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ABSTRACT

Both random and systematic within-die process variations (PV) are growing more 

severe with shrinking geometries and increasing die size. Escalation in the variations in 

delay and power with reductions in feature size places higher demands on the accuracy of 

variation models. Their availability can be used to improve yield, and the corresponding 

profitability and product quality of the fabricated integrated circuits (ICs). Sources of 

within-die  variations  include  optical  source  limitations,  and  layout-based  systematic 

effects  (pitch,  line-width  variability,  and  microscopic  etch  loading).  Unfortunately, 

accurate models of within-die PVs are becoming more difficult to derive because of their 

increasingly sensitivity to design-context.  Embedded test  structures (ETS) continue to 
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play an important role in the development of models of PVs and as a mechanism to 

improve  correlations  between  hardware  and  models.  Variations  in  path  delays  are 

increasing with scaling, and are increasingly affected by “neighborhood” interactions. In 

order to fully characterize within-die variations, delays must be measured in the context 

of actual core-logic macros. Doing so requires the use of an embedded test structure, as 

opposed to traditional scribe line test structures such as ring oscillators (RO). Accurate 

measurements of within-die variations can be used, e.g., to better tune models to actual 

hardware (model-to-hardware correlations).

In  this  research  project,  I  propose  an  embedded  test  structure  called  REBEL 

(Regional  dELay BEhavior)  that  is  designed  to  measure  path  delays  in  a  minimally 

invasive fashion; and its architecture measures the path delays more accurately. Design 

for manufacture-ability (DFM) analysis is done on the on 90 nm ASIC chips and 28nm 

Zynq  7000  series  FPGA boards.  I  present  ASIC  results  on  within-die  path  delay 

variations in a floating-point unit (FPU) fabricated in IBM’s 90 nm technology,  with 5 

pipeline stages,  used as a test vehicle in chip experiments carried out at nine different 

temperature/voltage (TV) corners.  Also experimental  data  has  been analyzed for path 

delay variations in short vs long paths. FPGA results on within-die variation and die-to-

die variations on Advanced Encryption System (AES) using single pipelined stage are 

also presented.  Other analysis that have been performed on the calibrated path delays are 

Flip  Flop  propagation  delays  for  both  rising  and  falling  edge  (tpHL  and  tpLH), 

uncertainty analysis, path distribution analysis, short versus long path variations and mid-

length path within-die variation. I also analyze the impact on delay when the chips are 

subjected to industrial-level temperature and voltage variations. From the experimental 
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results, it has been established that the proposed REBEL provides capabilities similar to 

an off-chip logic analyzer, i.e., it is able to capture the temporal behavior of the signal 

over time, including any static and dynamic hazards that may occur on the tested path. 

The ASIC results further show that path delays are correlated to the launch-capture (LC) 

interval  used  to  time  them.  Therefore,  calibration  as  proposed  in  this  work  must  be 

carried out in order to obtain an accurate analysis of within-die variations.  Results on 

ASIC chips show that short paths can vary up to 35% on average, while long paths vary 

up to  20% at nominal temperature and voltage.  A similar  trend occurs for within-die 

variations of mid-length paths where magnitudes reduced to 20% and 5%, respectively. 

The magnitude of delay variations in both these analyses increase as temperature and 

voltage  are  changed  to  increase  performance.  The  high  level  of  within-die  delay 

variations are undesirable from a design perspective, but they represent a rich source of 

entropy for  applications  that  make use  of  “secrets”  such as  authentication,  hardware 

metering and encryption. Physical unclonable functions (PUFs) are a class of primitives 

that leverage within-die-variations as a means of generating random bit strings for these 

types of applications, including hardware security and trust.

Zynq FPGAs Die-to-Die and within-die variation study shows that on average 

there is 5% of within-Die variation and the range of die-to-Die variation can go upto 3ns. 

The die-to-Die variations can be explored in much further detail to study the variations 

spatial dependance.

Additionally, I also carried out research in the area data mining to cater for big 

data  by  focusing  the  work  on  decision  tree  classification  (DTC) to  speed-up  the 

classification step in hardware implementation. For this purpose, I devised a pipelined 
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architecture for the implementation of axis parallel binary decision tree classification for 

meeting up with the requirements of execution time and minimal resource usage in terms 

of  area.  The motivation  for  this  work  is  that  analyzing  larger  data-sets  have  created 

abundant opportunities for algorithmic and architectural developments, and data-mining 

innovations,  thus  creating  a  great  demand  for  faster  execution  of  these  algorithms, 

leading towards improving execution time and resource utilization. Decision trees (DT) 

have  since  been  implemented  in  software  programs.  Though,  the  software 

implementation  of  DTC  is  highly  accurate,  the  execution  times  and  the  resource 

utilization  still  require  improvement  to  meet  the  computational  demands  in  the  ever 

growing  industry.  On  the  other  hand,  hardware  implementation  of  DT has  not  been 

thoroughly  investigated  or  reported  in  detail.  Therefore,  I  propose  a  hardware 

acceleration of pipelined architecture that incorporates the parallel approach in acquiring 

the data by having parallel engines working on different partitions of data independently. 

Also, each engine is processing the data in a pipelined fashion to utilize the resources 

more  efficiently  and  reduce  the  time  for  processing  all  the  data  records/tuples. 

Experimental  results  show  that  our  proposed  hardware  acceleration  of  classification 

algorithms has increased throughput, by reducing the number of clock cycles required to 

process the data and generate the results, and it requires minimal resources hence it is 

area efficient. This architecture also enables algorithms to scale with increasingly large 

and  complex  data  sets.  We  developed  the  DTC  algorithm  in  detail  and  explored 

techniques for adapting it to a hardware implementation successfully. This system is 3.5 

times faster than the existing hardware implementation of classification.
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1 Introduction

CHAPTER 1 
Introduction

Both random and systematic within-die process variations (PV) are growing more 

severe  with  shrinking  geometries  and  increasing  die  size  [1]  [2]  [3].  Embedded  test 

structures (ETS) continue to play an important role in the development of models of PVs 

and as a mechanism to improve correlations between hardware and models. Variations in 

delay and power continue to increase with reductions in feature size, which places higher 

demands on the accuracy of variation models. Their availability can be used to improve 

yield, and the corresponding profitability and product quality of the fabricated ICs [4]. 

Decision  tree  classification  (DTC)  is  a  widely used  technique  in  data  mining 

algorithms known for its high accuracy in forecasting. As technology has progressed, and 

available storage capacity in modern computers increased, the amount of data available to 

be processed has also increased substantially,  resulting in  much slower induction and 

classification  times.  Many  parallel  implementations  of  decision  tree  classifications 

algorithms have addressed the issues of reliability and accuracy in the induction process. 

In  the  classification  process,  larger  amounts  of  data  require  proportionately  more 

execution time, thus hindering the performance of legacy systems. Hence, to cater for big 

data for data mining, further work on decision tree classification (DTC) to speed-up the 
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classification step in hardware implementation cannot be overemphasized.

 1.1 Sources of Within-Die Variations

Sources of within-die  variations include optical  source limitations,  and layout-

based systematic effects (pitch, line-width variability, and microscopic etch loading [5] 

[6] [7]. Unfortunately, accurate models of within-die PVs are becoming more difficult to 

derive because of their increasingly sensitivity to design-context. Stand-alone embedded 

test  structures  such  as  ring-oscillators  (ROs)  are  becoming  less  effective  for 

characterizing delay variations in actual product macros because they are typically placed 

around the layout region of the macro as opposed to being integrated into it.  In such 

circumstances,  ring  oscillators  (ROs)  are  not  exposed  to,  e.g.,  the  same  types  of 

distortions which are introduced by photo-lithography interference patterns [8]. Some of 

the proposed ETS, such as those that measure delay characteristics of the macro itself [9] 

[10],  offer  the  best  solution,  but  are  difficult  to  integrate  without  having an  adverse 

impact  on area overhead,  yield loss,  performance,  I/O interface,  test  cost,  etc.  of the 

product design. 

 1.2 Proposed Embedded Test Structure (ETS)

For accurate measurement of within-die variations, we propose and investigate an 

embedded test  structure  (ETS),  called  REBEL (Regional  dELay BEhavior),  which  is 

designed to measure path delays in macros while minimizing the adverse effects on area 

overhead,  yield  loss,  performance,  etc.  The  proposed  ETS  is  designed  to  serve 

applications such as model-to-hardware correlation [11], detection of hardware Trojans 

[12],  design  debug  processes,  detection  of  small  delay  defects  [13],  and  physical 

unclonable functions [14]. Each of these areas requires accurate measurements of path 
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delays and/or the ability to differentiate at high resolutions between delays of neighboring 

paths. The REBEL ETS leverages the scan chain architecture to measure delay variations. 

In particular, it uses a special configuration of flush delay mode that is available in level 

sensitive scan design (LSSD) style scan chains. In previous work [15], the promise of 

capturing  regional  delay  variations  using  a  special  launch-capture  timing  sequence 

applied while in flush delay mode has been demonstrated. We extended this technique 

here by allowing output signals from a design macro to be inserted into the flush delay 

chain for path delay measurements.

A key feature of our work is the evaluation of REBEL in multiple copies of a 

custom designed test chip fabricated in IBM’s 90nm technology. The macro in which 

REBEL is integrated is an IEEE-754 compliant floating point unit (FPU), with 5 pipeline 

stages. Random test patterns are applied to the combinational logic within each of the 

pipeline stages and the measured delays are analyzed, with emphasis on evaluating the 

magnitude  of  within-die  variations  as  a  function  of  path  length.  A second  important 

component of our experiments is the evaluation of delay variations while the chips are 

subjected to industrial-level temperature and voltage (TV) variations.

 1.3 Decision Tree Classification (DTC)

The  process  of  converting  unidentified  or  unprocessed  data  into  actionable 

information that  is  important and valuable to the user is  known as data  mining [16]. 

Recent advances in technology and ever increasing demands for analyzing larger datasets 

have created abundant opportunities for algorithmic and architectural development and 

innovations.  Hence  data  mining  algorithms  have  become increasingly  significant  and 

complex.  Similarly there  is  a  great  demand for  faster  execution  of  these  algorithms, 
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leading to efforts to improve execution time and resource utilization.

Decision Tree Classification (DTC) is  a widely used technique in data mining 

algorithms known for its high accuracy in forecasting. As technology has progressed and 

available storage capacity in modern computers increased, the amount of data available to 

be processed has also increased substantially,  resulting in  much slower induction and 

classification  times.  Many  parallel  implementations  of  decision  tree  classification 

algorithms have addressed the issues of reliability and accuracy in the induction process. 

In  the  classification  process,  larger  amounts  of  data  require  proportionately  more 

execution time, thus hindering the performance of legacy systems. We have devised a 

pipelined  architecture  for  the  implementation  of  axis  parallel  binary  decision  tree 

classification  that  dramatically  improves  the  execution  time  of  the  algorithm  while 

consuming minimal resources in terms of area.

 1.4  Organization

The  balance  of  this  dissertation  is  organized  as  follows:  chapter  2  discusses 

related work and background on process variation. chapter 3 describes the details of the 

REBEL ETS while chapter 4 describes the integration of REBEL into the FPU and AES 

(Experimental setup). In chapter 5, I present the results of hardware experiments, chapter 

6 presents the results of experiments on FPGAs, Chapter 7 discusses the implementation 

of  proposed  architecture  of  parallel  implementation  of  pipelined  decision  tree 

classification engine. Chapter 8 summarizes the work and contains conclusion. Chapter 9 

encompasses  suggestions for the future work.
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2 

CHAPTER 2
Background

Process variation (PV) is a challenge of Integrated circuit  design in the newer 

technologies with the shrinking node sizes. Variation can be defined in terms of die-to-die 

and within-die variation, where die-to-die variations can be due to change in temperature 

or processing conditions. These changes can be captured using scribe line test structures 

or  small  amount  of  embedded  test  structures  are  sufficient  for  die-to-die  variations 

coverage.

Within-die variations on the other hand are caused by across-field effects [17]  in 

compassing the layout  design techniques,  optical  aberration and other  random effects 

such as  dopant  fluctuations.  Within-die  characterization  requires  more  density of  test 

structures to capture the variations in all regions.

 2.1 Test Structures for Within-Die Delay Measurement 

Monitoring die-to-die and within-die requires distributing embedded test 

structures  across  and within chips  in  order  to  capture  the  overall  wafer-to-wafer  and 

within  chip  systematic  variations  with  spatial  correlations.   Within-die  and die-to-die 

delay analysis of delay variations continues to be an active research area. Ring oscillators 
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(RO) based test structures have been successfully used to characterize within-die delay 

variations in ASICs and FPGAs  [9] [10] [17] [18] [19] [20] [21].

The simplicity of the RO design makes it an attractive modality as an ETS. Tuan 

et al. [17] proposed a scheme of creating an RO from the path-under-test to measure the 

critical path delays.  Das et al. [18]  constructed a digitally re-configurable RO structure 

for measuring the gate-level delays and reported measurement accuracy of 1 ps and up to 

26% within-die delay variation in 65nm technology.

Bhushan et al.  [19] presented an RO-based variability measurement scheme and 

illustrated the experimental results from a 90nm technology node. RO based designs are 

also used to measure within-die variability in 90nm and 65nm FPGAs [17] [20] [21]. 

Several on-chip analog measurement systems are proposed by Kinniment et al. [22] to 

accurately measure the on-chip path timing differences with a resolution of 10ps. They 

explain the time measurement techniques utilizing parallel mutex with a tapped delay 

line, successive approximation method and amplification of small time differences to a 

measurable  size  in  different  proposed time  measurement  approaches.  A measurement 

system is  proposed to  characterize  individual  gate  delays  using  an  on-chip  sampling 

oscilloscope. Also a within-die variation characterization system is proposed by Zhang et 

al. which also uses an on-chip sampling oscilloscope [23]. Stand-alone RO-based delay 

measurements  lack  the  ability to  account  for  “circuit  context”.  Macro  embedded RO 

schemes,  such as Path RO [10], can only be applied to hazard free and robust paths. 

These kinds of embedded test structures, where a set  of ring oscillators is distributed 

cross  the  layout,  are  capable  of  capturing  within-die  variations,  but  are  becoming 

increasingly less accurate as predictors of delay variations in actual product macros.
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Various Time-to-Digital converters (TDCs) have been proposed for on-chip delay 

measurements with resolution as high as 5 ps and with low thermal sensitivity [11] [24] 

[25] [26]. Tapped delay lines are used by Dudek et al. [24] TDC using a technique vernier 

delay line with the a read-out circuitry, and achieved a 30 ps resolution with 128 delay 

stages and showed up to 5 ps is reachable using this methodology. Similarly, Datta et al. 

measured path delay by Modified Vernier Delay Line (MVDL), which digitizes the path 

delay forming MVDL and improves the resolution of delays [27].  However, to achieve 

the  high  accuracy measurement  is  sensitive  to  the  symmetric  routing  in  branches  of 

MVDL, which will constrain the place and route tool [28]. Another TDC is proposed and 

designed with a resolution of 10ps [11], it measures the delay difference between two 

path signals out of several paths which are fanned out to the TDC from the macro-under-

test. The delay between the two transitions produces a negative-going pulse with a width 

proportional to that difference of the transition timing of the glitch free paths. The TDC 

scheme, just like RO restricts their coverage because of condition of having glitch free 

paths. Also analog measurement systems and TDCs have large area overheads.

 Truly embedded test structures, such as those that measure delay [9] [10] [15], 

and power [29] characteristics of the macro itself, offer the best solution. Path-RO creates 

an oscillator from the given path to measure the delay on chip, capturing the process 

variations [10] but this solution is difficult to integrate without having an adverse impact 

on  area  overhead,  and  test  cost,  etc.  of  the  product  design.  Whereas  another  novel 

technique proposed by Acharyya  et  al.  [29]  that leverages the existing power control 

circuitry,  added  to  reduce  the  power  consumption,  and  measures  the  leakage  current 

variation of these modules and this variation thus reflects the current variation across the 
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chip. The use of multiple power supply port measurement technique is incorporated to 

measure the within-die leakage current. 

A LSSD-style scan-chain-based embedded test structure is proposed by Lamech et 

al.  [11] and Aarestad et al. [15], utilizing the inherent flush delay mode for obtaining 

single-shot measurements of path delays in product macros induced by the history effect. 

This test structure leverages the existing scan structure and can be used to characterize 

the  within-die  delay  variations  by  measuring  the  path  delays  of  the  macros.  The 

embedded test scheme is called REBEL, a detailed description and analysis is performed 

in chapter 3. This proposed structure uses at-speed clock to measure the path delays for 

both short and long paths. The advantage of using the at-speed clock over the faster-than-

at-speed clock is that the delays are more realistic and the supply voltage transience does 

not deteriorate the measured delay values and the path delay measurements are closer to 

the actual delays.  I have used this technique for the experiments performed to examine 

the within-die variation of the 90nm test chips.

2.1.1. Delay Measurements of Individual Gates 

Authors  [18]  proposed a modified re-configurable ring oscillator to measure 

individual gate delay.  The delay was averaged for the falling and the rising transition and 

showed up-to 26% within-die variation among the identical inverters which were placed 

close by on the chip. Symmetric multiplexers of large size having balanced delay and a 

set of inverters were used in the gate delay measurement cell, where cell was replicated in 

five  stages  for  the  delay  measurement  mechanism. A Pico-second Imaging Circuit 

Analysis was used to digitize the delay by counting the infra-red photons captured from 

the chip. The gate delay measurement of individual standard cells helped in 
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characterizing the stress, neighboring effect and other effects more efficiently.

Furthermore,  in  another measurement system for characterizing an on-chip 

within-die delay variations of standard cells, for both falling and rising edges, was 

proposed by Zhang et al. using sampling oscilloscope with a pico-second resolution  [23] 

[30]. It displayed a strong correlation between the on-chip measurements and Monte-

Carlo simulation. The experimental results confirmed that the delay variations of the on-

chip are smaller for the gates with the bigger active area, and the NMOS has bigger 

variation than the PMOS.

 2.2 Design and Environment Effects on Within-Die Variations 

The  environmental  factors  can  affect  the  behavior  of  a  semiconductor 

circuit,  like  the  temperature  or  supply  voltage  for  a  given  process.  Also  the  device 

parameters, for example the length of transistor, oxide thickness may vary caused by the 

non-uniformity in the manufacturing process.

