proposed a non-sparse lp-norm MKL

approach with arbitrary p ≥ 1, which they claimed achieves accuracies that surpass

the state-of-the-art. Finally, they proposed interleaved optimization strategies for

lp-norm MKL that are faster than commonly used wrapper approaches such as the

one presented in [33].

Kloft et al. supported their proposed lp-norm MKL based on evidence that sparse

MKL implementations usually achieve accuracy rates smaller than that of a regular

SVM trained using an unweighted-sum kernel K =
∑

jKj, as highlighted in [41];

they actually adjusted the value of p in order to tune the level of ‘sparsity’, with p = 1

achieving actual sparsity and p → ∞ being equivalent to performing a uniformly-

weighted kernel combination. The problem with this statement is based on the

fact that the authors generalize sparse MKL implementations as being represented

by l1-norm MKL. In fact, this paper lists what would be a comprehensive list of

publications on MKL, but they do not mention implementations based on elastic-net

type regularization terms, such as the ones presented in [36] and [37].
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Despite the aforementioned omissions, we agree with the authors that multiple

kernel learning research in the past years has been focused almost only on accelerating

algorithms for learning convex combinations of kernels, and that they provide an

approach that can provide better accuracies than previous works. Finally, they

conclude that both the correlation amongst the kernels with each other and their

correlation with the target (i.e., the amount of discriminative information that they

carry) play a role in the distinction of sparse from non-sparse scenarios.

Kernel Normalization

On section 2.2.4, we highlighted the importance of feature scaling when using single-

kernel models. Likewise, kernel normalization is key for MKL. As it has been seen

on the review of MKL approaches, the norms of feature spaces’ weight vectors are

required to be small. This can be done more easily for those features that are on

a smaller magnitude scale. In order to have a choice of kernels that is unbiased by

data scaling factors, kernel normalization is required.

This section presents two steps for kernel standardization, which is analogous to

feature standardization. These steps are mean removal and variance normalization.

Both steps use the following notation: kl(·, ·) is the kernel from block l prior to

the application of either normalization procedure, its corresponding feature map

being represented as ϕl(·). On the other hand, k̃l(·, ·) is the normalized kernel with

associated feature map ϕ̃l(·).

Mean Removal This step adjusts kernel kl(·, ·) so that the N training examples

have mean zero on feature space. More specifically, given N labeled training data

(xi, yi) with xi ∈ X we require that

N∑
i=1

ϕ̃l(xi) = 0. (2.33)
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Mean removal in feature space l can be obtained implicitly by manipulating kernel

kl(·, ·) as shown below:

k̃l(xi,xj) = ϕ̃Tl (xi)ϕ̃l(xj)

=

(
ϕl(xi)−

1

N

N∑
m=1

ϕl(xm)

)T (
ϕl(xj)−

1

N

N∑
n=1

ϕl(xn)

)

= ϕTl (xi)ϕl(xj)−
1

N

N∑
n=1

ϕTl (xi)ϕl(xn)− 1

N

N∑
m=1

ϕTl (xm)ϕl(xj)

+
1

N2

N∑
m=1

N∑
n=1

ϕTl (xm)ϕl(xn)

= kl(xi,xj)−
1

N

N∑
n=1

kl(xi,xn)− 1

N

N∑
m=1

kl(xm,xj)

+
1

N2

N∑
m,n=1

kl(xm,xn)

(2.34)

Variance Normalization Kernels are normalized to have unit uniform variance

in feature space, a procedure that should be applied after mean removal to achieve

kernel standardization. For this condition to hold for feature space l, the following

condition must be met:

1

N

N∑
i=1

∥∥∥ϕ̂l(xi)− ϕ̂l(x)
∥∥∥2

= 1, (2.35)

where ϕ̂l(x) = 1
N

∑
k ϕ̂(xk) is the mean of the training examples on feature space l

for the rescaled feature map ϕ̂l(·). To achieve sample unit variance on feature space

l, the rescaled feature map must satisfy

ϕ̂l(x) =
ϕl(x)√
V ar

, (2.36)
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where V ar is the sample variance on feature space for feature map ϕl(·). V ar is

estimated as follows:

V ar =
1

N

N∑
i=1

[
ϕl(xi)−

1

N

N∑
k=1

ϕl(xk)

]T [
ϕl(xi)−

1

N

N∑
j=1

ϕl(xj)

]

=
1

N

N∑
i=1

{
ϕTl (xi)ϕl(xi)−

1

N

N∑
j=1

ϕTl (xi)ϕl(xj)−
1

N

N∑
k=1

ϕTl (xk)ϕl(xi)

+

(
1

N

N∑
k=1

ϕTl (xk)

)(
1

N

N∑
j=1

ϕl(xj)

)}

=
1

N

N∑
i=1

{
ϕTl (xi)ϕl(xi)−

1

N

N∑
j=1

ϕTl (xi)ϕl(xj)

− ϕl(x)
T
[
ϕl(xi)− ϕl(x)

]}
=

1

N

N∑
i=1

ϕTl (xi)ϕl(xi)−
1

N2

N∑
i,j=1

ϕTl (xi)ϕl(xj)

− 1

N
ϕl(x)

T

[
N∑
i=1

ϕl(xi)−N ϕl(x)

]
︸ ︷︷ ︸

=0

=
1

N

N∑
i=1

kl(xi,xi)−
1

N2

N∑
i,j=1

kl(xi,xj).

(2.37)

By using the expression (2.36) to estimate the inner product in feature space we

get

ϕ̂l
T (x)ϕ̂l(x

′
) = k̂l(x,x

′
) =

ϕTl (x)ϕl(x
′
)

V ar
=
kl(x,x

′
)

V ar
. (2.38)

Therefore, the normalization rule is given by

k̂l(x,x
′
) =

kl(x,x
′
)

1
N

∑N
i=1 kl(xi,xi)−

1
N2

∑N
i,j=1 kl(xi,xj)

. (2.39)
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Proposed Classification Algorithms

3.1 Structure of the classifier

Let us assume that we are given N labeled training data (xi, yi), where xi ∈ Rd and

yi ∈ {−1, 1}. We also assume that features are divided in L blocks (subspaces) such

that Rd = Rd1 × · · · × RdL , so that each example xi can be decomposed into these

L blocks, i.e., xi = [xTi,1, . . . ,x
T
i,L]T . Furthermore, let us assume that each vector xi,l

is mapped from its input space into a Hilbert space (feature space) via a mapping

ϕl : Rdl → Hl. Thus,

ϕ(xi) = [ϕT1 (xi,1), . . . , ϕTL(xi,L)]T . (3.1)

The goal of the proposed classification framework is to find a classifier that is a linear

combination of a subset of blocks IL, that is,

f(x∗) =
∑
l∈IL

wT
l ϕl(x∗,l) + b, (3.2)

where x∗ is a given test pattern and wl ∈ Hl.

While the remainder of this chapter will continue the analysis of this algorithmic

structure at an abstract level, we provide an illustration of the application of this
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Figure 3.1: Structure of multiple-kernel based approach. Kernels are applied to data
from different regions of the brain to estimate if a subject is either a control or a
patient and to estimate the contribution of each region for this task.

framework to fMRI data for schizophrenia classification on Fig. 3.1. Let us assume

that we are given spatial activation maps of the brain for a set of healthy controls

and schizophrenia patients. The proposed framework would divide these maps into

L brain regions, each region l being transformed to another representation by means

of ϕl, or equivalently, by using a kernel function kl(·, ·). The class associated to each

subject is defined by a weighted combination of these kernels, where the coefficients

assigned to these kernels indicate the amount of information provided by their asso-

ciated regions to better discriminate both groups. A sparse selection of these regions

is performed under the assumption that only some of them are actually informative

to characterize schizophrenia.

In this chapter we present two methods that combine data from multiple kernels

by using this framework. The first one, which is called recursive composite ker-
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nels, iteratively eliminates uninformative kernels by using a wrapper method based

on SVM. Since this is a greedy algorithm, it is relatively fast. In addition, its im-

plementation is relatively simple. The second method is ν-multiple kernel learning

(ν-MKL), which is an SVM formulation that incorporates a sparse selection of ker-

nels. While this algorithm is slower in terms of computation time, it is supposed to

achieve a better performance than recursive composite kernels.

3.2 Optimization through a recursive composite

kernels approach

3.2.1 Introduction

Recursive composite kernels (RCK) proposes to iteratively eliminate uninformative

blocks based on the evaluation of the projection of weight vector w on each block. On

its first iteration it uses the data from the whole set of blocks, i.e., IL = {1, 2, . . . , L}.

For the SVM case, the Representer Theorem [42, 8] states that the solution vector

w = [wT
1 , . . . ,w

T
L ]T lies in the subspace spanned by training examples xi in the

feature space. Briefly,

w =
N∑
i=1

αiϕ(xi). (3.3)

By plugging Eq. 3.1 in Eq. 3.3, the following expression is obtained:

w =
N∑
i=1

αi[ϕ
T
1 (xi,1), . . . , ϕTL(xi,L)]T . (3.4)

From this equation, it can be seen that the projection of w over block l is wl =∑N
i=1 αiϕl(xi,l). By replacing wl by this expression in Eq. 3.2 and including the entire
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set of blocks we get

f(x∗) =
L∑
l=1

N∑
i=1

αiϕ
T
l (xi,l)ϕl(x∗,l) + b

=
N∑
i=1

αi

L∑
l=1

kl(xi,l,x∗,l) + b,

(3.5)

where kl(xi,l,xj,l) = ϕTl (xi,l)ϕl(xj,l) is the kernel inner product of Hilbert space Hl,

as introduced in chapter 2.

Composite kernels, which have been used in [43, 44], usually apply kernels to

different subspaces of the data input space that are linearly recombined in the fea-

ture space. RCK attempts to get rid of the blocks that show the least differential

pattern activation between class groups, i.e., the least informative blocks. To do

so, it proposes to iteratively eliminate one block at a time using a wrapper method

based on SVM by analyzing the projection of w on each block. This approach is

an extension of the method presented in [25]. The difference between both methods

relies on the fact that the latter approach eliminates one feature and not one block

at a time. For RCK, the SVM is trained with the information provided by the sum

of kernels shown in Eq. 3.5.

3.2.2 Weight Vector Block Projection

Usually there is no inverse transformation to nonlinear transformations ϕ(·). Then,

the spatial information that vector w may have cannot be retrieved. But by using

composite kernels, each Hilbert space will hold all the properties of its associated

block of the input space. That way, a straightforward analysis can provide informa-

tion about that block. If a particular block of the input space contains no information

relevant to the classification task, then vector w will tend to be orthogonal to this

subspace. On the contrary, if it contains relevant information, then the weight vector
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w
w2

w1

Figure 3.2: The projections of the weight vector on dimension (block) 1 (x-axis) and
dimension 2 (y-axis) on a 2-dimensional classification problem. Block 1 offers more
information to discriminate both classes as seen in the projections of the examples
on each block, which is the reason why ‖w1‖ > ‖w2‖. Nonetheless, block 2 is also
informative, thus explaining why w is not orthogonal to it.

will tend to be parallel to this subspace. Fig. 3.2 shows a 2-dimensional classification

problem that illustrates this point. Dimension 1 of the input space, which in this

case represents a block, is more informative than block 2 to discriminate both class

labels. For this reason, ‖w1‖ is greater than ‖w2‖. However, since block 2 also

provides relevant information, w is not perpendicular to this block.

Eq. 3.4 specifies how to estimate the projection of w on all blocks. However,

these vectors may not be accessible. Nonetheless, the quadratic norms of vectors wl
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can be computed as follows:

||wl||2 = wT
l wl =

=
N∑
i=1

αiϕ
T
l (xi,l)

N∑
j=1

ϕl(xj,l)αj

=
N∑
i=1

N∑
j=1

αikl(xi,l,xj,l)αj.

(3.6)

Let Kl be an N × N matrix whose component i, j is computed as Kl(i, j) =

kl(xi,l,xj,l) and α be a vector composed of all parameters αi. Then the quadratic

norm of wl can be expressed in matrix form as

‖wl‖2 = αTKlα. (3.7)

This procedure can be viewed as the projection of vector α into the principal compo-

nents of matrix Kl. The relevance of space l is then approximated by the similarity

of α to these vectors.

The previous equation provides a metric to evaluate the relevance of a certain

block in the classification task, which will be called discriminative weight from now

on. Furthermore, this metric makes it possible to detect the least relevant block,

thus providing RCK information of which block should be removed at each iteration.

3.2.3 Recursive Algorithm

There is only one piece of information missing to completely define an RCK algo-

rithm, and this is how to find the optimal block set. The most informative block

set is the one that achieves the minimum error rate across the RCK iterations on

a validation set, i.e., a dataset that is independent from the one used for training

purposes.
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With the above elements, the RCK algorithm can be constructed. Initially, an

SVM is trained using the training set with the sum of the kernels from all the

blocks as explained on section 3.2.1, after which the block with smallest associated

discrimination weight is removed from the initial block set. At the next iteration,

the SVM is trained with the data from all the blocks but the previously removed

one and their discriminative weights are recalculated, eliminating the block with

current minimum weight. This procedure is applied iteratively until a single block

remains in the analyzed set of blocks, with the optimal block set IL being the one

that achieves the lowest validation error rate across the iterations of the recursive

algorithm. Algorithm 1 summarizes the described procedure.

Algorithm 1 RCK Algorithm

1: Inputs: TrainSet, V alidSet

2: Outputs: IL

3: Define I(1): indexes for all blocks

4: Define P : number of blocks

5: for p = 1 to P − 1 do

6: TrainSVM(SumKernels(TrainSet,I(p))) ⇒ TrainedSVM

7: Compute discriminative weights

8: TestSVM(TrainedSVM ,V alidSet) ⇒ E(p)

9: Remove area with lowest weight

10: Store indexes of remaining blocks ⇒ I(p+ 1)

11: end for

12: Find p that minimizes E(p) ⇒ pmin

13: I(pmin)⇒ IL
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3.3 Optimization through a sparse MKL approach

3.3.1 Introduction

The proposed MKL algorithm generates a sparse selection of features’ subsets (block-

sparse selection) by using a ν-SVM formulation [45], where ν defines the upper bound

of the fraction of blocks to be selected.

Gómez-Verdejo et al. [46] proposed a ν-SVM formulation for the linear case that

forced a sparse selection of features. ν-MKL is an extension of this work, whose aim

is to attain block sparsity and generate a classifier that linearly combines feature

subspaces, the difference being that these blocks can be mapped into arbitrarily

higher dimensional spaces, i.e., ν-MKL is not restricted to be a linear classifier.

3.3.2 SVM with Block-Sparsity Constraints

Recall from chapter 2 that the SVM optimization problem can be expressed by

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. yi
(
wTϕ(xi) + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i,

(3.8)

If features are partitioned in L blocks as it has been specified at the beginning of

the chapter, then the weight vector could also be split into these blocks such that

w = [wT
1 , . . . ,w

T
L ]T , thus satisfying ‖w‖2 =

∑L
l=1 ‖wl‖2. In order to attain block

sparsity, additional constraints that upper bound the l2-norm of wl would need to

be included in the formulation. By adding these constraints, we get this modified
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formulation:

min
w,b,ξ,γ

1

2

L∑
l=1

‖wl‖2 + C
N∑
i=1

ξi +
C
′

L

L∑
l=1

γl

s.t. yi

(
L∑
l=1

wT
l ϕl(xi,l) + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

‖wl‖ ≤ ε+ γl ∀l

γl ≥ 0 ∀l.

(3.9)

This optimization problem includes a small parameter ε and slack variables γl

in the upper bound terms of the inequalities associated to ‖wl‖, where the ones

being strictly greater than zero are associated with relevant feature blocks after

the functional optimization. Conversely, blocks l such that ‖wl‖ ≤ ε are deemed

irrelevant and are discarded. A new cost term that is composed of the summation of

slack variables γl weighted by a tradeoff parameter C
′

is included in the formulation,

a larger C
′

corresponding to assigning a higher penalty to relevant blocks.

A final modification is introduced to the proposed formulation in Eq. 3.9 to

automatically adjust the value of ε by following the ν-SVM proposed in [45], where

ν ∈ (0, 1]. The resulting optimization problem is given by:

min
w,b,ξ,γ,ε

1

2

L∑
l=1

‖wl‖2 + C

N∑
i=1

ξi + C
′

[
νε+

1

L

L∑
l=1

γl

]

s.t. yi

(
L∑
l=1

wT
l ϕl(xi,l) + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

‖wl‖ ≤ ε+ γl ∀l

γl ≥ 0 ∀l

ε ≥ 0.

(3.10)
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It will be demonstrated later on this chapter that ν defines the upper bound of the

fraction of relevant blocks.

The dual formulation of this algorithm is analyzed under the assumption that the

data is limited and significantly smaller than its dimensionality. If the assumption

is met, a reduced execution time could be achieved to optimize this problem, as

it would depend on the number of training observations. This formulation is then

reduced to a second-order cone program (SOCP), which requires the validation of

the parameters C,C
′

and ν.

3.3.3 Dual Problem

In this section, we show how a dual problem of the proposed formulation can lead to

a SOCP. In order to be able to do so, a definition of a SOC on a composite Hilbert

space of interest is provided first.

Second-order cone on a composite Hilbert space

Given a Hilbert space (H, 〈·, ·〉), a SOC K ⊂ V , where V is a composite Hilbert space

such that V = R×H, can be defined as follows:

K = {(t,x) ∈ R×H : t ≥ ‖x‖} , (3.11)

where ‖x‖ =
√
〈x, x〉 and K is self-dual, i.e., the dual K∗ of K coincides with K [47].

Dual Lagrangian derivation

As defined before, wl ∈ Hl. Let tl ∈ R and ‖wl‖ ≤ tl ≤ ε + γl. Then, (tl,wl) ∈ Kl,

where Kl ⊂ Vl = R×Hl is a SOC in the composite Hilbert space Vl. Thus, Eq. 3.10

51



Chapter 3. Proposed Classification Algorithms

can be restated as follows:

min
w,t,b,ξ,γ,ε

1

2

L∑
l=1

t2l + C

N∑
i=1

ξi + C
′

[
νε+

1

L

L∑
l=1

γl

]

s.t. yi

(
L∑
l=1

wT
l ϕl(xi,l) + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

tl ≤ ε+ γl ∀l

(tl,wl) ∈ Kl ∀l

γl ≥ 0 ∀l

ε ≥ 0.

(3.12)

Since Kl is self-dual, the primal Lagrangian corresponding to the problem is

LP ≡
1

2

L∑
l=1

t2l + C
N∑
i=1

ξi + C
′
νε+

C
′

L

L∑
l=1

γl

−
N∑
i=1

αi

[
yi

L∑
l=1

wT
l ϕl(xi,l) + yib− 1 + ξi

]
−

N∑
i=1

µiξi

−
L∑
l=1

βl (ε+ γl − tl)−
L∑
l=1

(
wT
l σl + θltl

)
−

L∑
l=1

τlγl − δε

with αi ≥ 0 ∀i

µi ≥ 0 ∀i

(θl,σl) ∈ Kl ∀l

βl ≥ 0 ∀l

τl ≥ 0 ∀l

δ ≥ 0

(3.13)
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where α,µ,θ,σ,β, τ and δ are Lagrange multipliers (dual variables). Next, the

partial derivatives with respect to the primal variables are computed and set to zero.

∂LP
∂tl

: tl + βl − θl = 0 ⇔ θl = tl + βl

∂LP
∂wl

: −
N∑
i=1

αiyiϕl(xi,l)− σl = 0 ⇔ σl = −
N∑
i=1

αiyiϕl(xi,l)

∂LP
∂ξi

: C − µi − αi = 0. Since µi, αi ≥ 0 ⇒ 0 ≤ αi ≤ C

∂LP
∂b

: −
N∑
i=1

αiyi = 0

∂LP
∂ε

: C
′
ν − δ −

L∑
l=1

βl = 0. Since δ, βl ≥ 0 ⇒ 0 ≤
L∑
l=1

βl ≤ C
′
ν

∂LP
∂γl

:
C
′

L
− τl − βl = 0. Since τl, βl ≥ 0 ⇒ 0 ≤ βl ≤

C
′

L
.

(3.14)

By replacing in Eq. 3.13 the expressions obtained in Eq. 3.14 the following dual

Lagrangian function is obtained:

LD ≡ − 1

2

L∑
l=1

t2l +
N∑
i=1

αi

with 0 ≤ αi ≤ C ∀i

tl ≥ 0 ∀l

0 ≤ βl ≤
C
′

L
∀l∥∥∥∥∥

N∑
i=1

αiyiϕl(xi,l)

∥∥∥∥∥ ≤ tl + βl ∀l

N∑
i=1

αiyi = 0

0 ≤
L∑
l=1

βl ≤ C
′
ν,

(3.15)

where maximizing LD with respect to the dual variables is equivalent to minimizing

LP with respect to the primal variables.
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Proof of block sparsity and upper bound enforcement

Proposition 1. Let L be the number of feature subspaces on which the input space is

partitioned. If ν-MKL is provided with N labeled training data (xi, yi), where xi ∈ Rd

and yi ∈ {−1, 1}, it achieves block sparsity, that is, γl > 0 ∀l ∈ IL ⊆ {1, 2, . . . , L}.

