
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-12-2014

Within-Die Delay Variation Measurement And
Analysis For Emerging Technologies Using An
Embedded Test Structure
fareena saqib

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
saqib, fareena. "Within-Die Delay Variation Measurement And Analysis For Emerging Technologies Using An Embedded Test
Structure." (2014). https://digitalrepository.unm.edu/ece_etds/225

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/225?utm_source=digitalrepository.unm.edu%2Fece_etds%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Fareena Saqib
Candidate

Electrical & Computer Engineering
Department

This dissertation is approved, and it is acceptable in quality
and form for publication:

Approved by the Dissertation Committee:

Dr. James F. Plusquellic , Chairperson

Dr. Nasir Ghani

Dr. Payman Zarkesh-Ha

Dr. Charles Lamech

i

Within-Die Delay Variation Measurement And Analysis
For Emerging Technologies Using An Embedded Test

Structure

by

Fareena Saqib

B.I.T., National University of Sciences and Technology (NUST), 2006

M.S., Electrical and Computer Engineering, University of New Mexico
(UNM), 2010

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

 Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2014

ii

©2014, Fareena Saqib

iii

Dedication

This dissertation is dedicated to my family, for all the love, support, and the
many sacrifices made.

iv

Acknowledgments

First of all I wish to offer my gratitude to Almighty God for the Blessings

bestowed upon me.

I would like to express my sincerest gratitude and indebtedness to my advisor and

supervisor Dr. Jim Plusquellic for his untiring assistance, timely guidance,

encouragement and creativity at every stage of this study. Working with him has been a

true privilege, and I have benefited tremendously from his knowledge of science and

engineering, both in depth and broadness, and his enthusiasm in supporting me to carry

out and complete the research work. He is a role model that I can always look up to.

My deepest appreciation and thanks are extended to Dr. Nasir Ghani, Dr. Charles

Lamech, and Dr. Payman Zarkesh-Ha for their continuous support, encouragement and

valuable suggestions. I am also grateful to all the group members in the Electrical and

Computer Engineering Department at the University of New Mexico for their assistance,

motivation and valuable comments to improve the dissertation. I am especially grateful to

Jim Aarestad for his dedicated assistance, guidance and professional contributions.

v

 Within-Die Delay Variation Measurement And Analysis
For Emerging Technologies Using An Embedded Test

Structure

by

Fareena Saqib

B.I.T., National University of Sciences and Technology (NUST), 2006

M.S., Electrical and Computer Engineering, University of New Mexico
(UNM), 2010

Ph.D., Engineering, University of New Mexico (UNM), 2014

ABSTRACT

Both random and systematic within-die process variations (PV) are growing more

severe with shrinking geometries and increasing die size. Escalation in the variations in

delay and power with reductions in feature size places higher demands on the accuracy of

variation models. Their availability can be used to improve yield, and the corresponding

profitability and product quality of the fabricated integrated circuits (ICs). Sources of

within-die variations include optical source limitations, and layout-based systematic

effects (pitch, line-width variability, and microscopic etch loading). Unfortunately,

accurate models of within-die PVs are becoming more difficult to derive because of their

increasingly sensitivity to design-context. Embedded test structures (ETS) continue to

vi

play an important role in the development of models of PVs and as a mechanism to

improve correlations between hardware and models. Variations in path delays are

increasing with scaling, and are increasingly affected by “neighborhood” interactions. In

order to fully characterize within-die variations, delays must be measured in the context

of actual core-logic macros. Doing so requires the use of an embedded test structure, as

opposed to traditional scribe line test structures such as ring oscillators (RO). Accurate

measurements of within-die variations can be used, e.g., to better tune models to actual

hardware (model-to-hardware correlations).

In this research project, I propose an embedded test structure called REBEL

(Regional dELay BEhavior) that is designed to measure path delays in a minimally

invasive fashion; and its architecture measures the path delays more accurately. Design

for manufacture-ability (DFM) analysis is done on the on 90 nm ASIC chips and 28nm

Zynq 7000 series FPGA boards. I present ASIC results on within-die path delay

variations in a floating-point unit (FPU) fabricated in IBM’s 90 nm technology, with 5

pipeline stages, used as a test vehicle in chip experiments carried out at nine different

temperature/voltage (TV) corners. Also experimental data has been analyzed for path

delay variations in short vs long paths. FPGA results on within-die variation and die-to-

die variations on Advanced Encryption System (AES) using single pipelined stage are

also presented. Other analysis that have been performed on the calibrated path delays are

Flip Flop propagation delays for both rising and falling edge (tpHL and tpLH),

uncertainty analysis, path distribution analysis, short versus long path variations and mid-

length path within-die variation. I also analyze the impact on delay when the chips are

subjected to industrial-level temperature and voltage variations. From the experimental

vii

results, it has been established that the proposed REBEL provides capabilities similar to

an off-chip logic analyzer, i.e., it is able to capture the temporal behavior of the signal

over time, including any static and dynamic hazards that may occur on the tested path.

The ASIC results further show that path delays are correlated to the launch-capture (LC)

interval used to time them. Therefore, calibration as proposed in this work must be

carried out in order to obtain an accurate analysis of within-die variations. Results on

ASIC chips show that short paths can vary up to 35% on average, while long paths vary

up to 20% at nominal temperature and voltage. A similar trend occurs for within-die

variations of mid-length paths where magnitudes reduced to 20% and 5%, respectively.

The magnitude of delay variations in both these analyses increase as temperature and

voltage are changed to increase performance. The high level of within-die delay

variations are undesirable from a design perspective, but they represent a rich source of

entropy for applications that make use of “secrets” such as authentication, hardware

metering and encryption. Physical unclonable functions (PUFs) are a class of primitives

that leverage within-die-variations as a means of generating random bit strings for these

types of applications, including hardware security and trust.

Zynq FPGAs Die-to-Die and within-die variation study shows that on average

there is 5% of within-Die variation and the range of die-to-Die variation can go upto 3ns.

The die-to-Die variations can be explored in much further detail to study the variations

spatial dependance.

Additionally, I also carried out research in the area data mining to cater for big

data by focusing the work on decision tree classification (DTC) to speed-up the

classification step in hardware implementation. For this purpose, I devised a pipelined

viii

architecture for the implementation of axis parallel binary decision tree classification for

meeting up with the requirements of execution time and minimal resource usage in terms

of area. The motivation for this work is that analyzing larger data-sets have created

abundant opportunities for algorithmic and architectural developments, and data-mining

innovations, thus creating a great demand for faster execution of these algorithms,

leading towards improving execution time and resource utilization. Decision trees (DT)

have since been implemented in software programs. Though, the software

implementation of DTC is highly accurate, the execution times and the resource

utilization still require improvement to meet the computational demands in the ever

growing industry. On the other hand, hardware implementation of DT has not been

thoroughly investigated or reported in detail. Therefore, I propose a hardware

acceleration of pipelined architecture that incorporates the parallel approach in acquiring

the data by having parallel engines working on different partitions of data independently.

Also, each engine is processing the data in a pipelined fashion to utilize the resources

more efficiently and reduce the time for processing all the data records/tuples.

Experimental results show that our proposed hardware acceleration of classification

algorithms has increased throughput, by reducing the number of clock cycles required to

process the data and generate the results, and it requires minimal resources hence it is

area efficient. This architecture also enables algorithms to scale with increasingly large

and complex data sets. We developed the DTC algorithm in detail and explored

techniques for adapting it to a hardware implementation successfully. This system is 3.5

times faster than the existing hardware implementation of classification.

ix

Table of Contents

 LIST OF FIGURES...XIV

 LIST OF TABLES..XVIII

1 INTRODUCTION...1

 1.1 Sources of Within-Die Variations...2

 1.2 Proposed Embedded Test Structure (ETS)..2

 1.3 Decision Tree Classification (DTC) …..3

 1.4 Organization...4

2 BACKGROUND...5

 2.1 Test Structures for Within-Die Delay Measurement...5

 2.1.1 Delay Measurements of Individual Gates...8

 2.2 Design and Environment Effects on Within-Die Variations...............................9

 2.3 Within-Die Variations in FPGAs Reconfigurable Logic...................................10

 2.4 Impact of Within-Die Spatial Process Variations ...11

 2.4.1 Clock Frequency..11

 2.5 Static Timing Analysis...12

 2.6 Design for Manufacturing and Yield ...12

 2.7 Applications of Die-to-Die and Within-Die Variations......................................14

2.7.1 PUF Hardware Security..14

x

2.8 Summary..20

3 REBEL:EMBEDDED TEST STRUCTURE AND MACROS-UNDER-TEST22

 3.1 REBEL-Regional Delay Behavior..22

 3.2 Floating Point Unit (FPU Macro)...28

3.3 Advance Encryption Standard (AES) ..31

 3.3.1 Step1: Sub-Bytes...33

 3.3.2 Step2: Shift Rows...33

 3.3.3 Step 3:Mixed Columns...34

 3.3.4 Step 4: Add Round Key...34

3.4 Chip Layout, with REBEL, AES and FPU Placement......................................35

 3.4.1 ASIC Layout with REBEL and FPU...35

 3.4.2 FPGA Layout with REBEL and AES Round...37

4 EXPERIMENTAL SETUP..38

 4.1 Experimental Setup for IC 90nm Chips...38

4.2 Launch-Capture Clocking Sequence and Clock Strobing.................................39

 4.2.1 Launch-Capture Clocking Sequence...39

 4.2.2 Clock Strobing...39

 4.3 Delay Measurement Process..40

 4.4 Digital Snapshots and FF Delays ...43

 4.5 Calibration and Power Rail Voltage Transient Effects44

 4.6 Measuring and Calibrating Path Delays..48

 4.7 Experimental Setup for FPGA Boards...52

4.8 Launch-Capture Clocking Sequence and Clock Strobing.................................53

xi

 4.8.1 Launch-capture Clocking Sequence...53

 4.8.2 Clock Strobing...54

4.9 Delay Measurement Process...54

4.10 Measuring and Calibrating Path Delays...56

5 ASIC EXPERIMENTAL RESULTS AND ANALYSIS..58

 5.1 Flip-flops Analysis..58

 5.2 Uncertainty Analysis..62

 5.3 Error in Estimating Path Delays...64

 5.4 Path Distribution Analysis...67

5.5 Short vs. Long Path Variation..69

 5.6 Within-Die Delay Variation Analysis..71

6 FPGA EXPERIMENTAL RESULTS AND ANALYSIS..75

6.1 Flip Flop Analysis..75

6.1.1 Propagational delay tpHL and tpLH Analysis..75

 6.1.1.1 Rising Edge Propagation Delay (tpLH):..76

 6.1.1.2 Falling Edge Propagation Delay (tpHL):...77

 6.1.1.3 Comparative Analysis:..78

6.1.2 Average Rising Edge Flip-flops Delays..79

 6.1.3 Average Falling Edge Flip-flops Delays..80

6.2 Sample analysis..80

6.3 Uncertainty Analysis ..85

6.4 Die-to-Die Variation in Flip-flops for Rising Edge in All Chips........................86

6.5 Die-to-Die Variation in Flip-flops for Falling Edge in All Chips.......................89

xii

6.6 Path Distribution Analysis..91

6.7 Die-to-Die Delay Variation Analysis ...94

6.8 Within-Die Delay Variation Analysis ..96

7 PIPELINED DECISION TREE IMPLEMENTATION..100

 7.1 Introduction...101

 7.2 Background..104

 7.3 Decision Tree Classification Architecture...106

 7.4 Experimental Results..115

 7.4.1 Accuracy Of The Model..115

 7.4.2 Comparison with Software Implementations..116

 7.4.3 Comparison with Previous Hardware Implementation........................118

 7.5 Resource Utilization...119

 7.6 Data Streaming with High Performance Communication Link....................120

8 CONCLUSION...123

9 FUTURE WORK..127

 9.1 Path Delay Measurement using TDCs..127

 9.2 Path Delay Measurement as an Entropy Source for PUF Primitive......129

 9.3 Defect Analysis...131

 9.4 Model to Hardware Correlation..131

 9.5 On-chip Clock using DLLs or PLLs and Bypass Capacitance on I/OPads

...132

REFERENCES...133

xiii

List of Figures

Fig. 3.1: REBEL Integration Strategy ...24

Fig. 3.2: REBEL Row Control Logic..25

Fig. 3.3(a): Modified Clocked-LSSD Scan FF ...27

Fig. 3.3(b): Additional ‘Front-End’ Logic ...27

Fig. 3.4: Floating Point Unit Block Diagram ..28

Fig. 3.5: AES Engine...31

Fig. 3.6: Mux-D Flip Flop...32

Fig. 3.7: AES Round..33

Fig. 3.8: ASIC Layout..35

Fig. 3.9: ASIC Design Flow...36

Fig. 3.10: FPGA Layout...37

Fig. 4.1: Experimental Setup . ..39

Fig. 4.2: REBEL Launch-Capture (LC) Test Sequence. Clock strobing applies a

sequence of LCIs of different widths40

Fig. 4.3: Oscilloscope measured launch-capture intervals (LCIs) for each of the Fine

Phase Adjust (FPA) values on the FPGA. Row Header delay of 300 ps is

included ..42

Fig. 4.4: Illustration of a partial sequence of digital snapshots (21 FPAs of the 159)

xiv

produced from a path delay test ...44

Fig. 4.5: Curves of individual FF delays measured at different midpoint delays. An

average of all individual curves is superimposed, as well as a curve with only

the low frequency components of the ‘Average delay curve’48

Fig. 4.6: Calculating path delay using digital snapshots. ..49

Fig. 4.7: Illustration of calibration operation carried out using an individual FF delay

curve and ‘smoothed’ average delay curve ..50

Fig. 4.8: Delay calibration applied to example path from Fig. 4.6 using window1 (W1) .51

Fig. 4.9: Zed Board with Zynq FPGA...53

Fig 4.10: Clock Strobing in FPGAImplementation...54

Fig 4.11: Digital Snapshot from a path delay test..55

Fig 4.12: REBEL Integration with AES Engine..56

Fig 4.13: Block level Diagram of AES with REBEL Integration......................................57

Fig.5.1: Flip-Flop Delays for Falling and Rising Transitions..59

Fig.5.2: Mid-point LCI Average Delays for Rising and Falling Transitions.....................60

Fig.5.3: Propagational Delay of Rising Edge..61

Fig.5.4: Propagational Delay of Falling Edge...61

Fig. 5.5: Digital snapshots illustrating uncertainty using data given earlier in Fig. 4.4....62

Fig. 5.6: Average Uncertainty as a function of distance (in FFs) from the insertion point

for 4 chips at all TV corners..63

Fig. 5.7: Calibration process applied to the 2nd of two consecutive windows illustrating

error in the estimation of path delay ..64

Fig. 5.8: Delay errors computed using W1 and W2 of the proposed calibration method

xv

for all paths and chips at 25oC, 1.2V...65

Fig. 5.9: 3σ (a) and average (b) delay errors for all paths and chips at 25oC, 1.20V as a

function of ‘length of the delay chain’ (x-axis) and span (y-axis)....................66

Fig. 5.10: Stable path distributions for CHIP1 at 25 oC, 1.20V.......................................68

Fig. 5.11: Short vs. long path delay variation analysis at 25oC, 1.20V.............................70

Fig. 5.12: Within-die delay variation analysis using regression: example scatter plots

from distribution of common to all chips..71

Fig. 5.13: Within-die variation analysis using regression. Average path delay vs.

normalized 3σ of residuals expressed as percentage change73

Fig. 5.14: Within-die variation analysis using regression using data from two additional

TV corners ..74

Fig. 6.1: Rising Edge Propagational Delay...76

Fig. 6.2: Falling Edge Propagational Delay..77

Fig. 6.3: Rise versus Fall delay of Flip-Flops...78

Fig. 6.4: Average Rising delays of FFs for Chip1..79

Fig. 6.5: Average Falling delays of FFs for Chip1...80

Fig. 6.6: Delay versus Sample Analysis for Chip 1...81

Fig. 6.7: Delay versus Sample Analysis for Chip 5...82

Fig. 6.8: Uncertainty Analysis for Chip 5..83

Fig. 6.9: Delay Versus Sample Analysis for Chip 7..83

Fig. 6.10: Uncertainty Analysis for Chip 7..84

Fig. 6.11: Overall Uncertainty in path delays..85

Fig. 6.12: Standard Deviation in Rising Edge for All Chips...87

xvi

Fig. 6.13: Percentage Change in Rising Edge for All Chips88

Fig. 6.14: Die-to-die Variation in Falling Edge in All Chips...89

Fig. 6.15: Percentage Change in Falling Edge for All Chips...90

Fig. 6.16: Path Distribution for Chip 1..91

Fig. 6.17: Stable Path Distribution for Chip 2...92

Fig. 6.18: Unique and Common Path ID Counter...93

Fig. 6.19: Die-to-die Variation Analysis using Regression. Average path delay versus

normalized 3σ of residuals..94

Fig. 6.20: Overall percentage change of die-to-die variation in path delay......................96

Fig. 6.21: Within-die variation for short and long path pairings.......................................97

Fig. 6.22: Within-die delay variation analysis using regression: Example scatter plot form

distributions of common to all chips...98

Fig. 6.23: Overall percentage change of path delays variation...99

Fig. 7.1: Decision rules in form of decision trees..106

Fig. 7.2: Decision tree stages ..107

Fig. 7.3: Decision tree classification system...109

Fig. 7.4: RTL level block diagram of hardware module..110

Fig. 7.5: Parallel and pipelined decision tree Engine..112

Fig. 7.6: Streaming architecture..121

Fig. 9.1: Time to Digital Conversion (TDC)...128

xvii

List of Tables

Table 3.1: Configuration States for Row Control Logic..26

Table 7.1: Accurcy of decision tree model...116

Table 7.2: Comparison with software implementation..117

Table 7.3: Comparison with Hardware implementations...119

Table 7.4: The resource utilization of the decision tree model..120

xviii

1 Introduction

CHAPTER 1
Introduction

Both random and systematic within-die process variations (PV) are growing more

severe with shrinking geometries and increasing die size [1] [2] [3]. Embedded test

structures (ETS) continue to play an important role in the development of models of PVs

and as a mechanism to improve correlations between hardware and models. Variations in

delay and power continue to increase with reductions in feature size, which places higher

demands on the accuracy of variation models. Their availability can be used to improve

yield, and the corresponding profitability and product quality of the fabricated ICs [4].

Decision tree classification (DTC) is a widely used technique in data mining

algorithms known for its high accuracy in forecasting. As technology has progressed, and

available storage capacity in modern computers increased, the amount of data available to

be processed has also increased substantially, resulting in much slower induction and

classification times. Many parallel implementations of decision tree classifications

algorithms have addressed the issues of reliability and accuracy in the induction process.

In the classification process, larger amounts of data require proportionately more

execution time, thus hindering the performance of legacy systems. Hence, to cater for big

data for data mining, further work on decision tree classification (DTC) to speed-up the

1

classification step in hardware implementation cannot be overemphasized.

 1.1 Sources of Within-Die Variations

Sources of within-die variations include optical source limitations, and layout-

based systematic effects (pitch, line-width variability, and microscopic etch loading [5]

[6] [7]. Unfortunately, accurate models of within-die PVs are becoming more difficult to

derive because of their increasingly sensitivity to design-context. Stand-alone embedded

test structures such as ring-oscillators (ROs) are becoming less effective for

characterizing delay variations in actual product macros because they are typically placed

around the layout region of the macro as opposed to being integrated into it. In such

circumstances, ring oscillators (ROs) are not exposed to, e.g., the same types of

distortions which are introduced by photo-lithography interference patterns [8]. Some of

the proposed ETS, such as those that measure delay characteristics of the macro itself [9]

[10], offer the best solution, but are difficult to integrate without having an adverse

impact on area overhead, yield loss, performance, I/O interface, test cost, etc. of the

product design.

 1.2 Proposed Embedded Test Structure (ETS)

For accurate measurement of within-die variations, we propose and investigate an

embedded test structure (ETS), called REBEL (Regional dELay BEhavior), which is

designed to measure path delays in macros while minimizing the adverse effects on area

overhead, yield loss, performance, etc. The proposed ETS is designed to serve

applications such as model-to-hardware correlation [11], detection of hardware Trojans

[12], design debug processes, detection of small delay defects [13], and physical

unclonable functions [14]. Each of these areas requires accurate measurements of path

2

delays and/or the ability to differentiate at high resolutions between delays of neighboring

paths. The REBEL ETS leverages the scan chain architecture to measure delay variations.

In particular, it uses a special configuration of flush delay mode that is available in level

sensitive scan design (LSSD) style scan chains. In previous work [15], the promise of

capturing regional delay variations using a special launch-capture timing sequence

applied while in flush delay mode has been demonstrated. We extended this technique

here by allowing output signals from a design macro to be inserted into the flush delay

chain for path delay measurements.

A key feature of our work is the evaluation of REBEL in multiple copies of a

custom designed test chip fabricated in IBM’s 90nm technology. The macro in which

REBEL is integrated is an IEEE-754 compliant floating point unit (FPU), with 5 pipeline

stages. Random test patterns are applied to the combinational logic within each of the

pipeline stages and the measured delays are analyzed, with emphasis on evaluating the

magnitude of within-die variations as a function of path length. A second important

component of our experiments is the evaluation of delay variations while the chips are

subjected to industrial-level temperature and voltage (TV) variations.

 1.3 Decision Tree Classification (DTC)

The process of converting unidentified or unprocessed data into actionable

information that is important and valuable to the user is known as data mining [16].