There are many sources which can affect the fabrication process and to create an 

adequate  model  for  characterizing  delay  variation  it  is  important  to  identify  these 

parameters. The impact of different layout topologies on variation is presented by Pang et 

al. [31], the authors  measured the variability of various test structures and analyzed the 

effects of systematic and random components of within-die variations.  Lithographic 

simulation  capability  in  the  routing  engine  can  improve  the  product  yield  [8]  by 

identifying  and  modifying  the  patterns  in  the  layout  to  avoid  lithography hot  spots. 

Reticle Enhancement technology is discussed by Grobman et al.  [32] and usage of other 

optimized  techniques  to  achieve  planarity  in  manufacturing  process  for  the  sub-

wavelength technologies for better circuit timings.
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Analysis of temperature dependence has  been  performed on the sub-threshold 

circuit 40nm chip [33]. The device under test had a 16x16 array with each unit having 8 

ring oscillators, where they are  placed in different supply voltage regions and later the 

outputs are level shifted to the nominal voltage. The variation was measured as deviation 

of delay/mean and showed that the variation was 1.4 times more when the temperature 

was dropped from 25oC to -40oC  [33].  This variation was inversely proportional to the 

temperature, that is, the with-die delay variations were larger when the temperature was 

lowered.

 2.3 Within-Die Variations in FPGAs Reconfigurable Logic 

In the domain of FPGAs re-configurable logic, techniques for the measurement of 

within-die variation is discussed by Sedcole et al. [21] in 90nm FPGAs and by Tuan et al. 

[17] in 65nm FPGAs. The effect of both random and systematic process variation on 18 

Altera Cyclone II devices with 5 stage and 7 stage ROs was measured by  Wang et al. 

[34]. 

 For 90nm, the measure of process variation in 10 FPGA's using 135 stage ring 

oscillators is performed also the within-die delay variation  characterization is performed 

with a small number of oscillator stages and shows that the mean random variation is ± 

3.54%  and  systematic  variation  can  vary  the  delay  up  to  3.66%  additionally  [21]. 

Whereas,  for  65nm FPGA family  a  detailed  analysis  of  the  within-die  variations  is 

performed with the test structures implemented on the re-configurable logic, each created 

with four configurable logic blocks [17]. Using a large number of ring-oscillators, the 

analysis is performed on rising and falling edges independently and the data is processed 

to distinguish between the random and systematic variations. The results showed that the 
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random variation followed Gaussian distribution whereas the systematic variation was 

further  modeled  in  the  software  timing  models  to  evaluate  the  optimization  of 

performance  using  a  variation  aware  timing  model,  by  calculating  the  maximum 

frequency for each design.

 2.4 Impact of Within-Die Spatial Process Variations

2.4.1 Clock Frequency

A design  with  low overhead  for  calibration  of  maximum frequency has  been 

proposed by Paul et al. [9]; where at the given voltage sensitivity, small set of paths is 

configured  into  a  ring  oscillator  and  the  maximum  frequency  of  a  given  chip  is 

dynamically computed. Hence, the need of delay testing at operating voltages with all 

frequencies is eliminated through binning each chip into categories of different voltages 

and frequencies.

The product level variations for single and multi-core processors were simulated 

for maximum clock frequency and optimized throughput for 22nm technology [35]. They 

statistically measured the impact of parameter variations and compared the performance 

of multi-core processors with the single core processors and showed that multi-core 

processors were more variation tolerant because of the greater impact of memory latency 

and bandwidth on throughput.

Similarly possibilities of mitigating the performance loss was investigated by 

Palframan et al. [36], by introducing redundancy along the processor datapath in the form 

of one or more extra bit slices, leaving the dummy slices in the datapath unused to avoid 

excessively slow critical paths created by delay variation, which showed the reduction of 

delay penalty by 10% or more caused by the variation.
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 2.5 Static Timing Analysis

The design environments utilize the static timing analysis for the delay variations 

in the paths through the chip, by considering the worst case delay by assuming all the 

segment delays to be maximum or minimum, which are not realistic  [8]. Each element of 

the path has associated delay and models should be incorporated for process variations to 

do  the  statistical  static  timing  analysis,  to  be  able  to  get  better  model-to-hardware 

correlations.

A technique for computing the delay distribution task as a function of technology 

parameter of a circuit was presented by Mehr et al. [37]. They calculated the mean value 

of delay using normal distribution approximation of normalized delay and skewness of 

the delay distribution from Gaussian distribution; and compared the results with those of 

Monte-Carlo simulations. Channel length variation was engrossed which impacted the 

threshold voltage and load capacitance; and thus affected the gate delay. The study 

incorporated the impact of transistor stacking on the delay, by using Taylor Series. Also, 

it combined the load capacitance parameter to get more accurate delays  [37].

 2.6 Design for Manufacturing and Yield 

The  design  for  manufacturing  (DFM),  and  design  for  yield  [4]  classifies  the 

systematic and statistical variations, caused by the physical defects in the structure of 

transistors  which  can  be  catastrophic,  or  electrical  variations  in  the  composition  of 

transistors, wires or vias, causing parametric defect which allows the chip to function in a 

specified  range  with  varied  power  leakage  [8].   Catastrophic  defects  fails  the  chips, 

whereas, the chips with parametric defects can function but they do not meet the design 

requirements, for example they do not function on the specified range or there is more 
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power leakage than specified.

A need of a DFM aware design tool is vital for the newer technologies where the 

feature sizes are shrinking. A broad range of work is ongoing to develop mechanisms for 

characterizing more accurately the within-die and die-to- die process variations (PV). The 

development of area-efficient structures and methods for validating variation models for 

the  newer  technologies  is  of  greater  importance,  where  the  feature  sizes  are  getting 

smaller than the wavelength of the light used to create them [8]. The physical variations 

also contributes more variation on the scaling devices, as a larger impact is produced on a 

smaller device size and causes a huge variation as compared to the larger devices.

The physical device parameters determine the behavior of the device and predicts 

the  performance  changes  with  the  environmental  factors,  by  the  variability  in  the 

fabrication process. These variations are captured with the conventional test structures, 

but the process variations are getting more sensitive to the design context,  which the 

traditional test structures residing on a different region then the actual macro cannot truly 

capture.  

The die-to-die level variations can be captured with the limited number of test 

structures for testing and measurement. The test structures currently being used include, 

scribe-line structures, or a fewer number of ring oscillators embedded test structure to 

capture the variations. This methodology is not effective for characterizing the within-die 

and context-sensitive variations. Process Variations are more challenging to measure and 

model in within-die context, which includes the across field effects. The main sources of 

these are due to optical source limitations, and layout-based systematic effects [17]. Also 

pitch, line-width variability, and microscopic etch loading are the sources of variations 
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from the manufacturing process [5] [6] [7].  

 2.7 Applications of Die-to-Die and Within-Die Variations

The process variations in the devices can be used for the identification [34] [35] 

[36] [37], authentication [38] [39] and generating unique keys for encryption, benefiting 

the nature of variations being random. The concept of using the manufacturing process 

variations as identifiers for integrated circuits  is  recent  and is  being used in physical 

unclonable functions (PUF). Where each device has its individual characteristics and it is 

impossible to have an exact duplicate, even if the same manufacturing process was used 

in the production. There are a large number of PUFs, which can be classified in many 

categories,  e.g.,  Memory  based,  Delay  based,  and  power  grid  PUFs  which  uses  the 

process variation to produce unique identification mechanisms.

2.7.1. Hardware Security

Computing platforms are being increasingly deployed  in  many  critical 

infrastructures  such  as  smart  grid,  financial  systems,  sensitive  governmental 

organizations  etc.,  where  consequences  of  a  successful  security  attack  could  be 

potentially serious. Thus, these applications of computing platforms in high-risk areas 

motivate the need to build platforms with enhanced security.

The  computing  platforms  are  multifaceted  and  generally  comprise  of 

architectures, operating systems and routine libraries. For normal operation, they require 

interaction between numerous hardware components such as processor, chipset, memory 

and  peripherals.  In  order  to  maintain  security  of  these  computing  platforms  it  is 

essentially required to ensure that there are no known security deeds present in the run-
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time  interaction  between  these  hardware  units  exploitable by attackers.  However, 

validating complete security of the computing platforms may be difficult and inflexible 

because of the fact that there are a large number of elements in the hardware units and 

their  mutual  interaction  is  influenced  by  many  control  signals  [40].  Tempering, 

duplicating and theft of service have become a grave concern for hardware vendors as it 

may have  adverse  effects  on their income and reputation.  For  providing  protection 

against this menace,  hardware security built on cryptographic primitives using keys 

can be used. These keys are usually stored somewhere in the hardware. Therefore, the 

strength of the security depends m a i n l y  on the effort required by  attackers  to 

compromise  them.  The  attackers  have  developed  very  advanced  tools  for  attacking 

hardware. This has reduced and minimized the protection provided by storing a key in 

memory.

Physically Unclonable Functions (PUFs) can also  be used to protect devices 

against attacks on their keys. PUFs are primitives that extract secrets from physical 

characteristics of integrated circuits (ICs) and can be used, inter alia, for protected key 

storage [41]. A PUF is a function that is embodied in a physical structure that consists of 

many random  uncontrollable components.  These  primitives  are  produced  during 

manufacturing  mainly because  of  process variations.  Due to  this  random structure  a 

physical inducement or challenge generates unpredictable responses. Because of their 

physical  properties PUFs  are nonreplicable  and  very  promising  primitives  for the 

purpose of authentication and storage of cryptographic keys [42].

Random  variations  in  physical properties of chips  are  used  by  PUFs  to 

differentiate one chip from another, and are impossible  to  duplicate  even  by  the 
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manufacturer.  Although  process  variations  are  effectively  impossible  to  control  or 

eliminate, but they can be measured. The specific varying properties exploited by the 

PUF  can  differ from  one  PUF  design  to  another.  However,  common sources  of 

parametric variation include propagation delay, metal resistance, transistor drive strength, 

and mismatches between complementary transistors [14].

PUFs  are  used  in  a  number  of  security  applications  like  authentication, 

identification, and secure key generation. PUF implementations are evaluated on their 

security characteristics  (i)  uniqueness,  (ii)  randomness,  and (iii)  reliability as  well  as 

conventional VLSI design metrics including area, power, and performance [43]. PUFs 

can take many forms among which some of the common ones are optical PUFs, paper 

PUFs,  coating  PUFs  and silicon  PUFs.  In  order  to  identify silicon devices, further 

variants include PUFs based on delays in a silicon circuitry such as arbiter PUFs and 

ring-oscillator PUFs, and PUFs based on the start-up behavior of memory cells such as 

SRAM PUFs, butterfly PUFs and flip-flop PUFs [44].

Potlapally [40] presented an overview of methods adopted to cater for intricacy of 

validating security of hardware in an industrial setting, and highlighted opportunities for 

the  security  research  community  pertaining  to  hardware  security  validation;  while 

Handschuh [44] provided an overview of the state of the art in research on memory PUFs 

specifically on SPRAM PUFs and presented results from industrialization of such PUFs.

Kursawe et  al.  [42]  introduced a  reconfigurable optical  PUF,  based on phase change 

memory, with a mechanism to convert it into a new unpredictable and uncontrollable 

challenge-response behavior. The description of their scheme however omitted possible 

optimizations. Quality factors of ring oscillator (RO) based PUF are negatively affected 
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by environmental noise and systematic variations in the die. To address this problem, 

Maiti and Schaumont [45] proposed two methods to achieve a higher reliability in an RO-

based PUF, and attempted to verify their results using a small sample size of only five 

FPGAs.

The reliability of PUFs implemented in CMOS circuits is normally affected by 

environmental conditions such as voltage and temperature. Kumar et al. [46] investigated 

two methods for improving the reliability of delay based PUFs, by reducing temperature 

sensitivity. The first method focused on improving the gate overdrive by operating the 

PUF  at  an  optimized  supply  voltage.  The  second  method  explored  the  negative 

temperature coefficient  property  of  source  feedback resistors.  They  reported  16% 

improvement in reliability  for  both  these  methods.  Subsequently,  Kumar  et  al.  [47] 

proposed a temperature-invariant ring oscillator PUF architecture based on serial-input 

serial-output (SISO) topology interpreting the relative phase difference between two ring 

oscillators to a digital response bit. They reported that this phase difference based 

response generation was superior to frequency based response generation in terms of 

area and power.

Hori et al. [48] developed a physical unclonable function (PUF) with a hardware 

architecture  structure  as  a  large  combinational  logic.  In  this  research  work,  the  long 

feedback signal extracted the device variation. Accordingly, the output IDs generated in 

the  different  devices became  different  from  each  other.  The  authors  have  not  yet 

evaluated the indemnity against the existing attacks such as model-building attacks.

Schrijen  and  Leest  [49]  investigated  the  reliability  and  uniqueness  of  static  random 

access memories (SRAMs) ranging from 180nm to 65nm in different technology nodes 
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when used  as  PUF.  The  authors  presented  quantitative  results  but  did  not  give  any 

technology or architecture analysis as they did not have access to SRAM architectures of 

all of the tested memories.

For integration of PUFs into low-power and security applications, Lin et al. [50] 

studied the effects of process technology and supply voltage scaling on arbiter-based 

PUF circuit design. Using Monte Carlo-based statistical analysis, they demonstrated that 

advanced technologies and reduced supply voltage could improve the PUF uniqueness 

due to increased delay sensitivity.

Simon  et  al.  [41]  evaluated and  compared  reliability  and  uniqueness  of 

Buskeeper PUF developed by them with those of D Flip-Flop (DFF) PUFs. The quality 

of bit strings generated by PUFs based on resistance variations, in the power grid metal 

wires and transistor on-resistance in 90 nm chip as well as in the power grid metal wires 

of 5 65 nm chip, was analyzed by Ju et al. [51]. The authors also investigated a voltage 

threshold technique to  eliminate  unstable  bits.  They reported that  the PUF primitives 

generated cryptographic quality bit strings of length up to 1.6M bits. Bhargava et al. [43] 

compared bi-stable based PUFs (SRAM and sense amplifiers) and delay based PUFs 

(arbiter and ring oscillator) using measurements from a test-chip in 65nm bulk CMOS. 

Their reliability measurements  were based  on multiple  evaluations of  PUF  circuits 

across operating voltage ranging from 1.0V to 1.4V and temperature ranging  from 

-20◦C to 85◦C. They reported that bi-stable PUFs were more area-efficient than the delay-

based PUFs.

Kumar and Burleson [52] presented a password based hardware authentication 

using PUF, called (PHAP), w h i c h  w a s  able to distinguish between a trusted party 
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and an adversary based on a simple user password during authentication. They showed 

that the time difference between real time execution of the system by a trusted party 

and simulation time by an adversary can be very large. Their simulation results showed 

that the probability of an adversary successfully attacking the system was very low.

The silicon physical unclonable functions (PUF) utilize the uncontrollable variations 

during  integrated  circuit  (IC)  fabrication process  to facilitate  security  related 

applications  such as  IC authentication. Yin  et  al.  [53]  described a framework to 

generate secure PUF secret from ring oscillator (RO) PUF. Their  work is  based on 

group-based RO PUF, utilizing the concepts including (i) an entropy distiller to filter the 

systematic  variation,  (ii)  a  simplified grouping  algorithm  to  partition  the  ROs  into 

groups,  (iii)  a  syndrome coding scheme to facilitate error correction,  and  (iv)  an 

entropy packing method to enhance coding efficiency and security. They demonstrated 

that these concepts can create PUF secret that can pass the NIST randomness and 

stability tests.

A hardware-embedded delay PUF was  designed by  Aarestad  et  al.  [54]  to 

leverage path delay variations that occur in the core logic macros of a chip to create 

random bit strings. The bit strings produced by a set of 30 FPGA boards were evaluated 

for uniqueness, randomness, and stability. They also  proposed  an error avoidance 

scheme which provided significant improvement against bit-flip errors in the bit strings. 

Recently,  Aarestad  et  al.  [14]  presented  a  PUF,  called  HELP,  based  upon path-delay 

variations. The HELP is capable of (i) comparing paths of widely differing lengths, (ii) 

reducing the area cost and providing a relatively small amount of entropy, ( i i i ) 

minimizing invasive design  with low area and performance impact, and 4) 
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p r o v i d i n g  a hardware-embedded PUF engine requiring no external  testing 

resources.  Further,  HELP possesses a  large number of  paths  typically found in logic 

macros such as the advanced encryption standard (AES). This large source of entropy 

enable HELP to generate large bitstrings, for achieving bit stability and avoiding errors. 

To prove this PUF concept, and to demonstrate its effectiveness, the authors designed a 

complete,  functional FPGA-based implementation of this PUF and validated  it  on 

FPGA boards. Their  results of hammering distance and NIST statistical  test  analysis 

established that the bitstrings, being of high quality, are unique and random, and hence 

appropriate for cryptographic applications.

In their review on some applications of memristor, Mokhtar and Abdullah [55] 

described  that  LTspice  memristor  model  is  used  to  simulate  memristor  behavior  and 

applied to the basic delay element circuit. It controls the current flowing to the parasitic 

capacitor, thus controlling the delay. As process variations become more prevalent due to 

technology scaling  into  the  nanometer regime,  nano-electronic technologies  such as 

memristors  become  viable  options  for improved security in emerging integrated 

circuits. Rose et al. [56] provided an overview of memristor-based PUF structures and 

circuits that illustrate the potential for nano-electronic hardware security solutions.

 2.8 Summary
 In my research, I present REBEL (regional delay behavior) as an embedded test 

structure (ETS), for path delay measurement that can be utilized for measuring within-die 

variation, and in several other applications, for example, Trojan detection, delay defects 

detection,  and  Physical  Unclonable  Functions.  I  describe  the  detailed  architecture  of 

REBEL and demonstrate its effectiveness for measuring delays and capturing the within-
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die  variations  caused  by  the  environmental  and  physical  process  variations.  I  have 

integrated REBEL with a functional macro on the 90nm chips as well as on the 28nm 

Zynq FPGA to illustrate the effectiveness and efficacy of REBEL in measurement of 

within-die  variations.  REBEL is implemented on FPU (Floating Point  Unit)  in 90nm 

process technology and on AES (Advanced Encryption Standard) on 28nm FPGA boards; 

I have gathered and analyzed data from 52 copies of 90nm chips and 11 copies of FPGA 

boards. The results are elaborated in chapter 5 and chapter 6. Subsequently, in Chapter 7 I 

discuss the implementation of parallel hardware accelerator on pipelined decision tree 

classification  engine,  Chapter  8  concludes  with  the  benefits  of  REBEL for  various 

applications and summary of the work. Chapter 9 suggests the future work.
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CHAPTER 3
REBEL: Embedded Test Structure

and Macros-Under-Test

Within-die variations are caused by a cross-field effects [17] in compassing the 

layout  design techniques,  optical  aberration and other  random effects  such as  dopant 

fluctuations.  Within-die  characterization  requires  more  density  of  test  structures  to 

capture the variations in all regions.