Proposition 2. Let n be the number of relevant blocks detected by ν-MKL. Then ν is

an upper bound of the fraction of blocks that are deemed relevant. In brief, n/L ≤ ν.

Proof. In order to verify that the presented formulation achieves block sparsity and

it is capable of defining an upper bound to the number of relevant blocks through the

parameter ν, it is necessary to examine some of its KKT complementarity conditions.

They are the following:

βl(ε+ γl − tl) = 0 ∀l(
C
′

L
− βl

)
γl = 0 ∀l tl

wl

T  tl + βl

−
∑

i αiyiϕl(xi,l)

 = 0 ∀l.

(3.16)

Recall that (tl,wl) ∈ Kl (‖wl‖ ≤ tl). Before performing an analysis of the previous

equations, it is necessary to know under which conditions the product of two elements

of a SOC equal zero, as specified in Eq. 3.16.

Let (t,x), (t
′
,x
′
) ∈ K. The product

(
t
x

)T( t′
x′
)

= 0 holds if and only if either of

these two conditions is met:

(a) One or both factors of the product are zero.

(b) Both factors are nonzero, belong to the boundary of K, and are anti-proportional;

i.e., ∃η > 0 such that ‖x‖ = t, ‖x′‖ = t
′
, and (t,x) = η(t

′
,−x

′
) [30].
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By analyzing the complementarity conditions, it is possible to know what the

values of ‖wl‖ are for different values of the variables βl. The values of ‖wl‖ (more

specifically the values of γl) indicate which blocks l are deemed relevant by the

classifier. In addition, variables βl are important on their own right since their

summation is upper bounded by a multiple of ν, as it is specified in Eq. 3.15. The

conditions in Eq. 3.16 are analyzed as follows:

i. If βl = 0 ⇒ γl = 0 ⇒ ε− tl > 0 ⇒ tl < ε ⇒ ‖wl‖ ≤ ε

ii. If 0 < βl <
C
′

L
⇒ γl = 0 ⇒ ε− tl = 0 ⇒ tl = ε

• If ε > 0 ⇒ since ε = tl > 0 and βl + tl > 0 ⇒ ‖wl‖ = tl = ε

• If ε = 0 ⇒ ε = tl = 0 ⇒ ‖wl‖ = tl = 0

iii. If βl = C
′

L
⇒ γl > 0 ⇒ ε+ γl − tl = 0 ⇒ tl = γl + ε. Since tl ≥ γl > 0 and

βl + tl > 0 ⇒ ‖wl‖ = tl = γl + ε.

As it has been mentioned before, only the blocks l : γl > 0 are relevant and these

ones, in turn, have an associated βl = C
′

L
. It has been shown that IL = {l : γl > 0} ⊆

{1, 2, . . . , L}, which proves that the algorithm achieves block sparsity. In addition,

if n blocks are relevant, ∃p ≥ 0 such that:

L∑
l=1

βl =
nC

′

L
+ p ≤ C

′
ν ⇒ nC

′

L
≤ C

′
ν ⇒ n

L
≤ ν. (3.17)

Thus, it has also been proven that ν is an upper bound of the fraction of blocks that

are relevant.
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Conic linear program formulation

A conic linear program (LP) is an LP with the additional constraint that the solution

needs to lie in a convex cone. A conic LP has the form

min
x

cTx

s.t. lc ≤ Ax ≤ uc

lx ≤ x ≤ ux

x ∈ C,

(3.18)

where C is a convex cone. This cone can be expressed as the Cartesian product

of p convex cones as C = C1 × · · · × Cp, in which case x ∈ C could be written

as x = [xT1 , . . . ,x
T
p ]T , x1 ∈ C1, . . . ,xp ∈ Cp. It should be highlighted that the d-

dimensional Euclidean space Rd is a cone itself, so linear variables also comply with

the added constraint [48].

A SOCP is a conic LP where the cone constraints are defined by SOCs. It can

be seen that the problem of maximizing Eq. 3.15 is not a SOCP since there are

quadratic terms in both the objective function and the constraints. The problem

needs some algebraic manipulation for it to become a SOCP.

The term
∥∥∥∑N

i=1 αiyiϕl(xi,l)
∥∥∥, which is quadratic on α, needs to be rearranged

in order to make the proposed problem a SOCP. This term can be expressed as

∥∥∥∥∥
N∑
i=1

αiyiϕl(xi,l)

∥∥∥∥∥ =

√√√√ N∑
i=1

N∑
j=1

αiαjyiyjϕTl (xi,l)ϕl(xj,l)

=

√√√√ N∑
i=1

N∑
j=1

αiαjyiyjkl(xi,l,xj,l),

(3.19)

where kl(xi,l,xj,l) = ϕTl (xi,l)ϕl(xj,l) is the (symmetric) kernel inner product of Hilbert

spaceHl. Let Kl be an N×N matrix whose component i, j is computed as Kl(i, j) =
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kl(xi,l,xj,l). Then the quadratic term on α can be expressed in matrix notation as

∥∥∥∥∥
N∑
i=1

αiyiϕl(xi,l)

∥∥∥∥∥ =
√
αTYKlYα =

√
αTHlα, (3.20)

where Hl = YKlY and Y is an N ×N diagonal matrix such that Y(i, i) = yi. Since

Kl is a Gram matrix, it is positive semidefinite. In addition, it is symmetric. As

a consequence, Hl is symmetric positive semidefinite, so there ∃Fl : FT
l Fl = Hl.

1

Thus,∥∥∥∥∥
N∑
i=1

αiyiϕl(xi,l)

∥∥∥∥∥ =
√

(αTFT
l )(Flα) = ‖Flα‖ . (3.21)

By replacing the obtained expression on Eq. 3.15 and writing the formulation in

matrix notation we get

min
t,α,β

1

2
‖t‖2 − 1Tα

s.t. ‖Flα‖ ≤ tl + βl ∀l

0 ≤ α ≤ C

αTy = 0

0 ≤ β ≤ C
′

L

0 ≤ 1Tβ ≤ C
′
ν

t ≥ 0.

(3.22)

It can be seen that the quadratic constraint is now defined by a SOC. However,

the unknowns (and not a linear transformation of them) are the ones that must be

members of a cone, as defined by Eq. 3.18. Let ul = tl + βl and zl = Flα. Then the

1The details of the estimation of Fl are provided in Appendix A.
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problem could be restated as

min
t,α,β,u,z

1

2
‖t‖2 − 1Tα

s.t. ‖zl‖ ≤ ul ∀l

ul − tl − βl = 0 ∀l

Flα− zl = 0 ∀l

0 ≤ α ≤ C

αTy = 0

0 ≤ β ≤ C
′

L

0 ≤ 1Tβ ≤ C
′
ν

t ≥ 0.

(3.23)

At this point, the problem has been restated so that all the unknowns lie in

convex cones. All that remains to be done are algebraic manipulations so that the

objective function becomes linear, thus meeting all the requirements of a conic LP.

Let 1
2
‖t‖2 ≤ s, where s ≥ 0. If we define r = 1, then ‖t‖2 ≤ 2rs. By substituting
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this expression on Eq. 3.23 we get

min
t,α,β,u,z,s,r

s− 1Tα

s.t. ‖zl‖ ≤ ul ∀l

ul − tl − βl = 0 ∀l

Flα− zl = 0 ∀l

αTy = 0

0 ≤ α ≤ C

0 ≤ β ≤ C
′

L

0 ≤ 1Tβ ≤ C
′
ν

‖t‖2 ≤ 2rs

r = 1

s ≥ 0

t ≥ 0,

(3.24)

where expression ‖t‖2 ≤ 2rs defines a rotated SOC [48]. The problem defined on

Eq. 3.24 characterizes the problem as a SOCP, having the same form as the canonical

conic LP formulation shown in Eq. 3.18.

3.3.4 Class Prediction

On Section 3.3.3 it was stated that two nonzero elements (t,x), (t
′
,x
′
) ∈ K are

perpendicular to each other if and only if ‖x‖ = t,
∥∥x′∥∥ = t

′
, and (t,x) = η(t

′
,−x

′
),

where η > 0. In addition, it was also demonstrated that relevant blocks l have

an associated parameter βl = C
′
/L. If the first proposition is applied to Eq. 3.16
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∀l ∈ Iβ = {l : βl = C
′
/L}, then

tl = ηl(tl + βl) (3.25a)

wl = ηl

N∑
i=1

αiyiϕl(xi,l). (3.25b)

The estimated class of an unknown example x∗, as specified at the beginning

of this chapter, should be defined by a subset of blocks IL such that f(x∗) =∑
l∈IL wT

l ϕl(x∗,l) + b. Since the relevant subset of blocks is defined by Iβ, then

f(x∗) =
∑

l∈Iβ wT
l ϕl(x∗,l) + b. By replacing Eq. 3.25b on this equation we get

f(x∗) =
N∑
i=1

αiyi
∑
l∈Iβ

ηlϕ
T
l (xi,l)ϕl(x∗,l) + b

=
N∑
i=1

αiyi
∑
l∈Iβ

ηlkl(xi,l,x∗,l) + b.

(3.26)

Once the SOCP is solved, ηl : l ∈ Iβ can be calculated directly from Eq. 3.25a. The

only variable that needs to be found to fully define Eq. 3.26 is b.

Let Iα = {i : 0 < αi < C}. It can be proven from the KKT conditions of the

primal problem (Eq. 3.13) along with Eq. 3.26 that ∀i ∈ Iα the following equality

holds:

1 = yif(xi)

= yi

N∑
j=1

αjyj
∑
l∈Iβ

ηlkl(xj,l,x∗,l) + b.
(3.27)

After some algebraic manipulation we get

b = yi −
∑
l∈Iβ

ηl

N∑
j=1

kl(xi,l,xj,l)αjyj ∀i ∈ Iα. (3.28)

While b can be estimated by using Eq. 3.28 for any i ∈ Iα, it is numerically safer to

take the mean value of b across all such values of i [17].
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Application of RCK and ν-MKL to

simulated data

As it was mentioned on the previous chapter, by integrating a sparse selection of

kernels on its formulation, ν-MKL is supposed to achieve a better performance than

RCK at the expense of having a slower execution time. In order to verify the validity

of this statement, both algorithms have to be tested on a dataset whose ground

truth is already known, i.e., one where the information present on each block for

classification purposes is well characterized.

This chapter presents the results obtained by RCK and ν-MKL on a simulated

fMRI data set that mimics the BOLD response of two groups of subjects to an

auditory oddball discriminant (AOD) task. These two groups are characterized so

that their fMRI responses represent (to a certain extent) that of healthy controls

and schizophrenia patients. To do so, differential activity between both groups is

generated on brain regions where there is evidence of abnormal activation patterns

on schizophrenia.

The organization of this chapter is explained as follows. Section 4.1 gives an
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overview of the toolbox used to generate fMRI simulated data. Section 4.2 explains

the criteria used to generate data from an AOD task and to simulate the differential

activity between groups for certain brain regions. Section 4.3 explains the data

analysis applied to the simulated fMRI data, whose output is provided to RCK and

ν-MKL. Section 4.4 shows the results obtained by both classification algorithms.

Finally, section 4.5 provides a brief discussion of these results.

4.1 SimTB Toolbox

SimTB [49] is a simulation toolbox that runs on MATLAB (The Mathworks, Inc.)

and allows for flexible generation of fMRI data under the model of spatiotemporal

separability, which is consistent with the assumptions of ICA. This toolbox provides

the user control over data generation including the creation and manipulation of

spatial sources, implementation of block- and event-related experimental designs,

inclusion of tissue-specific baselines, simulated head movement, and more.

Under the assumptions of spatiotemporal separability, data can be expressed as

the product of time courses (TCs) and spatial maps (SMs), as shown in Fig. 4.1.

Specifically, for each subject i = 1, . . . ,M , it is assumed that there are up to C

components, each consisting of a SM, a TC of activation and an amplitude. The

no-noise (nn) data is a linear combination of amplitude-scaled and baseline-shifted

TC and SM components, which yields a time-by-voxel (T × V ) no-noise data for

subject i.

A template of the 30 default SMs is shown in Fig. 4.2(a) on a square image of

V =
√
V ×

√
V voxels, where side length

√
V is specified by the user. Default SMs

are modeled after components commonly seen in axial slices of real fMRI data, being

most of them created by combinations of Gaussian distributions. Users can vary the

location and orientation of these activation blobs across subjects. The spatial extent
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of the SMs can be varied with the “spread” parameter ρ. SMs are normalized to have

a maximum intensity of 1 and are transformed as S
′
ic = S

1/ρ
ic , where ρ describes the

expansion (ρ > 1) or contraction (ρ < 1) of the component and S
′
ic is the modified

SM for subject i. Finally, a little Gaussian noise distributed as N (0, 2.5 × 10−5) is

added so that each subject SM is unique.

Each component TC is T time points in length, where the user specifies the rep-

etition time (TR) in seconds per sample. TCs are constructed under the assumption

that component activations result from underlying neural events as well as noise.

Neural events can follow block- or event-related experimental designs, or can repre-

sent unexplained, random deviations from baseline. An underlying event time series

is referred to as TS to distinguish it from the subsequent TC that is created with a

hemodynamic model.

Experimental paradigms are designed with task blocks and task events that can be

assigned to several components and can be identical across subjects. Unique events

refer to unexplained deviations that are unique to each component and subject.

These three types of TS inputs are controlled independently. Each task block is

described by a block length and an inter-stimulus interval. Task events and unique

events are defined by a probability of occurrence at each TR. For a given component,

the TS is created by adding together coefficient-modulated task blocks, task events

and unique events, as it is shown in Fig. 4.1. Coefficients for task inputs can be

negative or positive (indicating suppression or activation with the task), or can be

zero (indicating that component activation does not follow the task).

Generating the fMRI BOLD-like TCs from the event TS may be done in several

ways, including linear convolution with a canonical hemodynamic response function

(HRF) (difference of two gamma functions) [50] and the Windkessel balloon model

[51]. Users may vary hemodynamic parameters between components and subjects,

and define their own TC source models. After creation of the TCs, each component
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TC is scaled to have a peak-to-peak range of one. As with the SMs, Gaussian noise

distributed N (0, 2.5× 10−5) is added to ensure non-zero TCs.

A baseline intensity bi is specified for each subject and an optional tissue-type

modifier scales the baseline for each voxel. Tissue types with different intensity levels

are assigned to each component. For example, Figure 4.2(b) displays the baseline

intensity map where four tissue types are defined: sinus signal dropout, cerebrospinal

fluid (CSF), white matter and gray matter.

Finally, motion (translation in the plane and rotation) and noise can be added for

each subject. Rician noise is added to the no-noise simulated fMRI signal relative to

a specified contrast-to-noise ratio (CNR). The CNR is defined as σ̂s/σ̂n, where σ̂s is

the temporal standard deviation of the true signal and σ̂n is the temporal standard

deviation of the noise.

4.2 fMRI Data for Controls and Patients

The AOD experimental design, which consists of detecting an infrequent sound within

a series of regular and different sounds, is generated based on an example simulation

from [52]. This simulation is explained in [49] and has been slightly modified to

generate differential activation between two groups of subjects. In addition, the CNR

and the probability of unique events were also modified to make the classification

task more challenging.

This event-related paradigm task consists of a single run of three stimuli presented

to each participant in random order. The standard stimulus is a baseline tone, the

target stimulus is a distinct tone that subjects should press a button upon hearing,

and the novel stimulus is a random digital noise. These stimuli occur at each TR

with probability 0.6, 0.075, and 0.075, respectively.
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The experimental task is simulated for two groups of M = 50 subjects, each

subject with up to C = 27 components in a data set with V = 148× 148 voxels and

T = 150 time points collected at TR=2 seconds. Some of the selected sources are

task-related, while the other ones are “not of interest”, being present with probabil-

ity 0.9, i.e., some sources may be absent for each subject. To mimic between-subject

spatial variability, the sources for each subject are given a small amount of trans-

lation, rotation, and spread via normal deviates. Translation in the horizontal and

vertical directions of each source have a standard deviation of 0.1 voxels, rotation

has a standard deviation of 1 degree, and spread has a center of 1 and standard

deviation of 0.03.

The TCs are defined by task and unique events, the timing of the task events

being the same for all subjects to simulate a unique session of the AOD task. Four

task event types are defined. At each TR, in addition to the three task event types

that have already been mentioned, a spike event occurs with probability 0.05. Com-

ponents are separately modulated by each event type and spike events are mapped

only to CSF sources with amplitude 1. The details of the modulation coefficients of

each task event for all components can be found in [49]. We only provide a list of the

task-related brain regions of this simulation on Table 4.1. This section will only give

specific details of the modulation coefficients of the task events for the components

that are differentially activated between groups. But first, let us discuss which these

components are and the rationale used for their selection.

Some publications [53, 54] have demonstrated that both the temporal lobe and

the default mode network show an abnormal activation in schizophrenia patients.

In addition, a resting-state study [55] found evidence of reduced connectivity in the

dorsal attention and executive control networks on schizophrenia patients. The AOD

task is designed in such a way that subjects have to make a quick button-press re-

sponse upon the presentation of target stimuli. Since it has been suggested that
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Table 4.1: List of task-related brain regions. These regions have a one-to-one as-
sociation to the default SMs defined by SimTB. The second column of this table
indicates the component number assigned to these regions when ICA was applied to
the simulated data (section 4.3).

Component Label Number

Left Auditory 5
Left Frontal 7
Bilateral Frontal 8
Right Frontal 9
Left Hippocampus 12
Right SensoriMotor 15
Right Hippocampus 18
Dorsal Attention Network 19
Precuneus 21
Default Mode Network 24
Left SensoriMotor 29
Right Auditory 30

together with the posterior cingulate the precuneus is “pivotal for conscious infor-

mation processing” [56], it was considered in the set of differentially activated brain

regions. Finally, due to the fact that the AOD task is designed to activate the senso-

rimotor cortex upon target stimuli and given the evidence of impaired attention on

schizophrenia, these brain regions also had a different activation pattern for patients.

Table 4.2 shows the modulation coefficients of the components that comprise

the aforementioned brain regions for both controls and patients. This table also

provides an estimate of the fractional increment/decrement of the absolute values of

the coefficients assigned to controls used to generate the ones used for the patients

group.

All sources have unique events that occur with a probability of 0.4 at each TR.

For sources not of interest (no task modulation), the unique event amplitude is 1.

For task-modulated sources, unique events are added with small amplitudes (0.2 to
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Table 4.2: Modulation coefficients of components with differential activity between
controls and patients. This table lists the modulation coefficients of the three AOD
task events of different components for healthy subjects and the fractional incre-
ment/decrement of their absolute values on the patients group.

Source Task Event HC SZ Coeff. Inc.

Auditory
Standard 1.00 1.05 ↑ 5%
Target 1.20 1.08 ↓ 10%
Novel 1.50 1.35 ↓ 10%

SensoriMotor
Standard – – –
Target 1.00 1.15 ↑ 15%
Novel 0.50 0.45 ↓ 10%

Default Mode Network
Standard -0.30 -0.27 ↓ 10%
Target -0.30 -0.40 ↑ 30%
Novel -0.30 -0.33 ↑ 10%

Dorsal Attention Network
Standard 0.70 0.70 0
Target 0.80 0.65 ↓ 20%
Novel 1.20 1.30 ↑ 10%

Precuneus
Standard – – –
Target 0.50 0.35 ↓ 30%
Novel – – –

0.5) so that components responding to the same events have similar but not identical

activation. CSF sources have smaller unique events (amplitude of 0.05).

TCs are generated from the event time series using the convolution with a canon-

ical HRF, except for CSF components, which use a spike model with faster dynamics

than the canonical HRF (peak at 2 seconds). To avoid the application of motion

correction to the simulated data prior to using data analysis approaches on it, no

motion is considered in the simulation. Finally, Rician noise is added to the data of

each subject to reach the appropriate CNR level, which is uniformly distributed over

subjects from 0.4 to 1.2.
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4.3 Simulated Data Analysis

4.3.1 Group spatial ICA

The simulated fMRI data set is generated under the model of spatiotemporal sep-

arability so that specific brain regions can exhibit differential activation between

controls and patients. The example simulation presented in [52] not only provides

a setting that is flexible enough to generate data that satisfies this condition, but it

also generates fMRI activation distributed across several brain regions that have a

similar response across groups. Such a data set is well suited to test the performance

of classifiers that look for a sparse set of regions that present dissimilar activation

patterns between groups. In order to extract the brain activity present in the regions

that are modelled by the simulation, ICA is applied to the data.

Group spatial ICA [57] was used to decompose the data into independent com-

ponents as follows. First, each subject’s functional data was applied dimensionality

reduction by using PCA. The time domain was reduced from 150 time points to 40

dimensions. Next, the reduced data from all subjects was temporally concatenated

into a group matrix and a second data reduction step was applied to it, reducing

this aggregate data set to 30 temporal dimensions. Then, ICA was applied to these

reduced aggregate data set using the infomax algorithm [58] and 30 components were

extracted. Finally, individual subject components were back-reconstructed from the

group ICA analysis. Fig. 4.3 shows a subset of the extracted components, which

includes the task-related components as well as white matter (WM) regions and

the lateral ventricles containing cerebrospinal fluid (CSF). More information can be

found in Table 4.1, which displays the labels of the task-related components and

their associated component numbers.