Recent advances in technology and ever increasing demands for analyzing larger datasets

have created abundant opportunities for algorithmic and architectural development and

innovations. Hence data mining algorithms have become increasingly significant and

complex. Similarly there is a great demand for faster execution of these algorithms,

3

leading to efforts to improve execution time and resource utilization.

Decision Tree Classification (DTC) is a widely used technique in data mining

algorithms known for its high accuracy in forecasting. As technology has progressed and

available storage capacity in modern computers increased, the amount of data available to

be processed has also increased substantially, resulting in much slower induction and

classification times. Many parallel implementations of decision tree classification

algorithms have addressed the issues of reliability and accuracy in the induction process.

In the classification process, larger amounts of data require proportionately more

execution time, thus hindering the performance of legacy systems. We have devised a

pipelined architecture for the implementation of axis parallel binary decision tree

classification that dramatically improves the execution time of the algorithm while

consuming minimal resources in terms of area.

 1.4 Organization

The balance of this dissertation is organized as follows: chapter 2 discusses

related work and background on process variation. chapter 3 describes the details of the

REBEL ETS while chapter 4 describes the integration of REBEL into the FPU and AES

(Experimental setup). In chapter 5, I present the results of hardware experiments, chapter

6 presents the results of experiments on FPGAs, Chapter 7 discusses the implementation

of proposed architecture of parallel implementation of pipelined decision tree

classification engine. Chapter 8 summarizes the work and contains conclusion. Chapter 9

encompasses suggestions for the future work.

4

2

CHAPTER 2
Background

Process variation (PV) is a challenge of Integrated circuit design in the newer

technologies with the shrinking node sizes. Variation can be defined in terms of die-to-die

and within-die variation, where die-to-die variations can be due to change in temperature

or processing conditions. These changes can be captured using scribe line test structures

or small amount of embedded test structures are sufficient for die-to-die variations

coverage.

Within-die variations on the other hand are caused by across-field effects [17] in

compassing the layout design techniques, optical aberration and other random effects

such as dopant fluctuations. Within-die characterization requires more density of test

structures to capture the variations in all regions.

 2.1 Test Structures for Within-Die Delay Measurement

Monitoring die-to-die and within-die requires distributing embedded test

structures across and within chips in order to capture the overall wafer-to-wafer and

within chip systematic variations with spatial correlations. Within-die and die-to-die

delay analysis of delay variations continues to be an active research area. Ring oscillators

5

(RO) based test structures have been successfully used to characterize within-die delay

variations in ASICs and FPGAs [9] [10] [17] [18] [19] [20] [21].

The simplicity of the RO design makes it an attractive modality as an ETS. Tuan

et al. [17] proposed a scheme of creating an RO from the path-under-test to measure the

critical path delays. Das et al. [18] constructed a digitally re-configurable RO structure

for measuring the gate-level delays and reported measurement accuracy of 1 ps and up to

26% within-die delay variation in 65nm technology.

Bhushan et al. [19] presented an RO-based variability measurement scheme and

illustrated the experimental results from a 90nm technology node. RO based designs are

also used to measure within-die variability in 90nm and 65nm FPGAs [17] [20] [21].

Several on-chip analog measurement systems are proposed by Kinniment et al. [22] to

accurately measure the on-chip path timing differences with a resolution of 10ps. They

explain the time measurement techniques utilizing parallel mutex with a tapped delay

line, successive approximation method and amplification of small time differences to a

measurable size in different proposed time measurement approaches. A measurement

system is proposed to characterize individual gate delays using an on-chip sampling

oscilloscope. Also a within-die variation characterization system is proposed by Zhang et

al. which also uses an on-chip sampling oscilloscope [23]. Stand-alone RO-based delay

measurements lack the ability to account for “circuit context”. Macro embedded RO

schemes, such as Path RO [10], can only be applied to hazard free and robust paths.

These kinds of embedded test structures, where a set of ring oscillators is distributed

cross the layout, are capable of capturing within-die variations, but are becoming

increasingly less accurate as predictors of delay variations in actual product macros.

6

Various Time-to-Digital converters (TDCs) have been proposed for on-chip delay

measurements with resolution as high as 5 ps and with low thermal sensitivity [11] [24]

[25] [26]. Tapped delay lines are used by Dudek et al. [24] TDC using a technique vernier

delay line with the a read-out circuitry, and achieved a 30 ps resolution with 128 delay

stages and showed up to 5 ps is reachable using this methodology. Similarly, Datta et al.

measured path delay by Modified Vernier Delay Line (MVDL), which digitizes the path

delay forming MVDL and improves the resolution of delays [27]. However, to achieve

the high accuracy measurement is sensitive to the symmetric routing in branches of

MVDL, which will constrain the place and route tool [28]. Another TDC is proposed and

designed with a resolution of 10ps [11], it measures the delay difference between two

path signals out of several paths which are fanned out to the TDC from the macro-under-

test. The delay between the two transitions produces a negative-going pulse with a width

proportional to that difference of the transition timing of the glitch free paths. The TDC

scheme, just like RO restricts their coverage because of condition of having glitch free

paths. Also analog measurement systems and TDCs have large area overheads.

 Truly embedded test structures, such as those that measure delay [9] [10] [15],

and power [29] characteristics of the macro itself, offer the best solution. Path-RO creates

an oscillator from the given path to measure the delay on chip, capturing the process

variations [10] but this solution is difficult to integrate without having an adverse impact

on area overhead, and test cost, etc. of the product design. Whereas another novel

technique proposed by Acharyya et al. [29] that leverages the existing power control

circuitry, added to reduce the power consumption, and measures the leakage current

variation of these modules and this variation thus reflects the current variation across the

7

chip. The use of multiple power supply port measurement technique is incorporated to

measure the within-die leakage current.

A LSSD-style scan-chain-based embedded test structure is proposed by Lamech et

al. [11] and Aarestad et al. [15], utilizing the inherent flush delay mode for obtaining

single-shot measurements of path delays in product macros induced by the history effect.

This test structure leverages the existing scan structure and can be used to characterize

the within-die delay variations by measuring the path delays of the macros. The

embedded test scheme is called REBEL, a detailed description and analysis is performed

in chapter 3. This proposed structure uses at-speed clock to measure the path delays for

both short and long paths. The advantage of using the at-speed clock over the faster-than-

at-speed clock is that the delays are more realistic and the supply voltage transience does

not deteriorate the measured delay values and the path delay measurements are closer to

the actual delays. I have used this technique for the experiments performed to examine

the within-die variation of the 90nm test chips.

2.1.1. Delay Measurements of Individual Gates

Authors [18] proposed a modified re-configurable ring oscillator to measure

individual gate delay. The delay was averaged for the falling and the rising transition and

showed up-to 26% within-die variation among the identical inverters which were placed

close by on the chip. Symmetric multiplexers of large size having balanced delay and a

set of inverters were used in the gate delay measurement cell, where cell was replicated in

five stages for the delay measurement mechanism. A Pico-second Imaging Circuit

Analysis was used to digitize the delay by counting the infra-red photons captured from

the chip. The gate delay measurement of individual standard cells helped in

8

characterizing the stress, neighboring effect and other effects more efficiently.

Furthermore, in another measurement system for characterizing an on-chip

within-die delay variations of standard cells, for both falling and rising edges, was

proposed by Zhang et al. using sampling oscilloscope with a pico-second resolution [23]

[30]. It displayed a strong correlation between the on-chip measurements and Monte-

Carlo simulation. The experimental results confirmed that the delay variations of the on-

chip are smaller for the gates with the bigger active area, and the NMOS has bigger

variation than the PMOS.

 2.2 Design and Environment Effects on Within-Die Variations

The environmental factors can affect the behavior of a semiconductor

circuit, like the temperature or supply voltage for a given process. Also the device

parameters, for example the length of transistor, oxide thickness may vary caused by the

non-uniformity in the manufacturing process.

There are many sources which can affect the fabrication process and to create an

adequate model for characterizing delay variation it is important to identify these

parameters. The impact of different layout topologies on variation is presented by Pang et

al. [31], the authors measured the variability of various test structures and analyzed the

effects of systematic and random components of within-die variations. Lithographic

simulation capability in the routing engine can improve the product yield [8] by

identifying and modifying the patterns in the layout to avoid lithography hot spots.

Reticle Enhancement technology is discussed by Grobman et al. [32] and usage of other

optimized techniques to achieve planarity in manufacturing process for the sub-

wavelength technologies for better circuit timings.

9

Analysis of temperature dependence has been performed on the sub-threshold

circuit 40nm chip [33]. The device under test had a 16x16 array with each unit having 8

ring oscillators, where they are placed in different supply voltage regions and later the

outputs are level shifted to the nominal voltage. The variation was measured as deviation

of delay/mean and showed that the variation was 1.4 times more when the temperature

was dropped from 25oC to -40oC [33]. This variation was inversely proportional to the

temperature, that is, the with-die delay variations were larger when the temperature was

lowered.

 2.3 Within-Die Variations in FPGAs Reconfigurable Logic

In the domain of FPGAs re-configurable logic, techniques for the measurement of

within-die variation is discussed by Sedcole et al. [21] in 90nm FPGAs and by Tuan et al.

[17] in 65nm FPGAs. The effect of both random and systematic process variation on 18

Altera Cyclone II devices with 5 stage and 7 stage ROs was measured by Wang et al.

[34].

 For 90nm, the measure of process variation in 10 FPGA's using 135 stage ring

oscillators is performed also the within-die delay variation characterization is performed

with a small number of oscillator stages and shows that the mean random variation is ±

3.54% and systematic variation can vary the delay up to 3.66% additionally [21].

Whereas, for 65nm FPGA family a detailed analysis of the within-die variations is

performed with the test structures implemented on the re-configurable logic, each created

with four configurable logic blocks [17]. Using a large number of ring-oscillators, the

analysis is performed on rising and falling edges independently and the data is processed

to distinguish between the random and systematic variations. The results showed that the

10

random variation followed Gaussian distribution whereas the systematic variation was

further modeled in the software timing models to evaluate the optimization of

performance using a variation aware timing model, by calculating the maximum

frequency for each design.

 2.4 Impact of Within-Die Spatial Process Variations

2.4.1 Clock Frequency

A design with low overhead for calibration of maximum frequency has been

proposed by Paul et al. [9]; where at the given voltage sensitivity, small set of paths is

configured into a ring oscillator and the maximum frequency of a given chip is

dynamically computed. Hence, the need of delay testing at operating voltages with all

frequencies is eliminated through binning each chip into categories of different voltages

and frequencies.

The product level variations for single and multi-core processors were simulated

for maximum clock frequency and optimized throughput for 22nm technology [35]. They

statistically measured the impact of parameter variations and compared the performance

of multi-core processors with the single core processors and showed that multi-core

processors were more variation tolerant because of the greater impact of memory latency

and bandwidth on throughput.

Similarly possibilities of mitigating the performance loss was investigated by

Palframan et al. [36], by introducing redundancy along the processor datapath in the form

of one or more extra bit slices, leaving the dummy slices in the datapath unused to avoid

excessively slow critical paths created by delay variation, which showed the reduction of

delay penalty by 10% or more caused by the variation.

11

 2.5 Static Timing Analysis

The design environments utilize the static timing analysis for the delay variations

in the paths through the chip, by considering the worst case delay by assuming all the

segment delays to be maximum or minimum, which are not realistic [8]. Each element of

the path has associated delay and models should be incorporated for process variations to

do the statistical static timing analysis, to be able to get better model-to-hardware

correlations.

A technique for computing the delay distribution task as a function of technology

parameter of a circuit was presented by Mehr et al. [37]. They calculated the mean value

of delay using normal distribution approximation of normalized delay and skewness of

the delay distribution from Gaussian distribution; and compared the results with those of

Monte-Carlo simulations. Channel length variation was engrossed which impacted the

threshold voltage and load capacitance; and thus affected the gate delay. The study

incorporated the impact of transistor stacking on the delay, by using Taylor Series. Also,

it combined the load capacitance parameter to get more accurate delays [37].

 2.6 Design for Manufacturing and Yield

The design for manufacturing (DFM), and design for yield [4] classifies the

systematic and statistical variations, caused by the physical defects in the structure of

transistors which can be catastrophic, or electrical variations in the composition of

transistors, wires or vias, causing parametric defect which allows the chip to function in a

specified range with varied power leakage [8]. Catastrophic defects fails the chips,

whereas, the chips with parametric defects can function but they do not meet the design

requirements, for example they do not function on the specified range or there is more

12

power leakage than specified.

A need of a DFM aware design tool is vital for the newer technologies where the

feature sizes are shrinking. A broad range of work is ongoing to develop mechanisms for

characterizing more accurately the within-die and die-to- die process variations (PV). The

development of area-efficient structures and methods for validating variation models for

the newer technologies is of greater importance, where the feature sizes are getting

smaller than the wavelength of the light used to create them [8]. The physical variations

also contributes more variation on the scaling devices, as a larger impact is produced on a

smaller device size and causes a huge variation as compared to the larger devices.

The physical device parameters determine the behavior of the device and predicts

the performance changes with the environmental factors, by the variability in the

fabrication process. These variations are captured with the conventional test structures,

but the process variations are getting more sensitive to the design context, which the

traditional test structures residing on a different region then the actual macro cannot truly

capture.

The die-to-die level variations can be captured with the limited number of test

structures for testing and measurement. The test structures currently being used include,

scribe-line structures, or a fewer number of ring oscillators embedded test structure to

capture the variations. This methodology is not effective for characterizing the within-die

and context-sensitive variations. Process Variations are more challenging to measure and

model in within-die context, which includes the across field effects. The main sources of

these are due to optical source limitations, and layout-based systematic effects [17]. Also

pitch, line-width variability, and microscopic etch loading are the sources of variations

13

from the manufacturing process [5] [6] [7].

 2.7 Applications of Die-to-Die and Within-Die Variations

The process variations in the devices can be used for the identification [34] [35]

[36] [37], authentication [38] [39] and generating unique keys for encryption, benefiting

the nature of variations being random. The concept of using the manufacturing process

variations as identifiers for integrated circuits is recent and is being used in physical

unclonable functions (PUF). Where each device has its individual characteristics and it is

impossible to have an exact duplicate, even if the same manufacturing process was used

in the production. There are a large number of PUFs, which can be classified in many

categories, e.g., Memory based, Delay based, and power grid PUFs which uses the

process variation to produce unique identification mechanisms.

2.7.1. Hardware Security

Computing platforms are being increasingly deployed in many critical

infrastructures such as smart grid, financial systems, sensitive governmental

organizations etc., where consequences of a successful security attack could be

potentially serious. Thus, these applications of computing platforms in high-risk areas

motivate the need to build platforms with enhanced security.

The computing platforms are multifaceted and generally comprise of

architectures, operating systems and routine libraries. For normal operation, they require

interaction between numerous hardware components such as processor, chipset, memory

and peripherals. In order to maintain security of these computing platforms it is

essentially required to ensure that there are no known security deeds present in the run-

14

time interaction between these hardware units exploitable by attackers. However,

validating complete security of the computing platforms may be difficult and inflexible

because of the fact that there are a large number of elements in the hardware units and

their mutual interaction is influenced by many control signals [40]. Tempering,

duplicating and theft of service have become a grave concern for hardware vendors as it

may have adverse effects on their income and reputation. For providing protection

against this menace, hardware security built on cryptographic primitives using keys

can be used. These keys are usually stored somewhere in the hardware. Therefore, the

strength of the security depends m a i n l y on the effort required by attackers to

compromise them. The attackers have developed very advanced tools for attacking

hardware. This has reduced and minimized the protection provided by storing a key in

memory.

Physically Unclonable Functions (PUFs) can also be used to protect devices

against attacks on their keys. PUFs are primitives that extract secrets from physical

characteristics of integrated circuits (ICs) and can be used, inter alia, for protected key

storage [41]. A PUF is a function that is embodied in a physical structure that consists of

many random uncontrollable components. These primitives are produced during

manufacturing mainly because of process variations. Due to this random structure a

physical inducement or challenge generates unpredictable responses. Because of their

physical properties PUFs are nonreplicable and very promising primitives for the

purpose of authentication and storage of cryptographic keys [42].

Random variations in physical properties of chips are used by PUFs to

differentiate one chip from another, and are impossible to duplicate even by the

15

manufacturer. Although process variations are effectively impossible to control or

eliminate, but they can be measured. The specific varying properties exploited by the

PUF can differ from one PUF design to another. However, common sources of

parametric variation include propagation delay, metal resistance, transistor drive strength,

and mismatches between complementary transistors [14].

PUFs are used in a number of security applications like authentication,

identification, and secure key generation. PUF implementations are evaluated on their

security characteristics (i) uniqueness, (ii) randomness, and (iii) reliability as well as

conventional VLSI design metrics including area, power, and performance [43]. PUFs

can take many forms among which some of the common ones are optical PUFs, paper

PUFs, coating PUFs and silicon PUFs. In order to identify silicon devices, further

variants include PUFs based on delays in a silicon circuitry such as arbiter PUFs and

ring-oscillator PUFs, and PUFs based on the start-up behavior of memory cells such as

SRAM PUFs, butterfly PUFs and flip-flop PUFs [44].

Potlapally [40] presented an overview of methods adopted to cater for intricacy of

validating security of hardware in an industrial setting, and highlighted opportunities for

the security research community pertaining to hardware security validation; while

Handschuh [44] provided an overview of the state of the art in research on memory PUFs

specifically on SPRAM PUFs and presented results from industrialization of such PUFs.

Kursawe et al. [42] introduced a reconfigurable optical PUF, based on phase change

memory, with a mechanism to convert it into a new unpredictable and uncontrollable

challenge-response behavior. The description of their scheme however omitted possible

optimizations. Quality factors of ring oscillator (RO) based PUF are negatively affected

16

by environmental noise and systematic variations in the die. To address this problem,

Maiti and Schaumont [45] proposed two methods to achieve a higher reliability in an RO-

based PUF, and attempted to verify their results using a small sample size of only five

FPGAs.

The reliability of PUFs implemented in CMOS circuits is normally affected by

environmental conditions such as voltage and temperature. Kumar et al. [46] investigated

two methods for improving the reliability of delay based PUFs, by reducing temperature

sensitivity. The first method focused on improving the gate overdrive by operating the

PUF at an optimized supply voltage. The second method explored the negative

temperature coefficient property of source feedback resistors. They reported 16%

improvement in reliability for both these methods. Subsequently, Kumar et al. [47]

proposed a temperature-invariant ring oscillator PUF architecture based on serial-input

serial-output (SISO) topology interpreting the relative phase difference between two ring

oscillators to a digital response bit. They reported that this phase difference based

response generation was superior to frequency based response generation in terms of

area and power.

Hori et al. [48] developed a physical unclonable function (PUF) with a hardware

architecture structure as a large combinational logic. In this research work, the long

feedback signal extracted the device variation. Accordingly, the output IDs generated in

the different devices became different from each other. The authors have not yet

evaluated the indemnity against the existing attacks such as model-building attacks.

Schrijen and Leest [49] investigated the reliability and uniqueness of static random

access memories (SRAMs) ranging from 180nm to 65nm in different technology nodes

17

when used as PUF. The authors presented quantitative results but did not give any

technology or architecture analysis as they did not have access to SRAM architectures of

all of the tested memories.

For integration of PUFs into low-power and security applications, Lin et al. [50]

studied the effects of process technology and supply voltage scaling on arbiter-based

PUF circuit design. Using Monte Carlo-based statistical analysis, they demonstrated that

advanced technologies and reduced supply voltage could improve the PUF uniqueness

due to increased delay sensitivity.

Simon et al. [41] evaluated and compared reliability and uniqueness of

Buskeeper PUF developed by them with those of D Flip-Flop (DFF) PUFs. The quality

of bit strings generated by PUFs based on resistance variations, in the power grid metal

wires and transistor on-resistance in 90 nm chip as well as in the power grid metal wires

of 5 65 nm chip, was analyzed by Ju et al. [51]. The authors also investigated a voltage

threshold technique to eliminate unstable bits. They reported that the PUF primitives

generated cryptographic quality bit strings of length up to 1.6M bits. Bhargava et al. [43]

compared bi-stable based PUFs (SRAM and sense amplifiers) and delay based PUFs

(arbiter and ring oscillator) using measurements from a test-chip in 65nm bulk CMOS.

Their reliability measurements were based on multiple evaluations of PUF circuits

across operating voltage ranging from 1.0V to 1.4V and temperature ranging from

-20◦C to 85◦C. They reported that bi-stable PUFs were more area-efficient than the delay-

based PUFs.

Kumar and Burleson [52] presented a password based hardware authentication

using PUF, called (PHAP), w h i c h w a s able to distinguish between a trusted party

18

and an adversary based on a simple user password during authentication. They showed

that the time difference between real time execution of the system by a trusted party

and simulation time by an adversary can be very large. Their simulation results showed

that the probability of an adversary successfully attacking the system was very low.

The silicon physical unclonable functions (PUF) utilize the uncontrollable variations

during integrated circuit (IC) fabrication process to facilitate security related

applications such as IC authentication. Yin et al. [53] described a framework to

generate secure PUF secret from ring oscillator (RO) PUF. Their work is based on

group-based RO PUF, utilizing the concepts including (i) an entropy distiller to filter the

systematic variation, (ii) a simplified grouping algorithm to partition the ROs into

groups, (iii) a syndrome coding scheme to facilitate error correction, and (iv) an

entropy packing method to enhance coding efficiency and security. They demonstrated

that these concepts can create PUF secret that can pass the NIST randomness and

stability tests.