3.1  REBEL- Regional Delay Behavior

The  embedded  test  structure  called  REBEL  (Regional  dELay  BEhavior)  is 

designed to measure path delays in a minimally invasive fashion; and  its architecture 

measures the path delays more accurately. REBEL can be integrated with the traditional 

scan design which is used in the design for testability, to improve the observability and 

control-ability of the sequential design.  There are many variants of scan cells, mux-D 

scan, LSSD scan and clocked LSSD scan  are most widely used.   In this chapter I discuss 

in detail the modifications needed to integrate REBEL into a clocked-LSSD-style scan 

architecture. 

A REBEL ETS components consist  of a  set  of  scan-chains,  row control  logic 

header  (RCL) and front-end logic for  each scan cell  to  work in  different  operational 
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modes. A row of scan flip-flops (FFs) is shown in Fig. 3.1 along the top which serves to  

launch transitions  into  the  MUT.  The  bottom row is  used  to  capture  transitions  that 

propagate through the MUT. REBEL ETS components are integrated into this row and 

are labeled “row control logic” and “front-end-logic” in the figure. Where the macro-

under-test (MUT)  is the combinational logic from a core logic macro. 

Transitions can be launched into the MUT using standard manufacturing delay 

test strategies such as launch-off-capture and launch-off-shift [28]. In either of these two 

scenarios, the scan chain is loaded with the initial pattern of the 2-pattern test and the 

system clk (Clk) is asserted to generate transitions in the MUT by capturing the output of 

a previous block or by doing a 1-bit shift of the scan chain, resp. The transitions that 

propagate through the MUT emerge on some of its outputs. REBEL allows only one of 

these transitions to be measured at a time in a specific region of the MUT, as indicated by 

the label PUT for path-under-test in the figure. The PUT’s transition normally drives only 

the D input on the capture FF. However, the REBEL component labeled “front-end” logic 

allows this transition to be diverted to the scan input (SI) on the FF. This special logic 

also converts all scan FFs to the right of this insertion point FF into a delay chain. A 

digital snapshot of the signal as it propagates along the delay chain can be obtained by 

de-asserting Clk. The digital snapshot can be used to determine the timing of the PUT, 

and  because  it  captures  the  temporal  behavior  of  the  PUT,  it  can  also  be  used  to 

determine if any glitching occurred. This is a unique and powerful feature of REBEL that 

is fully exploited in this work. 

A special mode called flush-delay (FD) can be used to implement the delay chain in 

LSSD-based scan architectures. FD mode is enabled by asserting both the scan A and B 
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clock signals simultaneously. These signals are labeled “global SCA” and “global SCB” 

in  Fig.  3.1.  With  both  signals  asserted,  both  the  master  and  slave  of  a  scan  FF are 

transparent, allowing any transitions on SI to propagate through both latches after a ∆t 

that represents the delay. 

REBEL is required to implement two additional modes in the capture scan FFs 

shown along the bottom of Fig. 3.1 (in addition to the usual functional and scan modes). 

In particular, the scan FFs to the left of the insertion point need to preserve their contents 

during the Clk launch-capture (LC) event, while the FFs to the right of the insertion point 

need to implement the delay chain. 

These two modes are realized using the RCL block, a special scan chain encoding 

and the front-end logic shown in Fig. 3.1. The mode is controlled by configuring two FFs 

in the RCL block while the scan chain encoding serves to specify the insertion point of 

the PUT. 
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Fig 3.1: REBEL Integration Strategy



Fig. 3.2 shows a schematic diagram of the RCL. The top portion of the diagram 

controls local (row-specifichiefenercon) scan clock signals, labeled SCA_L and SCB_L 

(L for local) while the bottom portion contains two shift registers (Shift Reg) and mode 

select logic. A large portion of the RCL logic is dedicated to allow the scan FFs in the 

capture row, hereafter referred to as row-FFs, to operate in functional or scan modes. The 

chip-wide scan signals labeled ‘global SCA’ and ‘global SCB’ are used to specify one of 

the three possible operational states for the chip. When both are low, functional mode is 

in effect. Scan mode is implemented when these signals are asserted in a non-overlapping 

fashion. The timing mode used by REBEL is in effect when both of these signals are 

asserted, as illustrated by the annotations in Fig. 3.2. 
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Fig 3.2: REBEL Row Control Logic



Shift Register Mode of Operation  Functionality

00 functional mode  All Scan FFs in row are in 
functional mode

01 Flush Delay Continuation mode All Scan FFs in row are in Flush 
Delay Continuation mode 

11/10 Mixed mode Left scan FFs in preserve-contents 
mode, right scan FFs in FD mode, 
referred to as mixed mode

Table 3.1 : Configuration modes for REBEL rows

When REBEL mode is in effect, the specific mode of operation of the associated 

row-FFs is determined by the two shift registers. Table 3.1 identifies the modes for each 

of the four configurations. The bit configuration “01” (FD continuation mode) is required 

only in cases where there are multiple regions in the MUT . Bit  configurations “10” and 

“11” specify the mixed mode described above, where FFs to the left of the insertion point 

are in preserve-content mode while those to the right are in FD mode. The outputs from 

the RCL block shown in Fig. 3.2 are annotated to show the values under each of these 

four bit configurations. Further operational details of the RCL block can be found in [11]. 

Fig. 3.3(a) shows a clocked LSSD FF (CLSSD) used in the FPU macro. It consists 

of three latches. The functional path master-slave (MS) pair shown on the left is driven 

by Clk. The slave latch is dual ported and also serves as the master in the scan path MS 

pair  on the right.  Fig.  3.3(b)  shows the  additional  ‘front-end’ logic for  REBEL. The 

functional path’s D-input is fanned out to a 2-to-1 MUX, which allows for the insertion 

of a macro’s PUT into the delay chain during the REBEL test. 
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 This is accomplished with the mode select logic shown along the bottom of the 

figure. A specific insertion point is selected by pre-loading the row-FFs with a pattern of 

all ‘1’s followed by a ‘0’ from left to right along the row-FFs (see Fig. 3.1). Reference 

[11] provides specific operational details. Note that the front-end logic adds only a small 

capacitive load to the functional path and therefore the impact on performance is very 

small. 
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Fig 3.3 (a) Modified clocked-LSSD scan FF and b) Additional front-end logic



3.2  Floating Point Unit (FPU) Macro 

Fig. 3.4 shows a block level diagram of a floating point unit (FPU) incorporated on 

the chips, as well as the inserted REBEL rows, labeled RRx from 1 to 28. All of the 817 

FFs (56 row header FFs + 761 functional unit FFs) are wired together into a single scan 
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chain with input SI1 shown in the upper left and output SO1 shown along the bottom of 

the figure. A separate set of 70 shift registers are inserted on the inputs (top-most row in 

figure) which serves to enable a launch-off-capture testing strategy [28]. Here, the Input 

Stage P0 is loaded with the 1st pattern while the shift registers are loaded with the 2nd 

pattern. 

The FPU is designed as a 5-stage pipeline, labeled P1 through P5, with MUXes, 

decoders, adder/subtractors, a multiplier, etc. inserted between the pipeline registers. The 

FPU is capable of carrying out 8 different operations, including add, subtract, float-to-

integer, integer-to-float, negation, absolute value, multiplication and division. The 3-bit 

OPCODE shown along the top right in the figure determines the function. All operations 

except division can be carried out with a throughput of one operation/clk cycle. Division 

requires 5 clock cycles to complete with data fed back from the output of pipeline stage 5 

to pipeline stage 2 through the ‘division feedback path’. Given this pipeline structure and 

the constraints  described above regarding REBEL, it  is possible to carry out REBEL 

testing using 4 basic configurations. In the first two configuration, Cfg1 and Cfg2, the 

REBEL rows in pipeline stages P0, P1 and P3 are configured in functional mode while 

those in P2, P4 and P5 are configured in REBEL mode. In configurations Cfg3 and Cfg4, 

the rows in P0, P2 and P4 are configured in functional mode while those in P1, P3 and P5 

are configured in REBEL mode. These 4 configurations collectively allow paths in all of 

the logic blocks to be tested using the REBEL ETS. 

We create 2 configurations, Cfg1 and Cfg2, to handle a limitation that is illustrated 

in Fig. 3.1. In particular, the delay chain for insertion points on the right side of the MUT 

is  very  short  and,  in  fact  is  non-existent  for  the  right-most  insertion  point.  The  FD 
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continuation mode described in reference to Table 3.1 allows REBEL rows to serve as 

extensions of the delay chain. The dotted circles over row pairings RR 10-RR11, RR12-

RR13, etc. (labeled REGIONs) in Fig. 3.4 illustrate how continuation rows are paired 

with mixed-mode rows. For example, RR10 of the RR10-RR11 pairing is configured in 

mixed  mode  which  allows  delays  on  each  of  the  PUT outputs  in  this  region  to  be 

measured, one at a time, while RR11 is used to extend the delay chain so that all insertion 

points can be timed along a non-zero length delay chain, particularly those on the right 

side  of  RR10.  The  circles  illustrate  the  organization  of  mixed-mode  (left)  and 

continuation rows (right) for Cfg11. 

A complementary pattern is used for Cfg 2 so that PUT outputs in, e.g., R11 can 

also be timed with R12 serving as its continuation row. Although only one path in each 

row can be tested at a time, up to 8 paths can be timed simultaneously across the various 

regions.  Given these 4 configurations,  there  are  a  total  of  684 Ffs  that  can  serve as 

insertion points. This number excludes the 56 row header FFs and the 77 FFs in pipeline 

stage P1 (these FFs are always configured in functional mode). 

We apply a random testing strategy to the FPU where the values placed in the 

functional rows are generated by an pseudo-random number generator. In order to allow 

specific functional units to be the target of our testing, we specify the OPCODE bits in 

the functional rows instead of inserting random values as we do for the remaining FFs of 

these rows. The top shift register row identifies the 3 OPCODE bits, which also exist in 

each of the pipeline stages (not shown). For each random pattern, a sequence of REBEL 

tests are applied which configure the position of the insertion point incrementally from 

left-to-right across each of the REBEL mixed-mode rows. Therefore, the same random 
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pattern is applied multiple times as a means of testing all path outputs. The insertion 

point in each RRx mixed-mode row is incremented until the right-most FF becomes the 

insertion point. The number of LC tests per test pattern is determined by the longest rows 

in each configuration, which are given as 34, 34, 33 and 32 for Cfg 1 through Cfg4, resp. 

3.3  Advanced Encryption Standard (AES) Macro 
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Fig. 3.5: AES Engine



In the FPGA implementation of REBEL, the macro under test is a round of AES 

encryption. The combinational logic, shown in Fig 3.5, has an input of 256 and the output 

is also 256 bits. We utilize the input flip flops of the existing logic as launch row and use 

the output row as the capture row. The scan chain is implemented using Mux-D flip flops, 

which  require  only the  system clock  as  compared  to  C-LSSD clock.  The  schematic 

diagram of Mux-D flip flop is shown in Fig. 3.6.

AES engine is a block cipher type of encryption with a block length of 128 bits.  

AES has different versions which allows for three di erent key lengths generation, that is,ff  

128, 192, or 256 bits. The encryption rounds vary with the desired key size, for 128-bit  

key the processing includes 10 rounds, for 192 bit keys, 12 rounds and for 256 bits the 

number  of  rounds  is  14.  Each  round  of  processing  includes  one  single  byte  based 

substitution step using a non-linear substitution table (s-box), a row-wise permutation 

step,  a column-wise mixing step, and the  addition of the round key[57].  Figure (3.7) 

shows the di erent steps that are carried out in each rouff nd.  
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3.3.1 STEP 1, SUB BYTES:  

This  step  performs  a  byte-by-byte  substitution  during  the  forward  process  of 

encryption. It consists of using a 16 × 16 lookup table (s-box) to find a replacement byte 

for a given byte in the input state array.  This substitution operates on each of the State 

bytes independently and the entries in the lookup table are created by using the notions of 

multiplicative inverses and bit scrambling to destroy the bit-level correlations inside each 

byte.  The corresponding substitution step called InvSubBytes is  used during decryption

3.3.2 STEP 2,  SHIFT ROWS: 

Shifting  the  rows  of  the  state  array  during  the  forward  process.  This  step  of 
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transformation  hides  the  byte  order  inside  each  128-bit  or  256-bit  block.  The 

corresponding  transformation  during  decryption  is  denoted  InvShiftRows  for  Inverse 

Shift-Row Transformation.

3.3.3 STEP 3, MIX COLUMNS: 

This step of mixing up of the bytes in each column separately during the forward 

process further shuffles up the 128-bit input block. The shift-rows step along with the 

mix-column step causes each bit of the cipher text to depend on every bit of the plain- 

text after 10-14 rounds of processing. This way each bit of the plaintext affects every bit 

of  the  ciphertext  in  a  block.  The  corresponding  transformation  during  decryption  is 

denoted InvMixColumns and stands for inverse mix column transformation. 

3.3.4 STEP 4, ADD ROUND KEY: 

Adds the round key to the state of the previous step during the forward process by a 

simple bitwise XOR operation,that is each column of the state is XORed with a word 

from  the  key  schedule.  The  corresponding  step  during  decryption  is  denoted 

InvAddRound- Key for inverse add round key transformation.

In the FPGA implementation, the initial pattern and final patterns are given on the 

input of bock cipher during the launch and capture phase respectively and the path delays 

are measured for the paths where the transitions appear on the insertion point and reach 

successfully to  the  target  flip  flop.  The paths  with  the  glitches  are  filtered  from the 

analysis  to  avoid  the  measurement  noise  in  the  die-to-die  and  with-in  die  variation 

measurements.
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3.4 Chip Layout with REBEL AES and FPU Placement 

3.4.1  ASIC Layout with REBEL and FPU 

These  macro-under-tests  are  fabricated  in  IBM  90nm CMOS  bulk  technology, 

layout is shown in Fig. 3.8. REBEL is embedded in Advanced Encryption System (AES) 

and 32 bit pipelined Floating point unit (FPU) in the design phase. There are 58 copies of 

the chip on which the analysis are performed.  

 The flowchart in Fig. 3.9 shows the design automation process followed for the 

test  chip design.  The behavioral  HDL descriptions  of AES and FPU macros are first 

synthesized  using  Cadence  RTL Compiler.  The  macros  are  synthesized  using  a  scan 
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insertion DFT flow and all the flip-flops are replaced by the scan cells. The REBEL test  

structure is integrated into this scan-able design using an in-house PERL script.  These 

scan cells are replaced with the REBEL-scan cell, which is a scan cell with the 'front-end' 

logic.  For Pipelined implementation of FPU there are 28 segments of these scan chains 

where for each segment a row control logic (RCL) is  added, and for AES there is 1 

segment and 1 RCL is added.

Data  is  collected  from 58 copies  of  the  fabricated  chip  manufactured  in  90nm 

CMOS technology from MOSIS. The path delays measured in these chips are used to 
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Fig. 3.9: ASIC Design Flow



present REBEL ability to measure variability in path delays for understanding the process 

variation and within-die variations.

3.4.2 FPGAs Layout with REBEL  and AES Round

The  within-die  variation  is  studied  on  the  FPGA having  reconfigurable  logic. 

Delay based variation is studied on ZYNQ FPGA on ZED boards with AES as macro 

under  test  to study within-die  and die-to-die variation among 11 copies  of chips.  We 

measure the path delays as discussed under the section of path delay measurement using 

target flip-flops.  Below is the layout using plan ahead shown in Fig. 3.10.

37

Fig. 3.10: FPGA Layout 



CHAPTER 4
Experimental Setup

An embedded  test  structure  called  REBEL,  suitable  for  measuring  within-die 

variations in actual product macros, is employed in our research. A floating point unit 

fabricated in IBM’s 90nm technology is used as a test vehicle in chip experiments carried 

out at nine different temperature/voltage corners.

4.1  Experimental Setup for IC 90nm Chips 

A photo of the experimental setup is given in Fig. 4.1. A Linux- based host 

computer  runs  a  custom  LABVIEW  application  that  controls  the  testing  and  data 

collection process through GPIB, USB and serial interfaces. A Virtex-6 FPGA is used to 

configure the scan chains on the chip-under-test (CUT), as well as deliver the LC clock 

sequence . A ribbon cable and several high-speed coaxial cables connect from the FPGA 

to a custom printed circuit board, which includes a zero-insertion-force socket for the 

CUT. This board and the CUT are not visible in the photo because they are inside the 

temperature chamber. The temperature setting on the chamber as well as several power 

supplies are also controlled by the LABVIEW interface. 

38



4.2  Launch-Capture Clocking Sequence and Clock Strobing

4.2.1 Launch-Capture Clocking Sequence

        The  launch-capture  clock sequence is  generated using a  digital  clock 

manager (DCM) on a Virtex-6 FPGA. The fine phase adjust (FPA) feature on the 

DCM allows the LCI to be set with a resolution of 17.86 ps. A specific FPA is 

configured into the DCM by a state machine running on the FPGA which accepts 

an  integer  input  parameter  from the  controlling  LABVIEW application.  Valid 

values of the FPA are between 0 and 560, which corresponds to a programmed 

LCI between 0 and 10.000 ns. 

4.2.2 Clock Strobing

Clock strobing involves repeating the test sequence at incrementally longer 

LCIs. The RCL and front-end logic for REBEL allow critical timing events, i.e., 

the launch-capture interval (LCI), to be controlled by the system clock. This is  
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illustrated by the timing diagram shown in Fig. 4.2.

4.3  Delay Measurement Process

 A scan operation is first carried out that configures the RCL blocks,  the scan 

chain encoding sequence for mixed mode rows and random test pattern data as described 

above. Prior to the LCI test, the global SCB signal is asserted and then the global SCA 

signal. Staggering these events prevents race conditions that would otherwise destroy the 

encoding sequence. With both scan clocks asserted, the mode control signal shown in Fig. 

3.1 propagates along the mixed mode rows setting up the insertion point and delay chain. 

The  LCI  test  consists  of  asserting  the  Clk  signal,  which  launches  transitions  in  the 

combinational logic (this is referred to as a launch-off-capture delay testing strategy as 

described in [28]), and de-asserting the Clk signal a fixed ∆t later, which halts all signals 

propagating along the delay chains. The delay in a combinational path can be computed 

using Eq. 1. 
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Fig 4.2: REBEL Launch-Capture(LC) Test Sequence. Clock Strobing  
applies a sequence of LCIs of different widths



Tpath = Tlc – Tdc Eq. 1. 

where, Tpath = Delay of the combinational path 

Tlc = Launch/Capture Interval (LCI) delay 

Tdc = Delay through the delay chain. 