The TCs of the components were used to characterize the data. Therefore, 100
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labeled data (one observation per subject) composed of 30 feature subspaces (the

number of components) is used to classify controls and patients (50 subjects on each

group). Each feature subspace (block) has a dimensionality of 150 (the number of

fMRI time points).

4.3.2 Degree of differential activation of the components

Since the components specified on Table 4.2 were modelled on SimTB to be dif-

ferentially activated between controls and patients, it is hypothesized that the ICA

components associated to those brain regions exhibit a similar activation pattern

between both groups. However, a metric that measures the degree of differential

activation of the components’ TCs is required. To do so, the multivariate extension

of the t-test, Hotelling’s T -squared test, was applied to the TCs.

Hotelling’s T -squared test is capable of measuring differences between multivari-

ate means of two populations, in this case the population distributions of controls and

patients. Since this test is computed based on the sample covariance of the data and

the number of subjects per group (50) was less than the number of fMRI time points

(150), a two-sample Hotteling’s T -squared test was run on three windows of 40 time

points each for all the ICA components, taking the mean of the T -squared values as

the metric of interest. Similarly, the p-values associated to each test were retrieved,

generating a mean p-value for each component. Then the averaged T -squared values

across components were normalized so that they added to 100 to achieve a better

interpretation of the results.

Table 4.3 shows the normalized T -squared values (and their averaged p-values)

sorted in decreasing order for the top-ranked components. It can be seen that the

ICA components that show high activation levels on the brain regions modelled to be

differentially activated between groups achieve high T 2 values. While some of these
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components have a mean p-value that is not low enough to reject the null hypoth-

esis, which assumes that multivariate means of the TCs of the tested components

are equal for both groups, they still achieve a high metric value. In addition, the

proposed metric is not a rigorous estimate of the differential activity of the compo-

nents between groups. Nonetheless, it provides a rough estimate that allows us to

rank the components based on their dissimilarity between groups. Furthermore, it

makes it possible to distinguish two groups of components in the table: one of clearly

informative ones (down to the CSF component) and a group of components that is

statistically equivalent for controls and patients. It is interesting to find that the

CSF component shows a nontrivial metric value, although the data of this compo-

nent was modeled the same for both groups. This finding might be explained by the

fact that this component was activated by a spike event, which had a different onset

timing than the other events (standard, target and novel) and was modeled using a

time response that is completely different from the canonical HRF.

4.4 Application of RCK and ν-MKL to Simulated

Data

After extracting the data from the TCs, the features from the generated input vectors

were standardized. Then, linear kernel matrices were generated with the normalized

input vectors, after which the kernels were subtracted their mean and were scaled to

have unitary standard deviation on the feature space (refer to chapter 2 for details

on feature and kernel normalization).
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Table 4.3: Normalized two-sample Hotelling’s T -squared coefficients of the top-
ranked components’ TCs for controls and patients and their associated mean p-
values. The ICA components that show high activation levels on the brain regions
modelled to be differentially activated between groups achieve high T 2 values, as it
was expected.

Component
Normalized

p-value
T 2 value

Left Auditory 38.04 0
Left SensoriMotor 14.74 3.92e-14
Right SensoriMotor 14.53 3.49e-07
Right Auditory 7.93 2.09e-05
Default Mode Network 7.87 1.85e-05
Dorsal Attention Network 6.99 0.12
Precuneus 2.76 0.41
Lateral Ventricles (CSF) 1.63 0.99
White matter tracts - posterior 0.69 1.00
Left Frontal 0.68 1.00
Right Frontal 0.57 1.00
White matter tracts - anterior 0.55 1.00
Left Hippocampus 0.42 1.00
Bilateral Visual - more posterior 0.39 1.00
Bilateral Post-central 0.33 1.00

4.4.1 Parameter selection, optimal component set selection

and prediction accuracy estimation

The mean accuracy rate of the analyzed classification algorithms is estimated. In

addition, model selection (the optimal component selection) needs to be performed

by both algorithms, not to mention the selection of the optimal parameters of the

learning machines. In order to avoid getting a biased estimate of the classification

accuracy rates achieved by both algorithms, two-layer 10-fold cross-validation [59]

was used.

Accuracy rate calculation and model/parameter validation were performed as
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follows. First, the labeled data (100 observations) was divided into 10 stratified

folds, i.e., each fold contained the same proportions of the two class labels. In

addition, parameter C (refer to chapter 2) was fixed to 10 for both algorithms.

Similar procedures are followed for both algorithms, but they are explained separately

for clarity purposes.

In the case of RCK, 1 fold was set aside for test purposes only. The remaining

data, which is called TrainV alSet in Algorithm 2, was further divided into train-

ing and validation sets, the latter one being composed of data from one fold of

TrainV alSet, as shown in Algorithm 3. The classifier was trained by using all the

components and the validation error rates were estimated as shown in Algorithms

2 and 3. The above process was repeated for all folds. Then, the algorithm was

retrained and the the discriminative weights were estimated, eliminating the com-

ponent with minimum associated value. This procedure was repeated until a single

component remained.

Afterwards, the component set IL that achieved the minimum validation error was

selected for TrainV alSet and the test error rate was estimated using the previously

reserved test set. Then, another fold was selected as the new test set and the entire

procedure was repeated for each of these test sets. The test accuracy rate was then

estimated by averaging the accuracy rates achieved by each test set.

Similar to the procedure followed by RCK, a fold was set aside for test purposes for

ν-MKL, the remaining data being called TrainV alSet. As specified in Algorithm

4, the optimal values of parameters C
′

and ν were selected for TrainV alSet. C
′

was selected from a pool of 10 logarithmically spaced values betweeen 10 and 100.

On the other hand, the pool of values of ν was selected such that the number of

selected components was at most 1, 2, 3 and so forth up to 15, a value that is

considerably higher than the number of relevant components defined by the ground

truth presented in Table 4.3. Since the value of ν defines a strict upper bound of the
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Algorithm 2 Estimate optimal component set for RCK

1: Inputs: TrainV alSet

2: Outputs: IL, WL

3: Define I(1): indexes for all components

4: Define P : number of components

5: for p = 1 to P − 1 do

6: Validate component set error RCK(TrainV alSet,I(p)) ⇒ E(p)

7: Train with TrainV alSet and I(p)

8: Compute discriminative weights W (p)

9: Remove component with lowest weight

10: Store indexes of remaining components ⇒ I(p+ 1)

11: end for

12: Find p that minimizes E(p) ⇒ pmin

13: I(pmin)⇒ IL, W (pmin)⇒ WL

Algorithm 3 Validate component set error RCK

1: Inputs: TrainV alSet and I(p)

2: Outputs: E(p)

3: Define N : number of folds in TrainV alSet

4: for j = 1 to N do

5: Extract Train(j) from TrainV alSet

6: Extract V al(j) from TrainV alSet

7: Train with Train(j) and I(p)⇒ SVMparameters

8: Test with V al(j), I(p) and SVMparameters

9: Store error ⇒ e(j)

10: end for

11: Average e(j) ⇒ E(p)
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number of selected components (see section 3.3.3), their values were set to guarantee

that the aforementioned criterion was satisfied. Therefore, ν ∈ {1.8, 2.8, . . . , 15.8}.

Algorithm 4 Train and Validate ν-MKL

1: Inputs: TrainV alSet, νvals, C
′

vals, C

2: Outputs: IL, γL

3: Validate parameters ν −MKL (TrainV alSet, νvals, C
′

vals, C) ⇒ C
′
, ν

4: Train with TrainV alSet, C
′
, ν and C ⇒ γL, IL

TrainV alSet was subdivided into training and validation sets, as it is specified in

Algorithm 5. ν-MKL was trained with all possible (C
′
,ν) pairs, the validation error

being estimated for each of them. This process was repeated for all folds, being the

optimal pair the one that achieved the minimum mean validation error. Then, the

optimal pair (C
′
,ν) was used to retrain ν-MKL, thus finding the optimal component

set IL for TrainV alSet. Next, the test error rate was estimated in the reserved

test set, with the test accuracy rate being estimated by averaging the accuracy rates

achieved for all test sets, just as it was done for RCK.

4.4.2 Estimation of informative components’ statistics

As it has been explained in the previous section, the proposed algorithms compute

optimal component sets IL for every possible TrainV alSet. Since 10-fold cross-

validation is applied, the number of possible TrainV alSet is 10, each of them having

a unique associated optimal component set.

The overall optimal component set found by these classifiers is composed of the

union of the 10-folds’ optimal component sets. The most informative components

in this set should be the ones that are selected by most of the folds. By the same

token, those components that are scarcely selected should be less informative than

the other ones. For this reason, the selection frequency of the components across folds
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is estimated as an informative statistic to measure the relevance of the components

in the optimal set.

Both classification algorithms provide another metric to estimate the relevance of

the components in the optimal set. On the one hand, RCK reports the discriminative

weights of the components. On the other hand, ν-MKL presents their γ values.

While both of them measure the degree of information provided by the components,

their values are not in the same numeric scale. To be able to compare them, these

values were normalized by their maximum values at each fold. By doing so, the most

relevant component for a given fold would achieve a normalized score of 1, regardless

of it being detected by RCK or ν-MKL.

After normalizing both the discriminative weights and the γ values, their mean

and standard deviation for each component were computed, being reported along

with their selection frequency scores.

4.4.3 RCK and ν-MKL results

Both RCK and ν-MKL achieved very similar classification accuracy rates (0.90 and

0.92, respectively), the latter algorithm attaining a slightly better performance than

RCK. While their accuracy rates are similar, their selected sets of the most discrim-

inative components for both groups present some important differences.

RCK is capable of detecting the components that are actually differentially acti-

vated between groups, as shown in Table 4.4. However, it also includes components

that show an equivalent activation pattern on both controls and patients. In fact,

regions that are not even part of the set of top-15 ranked components presented

in Table 4.3, such as the Bilateral Visual and Right Hippocampus components, are

deemed relevant by RCK. In contrast, ν-MKL only includes informative components

on its optimal component set, which is displayed in Table 4.5. It can also be seen that
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Table 4.4: Optimal block set detected by RCK, which is composed of the com-
ponents included on the block sets selected for each TrainV alSet on the 10-fold
cross-validation procedure. The components’ selection frequency, normalized mean
discriminative weight value and their standard deviation across the 10 folds are re-
ported.

Relevant Components
Selection Norm. Discr. Norm. Discr.

Frequency Weight Mean Val. Weight Std. Dev.

Left Auditory 1.00 1.00 0.00
Right Auditory 1.00 0.49 0.02
Right SensoriMotor 1.00 0.27 0.01
Left SensoriMotor 1.00 0.26 0.01
Default Mode Network 1.00 0.22 0.03
Dorsal Attention Network 1.00 0.16 0.02
Precuneus 0.90 0.12 0.01
Lateral Ventricles (CSF) 0.90 0.10 0.01
White matter tracts

0.50 0.05 0.01
(posterior)
Bilateral Visual 0.40 0.05 0.01
Right Hippocampus 0.40 0.05 0.01
Left Frontal 0.10 0.04 0.00
Bilateral Post-central 0.10 0.04 0.00

the CSF component is selected only 3 times by the different TrainV alSet generated

by the 10-fold cross-validation procedure.

4.5 Discussion of the Results

RCK applies an iterative approach, particularly backward elimination, to find the

optimal block set. Backward elimination is a greedy algorithm and it is known

that greedy algorithms are usually suboptimal [60]. Thus it is highly probable that

RCK finds a suboptimal component set. This statement may explain the fact that

components that are not significantly different across groups are still selected by

RCK. On the other hand, ν-MKL analyzes the whole set of available components on
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Table 4.5: Optimal block set detected by ν-MKL which is composed of the com-
ponents included on the block sets selected for each TrainV alSet on the 10-fold
cross-validation procedure. The components’ selection frequency, normalized mean
gamma value and their standard deviation across the 10 folds are reported.

Relevant Components
Selection Norm. Gamma Norm. Gamma

Frequency Mean Value Std. Dev.

Left Auditory 1.00 1.00 0.00
Right Auditory 1.00 0.57 0.04
Right SensoriMotor 1.00 0.31 0.07
Left SensoriMotor 1.00 0.31 0.07
Default Mode Network 0.90 0.25 0.07
Dorsal Attention Network 0.70 0.15 0.05
Precuneus 0.70 0.09 0.05
Lateral Ventricles (CSF) 0.30 0.06 0.03

its formulation to select the most relevant ones, thus being less prone to selecting

non-differentially activated components.
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Figure 4.1: SimTB flowchart of data generation. (A) Simulation dimension is de-
termined by the number of subjects, time points (and seconds per time point), and
voxels (representing a number of selected sources). (B) Time courses are the sum of
coefficient-modulated task block, task event, and unique event time series modeled
into a BOLD TC and normalized. (C) Spatial maps are selected, translated, rotated,
resized, and normalized. (D) The “no-noise” data combines the TCs and SMs scaled
by component amplitudes, and scaled to a tissue type weighted baseline. (E) The
final data set includes motion and noise. (Extracted from [49])
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Figure 4.2: Configuration of (a) default sources and (b) default tissue baseline. Spa-
tial maps are designed to represent components observed in axial slices of real fMRI
data.
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Figure 4.3: ICA components: task-related and medial frontal regions, white mat-
ter (WM) regions and lateral ventricles containing cerebrospinal fluid (CSF). The
medial frontal region (component 25) and CSF (component 28) present a baseline
greater than the primary tissue-type (TT), which is the gray matter (GM), while
WM (components 6 and 22) has a baseline less than the primary TT. Refer to Table
4.1 to find the list of the task-related components and their associated labels.
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Algorithm 5 Validate parameters ν-MKL

1: Inputs: TrainV alSet, νvals, C
′

vals, C

2: Outputs: C
′
, ν

3: Define N : number of folds in TrainV alSet

4: for i = 1 to N do

5: Extract Train(i) from TrainV alSet

6: Extract V al(i) from TrainV alSet

7: for j = 1 to #C
′

vals do

8: C
′

sel = C
′

vals(j)

9: for k = 1 to #νvals do

10: νsel = νvals(k)

11: Train with Train(i), C
′

sel, νsel and C ⇒ Trained ν −MKL

12: Test with V al(i) and Trained ν −MKL

13: Store error ⇒ e(i, j, k)

14: end for

15: end for

16: end for

17: Average e(i, j, k) over i ⇒ e(j, k)

18: Find (j, k) that minimizes e(j, k)⇒ (J,K)

19: C
′

vals(J)⇒ C
′

20: νvals(K)⇒ ν

81



Chapter 5

Application of RCK and ν-MKL to

fMRI data

This chapter presents the results of RCK and ν-MKL on the classification of healthy

controls and schizophrenia patients on two different fMRI data sets acquired from

an auditory task experiment. The first work, which is described in 5.1 and has been

published in [61], applies RCK to combine fMRI data that is processed with two data

analysis methods (GLM and ICA), showing that this algorithm takes advantage of

the complementary nature of these analysis methods. The second one (section 5.2)

analyzes fMRI data with RCK by taking into account both its magnitude and phase

information. This preliminary analysis, which has been published in [62], provides

evidence that phase information is useful to better discriminate controls from patients

when used along with magnitude data. The last section of this chapter provides

another analysis using data from the same study, but using a different set of subjects

to better match controls and patients in terms of age. It presents a more solid

framework for complex-valued fMRI data analysis using ν-MKL [63, 64], which in

turn renders an improved characterization of schizophrenia.
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5.1 Characterization of schizophrenia using RCK

and multi-source fMRI analysis data

5.1.1 Introduction

As it has been specified in section 2.1.2, fMRI data can be characterized by model-

based analysis such as GLM, which emphasize task-related activity in each voxel

separately, or by non-model based ones such as ICA, which looks for different com-

ponents of voxels that have temporally coherent neural activity. GLM and ICA

approaches are complementary to each other. For this reason, it would be sensible

to devise a method that could gain more insight of the underlying processes of brain

activity by combining data from both approaches.

ICA has been extensively applied to fMRI data to identify differences among

healthy controls and schizophrenia patients [65, 66, 67]. Calhoun et al. [53] showed

that the temporal lobe and the default mode components could reliably be used

together to identify patients with bipolar disorder and schizophrenia from each other

and from healthy controls. Furthermore, Garrity et al. [54] demonstrated that the

default mode component showed abnormal activation and connectivity patterns in

schizophrenia patients. Therefore, there is evidence that suggest that the default

mode and temporal lobe components are disturbed in schizophrenia. Based on the

reported importance of the temporal lobe in the characterization of schizophrenia

we used data from an auditory oddball discrimination (AOD) task, which provides

a consistent activation of this part of the brain. Three sources were extracted from

fMRI data using two analysis methods: model-based information via the GLM and

functional connectivity information retrieved by ICA. The first source is a set of

β-maps generated by the GLM. The other two sources come from an ICA analysis

and include a temporal lobe component and the default mode network component.
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As it has been discussed on section 2.3.2, one of the most commonly used ap-

proaches to reduce the dimensionality of fMRI data is feature selection. However,

most models assume that there is an intrinsic linear relationship between voxels, as

multivariate, nonlinear feature selection is computationally intensive. A convenient

tradeoff consists on assuming that there are nonlinear relationships between voxels

that are close to each other and that are part of the same anatomical brain region,

and that voxels in different brain regions are linearly related. To do so, we pro-

pose the application of RCK using nonlinear kernels to fMRI data for schizophrenia

detection.

Once the sources are extracted, volumes from both the GLM and ICA sources are

segmented into anatomical regions. Each of these areas is mapped into a different

space using RCK.

5.1.2 Materials and Methods

Participants

Data were collected at the Olin Neuropsychiatric Research Center (Hartford, CT)

from healthy controls and patients with schizophrenia. All subjects gave written,

informed, Hartford hospital IRB approved consent. Schizophrenia was diagnosed

according to DSM-IV-TR criteria [68] on the basis of both a structured clinical in-

terview (SCID) [69] administered by a research nurse and the review of the medical

file. All patients were on stable medication prior to the scan session. Healthy par-

ticipants were screened to ensure they were free from DSM-IV Axis I or Axis II

psychopathology using the SCID for non-patients [70] and were also interviewed to

determine that there was no history of psychosis in any first-degree relatives. All

participants had normal hearing, and were able to perform the AOD task (see Section

5.1.2) successfully during practice prior to the scanning session.
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Data from 106 right-handed subjects were used, 54 controls aged 17 to 82 years

(mean=37.1, SD=16.0) and 52 patients aged 19 to 59 years (mean=36.7, SD=12.0).

A two-sample t-test on age yielded t = 0.13 (p = 0.90). There were 29 male controls

(M:F ratio=1.16) and 32 male patients (M:F ratio=1.60). A Pearson’s chi-square

test yielded χ2 = 0.67 (p = 0.41).

Experimental Design

The AOD task involved subjects that were presented with three frequencies of sounds:

target (1200 Hz with probability, p = 0.09), novel (computer generated complex

tones, p = 0.09), and standard (1000 Hz, p = 0.82) presented through a computer

system via sound insulated, MR-compatible earphones. Stimuli were presented se-

quentially in pseudorandom order for 200 ms each with inter-stimulus interval varying

randomly from 500 to 2050 ms. Subjects were asked to make a quick button-press

response with their right index finger upon each presentation of each target stimu-

lus; no response was required for the other two stimuli. There were two runs, each

comprising 90 stimuli (3.2 minutes) [71].

Image Acquisition

Scans were acquired at the Institute of Living, Hartford, CT on a 3T dedicated

head scanner (Siemens Allegra) equipped with 40mT/m gradients and a standard

quadrature head coil. The functional scans were acquired using gradient-echo echo

planar imaging (EPI) with the following parameters: repeat time (TR) = 1.5 sec,

echo time (TE) = 27 ms, field of view = 24 cm, acquisition matrix = 64 × 64, flip

angle = 70 ◦, voxel size = 3.75×3.75×4 mm3, slice thickness = 4 mm, gap = 1 mm,

number of slices = 29; ascending acquisition. Six dummy scans were carried out at

the beginning to allow for longitudinal equilibrium, after which the paradigm was
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automatically triggered to start by the scanner.

Preprocessing

fMRI data were preprocessed using the SPM5 software package (http://www.fil.

ion.ucl.ac.uk/spm/software/spm5/). Images were realigned using INRIalign, a

motion correction algorithm unbiased by local signal changes [72]. Data were spa-

tially normalized into the standard Montreal Neurological Institute (MNI) space [73],

spatially smoothed with a 9× 9× 9−mm3 full width at half-maximum Gaussian ker-

nel. The data (originally acquired at 3.75× 3.75× 4 mm3) were slightly upsampled

to 3× 3× 3 mm3, resulting in 53× 63× 46 voxels.

Creation of Spatial Maps

The GLM analysis performs a univariate multiple regression of each voxel’s time-

course with an experimental design matrix, which is generated by doing the con-

volution of pulse train functions (built based on the task onset times of the fMRI

experiment) with the hemodynamic response function [51]. This results in a set of

β-weight maps (or β-maps) associated with each parametric regressor. The β-maps

associated with the target versus standard contrast were used in our analysis. The

final target versus standard contrast images were averaged over two runs.