A hardware-embedded delay PUF was designed by Aarestad et al. [54] to

leverage path delay variations that occur in the core logic macros of a chip to create

random bit strings. The bit strings produced by a set of 30 FPGA boards were evaluated

for uniqueness, randomness, and stability. They also proposed an error avoidance

scheme which provided significant improvement against bit-flip errors in the bit strings.

Recently, Aarestad et al. [14] presented a PUF, called HELP, based upon path-delay

variations. The HELP is capable of (i) comparing paths of widely differing lengths, (ii)

reducing the area cost and providing a relatively small amount of entropy, (i i i)

minimizing invasive design with low area and performance impact, and 4)

19

p r o v i d i n g a hardware-embedded PUF engine requiring no external testing

resources. Further, HELP possesses a large number of paths typically found in logic

macros such as the advanced encryption standard (AES). This large source of entropy

enable HELP to generate large bitstrings, for achieving bit stability and avoiding errors.

To prove this PUF concept, and to demonstrate its effectiveness, the authors designed a

complete, functional FPGA-based implementation of this PUF and validated it on

FPGA boards. Their results of hammering distance and NIST statistical test analysis

established that the bitstrings, being of high quality, are unique and random, and hence

appropriate for cryptographic applications.

In their review on some applications of memristor, Mokhtar and Abdullah [55]

described that LTspice memristor model is used to simulate memristor behavior and

applied to the basic delay element circuit. It controls the current flowing to the parasitic

capacitor, thus controlling the delay. As process variations become more prevalent due to

technology scaling into the nanometer regime, nano-electronic technologies such as

memristors become viable options for improved security in emerging integrated

circuits. Rose et al. [56] provided an overview of memristor-based PUF structures and

circuits that illustrate the potential for nano-electronic hardware security solutions.

 2.8 Summary
 In my research, I present REBEL (regional delay behavior) as an embedded test

structure (ETS), for path delay measurement that can be utilized for measuring within-die

variation, and in several other applications, for example, Trojan detection, delay defects

detection, and Physical Unclonable Functions. I describe the detailed architecture of

REBEL and demonstrate its effectiveness for measuring delays and capturing the within-

20

die variations caused by the environmental and physical process variations. I have

integrated REBEL with a functional macro on the 90nm chips as well as on the 28nm

Zynq FPGA to illustrate the effectiveness and efficacy of REBEL in measurement of

within-die variations. REBEL is implemented on FPU (Floating Point Unit) in 90nm

process technology and on AES (Advanced Encryption Standard) on 28nm FPGA boards;

I have gathered and analyzed data from 52 copies of 90nm chips and 11 copies of FPGA

boards. The results are elaborated in chapter 5 and chapter 6. Subsequently, in Chapter 7 I

discuss the implementation of parallel hardware accelerator on pipelined decision tree

classification engine, Chapter 8 concludes with the benefits of REBEL for various

applications and summary of the work. Chapter 9 suggests the future work.

21

CHAPTER 3
REBEL: Embedded Test Structure

and Macros-Under-Test

Within-die variations are caused by a cross-field effects [17] in compassing the

layout design techniques, optical aberration and other random effects such as dopant

fluctuations. Within-die characterization requires more density of test structures to

capture the variations in all regions.

3.1 REBEL- Regional Delay Behavior

The embedded test structure called REBEL (Regional dELay BEhavior) is

designed to measure path delays in a minimally invasive fashion; and its architecture

measures the path delays more accurately. REBEL can be integrated with the traditional

scan design which is used in the design for testability, to improve the observability and

control-ability of the sequential design. There are many variants of scan cells, mux-D

scan, LSSD scan and clocked LSSD scan are most widely used. In this chapter I discuss

in detail the modifications needed to integrate REBEL into a clocked-LSSD-style scan

architecture.

A REBEL ETS components consist of a set of scan-chains, row control logic

header (RCL) and front-end logic for each scan cell to work in different operational

22

modes. A row of scan flip-flops (FFs) is shown in Fig. 3.1 along the top which serves to

launch transitions into the MUT. The bottom row is used to capture transitions that

propagate through the MUT. REBEL ETS components are integrated into this row and

are labeled “row control logic” and “front-end-logic” in the figure. Where the macro-

under-test (MUT) is the combinational logic from a core logic macro.

Transitions can be launched into the MUT using standard manufacturing delay

test strategies such as launch-off-capture and launch-off-shift [28]. In either of these two

scenarios, the scan chain is loaded with the initial pattern of the 2-pattern test and the

system clk (Clk) is asserted to generate transitions in the MUT by capturing the output of

a previous block or by doing a 1-bit shift of the scan chain, resp. The transitions that

propagate through the MUT emerge on some of its outputs. REBEL allows only one of

these transitions to be measured at a time in a specific region of the MUT, as indicated by

the label PUT for path-under-test in the figure. The PUT’s transition normally drives only

the D input on the capture FF. However, the REBEL component labeled “front-end” logic

allows this transition to be diverted to the scan input (SI) on the FF. This special logic

also converts all scan FFs to the right of this insertion point FF into a delay chain. A

digital snapshot of the signal as it propagates along the delay chain can be obtained by

de-asserting Clk. The digital snapshot can be used to determine the timing of the PUT,

and because it captures the temporal behavior of the PUT, it can also be used to

determine if any glitching occurred. This is a unique and powerful feature of REBEL that

is fully exploited in this work.

A special mode called flush-delay (FD) can be used to implement the delay chain in

LSSD-based scan architectures. FD mode is enabled by asserting both the scan A and B

23

clock signals simultaneously. These signals are labeled “global SCA” and “global SCB”

in Fig. 3.1. With both signals asserted, both the master and slave of a scan FF are

transparent, allowing any transitions on SI to propagate through both latches after a ∆t

that represents the delay.

REBEL is required to implement two additional modes in the capture scan FFs

shown along the bottom of Fig. 3.1 (in addition to the usual functional and scan modes).

In particular, the scan FFs to the left of the insertion point need to preserve their contents

during the Clk launch-capture (LC) event, while the FFs to the right of the insertion point

need to implement the delay chain.

These two modes are realized using the RCL block, a special scan chain encoding

and the front-end logic shown in Fig. 3.1. The mode is controlled by configuring two FFs

in the RCL block while the scan chain encoding serves to specify the insertion point of

the PUT.

24

Fig 3.1: REBEL Integration Strategy

Fig. 3.2 shows a schematic diagram of the RCL. The top portion of the diagram

controls local (row-specifichiefenercon) scan clock signals, labeled SCA_L and SCB_L

(L for local) while the bottom portion contains two shift registers (Shift Reg) and mode

select logic. A large portion of the RCL logic is dedicated to allow the scan FFs in the

capture row, hereafter referred to as row-FFs, to operate in functional or scan modes. The

chip-wide scan signals labeled ‘global SCA’ and ‘global SCB’ are used to specify one of

the three possible operational states for the chip. When both are low, functional mode is

in effect. Scan mode is implemented when these signals are asserted in a non-overlapping

fashion. The timing mode used by REBEL is in effect when both of these signals are

asserted, as illustrated by the annotations in Fig. 3.2.

25

Fig 3.2: REBEL Row Control Logic

Shift Register Mode of Operation Functionality

00 functional mode All Scan FFs in row are in
functional mode

01 Flush Delay Continuation mode All Scan FFs in row are in Flush
Delay Continuation mode

11/10 Mixed mode Left scan FFs in preserve-contents
mode, right scan FFs in FD mode,
referred to as mixed mode

Table 3.1 : Configuration modes for REBEL rows

When REBEL mode is in effect, the specific mode of operation of the associated

row-FFs is determined by the two shift registers. Table 3.1 identifies the modes for each

of the four configurations. The bit configuration “01” (FD continuation mode) is required

only in cases where there are multiple regions in the MUT . Bit configurations “10” and

“11” specify the mixed mode described above, where FFs to the left of the insertion point

are in preserve-content mode while those to the right are in FD mode. The outputs from

the RCL block shown in Fig. 3.2 are annotated to show the values under each of these

four bit configurations. Further operational details of the RCL block can be found in [11].

Fig. 3.3(a) shows a clocked LSSD FF (CLSSD) used in the FPU macro. It consists

of three latches. The functional path master-slave (MS) pair shown on the left is driven

by Clk. The slave latch is dual ported and also serves as the master in the scan path MS

pair on the right. Fig. 3.3(b) shows the additional ‘front-end’ logic for REBEL. The

functional path’s D-input is fanned out to a 2-to-1 MUX, which allows for the insertion

of a macro’s PUT into the delay chain during the REBEL test.

26

 This is accomplished with the mode select logic shown along the bottom of the

figure. A specific insertion point is selected by pre-loading the row-FFs with a pattern of

all ‘1’s followed by a ‘0’ from left to right along the row-FFs (see Fig. 3.1). Reference

[11] provides specific operational details. Note that the front-end logic adds only a small

capacitive load to the functional path and therefore the impact on performance is very

small.

27

Fig 3.3 (a) Modified clocked-LSSD scan FF and b) Additional front-end logic

3.2 Floating Point Unit (FPU) Macro

Fig. 3.4 shows a block level diagram of a floating point unit (FPU) incorporated on

the chips, as well as the inserted REBEL rows, labeled RRx from 1 to 28. All of the 817

FFs (56 row header FFs + 761 functional unit FFs) are wired together into a single scan

28

Fig 3.4: Floating Point Unit Block Diagram

chain with input SI1 shown in the upper left and output SO1 shown along the bottom of

the figure. A separate set of 70 shift registers are inserted on the inputs (top-most row in

figure) which serves to enable a launch-off-capture testing strategy [28]. Here, the Input

Stage P0 is loaded with the 1st pattern while the shift registers are loaded with the 2nd

pattern.

The FPU is designed as a 5-stage pipeline, labeled P1 through P5, with MUXes,

decoders, adder/subtractors, a multiplier, etc. inserted between the pipeline registers. The

FPU is capable of carrying out 8 different operations, including add, subtract, float-to-

integer, integer-to-float, negation, absolute value, multiplication and division. The 3-bit

OPCODE shown along the top right in the figure determines the function. All operations

except division can be carried out with a throughput of one operation/clk cycle. Division

requires 5 clock cycles to complete with data fed back from the output of pipeline stage 5

to pipeline stage 2 through the ‘division feedback path’. Given this pipeline structure and

the constraints described above regarding REBEL, it is possible to carry out REBEL

testing using 4 basic configurations. In the first two configuration, Cfg1 and Cfg2, the

REBEL rows in pipeline stages P0, P1 and P3 are configured in functional mode while

those in P2, P4 and P5 are configured in REBEL mode. In configurations Cfg3 and Cfg4,

the rows in P0, P2 and P4 are configured in functional mode while those in P1, P3 and P5

are configured in REBEL mode. These 4 configurations collectively allow paths in all of

the logic blocks to be tested using the REBEL ETS.

We create 2 configurations, Cfg1 and Cfg2, to handle a limitation that is illustrated

in Fig. 3.1. In particular, the delay chain for insertion points on the right side of the MUT

is very short and, in fact is non-existent for the right-most insertion point. The FD

29

continuation mode described in reference to Table 3.1 allows REBEL rows to serve as

extensions of the delay chain. The dotted circles over row pairings RR 10-RR11, RR12-

RR13, etc. (labeled REGIONs) in Fig. 3.4 illustrate how continuation rows are paired

with mixed-mode rows. For example, RR10 of the RR10-RR11 pairing is configured in

mixed mode which allows delays on each of the PUT outputs in this region to be

measured, one at a time, while RR11 is used to extend the delay chain so that all insertion

points can be timed along a non-zero length delay chain, particularly those on the right

side of RR10. The circles illustrate the organization of mixed-mode (left) and

continuation rows (right) for Cfg11.

A complementary pattern is used for Cfg 2 so that PUT outputs in, e.g., R11 can

also be timed with R12 serving as its continuation row. Although only one path in each

row can be tested at a time, up to 8 paths can be timed simultaneously across the various

regions. Given these 4 configurations, there are a total of 684 Ffs that can serve as

insertion points. This number excludes the 56 row header FFs and the 77 FFs in pipeline

stage P1 (these FFs are always configured in functional mode).

We apply a random testing strategy to the FPU where the values placed in the

functional rows are generated by an pseudo-random number generator. In order to allow

specific functional units to be the target of our testing, we specify the OPCODE bits in

the functional rows instead of inserting random values as we do for the remaining FFs of

these rows. The top shift register row identifies the 3 OPCODE bits, which also exist in

each of the pipeline stages (not shown). For each random pattern, a sequence of REBEL

tests are applied which configure the position of the insertion point incrementally from

left-to-right across each of the REBEL mixed-mode rows. Therefore, the same random

30

pattern is applied multiple times as a means of testing all path outputs. The insertion

point in each RRx mixed-mode row is incremented until the right-most FF becomes the

insertion point. The number of LC tests per test pattern is determined by the longest rows

in each configuration, which are given as 34, 34, 33 and 32 for Cfg 1 through Cfg4, resp.

3.3 Advanced Encryption Standard (AES) Macro

31

Fig. 3.5: AES Engine

In the FPGA implementation of REBEL, the macro under test is a round of AES

encryption. The combinational logic, shown in Fig 3.5, has an input of 256 and the output

is also 256 bits. We utilize the input flip flops of the existing logic as launch row and use

the output row as the capture row. The scan chain is implemented using Mux-D flip flops,

which require only the system clock as compared to C-LSSD clock. The schematic

diagram of Mux-D flip flop is shown in Fig. 3.6.

AES engine is a block cipher type of encryption with a block length of 128 bits.

AES has different versions which allows for three di erent key lengths generation, that is,ff

128, 192, or 256 bits. The encryption rounds vary with the desired key size, for 128-bit

key the processing includes 10 rounds, for 192 bit keys, 12 rounds and for 256 bits the

number of rounds is 14. Each round of processing includes one single byte based

substitution step using a non-linear substitution table (s-box), a row-wise permutation

step, a column-wise mixing step, and the addition of the round key[57]. Figure (3.7)

shows the di erent steps that are carried out in each rouff nd.

32

Fig. 3.6: Mux-D Flip Flop

3.3.1 STEP 1, SUB BYTES:

This step performs a byte-by-byte substitution during the forward process of

encryption. It consists of using a 16 × 16 lookup table (s-box) to find a replacement byte

for a given byte in the input state array. This substitution operates on each of the State

bytes independently and the entries in the lookup table are created by using the notions of

multiplicative inverses and bit scrambling to destroy the bit-level correlations inside each

byte. The corresponding substitution step called InvSubBytes is used during decryption

3.3.2 STEP 2, SHIFT ROWS:

Shifting the rows of the state array during the forward process. This step of

33

Fig. 3.7: AES Round

transformation hides the byte order inside each 128-bit or 256-bit block. The

corresponding transformation during decryption is denoted InvShiftRows for Inverse

Shift-Row Transformation.

3.3.3 STEP 3, MIX COLUMNS:

This step of mixing up of the bytes in each column separately during the forward

process further shuffles up the 128-bit input block. The shift-rows step along with the

mix-column step causes each bit of the cipher text to depend on every bit of the plain-

text after 10-14 rounds of processing. This way each bit of the plaintext affects every bit

of the ciphertext in a block. The corresponding transformation during decryption is

denoted InvMixColumns and stands for inverse mix column transformation.

3.3.4 STEP 4, ADD ROUND KEY:

Adds the round key to the state of the previous step during the forward process by a

simple bitwise XOR operation,that is each column of the state is XORed with a word

from the key schedule. The corresponding step during decryption is denoted

InvAddRound- Key for inverse add round key transformation.

In the FPGA implementation, the initial pattern and final patterns are given on the

input of bock cipher during the launch and capture phase respectively and the path delays

are measured for the paths where the transitions appear on the insertion point and reach

successfully to the target flip flop. The paths with the glitches are filtered from the

analysis to avoid the measurement noise in the die-to-die and with-in die variation

measurements.

34

3.4 Chip Layout with REBEL AES and FPU Placement

3.4.1 ASIC Layout with REBEL and FPU

These macro-under-tests are fabricated in IBM 90nm CMOS bulk technology,

layout is shown in Fig. 3.8. REBEL is embedded in Advanced Encryption System (AES)

and 32 bit pipelined Floating point unit (FPU) in the design phase. There are 58 copies of

the chip on which the analysis are performed.

 The flowchart in Fig. 3.9 shows the design automation process followed for the

test chip design. The behavioral HDL descriptions of AES and FPU macros are first

synthesized using Cadence RTL Compiler. The macros are synthesized using a scan

35

Fig. 3.8: ASIC Layout

insertion DFT flow and all the flip-flops are replaced by the scan cells. The REBEL test

structure is integrated into this scan-able design using an in-house PERL script. These

scan cells are replaced with the REBEL-scan cell, which is a scan cell with the 'front-end'

logic. For Pipelined implementation of FPU there are 28 segments of these scan chains

where for each segment a row control logic (RCL) is added, and for AES there is 1

segment and 1 RCL is added.

Data is collected from 58 copies of the fabricated chip manufactured in 90nm

CMOS technology from MOSIS. The path delays measured in these chips are used to

36

Fig. 3.9: ASIC Design Flow

present REBEL ability to measure variability in path delays for understanding the process

variation and within-die variations.

3.4.2 FPGAs Layout with REBEL and AES Round

The within-die variation is studied on the FPGA having reconfigurable logic.

Delay based variation is studied on ZYNQ FPGA on ZED boards with AES as macro

under test to study within-die and die-to-die variation among 11 copies of chips. We

measure the path delays as discussed under the section of path delay measurement using

target flip-flops. Below is the layout using plan ahead shown in Fig. 3.10.

37

Fig. 3.10: FPGA Layout

CHAPTER 4
Experimental Setup

An embedded test structure called REBEL, suitable for measuring within-die

variations in actual product macros, is employed in our research. A floating point unit

fabricated in IBM’s 90nm technology is used as a test vehicle in chip experiments carried

out at nine different temperature/voltage corners.

4.1 Experimental Setup for IC 90nm Chips

A photo of the experimental setup is given in Fig. 4.1. A Linux- based host

computer runs a custom LABVIEW application that controls the testing and data

collection process through GPIB, USB and serial interfaces. A Virtex-6 FPGA is used to

configure the scan chains on the chip-under-test (CUT), as well as deliver the LC clock

sequence . A ribbon cable and several high-speed coaxial cables connect from the FPGA

to a custom printed circuit board, which includes a zero-insertion-force socket for the

CUT. This board and the CUT are not visible in the photo because they are inside the

temperature chamber. The temperature setting on the chamber as well as several power

supplies are also controlled by the LABVIEW interface.

38

4.2 Launch-Capture Clocking Sequence and Clock Strobing

4.2.1 Launch-Capture Clocking Sequence

 The launch-capture clock sequence is generated using a digital clock

manager (DCM) on a Virtex-6 FPGA. The fine phase adjust (FPA) feature on the

DCM allows the LCI to be set with a resolution of 17.86 ps. A specific FPA is

configured into the DCM by a state machine running on the FPGA which accepts

an integer input parameter from the controlling LABVIEW application. Valid

values of the FPA are between 0 and 560, which corresponds to a programmed

LCI between 0 and 10.000 ns.

4.2.2 Clock Strobing

Clock strobing involves repeating the test sequence at incrementally longer

LCIs. The RCL and front-end logic for REBEL allow critical timing events, i.e.,

the launch-capture interval (LCI), to be controlled by the system clock. This is

39

Fig 4.1: Experimental Setup

illustrated by the timing diagram shown in Fig. 4.2.

4.3 Delay Measurement Process

 A scan operation is first carried out that configures the RCL blocks, the scan

chain encoding sequence for mixed mode rows and random test pattern data as described

above. Prior to the LCI test, the global SCB signal is asserted and then the global SCA

signal. Staggering these events prevents race conditions that would otherwise destroy the

encoding sequence. With both scan clocks asserted, the mode control signal shown in Fig.

3.1 propagates along the mixed mode rows setting up the insertion point and delay chain.

The LCI test consists of asserting the Clk signal, which launches transitions in the

combinational logic (this is referred to as a launch-off-capture delay testing strategy as

described in [28]), and de-asserting the Clk signal a fixed ∆t later, which halts all signals

propagating along the delay chains. The delay in a combinational path can be computed

using Eq. 1.

40

Fig 4.2: REBEL Launch-Capture(LC) Test Sequence. Clock Strobing
applies a sequence of LCIs of different widths

Tpath = Tlc – Tdc Eq. 1.

where, Tpath = Delay of the combinational path

Tlc = Launch/Capture Interval (LCI) delay

Tdc = Delay through the delay chain.

The resolution of the measured delays is limited by the delay through each of the

master-slave FFs that implement the delay chain. This delay is typically larger than the

desired resolution, e.g., in our chips, it is approx. 500 ps. To increase the resolution clock

strobing is employed and delays are calculated.

 The pulse-creation logic within the FPGA as well as the response characteristics

of the FPGA pads prevents clock pulses narrower than 1160 ps, given as FPA 65 * 17.85

ps, from being produced on the clock output pin of the FPGA.

 Actual LCI is somewhat different than the programmed value. Fig. 4.3 plots the

programmed FPA on the x-axis against the actual LCI produced by the FPGA (we round

all delays to the nearest 5 ps value to ease with the illustrations in the dissertation).

41

Here, the LCIs are measured at the CUT’s clock input pins using a high resolution

digitizing oscilloscope. Although the curve is nearly linear, small variations of up to 100

ps occur in several locations, as highlighted in the figure. Also, the curve is shifted

upwards, e.g., the programmed delay at FPA 65 is supposed to be 1160 ps but is 1775 ps

instead. This occurs because the pulse-creation logic within the FPGA increases the width

of the LCI by approx. 615 ps.

