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Abstract

Mobile security is a vast research world with an ever-changing landscape. Researchers

develop security solution one day just to see them overcome a week later. Protocols

and specifications are generated that attempt to create order out of the chaos and

provide a clear roadmap to the future of mobile security. Unfortunately, that road

is often filled with switchbacks and U-turns as security measures are defeated and

researchers return to the drawing board.

Research conducted over the past four years has provided significant information

that can help to drastically alter the direction of mobile security and help it leapfrog

e↵orts made by hackers around the world. During this time, an analysis of mod-

ern mobile security research was conducted. The research presented also includes

research conducted on Physical Unclonable Functions and their impact to the world

of mobile security. Finally, a novel mobile security architecture has been developed
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that can provide stronger authentication, unique encryption of security-critical data,

and protection of sensitive information during transit between devices.

vi



Contents

List of Figures xi

List of Tables xiv

Glossary xv

1 Introduction 1

1.1 Security Concerns in Embedded Systems . . . . . . . . . . . . . . . . 3

1.1.1 Automotive Security . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Medical Security . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Mobile Infrastructure Security . . . . . . . . . . . . . . . . . . 5

1.1.4 Mobile Device Theft . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Security Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Device Originality . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Device Authentication . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Device Defense . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



Contents

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15

2.1 A History of Mobile Security . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 GPD/STIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Trusted Execution Environment . . . . . . . . . . . . . . . . . 19

2.1.3 Open Mobile Terminal Platform . . . . . . . . . . . . . . . . . 22

2.1.4 Trusted Environment: OMTP TR0 . . . . . . . . . . . . . . . 23

2.1.5 Advanced Trusted Environment: OMTP TR1 . . . . . . . . . 25

2.1.6 Mobile Trusted Platform Module . . . . . . . . . . . . . . . . 27

2.1.7 Other Organizations . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 M-Shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 SecureMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Academic Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Mobile Security Research - IAIK . . . . . . . . . . . . . . . . 35

2.3.2 Mobile Security Research - Others . . . . . . . . . . . . . . . . 38

2.3.3 Physically Unclonable Function Research . . . . . . . . . . . . 42

2.4 Commercial Implementations . . . . . . . . . . . . . . . . . . . . . . 46

viii



Contents

3 TrustZone and Trusted Execution Environments 49

3.1 TrustZone Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 TrustZone AXI Support . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 TrustZone Secure Configuration Register . . . . . . . . . . . . 53

3.1.3 TrustZone Secure Monitor Call . . . . . . . . . . . . . . . . . 55

3.1.4 TrustZone Memory Support . . . . . . . . . . . . . . . . . . . 56

3.1.5 TrustZone Interrupt Handling . . . . . . . . . . . . . . . . . . 58

3.2 Trusted Execution Environments . . . . . . . . . . . . . . . . . . . . 60

3.2.1 TEE Software Architecture . . . . . . . . . . . . . . . . . . . 60

3.3 Security and Customization of Trusted Execution Environments . . . 62

4 ECE Architecture 65

4.1 PUF Enhanced Cryptographic Engine . . . . . . . . . . . . . . . . . . 68

4.2 Crypto Engine Communication Architecture . . . . . . . . . . . . . . 74

4.3 PUF Generated Key Usage . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Use Case: “Secure” Secure-Boot . . . . . . . . . . . . . . . . . 79

4.3.2 Use Case: DRM Protection . . . . . . . . . . . . . . . . . . . 83

4.3.3 Use Case: Deterring Theft . . . . . . . . . . . . . . . . . . . . 88

4.4 Enhanced Crypto Engine API . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 ECE API Functions . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 ECE API Restrictions and Requirements . . . . . . . . . . . . 101

ix



Contents

5 Implementation and Results 106

5.1 ECE Software Emulator Architecture . . . . . . . . . . . . . . . . . . 107

5.2 ECE Software Emulator Results . . . . . . . . . . . . . . . . . . . . . 118

5.3 ECE API Implementation Results . . . . . . . . . . . . . . . . . . . . 125

6 Conclusions 127

6.1 Additional Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Future of Mobile Security . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A Enhanced Cryptographic Engine API 132