In addition, group spatial ICA [57] was used to decompose all the data into

20 components using the GIFT software (http://icatb.sourceforge.net/) as fol-

lows. Dimension estimation, which was used to determine the number of components,

was performed using the minimum description length criteria, modified to account

for spatial correlation [74]. Data from all subjects were then concatenated and this

aggregate data set reduced to 20 temporal dimensions using PCA, followed by an

independent component estimation using the infomax algorithm [58]. Individual sub-
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ject components were back-reconstructed from the group ICA analysis to generate

their associated spatial maps (ICA maps). Component maps from the two runs were

averaged together resulting in a single spatial map of each ICA component for each

subject. It is important to mention that this averaging was performed after the

spatial ICA components were estimated. The two components of interest (temporal

lobe and default mode) were identified in a fully automated manner using different

approaches. The temporal lobe component was detected by temporally sorting the

components in GIFT based on their similarity with the SPM design regressors and

retrieving the component whose ICA timecourse had the best fit. By contrast, the

default mode network was identified by spatially sorting the components in GIFT

using a mask derived from the Wake Forest University pick atlas (WFU-PickAtlas)

[75, 76, 77], (http://www.fmri.wfubmc.edu/download.htm). For the default mode

mask we used precuneus, posterior cingulate, and Brodmann areas 7, 10, and 39

[78, 79]. A spatial multiple regression of this mask with each of the networks was

performed, and the network which had the best fit was automatically selected as the

default mode component.

Data Segmentation and Normalization

The spatial maps obtained from the three available sources were segmented into 116

regions according to the automated anatomical labeling (AAL) brain parcellation

defined in [80] by using the WFU-PickAtlas. In addition, the spatial maps were

normalized by subtracting from each voxel its mean value across subjects and dividing

it by its standard deviation. Multiple kernel learning methods such as composite

kernels and RCK further required each kernel matrix to be scaled such that the

variance of the training vectors in its associated feature space were equal to 1. This

procedure is explained in more detail in the next section.
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Composite Kernels Method

Structure of the learning machine based on composite kernels Each area

from example i is placed in a vector xi,l where i, 1 ≤ i ≤ N is the example index and

l, 1 ≤ l ≤ L is the area index. An example is defined as either a single-source spatial

map or the combination of multiple sources spatial maps of a specific subject. In the

particular case of our study N = 106. For single-source analysis, composite kernels

map each example i into L = 116 vectors xi,l; for two-source analysis, composite

kernels map each example into L = 2 × 116 = 232 vectors xi,l , and so on. Then,

each vector is mapped through a nonlinear transformation ϕl(·), following the clas-

sification structure defined on section 3.1. In this work, kernels kl(·, ·) are defined to

be Gaussian kernels with the same parameter σ.

When the kernel function kl(·, ·) is applied to the training vectors in the data

set, matrix Kl is generated. Component i, j of this matrix is computed as Kl(i, j) =

kl(xi,l,xj,l). Variance normalization is applied to these kernel matrices as mentioned

in section 2.3.3 by using the following transformation:

Kl 7→
Kl

1
N

∑N
i=1 Kl(i, i)− 1

N2

∑N
i=1

∑N
j=1Kl(i, j)

, (5.1)

where the denominator of Eq. 5.1 is the variance of the examples in the feature space

[38].

Let example xi be nonlinearly mapped to a Hilbert space such that ϕ(xi) =

[ϕT1 (xi,1) · · ·ϕTL(xi,L)]T . Then, as it has been shown in chapter 3, the predicted value

of a given test pattern x∗ can be expressed by Eq. 3.5, which is displayed below

y =
L∑
l=1

N∑
i=1

αiϕ
T
l (xi,l)ϕl(x∗,l) + b

=
N∑
i=1

αi

L∑
l=1

kl(xi,l,x∗,l) + b,

(5.2)
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where αi are the machine parameters that have to be optimized using a simple least

squares approach or SVMs. In this work, SVMs are used by means of the LIBSVM

software package [81] (http://www.csie.ntu.edu.tw/~cjlin/libsvm). Note that

the output is a linear combination of kernels, which is used to train RCK as shown

in section 3.2.3, the discriminative weights of the brain regions being estimated as it

is explained in section 3.2.2.

Parameter selection, optimal area set selection and prediction accuracy

estimation RCK (see section 3.2) is run for both single-source and multi-source

data. There are two parameters that need to be tuned in order to achieve the best

performance of the learning machine. These parameters are the SVM error penalty

parameter C [17] and the Gaussian kernel parameter σ. Based on preliminary exper-

imentation, it was discovered that the problem under study was rather insensitive

to the value of C, so it was fixed to C = 100. In order to select σ, a set of 10

logarithmically spaced values between 1 and 100 were provided to the classifier.

The validation procedure consists of finding the optimal parameter pair {σ, Iareas},

where Iareas specifies a subset of the areas indexes. If a brute-force approach were

used, then the validation error rates obtained for all possible values of σ and all

combinations of areas would need to be calculated.

The previously mentioned exhaustive approach is unaffordable. For this reason,

we propose a recursive algorithm based on the calculation of discriminative weights

(please refer to section 3.2). Based on this method, a grid search could be performed

by calculating the validation error and the training discriminative weights for each

value of σ and each remaining subset of areas at each iteration of the recursive algo-

rithm. The algorithm would start with all brain regions, calculate the discriminative

weights for each value of σ and eliminate at each iteration the regions with least

discriminative weight in the area sets associated to each σ value. After executing
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the whole grid search, the pair {σ, Iareas} that yielded the minimum validation error

rate would be selected.

The aforementioned method could be further simplified by calculating only the

training discriminative weights associated to the optimal value of σ at each itera-

tion of RCK. This procedure is suboptimal compared to the previous one, but it

reduces its computational time. The following paragraphs provide more details of

the previously discussed validation procedure and the test accuracy rate calculation.

First of all, a pair of observations (one from a patient and one from a control)

is set aside to be used for test purposes and not included in the validation proce-

dure. The remaining data, which is called TrainV alidSet in algorithm 6, is further

divided in training and validation sets, the latter one being conformed by another

control/patient data pair, as shown in algorithm 7.

Algorithm 6 Train and Validate

1: Inputs: TrainV alSet

2: Outputs: SigmaOpt, Iopt and SVMparameters

3: Define I(1): indexes for all areas

4: Define P : number of areas

5: for p = 1 to P − 1 do

6: Validate sigma with LTO(TrainV alSet,I(p)) ⇒ Sigma(p) and E(p)

7: Train with TrainV alSet, Sigma(p) and I(p)

8: Compute discriminative weights

9: Remove area with lowest weight

10: Store indexes of remaining areas ⇒ I(p+ 1)

11: end for

12: Find p that minimizes E(p) ⇒ pmin

13: Sigma(pmin)⇒ SigmaOpt, I(pmin)⇒ Iopt

14: Train with TrainV alSet, SigmaOpt and Iopt⇒ SVMparameters
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Algorithm 7 Validate sigma with LTO

1: Inputs: TrainV alSet and I(p)

2: Outputs: Sigma(p) and E(p)

3: Define N : number of subject pairs in TrainV alSet

4: Define L: Number of possible values for sigma

5: for j = 1 to N do

6: Extract Train(j) from TrainV alSet

7: Extract V al(j) from TrainV alSet

8: for k = 1 to L do

9: Train with Train(j), sigma(k) and I(p)⇒ SVMparameters

10: Test with V al(j), sigma(k), I(p) and SVMparameters

11: Store error ⇒ e(j, k)

12: end for

13: end for

14: Average e(j, k) over j ⇒ e(k)

15: Find k that minimizes e(k) ⇒ E(p)

16: sigma(k)⇒ Sigma(p)

The classifier is trained by using all the brain regions and all possible σ values and

the validation error rates are estimated as shown in algorithm 7. The above process is

repeated for all control/patient pairs. Next, the value of σ that yields the minimum

validation error is selected and this error is stored. Next, the algorithm is retrained

with this value of σ and the discriminative weights are estimated, eliminating the

area with minimum associated value. This procedure is then repeated until a single

brain region is analyzed.

Afterwards, the pair {σ, Iareas} that achieves minimum validation error is selected

and the test error rate is estimated using the previously reserved test set. Then,

another control/patient pair is selected as the new test set and the entire procedure

91



Chapter 5. Application of RCK and ν-MKL to fMRI data

is repeated for each of these test set pairs. The test accuracy rate is then estimated

by averaging the accuracy rates achieved by each test set.

Comparison of composite kernels and RCK with other methods The com-

posite kernels algorithm allows the analysis of non-linear relationships between voxels

within a brain region and captures linear relationships between those regions. We

compare the performance of the proposed algorithm for single-source and multi-

source analyses with both a linear SVM, which assumes linear relationships between

voxels, and a Gaussian SVM, which analyzes all possible non-linear relationships

between voxels. The data from each area, which is extracted by the segmentation

process, is input to the aforementioned conventional kernel-based methods after been

concatenated.

Besides analyzing the classification accuracy rate obtained by our proposed fea-

ture selection approach (RCK) compared to the previously mentioned algorithms, we

are interested in evaluating the performance of RCK by comparing it against another

RFE-based procedure: RFE-SVM applied to linear SVMs (which will be hereafter

referred to as RFE-SVM).

Parameter selection for the aforementioned algorithms is performed as follows.

As stated before, the problem under study is rather insensitive to the value of C.

Therefore, its value is fixed to 100 for linear SVM, Gaussian SVM and RFE-SVM.

In addition, the Gaussian kernel parameter σ values are retrieved from a set of 100

logarithmically spaced values between 1 and 1000.
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5.1.3 Results

RCK Applied to Single Sources

This section presents the sets of most relevant areas and the test results of RCK

applied to each source.

The mean test accuracy achieved by using ICA default-mode component data is

90%. The list of overall 40 brain regions that were selected by RCK for the ICA

default mode component data are listed in Table 5.1, alongside the statistics of their

discriminative weights. These regions are grouped in macro regions to better identify

their location in the brain. Furthermore, the rate of training sets that selected each

region (selection frequency) is also specified.

When RCK is applied to the ICA temporal lobe component data, it achieves

a mean test accuracy rate of 85%. The optimal area set obtained by using ICA

temporal lobe data is reported in Table 5.2.

Finally, RCK achieves a mean test accuracy rate of 86% when it is applied to

GLM data. The list of areas selected by RCK in this case is displayed in Table 5.3.

RCK Applied to Multiple Sources

All possible combinations of data sources were analyzed by RCK, and we report

the obtained results for each of them (please refer to Table 5.6). It can be seen

that RCK achieves its peak performance when it is applied to all of the provided

sources (95%). Due to this fact, we think that special attention should be given to

the areas retrieved by this multi-source analysis and its characterization by means

of their discriminative weights. Therefore, we present Table 5.4, which displays this

information. In addition, a graphical representation of the coefficients associated
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Figure 5.1: Discriminative weights brain maps for multi-source analysis. The brain
maps of each of these sources highlight the brain regions associated to each of them
that were present in the optimal area set for this multi-source data classification.
These areas are color-coded according to their associated discriminative weights.

to those areas is presented in Fig. 5.1, which overlay colored regions on top of a

structural brain map for each of the three analyzed sources.

Comparison of the Performance of Composite Kernels and RCK with

Other Methods

For single-source data analysis, Table 5.5 shows that both Gaussian SVMs and com-

posite kernels exhibit an equivalent performance for all sources, while the classifica-

tion accuracy achieved by linear SVMs for both ICA temporal lobe and GLM sources

are smaller than the ones attained by the aforementioned algorithms. It can also be

seen that there is a moderate difference between the classification accuracy rates

obtained by RCK and RFE-SVM when they are applied to all data sources, except
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ICA default mode.

The results of multi-source analysis are shown in Table 5.6. In this case, linear

SVMs and Gaussian SVMs reach a similar prediction accuracy for all multi-source

analyses, except for the case when they are provided with data from ICA temporal

lobe and GLM sources. While composite kernels achieve almost the same classi-

fication accuracy as linear and Gaussian SVMs when provided with three-sources

data, its performance is reduced on the other multi-source analyses. The differences

between classification rates for RFE-based methods are small for multi-source data

analyses, with RCK achieving slightly better results in some cases.

5.1.4 Discussion

A classification algorithm based on composite kernels that is applicable to fMRI

data has been introduced. This algorithm analyzes nonlinear relationships across

voxels within anatomical brain regions and combines the information from these

areas linearly, thus assuming underlying linear relationships between them. By us-

ing composite kernels, the regions from segmented whole-brain data can be ranked

multivariately, thus capturing the spatially distributed multivariate nature of fMRI

data. The fact that whole-brain data is used by the composite kernels algorithm is a

feature of special importance, since the data within each region does not require any

feature extraction preprocessing procedure in order to reduce their dimensionality.

The application of RFE to composite kernels enables this approach to discard the

least informative brain regions and hence retrieve the brain regions that are more rel-

evant for class discrimination for both single-source and multi-source data analyses.

The discriminative coefficients of each brain region indicate the degree of differential

activity between controls and patients. Despite the fact that composite kernels can-

not indicate which of the analyzed groups of interest is more activated for a specific
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brain region like linear SVMs could potentially do, the proposed method is still ca-

pable of measuring the degree of differential activity between groups on that region.

Furthermore, RCK enables the use of a nonlinear kernel within a RFE procedure,

a task that can become barely tractable with conventional SVM implementations.

Another advantage of RCK over other RFE-based procedures such as RFE-SVM is

its faster execution time; while the former takes 12 hours to be executed, the latter

takes 157 hours, achieving a 13-fold improvement. Finally, this paper shows that the

proposed algorithm is capable of taking advantage of the complementarity of GLM

and ICA by combining them to better characterize groups of healthy controls and

schizophrenia patients; the fact that the classification accuracy achieved by using

data from three sources surpasses that reached by using single-source data supports

this claim.

The set of assumptions upon which the proposed approach is based are the linear

relationships between brain regions, the nonlinear relationships between voxels in the

same brain region and the sparsity of information in the brain. These assumptions

seem to be reasonable enough to analyze the experimental data based on the obtained

classification results. This does not imply that cognitive processes actually work in

the same way as it is stated in our assumptions, but that the complexity assumed

by our method is sensible enough to produce good results with the available data.

While composite kernels achieve classification accuracy rates that are greater than

or equal to those reached by both linear and Gaussian SVMs when applied to single-

source whole-brain data, the same does not hold for multi-source analysis. It may be

possible that composite kernels performance is precluded when it is provided with

too many areas, making it prone to overfitting.

The presented results suggest that for a given number of training data, the trade-

off of our proposed algorithm between the low complexity of the linear assumption,

which provides the rationale of linear SVMs, and the high complexity of the fully
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nonlinear approach, which motivates the application of Gaussian SVMs, is conve-

nient. In the case of composite kernels, they assume linear relationships between

brain regions but are flexible enough to analyze nonlinearities within them. Never-

theless, their results are similar to the ones of the previously mentioned approaches

for single-source analysis and inferior for multi-source analysis since they do not take

advantage of information sparsity in the brain, thus not significantly reducing the

classifier complexity. However, the accuracy rates attained by RCK are significantly

better than the ones achieved by composite kernels. These results reinforce the va-

lidity of two hypotheses: first, that indeed there are brain regions that are irrelevant

for the characterization of schizophrenia (information sparsity); and second, that

RCK is capable of detecting such regions, therefore being capable of finding the set

of most informative regions for schizophrenia detection given a specific data source.

Table 5.6 shows the results achieved by different classifiers using multi-source

data. It is important to notice that the results obtained by all the classifiers when all

of the sources are combined are greater than those obtained by these algorithms when

they are provided with data from the ICA default mode component and either the

ICA temporal lobe component or GLM data. The only method for which the previous

statement does not hold is RFE-SVM. This finding may seem counterintuitive as one

may think that both ICA temporal lobe component and GLM data are redundant,

since they are detected based on their similarity to the stimuli of the fMRI task.

However, the fact that ICA and GLM characterize fMRI data in different ways (the

former analyzes task-related activity, while the latter detects groups of voxels with

temporally coherent activity) might provide some insight of why the combination of

these two sources proves to be important together with ICA default mode data.

In addition to the accuracy improvement achieved by applying feature selection

to whole-brain data classification, RCK allows us to better identify the brain re-

gions that characterize schizophrenia. The fact that several brain regions in the ICA
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temporal lobe component are present in the optimal area set is consistent with the

findings that highlight the importance of the temporal lobe for schizophrenia detec-

tion. It is also important to note the presence of the anterior cingulate gyrus of

the ICA default mode component in the optimal area set, for it has been proposed

that error-related activity in the anterior cingulate cortex is impaired in patients

with schizophrenia [82]. The participants of the study are subject to making errors

since the AOD task is designed in such a way that subjects have to make a quick

button-press response upon the presentation of target stimuli. Since attention plays

an important role in this fMRI task, it is sensible to think that consistent differential

activation of the dorsolateral prefrontal cortex (DLPFC) for controls and patients

will be present [83]. That may be the reason why the right middle frontal gyrus of

the GLM is included in the optimal area set.

Brain aging effects being more pronounced in individuals after age 60 [84] raised

a concern that our results may have been influenced by the data collected from

four healthy controls who exceeded this age cutoff in our sample. Thus, we re-ran

our analysis excluding these four subjects. Both the resulting classification accuracy

rates and the optimal area sets were consistent with the previously found ones. These

findings seem to indicate that the algorithm proposed in this paper is robust enough

not to be affected by the presence of potential outliers when provided with consistent

features within the groups of interest.

To summarize, this work extends previous studies like [85, 53, 54] by introducing

new elements. First, the method allows the usage of multi-source fMRI data, mak-

ing it possible to combine ICA and GLM data. And second, it can automatically

identify and retrieve regions which are relevant for the classification task by using

whole-brain data without the need of selecting a subset of voxels or a set of ROIs

prior to classification. Based on the aforementioned capabilities of the presented

method, it is reasonable to think that it can be applied not only to multi-source
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fMRI data, but also to data from multiple imaging modalities (such as fMRI, EEG

or MEG data) for schizophrenia detection and identify the regions within each of

the sources which differentiate controls and patients better. Further work includes

the modification of the composite kernels formulation to include scalar coefficients

associated to each kernel. By applying new improved strategies based on optimizers

that provide sparse solutions to this formulation, a direct sparse selection of kernels

would be attainable. Such approaches are attractive because they would enable the

selection of the optimal area set without the need of using a recursive algorithm,

significantly improving the execution time of the learning phase of the classifier.

Moreover, it is possible to analyze nonlinear relationships between groups of brain

regions by using those methods, thus providing a more general setting to characterize

schizophrenia. Finally, it should be stated that even though this approach is useful

in schizophrenia detection and characterization, it is not restricted to this disease

detection and can be utilized to detect other mental diseases.

5.2 Characterization of schizophrenia using RCK

and complex fMRI data

5.2.1 Introduction

Functional magnetic resonance imaging (fMRI) data are acquired at each scan as a

bivariate complex image pair for single-channel coil acquisition, containing both the

magnitude and the phase of the signal. This complex-valued spatiotemporal data

have been shown to contain physiologic information [4]. In fact, it has been shown

that there are activation-dependent differences in the phase images as a function of

blood flow, especially for voxels with larger venous blood fractions [86]. Based on

these findings and on results of some models that showed that phase changes arise
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only from large non-randomly oriented blood vessels, previous work has focused

on filtering voxels with large phase changes [87, 88, 89]. Nonetheless, more recent

studies provide evidence that the randomly oriented microvasculature can also pro-

duce non-zero blood-oxygen-level-dependent (BOLD)-related phase changes [90, 89],

suggesting that the phase information contains useful physiologic information. Fur-

thermore, previous studies have reported task-related fMRI phase changes [4, 88].

The previously discussed findings on the literature provide evidence that phase in-

corporates information that may help us better understand brain function. For this

reason, the present study explores whether phase could improve the detection of

functional changes in the brain when combined with magnitude data.

While both magnitude and phase effects are generated by the blood-oxygen-level-

dependent mechanism and they both depend on the underlying vascular geometry

and the susceptibility change, they primarily depend on different magnetic field char-

acteristics [91]. To first order, the magnitude attenuation depends on the intra-voxel

magnetic field inhomogeneity and the phase depends on the mean magnetic field at

the voxel. For this reason, it makes sense to think that the inclusion of the phase

along with the magnitude could increment the sensitivity to detect informative re-

gions and better discriminate control and patient subjects. Although phase could

potentially provide complementary information to magnitude data, most studies dis-

card the phase data. The phase images are usually discarded since their noisy nature

poses a challenge for a successful study of fMRI when the processing is performed in

the complex domain [92].

Nonetheless, some studies, such as [93, 92], have tried to incorporate phase data

on fMRI analyses, but neither of these papers evaluated phase changes at group

level. The work in [94] presents a group analysis to evaluate task-related phase

changes compared to the task-related magnitude changes in both block-design and

event-related tasks. The detection of phase activation in the regions expected to be
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activated by the task in this study provides further motivation to implement new

methods that focus on combining magnitude and phase data to achieve better group

inferences.

This study proposes a pattern recognition methodology based on RCK that is

capable of attaining a better classification accuracy to differentiate groups of healthy

controls and schizophrenia patients by combining fMRI magnitude and phase data.

The fMRI data was acquired through an AOD task. In order to overcome the noisy

nature of phase data, RFE-SVM [25] is applied to phase data prior to merging it

with whole-brain magnitude data. After this preprocessing step, the data is input

to RCK.