In our experiments, we apply a sequence of LCI tests over the range of FPAs

between 128 to 444 in FPA increments of 2. This results in the application of (444-128)/2

+ 1 = 159 LCI tests with actual LCIs between 2745 and 8400 ps as given by the

oscilloscope curve in Fig. 4.3.

42

Fig 4.3: Oscilloscope measured launch-capture intervals (LCIs) for each of the Fine
Phase Adjust (FPA) values on the FPGA. Row Header delay of 300 ps is included

4.4 Digital Snapshots and FF Delays

The raw data captured in the delay chain is a string of binary bits, one string for

each of the 159 LCI tests applied to test a path. Fig. 4.4 shows the digital snapshots for

the first 21 LCI tests of a path in a vertical sequence. The insertion point in this example

is FF15 of the REBEL mixed-mode row RR12 under Cfg1 from Fig. 3.4. RR13 is shown

on the right side and serves as a continuation row under Cfg1. The programmed FPA and

the actual LCI (from Fig. 4.3) for each snapshot are displayed on the left side of the

figure. The first FPA (128) shows a sequence of 6 0’s in the left portion of the snapshot.

This indicates that a falling edge propagated along 6 elements of delay chain, i.e., through

FF15 through FF20, before being halted by the capture event. In each subsequent

snapshot up through FPA 132, the edge continues to propagate through FF20 but fails to

reach FF21 until FPA 134 is applied. The falling edge requires 17 more FPAs, i.e., 134

through 166, to propagate completely through FF21. From these snapshots, it is possible

to derive the approx. delay through FF 21 as (3465 - 2850) = 615 ps.

A similar analysis can be carried out for FF 22 through FF30 using the remaining

snapshots for this path. Note that we cannot determine the delays for FF15 through FF20

because the edge has already propagated into this FF on the first LCI.

43

4.5 Calibration and Power Rail Voltage Transient Effects

A large fraction of the paths tested using our random test patterns are shorter than

the ∆t associated with the smallest applied LCI. The example in Fig. 4.4 illustrates this

situation, which shows that the rising edge has already propagated into FF 20 under the

first LCI test. Although it is possible to use shorter LCIs to test this path, thereby

eliminating the delay chain elements, doing so requires testing the chip with a faster-than-

at-speed clock sequence. It is well known that applying faster-than-at-speed tests results

44

Fig. 4.4: Illustration of a partial sequence of digital snapshots (21 FPAs of the
159) produced from a path delay test

in false delay measurements, i.e., delay measurements that are ‘distorted’ by the large

power supply voltage transient associated with two closely placed (launch-capture)

edges. One of the stated advantages of REBEL is that it allows accurate timing

information to be obtained for these short paths without using faster-than-at-speed LCI

tests. However, in order to do so, a mechanism is needed to eliminate the delay chain

components.

We have already described how the delay through each FF can be determined

using the example in Fig. 4.4. Unfortunately, the actual delay through the FF is a function

of the LCI it is tested with. In other words, the value of 615 ps is computed using FPAs

134 and 166 for FF21, but the actual delay is different for each of these FPAs. This is true

because even for LCIs that fall within the valid operational frequency for the chip, a

power supply voltage transient is still produced, and this transient impacts delay. We also

found that the voltage transient produced for a given FPA is largely independent of the

random test sequence applied, i.e., it’s shape is primarily determined by switching events

in the clock tree and FFs. However, different FPAs change the shape of the transient and

the corresponding delay along the combinational logic paths as well as the delay chain.

Therefore, in order to properly capture and analyze the variations which occur along

paths within a combinational logic block, it will be necessary to test the paths using a

single FPA (ideal) or, as will be necessary for our method, a set of FPAs that fall within a

small range.

Since it is impossible to measure the delay through a FF using only one FPA

(unlike path delays), we use the technique above to compute the delay and then ‘assign’

this delay to the LCI which represents the midpoint between the FPAs used to time it. In

45

the example above, we computed the delay difference 615 ps using the delays at FPAs

134 and 166. The midpoint FPA is (134+166)/2 = 150. Therefore, the measured FF delay

of 615 ps is the approx. delay through this FF when the LCI used is 3165 ps (delay at 150

from Fig. 4.4). Note that this only approximates the delay and will be the main source of

error in the estimation of path delays as we show in Section 5.3.

The delays through the individual delay chain FFs are computed in this fashion to

illustrate the impact of the power transient. In this analysis, we use only paths that

produce a stable transition. A stable transition is defined as a path that produces exactly

one rising or falling transition across all 159 digital snapshots, i.e., there is no glitching.

Using 8 random vectors and the 4 configurations described earlier, a typical chip has

approx. 825 stable paths. Each stable path allows, on average, the delays of 12 FFs to

be estimated. Therefore, nearly 10,000 FF delays can be derived from the test data for

each chip. Many of the FFs are timed multiple times by different paths and different

FPAs. For example, the delay through the FF21 in reference to Fig. 4.4 can be obtained

from the path test as described in Section 4.4, and by any other stable path test that drives

insertion points to its left in the row.

Fig. 4.5 shows a plot of all FF delays for CHIP1. The x-axis plots the midpoint

LCI against the FF delay (y-axis). Each line connected curve in the group labeled

“Curves of individual FF delays” represents the delays computed for one FF but at a

variety of midpoint LCIs -- whatever became available after processing the snapshots for

the stable paths. Therefore, each curve contains only a subset of the 159 FPAs used in the

experiments. The vertical dispersion of the “individual” curves shown in Fig. 4.5 is

caused by process variations among the FFs, i.e., the curves shown along the top of the

46

figure belong to slower FFs. Setting aside these differences, there is a underlying pattern

to the behavior of the curves.

To more clearly show this, we compute and superimpose a curve labeled “Average

delay curve” which represents the average of the individual curves. A second curve

labeled “Smoothed average delay curve” is computed from the “Average delay curve” by

removing the high frequency components. It completely eliminates process variation

effects and best depicts the underlying behavior.

It is a remarkable fact that the delay through any given FF varies by as much as

2X when tested over the range of FPAs between 128 and 444. Dotted lines illustrate that

the average delay changes from approx. 300 ps to 600 ps. The impact of the power

transient is even more dramatic for LCIs less than the smallest one used in our

experiments, as illustrated by the dotted line labeled “Faster-than-at-speed behavior” on

the left side in the figure. We purposely avoid the region below approx. 4000 ps because

of the large distortion in the FF and path delays.

From this analysis, it is clear that varying the LCI when timing paths will distort

the results. As a consequence, we limit the LCIs considered valid for path delay testing to

a small region or window between 4355 and 5250 ps (approx. 1 ns), which is delineated

and labeled as “W1” in Fig. 4.5. The FF delays in this window remain relatively constant,

within 25 ps, and therefore, so will the path delays. The primary benefit of using a range

(as opposed to a single LCI) is that it allows a larger number of stable paths to be

successfully timed using clock strobing.

47

4.6 Measuring and Calibrating Path Delays

Digital snapshots, similar to the sequence shown in Fig. 4.4, are parsed to

determine the delay of a stable path. The snapshots are parsed in reverse order starting

with the digital snapshot associated with largest LCI in the window described above,

which is LCI 5250. Parsing in reverse order ensures the last transition is used as the path

delay in cases where there is uncertainty (which is described in Section 5.2). This process

is illustrated in Fig. 4.6 using snapshots for the path referenced in Fig. 4.4 but at larger

FPAs.

48

Fig. 4.5: Curves of individual FF delays measured in different midpoint delays. An average of
all individual curves is superimposed, as well as a curve with only the low frequency

components of the 'Average delay curve'

The snapshot at LCI 5250 indicates that a falling edge is propagating through

FF25. Our algorithm searches backwards stopping with the snapshot where the edge is

just about to enter FF25, which occurs at FPA 244. The corresponding LCI of 4795 ps

gives the uncalibrated delay. In order to obtain the actual path delay, the delays for FF16

through FF24 need to be subtracted. This component of the path delay is referred to as T

dc in Eq. 1. It is possible to obtain the delay of FF21 through FF24 using the snapshots

for this path as described in Section 4.4. However, the delays for FF16 through FF20

must be obtained using path delay tests that drive insertion points to the left of FF15 in

this row. If tests which allow these FFs to be timed do not exist, then the actual path delay

cannot be determined.

49

Fig. 4.6: Calculating path delay using digital snapshots

The LCI chosen for the path delay, given as 4795 ps in the example, is used to

obtain an estimate of the individual FF delays to be subtracted. This is accomplished by

‘looking up’ the FF delay on the ‘smoothed’ delay curve (which is reproduced from Fig.

4.5 in Fig. 4.7) and then adding or subtracting an offset to account for process variation

effects. This offset is computed for each of the individual FF curves by shifting the

smoothed curve vertically until the area difference between the individual curve (which

may have only a few points) and the average curve is minimized.

The result of applying this process is shown in Fig. 4.7 for a FF19, one of the FFs

in the delay chain of the path from Fig. 4.6. A copy of the smoothed average delay curve,

labeled ‘Copy’ is shown shifted downwards by 39 ps. This vertical offset is the ‘best fit’

in the sense of minimizing the area between the Copy and the FF19 delay curve. The FF

50

Fig. 4.7: Illustration of calibration operation carried out using an individual FF
delay curve and smoothed average delay curve

delay is simply the y-value associated with the intersection of the line labeled 4795 (the

uncalibrated delay) and the shifted copy, which is given as 436 ps. Note that this process

not only provides an accurate delay through the FF for a specific LCI, it also allows the

FF delay to be predicted for LCI’s that it was not tested with, i.e., the smoothed curve

fills in the gaps in the individual curves.

A similar process is applied to obtain the delay through the remaining FFs in the

delay chain of the example path. The results are shown in Fig. 4.8 which lists the

individual delays of the delay chain FFs, FF16 through FF24. The delay chain delay of

4005 ps is over 5 times larger than the actual calibrated path delay of 790 ps, and

therefore, it is important to maximize the accuracy of the calibration process to keep the

error in the path delay estimate low. Error analysis is covered in coming sections.

A key take-away from this section is that if techniques such as clock strobing are

used to measure path delays, they must take into account the impact of the changing

power transient and its corresponding effect on path delays. Although the impact of the

power transient may be more significant in our test chip than in a typical commercial

design, it is impossible to completely eliminate the power transient effects, particularly

when faster- than-at-speed LCIs are applied1. Also, although the process described here

51

Fig. 4.8: Delay calibration applied to example path from Fig. 4.6 using window w1

is difficult to apply in a manufacturing test context because of the overhead in post-

processing the digital snapshots, it is practical for DFM purposes where the goal is to

measure and characterize within-die delay variations in actual product macros.

 4.7 Experimental Setup for FPGA Boards

 The within-die variation is studied on the FPGA having reconfigurable logic.

Delay based variation is studied on ZYNQ FPGA on ZED boards with AES (Fig. 4.9) as

macro under test to study within-die and die-to-die variation among 28 copies of chips. I

measure the path delays as discussed in the section 4.9 on path delay measurement using

target flip-flops. The bit stream is loaded on all set of copies and is kept the same to

understand the underlying variation from one chip-under-test to another.

 The input test patterns are comprised of 100-150 test vectors with 256 insertions

points on the AES engine. A set of 16 Flip-flops is connected to the scan chain of 256

Mux-D Flip-flops to let the transition from the right most insertion point to propagate in

much further during the launch capture interval. A Linux- based host computer runs a

custom LABVIEW application that controls the testing and data collection process

through GPIB, Ethernet interfaces. For each chip data for 10,000 stable paths are

collected, for this the required paths to be tested is 25,000.

52

Fig.4.9 Zed Board with Zynq FPGA

4.8 Launch-Capture Clocking Sequence and Clock Strobing

4.8.1 Launch-Capture Clocking Sequence

 The launch-capture clock sequence is generated using a digital clock

manager (DCM) on a Zynq FPGA. The fine phase adjust (FPA) feature on the

DCM allows the LCI to be set with a resolution of 17.86ps. A specific FPA is

configured into the DCM by a state machine running on the FPGA which accepts

an integer input parameter from the controlling LABVIEW application. Valid

values of the FPA are between 300 FPA and 720 FPA with the step size of 2 FPA,

which corresponds to a programmed LCI between 5ns to 12.000 ns.

 REBEL extends the length of the path-under-test (PUT) at the insertion

53

point by creating a horizontal delay chain Transitions are launched into the MUT

using Clk1. Any transition(s) occurring at the insertion point propagate down the

delay chain, are captured as a digital snapshot by asserting Clk2. Fig. 4.10 shows

clock strobing in FPGA implementation.

4.8.2 Clock Strobing

Clock strobing involves repeating the test sequence at varying longer

LCIs. The RCL and front-end logic for REBEL allow critical timing events, i.e.,

the launch-capture interval (LCI), to be controlled by the system clock. In our

experiments, we apply a sequence of LCI tests over the range of FPGAs between

128 to 1120 in FPA increments of 2. This results in the application of (1120-

128)/2+1 = 497 LCI tests with actual LCIs between 25 and 20 ns.

4.9 Delay Measurement Process

A random 2-pattern test is generated using an LFSR and the MUT outputs are

tested, one at a time, by adjusting the insertion point. Once all outputs are tested, another

2-pattern test is generated and the process repeats. A sequence of launch-capture tests are

applied, each with a different fine-phase-adjust (FPA), until the transition is ‘pushed

back’ into a target FF, e.g., FF21.

54

Fig. 4.10 Clock Strobing in FPGA implementation

The target FF is always at a fixed distance from the insertion point. The path delay

is represented by the FPA at the point in the sequence when this goal is achieved (high-

lighted in red as 164 in the Fig. 4.11).

A stable path is defined as a path that has a single transition over the entire

sequence of snapshots. All the paths that are not stable are rejected as a means of

improving reliability. The set of stable paths is unique across all the boards. The paths

that are classified as stable vary from one chip to the next Xilinx Zynq experiments show

approx. 5% of the paths from each chip are unique.

55

Fig. 4.11 Digital snapshot produced from a path delay test

From the experiments we analyze all the paths and determine glitch paths, with

more than one transition in a given path, and the stable paths, with a single transition in a

single snapshot. Short paths are timed, and level of within-die variation that exists in

these paths are measured. In the design the target FF are varied to understand the

underlying variation.

4.10 Measuring and Calibrating Path Delays

The Launch-capture interval (LCI) for which the transition enters the target flip

flop is considered as a the path delay of the given path with fixed insertion point. Fig.

4.12 shows REBEL integration with AES engine.

The combinational logic is implemented using a single round of an AES unit Xilinx

PlanAhead is used to create an embedded design. AES and REBEL are implemented in

the programmable logic portion (PL) of the Zynq SoC and the communications with the

host computer is done through Ethernet TCPIP.

56

Fig. 4.12 REBEL Integration with AES Engine

Figure 4.13 shows the overall system design implemented on the FPGAs. As

discussed the Mux-D scan flip flops requires only one clock for the launch and capture,

where firstly the transition is launched on the first rising edge(launch edge) and its

propagation in the delay chain is halted on the second rising edge(capture edge) and later

the snapshot is scanned out from the delay chain to time the path delays through the

combinational logic. The clock of 50Mhz is provided using DCM on board.

57

Fig. 4.13: Block level diagram of AES with REBEL Integration

CHAPTER 5
ASIC Experimental Results and Analysis

We implement an embedded test structure called REBEL (Regional dELay

BEhavior), designed to measure path delays accurately in a minimally invasive fashion,

in a 90 nm test chip and present results on within-die path delay variations in a floating-

point unit (FPU) fabricated in IBM’s 90 nm technology, with 5 pipeline stages, used as a

test vehicle in chip experiments carried out at nine different temperature/voltage (TV)

corners. Data collected from the experiments is subjected to a variety of analysis and are

presented in detail in this chapter.

5.1 Flip-Flop Analysis

During the path delay calibration the flip flop delays are subtracted from the

launch capture interval to remove the delay chain component from the uncalibrated delay

to get the delay of combinational logic. To improve the calibration process it is important

to understand the variation of the delays in the flip flops. The delays of each flip flop in

the delay chain vary from 10 FPA to 22 FPA that is from (10*36ps) 360ps to (22*36ps)

790ps for the falling edge transition and for the rising edge the range of variation is

12FPA to 26 FPA that is, 432ps to 950ps .

On average the delay of the rising edge and falling edge follows the same pattern

58

and the curve is shifted (Fig. 5.1). The shift is of 2 FPA making it of difference of 72ps.

For the calibration process it is negligible hence both delays can be used to calibrate the

path delays.

Fig. 5.1 Flip Flop Delays for Falling and Rising Transitions

The Power transient effect on the rising edge and falling edge curves follow the

same pattren. From this analysis it is obvious that the delay of the rising edge propagation

on average is 4 FPAs (144ps) more than the falling edge delays along all the mid point

launch capture intervals. The power transient effect is shown in the smooth curve which

is steep in case when the launch edge and capture edge are more closer and is seen on the

left hand side of the curve (Fig. 5.2).

For the Rising edge on average the delay in window 1 is 17 FPA which is 612ps,

59

and for the falling edge the delay for the window 1 is 15 FPA that is equal to 540 ps. The

delay in both cases is comparatively close with a difference of 72ps to 100ps. To remove

the noise from the calibrated path delays, we subtract the rising edge transition delays of

flip flops from the paths propagating rising edge and falling edge delays of flip flops for

path delays with falling edge transition.

 Fig. 5.2 Mid Point LCI Average Delays for Rising and Falling Transitions

The Flip flop analysis re-enforces the use of windowing mechanism as the fitted

curve has a hump where the launch edge is closer to the capture edge producing power

transient. Power transient can be seen in all delays of scan elements as in the Fig. 4.4,

and can be seen that it is true for all the flip flop as the pattern of the fitted curve is the

same for both rising and falling curves. This is shown in Fig. 5. 3 and Fig 5.4 for the

60

rising delays and falling delays.

61

Fig. 5.4: Propagational Delay of Falling Edge

Fig. 5.3: Propagational Delay of Rising Edge

5.2 Uncertainty Analysis

Meta-stability of the FFs in the delay chain and jitter in the generation and

distribution of the clock contribute to uncertainty or error in estimating path delays using

REBEL. Uncertainty is captured and can be analyzed from the sequence of digital

snapshots associated with a path test. The snapshots shown in Fig. 5.5 are copied (and

modified to illustrate uncertainty) from a portion of the snapshots shown in Fig. 4.4.

Uncertainty, when it occurs, always appears near the transition points between

FFs, e.g., between FF20 and FF21 at FPA 136 in this example. The snapshot for 134

shows the edge moving forward to FF 21 but the snapshot for 136 shows it reverting

again to FF 20 before advancing to FF21 in the subsequent snapshots. We assign a

magnitude of 71 ps (approx. 2 FPAs) to this uncertainty, which also represents the

smallest possible measurable value of uncertainty. Larger values of uncertainty can occur

when the ‘jumping’ back-and-forth occurs over a larger consecutive sequence of

snapshots.

62

Fig 5.5: Digital snapshots illustrating uncertainty using data given earlier in Fig 4.4

Fig. 5.6 plots the average uncertainties on the y-axis computed using the 159

digital snapshots of all stable paths from the first 4 chips. One curve is plotted for each of

the 9 TV corners to illustrate the impact of temperature and voltage on uncertainty. As

indicated above, uncertainty is measured between FFs in the delay chain and we refer to

these points as inter-FF transitions. The x- axis plots distance from the insertion point (in

units of FFs) to further illustrate whether uncertainty increases as the edge propagates

further down the delay chain. The 3 curves that extend to distances > 21 represent the

1.32 V TV corner data. The higher supply voltage allows for faster propagation and

therefore more FFs are traversed.

Only inter-FF transitions that exhibit some level of uncertainty are included in the

averages. Of the 10,000+ inter-FF transitions that occur per chip under the applied test

63

Fig 5.6: Average Uncertainty as a function of distance (in FFs) from the insertion point
for 4 chips at all TV corners

sequences, only about 5% exhibit uncertainty. From the curves, it is clear that uncertainty

hovers slightly above the minimum of 71 ps. Uncertainty is smallest for distances

between 8 and 12 FFs, and increases slightly at smaller and larger distances as shown on

the left and right sides of the plot. Overall, uncertainty remains close to the minimum and

is relatively insensitive to temperature and voltage variations. The worst case uncertainty

that we observed in the 4 chips is 179 ps (approx. 5 FPAs) but these larger levels were

very rare, occurring only twice in the data for these 4 chips.

5.3 Error in Estimating Path Delays

Our proposed calibration scheme also introduces error in the estimation of path

delays. One way to evaluate this error is by shifting the position of the window described

earlier in Section 4.5 and then re-calculating the path delays at this new window. For

example, by shifting the original window (labeled W1 in Fig. 4.5) to the left by 500 ps

(labeled W2), an additional FF (in most cases) is added to the delay chain of the paths.

Since calibration removes the delay introduced by the delay chain, ideally, the W1 and

W2 estimates of delay should remain the same for each path.

The differences in the estimates correspond to calibration error. Fig. 5.7 illustrates

the calibration process carried out on the same path used in the W1 example of Fig. 4.8,

64

Fig 5.7: Calibration process applied to the 2nd of two consecutive windows
illustrating error in the estimation of path delay

this time using the W2 window. The un-calibrated delays, given as 4795 ps for W1 and

5245 ps for W2 reflect the additional FF, i.e., FF25, and its delay of 400 ps, that is

included in the delay chain under the W2 analysis. Also note that the FF delays are

slightly different under the two windows because the FPAs used to time the two paths are

different. This follows from the discussion in Section 4.5, which shows the power

transient impact on path delay varies as a function of the FPA.