The resolution of the measured delays is limited by the delay through each of the 

master-slave FFs that implement the delay chain. This delay is typically larger than the 

desired resolution, e.g., in our chips, it is approx. 500 ps. To increase the resolution clock 

strobing is employed and delays are calculated. 

 The pulse-creation logic within the FPGA as well as the response characteristics 

of the FPGA pads prevents clock pulses narrower than 1160 ps, given as FPA 65 * 17.85 

ps, from being produced on the clock output pin of the FPGA. 

 Actual LCI is somewhat different than the programmed value. Fig. 4.3 plots the 

programmed FPA on the x-axis against the actual LCI produced by the FPGA (we round 

all delays to the nearest 5 ps value to ease with the illustrations in the dissertation). 

41



Here, the LCIs are measured at the CUT’s clock input pins using a high resolution 

digitizing oscilloscope. Although the curve is nearly linear, small variations of up to 100 

ps  occur  in  several  locations,  as  highlighted  in  the  figure.  Also,  the  curve  is  shifted 

upwards, e.g., the programmed delay at FPA 65 is supposed to be 1160 ps but is 1775 ps 

instead. This occurs because the pulse-creation logic within the FPGA increases the width 

of the LCI by approx. 615 ps. 

In our experiments, we apply a sequence of LCI tests over the range of FPAs 

between 128 to 444 in FPA increments of 2. This results in the application of (444-128)/2 

+  1  =  159  LCI  tests  with  actual  LCIs  between  2745  and  8400  ps  as  given  by the 

oscilloscope curve in Fig. 4.3. 
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Phase Adjust (FPA) values on the FPGA. Row Header delay of 300 ps is included



4.4 Digital Snapshots and FF Delays 

The raw data captured in the delay chain is a string of binary bits, one string for 

each of the 159 LCI tests applied to test a path. Fig. 4.4 shows the digital snapshots for 

the first 21 LCI tests of a path in a vertical sequence. The insertion point in this example 

is FF15 of the REBEL mixed-mode row RR12 under Cfg1 from Fig. 3.4. RR13 is shown 

on the right side and serves as a continuation row under Cfg1. The programmed FPA and 

the actual LCI (from Fig. 4.3) for each snapshot are displayed on the left side of the 

figure. The first FPA (128) shows a sequence of 6 0’s in the left portion of the snapshot.  

This indicates that a falling edge propagated along 6 elements of delay chain, i.e., through 

FF15  through  FF20,  before  being  halted  by  the  capture  event.  In  each  subsequent 

snapshot up through FPA 132, the edge continues to propagate through FF20 but fails to 

reach FF21 until FPA 134 is applied. The falling edge requires 17 more FPAs, i.e., 134 

through 166, to propagate completely through FF21. From these snapshots, it is possible 

to derive the approx. delay through FF 21 as (3465 - 2850) = 615 ps. 

A similar analysis can be carried out for FF 22 through FF30 using the remaining 

snapshots for this path. Note that we cannot determine the delays for FF15 through FF20 

because the edge has already propagated into this FF on the first LCI. 
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4.5 Calibration and Power Rail Voltage Transient Effects 

A large fraction of the paths tested using our random test patterns are shorter than 

the ∆t associated with the smallest applied LCI. The example in Fig. 4.4 illustrates this 

situation, which shows that the rising edge has already propagated into FF 20 under the 

first  LCI  test.  Although  it  is  possible  to  use  shorter  LCIs  to  test  this  path,  thereby 

eliminating the delay chain elements, doing so requires testing the chip with a faster-than-

at-speed clock sequence. It is well known that applying faster-than-at-speed tests results 
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Fig. 4.4: Illustration of a partial sequence of digital snapshots (21 FPAs of the  
159) produced from a path delay test



in false delay measurements, i.e.,  delay measurements that are ‘distorted’ by the large 

power  supply  voltage  transient  associated  with  two  closely  placed  (launch-capture) 

edges.  One  of  the  stated  advantages  of  REBEL  is  that  it  allows  accurate  timing 

information to be obtained for these short paths without using faster-than-at-speed LCI 

tests. However, in order to do so, a mechanism is needed to eliminate the delay chain 

components. 

We have already described how the delay through each FF can be determined 

using the example in Fig. 4.4. Unfortunately, the actual delay through the FF is a function 

of the LCI it is tested with. In other words, the value of 615 ps is computed using FPAs 

134 and 166 for FF21, but the actual delay is different for each of these FPAs. This is true 

because even for LCIs that fall within the valid operational frequency for the chip, a 

power supply voltage transient is still produced, and this transient impacts delay. We also 

found that the voltage transient produced for a given FPA is largely independent of the 

random test sequence applied, i.e., it’s shape is primarily determined by switching events 

in the clock tree and FFs. However, different FPAs change the shape of the transient and 

the corresponding delay along the combinational logic paths as well as the delay chain. 

Therefore,  in order to  properly capture and analyze the variations which occur  along 

paths within a combinational logic block, it will be necessary to test the paths using a 

single FPA (ideal) or, as will be necessary for our method, a set of FPAs that fall within a 

small range. 

Since it  is  impossible to measure the delay through a FF using only one FPA 

(unlike path delays), we use the technique above to compute the delay and then ‘assign’ 

this delay to the LCI which represents the midpoint between the FPAs used to time it. In 
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the example above, we computed the delay difference 615 ps using the delays at FPAs 

134 and 166. The midpoint FPA is (134+166)/2 = 150. Therefore, the measured FF delay 

of 615 ps is the approx. delay through this FF when the LCI used is 3165 ps (delay at 150 

from Fig. 4.4). Note that this only approximates the delay and will be the main source of 

error in the estimation of path delays as we show in Section 5.3. 

The delays through the individual delay chain FFs are computed in this fashion to 

illustrate  the  impact  of  the  power  transient.  In  this  analysis,  we use  only paths  that 

produce a stable transition. A stable transition is defined as a path that produces exactly 

one rising or falling transition across all 159 digital snapshots, i.e., there is no glitching.  

Using 8 random vectors and the 4 configurations described earlier, a typical chip has 

approx. 825 stable paths. Each stable path allows, on average, the delays of 12 FFs to 

be estimated. Therefore, nearly 10,000 FF delays can be derived from the test data for 

each chip. Many of the FFs are timed multiple times by different paths and different 

FPAs. For example, the delay through the FF21 in reference to Fig. 4.4 can be obtained 

from the path test as described in Section 4.4, and by any other stable path test that drives  

insertion points to its left in the row. 

Fig. 4.5 shows a plot of all FF delays for CHIP1. The x-axis plots the midpoint 

LCI  against  the  FF  delay  (y-axis).  Each  line  connected  curve  in  the  group  labeled 

“Curves of individual FF delays” represents the delays computed for one FF but at a 

variety of midpoint LCIs -- whatever became available after processing the snapshots for 

the stable paths. Therefore, each curve contains only a subset of the 159 FPAs used in the 

experiments.  The  vertical  dispersion  of  the  “individual”  curves  shown in  Fig.  4.5  is 

caused by process variations among the FFs, i.e., the curves shown along the top of the 
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figure belong to slower FFs. Setting aside these differences, there is a underlying pattern 

to the behavior of the curves. 

To more clearly show this, we compute and superimpose a curve labeled “Average 

delay  curve”  which  represents  the  average  of  the  individual  curves.  A second  curve 

labeled “Smoothed average delay curve” is computed from the “Average delay curve” by 

removing  the  high  frequency components.  It  completely  eliminates  process  variation 

effects and best depicts the underlying behavior. 

It is a remarkable fact that the delay through any given FF varies by as much as 

2X when tested over the range of FPAs between 128 and 444. Dotted lines illustrate that 

the average delay changes  from approx.  300 ps to  600 ps.  The impact  of the power 

transient  is  even  more  dramatic  for  LCIs  less  than  the  smallest  one  used  in  our 

experiments, as illustrated by the dotted line labeled “Faster-than-at-speed behavior” on 

the left side in the figure. We purposely avoid the region below approx. 4000 ps because 

of the large distortion in the FF and path delays. 

From this analysis, it is clear that varying the LCI when timing paths will distort  

the results. As a consequence, we limit the LCIs considered valid for path delay testing to 

a small region or window between 4355 and 5250 ps (approx. 1 ns), which is delineated 

and labeled as “W1” in Fig. 4.5. The FF delays in this window remain relatively constant, 

within 25 ps, and therefore, so will the path delays. The primary benefit of using a range 

(as  opposed to  a  single  LCI)  is  that  it  allows  a  larger  number  of  stable  paths  to  be 

successfully timed using clock strobing. 
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4.6 Measuring and Calibrating Path Delays

Digital  snapshots,  similar  to  the  sequence  shown  in  Fig.  4.4,  are  parsed  to 

determine the delay of a stable path. The snapshots are parsed in reverse order starting 

with the digital  snapshot associated with largest LCI in the window described above, 

which is LCI 5250. Parsing in reverse order ensures the last transition is used as the path 

delay in cases where there is uncertainty (which is described in Section 5.2). This process 

is illustrated in Fig. 4.6 using snapshots for the path referenced in Fig. 4.4 but at larger 

FPAs. 
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Fig. 4.5: Curves of individual FF delays measured in different midpoint delays. An average of  
all individual curves is superimposed, as well as a curve with only the low frequency  

components of the 'Average delay curve'



The snapshot at  LCI 5250 indicates that a falling edge is propagating through 

FF25. Our algorithm searches backwards stopping with the snapshot where the edge is 

just about to enter FF25, which occurs at FPA 244. The corresponding LCI of 4795 ps 

gives the uncalibrated delay. In order to obtain the actual path delay, the delays for FF16 

through FF24 need to be subtracted. This component of the path delay is referred to as T 

dc in Eq. 1. It is possible to obtain the delay of FF21 through FF24 using the snapshots  

for this path as described in Section 4.4. However, the delays for FF16 through FF20 

must be obtained using path delay tests that drive insertion points to the left of FF15 in 

this row. If tests which allow these FFs to be timed do not exist, then the actual path delay 

cannot be determined. 
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Fig. 4.6: Calculating path delay using digital snapshots



The LCI chosen for the path delay, given as 4795 ps in the example, is used to 

obtain an estimate of the individual FF delays to be subtracted. This is accomplished by 

‘looking up’ the FF delay on the ‘smoothed’ delay curve (which is reproduced from Fig. 

4.5 in Fig. 4.7) and then adding or subtracting an offset to account for process variation 

effects.  This  offset  is  computed for  each of  the  individual  FF curves  by shifting the 

smoothed curve vertically until the area difference between the individual curve (which 

may have only a few points) and the average curve is minimized. 

The result of applying this process is shown in Fig. 4.7 for a FF19, one of the FFs 

in the delay chain of the path from Fig. 4.6. A copy of the smoothed average delay curve, 

labeled ‘Copy’ is shown shifted downwards by 39 ps. This vertical offset is the ‘best fit’ 

in the sense of minimizing the area between the Copy and the FF19 delay curve. The FF 
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Fig. 4.7: Illustration of calibration operation carried out using an individual FF 
delay curve and smoothed average delay curve



delay is simply the y-value associated with the intersection of the line labeled 4795 (the 

uncalibrated delay) and the shifted copy, which is given as 436 ps. Note that this process 

not only provides an accurate delay through the FF for a specific LCI, it also allows the 

FF delay to be predicted for LCI’s that it was not tested with, i.e., the smoothed curve 

fills in the gaps in the individual curves. 

A similar process is applied to obtain the delay through the remaining FFs in the 

delay  chain  of  the  example  path.  The  results  are  shown  in  Fig.  4.8  which  lists  the 

individual delays of the delay chain FFs, FF16 through FF24. The delay chain delay of 

4005  ps  is  over  5  times  larger  than  the  actual  calibrated  path  delay of  790 ps,  and 

therefore, it is important to maximize the accuracy of the calibration process to keep the 

error in the path delay estimate low. Error analysis is covered in coming sections. 

A key take-away from this section is that if techniques such as clock strobing are 

used to measure path delays, they must take into account the impact of the changing 

power transient and its corresponding effect on path delays. Although the impact of the 

power transient may be more significant in our test chip than in a typical commercial 

design, it is impossible to completely eliminate the power transient effects, particularly 

when faster- than-at-speed LCIs are applied1. Also, although the process described here 
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Fig. 4.8: Delay calibration applied to example path from Fig. 4.6 using window w1



is  difficult  to apply in a manufacturing test  context  because of the overhead in post-

processing the digital snapshots, it is practical for DFM purposes where the goal is to 

measure and characterize within-die delay variations in actual product macros.

 4.7 Experimental Setup for FPGA Boards

 The  within-die  variation  is  studied  on  the  FPGA having  reconfigurable  logic. 

Delay based variation is studied on ZYNQ FPGA on ZED boards with AES (Fig. 4.9) as 

macro under test to study within-die and die-to-die variation among 28 copies of chips. I 

measure the path delays as discussed in the section 4.9 on path delay measurement using 

target flip-flops. The bit stream is loaded on all set of copies and is kept the same to 

understand the underlying variation from one chip-under-test to another.  

           The input test patterns are comprised of 100-150 test vectors with 256 insertions 

points on the AES engine. A set of 16 Flip-flops is connected to the scan chain of 256 

Mux-D Flip-flops to let the transition from the right most insertion point to propagate in 

much further during the launch capture interval. A Linux- based host computer runs a 

custom  LABVIEW application  that  controls  the  testing  and  data  collection  process 

through  GPIB,  Ethernet  interfaces.  For  each  chip  data  for  10,000  stable  paths  are 

collected, for this the required paths to be tested is 25,000.
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Fig.4.9 Zed Board with Zynq FPGA

4.8  Launch-Capture Clocking Sequence and Clock Strobing

4.8.1 Launch-Capture Clocking Sequence

        The  launch-capture  clock sequence is  generated using a  digital  clock 

manager (DCM) on a Zynq FPGA. The fine phase adjust (FPA) feature on the 

DCM allows the LCI to be set with a resolution of 17.86ps. A specific FPA is 

configured into the DCM by a state machine running on the FPGA which accepts 

an  integer  input  parameter  from the  controlling  LABVIEW application.  Valid 

values of the FPA are between 300 FPA and 720 FPA with the step size of 2 FPA, 

which corresponds to a programmed LCI between 5ns to 12.000 ns. 

         REBEL extends the length of the path-under-test (PUT) at the  insertion 
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point by creating a horizontal delay chain Transitions are launched into the MUT 

using Clk1. Any transition(s) occurring at the insertion point propagate down the 

delay chain, are captured as a digital snapshot by asserting Clk2. Fig. 4.10 shows 

clock strobing in FPGA implementation.

4.8.2 Clock Strobing

Clock  strobing  involves  repeating  the  test  sequence  at  varying longer  

LCIs. The RCL and front-end logic for REBEL allow critical timing events, i.e., 

the launch-capture interval (LCI), to be controlled by the system clock. In our  

experiments, we apply a sequence of LCI tests over the range of FPGAs between 

128 to 1120 in FPA increments of 2.  This results  in  the application of (1120-

128)/2+1 = 497 LCI tests with actual LCIs between 25 and 20 ns.

 

4.9  Delay Measurement Process

A random 2-pattern test is generated using an LFSR and the MUT outputs are 

tested, one at a time, by adjusting the insertion point. Once all outputs are tested, another 

2-pattern test is generated and the process repeats. A sequence of launch-capture tests are 

applied,  each with a  different  fine-phase-adjust  (FPA),  until  the transition is  ‘pushed 

back’ into a target FF, e.g., FF21.
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Fig. 4.10 Clock Strobing in FPGA implementation



The target FF is always at a fixed distance from the insertion point. The path delay 

is represented by the FPA at the point in the sequence when this goal is achieved (high-

lighted in red as 164 in the Fig. 4.11).

A stable  path  is  defined  as  a  path  that  has  a  single  transition  over  the  entire 

sequence  of  snapshots.  All  the  paths  that  are  not  stable  are  rejected as  a  means  of 

improving reliability. The set of stable paths is unique across all the boards. The paths 

that are classified as stable vary from one chip to the next Xilinx Zynq experiments show 

approx. 5% of the paths from each chip are unique.
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Fig. 4.11 Digital snapshot produced from a path delay test



From the experiments we analyze all the  paths and determine glitch paths, with 

more than one transition in a given path, and the stable paths, with a single transition in a 

single snapshot. Short paths are timed, and level of within-die variation that exists in 

these  paths  are  measured.  In  the  design  the  target  FF  are  varied  to  understand  the 

underlying variation. 

4.10 Measuring and Calibrating Path Delays

The Launch-capture interval (LCI)  for which the transition enters the target flip 

flop is considered as a the path delay of the given path with fixed insertion point. Fig. 

4.12 shows REBEL integration with AES engine.

The combinational logic is implemented using a single round of an AES unit Xilinx 

PlanAhead is used to create an embedded design. AES and REBEL are implemented in 

the programmable logic portion (PL) of the Zynq SoC and the communications with the 

host computer  is done through Ethernet TCPIP.
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Fig. 4.12 REBEL Integration with AES Engine



Figure  4.13 shows the  overall  system design  implemented  on the  FPGAs.  As 

discussed the Mux-D scan flip flops requires only one clock for the launch and capture, 

where  firstly  the  transition  is  launched  on  the  first  rising  edge(launch  edge)  and  its 

propagation in the delay chain is halted on the second rising edge(capture edge) and later 

the snapshot is scanned out from the delay chain to time the path delays through the 

combinational logic. The clock of 50Mhz is provided using DCM on board.
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Fig. 4.13: Block level diagram of AES with REBEL Integration



CHAPTER 5
ASIC Experimental Results and Analysis 

We  implement  an  embedded  test  structure  called  REBEL  (Regional  dELay 

BEhavior), designed to measure path delays accurately in a minimally invasive fashion, 

in a 90 nm test chip and present results on within-die path delay variations in a floating-

point unit (FPU) fabricated in IBM’s 90 nm technology, with 5 pipeline stages, used as a 

test vehicle in chip experiments carried out at nine different temperature/voltage (TV) 

corners. Data collected from the experiments is subjected to a variety of analysis and are 

presented in detail in this chapter.