5.2.2 Materials and Methods

Participants and experimental design

Data from 52 subjects were used, 21 healthy controls aged 18 to 40 years (mean=26.2,

SD=7.5) and 31 schizophrenia patients aged 19 to 54 years (mean=30.5, SD=9.2).

The experimental design was a three-stimulus AOD task; two runs of auditory stimuli

consisting of standard, target, and novel stimuli were presented to the subject. The

standard stimulus was a 1000-Hz tone, the target stimulus was a 1500-Hz tone, and

the novel stimuli consisted of non-repeating random digital noises. The target and

novel stimuli each was presented at a probability of 0.10, and the standard stimuli

with a probability of 0.80. The stimulus duration was 200 ms with a 2000-ms stimulus

onset asynchrony. Both the target and novel stimuli were always followed by at least

3 standard stimuli. Steps were taken to make sure that all participants could hear

the stimuli and discriminate them from the background scanner noise. Subjects

were instructed to respond to the target tone with their right index finger and not

to respond to the standard tones or the novel stimuli.
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Image acquisition

FMRI imaging was performed on a 1.5 T Siemens Avanto TIM system with a 12-

channel radio frequency coil. Conventional spin-echo T1-weighted sagittal localizers

were acquired for use in prescribing the functional image volumes. Echo planar

images were collected with a gradient-echo sequence, modified so that it stored real

and imaginary data separately, with the following parameters: FOV = 24 cm, voxel

size = 3.75×3.75×4.0 mm3, slice gap = 1 mm, number of slices = 27, matrix size =

64× 64, TE = 39 ms, TR = 2 s, flip angle = 75 ◦. The participant’s head was firmly

secured using a custom head holder. The two stimulus runs consisted of 189 time

points each, the first 6 images of each run being discarded to allow for T1 effects to

stabilize.

Preprocessing

The magnitude and phase images were written out as 4D NIfTI (Neuroimaging In-

formatics Technology Initiative) files using a custom reconstruction program on the

scanner. Preprocessing of the data was done using the SPM5 software package1. The

phase images were unwrapped by creating a time series of complex images (real and

imaginary) and dividing each time point by the first time point, and then recalcu-

lating the phase images. Further phase unwrapping was not required. Magnitude

data were co-registered using INRIAlign [95, 72] to compensate for movement in the

fMRI time series images. Images were then spatially normalized into the standard

Montreal Neurological Institute (MNI) space [73]. Following spatial normalization,

the data (originally acquired at 3.75 × 3.75 × 4 mm3) were slightly upsampled to

3× 3× 3 mm3, resulting in 53× 63× 46 voxels. Motion correction and spatial nor-

malization parameters were computed from the magnitude data and then applied

1Available at http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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to the phase data. The magnitude and phase data were both spatially smoothed

with a 10 × 10 × 10 −mm3 full-width at half-maximum Gaussian filter. Phase and

magnitude data were masked to exclude non-brain voxels.

Creation of spatial maps

A standard general linear model (GLM) analysis on each individual subject was

performed using the SPM5 software. Activation maps were computed for magnitude

and phase data separately using the multiple regression framework within SPM5,

in which regressors are created from the stimulus onset times and convolved with

a standard hemodynamic response function in SPM (a combination of two gamma

functions which has a peak at 6 s).

Three regressors modeling the target, novel, and standard stimuli were used for

each run. Two contrasts for the difference of the target and standard regressors of

each run were computed. The resulting contrast images are simply referred to as

GLM maps.

Proposed Method

GLM maps from magnitude and phase data were normalized by subtracting from

each voxel its mean value across subjects and dividing it by its standard deviation.

Next, the GLM maps generated from magnitude data were segmented into 116 re-

gions according to the automated anatomical labeling (AAL) brain parcellation [80]

by using the the Wake Forest University pick atlas (WFU-PickAtlas) [75, 76, 77],

(http://www.fmri.wfubmc.edu/download.htm). If magnitude-only data was ana-

lyzed, the information from these brain regions was directly provided to RCK. This

algorithm fixed parameter C to 100 and used linear kernels; these kernels were ap-

plied variance normalization as explained in 2.3.3. Parameter selection as well as
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classification accuracy estimation were performed by applying a similar methodol-

ogy as the one described in 5.1.

In order to incorporate phase data in the analysis, a feature selection procedure

(RFE-SVM) [25] was applied to it to get rid of noisy voxels. In this work, 10% of

the lowest ranked voxels were discarded at each iteration of RFE-SVM. Next, the

activation values of the selected phase voxels were mapped to their corresponding

brain regions in the AAL atlas and were combined with the magnitude data present

in those regions. Finally, the combination of magnitude and phase data from each

region was input to RCK.

Comparison of the proposed method with other algorithms

The proposed algorithm is compared with RFE-SVM and linear SVM for both

magnitude-only and magnitude and phase data analyses. The latter algorithms were

provided with whole-brain GLM maps, i.e., these maps were not segmented into

brain regions for these two methods. In addition, both RFE-SVM and linear SVM

were trained with C = 100.

5.2.3 Results

Table 5.7 shows the results attained by the classification algorithms for both magni-

tude only and magnitude and phase data. It can be seen that the results obtained

by linear SVM are significantly lower than those achieved by RFE-SVM and the

proposed method for both magnitude and complex data. It can also be seen that an

improvement is achieved by these methods when phase data is included. Conversely,

the performance of linear SVM decays when it is provided with phase data.

The sets of most relevant regions detected by the proposed method when it is
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provided with either magnitude or complex data are shown in Table 5.8. The upper

part of this table shows those regions that are deemed relevant by RCK for both

magnitude and complex data, while the lower one displays the relevant regions that

are uniquely detected for each type of data. In addition, a graphical representation

of the coefficients associated to those regions is presented in Fig. 5.2, which overlay

colored regions on top of a structural brain map for each of the two types of data.

5.2.4 Discussion

A classification method that achieves a better classification of fMRI data of healthy

controls and schizophrenia patients by combining magnitude and phase data is pre-

sented. This work fulfills the need for a methodology that combines magnitude and

phase data to achieve better within-group inferences by demonstrating its capacity

to improve between-group inferences with the inclusion of phase data.

The classification results obtained by linear SVM presented in Table 5.7, which

decay considerably when phase data is included in the analysis, provide evidence

that the noisy nature of phase data can preclude a group analysis if this data source

is not filtered. Based on the results achieved by the other classification approaches,

RFE-SVM proves to be a sensible choice for phase data filtering, being able to extract

informative voxels from phase data and making it possible to get better classification

results with the inclusion of phase information.

RCK results provide evidence of disturbances in the temporal lobe in schizophre-

nia, since this region is detected in both the magnitude and the complex data. In

addition, the complex data analysis reveals that phase data shows group discriminat-

ing activity in other brain regions, such as the cingulate gyri, which is informative for

schizophrenia detection. In fact, the presence of the anterior cingulate gyrus among

the relevant regions is important, for it has been proposed that error-related activity
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in the anterior cingulate cortex is impaired in patients with schizophrenia [82].
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Table 5.1: Optimal area set and associated discriminative weights for RCK analysis applied
to ICA default mode data. The most informative anatomical regions retrieved by RCK
when applied to ICA default mode data are grouped in macro brain regions to give a
better idea of their location in the brain. The mean and the standard deviation of the
discriminative weights of each area are listed in this table. In addition the rate of training
sets in the cross-validation procedure that selected each area (selection frequency) is also
reported in order to measure the validity of the inclusion of each region in the optimal area
set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA DMN

Central Region

Right Precentral Gyrus 2.32 0.06 1.00
Left Precentral Gyrus 2.31 0.04 1.00
Left Postcentral Gyrus 2.22 0.03 1.00
Right Postcentral Gyrus 2.21 0.02 1.00

Frontal lobe

Right Paracentral Lobule 3.44 0.16 1.00
Left Superior Frontal Gyrus, Medial 2.97 0.15 1.00
Left Middle Frontal Gyrus, Orbital Part 1 2.52 0.15 1.00
Right Superior Frontal Gyrus, Medial 2.51 0.10 1.00
Left Superior Frontal Gyrus 2.28 0.09 1.00
Right Superior Frontal Gyrus 2.27 0.06 1.00
Left Inferior Frontal Gyrus, Triangular Part 2.24 0.04 1.00
Right Middle Frontal Gyrus 2.21 0.04 0.94
Right Inferior Frontal Gyrus, Opercular Part 2.19 0.08 0.79
Left Inferior Frontal Gyrus, Orbital Part 2.16 0.08 0.55
Right Gyrus Rectus 2.38 0.21 0.94

Temporal lobe
Left Middle Temporal Gyrus 2.27 0.03 1.00
Right Middle Temporal Gyrus 2.22 0.05 1.00

Parietal lobe

Left Angular Gyrus 2.72 0.11 1.00
Left Supramarginal Gyrus 2.45 0.11 1.00
Right Cuneus 2.72 0.08 1.00
Right Superior Parietal Gyrus 2.31 0.06 1.00
Left Superior Parietal Gyrus 2.25 0.08 0.96

Occipital lobe

Right Superior Occipital Gyrus 2.94 0.13 1.00
Left Superior Occipital Gyrus 2.88 0.09 1.00
Left Middle Occipital Gyrus 2.58 0.07 1.00
Right Inferior Occipital Gyrus 2.50 0.14 1.00
Left Cuneus 2.38 0.07 1.00
Left Fusiform Gyrus 2.31 0.05 1.00

Limbic lobe

Left Anterior Cingulate Gyrus 3.33 0.10 1.00
Right Anterior Cingulate Gyrus 2.71 0.09 1.00
Right Middle Cingulate Gyrus 2.46 0.06 1.00
Left Middle Cingulate Gyrus 2.41 0.06 1.00
Left Temporal Pole:

2.40 0.13 1.00
Middle Temporal Gyrus
Right Temporal Pole:

2.36 0.10 0.96
Superior Temporal Gyrus
Left Parahippocampal Gyrus 2.27 0.11 0.87
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Table 5.1: (Cont’d) Optimal area set and associated discriminative weights for RCK
analysis applied to ICA default mode data. The most informative anatomical regions
retrieved by RCK when applied to ICA default mode data are grouped in macro brain
regions to give a better idea of their location in the brain. The mean and the standard
deviation of the discriminative weights of each area are listed in this table. In addition
the rate of training sets in the cross-validation procedure that selected each area (selection
frequency) is also reported in order to measure the validity of the inclusion of each region
in the optimal area set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA DMN

Insula Right Insular Cortex 2.25 0.07 0.98

Sub cortical
Left Thalamus 2.53 0.12 1.00

gray cortex

Cerebellum
Right Inferior Posterior Lobe of Cerebellum 3.83 0.19 1.00
Left Anterior Lobe of Cerebellum 2.35 0.07 1.00
Left Superior Posterior Lobe of Cerebellum 2.32 0.07 1.00

Table 5.2: Optimal area set and associated discriminative weights for RCK analysis applied
to ICA temporal lobe data. The most informative anatomical regions retrieved by RCK
when applied to ICA temporal lobe data are grouped in macro brain regions to give a
better idea of their location in the brain. The mean and the standard deviation of the
discriminative weights of each area are listed in this table. In addition the rate of training
sets in the cross-validation procedure that selected each area (selection frequency) is also
reported in order to measure the validity of the inclusion of each region in the optimal area
set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA TL

Central region
Right Rolandic Operculum 8.63 0.25 1.00
Left Precentral Gyrus 7.70 0.09 1.00

Frontal lobe
Left Inferior Frontal Gyrus, Orbital Part 7.79 0.21 1.00
Right Superior Frontal Gyrus, Medial 7.58 0.10 0.96
Right Superior Frontal Gyrus 7.56 0.05 1.00

Temporal lobe Right Middle Temporal Gyrus 7.39 0.04 0.81

Occipital lobe
Right Middle Occipital Gyrus 7.97 0.09 1.00
Left Middle Occipital Gyrus 7.67 0.15 1.00
Right Fusiform Gyrus 7.57 0.12 0.98
Right Calcarine Fissure 7.46 0.11 0.83

Limbic lobe Left Middle Cingulate Gyrus 7.67 0.11 1.00

Insula Left Insular Cortex 7.64 0.12 1.00

Cerebellum Right Inferior Posterior Lobe of Cerebellum 7.36 0.25 0.42
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Table 5.3: Optimal area set and associated discriminative weights for RCK analysis applied
to GLM data. The most informative anatomical regions retrieved by RCK when applied
to GLM data are grouped in macro brain regions to give a better idea of their location
in the brain. The mean and the standard deviation of the discriminative weights of each
area are listed in this table. In addition the rate of training sets in the cross-validation
procedure that selected each area (selection frequency) is also reported in order to measure
the validity of the inclusion of each region in the optimal area set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

GLM

Central region

Left Postcentral Gyrus 3.12 0.16 1.00
Right Precentral Gyrus 2.78 0.12 1.00
Left Precentral Gyrus 2.67 0.09 1.00
Right Postcentral Gyrus 2.64 0.12 1.00

Frontal lobe

Left Superior Frontal Gyrus 4.12 0.12 1.00
Right Middle Frontal Gyrus 4.02 0.14 1.00
Left Inferior Frontal Gyrus, Triangular Part 3.64 0.19 1.00
Left Middle Frontal Gyrus 3.45 0.12 1.00
Left Middle Frontal Gyrus, Orbital Part 2 3.15 0.17 1.00
Right Superior Frontal Gyrus 2.71 0.10 1.00
Left Middle Frontal Gyrus, Orbital Part 1 2.59 0.17 1.00
Left Supplementary Motor Area 2.48 0.12 1.00
Left Superior Frontal Gyrus, Medial 2.43 0.10 1.00
Right Inferior Frontal Gyrus, Orbital Part 2.31 0.16 0.96
Right Superior Frontal Gyrus, Medial 2.23 0.11 1.00
Left Inferior Frontal Gyrus, Opercular Part 2.15 0.12 0.98
Left Inferior Frontal Gyrus, Orbital Part 2.10 0.11 0.92
Right Paracentral Lobule 2.07 0.16 0.83
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Table 5.3: (Cont’d) Optimal area set and associated discriminative weights for RCK
analysis applied to GLM data. The most informative anatomical regions retrieved by
RCK when applied to GLM data are grouped in macro brain regions to give a better idea
of their location in the brain. The mean and the standard deviation of the discriminative
weights of each area are listed in this table. In addition the rate of training sets in the
cross-validation procedure that selected each area (selection frequency) is also reported in
order to measure the validity of the inclusion of each region in the optimal area set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

GLM

Temporal lobe

Right Middle Temporal Gyrus 3.87 0.13 1.00
Left Superior Temporal Gyrus 2.79 0.15 1.00
Right Superior Temporal Gyrus 2.37 0.12 1.00
Left Middle Temporal Gyrus 2.30 0.07 1.00
Left Inferior Temporal Gyrus 2.28 0.14 1.00
Right Inferior Temporal Gyrus 2.14 0.08 0.98

Parietal lobe
Right Precuneus 2.35 0.10 1.00
Left Inferior Parietal Gyrus 2.18 0.17 0.96

Occipital lobe
Left Calcarine Fissure 3.00 0.19 1.00
Right Fusiform Gyrus 2.55 0.13 1.00
Right Middle Occipital Gyrus 2.50 0.11 1.00

Limbic lobe
Right Hippocampus 2.27 0.12 1.00
Right Middle Cingulate Gyrus 2.24 0.08 1.00
Right Anterior Cingulate Gyrus 2.21 0.12 0.98

Insula Left Insular Cortex 1.96 0.07 0.42

Sub cortical Right Caudate Nucleus 2.30 0.14 1.00
gray nuclei Right Amygdala 2.26 0.15 0.98

Cerebellum
Anterior Lobe of Vermis 2.83 0.21 1.00
Posterior Lobe of Vermis 2.67 0.22 1.00
Right Inferior Posterior Lobe of Cerebellum 2.30 0.16 0.98
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Table 5.4: Optimal area set and associated discriminative weights for RCK analysis applied
to multi-source data. The most informative anatomical regions retrieved by RCK when
applied to 3 data sources are grouped in macro brain regions to give a better idea of their
location in the brain. The mean and the standard deviation of the discriminative weights of
each area are listed in this table. In addition the rate of training sets in the cross-validation
procedure that selected each area (selection frequency) is also reported in order to measure
the validity of the inclusion of each region in the optimal area set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA DMN

Central region
Right Precentral Gyrus 3.10 0.13 1.00
Left Precentral Gyrus 2.49 0.08 1.00
Left Rolandic Operculum 2.18 0.15 0.89

Frontal lobe

Left Superior Frontal Gyrus 3.06 0.11 1.00
Left Superior Frontal Gyrus, Medial 3.05 0.15 1.00
Right Paracentral Lobule 2.94 0.16 1.00
Right Gyrus Rectus 2.66 0.20 1.00
Right Superior Frontal Gyrus, Medial 2.50 0.10 1.00

Temporal lobe
Right Middle Temporal Gyrus 2.30 0.08 1.00
Left Middle Temporal Gyrus 2.09 0.11 0.74

Parietal lobe Left Angular Gyrus 3.44 0.22 1.00

Occipital lobe

Left Superior Occipital Gyrus 2.62 0.15 1.00
Left Middle Occipital Gyrus 2.59 0.15 1.00
Left Fusiform Gyrus 2.55 0.12 1.00
Right Cuneus 2.35 0.14 0.98
Left Cuneus 2.30 0.12 1.00

Limbic lobe
Parahippocampal Gyrus 2.45 0.14 0.98
Left Middle Cingulate Gyrus 2.36 0.11 1.00
Left Anterior Cingulate Gyrus 2.29 0.11 1.00

Cerebellum
Right Inferior Posterior Lobe of Cerebellum 2.93 0.20 1.00
Left Superior Posterior Lobe of Cerebellum 2.58 0.13 1.00
Left Anterior Lobe of Cerebellum 2.37 0.14 0.98

ICA TL

Central region Right Rolandic Operculum 2.33 0.13 0.98

Frontal lobe
Right Inferior Frontal Gyrus

2.77 0.13 1.00
Triangular Part
Right Superior Frontal Gyrus 2.55 0.11 1.00

Temporal lobe

Left Heschl gyrus 2.54 0.17 1.00
Left Middle Temporal Gyrus 2.28 0.12 1.00
Right Inferior Temporal Gyrus 2.24 0.11 0.98
Right Middle Temporal Gyrus 2.18 0.09 0.98
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Table 5.4: (Cont’d) Optimal area set and associated discriminative weights for RCK
analysis applied to multi-source data. The most informative anatomical regions retrieved
by RCK when applied to 3 data sources are grouped in macro brain regions to give a
better idea of their location in the brain. The mean and the standard deviation of the
discriminative weights of each area are listed in this table. In addition the rate of training
sets in the cross-validation procedure that selected each area (selection frequency) is also
reported in order to measure the validity of the inclusion of each region in the optimal area
set.

Source
Areas and Discriminative Weights

Macro Regions Regions
Discriminative Weights

Mean Std. Dev. Sel. Freq.

ICA TL

Occipital lobe
Right Middle Occipital Gyrus 2.44 0.11 1.00
Left Middle Occipital Gyrus 2.16 0.11 0.94

Limbic lobe Left Middle Cingulate Gyrus 2.38 0.13 1.00

Sub cortical
Left Caudate Nucleus 2.52 0.13 1.00

gray nuclei

Cerebellum
Left Anterior Lobe of Cerebellum 2.47 0.16 1.00
Right Cerebellar Tonsil 2.25 0.19 0.98
Right Posterior Lobe of Cerebellum 2.08 0.15 0.58

GLM
Frontal lobe

Left Middle Frontal Gyrus, Orbital Part 2.36 0.16 1.00
Right Middle Frontal Gyrus 2.23 0.13 0.98

Limbic lobe Right Hippocampus 2.44 0.14 1.00

Cerebellum Posterior Lobe of Vermis 2.56 0.18 1.00

Table 5.5: Mean classification accuracy achieved by different algorithms using single-
source data. The reported results indicate the mean classification rate attained by
different algorithms for each data source using the data from all the brain regions
included in the AAL brain parcellation.

Default Mode Temporal Lobe GLM

Composite Kernels 0.75 0.64 0.74
Linear SVM 0.75 0.54 0.67
Gaussian SVM 0.75 0.62 0.75
RFE-SVM 0.87 0.75 0.71
RCK 0.90 0.85 0.86
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Table 5.6: Mean classification accuracy achieved by different algorithms using multi-
source data. The reported results indicate the mean classification rate attained by
different algorithms provided with all possible combinations of data sources. The
analysis is performed using all brain regions included in the AAL brain parcellation.

Two Sources
All Sources

Default & Temp Default & GLM Temp & GLM

Composite Kernels 0.70 0.70 0.69 0.79
Linear SVM 0.79 0.78 0.62 0.80
Gaussian SVM 0.76 0.77 0.70 0.80
RFE-SVM 0.92 0.90 0.84 0.90
RCK 0.92 0.93 0.85 0.95

Table 5.7: Mean classification accuracy and sensitivity/specificity achieved by dif-
ferent algorithms using magnitude only and magnitude and phase data. In the case
of RCK, whole-brain magnitude data is used for the first analysis, while RFE-SVM
filtered phase data is combined with whole-brain magnitude data for the second
analysis.