Subtracting the sum of the FF delays from the uncalibrated delay in both cases

yields calibrated delays of 790 ps and 854 ps for W1 and W2 resp. As indicated above, any

difference in these estimates represents error, which is (790 - 854)= -64 ps in this

example. Fig. 5.8 plots the errors for all stable paths in all chips at the 25oC, 1.20V TV

corner. The path ID of the stable path is given along the x-axis. Although most errors are

within +/- 100 ps, there are some that are larger, with worst case values of upto -300 ps.

65

Fig 5.8: Delay errors computed using W1 and W2 of the proposed calibration method
for all paths and chips at 25oC, 1.2V

The histograms plots in Fig. 5.9(a) and (b) partition the delay errors shown in Fig.

5.4 according to the length of the delay chain. As indicated earlier, transitions generated

by short paths propagate through more elements of the delay chain, and therefore, their

errors are captured in the right portion of the histograms.

Fig. 5.5(a) gives the 3σ of the errors while (b) gives the average errors. The results

using the data from Fig. 5.9 is portrayed in the row labeled ‘Span 1’ (front row of values).

As expected, the range of the errors (3σ) and average error both increase as the length of

the delay chain increases. For example, the 3σ values increase from approx. 140 ps to 240

ps and the average error increases from approx. 38 ps to 66 ps.

This analysis gives the error when only one additional FF is added to the delay

chain. Many of the delay chains are longer than 1 FF however, so it is conceivable that

the error may be much larger for these paths. This is not the case, however, because the

66

Fig 5.9: 3σ (a) and average (b) delay errors for all paths and chips at 25oC,
1.2V as a function of 'length of the delay chain' (x-axis) and span (y-axis)

positive and negative values of the errors act to cancel out, so the cumulative errors along

the entire delay chain do not increase. This is illustrated in the results for the rows labeled

Span 2 and 3.

Here, we extend the window by additional 500 ps increments, called W3 and W4

(see Fig. 4.5), and again use W1 to compute the errors. Therefore, the W3 experiments

introduce 2 additional FFs to the delay chain of the paths (over that for W1) while W4

introduces 3. The term ‘span’ refers to this number of additional FFs in each of the 3 error

analyses. Although the errors increase slightly in the Span 2 row, when compared with

the Span 1 row, they actually decrease in the Span 3 row and are in fact similar to the val-

ues in row 1. Therefore, the overall error in the estimates of the path delays can be

approx. using the errors given by the Span 1 values in the histograms.

In order to keep the contribution of error in our analyses small, we exclude those

paths which have ‘window errors’ greater than 10% of the path length. Note that our error

filter handles errors introduced by calibration discussed here and by uncertainty as

described in Section 5.2. This is true because uncertainty occurs at the inter-FF

boundaries, and therefore impacts the delay for a path independently under each of the

two windows W1 and W2. A large uncertainty under either the W 1 or W2 analysis for a

path will increase the difference in the error estimates and may cause the path to be

excluded in cases where it is large.

5.4 Path Distribution Analysis

As indicated in Section 4.6, some of the individual FF delays were not measured

under any of the path tests and therefore, it was not possible to compute the actual delays

67

for paths that use these FFs in their delay chains. In particular for CHIP 1, the total

number of stable paths is 1,080, but was reduced to 825 because of this constraint.

A histogram depicting the distribution of these 825 path delays for CHIP1

using data from the 25oC, 1.20V TV corner is shown in Fig. 5.10. The x-axis plots the

actual calibrated path delay against the number of instances on the y-axis. The

distribution is relatively uniform except for the region between 1.0 and 1.5 ns, where the

number of instances increases significantly. The longest measured path delay is approx.

4.75 ns which is consistent with the 200 MHz timing constraints used in the synthesis of

the FPU.

68

Fig 5.10: Stable path distributions for CHIP1 at 25oC,1.2V

5.5 Short vs. Long Path Variation

Only paths that stable and common across the set of chips are included in the

analysis of short vs. long path variation (this is also true for the within-die variation

analysis described in the Section 5.6). The 825 path identifiers (IDs) from CHIP1 are

used as the reference when finding the set of common paths. Only 599 of these path IDs

are found in all chips using data from 25oC, 1.20V. The term ‘path’ used in the following

sections refers ONLY to these common paths.

Path delay variation is expressed as a percentage change in this section, and is

computed separately for each path. Chip-to- chip variation is eliminated by computing

the mean delay across all paths i for a given chip j. The path delays for chip j are then

normalized by dividing them by this mean as given by Eq. 2. Here, NPij is the

“normalized path” delay for path i and chip j.

 NPij=
Pij

μchip j
 Eq. 2.

For each path i, the largest NPix, and smallest, NPiy, across all chips is used to

determine the range, where x and y are two chip IDs from the set. The range is then

divided by the mean delay, μNPi, computed across all chips as given by Eq. 3. Pchi rep-

Pchi=
largest (NP ix) – smallest (NP iy)

μNPi
 Eq. 3.

resents the percentage change of a path i, and reflects the level of variation in this path as

a function of its length, i.e., for a fixed range, a smaller average path length, μNPi,

increases Pch. Pch expresses the differences in the level of variations for short paths vs.

long paths.

69

Fig. 5.11 plots the results with average path delay plotted along the x-axis against

percentage change on the y-axis. Average path delay is computed using the original (un-

normalized) delays, Pij. The individual path delays vary by less than 10% to more than

45%.

A smoothed best-fit curve is superimposed on the individual path results to

illustrate the overall trend. Paths longer than 2 ns vary between 12 and 20% on average

while those less than 1 ns vary between 30 and 35% on average. The law of averaging

works to keep the variation of longer paths smaller. However, the level of variation per

gate is much larger, and is captured by the shorter paths.

70

 Fig 5.11: Short vs. long path delay variation analysis at 25oC, 1.2V

5.6 Within-Die Delay Variation Analysis

Regression analysis is an effective technique for measuring and analyzing within-

die variations. Linear regression is applied to scatter plots which are constructed from the

delays of two separate paths, i.e., a path pairing. Fig. 5.12 plots 6 path pairing in a

sequence of 6 scatter plots, illustrating variations that occur across the range of short

(lower left) and long (upper right) path pairings.

Each data point in a given scatter plot represents the pair of path delays from one

of the chips. As noted above, we exclude paths which have ‘window errors’ larger than

71

Fig 5.12: Within-Die delay variation analysis using regression: example scatter plots
from distributions of common to all chips

10%. Given that the delays from two paths define each data point, if either path for a

given chip has an error > 10%, the data point is omitted. Also, path pairing that have

fewer than 30 data points because of this constraint are excluded from this analysis.

Therefore, all scatter plots include between 30 and 52 data points. We create path pair-

ings by sorting the n delays from CHIP1 and then creating n-1 scatter plots by pairing

data sets in the order given by the sorted delays from CHIP1. This ensures that the paths

of each pairings have similar delays.

Linear regression analysis first computes a least squares estimate (LSE) of a best

fit line through the data points of each scatter plot separately (see [32] for defining

equations). Several of the 6 LSE lines are labeled in Fig. 5.12. The LSE line tracks chip-

to-chip process variations. Within-die variations (and noise) are represented by the

vertical offsets of the data points from the LSE line.

The vertical offsets are called ‘residuals’ (see the blow-up illustration in the

figure). Three σ prediction interval curves are also derived for each scatter plot, and

reflect the overall spread of the points around the LSE line. Given the prediction interval

curves, which nicely portray within-die variations, are parabolic and difficult to use

directly, we define a simpler and more robust metric to express within-die variations.

The 3σ of the residuals are first computed and then ‘normalized’ by the average

path delay. The average path delay is the mean x-value from Fig. 5.12 for each of the

scatter plots. The normalized 3σ are then multiplied by 100 to express them as percentage

change. This metric scales the 3σ according to the length of the path, making

comparisons of within-die variations between short and long paths more meaningful.

72

 The results obtained by applying regression analysis on the 25oC, 1.20V data is

shown in Fig. 5.13. The average path delay for each of the 551 path pairings is given

along the x-axis, plotted against the normalized 3σ metric described above. A trend

similar to that shown in the short vs. long path variation analysis of Section 5.5 (see Fig.

5.11) occurs here. The most significant difference is the larger peak in the regression

analysis around 3.0 ns, which suggests that within-die variations are largest for median

length paths. Interestingly, decreasing temperature appears to exacerbate within-die

variations, particularly for the shorter paths, as shown on the left side of -40oC and 85oC

overall trend curves in Fig. 5.14. Although not shown, the overall trend curve for 1.08V

tracks the behavior of the -40oC curve while the 1.32V is similar to the 85oC

73

 Fig 5.13: Within-die variation analysis using regression. Average path delay vs.
normalized 3σ of residuals expressed as percentage change

74

Fig 5.14: Within-die variation analysis using regression using data from two additional
TV corners

CHAPTER 6
FPGA Experimental Results and Analysis

The DFM experiments on FPGAs are performed on 28 Zed Boards, with Zynq

7020 FPGAs. The design with REBEL and AES is synthesized on a clock of 50 MHz

frequency. The DCM is used to do fine phase adjustment with the steps of 36 ps. A total

of 720 steps are tested with Launch Capture Interval ranging from 1.5ns to 13ns.

6.1 Flip Flop Analysis

6.1.1 Propagational Delay tpHL and tpLH Analysis

Propagation delay is the delay from where input crosses 50%Vdd to when the

output crosses 50%Vdd. Theoretically tpHL is a propagation delay when output switches

from “High to Low” and tpLH is propagation delay when output switches from “Low to

High” and, it depends on the input slew rate and output capacitive load.

This delay can be computed from the experimental data using the digital

snapshots. Each path is tested with a range of launch capture intervals, which captures the

temporal behavior of the transitions. Subtracting the time when transition enters the flip

flop from the time transition leaves the flip flop is the propagation delay of the given flip

flop. Ideally the design should yield the tpHL and tpLH equal but variation exists because

75

the basic devices nfet and pfet have different characteristics, for example the mobility of

pfet is much lower than nfet. Usually the pfet is 1.5 to 2 times larger than the nfet to

compensate this difference to meet the timing constraints and bringing the tpHL and

tpLH delays approximately equal.

6.1.1.1 Rising Edge Propagation Delay (tpLH):

Fig. 6.1 shows the rising edge propagation delay. The delay of each flip flop

ranges from 17 FPA to 62FPA which is equal to (17*36ps) 600 ps to (62*36ps) 2.2 ns.

This delay is higher because it includes the interconnect delay and three multiplexers

added because of the scan chain logic. When this delay range is compared to the ASIC

90nm chip, the delay of ASIC chip is much less and is around 500ps.

The power transient effect is not seen in the data collected from the FPGA, the

76

Fig. 6.1: Rising Edge Propagational Delay

variation in the flip flop delays is seen to be between 35 FPA to 45 FPA when the average

delay for every launch capture interval is compared. The variation is not too high and

thus can be ignored in the calibration of path delays.

6.1.1.2 Falling Edge Propagation Delay (tpHL):

Fig. 6.2 shows the falling edge propagation delay. Similar to the rising edge

propagation delay, the falling edge propagational delay of flip flops of the delay chain are

ranging from 17 FPA to 62 FPA. From the delay curve plotted against the mid point

launch capture intervals for the average delay of all the flip flops measured for each given

midpoint interval reveals that on average the variation of flip flop delay is ranging from

25 FPA to 45 FPA which is about the same as the rising edge variation.

77

Fig.6.2 Falling Edge Propagational Delay

6.1.1.3 Comparative Analysis:

An interesting observation from the rising and falling edge propagation delay

curves is that the range of delays of the flip flops of delay chain is same. The plots to

observe the variation in the falling edge and rising edge delays (Fig. 6.3) reveals that the

design of FPGA is very robust and the propagation delay of rising edge overlaps the

propagational delay of falling edge. This analysis is performed on all 28 chips and same

results are observed. The delay is in the range of approximately 20 FPA to 60 FPA that

is from 600ps to 2.2 ns.

78

Fig. 6.3: Rise versus Fall delays of Flip Flops

6.1.2 Average Rising Edge Flip-Flop Delays

Fig. 6.4 shows rising edge flip-flop delays on different launch capture intervals.

The Flip flops ranging from 20FPA to 65 FPA that is 600ps to 2,2ns. As the delay of each

flip-flop has a smaller range the power transient effect is not seen in this data, but we do

observe few noise points in the data. On average the delay is ranging from 20FPA to 35

FPAs and the smooth curve the following a straight line.

79

Fig. 6.4 Average Rising Delays of Flip Flop

6.1.3 Average Falling Edge Flip-Flop Delay

The falling edge flip-flop delays on different launch capture intervals are shown in

Fig. 6.5. Similar results are observed in the falling edge. The range of variation on

average is 15 FPA that is equal to 540ps. This range is of importance to understand and

mitigate the noise points from the data set. This analysis helps us to incorporate the

design parameter of range of variation allowed with a flip flop delay to calculate more

accurately the die to die and within-Die variation.

6.2 Sample Analysis
A path is defined as a combination of a test vector and an insertion point and is

equal to (test vector *256 + Insertion point - 255). Eight samples are collected for each

tested path. This analysis helps in understanding the measurement noise, based on the

80

Fig. 6.5: Average Falling Delays of Flip Flop

correlation of the results among all the samples.

For this analysis data from path with test number 1 and insertion point 255 is

observed. The test number 1 yields a rising transition. The Figure 6.6 shows delay vs

distance from insertion point for the flip-flops, whose delay can be measured from the

given path, for 8 samples. The delay is in terms of FPA steps. For the given insertion

point a set of flip flop delays can be measured by taking difference of timestamps for

when the transition enters and when it leaves the flip-flop.

 The sample analysis captures the measurement noise and interestingly we see that

the delays are within the range of approximately 70ps. The variation of delays from one

sample to another is shown in the following graphs (Fig. 6.6 – Fig. 6-10). Interesting

observation is that the transition is in chip 1,5,7,10,11 and not in 2,3,4,6,8,9 making the

transition to appear in 50% of the chips. This variation can be used as an entropy source

for the PUF applications. For this plot the delay of each flip flop is not changing more

81

Figure 6.6: Delay vs Sample analysis for Chip 1

than 36 ps when the flip flop is closer to the insertion point where as the variation or

noise is approximately doubled for the further most flip-flop. For the flip-flop with a

distance of 5 flip-flops from the insertion point takes on average 31 FPA steps to

propagate completely through the flip flop.

The data collected from Chip-under-test 5 (Fig. 6.7) shows more variation than

the chip 1, where the transition has propagated further along to next flip flop. On average

the delay is 70 ps which is within the same range as chip 1.

 To better understand the variation within the samples we see uncertainty in sample

3 on Flip flip 6 of 2 FPA steps and in sample 7 for Flip flop 7 an uncertainty of 1 FPA

step, shown in the Fig. 6.7.

82

Figure 6.7: Delay vs Sample analysis for Chip 5

 Similar analysis on Chip 7 yields that it is also a fast chip where the transition

has propagated in the delay chain for 8 flip-flops, giving an average variation within all

samples of 5 FPAs that is approximately 90ps.

83

Figure 6.8: Uncertainty analysis for Chip 5

Figure 6.9: Delay vs Sample analysis for Chip 7

Figure 6.10 shows the uncertainty analysis, where wobbling count is shown

against distance of transition propagated from the insertion point. The uncertainty is

observed in Flip flop 6 and 8, in samples 8 and 2 respectively.

 Similar results are seen from analysis on chip 10 and chip 11. For chip 10, the transition

propagated completely to the 8th flip flop from the insertion point. The flip-flops closer to

the insertion point have less variation within-samples (close to 30ps). On the other hand

we observe more variation on the flip flop with a distance of 7 from the insertion point

(about to be 90ps). Here we see an uncertainty of 1 FPA in sample 1 for Flip flop 6 and 1

FPA for flip flop 7 in sample 7. Chip 11 shows the transition only in two samples, and has

no data for the other 6 samples. There is no uncertainty during this transition.

This analysis shows that the measurement noise is minimal and the variation in results

84

Figure 6.10: Uncertainty analysis for Chip 7

from 1 sample to another is not huge.

6.3 Uncertainty Analysis

To study the meta-stability of the FFs in the delay chain and jitter in the

generation and distribution of the clock contribute to uncertainty or error in estimating

path delays using REBEL in the Zynq FPGA. Uncertainty is captured and analyzed from

the sequence of digital snapshots associated with a path test. For the uncertainty we

observe the transition propagating from one flip flop to another as discussed earlier in

section 5.2.

The study on uncertainty which is defined as transition moving back in the

previous flip flop when the more time is allowed to propagate. This kind of behavior is

not allowed in as it introduces the measurement noise and directly affects the correctness

85

Fig. 6.11 Over All Uncertainty in path delays

of the delays. This analysis shown in Fig 6.11 shows that this kind of unwanted behavior

is shown in 20% of data and is most of the time only shown once in all the launch

capture intervals tests performed on a given path-under-test. To remove the noise in the

path and flip-flop delay calibration we omit all the paths which show this noise in them.

6.4 Die-to-Die Variation in Flip Flops for Rising Edge in All

Chips

For the analysis of die to die variation in flip-flops we select the flip-flops which

are common across all the chips and whose delay variation is not more than 15 FPA steps

that is not more than 0.5ns. The data is plotted with the median value of each flip flop

against the delay of all the chips. For each flip-flop we have 28 data points from which

the range and percentage variation is calculated.

The standard deviation is a measure of amount of variation / dispersion from the

average. The results in Fig 6.12 shows a dispersion of 2.5 on average. The percentage

change, defined as range or 3 σ variation / mean delay * 100, is on average 30 %, and is

ranging from 25% to 40 % for the rising edge. As the delays of each flip flop is small and

the impact of small variation will be bigger so the results of 40% variation is reasonable

shown in Fig 6.13. Once the delay analysis done on paths we will see that over all

percentage variation will be much less.

86

Fig 6.12 (a) shows the distribution of delays of scan cells of the capture row once

tested with the different random test vectors and insertion points. The delay is ranging

87

Fig. 6.12: Standard deviation in Rising Edge in all chips

from 0.5ns to 2.4ns. This variation is the chip to chip or die to die variation. Some chips

are faster and the propagation delay is less then the chip with data points on the top of the

graph. Over all standard deviation is less and is 2.5 showing that the data dispersion is

closer to the mean.

The die-to-die variation in rising edge in all chips, shown in Fig. 6.13, is captured

by measuring the variation in the measurements of flip flop delays from one chip to

another by also considering the mean delays of each flip flop and dividing that mean

from the range of delay across all the chips for that given flip flop. It is a good measure in

terms of relative difference while taking the average delay in to account. 15% to 40%.

88

Fig. 6.13: Percentage Change in Rising Edge for All Chips

6.5 Die-to-Die Variation in Flip-flops for Falling Edge in All

Chips

Fig. 6.14: Die-to-Die Variation in Falling Edge in all Chips

Similar analysis is performed on the falling edge propagational delay, the results

show that the standard deviation is even less for the falling edge transition, that is on

89

average 1.5, which means that the data is much closer to the average.

The die-to-die variation in rising edge in all chips is shown in Fig. 6.15.The

results of percentage change across all the 28 boards shows that it is on average 15% ,

but can reach upto 40%. The curve that is showing the percentage change of 40% is from

the flip flop 22 in the delay chain, which is on the further end of the delay chain. For this

analysis we know that with in a chip the delay did not change more than 15 FPA steps

each of size 36ps. Across all the 28 chips we see a variation of 40 %, this variation can

be caused because of the spatial location in side the design.

90

Fig. 6.15: Percentage Change for Falling Edge

6.6 Path Distribution Analysis
 Path delay distribution shown for two chips Chip 1 and Chip 2. Graphs are

constructed with 10,000 stable paths (required 25,000 paths to be tested). With 2 samples

per path, it takes approx. 25 seconds to find these 10,000 paths.

A plot depicting the distribution of these 10,000 path delays for CHIP1 using data

from the 25oC, 1.20V TV corner is shown in Fig. 6.16. The x-axis plots the actual

calibrated path delay against the number of instances on the y-axis. The path delay ranges

from 6ns to 12.5ns, the mean is at 9.5ns. The distribution has more median length paths,

it has a uniform distribution with a bell curve. Similar trend of path distribution is noticed

91

Fig. 6.16 Path Distribution for Chip C1

in Chip 2 shown in Fig. 6.17 and other chips.

Figure 6.18 shows the uniqueness of paths across chips shown on right. It is

constructed with 10,000 stable paths which can range from 0 to 25,000 paths ids which

are tested to get the 10,000 stable paths. The process of data collection for all these paths

with at least 2 samples is 25 seconds and hence is quite fast. Here we see that the paths

which are common in all chips where the tests performed are the same and the bit stream

is kept the same but the tested hardware, that is the FPGA are different. We see that only

2.2% of the paths are the same on all chips in a set of 28 chips.