5.1 Flip-Flop Analysis 

During the  path  delay calibration  the  flip  flop delays  are  subtracted  from the 

launch capture interval to remove the delay chain component from the uncalibrated delay 

to get the delay of combinational logic. To improve the calibration process it is important 

to understand the variation of the delays in the flip flops. The delays of each flip flop in 

the delay chain vary from 10 FPA to 22 FPA  that is from (10*36ps) 360ps to (22*36ps) 

790ps for the falling edge transition and for the rising edge the range of variation is 

12FPA to 26 FPA that is, 432ps to 950ps . 

On average the delay of the rising edge and falling edge follows the same pattern 
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and the curve is shifted (Fig. 5.1). The shift is of 2 FPA making it of difference of 72ps. 

For the calibration process it is negligible hence both delays can be used to calibrate the 

path delays. 

Fig. 5.1 Flip Flop Delays for Falling and Rising Transitions

The Power transient effect on the rising edge and falling edge curves follow the 

same pattren. From this analysis it is obvious that the delay of the rising edge propagation 

on average is 4 FPAs (144ps) more than the falling edge delays along all the mid point 

launch capture intervals. The power transient effect is shown in the smooth curve which 

is steep in case when the launch edge and capture edge are more closer and is seen on the 

left hand side of the curve (Fig. 5.2).

For the Rising edge on average the delay in window 1 is 17 FPA which is 612ps, 
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and for the falling edge the delay for the window 1 is 15 FPA that is equal to 540 ps. The 

delay in both cases is comparatively close with a difference of 72ps to 100ps. To remove 

the noise from the calibrated path delays, we subtract the rising edge transition delays of 

flip flops from the paths propagating rising edge and falling edge delays of flip flops for 

path delays with falling edge transition.

 Fig. 5.2 Mid Point LCI Average Delays for Rising and Falling Transitions 

The Flip flop analysis re-enforces the  use of windowing mechanism as the fitted 

curve has a hump where the launch edge is closer to the capture edge producing power 

transient. Power transient can be seen in all delays of scan elements as  in the Fig. 4.4,  

and can be seen that it is true for all the flip flop as the pattern of the fitted curve is the 

same for both rising and falling curves. This is shown in Fig. 5. 3 and Fig 5.4 for the 
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rising delays and falling delays.
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Fig. 5.4: Propagational Delay of Falling Edge

Fig. 5.3: Propagational Delay of Rising Edge 



5.2 Uncertainty Analysis 

Meta-stability  of  the  FFs  in  the  delay  chain  and  jitter  in  the  generation  and 

distribution of the clock contribute to uncertainty or error in estimating path delays using 

REBEL.  Uncertainty  is  captured  and  can  be  analyzed  from the  sequence  of  digital 

snapshots associated with a path test. The snapshots shown in Fig. 5.5 are copied (and 

modified to illustrate uncertainty) from a portion of the snapshots shown in Fig. 4.4. 

Uncertainty,  when it  occurs,  always appears near the transition points between 

FFs, e.g., between FF20 and FF21 at FPA 136 in this example. The snapshot for 134 

shows the edge moving forward to FF 21 but the snapshot for 136 shows it reverting 

again  to  FF 20 before  advancing  to  FF21 in  the  subsequent  snapshots.  We assign  a 

magnitude  of  71  ps  (approx.  2  FPAs)  to  this  uncertainty,  which  also  represents  the 

smallest possible measurable value of uncertainty. Larger values of uncertainty can occur 

when  the  ‘jumping’  back-and-forth  occurs  over  a  larger  consecutive  sequence  of 

snapshots. 
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Fig 5.5: Digital snapshots illustrating uncertainty using data given earlier in Fig 4.4



Fig.  5.6 plots  the average uncertainties on the y-axis  computed using the 159 

digital snapshots of all stable paths from the first 4 chips. One curve is plotted for each of 

the 9 TV corners to illustrate the impact of temperature and voltage on uncertainty. As 

indicated above, uncertainty is measured between FFs in the delay chain and we refer to 

these points as inter-FF transitions. The x- axis plots distance from the insertion point (in 

units of FFs) to further illustrate whether uncertainty increases as the edge propagates 

further down the delay chain. The 3 curves that extend to distances > 21 represent the 

1.32 V TV corner  data.  The higher  supply voltage  allows for  faster  propagation  and 

therefore more FFs are traversed. 

Only inter-FF transitions that exhibit some level of uncertainty are included in the 

averages. Of the 10,000+ inter-FF transitions that occur per chip under the applied test 
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Fig 5.6: Average Uncertainty as a function of distance (in FFs) from the insertion point  
for 4 chips at all TV corners



sequences, only about 5% exhibit uncertainty. From the curves, it is clear that uncertainty 

hovers  slightly  above  the  minimum  of  71  ps.  Uncertainty  is  smallest  for  distances 

between 8 and 12 FFs, and increases slightly at smaller and larger distances as shown on 

the left and right sides of the plot. Overall, uncertainty remains close to the minimum and 

is relatively insensitive to temperature and voltage variations. The worst case uncertainty 

that we observed in the 4 chips is 179 ps (approx. 5 FPAs) but these larger levels were 

very rare, occurring only twice in the data for these 4 chips. 

5.3 Error in Estimating Path Delays 

Our proposed calibration scheme also introduces error in the estimation of path 

delays. One way to evaluate this error is by shifting the position of the window described 

earlier in Section 4.5 and then re-calculating the path delays at this new window. For 

example, by shifting the original window (labeled W1 in Fig. 4.5) to the left by 500 ps 

(labeled W2), an additional FF (in most cases) is added to the delay chain of the paths. 

Since calibration removes the delay introduced by the delay chain, ideally, the W1 and 

W2 estimates of delay should remain the same for each path. 

The differences in the estimates correspond to calibration error. Fig. 5.7 illustrates 

the calibration process carried out on the same path used in the W1 example of Fig. 4.8, 

64

Fig 5.7: Calibration process applied to the 2nd of two consecutive windows  
illustrating error in the estimation of path delay



this time using the W2 window. The un-calibrated delays, given as 4795 ps for W1 and 

5245 ps  for W2 reflect  the additional  FF, i.e.,  FF25, and its  delay of  400 ps,  that  is 

included in  the  delay chain  under  the  W2 analysis.  Also  note  that  the  FF delays  are 

slightly different under the two windows because the FPAs used to time the two paths are 

different.  This  follows  from  the  discussion  in  Section  4.5,  which  shows  the  power 

transient impact on path delay varies as a function of the FPA. 

Subtracting the sum of the FF delays from the uncalibrated delay in both cases 

yields calibrated delays of 790 ps and 854 ps for W1 and W2 resp. As indicated above, any 

difference  in  these  estimates  represents  error,  which  is  (790  -  854)=  -64  ps  in  this 

example. Fig. 5.8 plots the errors for all stable paths in all chips at the 25oC, 1.20V TV 

corner. The path ID of the stable path is given along the x-axis. Although most errors are 

within +/- 100 ps, there are some that are larger, with worst case values of upto -300 ps. 
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Fig 5.8: Delay errors computed using W1 and W2 of the proposed calibration method 
for all paths and chips at 25oC, 1.2V



The histograms plots in Fig. 5.9(a) and (b) partition the delay errors shown in Fig. 

5.4 according to the length of the delay chain. As indicated earlier, transitions generated 

by short paths propagate through more elements of the delay chain, and therefore, their 

errors are captured in the right portion of the histograms. 

Fig. 5.5(a) gives the 3σ of the errors while (b) gives the average errors. The results 

using the data from Fig. 5.9 is portrayed in the row labeled ‘Span 1’ (front row of values). 

As expected, the range of the errors (3σ) and average error both increase as the length of 

the delay chain increases. For example, the 3σ values increase from approx. 140 ps to 240 

ps and the average error increases from approx. 38 ps to 66 ps. 

This analysis gives the error when only one additional FF is added to the delay 

chain. Many of the delay chains are longer than 1 FF however, so it is conceivable that 

the error may be much larger for these paths. This is not the case, however, because the 
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Fig 5.9: 3σ (a) and average (b) delay errors for all paths and chips at 25oC, 
1.2V as a function of 'length of the delay chain' (x-axis) and span (y-axis)



positive and negative values of the errors act to cancel out, so the cumulative errors along 

the entire delay chain do not increase. This is illustrated in the results for the rows labeled 

Span 2 and 3. 

Here, we extend the window by additional 500 ps increments, called W3 and W4 

(see Fig. 4.5), and again use W1 to compute the errors. Therefore, the W3 experiments 

introduce 2 additional FFs to the delay chain of the paths (over that for W1) while W4 

introduces 3. The term ‘span’ refers to this number of additional FFs in each of the 3 error 

analyses. Although the errors increase slightly in the Span 2 row, when compared with 

the Span 1 row, they actually decrease in the Span 3 row and are in fact similar to the val- 

ues  in  row 1.  Therefore,  the overall  error  in  the estimates  of  the path delays  can be 

approx. using the errors given by the Span 1 values in the histograms. 

In order to keep the contribution of error in our analyses small, we exclude those 

paths which have ‘window errors’ greater than 10% of the path length. Note that our error 

filter  handles  errors  introduced  by  calibration  discussed  here  and  by  uncertainty  as 

described  in  Section  5.2.  This  is  true  because  uncertainty  occurs  at  the  inter-FF 

boundaries, and therefore impacts the delay for a path independently under each of the 

two windows W1 and W2. A large uncertainty under either the W 1 or W2 analysis for a 

path will  increase the difference in the error estimates and may cause the path to be 

excluded in cases where it is large. 

5.4 Path Distribution Analysis 

As indicated in Section 4.6, some of the individual FF delays were not measured 

under any of the path tests and therefore, it was not possible to compute the actual delays 
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for paths  that use these FFs in their  delay chains.  In particular for CHIP 1,  the total 

number of stable paths is 1,080, but was reduced to 825 because of this constraint. 

A histogram depicting the distribution of these 825 path delays for CHIP1 

using data from the 25oC, 1.20V TV corner is shown in Fig. 5.10. The x-axis plots the 

actual  calibrated  path  delay  against  the  number  of  instances  on  the  y-axis.  The 

distribution is relatively uniform except for the region between 1.0 and 1.5 ns, where the 

number of instances increases significantly. The longest measured path delay is approx. 

4.75 ns which is consistent with the 200 MHz timing constraints used in the synthesis of 

the FPU. 
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Fig 5.10: Stable path distributions for CHIP1 at 25oC,1.2V



5.5 Short vs. Long Path Variation 

Only paths that stable and common across the set of chips are included in the 

analysis  of short  vs.  long path variation (this  is  also true for the within-die  variation 

analysis described in the Section 5.6). The 825 path identifiers (IDs) from CHIP1 are 

used as the reference when finding the set of common paths. Only 599 of these path IDs 

are found in all chips using data from 25oC, 1.20V. The term ‘path’ used in the following 

sections refers ONLY to these common paths. 

Path delay variation is expressed as a percentage change in this section, and is 

computed separately for each path. Chip-to- chip variation is eliminated by computing 

the mean delay across all paths i for a given chip j. The path delays for chip j are then 

normalized  by  dividing  them  by  this  mean  as  given  by  Eq.  2.  Here,  NPij  is  the 

“normalized path” delay for path i and chip j. 

          NPij=
Pij

μchip j
                                                                   Eq. 2.

For each path i, the largest NPix, and smallest, NPiy, across all chips is used to 

determine the range, where x and y are two chip IDs from the set. The range is then 

divided by the mean delay, μNPi, computed across all chips as given by Eq. 3. Pchi rep- 

Pchi=
largest (NP ix) – smallest (NP iy)

μNPi
                      Eq. 3. 

resents the percentage change of a path i, and reflects the level of variation in this path as 

a  function of  its  length,  i.e.,  for  a  fixed range,  a  smaller  average path  length,  μNPi, 

increases Pch. Pch expresses the differences in the level of variations for short paths vs. 

long paths. 
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Fig. 5.11 plots the results with average path delay plotted along the x-axis against 

percentage change on the y-axis. Average path delay is computed using the original (un-

normalized) delays, Pij. The individual path delays vary by less than 10% to more than 

45%.  

A smoothed  best-fit  curve  is  superimposed  on  the  individual  path  results  to 

illustrate the overall trend. Paths longer than 2 ns vary between 12 and 20% on average 

while those less than 1 ns vary between 30 and 35% on average. The law of averaging 

works to keep the variation of longer paths smaller. However, the level of variation per 

gate is much larger, and is captured by the shorter paths. 
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 Fig 5.11: Short vs. long path delay variation analysis at 25oC, 1.2V



5.6 Within-Die Delay Variation Analysis 

Regression analysis is an effective technique for measuring and analyzing within-

die variations. Linear regression is applied to scatter plots which are constructed from the 

delays  of  two separate  paths,  i.e.,  a  path pairing.  Fig.  5.12 plots  6  path pairing in  a 

sequence of 6 scatter plots, illustrating variations that occur across the range of short 

(lower left) and long (upper right) path pairings. 

Each data point in a given scatter plot represents the pair of path delays from one 

of the chips. As noted above, we exclude paths which have ‘window errors’ larger than 
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Fig 5.12: Within-Die delay variation analysis using regression: example scatter plots  
from distributions of common to all chips



10%. Given that the delays from two paths define each data point, if either path for a 

given chip has an error > 10%, the data point is omitted. Also, path pairing that have 

fewer than 30 data  points  because of this  constraint  are  excluded from this  analysis. 

Therefore, all scatter plots include between 30 and 52 data points. We create path pair- 

ings by sorting the n delays from CHIP1 and then creating n-1 scatter plots by pairing 

data sets in the order given by the sorted delays from CHIP1. This ensures that the paths 

of each pairings have similar delays. 

Linear regression analysis first computes a least squares estimate (LSE) of a best 

fit  line  through the  data  points  of  each  scatter  plot  separately (see  [32]  for  defining 

equations). Several of the 6 LSE lines are labeled in Fig. 5.12. The LSE line tracks chip-

to-chip  process  variations.  Within-die  variations  (and  noise)  are  represented  by  the 

vertical offsets of the data points from the LSE line. 

The  vertical  offsets  are  called  ‘residuals’ (see  the  blow-up  illustration  in  the 

figure).  Three σ prediction interval  curves  are  also derived for each scatter  plot,  and 

reflect the overall spread of the points around the LSE line. Given the prediction interval 

curves,  which  nicely  portray  within-die  variations,  are  parabolic  and  difficult  to  use 

directly, we define a simpler and more robust metric to express within-die variations.

The 3σ of the residuals are first computed and then ‘normalized’ by the average 

path delay. The average path delay is the mean x-value from Fig. 5.12 for each of the 

scatter plots. The normalized 3σ are then multiplied by 100 to express them as percentage 

change.  This  metric  scales  the  3σ  according  to  the  length  of  the  path,  making 

comparisons of within-die variations between short and long paths more meaningful. 
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        The results obtained by applying regression analysis on the 25oC, 1.20V data is 

shown in Fig. 5.13. The average path delay for each of the 551 path pairings is given 

along  the  x-axis,  plotted  against  the  normalized  3σ  metric  described  above.  A trend 

similar to that shown in the short vs. long path variation analysis of Section 5.5 (see Fig.  

5.11) occurs here.  The most significant difference is the larger peak in the regression 

analysis around 3.0 ns, which suggests that within-die variations are largest for median 

length  paths.  Interestingly,  decreasing  temperature  appears  to  exacerbate  within-die 

variations, particularly for the shorter paths, as shown on the left side of -40oC and 85oC 

overall trend curves in Fig. 5.14.  Although not shown, the overall trend curve for 1.08V 

tracks the behavior of the -40oC curve while the 1.32V is similar to the 85oC 
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 Fig 5.13: Within-die variation analysis using regression. Average path delay vs.  
normalized 3σ of residuals expressed as percentage change
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Fig 5.14: Within-die variation analysis using regression using data from two additional  
TV corners



CHAPTER 6 
FPGA Experimental Results and Analysis

The DFM experiments on FPGAs are performed on 28 Zed Boards, with Zynq 

7020 FPGAs. The design with REBEL and AES is synthesized on a clock of 50 MHz 

frequency. The DCM is used to do fine phase adjustment with the steps of 36 ps. A total 

of 720 steps are tested with Launch Capture Interval ranging from 1.5ns to 13ns.

6.1   Flip Flop Analysis

6.1.1 Propagational Delay tpHL and tpLH Analysis

Propagation delay is the delay from where input crosses 50%Vdd to when the 

output crosses 50%Vdd. Theoretically tpHL is a propagation delay when output switches 

from “High to Low” and tpLH is propagation delay when output switches from “Low to 

High” and, it depends on the input slew rate and output capacitive load. 

This  delay  can  be  computed  from  the  experimental  data  using  the  digital 

snapshots. Each path is tested with a range of launch capture intervals, which captures the 

temporal behavior of the transitions. Subtracting the time when transition enters the flip 

flop from the time transition leaves the flip flop is the propagation delay of the given flip 

flop. Ideally the design should yield the tpHL and tpLH equal but variation exists because 
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the basic devices nfet and pfet have different characteristics, for example the mobility of 

pfet is much lower than nfet.  Usually the pfet is 1.5 to 2 times larger than the nfet to  

compensate  this  difference to meet  the timing constraints  and bringing the tpHL and 

tpLH delays approximately equal.

6.1.1.1 Rising Edge Propagation Delay (tpLH):

Fig.  6.1 shows the rising edge propagation delay.  The delay of each flip  flop 

ranges from 17 FPA to 62FPA which is equal to (17*36ps) 600 ps to (62*36ps) 2.2 ns. 

This delay is higher because it includes the interconnect delay and three multiplexers 

added because of the scan chain logic. When this delay range is compared to the ASIC 

90nm chip, the delay of ASIC chip is much less and is around 500ps.

The power transient effect is not seen in the data collected from the FPGA, the 
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Fig. 6.1: Rising Edge Propagational Delay 



variation in the flip flop delays is seen to be between 35 FPA to 45 FPA when the average 

delay for every launch capture interval is compared. The variation is not too high  and 

thus can be ignored in the calibration of path delays.

6.1.1.2 Falling Edge Propagation Delay (tpHL):

Fig.  6.2  shows the  falling  edge  propagation  delay.  Similar  to  the  rising  edge 

propagation delay, the falling edge propagational delay of flip flops of the delay chain are 

ranging from 17 FPA to 62 FPA. From the delay curve plotted against the mid point 

launch capture intervals for the average delay of all the flip flops measured for each given 

midpoint interval reveals that on average the variation of flip flop delay is ranging from 

25 FPA to 45 FPA which is about the same as the rising edge variation.
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Fig.6.2 Falling Edge Propagational Delay



6.1.1.3 Comparative Analysis: 

An interesting  observation  from the  rising  and falling  edge propagation  delay 

curves is that the range of delays of the flip flops of delay chain is same. The plots to  

observe the variation in the falling edge and rising edge delays (Fig. 6.3) reveals that the 

design of FPGA is very robust and the propagation delay of rising edge overlaps the 

propagational delay of falling edge. This analysis is performed on all 28 chips and same 

results are observed. The delay is in the range of  approximately 20 FPA  to 60 FPA that 

is from 600ps to 2.2 ns. 
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Fig. 6.3: Rise versus Fall delays of Flip Flops



6.1.2 Average Rising Edge Flip-Flop Delays 

Fig. 6.4 shows rising edge flip-flop delays on different launch capture intervals. 