Magnitude Magnitude and
Data Phase Data

Accuracy Sens/Spec Accuracy Sens/Spec

Linear SVM 0.64 0.77/0.45 0.54 0.64/0.38
RFE-SVM 0.72 0.77/0.64 0.77 0.82/0.69
Proposed

0.70 0.82/0.55 0.81 0.87/0.71
Method
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(a) (b)

Figure 5.2: Discriminative weights brain maps for (a) magnitude data and (b) com-
plex data. The brain maps generated for these two analyses highlight the brain
regions that achieved a selection frequency greater than 0.50 for both experiments.
These areas are color-coded according to their associated discriminative weights.
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Table 5.8: Optimal area set and associated mean discriminative weights and selection
frequencies for RCK analysis applied to magnitude only and magnitude and phase data.
The top of the table displays the brain regions that are deemed relevant by both analyses,
followed by the regions that are relevant for either magnitude or magnitude and phase
data, respectively.

Brain Regions

Magnitude Magnitude and
Data Phase Data

Discr. Sel. Discr. Sel.
Weight Freq. Weight Freq.

Left middle frontal gyrus 5.96 0.87 6.19 1.00
Left supramarginal gyrus 5.37 0.92 6.09 1.00
Left superior temporal gyrus 5.60 0.83 5.98 1.00
Right middle temporal gyrus 8.32 0.62 5.14 0.96
Right postcentral gyrus 5.25 0.73 4.99 0.98
Right Caudate Nucleus 4.05 0.69 4.46 0.69
Left Heschl gyrus 4.87 0.58 4.46 0.90
Left middle temporal gyrus 5.68 0.52 4.20 0.62
Right superior occipital gyrus 5.73 0.62 4.10 0.58
Left superior frontal gyrus 4.27 0.58 3.66 0.56
Right supramarginal gyrus 4.20 0.60 3.41 0.56
Left inferior parietal lobule 5.97 0.62 - -
Right calcarine fissure 4.39 0.73 - -
Left postcentral gyrus 4.36 0.52 - -
Right supplementary motor area 4.27 0.56 - -
Right inferior frontal gyrus 4.17 0.58 - -
Right cuneus 4.16 0.56 - -
Left calcarine fissure 4.01 0.54 - -
Left supplementary motor area 3.97 0.58 - -
Left middle cingulate gyrus - - 5.43 0.98
Right inferior temporal gyrus - - 5.24 0.85
Right middle frontal gyrus - - 4.56 0.90
Right anterior cingulate gyrus - - 4.39 0.75
Right middle cingulate gyrus - - 4.09 0.71
Right superior frontal gyrus, med - - 3.97 0.65
Right precuneus - - 3.77 0.56
Right posterior lobe of cerebellum - - 3.71 0.54
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5.3 Characterization of schizophrenia using

ν-MKL and complex-valued fMRI data

5.3.1 Introduction

This work uses data from the same dataset analyzed by the approach presented on

5.2. However, both analyses use different sets of subjects. In particular, this work

retrieves data from controls and patients that are better matched in terms of age.

Methods that are capable of combining different data sources can be applied

to fMRI in order to efficiently use the information present in the magnitude and

phase of the data. Such methods should also consider that fMRI data, though high

dimensional, show sparsely distributed activation in the brain. In other words, a

significant number of voxels will not convey information of brain activity. Moreover,

informative voxels are likely to be distributed in clusters or brain regions. For these

reasons, an adequate method to combine magnitude and phase fMRI data should

also be able to automatically select the regions that characterize the condition under

study.

Among the various approaches that are well-suited to solve this problem, group

least angle shrinkage and selection operator (Group LASSO) [96] or nonlinear ap-

proaches such as multiple kernel learning (MKL) methods [97] are the most com-

monly used methods to carry out group or kernel selection. In particular, MKL

algorithms can be used to do group selection if a kernel is defined on each group.

There are two advantages of applying kernels to different groups on fMRI data. On

the one hand, one can exploit linear or nonlinear relationships among the voxels of

the same group just by using linear (Euclidean dot product) or nonlinear kernels.

On the other hand, MKL admits a dual formulation, in such a way that the compu-

tational complexity of the problem is defined by the number of samples rather than
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the number of voxels per sample. For fMRI data, this translates into a dramatic

complexity reduction with respect to the primal formulation.

Several MKL algorithms have been devised in the last decade. The optimization

of a weighted linear combination of kernels for the support vector machine (SVM)

was proposed in [28]. Their formulation reduces to a convex optimization problem,

namely a quadratically-constrained quadratic program (QCQP). Later, [30] proposed

a dual formulation of this QCQP as a second-order cone programming problem, which

improved the running time of the algorithm. Afterwards, [33] reformulated the algo-

rithm proposed by Bach et al. as a semi-infinite linear program, which amounts to

repeatedly training an SVM on a mixture kernel while iteratively refining the kernel

coefficients. The above mentioned algorithms attempt to achieve sparsity by pro-

moting sparse solutions in terms of the kernel coefficients. Specifically, both [30] and

[33] enforced sparsity by using l1-norm regularization terms on these coefficients, an

approach that has exhibited certain limitations for linear SVM [34, 35]. Alternative

solutions can be found in [38], where a non-sparse MKL formulation based on an

lp-norm regularization term on the kernel coefficients (with p ≥ 1) is introduced, or

in [37], which mixes elements of lp-norm and elastic net regularization.

Keeping in mind the aforementioned reasoning, the aim of the present work is to

differentiate groups of healthy controls and schizophrenia patients from an auditory

oddball discrimination (AOD) task by efficiently combining magnitude and phase

information. To do so, we propose a novel MKL formulation that automatically se-

lects the regions that are relevant for the classification task. First, we apply group

independent component analysis (ICA) [57] separately to both magnitude and phase

data to extract activation patterns from both sources. Next, given the local-oriented

nature of the proposed MKL methodology, local (per-region) recursive feature elimi-

nation SVM (RFE-SVM) [25] is applied to magnitude and phase data to extract only

their relevant information. Then, following the recursive composite kernels scheme
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presented in [61], each one of the defined brain regions is used to construct a kernel,

after which our proposed MKL formulation is applied to select the most informative

ones. The novelty of this formulation, which is based on the work presented in [46],

relies on the addition of a parameter (ν) that allows the user to preset an upper

bound of the number of kernels to be included in the final classifier. We call this

algorithm ν-MKL.

Based on this procedure, we present three possible variants of the algorithm.

In the first one, the assumption of magnitude and phase data belonging to a joint

distribution is adopted. Therefore, they are concatenated, RFE-SVM is applied

to each region, and the selected voxels of each of them are used to construct the

kernels. In the second one, RFE-SVM is applied independently to magnitude and

phase for each region, after which the selected voxels are concatenated to construct

kernels. In the third approach, we assume that magnitude and phase come from

independent distributions, so RFE-SVM is applied independently to both of them

and kernels are constructed from magnitude and phase data without concatenation.

The second and third approaches are significantly different for nonlinear kernels.

Concatenating the data prior to kernel computation assumes nonlinear dependencies

between magnitude and phase, whereas computing separate kernels assumes linear

dependence. For the case of linear kernels, the difference relies on the fact that

separate kernels allow the algorithm to assign different weights (and thus different

importance) to the magnitude and phase data representations of the regions.

The proposed approach is tested using linear and Gaussian kernels. In addition,

the performance of ν-MKL is further evaluated by comparing its results in terms of

classification accuracy with those obtained by applying lp-norm MKL [38] and SVM.

Furthermore, the estimates of the sparsity of the problem of both MKL algorithms

are also used for comparison purposes. However, both the actual degree of sparsity

of the real dataset and the degree of differential activity present on each region
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are unknown. For this reason, a synthetic dataset where this information can be

estimated a priori is generated to verify the capacity of ν-MKL to detect both the

sparsity of the problem and the amount of information present in the analyzed brain

regions, which is then compared to the one attained by lp-norm MKL.

5.3.2 Materials and Methods

Synthetic dataset for preliminary test

Since both the sparsity and the degree of differential activity of each brain region of

the real data are unknown, the performance of ν-MKL and lp-norm MKL cannot be

fully assessed. To compensate for that, a synthetic dataset that properly matches

the real data for analysis purposes is analyzed. This dataset, which is generated

using the simulation toolbox for fMRI data (SimTB), mimics the BOLD response of

two groups of subjects with different brain activation patterns.

SimTB generates data under the assumption of spatiotemporal separability, i.e.,

that data can be expressed as the product of time courses and spatial maps. Default

spatial maps are modeled after components commonly seen in axial slices of real

fMRI data and most are created by combinations of simple Gaussian distributions,

while time courses are constructed under the assumption that component activations

result from underlying neural events as well as noise. Neural events can follow block

or event-related experimental designs, or can represent unexplained deviations from

baseline; these are referred to as unique events. The time course of each component

is created by adding together amplitude-scaled task blocks, task events and unique

events by means of modulation coefficients, as shown in Fig. 4.1.

The generated experimental design is characterized by the absence of task events,

the BOLD response being characterized by unique events only, thus being similar to
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a resting-state experiment. The spatial maps generated for all components did not

exhibit any consistent changes among groups, the exception being the default mode

network. For this specific component, changes in the activation coefficients between

groups were induced by slightly shifting them in the vertical axis. By doing so, it is

expected that differential activation is generated in the voxels within the Gaussian

blobs representing the anterior and posterior cingulate cortex as well as the left and

right angular gyri.

The experimental design is simulated for two groups of M = 200 subjects, each

subject with C = 20 components in a data set with V = 100 × 100 voxels and

T = 150 time points collected at TR = 2 seconds. Among the 30 components

available by default on SimTB, we did not include in the simulation those associated

with the visual cortex, the precentral and postcentral gyri, the subcortical nuclei and

the hippocampus. To mimic between-subject spatial variability, the components for

each subject are given a small amount of translation, rotation, and spread via normal

deviates.

Translation in the horizontal and vertical directions of each source have a standard

deviation of 0.1 voxels, except for the default mode network. This component has

different vertical translation between groups. Both of them have a standard deviation

of 0.5 voxels, but different means (0.7 and -0.7 for groups 1 and 2, respectively). In

addition, rotation has a standard deviation of 1 degree, and spread has a mean of 1

and standard deviation of 0.03.

All components have unique events that occur with a probability of 0.5 at each

TR and unique event modulation coefficients equal to 1. At the last stage of the

data generation pipeline, Rician noise is added to the data of each subject to reach

the appropriate CNR level, which is equal to 0.3 for all subjects.

Complex-valued real dataset
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Participants The set of subjects is composed of 21 controls and 31 patients.

Controls aged 19 to 40 years (mean=26.6, SD=7.4) and patients aged 18 to 49 years

(mean=27.7, SD=8.2). A two-sample t-test on age yielded t = 0.52 (p-value = 0.60).

There were 8 male controls and 21 male patients.

Experimental Design The subjects followed a three-stimulus AOD task; two

runs of 244 auditory stimuli consisting of standard, target, and novel stimuli were

presented to the subject. The standard stimulus was a 1000-Hz tone, the target

stimulus was a 1500-Hz tone, and the novel stimuli consisted of non-repeating random

digital noises. The target and novel stimuli each was presented with a probability

of 0.10, and the standard stimuli with a probability of 0.80. The stimulus duration

was 200 ms with a 2000-ms stimulus onset asynchrony. Both the target and novel

stimuli were always followed by at least 3 standard stimuli. Steps were taken to

make sure that all participants could hear the stimuli and discriminate them from

the background scanner noise. Subjects were instructed to respond to the target

tone with their right index finger and not to respond to the standard tones or the

novel stimuli.

Data processing

The analysis pipelines of both the simulated and the complex-valued fMRI datasets

are shown in Fig. 5.3. The processing stages that are applied to these datasets are

explained in what follows.

Group spatial ICA As shown in Fig. 5.3, group spatial ICA [57] is applied to

both the simulated and the complex-valued fMRI datasets to decompose the data

into independent components using the GIFT software2. Group ICA is used due to

2Available at http://mialab.mrn.org/software/
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its extensive application to fMRI data for schizophrenia characterization [65, 66, 67].

We also attempted to train the proposed method with activation maps retrieved by

the general linear model, but it performed better when provided with ICA data.

ICA was applied to magnitude and phase data separately for the complex-valued

fMRI dataset. Dimension estimation, which was used to determine the number of

components, was performed using the minimum description length criteria, modified

to account for spatial correlation [74]. For both data sources, the estimated number

of components was 20. Data from all subjects were then concatenated and this

aggregate data set reduced to 20 temporal dimensions using principal component

analysis (PCA), followed by an independent component estimation using the infomax

algorithm [58]. Individual subject components were then back-reconstructed from

the group ICA analyses to retrieve the spatial maps (ICA maps) of each run (2 AOD

task runs) for each data source.
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Figure 5.3: Data processing stages of (a) the complex-valued fMRI dataset and (b)
the simulated dataset. On the preprocessing stage of the complex-valued fMRI data,
motion correction and spatial normalization parameters were computed from the
magnitude data and then applied to the phase data. Next, ICA was applied to
magnitude and phase data separately, a single component being selected for each
data source. Individual subject components were then back-reconstructed from the
group ICA maps of each run (2 ICA maps per subject for each data source).
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To reduce the complexity of the analysis of magnitude and phase data, a single

component was selected for each data source. These components were selected as

follows. For magnitude data, we found three task-related components: the temporal

lobe component (t-value=13.8, p-value=5.88× 10−19), the default mode network (t-

value=−11.0, p-value=4.57 × 10−15) and the motor lobe component (t-value=8.0,

p-value=1.47× 10−10). Among these three candidates, the most-discriminative task-

related component was selected within a nested cross-validation (CV) procedure; this

is explained on detail later on Parameter validation, feature selection and prediction

accuracy estimation. For phase data, we only found one task-related component: the

posterior temporal lobe component (t-value=-2.29, p-value=0.02). While phase data

does not show as strong a task response as magnitude data, it appears to be useful

for discriminative purposes.

On the other hand, the simulated dataset was decomposed into 20 components

as follows. First, data from all subjects were temporally concatenated into a group

matrix, being reduced to 20 temporal dimensions by using PCA. Then, an indepen-

dent component estimation was applied to these reduced aggregate dataset using the

infomax algorithm. Finally, individual subject components were back-reconstructed

from the group ICA analysis.

To make the analysis of the simulated data resemble that of the complex-valued

data as much as possible, the subjects’ ICA maps associated to a single component

were analyzed for this dataset. This component was the default mode network,

which was modeled to present differential activity between groups, as explained on

Simulated dataset.

Data segmentation and scaling As shown in Fig. 5.3, data segmentation is ap-

plied to both datasets. For the complex-valued one, this is applied to the individual

ICA maps associated to the magnitude component and the posterior temporal lobe
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component for phase data. One of the objectives of the proposed approach is to locate

the regions that better characterize schizophrenia through a multivariate analysis.

To do so, an appropriate brain segmentation needs to be used. An adequate segmen-

tation would properly capture functional regions in the brain and cover it entirely,

as spatial smoothing may spread brain activation across neighboring regions. Un-

fortunately, anatomical templates such as the automated anatomical labeling (AAL)

brain parcellation [80] may not capture functional regions given their large spatial

extent. In fact, these regions are defined by brain structure. Furthermore, they do

not cover the entire brain.

One way of solving the problem of properly representing functional regions is to

use a more granular segmentation of the brain. This could be attained by using a rel-

atively simple cubical parcellation approach. We divided the brain into 9×9×9-voxel

cubical regions; the first cube is located at the center of the 3-D array were brain

data is stored and the rest of them are generated outwards, increasingly further from

the center. A total number of 158 cubical regions containing brain voxels were gen-

erated by using a whole-brain mask together with the cubical parcellation. It should

be highlighted that by applying this approach the data has not been downsampled,

as the original voxels are preserved for posterior analysis. Another advantage of us-

ing the cubical regions instead of an anatomical atlas is that we do not incorporate

prior knowledge of the segmentation of functional regions in the brain, letting the

algorithm figure out automatically which regions are informative.

Our MKL-based methodology evaluates the information within regions under

the assumption that active voxels are clustered, an inactive voxel being one with

coefficients equal to zero across ICA maps for all subjects. This assumption would

not hold for regions composed of few scattered voxels. To avoid such cases, those

regions containing less than 10 active voxels were not considered valid and were not

included in our analysis. Nonetheless, a post-hoc analysis of this threshold value
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showed that it does not significantly change the results of the proposed approach.

A similar segmentation procedure was used for the simulated dataset, where the

analyzed spatial maps where divided into 9 × 9-voxel square regions. These data

parcellation generated a total number of 109 square regions. Furthermore, each voxel

activation level was normalized for both datasets. This was done by subtracting its

mean value across subjects and dividing it by its standard deviation.

Region representation For the complex-valued fMRI dataset, the ICA maps

associated to magnitude and phase sources are segmented in cubical regions, while

the ICA maps extracted from the simulated dataset are segmented in square regions,

as stated in the previous section. The term region will be used hereafter to refer to

either of these to be able to explain the following processing stages regardless of the

analyzed dataset. Nonetheless, the procedure described on this section is applicable

to the complex-valued dataset only.

Per-region feature selection is applied to magnitude and phase data either for

single-source analysis or for data source combination. For the former case, local

(per-region) RFE-SVM is directly applied to the analyzed data source, while for

the combination of both sources local RFE-SVM (hereafter referred to simply as

RFE-SVM) is applied to the data using two strategies:

• The data from both magnitude and phase are concatenated prior to the ap-

plication of RFE-SVM, under the assumption that both magnitude and phase

data come from a joint distribution. We refer to this approach as joint feature

selection.

• RFE-SVM is applied independently to each data source. In this case, we assume

that magnitude and phase come from independent distributions. We refer to

this approach as independent feature selection.
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Region characterization The information within each region is characterized by

means of a dot product matrix (Gram matrix in Euclidean space), which provides

a pairwise measure of similarity between subjects for that region. This representa-

tion enables the selection of informative regions via an MKL formulation, which is

explained later on this chapter.

As mentioned in the previous section, magnitude and phase are analyzed either

separately or together. For single-source analysis, the generation of a Gram ma-

trix for each region is straightforward. Conversely, three combination approaches

are proposed to combine magnitude and phase data based on the used region repre-

sentation. The first one computes the Gram matrix of each region right after joint

feature selection is applied. The second one concatenates the outputs of independent

feature selection for the computation of the Gram matrix, while the third one gen-

erates a Gram matrix from each output of the independent feature selection. This

is graphically summarized on Fig. 5.4 and their rationale has already been discussed

on the introduction.

We now provide a brief explanation of the application of dot products on regions’

data in the context of our proposed methodology. Let us assume that we are given

N labeled training data (xi, yi), where the examples xi are represented as vectors

of d features and yi ∈ {−1, 1}. In this case, the examples lie on X = Rd, which is

called input space. Let us further assume that features are divided in L blocks such

that Rd = Rd1 × · · · × RdL , so that each example xi can be decomposed into these

L blocks, i.e., xi = [xTi,1, . . . ,x
T
i,L]T . In the case of our study, these blocks represent

brain regions. Given two examples xi, xj, their data representations for region l are

xi,l = [x1
i,l, . . . , x

dl
i,l]

T and xj,l = [x1
j,l, . . . , x

dl
j,l]

T , respectively. The dot product of these

two examples for region l is defined by

〈xi,l,xj,l〉 = xTi,lxj,l =

dl∑
k=1

xki,lx
k
j,l,
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which outputs a scalar value that equals 0 if both vectors are orthogonal.

Our proposed MKL approach is initially cast as a linear formulation to be op-

timized in dual space, although it is possible to solve its primal problem too. The

reasons why we solve the dual problem are twofold. First, by working with the dual

formulation the computational complexity of the problem is defined by the number

of available data points instead of the number of features per data point. For fMRI

data this amounts to a significant reduction in computational complexity with re-

spect to the primal formulation. Second, the dual formulation can be easily extended

to account for nonlinear relationships among voxels of a given region, as it will be

explained later. However, increasing the model complexity is not guaranteed to be

advantageous, due to the limited amount of data and their high dimensionality.

Normalization of kernels is very important for MKL as feature sets can be scaled

differently for diverse data sources. In our framework, the evaluation of dot products

on areas composed of different numbers of active voxels yields values in different

scales. To compensate for that, unit variance normalization is applied to the com-

puted Gram matrices, as specified on section 2.3.3.

More formally, let l be a region index and Kl be the Gram matrix associated

to region l, i.e., Kl(i, j) = xTi,lxj,l. This matrix is normalized using the following

transformation [38]:

Kl 7→
Kl

1
N

∑N
i=1 Kl(i, i)− 1

N2

∑N
i=1

∑N
j=1 Kl(i, j)

(5.3)

Region selection based on a sparse MKL formulation

MKL problem As it has been discussed on section 3.1 and illustrated in Fig.

3.1, MKL represents the data as a linear combination of kernels, the parameters of

this combination being learned by solving an optimization problem. The decision
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function of this problem is defined in the primal by

f(x∗) =
L∑
l=1

wT
l x∗,l + b, (5.4)

where x∗ is a given test pattern and wl are the parameters to be optimized.