92

Fig. 6.17: Stable path distributions for Chip 2

Fig. 6.18: Unique and Common Path ID Counter

We have total unique path IDs equal to 18883, and among them 2.2% are common in

ALL chips which equals 417 paths that are common and unique paths are 10.3% which equals to

1940 paths that are present only in 1 chip. Remaining paths are 16526 which equals to 87.517873%

93

6.7 Die-to-Die Delay Variation Analysis
The die-to-die delay variation is computed using the regression analysis. The

paths are sorted on their delays, and path pairings are formed using the two neighboring

paths with closer path delays. This process of path pairings selection is completed on chip

1 and these path pairings are used across all the chips to plot the scatter plots from all the

28 chips. The LSE and Three σ prediction interval curves are plotted for the measurement

of die-to-die and within-die variation. The vertical offsets of the data points from the LSE

94

 Fig 6.19: Die-to-die variation analysis using regression. Average path delay vs.
normalized 3σ of residuals

are called ‘residuals’. The three σ prediction interval curves driven from the scatter plot

reflect the overall spread of the points around the LSE line. The 3σ of the residuals are

first computed for all the path pairings and then are ‘normalized’ by the average path

delay.

The average path delay is the mean x-value from Fig. 6.19 for each of the scatter

plots which ranges from 5ns to 12ns.The 3σ shows the die-to-die variation that is from

one chip to another. The range of variation is in the range of 1ns to 3ns. The graphs

shows two humps, one at 1ns and the other at 2ns showing that some of the paths are

more affected with the variation from chip to chip and some are less. The placement and

spatial variations of the logic components which are being timed plays an important role,

as some regions (the corners) have more effect of temperature and voltage than others

(the center).

The percentage change in Fig 6.20 shows the two humps, identifying that

variations in path delays of equal magnitude can have from 14% variation to 24%

variation, spatial dependencies of the logic playing an important role. The path delays

with the similar delays can fall into the range with an average variations of 14% or can be

in the other region where the die-to-die variation is much higher and can reach up to

25%. The placement of these path delays which are studied under this test, and the

composition of the paths, that is which gates are included in the paths and the fanout of

each gate can factor in the variation in the percentage change as seen in the analysis.

95

6.8 Within-Die Delay Variation Analysis
Regression analysis is used for measuring and analyzing within-die variations by

measuring the least estimate square (LSE) of a best fit line through the data points.

Linear regression is applied to scatter plots which are constructed from the delays of two

separate paths, i.e., a path pairing. The pairing are formed from the sorted list of delays,

such that the neighboring paths will have closer delays. We create the path pairings by

sorting the delays from CHIP1 and then creating n-1 scatter plots by pairing data sets in

the order given by the sorted delays from CHIP1. This ensures that the paths of each

pairings have similar delays. Within-die variations (and noise) are represented by the

vertical offsets of the data points from the LSE line (Fig. 6.21).

96

Fig. 6.20: Overall percentage change of die-to-die variation in path delay

Figure 6.21 shows the regression analysis of short path, medium as well as long

paths. It is seen that overall the data points are lying very close to the regression line and

the 3 sigma intervals are very tight. Some path pairings show more dispersion of data

from the regression line. To better understand the within-Die variation, it is more obvious

once we analyze the range of variation along the regression line.

97

Fig. 6.21: Within-die Variation for short and long path pairings

The x-axis is the mean path delay of all the data points in the curve and is

calculated for each path pairing, and y-axis plots the range of dispersion of the data

points from the regression line for each curve. We have total of 399 curves which are

common in all the chips, that is we have 399 path pairings in total. The mean of all the

delay for the given path pairing shows on average how much is the range for the given

mean delay. The mean path delays range from 5.5ns to 12.5ns.

98

Fig 6.22: Within-Die delay variation analysis using regression: example scatter
plot from distributions of common to all chips

Fig. 6.23: Overall percentage change of path delay variation

Fig. 6.23 shows that the over all percentage change of the path delay variation is

much less than the flip flop variation. The percentage variation is around 5 % and it can

reach upto 27%. This analysis is of vital importance in case of variation aware design and

can be used for both FPGAs and custom integrated circuits. From the results it is

observed that more variation exists in the ASIC as compared to the FPGAs, where

reasons can be FPGAs are commercial designed and multiple copies are created so more

focus is to improve the design with minimal variations, where as for ASIC the design

correctness and efficiency is of more importance.

99

CHAPTER 7
Pipelined Decision Tree Implementation

 Decision Tree Classification (DTC) is a widely used technique in data mining

algorithms known for its high accuracy in forecasting. As technology has progressed and

available storage capacity in modern computers increased, the amount of data available to

be processed has also increased substantially, resulting in much slower induction and

classification times. Many parallel implementations of decision tree classification

algorithms have already addressed the issues of reliability and accuracy in the induction

process. In the classification process, larger amounts of data require proportionately more

execution time, thus hindering the performance of legacy systems. We have devised a

pipelined architecture for the implementation of axis parallel binary decision tree

classification that dramatically improves the execution time of the algorithm while

consuming minimal resources in terms of area. Scalability is achieved when connected to

a high speed communication unit capable of performing data transfers at a rate similar to

that of the decision tree classification (DT) engine. We propose a hardware accelerated

solution composed of parallel processing nodes capable of independently processing data

from a streaming source. Each engine processes the data in a pipelined fashion to use

resources more efficiently and increase the achievable throughput. The results show that

100

this system is 3.5 times faster than the existing hardware implementation of classification.

7.1 Introduction

 The process of converting unidentified or unprocessed data into actionable

information that is important and valuable to the user is known as data mining [16].

Recent advances in technology and ever increasing demands for analyzing larger

datasets have created abundant opportunities for algorithmic and architectural

development and innovations. Hence data mining algorithms have become increasingly

significant and complex. Similarly there is a great demand for faster execution of these

algorithms, leading to efforts to improve execution time and resource utilization.

 Decision Tree Classification (DTC) is a widely used classification technique in

data mining algorithms. It has applications in daily life; for example, the detection of

spam e-mail messages. It is also used in highly sophisticated fields of medicine and

astronomy. Several diverse predictive models in classification algorithms including

artificial neural networks [58], decision trees [59] and support vector machines [60] have

also been previously described in the literature. A number of solutions have also been

suggested for hardware implementation by various authors [61] [62] [63]. Decision tree

classification techniques categorizes each data records/tuples, having set of

attributes/properties into subgroups or classes. Assigning of a category or class to each

input dataset consists of a two-step process in DTC.

 The initial step is induction which involves construction of the decision tree

model, where internal nodes and leaves constitute a decision tree model. Each internal

node has a characteristic splitting decision and splitting attribute, while the leaves have

101

particular category classification. Construction of a decision tree model from a training

dataset/tuple constitutes of two phases. A splitting attribute and a split index are chosen by

the model during the first phase. While during the second phase sorting of the tuples

among the child nodes is performed based on the decision made in the first phase. This

repetitive process is continued till the depth of the tree reaches a desired level. At this

point, the decision tree can be used to predict the class of an input tuple which has not

been classified yet.

 The second step is the classification that includes application of the decision tree

model to the test dataset to predict its respective class. The primary goal of such a

classification algorithm is to utilize the given training dataset to construct a model which

subsequently can be used to sort unclassified datasets into one of the defined classes [64].

Breiman et al [65] presented decision trees approximately two decades ago, and

described the decision trees as rooted tree structures, with leaves representing

classifications and nodes representing tests of features that lead to those classifications.

The accuracy of decision trees has been shown to be better or comparable to other models

including artificial neural networks, statistical, and genetic models. The prediction in the

classification process commences at the root, and a path to a leaf is followed by using the

decision rules governed at each internal node. The characteristic class label to the leaf is

then assigned to the incoming tuple.

 DTC continues to function at high accuracy even in analysis of large data sets.

Current technology advancements in data extraction and storage permit large amount of

historic data to be preserved and utilized for data analysis and creation of more realistic

classification rules. The property of DTC to function at high accuracy even when

102

handling in large data sets makes it an appealing tool.

 Decision trees have since been implemented in software programs. Although the

software implementation of DTC is highly accurate the execution times and the resource

utilization still require improvement to meet the computational demands in the ever

growing industry. Whereas hardware implementation of Decision trees has not been

investigated or reported in detail. Only a few researchers [66] [67] [68] proposed

hardware realization of various decision trees using different architectures for specific

problems.

 Our work focuses on the speedup of the classification step using hardware

acceleration. We propose a pipelined architecture for the hardware implementation of

axis-parallel binary decision tree classification that meets the current demands of

increased throughput with minimal resource utilization. The proposed design supports a

streaming architecture by using double-buffered input and output memories to

simultaneously receive and process data. Our experiments prove that our proposed

hardware acceleration of classification algorithms increases throughput by reducing the

number of clock cycles required to process the data and generate results. The architecture

also requires minimal resources and is therefore area efficient. For scalability this

proposed architecture, when configured with a high speed communication unit, enables

processing and data transfer simultaneously. As long as the performance of the decision

tree classification engine meets or exceeds that of the communication unit, processing

time is not affected by the transfer of data.

 We developed the decision tree classification algorithm in detail and explored

techniques for adapting it to a hardware implementation successfully.

103

7.2 Background

 A number of hardware implementations of decision tree examples are reported in

the literature [66] [67]. The approach of using single level classification technique instead

of staged or multi-level technique limits the throughput because of having a restraint in

the design that new instance cannot be applied to the input before completion of the

classification of the previous data instance, resulting in low throughput. On the other

hand the staged/ leveled technique allows a new instruction/data fetch every clock cycle

and thus optimizes the throughput.

 A more advanced approach, proposed by [66] is based on the equivalence between

decision trees and threshold networks hence resulting in fast throughput since the signals

have to propagate through two levels only, irrespective of the depth of the original

decision tree. Most of the architectures for hardware implementation of decision trees

mentioned in the literature require a considerable number of hardware resources [68].

 Past research work has been reported on hardware implementations of data

mining algorithms. Baker and Prasanna [69] used FPGAs to implement and accelerate the

Apriori [70] algorithm, a popular association rule mining technique. They developed

scalable systolic array architecture to efficiently carry out the set operations, and used a

“systolic injection” method for efficiently reporting unpredicted results to a controller. In

[71], the same authors used a bitmapped CAM architecture implementation on an FPGA

platform to achieve significant speedups over software implementations of the Apriori

algorithm. Several software implementations of DTC have been proposed [72] [73],

which used complex data structures for efficient implementation of the splitting and

104

redistribution process. These implementations focused on parallelizing DTC using

coarse-grain parallelization paradigms.

 Li and Bermak [74] suggested a decision tree classifier based on an axis-parallel

decision tree. Bachir et al. [75] presented both a hardware-dedicated decision tree

technique for the generation of exponential variates and a derived architecture

implemented in FPGA.

 Podgorelec and Kokol [76] proposed a self-adapting evolutionary algorithm for

the induction of decision trees and described the principle of decision making based on

multiple evolutionary induced decision trees – decision forest. Chrysos et. al [77]

presented data mining on the web for classifying and mining huge amounts of e-data by

an implementation of data mining algorithm on a modern FPGA to accelerate certain very

CPU intensive data-mining/data classification schemes. Subsequently they exploited

parallelism at the decision variable level and evaluated its implementaion on a modern

high-performance reconfigurable platform [78].

 The objective of this paper was to find an architecture that could ensure high

throughput with significant reduction in hardware complexity. Generally, with an increase

in the data sizes, the running time stretches to several hours. In the architecture designed

for this research, each data record is assigned to a class using the predefined classification

rules. The developed solution yielded high accuracy while handling large datasets. The

hardware implementation for this study helped enhance the performance over software

implementations.

105

7.3 Decision Tree Classification Architecture
 In this paper we propose an efficient pipeline based implementation of a decision

tree classification algorithm. The hardware accelerator for decision tree classification

performs parallel operations using concurrent engines, where each engine implements

pipeline technique and thus fetches data records in every cycle, enhancing the

performance of classification process.

 In our solution we proposed and adopted a two phased decision tree classification

process. Firstly in the induction Phase a training dataset is used in order to determine the

rules, based on which the classification is to be done, at each node. We have opted to

provide these induced decision rules from the Microblaze softcore microprocessor to the

decision tree classification engine. In the next phase, the classification is performed at the

106

Fig. 7.1: Decision Rules in form of Decision Tree

hardware level. Our proposed architecture employs a pipelined data path, where the data

is distributed in a pipeline to execute concurrently, which is of significant importance for

large datasets to reduce the clock cycles.

 The decision tree classification engine architecture concentrates on axis-parallel

binary trees, where each node in the tree can have no more than two child nodes and only

one of the attributes comprising the dataset is compared against a constant at each node.

These constants are determined in the induction phase for each node. Figure 7.1 shows an

example of binary decision tree, for a given dataset, where the leaf nodes represent the

classes that divide the data into different categories, and each internal node represents the

test conditions, from which it traverses and reaches one of the classifications.

107

Fig. 7.2: Decision Tree Stages

 The decision tree classification subsystem implements each level of tree using a

stage as represented in Figure 7.2. Each stage consists of a decision logic, coefficient

memory and internal registers. The input address to the coefficient memory is a function

of the path through the decision tree that was taken to arrive at that particular node. Each

coefficient memory stores coefficient values, attribute index of the incoming data from

which to compare the coefficient, operation to be performed and a pointer to either the

memory location of the next stage or the class assigned. The output of the coefficient

memory contains all the information needed to perform the operation associated with the

node in the tree being addressed.

 The decision tree classification engine has three major parts: a) the double-

buffered input block RAM b) the decision tree classification subsystem, and c) the

double-buffered output block RAM. The decision logic reads the incoming data and takes

the rules from its associated coefficient memory, processes them and forwards the data to

the next stage with the processed results. The intermediate results decide whether a

category is assigned to the data or further processing is required in the next stage. In case

when the classification is complete for a data, the data is forwarded to the next stages

without further processing, otherwise the processing and comparison is repeated until it is

assigned to a class and then stored in the output memory. All these operations are

performed in a pipelined manner where in every clock cycle the data is forwarded into

next stage and newer data is fetched.

108

 Figure 7.3 represents a decision tree with depth of n, having n stages from which

the data passes through, and then the classification is stored in the output block memory.

The unclassified data is provided by the double-buffered input block RAM to the first

stage of the engine, from where it is processed and propagated down the pipeline. The

classifications for each tuple, are stored in the double-buffered output block RAM. The

Xilinx Logicore IP Block Memory Generator has been used in order to implement the

input and output memories. Where, block memory generator uses embedded block

memory primitives in Xilinx FPGAs to implement memories of different depths and

widths. Our proposed design implemented on Digilent Nexys2 Spartan 3E board uses two

fully independent ports each with its own read and write interfaces and access to a shared

memory space. These ports can operate at different clock frequencies thus making it

possible for the classification subsystem to operate at double the frequency of the on-

board system clock.

 Figure 7.4 shows the RTL level block diagram of one such hardware module/stage

of the classification subsystem. In each module there is a memory element, namely

109

Fig. 7.3: Decision Tree Classification Subsystem

coefficient memory associated with it. These memory elements are also generated using

the Xilinx Logicore Distributed Memory Generator IP. During the memory configuration

stage the RAM_access bit is set high. This allows the Microblaze to access the coefficient

memory, in order to write the rules for each node associated to that level. The control

unit ties the address lines of the coefficient memory to the address value received from

the previous hardware module in the pipeline. The size of the coefficient memory

depends on which level of the tree it is associated. Hence the size varies from one 64 bit

wide line to 2n 64 bit wide lines where n is the number of levels in the decision tree.

 The attributes are transferred to the module from the double-buffered input block

RAM or the previous stage in the pipeline. Depending on the Attribute Index the attribute

to be compared is selected and transferred to the comparators. The constant that it is to be

compared against is fetched from the coefficient memory based on the address received

from the previous stage. The new address for the coefficient memory of the next stage

signifying the path to be taken (left child or right child) while traversing the decision tree

110

Fig. 7.4: RTL level Block Diagram of Hardware Module

is sent to the next stage in the pipeline based on the operation select lines and the

comparator outputs.

 The decision tree classification has been implemented as a Hardware-Software

Co-Design. The Xilinx soft-core microprocessor Microblaze has been used to supply and

fetch data to and from the reconfigurable decision tree classification engine. The data

coming in is read by the Microblaze which sits on the Peripheral Local Bus (PLB).

Microblaze in turn transfers the data to the double-buffered input block RAM of the

decision tree classification engine. The engine is a custom peripheral designed as a slave

module of the PLB. Once the double-buffered input RAM is written to with a given batch

of data the Microblaze activates the classification engine by asserting a signal. The

classified data is written into the double-buffered output block RAM.

 In order to increase the efficiency of the engine it has been made parallel. Figure

7.5 shows the overall pipelined and parallel architecture where the decision tree

subsystem is instantiated eight times thus facilitating computation of eight classification

result every clock cycle. After the initial latency, equivalent to the number of levels in the

tree, 8 tuples of the dataset are categorised every clock cycle. Our tested design of the

proposed architecture allows a depth of up to 13 levels, therefore the maximum latency

for this design is 13. The address management for writing to the double-buffered input

block RAM and reading from the double-buffered output block RAM has been done in

such a way that eight consecutive tuples can be read and classified in every clock cycle.

The double-buffered input and output RAMs are designed to allow for simultaneous

buffering and processing. The operations of each RAM are switched after the given batch

of data records are processed by the classification subsystem.

111

Fig.7.5: Parallel and Pipelined Decision Tree Engine

 In theoretical analysis we analyzed following characteristics and limitations of the

hardware architectures designed previously.

i. Only single data record is fetched in every cycle, thus requiring more clock

112

cycles.

ii. Data record is fetched in sequential order from single input memory.

iii. The engine performs the classification and stores in output memory and only then

fetches the new data record. Thus wasting the processing cycles.

 Following are the enhancements in our proposed architecture where we utilize the

hardware pipelines and parallelism to overcome the above mentioned limitations:

i. Engine is made of pipelined stages, each stage implements rules of one level of

the tree.

ii. Pipeline to make use of processing cycles when data is written in memory, thus to

increase the performance.

iii. Engine works on clock frequency double to that of the interface clock.

iv. Multiple data records are read as well as written simultaneously in every cycle,

exhibiting parallelism, thus reducing the overall clock cycles.

v. Distributed memories are used for the coefficient lookup tables inside the

peripheral for making the engine memory efficient, and to reduce the clock cycles

to access the data.

vi. The block RAMs are placed in the peripheral such that the bus is not used in the

memory accesses, thus reducing the clock cycles required for setting-up bus

protocol.

vii. Also, the on-chip block memories are used for the pre-processed datasets, the

classification rules and storing the classification results.

113

 Consequently, we are able to optimize the access to memories in one clock cycle,

in the given architecture. This results in overall reduction of clock cycles and hence a

greater impact on the performance.

 The development board used for this work is the Diligent Nexys-2 Spartan-3E

FPGA Board featuring a single Xilinx XC3S1200E-FG320 FPGA. This particular

component does not support PCI Express and without access to a high-performance

interface, the proof-of-concept design discussed in this paper is implemented using

RS232 to move data back and forth from the host to the FPGA. As the bandwidth of an

RS232 link is inappropriate for an application requiring high performance, the I/O

transfer time in the performance results as their inclusion would have completely hidden

the performance increases realized by our parallel architecture.

 The theoretical performance of the Gen-2 PCIe hard core in the Virtex-6 FPGA is

500 MB/s/lane, giving an x8 design a raw bandwidth of 4 GB/s in each direction.

Assuming to achieve 80% efficiency due to bursting and DMA, this would be equivalent

to transferring 3.2 GB/s, or 800 Mwords/s in each direction. Our design, for 4 attributes

processes eight 32-bit samples in parallel at 100 MHz, the raw bandwidth of our logic is

also 800 Mwords/s. Therefore, if we replace the RS232 interface with a PCIe interface,

the I/O bandwidth would, at a first-order estimate, match that of our parallel

implementation. For this reason, it is reasonable at this stage to include only the

performance results for the parallel implementation and ignore the transfer time

represented by our legacy RS232 interface, as a modern interface such as PCI Express

would be able to keep up with our design's classification rate. The FPGA Implementation

and experimental results are discussed in the next section.

114

7.4 Experimental Results
 We have implemented the proposed architecture on Digilent Nexys2 Spartan 3E

FPGA board to perform classification in hardware accelerator. Variety of datasets,

varying from benchmark to synthetic datasets have been used. The Number of tuples also

varies to verify and validate the performance dependencies of the engine. Data pre-

processing includes data cleansing, that is to normalise the data and conversion into hex-

decimal number, to feed in the engine.

 An open source tool WEKA [79], which is an open source tool under the GNU

GPL license, was used for induction to establish the rules. For the induction,

classification algorithm J48 was exploited for all the datasets used in the experiments

conducted for the implementation. The rules were extracted from the binary decision tree

generated through the induction. Further, the rules were formulated and provided to the

micro-blaze for the classification process.

 The Xilinx Platform Studio was used to program the micro-blaze; and to program

hardware we used Xilinx ISE 12.4. Micro-blaze was provided with the rules of the

classification; where with different datasets we have different classifications rules. With

each test performed the data is fed into the memory. The speed of the clock is 50 MHz,

whereas our proposed hardware accelerator operates on double clock frequency that is

100 MHz.

7.4.1 Accuracy of the Model

 The accuracy of our parallel implementation of the pipelined architecture is

shown in Table 7.1. Here Iris and Contact lenses from UCI machine learning repository

115

[80] are the bench mark datasets, whereas synthetic datasets 1, 2 and 3, generated using

Datagen [81]. A number of attributes varying from 4 to 6, are used with each

configuration, having the number of tuples ranging from 100 to 1000. The results validate

that our architecture supports varying number of attributes and tuples without

deteriorating the accuracy of the model.