The Flip flops ranging from 20FPA to 65 FPA that is 600ps to 2,2ns. As the delay of each 

flip-flop has a smaller range the power transient effect is not seen in this data, but we do 

observe few noise points in the data. On average the delay is ranging from 20FPA to 35 

FPAs and the smooth curve the following a straight line.
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Fig. 6.4 Average Rising Delays of Flip Flop



6.1.3 Average Falling Edge Flip-Flop Delay

The falling edge flip-flop delays on different launch capture intervals are shown in 

Fig.  6.5.  Similar  results  are  observed in  the  falling  edge.  The  range  of  variation  on 

average is 15 FPA that is equal to 540ps. This range is of importance to understand and 

mitigate  the noise points  from the data  set.  This analysis  helps  us  to  incorporate  the 

design parameter of range of variation allowed with a flip flop delay to calculate more 

accurately the die to die and within-Die variation.

6.2 Sample Analysis
A path is defined as a combination of a test vector and an insertion point and is 

equal to (test vector *256 + Insertion point - 255). Eight  samples are collected for each 

tested path. This analysis helps in understanding the measurement noise, based on the 
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Fig. 6.5: Average Falling Delays of Flip Flop



correlation of the results among all the samples.  

For this analysis data from path with test number 1 and insertion point 255 is 

observed. The test number 1 yields a rising transition. The Figure 6.6 shows delay vs 

distance from insertion point for the flip-flops, whose delay can be measured from the 

given path, for 8 samples. The delay is in terms of FPA steps.  For the given insertion 

point a set of flip flop delays can be measured by taking difference of timestamps for 

when the transition enters and when it leaves the flip-flop. 

         The sample analysis captures the measurement noise and interestingly we see that 

the delays are within the range of approximately 70ps. The variation of delays from one 

sample to another is shown in the following graphs (Fig. 6.6 – Fig. 6-10). Interesting 

observation is that the transition is in chip 1,5,7,10,11 and not in 2,3,4,6,8,9 making the 

transition to appear in 50% of the chips. This variation can be used as an entropy source 

for the PUF applications. For this plot the delay of each flip flop is not changing more 
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Figure 6.6: Delay vs Sample analysis for Chip 1



than 36 ps when the flip flop is closer to the insertion point where as the variation or 

noise is approximately doubled for the further most flip-flop.  For the flip-flop with a 

distance  of  5  flip-flops  from the  insertion  point  takes  on  average  31  FPA steps  to 

propagate completely through the flip flop.

The data collected from Chip-under-test 5 (Fig. 6.7) shows more variation than 

the chip 1, where the transition has propagated further along to next flip flop. On average 

the delay is 70 ps which is within the same range as chip 1.

           To better understand the variation within the samples we see uncertainty in sample 

3 on Flip flip 6 of 2 FPA steps and in sample 7 for Flip flop 7  an uncertainty of 1 FPA 

step, shown in the Fig. 6.7. 
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Figure 6.7: Delay vs Sample analysis for Chip 5 



              Similar analysis on Chip 7 yields that it is also a fast chip where the transition 

has propagated in the delay chain for 8 flip-flops, giving an average variation within all 

samples of 5 FPAs that is approximately 90ps. 
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Figure 6.8: Uncertainty analysis for Chip 5 

Figure 6.9: Delay vs Sample analysis for Chip 7



Figure  6.10  shows  the  uncertainty  analysis,  where  wobbling  count  is  shown 

against  distance  of  transition  propagated  from the  insertion  point.  The uncertainty is 

observed in Flip flop 6 and 8, in samples 8 and 2 respectively.

 Similar results are seen from analysis on chip 10 and chip 11. For chip 10, the transition 

propagated completely to the 8th flip flop from the insertion point. The flip-flops closer to 

the insertion point have less variation within-samples (close to 30ps). On the other hand 

we observe more variation on the flip flop with a distance of 7 from the insertion point 

(about to be 90ps). Here we see an uncertainty of 1 FPA in sample 1 for Flip flop 6 and 1 

FPA for flip flop 7 in sample 7. Chip 11 shows the transition only in two samples, and has 

no data for the other 6 samples. There is no uncertainty during this transition.

This analysis shows that the measurement noise is minimal and the variation in results 
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Figure 6.10: Uncertainty analysis for Chip 7



from 1 sample to another is not huge. 

6.3 Uncertainty Analysis 

To  study  the  meta-stability  of  the  FFs  in  the  delay  chain  and  jitter  in  the 

generation and distribution of the clock contribute to uncertainty or error in estimating 

path delays using REBEL in the Zynq FPGA. Uncertainty is captured and analyzed from 

the  sequence  of  digital  snapshots  associated  with a  path  test.  For  the  uncertainty we 

observe the transition propagating from one flip flop to another as discussed earlier in 

section 5.2. 

The study on uncertainty which  is  defined as  transition  moving  back   in  the 

previous flip flop when the more time is allowed to propagate. This kind of behavior is 

not allowed in as it introduces the measurement noise and directly affects the correctness 
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Fig. 6.11 Over All Uncertainty in path delays



of the delays. This analysis shown in Fig 6.11 shows that this kind of unwanted behavior 

is shown in 20% of data and  is most of the time only shown once in all the launch 

capture intervals tests performed on a given path-under-test. To remove the noise in the 

path and flip-flop delay calibration we omit all the paths which show this noise in them.

6.4 Die-to-Die Variation in Flip Flops for Rising Edge in All 

Chips

For the analysis of die to die variation in flip-flops we select the flip-flops which 

are common across all the chips and whose delay variation is not more than 15 FPA steps 

that is not more than 0.5ns.  The data is plotted with the median value of each flip flop 

against the delay of all the chips. For each flip-flop we have 28 data points from which 

the range and percentage variation is calculated.

The standard deviation is a measure of amount of variation / dispersion from the 

average. The results in Fig 6.12   shows a dispersion of 2.5 on average. The percentage 

change, defined as range or 3 σ variation / mean delay * 100,  is on average 30 %, and is 

ranging from 25% to 40 % for the rising edge. As the delays of each flip flop is small and  

the impact of small variation will be bigger so the results of 40% variation is reasonable 

shown in Fig 6.13.  Once the  delay analysis  done on paths  we will  see that  over  all 

percentage variation will be much less.
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Fig 6.12 (a) shows the distribution of delays of scan cells of the capture row once 

tested with the different random test vectors and insertion points. The delay is ranging 
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Fig. 6.12: Standard deviation in Rising Edge in all chips



from 0.5ns to 2.4ns. This variation is the chip to chip or die to die variation. Some chips 

are faster and the propagation delay is less then the chip with data points on the top of the 

graph. Over all standard deviation is less and is 2.5 showing that the data dispersion is 

closer to the mean.

The die-to-die variation in rising edge in all chips, shown in Fig. 6.13, is captured 

by measuring the variation in  the measurements of flip flop delays  from one chip to 

another by also considering the mean delays of each flip flop and dividing that mean 

from the range of delay across all the chips for that given flip flop. It is a good measure in 

terms of relative difference while taking the average delay in to account. 15% to 40%. 
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Fig. 6.13: Percentage Change in Rising Edge for All Chips



6.5 Die-to-Die Variation  in Flip-flops for Falling Edge in All 

Chips

Fig. 6.14: Die-to-Die Variation in Falling Edge in all Chips

Similar analysis is performed on the falling edge propagational delay, the results 

show that the standard deviation is even less for the falling edge transition, that is on 
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average 1.5, which means that the data is much closer to the average. 

The die-to-die  variation  in  rising  edge in  all  chips  is  shown in  Fig.  6.15.The 

results of percentage change across all the 28 boards shows that it is on average 15% , 

but can reach upto 40%. The curve that is showing the percentage change of 40% is from 

the flip flop 22 in the delay chain, which is on the further end of the delay chain. For this  

analysis we know that with in a chip the delay did not change more than 15 FPA steps 

each of size 36ps. Across all the 28 chips we see a variation of  40 %, this variation can 

be caused because of the spatial location in side the design.
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Fig. 6.15: Percentage Change for Falling Edge



6.6 Path Distribution Analysis
 Path  delay distribution  shown for  two chips  Chip  1  and Chip  2.  Graphs  are 

constructed with 10,000 stable paths (required 25,000 paths to be tested). With 2 samples 

per path, it takes approx. 25 seconds to find these 10,000 paths.

A plot depicting the distribution of these 10,000 path delays for CHIP1 using data 

from the  25oC,  1.20V TV corner  is  shown in  Fig.  6.16.  The  x-axis  plots  the  actual 

calibrated path delay against the number of instances on the y-axis. The path delay ranges 

from 6ns to 12.5ns, the mean is at 9.5ns. The distribution has more median length paths, 

it has a uniform distribution with a bell curve. Similar trend of path distribution is noticed 
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Fig. 6.16 Path Distribution for Chip C1



in Chip 2  shown in Fig. 6.17 and other chips.

Figure 6.18 shows the uniqueness  of  paths  across  chips  shown on right.  It  is 

constructed with 10,000 stable paths which can range from 0 to 25,000 paths ids which 

are tested to get the 10,000 stable paths. The process of data collection for all these paths 

with at least 2 samples is 25 seconds and hence is quite fast. Here we see that the paths  

which are common in all chips where the tests performed are the same and the bit stream 

is kept the same but the tested hardware, that is the FPGA are different. We see that only 

2.2% of the paths are the same on all chips in a set of 28 chips.
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Fig. 6.17: Stable path distributions for Chip 2 



Fig. 6.18: Unique and Common Path ID Counter

We have total unique path IDs equal to 18883, and among them 2.2% are common in 

ALL chips which equals 417 paths that are common and unique  paths are 10.3% which equals to  

1940 paths that are present only in 1 chip. Remaining paths are 16526 which equals to 87.517873% 
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6.7 Die-to-Die Delay Variation Analysis 
The  die-to-die  delay variation  is  computed  using  the  regression  analysis.  The 

paths are sorted on their delays, and path pairings are formed using the two neighboring 

paths with closer path delays. This process of path pairings selection is completed on chip 

1 and these path pairings are used across all the chips to plot the scatter plots from all the 

28 chips. The LSE and Three σ prediction interval curves are plotted for the measurement 

of die-to-die and within-die variation. The vertical offsets of the data points from the LSE 

94

 Fig 6.19: Die-to-die variation analysis using regression. Average path delay vs.  
normalized 3σ of residuals 



are called ‘residuals’. The three σ prediction interval curves driven from the scatter plot 

reflect the overall spread of the points around the LSE line. The 3σ of the residuals are 

first computed for all the path pairings and then are ‘normalized’ by the average path 

delay. 

The average path delay is the mean x-value from Fig. 6.19 for each of the scatter 

plots which ranges from 5ns to 12ns.The 3σ shows the die-to-die variation that is from 

one chip to another. The range of variation is in the range of 1ns to 3ns. The graphs 

shows two humps, one at 1ns and the other at 2ns showing that some of the paths are 

more affected with the variation from chip to chip and some are less. The placement and 

spatial variations of the logic components which are being timed plays an important role, 

as some regions (the corners) have more effect of temperature and voltage than others 

(the center).

The  percentage  change  in  Fig  6.20  shows  the  two  humps,  identifying  that 

variations  in  path  delays  of  equal  magnitude  can  have  from 14% variation  to  24% 

variation, spatial dependencies of the logic playing an important role. The path delays 

with the similar delays can fall into the range with an average variations of 14% or can be 

in the other region where the die-to-die variation is much higher and can reach up to 

25%. The placement  of these path delays  which are studied under this  test,  and  the 

composition of the paths, that is which gates are included in the paths and the fanout of 

each gate  can factor in the variation in the percentage change as seen in the analysis.
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6.8 Within-Die Delay Variation Analysis 
Regression analysis is used for measuring and analyzing within-die variations by 

measuring the  least  estimate square (LSE) of a best  fit  line through the data points.  

Linear regression is applied to scatter plots which are constructed from the delays of two 

separate paths, i.e., a path pairing.  The pairing are formed from the sorted list of delays, 

such that the neighboring paths will have closer delays. We create the path pairings by 

sorting the delays from CHIP1 and then creating n-1 scatter plots by pairing data sets in 

the order given by the sorted delays from CHIP1. This ensures that the paths of each 

pairings have similar  delays.  Within-die  variations  (and noise) are represented by the 

vertical offsets of the data points from the LSE line (Fig. 6.21). 
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Fig. 6.20:  Overall percentage change of die-to-die variation in path delay



Figure 6.21 shows the regression analysis of short path, medium as well as long 

paths. It is seen that overall the data points are lying very close to the regression line and 

the 3 sigma intervals are very tight. Some path pairings show more dispersion of data 

from the regression line. To better understand the within-Die variation, it is more obvious 

once we analyze the range of variation along the regression line.
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Fig. 6.21: Within-die Variation for short and long path pairings



The  x-axis  is  the  mean  path  delay of   all  the  data  points  in  the  curve  and  is 

calculated for each  path pairing, and y-axis plots the range of dispersion of the data 

points from the regression line for each curve. We have total of 399 curves which are 

common in all the chips, that is we have 399 path pairings in total. The mean of all the 

delay for the given path pairing shows on average how much is the range for the given 

mean delay. The mean path delays range from 5.5ns to 12.5ns.
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Fig 6.22: Within-Die delay variation analysis using regression: example scatter  
plot from distributions of common to all chips



Fig. 6.23: Overall percentage change of path delay variation

Fig. 6.23 shows that the  over all percentage change of the path delay variation is 

much less than the flip flop variation. The percentage variation is around 5 % and it can 

reach upto 27%. This analysis is of vital importance in case of variation aware design and 

can  be  used  for  both  FPGAs  and  custom integrated  circuits.  From the  results  it  is 

observed  that  more  variation  exists  in  the  ASIC as  compared  to  the  FPGAs,  where 

reasons can be FPGAs are commercial designed and multiple copies are created so more 

focus is to improve the design with minimal variations, where as for ASIC the design 

correctness and efficiency is of more importance.
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CHAPTER 7 
Pipelined Decision Tree Implementation 

            Decision Tree Classification (DTC) is a widely used technique in data mining 

algorithms known for its high accuracy in forecasting. As technology has progressed and 

available storage capacity in modern computers increased, the amount of data available to 

be processed has also increased substantially,  resulting in  much slower induction and 

classification  times.  Many  parallel  implementations  of  decision  tree  classification 

algorithms have already addressed the issues of reliability and accuracy in the induction 

process. In the classification process, larger amounts of data require proportionately more 

execution time, thus hindering the performance of legacy systems. We have devised a 

pipelined  architecture  for  the  implementation  of  axis  parallel  binary  decision  tree 

classification  that  dramatically  improves  the   execution  time  of  the  algorithm while 

consuming minimal resources in terms of area. Scalability is achieved when connected to 

a high speed communication unit capable of performing  data transfers at a rate similar to 

that of the decision tree classification (DT) engine. We propose a hardware accelerated 

solution composed  of parallel processing nodes capable of independently processing data 

from a streaming source. Each engine  processes the data in a pipelined fashion to use 

resources more efficiently and increase the achievable throughput. The results show that 
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this system is 3.5 times faster than the existing hardware implementation of classification.

7.1 Introduction

            The process of converting unidentified or unprocessed data into actionable 

information that  is  important and valuable to the user is  known as data mining [16]. 

Recent  advances   in  technology  and  ever  increasing  demands  for  analyzing  larger 

datasets  have  created  abundant  opportunities  for  algorithmic  and  architectural 

development and innovations. Hence data mining algorithms have become increasingly 

significant and complex. Similarly there is a great demand for faster execution of these 

algorithms, leading to efforts to improve execution time and resource utilization.

            Decision Tree Classification (DTC) is a widely used classification technique in 

data mining algorithms. It   has applications in daily life; for example, the detection of 

spam e-mail  messages.  It  is  also used  in  highly sophisticated fields  of  medicine and 

astronomy.  Several  diverse  predictive  models  in  classification  algorithms  including 

artificial neural networks [58], decision trees [59] and support vector machines [60] have 

also been previously described in the literature. A number of solutions have also been 

suggested for hardware implementation by various authors [61] [62] [63]. Decision tree 

classification  techniques  categorizes  each  data  records/tuples,  having  set  of 

attributes/properties into subgroups or classes. Assigning of a category or class to each 

input dataset consists of a two-step process in DTC. 

            The initial step is induction which involves construction of the decision tree  

model, where  internal nodes and leaves constitute a decision tree model. Each internal 

node has a characteristic splitting decision and splitting attribute, while the leaves have 
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particular category classification. Construction of a decision tree model from a training 

dataset/tuple constitutes of two phases. A splitting attribute and a split index are chosen by 

the model during the first phase. While during the second phase sorting of the tuples 

among the child nodes is performed based on the decision made in the first phase. This 

repetitive process is continued till the depth of the tree reaches a desired level. At this 

point, the decision tree can be used to predict the class of an input tuple which has not 

been classified yet. 

            The second step is the classification that includes application of the decision tree 

model  to  the  test  dataset  to  predict  its  respective  class.  The  primary goal  of  such a 

classification algorithm is to utilize the given training dataset to construct a model which 

subsequently can be used to sort unclassified datasets into one of the defined classes [64]. 

Breiman  et  al  [65]  presented  decision  trees  approximately  two  decades  ago,  and 

described  the  decision  trees  as  rooted  tree  structures,  with  leaves  representing 

classifications and nodes representing tests of features that lead to those classifications. 

The accuracy of decision trees has been shown to be better or comparable to other models 

including artificial neural networks, statistical, and genetic models. The prediction in the 

classification process commences at the root, and a path to a leaf is followed by using the 

decision rules governed at each internal node. The characteristic class label to the leaf is 

then assigned to the incoming tuple. 

            DTC continues to function at high accuracy even in analysis of large data sets.  

Current technology advancements in data extraction and storage permit large amount of 

historic data to be preserved and utilized for data analysis and creation of more realistic 

classification  rules.  The  property  of  DTC  to  function  at  high  accuracy  even  when 
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handling in large data sets makes it an appealing tool.