Non-sparse MKL formulation Several MKL approaches explicitly incorporate

the coefficients of the linear combination of kernels in their primal formulations. In

general, they include coefficients ηl such that K =
∑

l ηlKl and add an l1-norm

regularization constraint on η. The work presented in [38], which has been outlined

on section 2.3.3, proposes a non-sparse combination of kernels by using an lp-norm

constraint with p > 1. For the specific case of the classification task introduced on
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Figure 5.4: Strategies for complex-valued fMRI data feature selection and data
sources combination. (Top row) First approach: Generation of a single kernel per
brain region after the application of feature selection to the concatenation of the
magnitude and phase brain region’s feature sets. (Middle row) Second approach:
Feature selection is applied separately to the magnitude and phase brain region’s
feature sets, after which they are concatenated and a single kernel per brain region
is generated. (Bottom row) Third approach: Generation of one kernel per brain
region for each data source after the independent application of feature selection to
the magnitude and phase brain region’s feature sets.
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Region characterization this is their primal formulation:

min
w,b,ξ,η

1

2

L∑
l=1

‖wl‖2
2

ηl
+ C

N∑
i=1

ξi

s.t. yi

(
L∑
l=1

wT
l xi,l + b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

ηl ≥ 0 ∀l

‖η‖2
p ≤ 1,

(5.5)

and its dual formulation is given by

min
α

1

2

∥∥∥∥∥∥
(

N∑
i,j=1

αiαjyiyjKl(i, j)

)L

l=1

∥∥∥∥∥∥
p∗

−
N∑
i=1

αi

s.t. 0 ≤ αi ≤ C ∀i
N∑
i=1

αiyi = 0,

(5.6)

where p∗ = p
p−1

and the notation (sl)
L
l=1 is used as an alternative representation of

s = [s1, . . . , sL]T for s ∈ RL.

An MKL formulation with block-sparsity constraints The proposed MKL

algorithm generates a block-sparse selection of features based on the idea of intro-

ducing primal variable sparsity constraints in the SVM formulation presented in [46].

Please refer to section 3.3 for a detailed explanation of this algorithm.

Since the algorithm has been described so far using a dual formulation that only

uses dot products between data points, a nonlinear version of this algorithm can

be directly constructed as follows. By applying a nonlinear transformation function

ϕl(·) to the data points xi,l on region l, they can be mapped into a higher (pos-

sibly infinite) dimensional reproducing kernel Hilbert space [14] provided with an
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inner product of the form Kl(i, j) = ϕTl (xi,l)ϕl(xj,l). By virtue of the reproduc-

ing property, the dot product is a (scalar) expression depending only on the input

data xi,l,xj,l, and it fits the Mercer’s theorem (see section 2.2.3). Such a function

is called Mercer’s kernel. Thus, the formulation remains exactly the same, the only

difference being the substitution of the scalar dot product by a Mercer’s kernel. One

of the most popular Mercer’s kernels is the Gaussian kernel, with the expression

Kl(i, j) = exp(−‖xi,l−xj,l‖
2

2σ2 ).

Note that the use of Mercer’s kernels in the ν-MKL formulation exploits the

nonlinear properties inside each region, while keeping linear combinations between

them. ν-MKL is tested with both linear and Gaussian kernels for the complex-valued

fMRI dataset, whereas linear kernels are used for the simulated dataset.

Parameter validation, feature selection and prediction accuracy estima-

tion Accuracy rate calculation, feature selection and parameter validation were

performed by means of a nested K-fold CV, the latter two procedures being per-

formed sequentially in the external CV. For the complex-valued dataset, K was set

to 52 (leave-one-subject-out CV), while for the simulated dataset K = 10.

The external CV is used to estimate the accuracy rate of the classifier and the

γ values associated to the informative regions as follows. At each round of the

external CV, a subset of the data composed of a single fold is reserved as a test

set (TestAll), the remaining data being used to train and validate the algorithm

(labeled TrainValAll in Algorithm 8). Next, the most discriminative magnitude

component of the three task-related ones is selected based on the error rate attained

by each of them on an internal CV using a linear SVM, as shown in Algorithm

10. The component that achieves the minimum validation error is the one used

to represent the magnitude source. It should be noted that lines 7 through 9 of

Algorithm 8 are applied exclusively when magnitude-only or magnitude and phase
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data are analyzed. After doing so, feature selection is applied to the data using

RFE-SVM. While this procedure is applied to the complex-valued dataset only as

stated on Region representation, we have incorporated it in Algorithm 8 as this is

the only step that differs between both datasets in the nested K-fold CV.

It can be seen that RFE-SVM is applied at each round of the external CV to

TrainValSel, i.e., the test set is never incorporated in this procedure, as it is a super-

vised algorithm. RFE-SVM then performs an internal CV to validate the selection

of informative features. Within this validation procedure, a linear SVM is initially

trained with all of the features of a given region. At each iteration of RFE-SVM,

20% of the lowest ranked features are removed, the last iteration being the one where

the analyzed voxel set is reduced to 10% of its initial size.

After applying feature selection to the data, which yields the reduced sets Train-

ValRed and TestRed, TrainValRed is further divided into training and validation sets

(see Algorithm 9), the latter one being composed of data from a single fold of Train-

ValRed. The classifier is then trained with a pool of parameter values for C, C
′

and

ν, the validation error being estimated for each parameter combination as shown in

Algorithm 9. The above process was repeated for all folds in TrainValRed, being the

optimal tuple the one that achieved the minimum mean validation error. Then, the

optimal tuple (C,C
′
, ν) was used to retrain ν-MKL (see Algorithm 8) and retrieve

the γ values associated to each region for the current CV round.

Next, the test error rate is estimated in the reserved test set. After doing so,

another fold is selected as the new test set and the entire procedure is repeated for

each of them. The test accuracy rate is then estimated by averaging the accuracy

rates achieved by each test set and the γ values associated to each region across CV

rounds are retrieved.

The criteria used to define the pool of values used for ν-MKL parameter selection
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was the following. The error penalty parameter C was selected from the set of values

{0.01, 0.1, 1, 10, 100}, while the the sparsity tradeoff parameter C
′

was selected from

a set of 4 values in the range [0.1C, 10C], thus being at least one order of magnitude

smaller than C but at most one order of magnitude higher. On the other hand, the

set of values of the sparsity parameter ν were defined differently according to the

analyzed dataset.

Since we had no prior knowledge of the degree of sparsity of the complex-valued

dataset, ν was selected from the set of values {0.3, 0.5, 0.7, 0.9}. We also evaluated

nonlinear relationships in each region by using Gaussian kernels, which additionally

required the validation of σ. For each iteration of Algorithm 8, the median of the

distances between examples of TrainValSet (σmed) was estimated. This value was

then multiplied by different scaling factors to select the optimal value of σ on Algo-

rithm 9, the scaling factor being validated from a set of three logarithmically spaced

values between 1 and 10.

To get a better idea of the sparsity of the simulated data classification task, the

mean of the spatial maps across subjects was generated and thresholded, as shown

in Fig. 5.5(a). As stated on Simulated dataset, differential activation should be

generated in the voxels within the Gaussian blobs of the default mode component,

thus generating a sparse problem. However, the actual sparsity of this problem

cannot be fully characterized mainly due to the high variance (compared to the

mean) of the within-group vertical translation and the spread introduced on this

component, which changes the location and the extent of these blobs. Nonetheless,

by analyzing the regions that overlap with the map in Fig.5.5(a), we can get a

coarse estimate of its sparsity. It can be seen from Fig. 5.5(b) that the sparsity is

higher than 10%. Based on this observation, we selected ν from the set of values

{0.2, 0.4, 0.6, 0.8, 1}.
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Estimation of informative regions The value of γ associated to a given region

indicates its degree of differential activity between groups. However, γ does not take

values on a fixed numeric scale. Specifically, γ values of informative regions across

rounds of CV could be scaled differently, preventing us from directly comparing them.

To correct for this, γ values at each CV round were normalized by the maximum

value attained at that round. By doing so, the most relevant region for a given CV

round would achieve a normalized score of 1 and the mean of the normalized γ values

across CV rounds could be estimated.

The degree of differential activity of a region can also be assessed by estimating

the number of times this region is deemed relevant across CV rounds (selection

frequency). One way of taking into account both the selection frequency and the

mean of the normalized γ to estimate the degree of information carried by a region is

to generate a ranking coefficient that is the product of both estimates. These three

estimates are used to evaluate the relevance of the analyzed regions for both the
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Figure 5.5: Mean spatial map of the default mode component and indexes of overlap-
ping square regions. This figure shows (a) the default mode component’s thresholded
mean spatial map across subjects and (b) the square regions that overlap with this
mean map and the indexes of the overlapping regions.
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complex-valued and the simulated datasets.

For the specific case of the simulated dataset, the incorporation of a small vertical

translation between groups allows us to identify the location of certain regions that

are differentially activated. However, numeric a priori estimates of the degree of

differential activation of all the regions were needed to test how well ν-MKL detected

the most informative ones. These estimates were generated by calculating their

classification accuracy by means of a 10-fold CV using a linear SVM.

As it has been previously mentioned, brain data was segmented in cubical regions

for the complex-valued dataset in order to be capable of performing a multivariate

analysis that included all of the regions in the brain. However, it is difficult to

interpret our results based on the relevance of cubical regions. One way of solving

this problem was to map cubical regions and their associated γ values to anatomical

regions defined by the automated anatomical labeling (AAL) brain parcellation [80]

using the Wake Forest University pick atlas (WFU-PickAtlas)3 [75, 76, 77, 98].

The mapping criterion is explained as follows. A cubical region was assumed to

have an effective contribution to an anatomical one if the number of overlapping

voxels between them was greater than or equal to 10% of the number of voxels of

that cubical region. If this condition was satisfied, then the cube was mapped to

this anatomical region. After generating the correspondence between cubical and

anatomical regions, a weighted average of the γ values of the cubes associated to an

anatomical region was computed and assigned to this region for each CV round.

Proposed data processing with lp-norm MKL and SVM As it has been

previously discussed, one of the goals of this work is to compare the performance

of ν-MKL with other classifiers and MKL algorithms, such as SVMs and lp-norm

MKL. To do so, the same data processing applied in the proposed approach was

3Available at http://www.fmri.wfubmc.edu/cms/software
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used for these two cases, thus simply replacing ν-MKL by either an SVM or lp-norm

MKL. The only difference in the processing pipeline for SVM was that the generated

kernels were concatenated prior to being input to the classifier. As it will be seen

in the results section, ν-MKL with Gaussian kernels does not provide better results

than those obtained using linear kernels. These results were predictable based on the

limited number of available subjects on our dataset. For this reason, we considered

it appropriate to evaluate lp-norm MKL and SVM using linear kernels only.

The SVM was trained using the LIBSVM software package4 [81], and the er-

ror penalty parameter C was selected from a pool of 10 logarithmically spaced

points between 1 and 100. Additionally, the lp-norm MKL implementation code

was retrieved from the supplementary material of [38], which is available at http:

//doc.ml.tu-berlin.de/nonsparse_mkl/, and was run under the SHOGUN ma-

chine learning toolbox5 [99]. For both the simulated and complex-valued dataset we

considered norms p ∈ {1, 4/3, 2, 4,∞} and C ∈ [1, 100] (5 values, logarithmically

spaced).

For the simulated dataset, the mean of the kernel weights of lp-norm MKL across

CV rounds for each region were also retrieved to evaluate how well this algorithm

detected the amount of information provided by them, as well as to compare it

against ν-MKL based on this criterion.

Data analysis with global approaches We also wanted to evaluate the perfor-

mance of our local-oriented MKL methodology on the complex-valued dataset by

comparing it against global approaches, which analyze activation patterns on the

brain as a whole. Linear kernels were applied to the data for these approaches.

One straightforward global approach is the direct application of an SVM to the

4Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
5Available at http://www.shogun-toolbox.org
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data without the application of per-region feature selection. Its performance was used

as a benchmark for other approaches and was applied to either magnitude data, phase

data or the concatenation of both. We refer to the concatenation of of whole-brain

data from both sources as whole data. Another used approach was the application of

global (whole-brain) RFE-SVM to the data. This algorithm was implemented such

that 10% of the lowest ranked voxels were removed at each iteration of RFE-SVM.

In addition, global RFE-SVM was used to combine magnitude and phase data

using two strategies. The first one concatenated data from magnitude and phase

sources prior to the application of global RFE-SVM. On the other hand, the second

one applied global RFE-SVM to each source independently for feature selection pur-

poses, after which an SVM was trained with the output of feature selection. The

concatenation of the data from both sources after the application of this feature

selection procedure is referred to as filtered data.

Statistical assessment of the contribution of phase data If an improvement

in the classification accuracy rate were obtained by combining both magnitude and

phase data, further analysis would be required to confirm that this increment was

indeed statistically significant. The statistic to be analyzed would be the accuracy

rate obtained by using both data sources.

Since the underlying probability distribution of this statistic is unknown, a non-

parametric statistical test such as a permutation test [100] would enable us to test

the validity of the null hypothesis. In this case, the null hypothesis would state

that the accuracy rate obtained by using magnitude and phase data should be the

same as the one attained by working with these two data sources regardless of the

permutation (over the subjects) of the phase signal.

Let Dm and Df be the labeled magnitude and phase data samples, respectively,

and let CR(Dm,Df ) be the classification accuracy rate obtained with these two data
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sources using one of the combination approaches described on Region characterization

and the prediction accuracy estimation presented on Parameter validation, feature

selection and prediction accuracy estimation. The permutation test generates all

possible permutation sets of the phase data sample Dfperm(k), 1 ≤ k ≤ N !, doing no

permutation of the magnitude data sample Dm. Next, it computes the accuracy rates

CR(Dm,Dfperm(k)). The p-value associated to CR(Dm,Df ) under the null hypothesis

is defined as

p =

∑N !
k=1 I(CR(Dm,Dfperm(k)) > CR(Dm,Df ))

N !
, (5.7)

where I(·) is the indicator function.

Due to the high computational burden of computing all possible permutations in

the elements of Dfperm(k), in practice only tens or hundreds of them are used in a

random fashion. The observed p-value is defined as

p̂ =

∑M
k=1 I(CR(Dm,Dfperm(k)) > CR(Dm,Df ))

M
, (5.8)

where M is the number of used permutations. In this case, the exact p-value cannot

be known but a 95% confidence interval (CI) around p̂ can be estimated [101]

CI95%(p) = p̂± 1.96

√
p̂(1− p̂)
M

. (5.9)

5.3.3 Results

Simulated dataset

The prior estimates of the degree of differential activation present on a subset of

regions are shown on the first column of Table 5.9, these regions being sorted from

most to least discriminative. It can be seen that 11 out of the 15 reported regions

are consistent with the assumption that most of the differential activity would be
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focused on those squares overlapping with the default mode network activation blobs,

as shown in Fig. 5.5.

This table also shows the selection frequency and the relevance estimates of these

regions using ν-MKL (normalized γ) and lp-norm MKL (kernel weights). A clas-

sification accuracy rate of 0.90 and 0.85 is attained by ν-MKL and lp-norm MKL,

respectively. In addition, the fraction of selected regions was 0.14 for ν-MKL and

0.50 for lp-norm MKL.

Table 5.9: Estimation of the information of a subset of regions using linear kernels
along with ν-MKL and lp-norm MKL for the simulated dataset. The metrics used
to determine the amount of information of the regions by means of ν-MKL (mean of
the normalized γ values) and lp-norm MKL (kernel weights’ mean) as well as their
selection frequencies for each algorithm are reported. Both the normalized γ values
and the kernel weights have been scaled so that their maximum values equal 1 to
make the comparison easier. These coefficients are contrasted against the accuracy
rates achieved by these regions using a linear SVM.

Region
Linear SVM ν-MKL lp-norm MKL

Acc. Rate Sel. Freq. Normalized γ Sel. Freq. Kernel Weights

Square 26 0.81 1 1.00 1 0.91
Square 46 0.78 1 0.95 1 0.91
Square 32 0.77 1 0.99 1 1.00
Square 77 0.76 1 0.91 1 0.72
Square 29 0.76 1 0.76 1 0.67
Square 23 0.76 1 0.71 1 0.81
Square 12 0.75 1 0.75 1 0.53
Square 57 0.69 1 0.54 0.50 0.58
Square 51 0.68 1 0.52 1 0.34
Square 30 0.67 1 0.24 0.50 0.34
Square 107 0.63 0.60 0.08 0.60 0.30
Square 13 0.60 0.60 0.09 0.50 0.38
Square 44 0.57 0.30 0.13 0.90 0.29
Square 37 0.56 0.10 0.09 0.90 0.24
Square 20 0.54 0.10 0.07 0.80 0.22
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Complex-valued dataset

We present the results of both local-oriented and global approaches on Table 5.10.

Accuracy rates of the proposed methodology using ν-MKL, lp-norm MKL and SVM

for single-source analysis and different source combination approaches are listed along

with the results obtained by the global approaches introduced on Data analysis with

global approaches.

It can be seen that by applying linear ν-MKL to magnitude and phase data using

the third combination approach, an increment of 5% with respect to the magnitude-

only data analysis is obtained. In this case, CR(Dm,Df ) = 0.85. After generating

100 permutations we get p̂ = 0.01 and a 95% CI [0, 0.03] according to (5.8) and (5.9),

respectively. Since p < α = 0.05, we can reject the null hypothesis at a significance

Table 5.10: Performance of the proposed methodology and global approaches on
the complex-valued fMRI dataset. This table presents the classification accuracy
(first row) and the sensitivity/specificity rates (second row) of our local-oriented
methodology using ν-MKL lp-norm MKL and SVM for single-source data (magni-
tude or phase) and different source combination approaches. It also shows the results
obtained by global approaches. Notice that SVM is applied to both the proposed ap-
proach and global approaches. The reported values are attained by these algorithms
using linear kernels, except where noted.

Classifier
Single Sources Combined Sources

Prop. Approach Global Approach Proposed Approach Global Approaches

Magn Phase Magn Phase Comb 1 Comb 2 Comb 3 Whole Filt.

SVM
0.77 0.64 0.62 0.58 0.80 0.79 0.79 0.63 0.80

0.84/0.67 0.65/0.64 0.71/0.48 0.55/0.62 0.85/0.71 0.82/0.74 0.82/0.74 0.71/0.50 0.82/0.76

Global – – 0.76 0.61 – – – 0.80 –
RFE-SVM – – 0.81/0.69 0.63/0.57 – – – 0.92/0.62 –

ν-MKL 0.80 0.70 – – 0.76 0.76 0.85 – –
(linear) 0.85/0.71 0.69/0.71 – – 0.82/0.67 0.84/0.64 0.90/0.76 – –

ν-MKL 0.78 0.68 – – 0.68 0.77 0.85 – –
(Gaussian) 0.84/0.69 0.71/0.64 – – 0.77/0.55 0.87/0.62 0.92/0.74 – –

lp-norm 0.78 0.64 – – 0.76 0.72 0.84 – –
MKL 0.84/0.69 0.66/0.62 – – 0.82/0.67 0.73/0.71 0.90/0.74 – –
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level of 0.05. Consequently, the improvement in classification accuracy rate obtained

by including phase data is statistically significant with 95% confidence level.

Table 5.11 shows the cubical regions’ selection sparsity achieved by ν-MKL and lp-

norm MKL. It can be seen that a higher selection sparsity is attained by classifying

the data with ν-MKL for single-source analysis and the third source combination

approach.

The most informative regions and their associated relevance estimates detected

by ν-MKL using linear kernels are reported as follows. The ranking coefficients of a

subset of the top 40% ranked regions for magnitude-only and magnitude and phase

data analyses (combination approach 3) are color-coded and displayed on top of a

structural brain map in Fig. 5.6. This figure provides a graphical representation of the

spatial distribution of these regions. In addition, Table 5.12 provides the differential

activity estimates of some of these regions, such as selection frequency and normalized

γ. This table also reports ranking indexes, which enables the analysis of changes on

the relative contribution of these regions across single-source and combined-source

analyses.

Table 5.11: Selection sparsity achieved by ν-MKL and lp-norm MKL on the complex-
valued dataset. This table shows the fraction of valid selected regions (according to
the criterion discussed in section 5.3.2) for both ν-MKL and lp-norm MKL for single-
source analysis (magnitude or phase) and the third combination approach of both
sources. The presented values are achieved by both algorithms using linear kernels,
except where noted.

Source
Fraction of valid selected regions

# of valid regions
ν-MKL

lp-norm MKL
Linear Gaussian

Magnitude 0.69 0.71 0.90 135 (of 158)
Phase 0.70 0.69 0.85 108 (of 158)
Mag + Phase 0.74 0.75 0.95 243 (of 316)

140



Chapter 5. Application of RCK and ν-MKL to fMRI data

5.3.4 Discussion

This work presents an MKL-based methodology that combines magnitude and phase

data to better differentiate groups of healthy controls and schizophrenia patients from

an AOD task. In contrast, previous approaches devised methods that incorporated

magnitude and phase data, but did not perform between-group inferences. In addi-

tion, the presented methodology is capable of detecting the most informative regions

for schizophrenia detection.

Table 5.10 shows the results obtained by our MKL-based methodology using ν-

MKL for single-source analysis, as well as the combination of magnitude and phase.