Dataset Total number of
instances

Correctly classified %Correctly
classified

Iris 150 147 98.00%

Contact Lenses 24 20 83.30%

Dataset1- 4 attributes 1000 1000 100.00%

Dataset2- 5 attributes 1000 1000 100.00%

Dataset3- 6 attributes 1000 1000 100.00%
Table 7.1: The accuracy of the Decision Tree model

7.4.2 A Comparison with software implementations

 For the comparison with the software, execution times of the decision tree

classification engine is compared with WEKA data mining software, R-project and C

implementation of classification process. In R-project the tree is implemented by

recursive partitioning using Rpart routines and classification is performed using predict

routine. The WEKA tool uses the ID3 for induction process, and performs classification

on the test data. The same datasets were used for all the software and hardware

implementations.

 Detailed results of the study are shown in Table 7.2, presenting the time each

implementation takes as well as the overall speedup/performance gains of hardware

accelerator compared to software. The results show that the speed of C implementation is

116

in microseconds and it takes less time than WEKA and R-project. WEKA, a java based

tool, shows better performance than R-project. R-project is an interpreted language which

is implemented in C, but in orders of magnitude slower than specialized C

implementation of the classification.

 We also tested our proposed system on datasets with 4, 5 and 6 attributes by

varying the number of tuples from 100 to 8000 and it was established that there is no

impact of the number of attributes on the performance of the engine. This occurred

mainly due to the fact that we have implemented an axis-parallel decision tree, the

hardware takes the same number of cycles for classification regardless of the number of

attributes of the dataset.

No. of
Tuples

Time for the hardware
implementation

Time for the software
implementation

approx.

Speedup
compared to

 C
Impleman-

tation
No. of
clock
cycles

Lat-
ency

Total
Time
 (ns)

Weka

(ms)

R-project

(ms)

 C

(us)

100 7 4 220 0.5 1.33 12.3 55x

250 17 4 420 0.5 1.38 33.84 80x

500 32 4 720 1 1.52 76.92 106.83X

750 48 4 1040 1.5 1.66 112.3 107.9X

1000 63 4 1340 2 1.81 175.38 130X

2000 125 4 2580 2 2.42 286.45 111X

3000 188 4 3840 2 3.16 430.21 111X

4000 250 4 5080 5 3.87 570.23 112X

5000 313 4 6340 5 4.54 720.42 113X

6000 375 4 7580 6 5.4 860.3 113X

7000 438 4 8840 11 5.89 1006 113X

8000 500 4 10080 15 6.81 1154 114X
Table 7.2:Comparison with Software Implementations

117

 Our design is currently limited by the locally available memory and no high speed

communication link to stream data, the maximum number of dataset tested is 8000 data

records. If streaming data is available decision tree classification engine is designed to

process at a fixed throughput that is linearly related to data set size. Theoretically the

number of clock cycles = (data records /8 + latency)+ clock cycle for switching the

buffered memory. For example for the dataset of 1 million records it will take 2.5

miliseconds.

7.4.3 Comparison with previous hardware implementations

 For the comparison with the previous hardware implementations, the clock cycles

required by the FPGA implementation of decision tree classification engine are compared

with the SMpL and SmpL-p implementation proposed by Struharik et al. [68]. The

SMpL-p architecture employs one hardware module per level of the decision tree. In the

experiments performed by Struharik et al for the classification, 16 of the 23 datasets, used

are binary trees. We have performed the experiments on the subset of the datasets used in

the SmpL and SmpL-P, and compared the performance in terms of the clock cycles in

Table 7.3 and it shows that decision tree classification engine has on average 3.5x

speedup over these implementations.

118

Data set DT SMpL Speedup SMpL-P Speedup

Glass 2.24 6.46 2.88x 6.96 3.12x

Balance-
scale

1.5 4.97 3.31x 4.27 2.85x

Heart 1.26 4.99 3.96x 4.54 3.60x

Diabetes 1.48 6.72 4.54x 7.14 4.82x

ionosphere 1.88 6.46 3.43x 6.25 3.32x

Liver 1.74 6.37 3.66x 4.05 2.32x

Soner 1.92 6.55 3.41x 6.16 3.20x

Page block 1.29 6.93 5.37x 6.25 4.84x

Zoo 2.57 4.99 1.96x 5.88 2.28x
Table 7.3: Comparison with Hardware Implementations

7.5 Resource Utilization
 Based on the RTL level hardware requirements SmpL and SmpL-P requires M.n

multipliers, whereas our implementation requires 0 multipliers. Also the number of

adders for our implementation is 2.M*8 adders, whereas the SMpL requires

approximately M.[2n] adders, where n is the number of attributes and M is the level of

the trees. Hence the hardware requirements are also minimal for our proposed hardware

engine.

 The devised architecture area utilization, in terms of lookup tables and flip flops

and the block RAM utilization is also optimized. Table 7.4 shows the utilization summary

at different hierarchies of the design.

119

Implementation LUTs FF Block RAM

DT Engine 1 Stage 62 96 0

DT Engine 4 Stage 240 332 0

DT Engine 8 parallel instances

of 4 Stages

2952 3100 18

Whole design 6442 5336 22

Table 7.4: The Resource Utilization of the Decision Tree model

 The utilization of number of slices of the decision tree classification engine with 8

parallel classification subsystems instances is 29%, whereas each instance of 4 stage

pipelined decision tree module uses 205 slices bringing it to 2% total utilization. The

whole design number of slices utilization is 5386 which is 62% utilization. Thus the

proposed architecture in comparison with SMpL-p has reduced hardware complexity of

the modules and reduced execution time.

7.6 Data Streaming with High Performance Communication

Link

 Our ideal architecture would consist of a streaming interface between PCIe and

the decision tree classification engine. Using this interface, the host computer could set

up DMA transfers to a fixed destination address on the DT peripheral and continually

stream data to the limits of the communication link. At the DT peripheral, onboard logic

would manage the streaming data such that a double-buffered input memory could be

used to maintain constant bandwidth between the host and peripheral. In this way, the

decision tree classification engine would hide the addressing complexity from the host.

As long as the processing capability of the engine met or exceeded that of the

120

communication link, saturation would not occur.

 This architecture allows classification of big data in a streaming manner. Figure

7.6 shows the streaming architecture, the double-buffered input and output RAMs are

designed to support simultaneous buffering and processing of data. A memory controller

switches the first memory from buffering mode to processing mode once the memory is

filled, and connects the other memory to the communication unit for buffering. In such a

manner the communication overhead is hidden.

 The proposed architecture has the advantage of being highly scalable and exhibits

high levels of parallelism. The performance of pipelined architecture is linearly

dependent on the number of data records/tuples and independent of the number of

attributes in a particular data-set. Higher levels of parallelism can be achieved by

increasing the number of parallel pipelines, also trees of greater depth upto 13 can be

modeled by increasing the number of pipeline stages.

The design has the minimum resource utilization thus the power consumed is also

121

Fig. 7.6: Streaming Architecture

an advantage of the binary decision tree classification accelerator engine. Contrary to the

previous implementations, we focused on the pipelining of different stages; efficient use

of the on-chip memories; and registers to optimise the area used and minimize the clock

cycles, thus helping in accelerating the process of classification.

122

CHAPTER 8
Conclusion

My research project mainly focuses on the die-to-die and within-die variation

measurement for analyzing the variations using the embedded test structure REBEL. I

have successfully collected data and analyzed the path delays from 52 copies of 90nm

chips 28 copies of 28nm Zynq FPGAs 7000 series on Zed Boeards. I have performed

various analysis to better understand the quality of each dataset; and consequently have

established a methodology of calibrating short path delays and have devised a more

accurate process of measuring die-to-die and within-die varirationin ASIC and FPGAs.

The key contributions of the work presented in this proposal includes:

1) The within-die variation measurement and evaluation of REBEL is carried out in

multiple copies of a custom designed test chip fabricated in IBM’s 90nm

technology. The macro in which REBEL is integrated is an IEEE-754 compliant

floating point unit (FPU), with 5 pipeline stages. Random test patterns are applied

to the combinational logic within each of the pipeline stages and the measured

delays are analyzed, with emphasis on evaluating the magnitude of within-die

variations as a function of path length. A second important component of my

123

experiments is the evaluation of delay variations while the chips are subjected to

industrial-level temperature and voltage (TV) variations.

2) In ASIC analysis I propose a calibration methodology and introduced windowing

mechanism to avoid the voltage transient effect. The impact of the power transient

is particularly evident when the LC interval is dynamically changed as a means of

obtaining high resolution delay measurements. The calibration process is designed

to eliminate this environmental source of delay variation.

3) Also for ASIC I show a new error estimation scheme for measuring the error

estimation in path delays is proposed here, which uses different windows to

measure the same path, where each subsequent window increases the launch

capture interval and adds another flip-flop in the path-under-test.

4) For FPGAs I have performed analysis on the propagational delay through the flip

flops for both rising and falling edges and have confirmed the robust design

where the delays are overlapped.

5) Path Distribution of the AES design implemented on FPGA and a comparison of

common paths among all copies of FPGAs and how many of them are unique and

are present only in 1 chip.

6) I have performed die-to-die and within-die variation measurement and evaluation

of REBEL on 28 copies of Zynq 7000 series FPGAs on ZED boards and shown

that on average a 5% of percentage change variation exists with in the FPGAs.

In my research, I present REBEL (regional delay behavior) as an embedded test

124

structure (ETS), for path delay measurement which is later utilized for measuring within-

die and die-to-die variation. I have described the detailed architecture of REBEL and

demonstrated its effectiveness for measuring delays and capturing the within-die

variations caused by the environmental and physical process variations. The experimental

results obtained so far are elaborated in Chapter 5 and Chapter 6 for custom 90nm chip

and 28nm Zynq FPGA analysis respectively. There are several applications, for example,

Trojan detection, delay defects detection, and Physical Unclonable Functions for

encryption, identification and authentication.

My experimental results presented in Chapter 5 show that the magnitude of

within-die delay variations in ASIC is dependent on the length of the path, and the delays

are highly sensitive to the power transient effect introduced by the launch-capture (LC)

clock event. Additionally I have performed uncertainty analysis to estimate the noise

contribution and specified a region where the paths with 4 to 12 flip-flops are included in

the uncalibrated path delay have the minimum uncertainty.

 In Error estimation Analysis for measuring the error estimation in path delays I

use different windows to measure the same path, ideally all the windows should get the

same path delay after calibration, but this is not the case as the calibration error is added

with every additional flip-flop of the scan chain. So far the errors are within ± 100 ps but

they can increase upto -300ps in worst scenario. Also in our designed chip power grid

noise is contributing more variation in the calculated path delays, as the bypass

capacitance on the chip was not included in the design. To minimize the error I have

added an external bypass capacitance on the I/O pins still a large transience in the

supplied power voltage is observed. The clock for launch capture intervals is provided by

125

FPGA using DCMs with fine phase adjustment. We observe the clock jitter and variation

in the launch capture intervals in clock strobing. To account for this variability the exact

LCI is recorded using oscilloscope measurements and are used in the calculations instead

of using the estimated value. Hence reducing the errors in the calibration of path delays.

In Chapter 6, I performed die-to-die and within-die variation analysis on the

Zynq FPGAs and have shown that the the did-to-die variation have spatial dependencies

and can range from 14% to 24% on average. The within-die variations in FPGA for the

path delays is on average 5% and can go upto 27%,. This analysis will help in the

variation aware layout design to avoid the violations and improve the performance. The

experiments that have been performed on the calibrated path delays are Flip flop rising

and falling transition delay analysis, uncertainty analysis, path distribution analysis, short

versus long path variations and within-die variation analysis and die to die variations on

the data collected so far.

 Additionally, to cater for big data by employing decision tree classification (DTC)

to speed-up the classification step in hardware implementation, we devised a pipelined

architecture for the implementation of axis parallel binary decision tree classification for

meeting up with the requirements of execution time and minimal resource usage in terms

of area. Our hardware acceleration of pipelined architecture incorporates the parallel

approach in acquiring the data by having parallel engines working on different partitions

of data independently. Also, each engine is processing the data in a pipelined fashion to

utilize the resources more efficiently and reduce the time for processing all the data

records/tuples.

126

CHAPTER 9
Future Work

In this chapter, I suggest further research work in the area of path variations,

based on our current research. Particular areas for future research to be focused inter alia

include path delay measurements using IDCs, path delay measurements as an entropy

source for PUF primitive, defect analysis, model to hardware correlation, and on-chip

using DLLs or PLLs and bypass capacitance on I/O pads.

9.1 Path Delay Measurement using TDCs
Within die delay variation analysis using REBEL 0is performed on the path delays

with a measurement precision having a resolution of 70ps, Time-to-Digital TDC is a test

structure which can provide the path delay measurement with 10ps precision. The TDC

is designed to measure the relative delay between two input signals which are provided

by a pair of tap points on an FPU macro. The relative delay is digitized by the TDC using

a pulse-shrinking mechanism. The digital code is ’scanned out’ of the TDC and the width

of the transition propagated is compared with the ring oscillator frequency to calculate

the delay, pulse-shrinking behavior of the TDC allows very high timing resolution, i.e.,

10’s picoseconds, in measurements of the width of the input pulse. The TDC occupies an

127

area of 176 um x 60 um (10k um2).

The TDC is implemented as two components, labeled Path Select/Pulse Gen Unit

and Pulse Shrinking Delay Chain. On chip there are in total seven TDCs, one connected

with Arbitor PUF, 2 with FPU macro-under-test, 2 with AES and 2 with AES with Trojan.

All the TDC are connected in a chain and hence require configuration to implement FPU

with TDCs. There is a Ring Oscillator whose input can go in the TDC, we can measure

its frequency as it is connected with one of the outputs. Hence a table mapping the

frequency of the ring oscillator and its thermometer code is once created, can be used to

measure the delays of the paths by comparing there thermometer code within this table

and get the quantized delay as an output.

The component pulse generation unit has scan flip flops sel A and sel B drives the

inputs of two 8-to-1 Muxes. Each of these inputs requires a transition. The combination

of these transitions can be both rising, both falling, one rising and one falling or vise

versa. The outputs of the 8-to-1 MUXes is given to a negative pulse generator, XNOR

gate, for the Pulse Shrinking Delay Chain.

 Fig. 9.1: Time to Digital Conversion (TDC)

128

The current starved inputs of all the even numbered inverters are connected to

Cal0 while the inputs of the odd numbered inverters are connected to Cal1. With Cal0

fixed at a specific voltage, larger assigned Cal1 voltages allows the first edge propagates

more quickly and hence makes the pulse disappear after the trailing edge catches up with

the leading edge. A set of flip-flops up stores '1' to the point where the pulse disappears ,

while those beyond this point store ’0’. In this set of experiments, both of these voltages

are controlled using off-chip power supplies.

In case of calibration, the rising and falling edges of ring oscillator are provided to

the TDC and simultaneously the frequency of the ring oscillator is measured from the

output pins using oscilloscope. The TDC is designed to ’pulse shrink’ the negative output

pulse from the XNOR as it propagates down a current-starved inverter chain. As the pulse

moves down the inverter chain, it activates a corresponding set of set-reset latches to

record the passage of the pulse, where activation is defined as storing a ’1’. A

thermometer code, i.e., a sequence of ’1’s followed by a sequence of ’0’s, represents the

digitized delay between the rising edge and falling edge of the ring oscillator. In this

context the digitized delay is called thermometer code is zeros followed by all '1’s. Once

the calibration process is complete we get a mapping of frequency and thermometer code.

In the path delay measurement process, the inputs of scan flip flops, sel A and sel

B is connected back to the FPU macro under test. The thermometer code of the delay is

mapped with the history table and the delays are digitized.

9.2 Path Delay Measurement as an Entropy Source for PUF
Primitive

Within-die variations in path delays are increasing with scaling, and are

129

increasingly affected by “neighborhood” interactions. Although higher levels of within-

die delay variations are undesirable from a design perspective, they represent a rich

source of entropy for applications that make use of ‘secrets’, such as authentication,

hardware metering and encryption. Physical Unclonable Functions or PUFs are a class of

circuit primitives that leverage within-die variations as a means of generating random bit

strings for these types of applications.

We can implement hardware embedded delay PUF that leverages within-die path delay

information. PUF obtains accurate measurements of path delays within core logic macros

using an embedded test structure called REBEL. REBEL provides capabilities similar to

an off-chip logic analyzer, and allows very fast analysis of the temporal behavior of

signals emerging from paths in a core logic macro. Statistical characteristics related to the

randomness, reproducibility and uniqueness of the bit strings which can be used as key

for encryption and authentication applications.

The FPA timing value that we obtain for the stable paths can be used as a PUF

Numbers or PNs. The statistical analysis requires the number of bits to be equal across

all chips, so we can reduce the number of PNs to the smallest number produced by one of

our chips, which is X. Using all combinations in the bit generation process, this allows bit

strings of length X*(X-1)/2 = Y . The actual bitstring size however is dependent on the bit

string generation methods. Some of the methods for bit generation are, Dual P/N, Dual

P/N Count (DPNC), Universal No- Modulus Method (UNM) and Universal No-Modulus

Difference. There are thresholding techniques to avoid the weak bits in the bit string

during the enrollment to avoid the bit flips during re-generation. To generate error free

bitstring TMR technique can be incorporated to generate an error-tolerant bit string. That

130

PUF can be evaluated across industrial-level temperature and supply voltage variations

based on the data collected for the chips.

9.3 Defect Analysis
Cadence Encounter Test ATPG tool is used to generate transition/path delay test

vectors for various path delay measurements. Several path delays that represent various

path lengths of the design are measured using REBEL embedded test structure. These

path delays can be measured in 52 copies of the chip and analyzed for die-to-die and

within-die variations. In these macros several defect emulation circuits, that are designed

to introduce delay anomalies along the selected paths, are inserted. An analog control

input is added in the defect Emulation circuit that enables the controlled insertion of

additional capacitive load that models a defect. With this mechanism, once the input

patterns create a falling/rising edge transition, the delay will wary from the path with no

defect. In the test vectors generated using ATPG 6 paths are tested which produce a

transition on the paths with the defect. REBEL can be used to measure the delays along

these paths, which are then processed for detecting the affects of defects.

Further more incorporating the correct flip flop delay based on the launch capture

interval to remove the power transient from the analysis will provide more accurate

delays and will give us the ability to calculate the delay variation introduced by the

defect.

9.4 Model to Hardware Correlation
 Focusing on the application of model to hardware correlation, Cadence tools for

measuring the path delays with the same input patterns provided to the chip and

comparing and correlating the results of the hardware data with simulations can provide

131

meaningful results and can help in creating the variation models. Encounter Test is a

Cadence tool that helps in the analysis of the paths which are actually tested, thus

figuring out the paths and correlating the path delays with the gates. Analysis on the gate

composition and number of gates in each path are beneficial for more accurate variation

models. Static timing analysis and statistical timing analysis of the design for

manufacturing (DFM) can also be performed to improve the design for manufacturing

and increasing the yield.

9.5 On-Chip Clock using DLLs or PLLs and Bypass
Capacitance on I/O Pads

In the experiments perform on the ASIC chip, the clock for launch capture

intervals is provided by FPGA using DCMs with fine phase adjustment. We observe the

clock jitter and variation in the launch capture intervals in clock strobing. To account for

this variability we record the exact LCI using oscilloscope measurements and use them in

the calculations instead of using the estimated value. Hence reducing the errors in the

calibration of path delays but not completely eliminating it. A better solution would be to

have an engine for clock strobing on chip and generating the launch capture interval with

less clock jitter and minimized the clock skew.

Also in our designed chip power grid noise is contributing more variation in the

calculated path delays, as the bypass capacitance on the chip was not included in the

design. We have added an external bypass capacitance on the I/O pins. The incorporation

of by-pass capacitance on chip will help in reducing the power supply transient effect

132

References

[1] Nassif, S.R., “Modeling and Analysis of Manufacturing Variations”, IEEE

Conference on Custom Integrated Circuits (CIC 2001), San Diego, CA, USA,

May 2001, pp. 223-228.

[2] I. Ahsan, N. Zamdmer, O. Glushchenkov, R. Logan, E.J. Nowak, H. Kimura, J.

Zimmerman, G. Berg, J. Herman, E. Maciejewski, A. Chan, A. Azuma, S.

Deshpande, B. Dirahoui, G. Freeman, A. Gabor, M. Girbelyuk, S. Huang, M.

Kumar, K. Miyamoto, D. Mocuta, A. Mahorowala, E. Leobandung, H. Utomo,

and B. Walsh, “RTA-Driven Intra- Die Variations in Stage Delay and

Parametric Sensitivities for 65 nm Technology”, Digest of Technical Papers, 2006

Symposium on VLSI Technology, Honolulu, HI, USA, June 2006, pp. 170-171.

[3] T.J. Yamaguchi, J.A. Abraham, G.W. Roberts, S. Natarajan, and D. Ciplickas,

“Panel Session 12B: Post-Silicon Validation and Test in Huge Variance Era”,

2013 IEEE 1st VLSI Test Symposium (VTS), Berkeley, CA, USA, April-May

2013, pp.1.

[4] R. Raina, “What is DFM & DFY and Why Should I Care?” IEEE International

Test Conference (ITC), Santa Clara, CA, USA, October 2006, pp. 1-9.

[5] D.G. Chesebro, J.W. Adkisson, L.R. Clark, S.N. Eslinger, M.A. Faucher, S.J.

Holmes, R.P. Mallette, E.J. Nowak, E.W. Sengle, S.H. Voldman, and T.W. Weeks,

“Overview of Gate Linewidth Control in theManufacture of CMOS Logic Chips”,

IBM Journal of Research and Development, vol. 39 no. 1/2, 1995, p. 189-200.