            Decision trees have since been implemented in software programs. Although the  

software implementation of DTC is highly accurate the execution times and the resource 

utilization  still  require  improvement  to  meet  the  computational  demands  in  the  ever 

growing  industry.  Whereas  hardware  implementation  of  Decision  trees  has  not  been 

investigated  or  reported  in  detail.  Only  a  few  researchers  [66]  [67]  [68]  proposed 

hardware realization of various decision trees using different architectures for specific 

problems.

           Our work focuses on the speedup of the classification step using hardware  

acceleration.  We propose a  pipelined architecture for the hardware implementation of 

axis-parallel  binary  decision  tree  classification  that  meets  the  current  demands  of 

increased throughput with minimal resource utilization. The proposed design supports a 

streaming  architecture   by  using  double-buffered  input  and  output  memories  to 

simultaneously  receive  and  process  data.  Our  experiments  prove  that  our  proposed 

hardware acceleration of classification algorithms increases throughput by reducing the 

number of clock cycles required to process the data and generate results.  The architecture 

also  requires  minimal  resources  and  is  therefore  area  efficient.  For  scalability  this 

proposed architecture, when configured with a high speed communication unit, enables 

processing and data transfer simultaneously. As long as the performance of the decision 

tree classification engine meets or exceeds that of the communication unit, processing 

time is not affected by the transfer of  data. 

            We developed the decision tree classification algorithm in detail and explored 

techniques for adapting it to a hardware implementation successfully.
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7.2 Background

            A number of hardware implementations of decision tree examples are reported in 

the literature [66] [67]. The approach of using single level classification technique instead 

of staged or multi-level technique  limits the throughput because of having a restraint in 

the design that new instance cannot be applied to the input before  completion of the 

classification of the previous data instance,  resulting in low throughput.  On the other 

hand the staged/ leveled technique allows a new instruction/data fetch every clock cycle 

and thus optimizes the throughput.

            A more advanced approach, proposed by [66] is based on the equivalence between 

decision trees and threshold networks hence resulting in fast throughput since the signals 

have  to  propagate  through  two  levels  only,  irrespective  of  the  depth  of  the  original 

decision tree. Most of the architectures for hardware implementation of decision trees 

mentioned in the literature require a considerable number of hardware resources [68].

            Past research work has been reported on hardware implementations of data  

mining algorithms. Baker and Prasanna [69] used FPGAs to implement and accelerate the 

Apriori  [70]  algorithm,  a  popular  association  rule  mining technique.  They developed 

scalable systolic array architecture to efficiently carry out the set operations, and used a 

“systolic injection” method for efficiently reporting unpredicted results to a controller. In 

[71], the same authors used a bitmapped CAM architecture implementation on an FPGA 

platform to achieve significant speedups over software implementations of the Apriori 

algorithm.  Several  software  implementations  of  DTC have  been  proposed  [72]  [73], 

which  used  complex  data  structures  for  efficient  implementation  of  the  splitting  and 
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redistribution  process.  These  implementations  focused  on  parallelizing  DTC  using 

coarse-grain parallelization paradigms.

            Li and Bermak [74] suggested a decision tree classifier based on an axis-parallel  

decision  tree.  Bachir  et  al.  [75]  presented  both  a  hardware-dedicated  decision  tree 

technique  for  the  generation  of  exponential  variates  and  a  derived  architecture 

implemented in FPGA.

            Podgorelec and Kokol [76] proposed a self-adapting evolutionary algorithm for  

the induction of decision trees and described the principle of decision making based on 

multiple  evolutionary  induced  decision  trees  –  decision  forest.  Chrysos  et.  al  [77] 

presented data mining on the web for classifying and mining huge amounts of e-data by 

an implementation of data mining algorithm on a modern FPGA to accelerate certain very 

CPU  intensive  data-mining/data  classification  schemes.  Subsequently  they  exploited 

parallelism at the decision variable level and evaluated its implementaion on a modern 

high-performance reconfigurable platform [78].

            The objective of this paper was to find an architecture that could ensure high 

throughput with significant reduction in hardware complexity. Generally, with an increase 

in the data sizes, the running time stretches to several hours. In the architecture designed 

for this research, each data record is assigned to a class using the predefined classification 

rules. The developed solution yielded high accuracy while handling large datasets. The 

hardware implementation for this study helped enhance the performance over software 

implementations.
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7.3 Decision Tree Classification Architecture
            In this paper  we propose an efficient pipeline based implementation of a decision  

tree  classification  algorithm.  The hardware  accelerator  for  decision  tree  classification 

performs parallel  operations using concurrent engines,  where each engine implements 

pipeline  technique  and  thus  fetches  data  records  in  every  cycle,  enhancing  the 

performance of classification process. 

            In our solution we proposed and adopted a two phased decision tree classification 

process. Firstly in the induction Phase a training dataset is used in order to determine the 

rules, based on which the classification is to be done, at each node. We have opted to 

provide these induced decision rules from the Microblaze softcore microprocessor to the 

decision tree classification engine. In the next phase, the classification is performed at the 
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Fig. 7.1: Decision Rules in form of Decision Tree



hardware level. Our proposed architecture employs a pipelined data path, where the data 

is distributed in a pipeline to execute concurrently, which is of significant importance for 

large datasets to reduce the clock cycles.

          The decision tree classification engine architecture concentrates on axis-parallel 

binary trees, where each node in the tree can have no more than two child nodes and only 

one of the attributes comprising the dataset is compared against a constant at each node. 

These constants are determined in the induction phase for each node. Figure 7.1 shows an 

example of binary decision tree, for a given dataset, where the leaf nodes represent the 

classes that divide the data into different categories, and each internal node represents the 

test conditions, from which it traverses and reaches one of the classifications. 
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Fig. 7.2: Decision Tree Stages



          The decision tree classification subsystem implements each level of tree using a 

stage as represented in Figure 7.2. Each stage consists of a decision logic, coefficient 

memory and internal registers. The input address to the coefficient memory is a function 

of the path through the decision tree that was taken to arrive at that particular node. Each 

coefficient memory stores  coefficient values, attribute index of the incoming data from 

which to compare the coefficient, operation to be performed and a pointer to either the 

memory location of the next stage  or the class assigned. The output of the coefficient 

memory contains all the information needed to perform the operation associated with the 

node in the tree being addressed.

            The decision tree classification engine has three major parts: a) the double-

buffered  input  block  RAM  b)  the  decision  tree  classification  subsystem,  and  c)  the 

double-buffered output block RAM. The decision logic reads the incoming data and takes 

the rules from its associated coefficient memory,  processes them and forwards the data to 

the  next  stage  with  the  processed  results.  The  intermediate  results  decide  whether  a 

category is assigned to the data or further processing is required in the next stage. In case 

when the classification is complete for a data, the data is forwarded to the next stages 

without further processing, otherwise the processing and comparison is repeated until it is 

assigned to  a  class  and then  stored  in  the  output  memory.   All  these  operations  are 

performed in a pipelined manner where in every clock cycle the data is forwarded into 

next stage and newer data is fetched. 
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            Figure 7.3 represents a decision tree with depth of n, having n stages from which 

the data passes through, and then the classification is stored in the output block memory. 

The unclassified data is provided by the double-buffered input block RAM to the first 

stage of the engine, from where it is processed and propagated down the pipeline. The 

classifications for each tuple, are stored in the double-buffered output block RAM. The 

Xilinx Logicore IP Block Memory Generator has been used in order to implement the 

input  and  output  memories.  Where,  block  memory  generator  uses  embedded  block 

memory primitives  in  Xilinx FPGAs to implement  memories  of  different  depths  and 

widths. Our proposed design implemented on Digilent Nexys2 Spartan 3E board uses two 

fully independent ports each with its own read and write interfaces and access to a shared 

memory space.  These ports  can operate  at  different  clock frequencies  thus making it 

possible for the classification subsystem to operate at double the frequency of the on-

board system clock. 

            Figure 7.4 shows the RTL level block diagram of one such hardware module/stage 

of  the  classification  subsystem.  In  each  module  there  is  a  memory element,  namely 
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coefficient memory associated with it. These memory elements are also generated using 

the Xilinx Logicore Distributed Memory Generator IP. During the memory configuration 

stage the RAM_access bit is set high. This allows the Microblaze to access the coefficient 

memory, in order to write the rules for each  node associated to that level. The control 

unit ties the address lines of the coefficient memory to the address value received from 

the  previous  hardware  module  in  the  pipeline.  The  size  of  the  coefficient  memory 

depends on which level of the tree it is associated. Hence the size varies from one 64 bit 

wide line to 2n 64 bit wide lines where n is the number of levels in the decision tree. 

            The attributes are transferred to the module from the double-buffered input block 

RAM or the previous stage in the pipeline. Depending on the Attribute Index the attribute 

to be compared is selected and transferred to the comparators. The constant that it is to be 

compared against is fetched from the coefficient memory based on the address received 

from the previous stage. The new address for the coefficient memory of the next stage 

signifying the path to be taken (left child or right child) while traversing the decision tree 
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is  sent  to  the  next  stage  in  the  pipeline  based  on  the  operation  select  lines  and the 

comparator outputs.

            The decision tree classification has been implemented as a Hardware-Software 

Co-Design. The Xilinx soft-core microprocessor Microblaze has been used to supply and 

fetch data to and from the reconfigurable decision tree classification engine. The data 

coming in is  read  by the Microblaze  which  sits  on the  Peripheral  Local  Bus (PLB). 

Microblaze in turn transfers the data to the double-buffered input  block RAM of the 

decision tree classification engine. The engine is a custom peripheral designed as a slave 

module of the PLB. Once the double-buffered input RAM is written to with a given batch 

of  data  the  Microblaze  activates  the  classification  engine  by  asserting  a  signal.  The 

classified data is written into the double-buffered output block RAM. 

            In order to increase the efficiency of the engine it  has been made parallel. Figure  

7.5  shows  the  overall  pipelined  and  parallel  architecture  where  the  decision  tree 

subsystem is instantiated eight times thus facilitating computation of eight classification 

result every clock cycle. After the initial latency, equivalent to the number of levels in the 

tree, 8 tuples of the dataset are categorised every clock cycle. Our tested design of the 

proposed architecture allows a depth of up to 13 levels, therefore the maximum latency 

for this design is 13. The address management for writing to the double-buffered input 

block RAM and  reading from the double-buffered output block RAM has been done in 

such a way that eight consecutive tuples can be read and  classified in every clock cycle.  

The double-buffered  input  and output  RAMs are  designed to  allow for  simultaneous 

buffering and processing. The operations of each RAM are switched after the given batch 

of data records are processed by the classification subsystem. 
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Fig.7.5: Parallel and Pipelined Decision Tree Engine

 

           In theoretical analysis we analyzed following characteristics and limitations of the 

hardware architectures designed previously.

i. Only  single  data  record  is  fetched  in  every  cycle,  thus  requiring  more  clock 
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cycles.

ii. Data record is fetched in sequential order from single input memory.

iii. The engine performs the classification and stores in output memory and only then 

fetches the new data record. Thus wasting the processing cycles.

            Following are the enhancements in our proposed architecture where we utilize the 

hardware pipelines and parallelism to overcome the above mentioned limitations:

i. Engine is made of pipelined stages, each stage implements rules of one level of 

the tree.

ii. Pipeline to make use of processing cycles when data is written in memory, thus to 

increase the performance.

iii. Engine works on clock frequency double to that of the interface clock.

iv. Multiple data records are read as well as written simultaneously in every cycle, 

exhibiting parallelism, thus reducing the overall clock cycles.

v. Distributed  memories  are  used  for  the  coefficient  lookup  tables  inside  the 

peripheral for making the engine memory efficient, and to reduce the clock cycles 

to access the data.

vi. The block RAMs are placed in the peripheral such that the bus is not used in the 

memory  accesses,  thus  reducing  the  clock  cycles  required  for  setting-up  bus 

protocol.

vii. Also,  the on-chip block memories are used for the pre-processed datasets,  the 

classification rules and storing the classification results. 
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            Consequently, we are able to optimize the access to memories in one clock cycle,  

in the given architecture. This results in overall reduction of clock cycles and hence a 

greater impact on the performance.

            The development board used for this work is the Diligent Nexys-2 Spartan-3E 

FPGA  Board  featuring  a  single  Xilinx  XC3S1200E-FG320  FPGA.  This  particular 

component  does  not  support  PCI  Express  and  without  access  to  a  high-performance 

interface,  the  proof-of-concept  design  discussed  in  this  paper  is  implemented  using 

RS232 to move data back and forth from the host to the FPGA. As the bandwidth of an 

RS232  link  is  inappropriate  for  an  application  requiring  high  performance,  the  I/O 

transfer time in the performance results as their inclusion would have completely hidden 

the performance increases realized by our parallel architecture.

            The theoretical performance of the Gen-2 PCIe hard core in the Virtex-6 FPGA is  

500  MB/s/lane,  giving  an  x8  design  a  raw  bandwidth  of  4  GB/s  in  each  direction. 

Assuming to achieve 80% efficiency due to bursting and DMA, this would be equivalent 

to transferring 3.2 GB/s, or 800 Mwords/s in each direction. Our design, for 4 attributes 

processes eight 32-bit samples in parallel at 100 MHz, the raw bandwidth of our logic is 

also 800 Mwords/s. Therefore, if we replace the RS232 interface with a PCIe interface, 

the  I/O  bandwidth  would,  at  a  first-order  estimate,  match  that  of  our  parallel 

implementation.  For  this  reason,  it  is  reasonable  at  this  stage  to  include  only  the 

performance  results  for  the  parallel  implementation  and  ignore  the  transfer  time 

represented by our legacy RS232 interface, as a modern interface such as PCI Express 

would be able to keep up with our design's classification rate. The FPGA Implementation 

and experimental results are discussed in the next section.
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7.4  Experimental Results
            We have implemented the proposed architecture on Digilent Nexys2 Spartan 3E 

FPGA board  to  perform  classification  in  hardware  accelerator. Variety  of  datasets, 

varying from benchmark to synthetic datasets have been used. The Number of tuples also 

varies  to  verify and validate  the  performance  dependencies  of  the  engine.  Data  pre-

processing includes data cleansing, that is to normalise the data and conversion into hex-

decimal number, to feed in the engine. 

            An open source tool WEKA [79], which is an open source tool under the GNU 

GPL  license, was  used  for  induction  to  establish  the  rules.  For  the  induction, 

classification algorithm J48 was exploited for all the datasets used in the experiments 

conducted for the implementation. The rules were extracted from the binary decision tree 

generated through the induction. Further, the rules were formulated and provided to the 

micro-blaze for the classification process.

            The Xilinx Platform Studio was used to program the micro-blaze; and to program 

hardware  we  used  Xilinx  ISE 12.4.  Micro-blaze  was  provided  with  the  rules  of  the 

classification; where with different datasets we have different classifications rules. With 

each test performed the data is fed into the memory. The speed of the clock is 50 MHz, 

whereas our proposed hardware accelerator operates on double clock frequency that is 

100 MHz. 

7.4.1   Accuracy of the Model

            The accuracy of our parallel implementation of the pipelined architecture is 

shown in Table 7.1. Here Iris and Contact lenses from UCI machine learning repository 
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[80] are the bench mark datasets, whereas synthetic datasets 1, 2 and 3, generated using 

Datagen  [81].  A  number  of  attributes  varying  from  4  to  6,  are  used  with  each 

configuration, having the number of tuples ranging from 100 to 1000. The results validate 

that  our  architecture  supports  varying  number  of  attributes  and  tuples  without 

deteriorating the accuracy of the model. 

Dataset Total number of 
instances

Correctly classified %Correctly 
classified

Iris 150 147 98.00%

Contact Lenses 24 20 83.30%

Dataset1- 4 attributes 1000 1000 100.00%

Dataset2- 5 attributes 1000 1000 100.00%

Dataset3- 6 attributes 1000 1000 100.00%
Table 7.1: The accuracy of the Decision Tree model

7.4.2    A Comparison with software implementations  

            For the comparison with the software, execution times of the decision tree 

classification engine is compared with WEKA data mining software, R-project  and C 

implementation  of  classification  process.  In  R-project  the  tree  is  implemented  by 

recursive partitioning using Rpart routines and classification is performed using predict 

routine. The WEKA tool uses the ID3 for induction process, and performs classification 

on  the  test  data.  The  same  datasets  were  used  for  all  the  software  and  hardware 

implementations.

            Detailed results of the study are shown in Table 7.2, presenting the time each 

implementation  takes  as  well  as  the  overall  speedup/performance  gains  of  hardware 

accelerator compared to software. The results show that the speed of C implementation is 
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in microseconds and it takes less time than WEKA and R-project. WEKA, a java based 

tool, shows better performance than R-project. R-project is an interpreted language which 

is  implemented  in  C,  but  in  orders  of  magnitude  slower  than  specialized  C 

implementation of the classification.

             We also tested our proposed system on datasets with 4, 5  and 6 attributes by 

varying the number of tuples from 100 to 8000 and it was established that there is no 

impact  of  the  number  of  attributes  on  the  performance of  the  engine.  This  occurred 

mainly  due  to  the  fact  that  we  have  implemented  an  axis-parallel  decision  tree,  the 

hardware takes the same number of cycles for classification regardless of the number of 

attributes of the dataset.

No. of 
Tuples

Time for the hardware 
implementation

Time for the software 
implementation

approx.

Speedup 
compared to

 C 
Impleman-

tation
No. of 
clock 
cycles

Lat-
ency

Total 
Time
 (ns)

Weka

(ms)

R-project 

(ms)

  C 

(us)

100 7 4 220 0.5 1.33 12.3 55x

250 17 4 420 0.5 1.38 33.84 80x

500 32 4 720 1 1.52 76.92 106.83X

750 48 4 1040 1.5 1.66 112.3 107.9X

1000 63 4 1340 2 1.81 175.38 130X

2000 125 4 2580 2 2.42 286.45 111X

3000 188 4 3840 2 3.16 430.21 111X

4000 250 4 5080 5 3.87 570.23 112X

5000 313 4 6340 5 4.54 720.42 113X

6000 375 4 7580 6 5.4 860.3 113X

7000 438 4 8840 11 5.89 1006 113X

8000 500 4 10080 15 6.81 1154 114X
Table 7.2:Comparison with Software Implementations
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            Our design is currently limited by the locally available memory and no high speed 

communication link to stream data, the maximum number of dataset tested is 8000 data 

records. If streaming data is available decision tree classification engine is designed to 

process at a fixed throughput that is linearly related to data set size. Theoretically the 

number of  clock cycles = (data  records  /8 + latency)+ clock cycle  for  switching the 

buffered  memory.  For  example  for  the  dataset  of  1  million  records  it  will  take  2.5 

miliseconds.