Table 5.12: Reduced set of the top 40% ranked regions for magnitude-only and mag-
nitude and phase analyses and their differential activity estimates. This table lists a
set of informative regions and their associated relevance estimates, such as selection
frequency and normalized γ values. In addition, ranking indexes are reported to
analyze changes on the relative contribution of these areas across single-source and
combined-source analyses.

Region
Single Source Combined Sources

Magnitude Magnitude Phase

Rank Sel. Freq. γ Rank Sel. Freq. γ Rank Sel. Freq. γ

Right Caudate Nucleus 1 1.00 0.82 1 1.00 0.80 – – –
Right Precuneus 2 1.00 0.51 2 1.00 0.57 – – –
Right Superior Occipital Gyrus 3 1.00 0.49 3 1.00 0.53 – – –
Right Middle Cingulate Gyrus 4 0.98 0.49 15 1.00 0.43 – – –
Right Superior Parietal Lobe 5 1.00 0.48 8 1.00 0.48 – – –
Left Gyrus Rectus 6 0.96 0.49 12 0.98 0.44 – – –
Right Angular Gyrus 7 1.00 0.46 11 1.00 0.43 – – –
Left Precuneus 8 1.00 0.46 6 1.00 0.52 – – –
Left Middle Temporal Gyrus 9 1.00 0.45 7 1.00 0.50 – – –
Left Superior Temporal Gyrus 10 1.00 0.45 4 1.00 0.53 – – –
Left Angular Gyrus 11 1.00 0.44 20 1.00 0.40 – – –
Left Parahippocampal Gyrus 12 1.00 0.44 10 1.00 0.44 – – –
Left Paracentral Lobule 13 1.00 0.43 18 0.98 0.42 – – –
Right Gyrus Rectus 14 0.96 0.44 39 0.98 0.37 – – –
Right Cuneus 15 1.00 0.41 13 1.00 0.43 – – –
Right Anterior Cingulate Gyrus 23 0.96 0.39 35 0.98 0.38 – – –
Left Hippocampus – – – 16 0.98 0.43 – – –
Right Superior Temporal Gyrus – – – 23 1.00 0.39 88 0.96 0.23
Left Superior Frontal Gyrus – – – 34 0.98 0.38 – – –
Left Anterior Cingulate Gyrus – – – 36 0.98 0.38 – – –
Left Middle Frontal Gyrus – – – 42 0.98 0.37 – – –
Right Posterior Cingulate Gyrus – – – 50 0.98 0.34 – – –
Left Posterior Cingulate Gyrus – – – 51 0.98 0.34 – – –
Right Middle Temporal Gyrus – – – 62 0.98 0.31 72 0.98 0.29
Right Inferior Temporal Gyrus – – – – – – 56 0.98 0.33
Left Temporal Pole:

– – – – – – 83 0.92 0.27
Middle Temporal Gyrus
Left Lingual Gyrus – – – – – – 91 0.88 0.25
Right Temporal Pole:

– – – – – – 92 0.94 0.23
Superior Temporal Gyrus
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Figure 5.6: Ranking coefficients of a subset of the of the top 40% ranked regions for
magnitude-only and magnitude and phase analyses. This figure shows (a) informative
regions for the magnitude-only analysis, (b) informative regions of the magnitude
source for the magnitude and phase analysis, and (c) informative regions of the phase
source for the magnitude and phase analysis. Each of the displayed blobs are color-
coded according to their associated ranking coefficients. As expected, magnitude is
the most informative source, but several regions in phase, including the temporal
lobe, are also informative.

It can be seen that, when linear kernels are used, the first and the second combination

approaches obtain a smaller classification accuracy rate compared to the magnitude-

only analysis. On the contrary, the third approach achieves an increment of 5%

with respect to the magnitude data analysis. The probability of this value being

obtained by chance is in the range [0, 0.03], being statistically significant at the 95%

confidence level. These results support the validity of the rationale behind the third

combination approach, which assumed that magnitude and phase are dissimilar data,

thus requiring a kernel mapping to be applied independently for each source.

The performance of ν-MKL was also evaluated using Gaussian kernels. These
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results are comparable to those obtained using linear kernels, except for combination

1. A detailed analysis of the parameter validation procedure revealed that the values

of σ were usually 10 times σmed. Such a large value of σ makes the Gaussian kernel

similar to a linear one, which is consistent with the reported results. In addition,

these results suggest that adding complexity to the classification model is not helpful

on this dataset. This finding comes as no surprise since our dataset is composed of

data from a small number of subjects. However, it is expected that nonlinear kernels

would better characterize schizophrenia if a bigger dataset were analyzed, In fact,

the work presented in [61] supports this postulate.

In addition to the results obtained by ν-MKL, Table 5.10 displays the results ob-

tained by our local-oriented methodology using lp-norm MKL and SVM. The results

obtained by ν-MKL seem to be equivalent or slightly better than those obtained by

lp-norm MKL. The differences in classification accuracy for both algorithms do not

seem to be statistically significant. However, we must keep in mind that this is not

the only criterion used to compare the performance of both algorithms. These algo-

rithms are also evaluated based on their capacity to detect the degree of differential

activity of the analyzed regions and their capability to detect the sparsity of the

classification task. In short, we analyze the capacity of both algorithms to achieve

a better interpretation of the data. This is analyzed on more detail later on this

section.

It can also be seen from Table 5.10 that both ν-MKL and lp-norm MKL appear to

show a similar trend. For example, both algorithms obtain a classification accuracy

rate below the one achieved by the magnitude-only analysis for the first and the

second combination approaches; instead, SVM achieves a better classification result

than magnitude data analysis for all combination approaches. This can be explained

by the fact that SVM does not analyze the regions’ information locally since the data

is concatenated prior to being input to the SVM.
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The results obtained by using global approaches are shown on the same table. It

can be seen that the two global RFE-SVM-based strategies used to combine mag-

nitude and phase data also improve the classification accuracy rate obtained by

processing magnitude data only. Furthermore, both of them reach the same rates

(0.80). However, their rates are smaller than the one achieved by combination 3 of

our local-oriented approach (0.85).

Another important objective of this work is to show that ν-MKL can better iden-

tify the feature sets that show discriminative activation between groups compared

to other MKL algorithms, such as lp-norm MKL; the simulated dataset is used for

this purpose. It was previously mentioned that the results in Table 5.9 indicate that

11 of the 15 reported regions do overlap with the default mode network activation

blobs (Fig. 5.5). It should be noted that 10 out of those 11 regions, which show a

significant differential activation according to the accuracy rates reported by SVM,

are selected on all CV rounds by ν-MKL. In contrast, 2 of these regions (57 and 30)

are selected by lp-norm MKL on only half of the CV rounds. On the other hand,

the last three regions (44, 37 and 20), which show weak differential activation across

groups, are selected by ν-MKL on a few CV rounds, whereas they achieve a high

selection frequency with lp-norm MKL. Furthermore, it can be seen that the γ coeffi-

cients assigned by ν-MKL to these regions are approximately one order of magnitude

smaller than the top ranked region (26), which is not the case for lp-norm MKL.

On the methods section, we mention the validation of parameter p for lp-norm

MKL experiments, this parameter being the norm of the kernel coefficients on one

of the constraints imposed on (5.5). When p ≈ 1, these coefficients yield a kernel

combination that is close to a sparse one, being actually sparse when p = 1. On

the contrary, these coefficients are uniformly assigned the value 1 when p =∞. We

analyzed the validated values of p for each CV round in order to get a better idea

of the reason why lp-norm MKL failed to give a better estimate of the contribution
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of the relevant areas on the simulated dataset. We found out that on 7 out of 10

rounds, p = 1 or 4/3 (close to 1). It is clear that lp-norm attempts to do a sparse

selection of the informative regions, but with p ≈ 1 this algorithm seems to pick just

some kernels when they are highly correlated, a limitation that would be consistent

with the findings on l1-norm SVM [35]. Even though lp-norm MKL looks for a sparse

solution, it still estimates that the fraction of relevant regions is 0.50, deeming half

of the regions of the analyzed spatial map informative. Based on the accuracy rate

estimates obtained by a linear SVM and the graphical representation provided in

Fig. 5.5, it is unlikely that the sparsity of the simulated data classification task is of

that order. On the contrary, ν-MKL estimates that the fraction of relevant regions

is 0.14, which seems more consistent with the prior knowledge of the spatial extent

of the voxels having differential activation across groups.

Based on the analysis of the performance of both MKL algorithms on the sim-

ulated dataset, it can be inferred that the lp-norm MKL formulation based on a

non-sparse combination of kernels provides a less precise estimate of the sparsity of

the classification task at hand than ν-MKL. In addition, ν-MKL provides a more

accurate measurement of the degree of information conveyed by each kernel.

If we analyze the results obtained for the complex-valued fMRI dataset, it can

be seen that ν-MKL region selection is sparser than the lp-norm MKL one (Table

5.11), while still achieving at least equivalent classification results. A similar trend

is found on the simulated dataset, with ν-MKL better detecting the sparsity of the

classification task. Based on this finding, it can be argued that ν-MKL may achieve a

better detection of the most informative brain regions on the complex-valued dataset.

However, this cannot be verified as the ground truth for real fMRI data is unknown.

In terms of the selection of the most discriminative magnitude component, it

should be highlighted that the default mode component was consistently selected at

each iteration of Algorithm 8. This is an important finding that reinforces the notion
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that this spatial component reliably characterizes schizophrenia [53, 54].

Table 5.12 shows a reduced set of the most informative regions for magnitude-

only and magnitude and phase analyses. Among the regions deemed informative

by the former analysis temporal lobe regions can be found, which is consistent with

findings on schizophrenia. To better understand which regions could be informative

on our study, we need to be aware that the AOD task requires the subjects to make a

quick button-press response upon the presentation of target stimuli. Such an action

is highly sensitive to attentional selection and evaluation of performance, as the

subject needs to avoid making mistakes. For this reason we highlight the presence of

the anterior cingulate gyrus among the informative regions for the magnitude-only

analysis, for it has been proposed that error-related activity in the anterior cingulate

cortex is impaired in patients with schizophrenia [82]. The presence of the precuneus

and the middle frontal gyrus is also important, as it has been suggested that both

regions are involved in disturbances in selective attention, which represents a core

characteristic of schizophrenia [83].

The regions that are deemed informative for magnitude only remain being the

most informative when phase data is included in the analysis. However, their relative

importance changes on several of them, as it can be seen by inspecting the rank values

of these regions in these two scenarios. In addition, new brain areas show up in the

set of informative regions, which is the case for some other temporal lobe regions

and, for phase data, for regions of the temporal pole.

The presence of phase activation in regions expected to be differentially activated

across groups in the AOD task, such as the temporal lobe regions, suggests that

phase indeed provides reliable information to better characterize schizophrenia. In

addition, it implies that the inclusion of phase can potentially increase sensitivity

within regions also showing magnitude activation.
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Similarly, the fact that regions of the temporal pole show up in the set of most

informative regions is appealing, as evidence has been found that the temporal pole

links auditory stimuli with emotional reactions [102]. In fact, some studies report

the temporal pole as a relevant component of the paralimbic circuit, and associate

it with socioemotional processing [103]. Since social cognition is a key determinant

of functional disability of schizophrenia, it makes sense to hypothesize that the tem-

poral pole is activated differently in schizophrenia patients when auditory stimuli is

presented.

The aforementioned results reinforce the notion that magnitude and phase may

be complementary data sources that can better characterize schizophrenia when com-

bined.
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Algorithm 8 Test ν-MKL

1: Inputs: DataSet, νvals, C
′

vals, Cvals

2: Outputs: TestAcc, γ

3: Define N : number of folds in DataSet

4: for i = 1 to N do

5: Extract TrainValAll(i) from DataSet

6: Extract TestAll(i) from DataSet

7: ∗Select Magnitude Component(TrainValAll(i)) ⇒ CompInd

8: ∗TrainValAll(i)(CompInd) ⇒ TrainValSel(i)

9: ∗TestAll(i)(CompInd) ⇒ TestSel(i)

10: ∗RFE-SVM(TrainValSel(i)) ⇒ SelectFeat

11: ∗TrainValSel(i)(SelectFeat) ⇒ TrainValRed(i)

12: ∗TestSel(i)(SelectFeat) ⇒ TestRed(i)

13: Validate parameters ν −MKL (TrainValRed(i), νvals, C
′

vals, Cvals) ⇒

C,C
′
, ν

14: Train with TrainValRed(i), C
′
, ν and C ⇒ Trained ν −MKL, γ(i)

15: Test with TestRed(i) and Trained ν −MKL

16: Store accuracy rate ⇒ acc(i)

17: end for

18: Average acc(i) over i ⇒ TestAcc
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Algorithm 9 Validate parameters ν-MKL

1: Inputs: TrainValRed, νvals, C
′

vals, Cvals

2: Outputs: C, C
′
, ν

3: for i = 1 to N − 1 do

4: Extract Train(i) from TrainValRed

5: Extract Val(i) from TrainValRed

6: for j = 1 to #C
′

vals do

7: C
′

sel = C
′

vals(j)

8: for k = 1 to #νvals do

9: νsel = νvals(k)

10: for l = 1 to #Cvals do

11: Csel = Cvals(l)

12: Train with Train(i), C
′

sel, νsel and Csel ⇒ Trained ν −MKL

13: Test with V al(i) and Trained ν −MKL

14: Store error ⇒ e(i, j, k, l)

15: end for

16: end for

17: end for

18: end for

19: Average e(i, j, k, l) over i ⇒ e(j, k, l)

20: Find (j, k, l) that minimizes e(j, k, l)⇒ (J,K, L)

21: C
′

vals(J)⇒ C
′

22: νvals(K)⇒ ν

23: Cvals(L)⇒ C
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Algorithm 10 Select Magnitude Component

1: Inputs: TrainValAll

2: Outputs: CompInd

3: for i = 1 to N − 1 do

4: Extract Train(i) from TrainValAll

5: Extract Val(i) from TrainValAll

6: for j = 1 to 3 do

7: Train with Train(i)(j) ⇒ TrainedSVM

8: Test with Val(i)(j) and TrainedSVM

9: Store error ⇒ e(i, j)

10: end for

11: end for

12: Average e(i, j) over i ⇒ e(j)

13: Find j that minimizes e(j)⇒ CompInd
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Chapter 6

Concluding Remarks, Future

Work, and Recommendations

6.1 Concluding remarks

The multiple-kernel based framework presented in this dissertation proves to be useful

in the characterization of schizophrenia, as it provides an intuitive interpretation of

the functional regions that present different degrees of abnormal brain activation

on schizophrenia, while also achieving a reasonable classification of healthy controls

and schizophrenia patients. In fact, this was the first work to propose the use of

multiple kernels to represent feature sets from different brain regions and analyze

their contribution to the characterize a mental illness.

As stated before, the proposed methodology identifies regions that show abnor-

mal brain activation patterns on patients. Consistent findings across the different

data analysis approaches presented on Chapter 5 highlight the importance of several

regions among the brain, including the temporal lobe and the anterior cingulate cor-

tex. Since schizophrenia is typified by perturbations in perception, it makes sense to
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find abnormal activity on the temporal lobe, especially on experimental paradigms

that stimulate the auditory cortex. Relatedly, the anterior cingulate cortex has

been reported to be involved in rationale cognitive function, which is impaired in

schizophrenia [82]. The concordance of results presented in this dissertation with

previous findings validates its significance.

In addition, the proposed approach is capable of better characterizing schizophre-

nia when provided with multiple data sources, such as information retrieved from

different fMRI data analysis methods. Most importantly, the results obtained by

the ν-MKL based approach provide evidence that phase along with magnitude data

can indeed provide a better specificity for the location of abnormal activation in

schizophrenia. Likewise, it also makes it possible to detect informative brain regions

that cannot be identified by using magnitude data only. To the best of my knowl-

edge, this is the first study to do schizophrenia classification using complex-valued

fMRI data.

Furthermore, the algorithm’s flexibility to analyze nonlinear relationships be-

tween voxels within brain regions may improve the characterization of schizophrenia

under certain conditions, as there is a risk to overfit the data if not enough observa-

tions are available. The RCK analysis presented on section 5.1 suggests that better

results can be obtained by using nonlinear approximations. On the other hand, the

results obtained by ν-MKL on section 5.3 show no difference between linear or non-

linear analyses. This is probably related to the number of subjects available on the

second study, which is approximately half of the first one.

It is also important to remark that ν-MKL achieves a better characterization

of schizophrenia than a state of the art MKL algorithm (lp-norm MKL), while still

finding a sparse set of informative regions. This not only implies that ν-MKL is well-

suited for classification tasks using fMRI data, but also suggests that this approach

could be applied to classification tasks in other domains, thus providing an alternative
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rationale for MKL formulations that look for sparse solutions.

6.2 Future work and recommendations

Based on the capacity of the proposed framework to deal with different data sources,

it is reasonable to think that this approach would be useful to combine data from

multiple data modalities. One potential application could be the combination of

imaging and genetics data to better characterize mental disorders.

Another development that could be incorporated in this methodology is to extend

it to do between-group inferences on multi-class or even non-categorical (continuous)

variables of interest by expanding ν-MKL to work with other loss functions. This

would generalize the proposed binary classification approach to perform multi-class

classification or even regression.

In addition, ν-MKL has been formulated as a proof of concept approach. In other

words, the main criterion used for its formulation was to verify its functionality.

Based on the obtained results on both simulated and real data, ν-MKL achieves a

reasonable performance. The next step would be to reformulate the algorithm so

that it achieves better scalability with respect to sample size and number of kernels.

In order to foresee the future of machine learning for mental illness discovery, a

better understanding of these disorders is imperative. There is an inherent problem

in their characterization, since there is no neuroscientific evidence to support the

discrete categorization defined by the Diagnostic and Statistical Manual of Mental

Disorders [104]. In fact, studies suggest that mental illnesses overlap and may lay

on a continuum. As it has been stated initially, machine learning is a field of study

that learns from data. The potential of machine learning to provide a better char-

acterization of mental disorders is very vast and this field should point towards this
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research direction.
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Appendix A

Symmetric Positive Semidefinite

Matrix Decomposition

Let H be an n × n real symmetric matrix, with rank r < n. This matrix can be

factored into H = QΛQT , with orthonormal eigenvectors in Q and real eigenvalues

in Λ [105]. If this matrix is also positive semidefinite, then its eigenvalues are greater

than or equal to zero. While eigenvalue estimates are sensitive to perturbations for

some ill-conditioned matrices, the singular value problem is always well-conditioned

[106]. That is the reason why this section derives a decomposition of the form QΛQT

of H based on its singular value decomposition (SVD).

The SVD of H = UΣVT , where U and V are n× n orthogonal matrices and Σ

is an n× n diagonal matrix whose diagonal entries are the singular values of H. Let

σ1, σ2, . . . , σn be the elements on the diagonal of Σ and assume they are ordered in

descending order. If ui and vi, where i ∈ {1, 2, . . . , n}, are the columns of matrices

U and V respectively, then
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H =
n∑
i=1

uiσiv
T
i . (A.1)

Since H has rank r, it has r nonzero singular values, which are also eigenvalues

of H. In addition, singular vectors ui and vi such that i ∈ {1, 2, . . . , r} are equal and

are in fact eigenvectors of H. Thus,

H =
r∑
i=1

uiσiv
T
i =

r∑
i=1

uiσiu
T
i = UrΣrU

T
r , (A.2)

where Σr is an r × r matrix whose diagonal entries are σ1, σ2, . . . , σr and Ur is an

n × r matrix whose columns are r eigenvectors of H. Thus, H can be decomposed

as

H = (UrΣ
1/2
r )(Σ1/2

r UT
r ) = FTF, (A.3)

where F = Σ1/2
r UT

r .

F can be either directly determined by Eq. A.3 as an r × n matrix or it can

be zero-padded in order to make it n × n. If we drop the assumption that H is

rank deficient, the presented procedure would still hold, yielding an n× n matrix F

directly.
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[99] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. d.
Bona, A. Binder, C. Gehl, and V. Franc, “The shogun machine learning tool-
box,” J. Mach. Learn. Res., vol. 11, pp. 1799–1802, Aug. 2010, available at
http://www.shogun-toolbox.org.

[100] P. Good, Permutation Tests. New York: Springer, 1994.

[101] J. Opdyke, “Fast permutation tests that maximize power under conventional
monte carlo sampling for pairwise and multiple comparisons,” J. Mod. Appl.
Stat. Methods, vol. 2, no. 1, pp. 27–49, 2003.

[102] D. L. Clark, N. N. Boutros, and M. F. Mendez, The Brain and Behavior:
An Introduction to Behavioral Neuroanatomy, 3rd ed. Cambridge University
Press, June 2010.

[103] B. Crespo-Facorro, P. C. Nopoulos, E. Chemerinski, J.-J. Kim, N. C. An-
dreasen, and V. Magnotta, “Temporal pole morphology and psychopathology
in males with schizophrenia,” Psychiatry Research: Neuroimaging, vol. 132,
no. 2, pp. 107 – 115, 2004.

[104] D. Adam, “Mental health: On the spectrum,” Nature, vol. 496, pp. 416–418,
2013.

[105] G. Strang, Linear Algebra and its Applications. Pacific Grove, CA: Brooks
Cole, 1988.

[106] C. Moler, Numerical Computing with MATLAB. Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 2004.

166