[6] J.Y. Lai, N. Saka, and J-H Chun, “Evolution of copper-oxide damascene

structures in chemical mechanical polishing”, J. of Electro-Chem. Soc., vol. 149,

133

no. 1, 2002: p. G31- G40.

[7] C. Hedlund, H. O. Blom, and S. Berg, “Microloading effect in reactive ion

etching”, J. of Vacuum Science and Tech, vol. 12, no. 4, 1994, pp. 1962-1965.

[8] D. Burek, “True design-for manufacturability critical to 65-nm design success”,

http://www.eetimes.com/showArticle.jhtml?arti-cleID=202803596, Nov. 2007.

[9] S. Paul, S. Krishnamurthy, H. Mahmoodi, and S. Bhunia, “Low-overhead design

technique for calibration of maximum frequency at multiple operating points”,

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San

Jose, CA, USA, Nov. 2007, pp. 401-404.

[10] W. Xiaoxiao, M. Tehranipoor, and R. Datta, “Path-RO: A novel on-chip critical

path delay measurement under process variations”, IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, Nov.

2008, pp. 640-646.

[11] C. Lamech, J. Aarestad, J. Plusquellic, R. Rad, and .K. Agarwal, “REBEL and

TDC: Two embedded test structures for on-chip measurement of within-die path

delay variations”, IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), San Jose, CA, USA, Nov. 2011, p. 170-177.

[12] J. Li, and J. Lach, “At-speed delay characterization for IC authentication and

Trojan Horse detection”, IEEE International Workshop on Hardware-Oriented

Security and Trust (HOST), Anaheim, CA, USA, June 2008, pp. 8-14.

[13] H. Yan, and A.D. Singh, “Experiments in detecting delay faults using multiple

higher frequency clocks and results from neighboring die”, in Proc. IEEE

International Test Conference (ITC), 2003, pp. 105-111.

134

http://www.eetimes.com/showArticle.jhtml?arti-cleID=202803596

[14] J. Aarestad, P. Ortiz, J. Plusquellic and D. Acharyya, “HELP: A hardware-

embedded delay PUF”, IEEE Design and Test, March/April 2013, vol. 30, no. 2,

pp. 17-25.

[15] J. Aarestad, C. Lamech, J. Plusquellic, D. Acharyya and K. Agarwal,

“Characterizing within-die and die-to-die delay variations introduced by process

variations and SOI history effect”, in Proc. 48th Design Automation Conference

(DAC), San Diego, CA, USA, June 2011, pp. 534-539.

[16] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, J. Zambreno, “An FPGA

implementation of decision tree classification”, in Proc. IEEE International

Design, Automation and Test in Europe Conference and Exhibition (DATE),

Nice, France, April 2007, pp. 1-6.

[17] T. Tuan, A. Lesea, C. Kingsley, S. Trimberger, “Analysis of within-die process

variation in 65nm FPGAs”, IEEE 12th International Symposium on Quality

Electronic Design (ISQED), Santa Clara, CA, USA, March 2011, pp. 1-5.

[18] B.P. Das, B. Amrutur, H.S. Jamadagni, N.V. Arvind, V. Visvanathan, “Within-die

gate delay variability measurement using re-configurable ring oscillator”, IEEE

Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, September

2008, pp. 133-136.

[19] M. Bhushan, A. Gattiker, and M.B. Ketchen, K.K. Das, “Ring oscillators for

CMOS process tuning and variability control”, IEEE Transactions on

Semiconductor Manufacturing, vol. 19, no. 1, February 2006, pp. 10-18.

[20] K. Katsuki, M. Kotani, K. Kobayashi, and H. Onodera, “Measurement results of

within- die variations on a 90nm LUT array for speed and yield enhancement of

135

reconfigurable devices”, in Proc. 6th IEEE Asia and South Pacific Design

Automation Conference (ASP-DAC), Yokohama, Japan, January 2006, pp. 110-

111.

[21] P. Sedcole, and P.Y.K. Cheung, “Within-die delay variability in 90nm FPGAs and

beyond”, IEEE International Conference on Field Programmable Technology

(FPT), Bangkok, Thailand, December 2006, pp. 97-104.

[22] D.J. Kinniment, O.V. Maevsky, A. Bystrov, G. Russel, and A.V. Yakovlev, “On-

chip structures for timing and measurement”, in Proc. IEEE 8th International

Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC), Manchester, UK, April 2002, pp. 190-197.

[23] X. Zhang, K. Ishida, M. Takamiya, and T. Sakurai, “An on-chip characterizing

system for within-die delay variation measurement of individual standard cells in

65-nm CMOS”, IEEE 16th Asia and South Pacific Design Automation Conference

(ASP-DAC), Yokohama, Japan, January 2011, pp. 109-110.

[24] P. Dudek, S. Szczepanksi, and J.V. Hatfield, “A high-resolution CMOS time-to-

digital converter utilizing a Vernier delay line”, IEEE Journal of Solid-State

Circuits, vol. 35, no. 2, February 2000, pp. 240-247.

[25] C.C. Chen, P. Chen, C.S. Hwang, and W. Chang, “A precise cyclic CMOS time-to-

digital converter with Low thermal sensitivity”, IEEE Transactions on Nuclear

Science, vol. 52, no. 4, August 2005, pp. 834-838.

[26] A. Mantyniemi, and T. Rahkonen, and J. Kostamovaara “A CMOS time-to-digital

converter (TDC) based on a cyclic time domain successive approximation

interpolation method”, IEEE Journal of Solid-State Circuits, vol. 44, no. 11,

136

November 2009, pp. 3067-3078.

[27] R. Datta, A. Sebastine, A. Raghunathan and J.A. Abraham, “On-chip delay

measurement for silicon debug”, in Proc. 14th ACM Great Lakes Symposium on

VLSI (GLSVLSI), April 2004, pp. 145- 148.

[28] R. Datta, G.D. Carpenter, J.K. Nowka and J.A. Abraham, “A scheme for on-chip

timing characterization” in Proc. IEEE 24th VLSI Test Symposium (VTS),

Berkley, CA, USA, April-May 2006, pp. 24-29.

[29] D. Acharyya, K. Agarwal, and J. Plusquellic, "Leveraging existing power control

circuits and power delivery architecture for variability measurement", in Proc.

IEEE International Test Conference (ITC), Austin, TX, USA, November 2010,

pp. 1-9.

[30] X. Zhang, K. Ishida, H. Fuketa, M. Takamiya, and T. Sakurai, ”On-chip

measurement system for within-die delay variation of individual standard cells in

65-nm CMOS”, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 20, no. 10, October 2012, pp. 1876-1880.

[31] L.T. Pang, and B. Nickolic, “Measurements and analysis of process variability in

90 nm CMOS”, IEEE Journal of Solid-State Circuits, vol. 44, no. 5, May 2009,

pp. 1655 – 1663.

[32] W. Grobman, M. Thompson, R. Wang, C. Yuan, R. Tian, and E. Demircan,

“Reticle enhancement technology: implications and challenges for physical

design”, in Proc. IEEE Design Automation Conference (DAC), 2001, pp. 73-78.

[33] R. Takahashi, H. Takata, T. Yasufuku, H. Fuketa, M. Takamiya, M. Nomura, H.

Shinohara, and T. Sakurai, “Large within-die gate delay variations in sub-

137

threshold logic circuits at low temperature”, IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 59, no. 12, December 2012, pp. 918 – 921.

[34] L.T. Wang, C.W. Wu, and X. Wen, “VLSI test principles and architectures: design

for testability (Systems on Silicon)”, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

[35] K.A. Bowman, A.R.S. Alameldeen, S.T. Srinivasan, and C.B. Wikerson, “Impact

of die-to-die and within-die parameter variations on the clock frequency and

throughput of multi-core processors”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 12, December 2009, pp. 1679-1690.

[36] D.J. Palframan, S.K. Nam, and M.H. Lipasti, “Mitigating random variation with

spare RIBs: Redundant intermediate bitslices”, IEEE/IFIP 42nd Annual

International Conference on Dependable Systems and Networks (DSN), Boston,

MA, USA, June 2012, pp. 1-11.

[37] S.K. Mehr, A.R.A. Mehr, S.N. Mozaffari, A. Afzali-Kusha, “A new block-based

SSTA method considering within-die variation”, IEEE 2nd Asia Symposium on

Quality Electronic Design (ASQED), Penang, Malaysia, August 2010, pp.260-

263.

[38] G.E. Suh, and S. Devadas, "Physical unclonable functions for device

authentication and secret key generation", in Proc. IEEE 44th annual Design

Automation Conference (DAC), San Diego, CA, June USA, 2007, pp. 9-14.

[39] T. Holotyak, S. Voloshynovskiy, O. Koval, and F.Beekhof, "Fast physical object

identification based on unclonable features and soft fingerprinting”, in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing

138

(ICASSP), Prague, Czech Republic, May 2011, pp. 1713-1716.

[40] N. Potlapally, “Hardware Security in Practice: Challenges and Opportunities”,

2011 IEEE I n t e r n a t i o n a l Wo r k s h o p o n H a r d w a r e o r i e n t e d

S e c u r i t y a n d T r u s t (H O S T) , S a n D i e g o , C A , U S A , J u n e

2 0 1 1 , p p . 9 3 - 9 8 .

[4 1] P. S i m o n s , E . S l u i s , a n d V. L e e s t , “ B u s k e e p e r P U F s , a

p r o m i s i n g a l t e r n a t i v e t o D f l i p - f l o p P U F s ” , 2 0 1 2 I E E E

I n t e r n a t i o n a l S y m p o s i u m o n H a r d w a r e o r i e n t e d

S e c u r i t y a n d T r u s t (H O S T) , S a n F r a n c i s c o , C A , U S A ,

J u n e 2 0 1 2 , p p . 7 - 1 2 .

[4 2] K. Kursawe, A.R. Sadeghi, D. Schellekens, B. Skoric, and P. Tuyls,

“Reconfigurable Physical Unclonable Functions – Enabling Technology for

Tamper-Resistant Storage”, 2009 IEEE I n t e r n a t i o n a l S y m p o s i u m o n

H a r d w a r e o r i e n t e d S e c u r i t y a n d T r u s t (H O S T) , S a n

F r a n c i s c o , C A , U S A , J u l y , 2 0 0 9 , p p . 2 2 - 2 9 .

[4 3] M . B h a r g a v a , C . C a k i r , a n d K . M a i , “ C o m p a r i s o n o f B i -

s t a b l e a n d D e l a y - b a s e d P h y s i c a l U n c l o n a b l e F u n c t i o n s

f r o m M e a s u r e m e n t s i n 6 5 n m b u l k C M O S ” , 2 0 1 2 I E E E

C u s t o m I n t e g r a t e d C i r c u i t s C o n f e r e n c e (C I C C) , S a n

J o s e , C A , U S A , S e p t e m b e r 2 0 1 2 , p p 1 - 4 .

[4 4] H . H a n d s c h u h , “ H a r d w a r e i n t r i n s i c s e c u r i t y b a s e d o n

S R A M P U F s : Ta l e s f r o m t h e i n d u s t r y ” , 2 0 1 1 I E E E

I n t e r n a t i o n a l S y m p o s i u m o n H a r d w a r e o r i e n t e d

139

S e c u r i t y a n d T r u s t (H O S T) , S a n D i e g o , C A , U S A , J u n e

2 0 1 1 , p p . 1 2 7 .

[4 5] A. Maiti, and P. Schaumont, “Improving the quality of a physical unclonable

function using configurable ring oscillators”, in proc. IEEE International

Conference on Field Programmable Logic and Applications (FPL), Praigue,

Czech, August-September, 2009, pp.703-707.

[46] R. Kumar, H.K. Chandrikakutty, and S. Kundu, “On improving reliability of

delay based physically unclonable functions under temperature variations”,

2011 IEEE I n t e r n a t i o n a l S y m p o s i u m o n H a r d w a r e o r i e n t e d

S e c u r i t y a n d T r u s t (H O S T) , S a n D i e g o , C A , U S A , J u n e

2 0 1 1 , pp. 142-147.

[47] R. Kumar, V.C. Patil and S. Kundu, “On d esign of temperature invariant

physically unclonable functions based on ring oscillators”, 2012 IEEE

Computer Society Annual Symposium on VLSI, Amherst, MA, USA, August

2012, pp. 165-170.

[48] Y. Hori, H. Kang, T. Katashita, and A. Satoh, “Pseudo-LFSR PUF: A compact,

efficient and reliable physical unclonable function”, 2011 International

Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, Nov-

Dec 2011, pp. 223-228.

[49] G. Schrijen, and V. Leest, “Comparative analysis of SRAM memories used as

PUF primitives”, IEEE Design, Automation and Test in Europe Conference &

Exhibition (DATE), Dresden, Germany, March 2012, pp. 1319-1324.

[50] L. Lin, S. Srivathsa, D. K. Krishnappa, P. Shabadi, and W. Burleson, “Design

140

and validation of arbiter-based PUFs for sub-45-nm low-power security

applications”, IEEE Transactions on Information Forensics and Security, vol. 7,

no. 4, August 2012, pp. 1394-1403.

[51] J. Ju, Jim Plusquellic, R. Chakraborty, and R. Rad, “Bit String Analysis of

Physical Unclonable Functions based on Resistance Variations in Metals and

Transistors”, 2012 IEEE I n t e r n a t i o n a l S y m p o s i u m o n H a r d w a r e

o r i e n t e d S e c u r i t y a n d T r u s t (H O S T) , San Francisco, CA,

U S A , J u n e 2 0 1 2 , p p . 1 3 - 2 0 .

[5 2] R . K u m a r , a n d W. B u r l e s o n , “ P H A P : P a s s w o r d b a s e d

h a r d w a r e a u t h e n t i c a t i o n u s i n g P U F s ” , 2 0 1 2 I E E E / A C M

4 5 t h I n t e r n a t i o n a l S y m p o s i u m o n M i c r o a r c h i t e c t u r e

Wo r k s h o p s (M I C R O W) , Va n c o u v e r , B C , C a n a d a , D e c e m b e r

2 0 1 2 , p p . 2 4 - 3 1 .

[5 3] C . Y i n , G . Q u , a n d Q . Z h o u , “ D e s i g n a n d

i m p l e m e n t a t i o n o f a g r o u p - b a s e d R O P U F ” , I E E E

D e s i g n , A u t o m a t i o n a n d T e s t i n E u r o p e C o n f e r e n c e &

E x h i b i t i o n (D AT E) , G r e n o b l e , F r a n c e , M a r c h 2 0 1 3 , p p .

4 1 6 - 4 2 4 .

[5 4] J . A a r e s t a d , J . P l u s q u e l l i c , a n d D . A c h a r y y a , “ E r r o r -

to l e r a n t b i t g e n e r a t i o n te c h n i q u e s f o r u s e w i t h a

h a r d w a r e - e m b e d d e d p a t h d e l a y P U F ” , 2 0 1 3 I E E E

I n t e r n a t i o n a l S y m p o s i u m o n H a r d w a r e o r i e n t e d

S e c u r i t y a n d T r u s t (H O S T) , A u s t i n , T X , U S A , J u n e

141

2 0 1 2 , p p . 1 5 1 - 1 5 8 .

[5 5] S . M . A . B . M o k h t a r , a n d W. F . H . W. A b d u l l a h , “ M e m r i s t o r

B a s e d D e l a y E l e m e n t U s i n g C u r r e n t S t a r v e d I n v e r t e r ” ,

I E E E R e g i o n a l S y m p o s i u m o n M i c r o a n d

N a n o e l e c t r o n i c s (R S M 2 0 1 3) , L a n g k a w i , M a l a y s i a ,

S e p t e m b e r 2 0 1 3 , p p . 8 1 - 8 4 .

[5 6] G . S . R o s e , N . M c D o n a l d , L . K . Ya n , B . W y s o c k i , a n d K .

X u , “ F o u n d a t i o n s o f m e m r i s t o r b a s e d P U F

a r c h i t e c t u r e s ” , 2 0 1 3 I E E E / A C M I n t e r n a t i o n a l

S y m p o s i u m o n N a n o s c a l e A r c h i t e c t u r e s (N A N O A R C H) ,

P a r i s , F r a n c e , J u l y 2 0 1 3 , p p . 5 2 - 5 7 .

[5 7] h t t p : / / c s r c . n i s t . g o v / p u b l i c a t i o n s / f i p s / f i p s 1 9 7 / f i p s -

1 9 7 . p d f

[5 8] C.M. Bishop, “Neural networks for pattern recognition”, Oxford University

Press, Oxford, UK, 1995.

[59] L. Rokach, and O. Maimon, “Top-down induction of decision trees – A Survey”,

IEEE Trans. on Systems, Man and Cybernetics, Part C, vol. 35, no. 4, November

2005, pp. 476-487.

[60] V.N. Vapnik, “Statistical Learning Theory”, Wiley & Sons Inc., New York,

September 1998, 768 pp.

[61] D. C. Hendry, A. A. Duncan, and N. Lightowler. “IP core implementation of a

self-organizing neural network” in Proc. IEEE Trans. on Neural Networks, vol.

14, no. 5, September 2003, pp. 1085-1096.

142

http://csrc.nist.gov/publications/fips/fips197/fips-

[62] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural network

implementation in FPGA using layer multiplexing for effective resource

utilization”, IEEE Trans. on Neural Networks, vol. 18, no. 3, May 2007, pp. 880-

888.

[63] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, “Feed-forward support vector

machine without multipliers”, IEEE Trans. on Neural Networks, vol. 17, no. 5,

September 2006, pp. 1328-1331.

[64] J. Han and M. Kamber, “Data mining: Concepts and techniques”, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2006, 772 pp.

[65] L. Breiman, J. H. Freidman, C. J. Stone, and R. A. Olshen, “Classification and

regression trees”, Chapman and Hall/CRC, Boca Raton, FL, USA, January 1984,

368 pp.

[66] A. Bermak, and D. Martinez, “A compact 3D VLSI classifier using bagging

threshold network ensembles”, IEEE Trans. on Neural Networks, vol. 14, no. 5,

September 2003, pp. 1097-1109.

[67] S. Lopez-Estrada, and R. Cumplido, “Decision tree based FPGA-architecture for

texture sea state classification”, in Proc. IEEE International Conference on

Reconfigurable Computing and FPGAs (ReConFig), San Luis Potosi, Mexico,

September 2006, pp. 191-197.

[68] J.R. Struharik, “Implementing decision trees in hardware”, in Proc. IEEE 9th

International Symposium on Intelligent Systems and Informatics (SISY),

Subotica, Serbia, September 2011, pp. 41-46.

[69] Z. Baker and V. Prasanna, “Efficient hardware data mining with the Apriori

143

algorithm on FPGAs”, in Proc. IEEE 13th Symposium on Field Programmable

Custom Computing Machines (FCCM), Seattle, WA, USA, April 2005, pp. 3-12.

[70] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast

discovery of association rules”, in Book Advances in Knowledge Discovery and

Data Mining”, American Association for Artificial Intelligence (AAAI)/MIT

Press, Menlo Park, CA, USA vol. 12, no. 1, 1996, pp. 307–328.

[71] Z.K. Baker and V.K. Prasanna, “An architecture for efficient hardware data

mining using reconfigurable computing systems”, in Proc. IEEE 14th annual

Symposium on Field Programmable Custom Computing Machines (FCCM),

Napa, CA, USA, April 2006, pp. 67-75.

[72] J.C. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A scalable parallel classifier

for data mining”, in Proc. Society for Industrial and Applied Mathematics (SIAM)

3rd International Conference on Very Large Databases (VLDB), Mumbai

(Bombay), India, September 1996, 544-555.

[73] M.V. Joshi, G. Karypis, and V. Kumar, “ScalParC: A new scalable and efficient

parallel classification algorithm for mining large datasets”, in Proc. IEEE 11th

International Parallel Processing Symposium (IPPS), Orlando, FL, USA, March-

April 1998, pp. 573-579.

[74] Q. Li and A. Bermak, “A low-power hardware-friendly binary decision tree

classifier for gas identification”. Journal of Low Power Electronics and

Applications, vol. 1, no. 1, April 2011, pp. 45-58.

[75] T.O. Bachir, M. Sawan, and J. Brault, “A new hardware architecture for sampling

the exponential distribution”, in Proc. IEEE Canadian Conference on Electrical

144

and Computer Engineering, Niagara Falls, ON, Canada, May 2008, pp 1393-

1396.

[76] V. Podgorelec, and P. Kokol, “Evolutionary induced decision trees for dangerous

software modules prediction”, Information Processing Letters, Elsevier Science

Publishers B.V., vol. 82, no. 3. February 2002, pp. 31-38.

[77] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “Novel and highly

efficient reconfigurable implementation of data mining classification tree”, in

Proc. IEEE 21st International Conference on Field Programmable Logic and

Applications, Chania, Greece, September 2011, pp. 411-416.

[78] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “HC-CART: A

parallel system implementation of data mining classification and regression tree

(CART) algorithm on a multi-FPGA system”, Association for Computing

Machinery (ACM) Transactions on Architecture and Code Optimization (TACO),

vol. 9, no. 4, article 47, 25 pp, January 2013.

[79] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, “The

WEKA data mining software: An update”, Association for Computing Machinery

(ACM) SIGKDD Explorations Newsletter, volume 11, issue 1, June 2009, pp. 10-

18.

[80] A. Frank and A. Asuncion, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science, 2010.

[81] G. Melli, “Dataset Generator (Datgen)”, version 3.1, 1999

http://www.datasetgenerator.com

145

http://www.datasetgenerator.com/
http://archive.ics.uci.edu/ml/citation_policy.html