7.4.3    Comparison with previous hardware implementations

            For the comparison with the previous hardware implementations, the clock cycles  

required by the FPGA implementation of decision tree classification engine are compared 

with  the  SMpL and  SmpL-p  implementation  proposed  by Struharik  et  al.  [68].  The 

SMpL-p architecture employs one hardware module per level of the decision tree.   In the 

experiments performed by Struharik et al for the classification, 16 of the 23 datasets, used 

are binary trees. We have performed the experiments on the subset of the datasets used in 

the SmpL and SmpL-P, and compared the performance in terms of the clock cycles in 

Table  7.3  and it  shows that  decision  tree  classification  engine   has  on  average  3.5x 

speedup over these implementations.
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Data set DT SMpL Speedup SMpL-P Speedup

Glass 2.24 6.46 2.88x 6.96 3.12x

Balance-
scale

1.5 4.97 3.31x 4.27 2.85x

Heart 1.26 4.99 3.96x 4.54 3.60x

Diabetes 1.48 6.72 4.54x 7.14 4.82x

ionosphere 1.88 6.46 3.43x 6.25 3.32x

Liver 1.74 6.37 3.66x 4.05 2.32x

Soner 1.92 6.55 3.41x 6.16 3.20x

Page block 1.29 6.93 5.37x 6.25 4.84x

Zoo 2.57 4.99 1.96x 5.88 2.28x
Table 7.3:  Comparison with Hardware Implementations

7.5 Resource Utilization
            Based on the RTL level hardware requirements SmpL and SmpL-P requires M.n 

multipliers,  whereas  our  implementation  requires  0  multipliers.  Also  the  number  of 

adders  for  our  implementation  is  2.M*8  adders,  whereas  the  SMpL  requires 

approximately M.[ 2n ] adders, where n is the number of attributes and M is the level of 

the trees. Hence the hardware requirements are also minimal for our proposed hardware 

engine.

            The devised architecture area utilization, in terms of lookup tables and flip flops 

and the block RAM utilization is also optimized. Table 7.4 shows the utilization summary 

at different hierarchies of the design.
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Implementation LUTs FF Block RAM

DT Engine 1 Stage 62 96 0

DT Engine 4 Stage 240 332 0

DT Engine 8 parallel instances 

of 4 Stages 

2952 3100 18

Whole design 6442 5336 22

Table 7.4: The Resource Utilization of the Decision Tree model

            The utilization of number of slices of the decision tree classification engine with 8 

parallel  classification subsystems instances  is  29%, whereas  each instance of  4  stage 

pipelined decision tree module uses 205 slices bringing it to 2% total utilization. The 

whole design number of slices utilization is  5386 which is  62% utilization.  Thus the 

proposed architecture in comparison with SMpL-p has reduced hardware complexity of 

the modules and reduced execution time.

7.6  Data Streaming with High Performance Communication 

Link

            Our ideal architecture would consist of a streaming interface between PCIe and 

the decision tree classification engine. Using this interface, the host computer could set 

up DMA transfers to a fixed destination address on the DT peripheral and continually 

stream data to the limits of the communication link. At the DT peripheral, onboard logic 

would manage the streaming data such that a double-buffered input memory could be 

used to maintain constant bandwidth between the host and peripheral. In this way, the 

decision tree classification engine would hide the addressing complexity from the host. 

As  long  as  the  processing  capability  of  the  engine  met  or  exceeded  that  of  the 
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communication link, saturation would not occur.

            This architecture allows classification of big data in a streaming manner. Figure  

7.6 shows the streaming architecture, the double-buffered input and output RAMs are 

designed to support simultaneous buffering and processing of data. A memory controller 

switches the first memory from buffering mode to processing mode once the memory is 

filled, and connects the other memory to the communication unit for buffering. In such a 

manner the communication overhead is hidden.

          The proposed architecture has the advantage of being highly scalable and exhibits 

high  levels  of  parallelism.  The  performance  of  pipelined  architecture   is  linearly 

dependent  on  the  number  of  data  records/tuples  and  independent  of  the  number  of 

attributes  in  a  particular  data-set.   Higher  levels  of  parallelism  can  be  achieved  by 

increasing the number of parallel pipelines, also trees of greater depth upto 13 can be 

modeled by increasing the number of pipeline stages. 

The design has the minimum resource utilization thus the power consumed is also 
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an advantage of the binary decision tree classification accelerator engine.  Contrary to the 

previous implementations, we  focused on the pipelining of different stages; efficient use 

of the on-chip memories; and registers to optimise the area used and minimize the clock 

cycles, thus helping in accelerating the process of classification. 
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CHAPTER 8
Conclusion

My research  project  mainly focuses  on the  die-to-die  and within-die  variation 

measurement for analyzing the variations using the embedded test structure REBEL.  I 

have successfully collected data and analyzed the path delays from 52 copies of 90nm 

chips 28 copies of 28nm Zynq FPGAs 7000 series on Zed Boeards. I have performed 

various analysis to better understand the quality of each dataset; and consequently have 

established a  methodology of  calibrating  short  path  delays  and have  devised  a  more 

accurate process of measuring die-to-die and within-die varirationin ASIC and FPGAs.

The key contributions of the work presented in this proposal includes:

1) The within-die variation measurement and evaluation of REBEL is carried out in 

multiple  copies  of  a  custom  designed  test  chip  fabricated  in  IBM’s  90nm 

technology. The macro in which REBEL is integrated is an IEEE-754 compliant 

floating point unit (FPU), with 5 pipeline stages. Random test patterns are applied 

to the combinational logic within each of the pipeline stages and the measured 

delays  are  analyzed,  with emphasis on evaluating the magnitude of within-die 

variations  as  a  function of path length.  A second important  component  of  my 
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experiments is the evaluation of delay variations while the chips are subjected to 

industrial-level temperature and voltage (TV) variations.

2) In ASIC analysis I propose a calibration methodology and introduced windowing 

mechanism to avoid the voltage transient effect. The impact of the power transient 

is particularly evident when the LC interval is dynamically changed as a means of 

obtaining high resolution delay measurements. The calibration process is designed 

to eliminate this environmental source of delay variation.

3) Also for ASIC I show a new error estimation scheme for measuring the error 

estimation  in  path  delays  is  proposed  here,  which  uses  different  windows  to 

measure  the  same  path,  where  each  subsequent  window  increases  the  launch 

capture interval and adds another flip-flop in the path-under-test.

4) For FPGAs I have performed analysis on the propagational delay through the flip 

flops  for  both  rising  and falling  edges  and have  confirmed the  robust  design 

where the delays are overlapped.

5) Path Distribution of the AES design implemented on FPGA and a comparison of 

common paths among all copies of FPGAs and how many of them are unique and 

are present only in 1 chip.

6) I have performed die-to-die and within-die variation measurement and evaluation 

of REBEL on 28 copies of  Zynq 7000 series FPGAs on ZED boards and shown 

that on average a 5% of percentage change variation exists with in the FPGAs.

In my research, I present REBEL (regional delay behavior) as an embedded test 
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structure (ETS), for path delay measurement which is later utilized for measuring within-

die and die-to-die variation.  I have described the detailed architecture of REBEL and 

demonstrated  its  effectiveness  for  measuring  delays  and  capturing  the  within-die 

variations caused by the environmental and physical process variations. The experimental 

results obtained so far are elaborated in Chapter 5 and Chapter 6 for custom 90nm chip 

and 28nm Zynq FPGA analysis respectively.  There are several applications, for example, 

Trojan detection,  delay  defects  detection,  and  Physical  Unclonable  Functions  for 

encryption, identification and authentication. 

My experimental  results  presented  in  Chapter  5  show  that  the  magnitude  of 

within-die delay variations in ASIC is dependent on the length of the path, and the delays 

are highly sensitive to the power transient effect introduced by the launch-capture (LC) 

clock event.  Additionally I  have performed uncertainty analysis  to estimate the noise 

contribution and specified a region where the paths with 4 to 12 flip-flops are included in 

the uncalibrated path delay have the minimum uncertainty. 

 In Error estimation Analysis for measuring the error estimation in path delays I 

use different windows to measure the same path, ideally all the windows should get the 

same path delay after calibration, but this is not the case as the calibration error is added 

with every additional flip-flop of the scan chain. So far the errors are within ± 100 ps but 

they can increase upto -300ps in worst scenario. Also in our designed chip power grid 

noise  is  contributing  more  variation  in  the  calculated  path  delays,  as  the  bypass 

capacitance on the chip was not included in the design. To minimize the error I have 

added  an  external  bypass  capacitance  on  the  I/O  pins  still  a  large  transience  in  the 

supplied power voltage is observed. The clock for launch capture intervals is provided by 
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FPGA using DCMs with fine phase adjustment. We observe the clock jitter and variation 

in the launch capture intervals in clock strobing. To account for this variability  the exact 

LCI is recorded using oscilloscope measurements and are used in the calculations instead 

of using the estimated value. Hence reducing the errors in the calibration of path delays.

In Chapter  6,  I  performed die-to-die  and within-die  variation analysis  on  the 

Zynq FPGAs and have shown that the the did-to-die variation have spatial dependencies 

and can range from 14% to 24% on average. The within-die variations in FPGA for the 

path  delays  is  on average  5% and can  go upto 27%,.  This  analysis  will  help  in  the 

variation aware layout design to avoid the violations and improve the performance. The 

experiments that have been performed on the calibrated path delays are Flip flop rising 

and falling transition delay analysis, uncertainty analysis, path distribution  analysis, short 

versus long path variations and within-die variation analysis and die to die variations on 

the data collected so far. 

          Additionally, to cater for big data by employing decision tree classification (DTC) 

to  speed-up the classification step in hardware implementation, we  devised a pipelined 

architecture for the implementation of axis parallel binary decision tree classification for 

meeting up with the requirements of execution time and minimal resource usage in terms 

of  area.  Our hardware  acceleration  of  pipelined  architecture  incorporates  the  parallel 

approach in acquiring the data by having parallel engines working on different partitions 

of data independently. Also, each engine is processing the data in a pipelined fashion to 

utilize the resources  more  efficiently and reduce the time for  processing all  the  data 

records/tuples. 
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CHAPTER 9
Future Work

In this  chapter,  I  suggest  further  research work in  the area of path variations, 

based on our current research. Particular areas for future research to be focused inter alia 

include path delay measurements using IDCs, path delay measurements as an entropy 

source for PUF primitive, defect analysis, model to hardware correlation, and on-chip 

using DLLs or PLLs and bypass capacitance on I/O pads.

9.1 Path Delay Measurement using TDCs
Within die delay variation analysis using REBEL 0is performed on the path delays 

with a measurement precision having a resolution of 70ps, Time-to-Digital TDC is a test 

structure which can provide the path delay measurement with 10ps precision.  The TDC 

is designed to measure the relative delay between two input signals which are provided 

by a pair of tap points on an FPU macro. The relative delay is digitized by the TDC using 

a pulse-shrinking mechanism. The digital code is ’scanned out’ of the TDC and the width 

of the transition propagated is compared with the ring oscillator frequency to calculate 

the delay,  pulse-shrinking behavior of the TDC allows very high timing resolution, i.e., 

10’s picoseconds, in measurements of the width of the input pulse. The TDC occupies an 
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area of 176 um x 60 um (10k um2).

The TDC is implemented as two components, labeled Path Select/Pulse Gen Unit 

and Pulse Shrinking Delay Chain. On chip there are in total seven TDCs, one connected 

with Arbitor PUF, 2 with FPU macro-under-test, 2 with AES and 2 with AES with Trojan. 

All the TDC are connected in a chain and hence require configuration to implement FPU 

with TDCs. There is a Ring Oscillator whose input can go in the TDC, we can measure 

its  frequency as  it  is  connected  with  one of  the  outputs.  Hence  a  table  mapping the 

frequency of the ring oscillator and its thermometer code is once created, can be used to 

measure the delays of the paths by comparing there thermometer code within this table 

and get the quantized delay as an output.

The component pulse generation unit has scan flip flops sel A and sel B drives the 

inputs of two 8-to-1 Muxes. Each of these inputs requires a transition. The combination 

of these transitions can be both rising, both falling, one rising and one falling or vise 

versa.  The outputs of the 8-to-1 MUXes is given to a negative pulse generator, XNOR 

gate, for the Pulse Shrinking Delay Chain. 

 Fig. 9.1:  Time to Digital Conversion (TDC)
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The current starved inputs of all the even numbered inverters are connected to 

Cal0 while the inputs of the odd numbered inverters are connected to Cal1.  With Cal0 

fixed at a specific voltage, larger assigned Cal1 voltages allows the  first edge propagates 

more quickly and hence makes the pulse disappear after the trailing edge catches up with 

the leading edge. A set of flip-flops up stores '1' to the point where the pulse disappears , 

while those beyond this point store ’0’.  In this set of experiments, both of these voltages 

are controlled using off-chip power supplies. 

In case of calibration, the rising and falling edges of ring oscillator are provided to 

the TDC and simultaneously the frequency of the ring oscillator is measured from the 

output pins using oscilloscope. The TDC is designed to ’pulse shrink’ the negative output 

pulse from the XNOR as it propagates down a current-starved inverter chain. As the pulse 

moves down the inverter chain, it  activates a corresponding set of set-reset latches to 

record  the  passage  of  the  pulse,  where  activation  is  defined  as  storing  a  ’1’.  A 

thermometer code, i.e., a sequence of ’1’s followed by a sequence of ’0’s, represents the 

digitized delay between the rising edge and falling edge of the ring oscillator. In this 

context the digitized delay is called thermometer code  is zeros  followed by all '1’s. Once 

the calibration process is complete we get a mapping of frequency and thermometer code.

In the path delay measurement process, the inputs of scan flip flops, sel A and sel 

B is connected back to the FPU macro under test. The thermometer code of the delay is  

mapped with the history table and the delays are digitized.  

9.2 Path Delay Measurement as an Entropy Source for PUF 
Primitive

Within-die  variations  in  path  delays  are  increasing  with  scaling,  and  are 
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increasingly affected by “neighborhood” interactions.  Although higher levels of within-

die  delay variations  are  undesirable  from a  design  perspective,  they represent  a  rich 

source of  entropy for  applications  that  make use of  ‘secrets’,  such as  authentication, 

hardware metering and encryption. Physical Unclonable Functions or PUFs are a class of 

circuit primitives that leverage within-die variations as a means of generating random bit 

strings for these types of applications.

We can implement hardware embedded delay PUF that leverages within-die path delay 

information. PUF obtains accurate measurements of path delays within core logic macros 

using an embedded test structure called REBEL. REBEL provides capabilities similar to 

an off-chip logic analyzer,  and allows very fast  analysis  of  the temporal  behavior  of 

signals emerging from paths in a core logic macro. Statistical characteristics related to the 

randomness, reproducibility and uniqueness of the bit strings which can be used as key 

for encryption and authentication applications. 

The FPA timing value that we obtain for the stable paths can be used as a PUF 

Numbers or PNs.  The statistical analysis requires the number of bits to be equal across 

all chips, so we can reduce the number of PNs to the smallest number produced by one of 

our chips, which is X. Using all combinations in the bit generation process, this allows bit 

strings of length X*(X-1)/2 = Y . The actual bitstring size however is dependent on the bit 

string generation methods. Some of the methods for bit generation are, Dual P/N, Dual 

P/N Count (DPNC), Universal No- Modulus Method (UNM) and Universal No-Modulus 

Difference.  There are thresholding techniques to avoid the weak bits in the bit  string 

during the enrollment to avoid the bit flips during re-generation. To generate error free 

bitstring TMR technique can be incorporated to generate an error-tolerant bit string. That 
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PUF can be evaluated across industrial-level temperature and supply voltage variations 

based on the data collected for the chips.

9.3 Defect Analysis
Cadence Encounter Test ATPG tool is used to generate transition/path delay test 

vectors for various path delay measurements. Several path delays that represent various 

path lengths of the design are measured using REBEL embedded test structure. These 

path delays can be measured in 52 copies of the chip and analyzed for die-to-die and 

within-die variations. In these macros several defect emulation circuits, that are designed 

to introduce delay anomalies along the selected paths, are inserted. An analog  control 

input is added in the defect Emulation circuit  that enables the controlled insertion of 

additional  capacitive load that  models  a  defect.  With this  mechanism, once the input 

patterns create a falling/rising edge transition, the delay will wary from the path with no 

defect.  In the test  vectors generated using ATPG 6 paths  are  tested which produce a 

transition on the paths with the defect.  REBEL can be used to measure the delays along 

these paths, which are then processed for detecting the affects of defects. 

Further more incorporating the correct flip flop delay based on the launch capture 

interval  to  remove the  power  transient  from the  analysis  will  provide  more  accurate 

delays  and will  give us the ability to calculate  the delay variation introduced by the 

defect.

9.4 Model to Hardware Correlation
            Focusing on the application of model to hardware correlation, Cadence tools for 

measuring  the  path  delays  with  the  same  input  patterns  provided  to  the  chip  and 

comparing and correlating the results of the hardware data with simulations can provide 
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meaningful results  and can help in creating the variation models. Encounter Test is a 

Cadence  tool  that  helps  in  the  analysis  of  the  paths  which  are  actually  tested,  thus 

figuring out the paths and correlating the path delays with the gates. Analysis on the gate 

composition and number of gates in each path are beneficial for more accurate variation 

models.  Static  timing  analysis  and  statistical  timing  analysis  of  the  design  for 

manufacturing  (DFM) can also be performed to improve the design for manufacturing 

and increasing the yield.

9.5 On-Chip Clock using DLLs or PLLs  and Bypass 
Capacitance on I/O Pads

In  the  experiments  perform  on  the  ASIC  chip,  the  clock  for  launch  capture 

intervals is provided by FPGA using DCMs with fine phase adjustment. We observe the 

clock jitter and variation in the launch capture intervals in clock strobing. To account for 

this variability we record the exact LCI using oscilloscope measurements and use them in 

the calculations instead of using the estimated value. Hence reducing the errors in the 

calibration of path delays but not completely eliminating it. A better solution would be to 

have an engine for clock strobing on chip and generating the launch capture interval with 

less clock jitter and minimized the clock skew.

Also in our designed chip power grid noise is contributing more variation in the 

calculated path delays, as the bypass capacitance on the chip was not included in the 

design. We have added an external bypass capacitance on the I/O pins. The incorporation 

of by-pass capacitance on chip will help in reducing the power supply transient effect
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