References 137

x



List of Figures

2.1 TEE hardware design [1]. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 TEE Software Architecture [1]. . . . . . . . . . . . . . . . . . . . . . 21

2.3 Example of a Generalized Mobile Platform [2]. . . . . . . . . . . . . 28

2.4 Example execution flow of MRTM [2]. . . . . . . . . . . . . . . . . . 29

3.1 Security structure of the original TrustZone technology [3]. . . . . . 50

3.2 Generic mobile device architecture with ARM processor core [4]. . . 53

3.3 Example mobile architecture supporting ARM TrustZone [4]. . . . . 54

3.4 Address translation in TrustZone aware level one cache [4]. . . . . . 57

3.5 Example interrupt table structure for TrustZone architectures [4]. . . 59

3.6 TEE reference software architecture [1]. . . . . . . . . . . . . . . . . 61

4.1 Simplified, generic SoC architecture . . . . . . . . . . . . . . . . . . 69

4.2 Generic cryptographic engine with various cryptographic accelerators 70

4.3 PUF Enhanced SoC Architecture . . . . . . . . . . . . . . . . . . . . 72

4.4 PUF Result Key Generator (PRBKG) . . . . . . . . . . . . . . . . . 72

xi



List of Figures

4.5 PUF Enhanced Cryptographic Engine . . . . . . . . . . . . . . . . . 73

4.6 TEE boot process options . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Simplified UML models of a FairPlay account and user device. . . . 85

4.8 Device association with FairPlay servers . . . . . . . . . . . . . . . . 86

4.9 Device authentication on GSM networks . . . . . . . . . . . . . . . . 90

4.10 Cryptographic operations during the authentication process . . . . . 91

4.11 Example internal communication flow during network authentication 92

4.12 Operational modes of a mobile architecture using an enhanced cryp-

tographic engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Operational flow of ece emulator application. . . . . . . . . . . . . . 108

5.2 ECE disk initialization . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 ECE AES and RSA crypto operations . . . . . . . . . . . . . . . . . 110

5.4 TEE initialization and verification . . . . . . . . . . . . . . . . . . . 111

5.5 Execution flow of TEE client application . . . . . . . . . . . . . . . 112

5.6 TEE association and disassociation . . . . . . . . . . . . . . . . . . 114

5.7 TEE secret key and key pair change . . . . . . . . . . . . . . . . . . 116

5.8 ECE disk header and AES key in ECE disk file . . . . . . . . . . . . 117

5.9 RSA key in ECE disk file . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 TEE header and encrypted TEE in ECE disk file . . . . . . . . . . . 119

5.11 Transmission of TEE association request header . . . . . . . . . . . 120

xii



List of Figures

5.12 Transmission of public key of initiating device . . . . . . . . . . . . 121

5.13 Transmission of TEE association response header . . . . . . . . . . . 122

5.14 Transmission of public key of remote device . . . . . . . . . . . . . . 122

5.15 Transmission of TEE association request . . . . . . . . . . . . . . . 123

5.16 Transmission of TEE association request . . . . . . . . . . . . . . . 124

5.17 Transmission of TEE association request . . . . . . . . . . . . . . . 124

xiii



List of Tables

4.1 Example TEE header . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 ECE disk header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Device association header . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Entropy measures of platform specific, encrypted TEE . . . . . . . . 119

xiv



Glossary

ASIC Application Specific Integrated Circuit

CA Client Application

DRM Digital Rights Management

EE Execution Environment

EFT-POS Electronic Funds Transfer - Point of Sale

FPGA Field Programmable Gate Array

FSB Flexible Secure Boot

GP Global Platform

GPD/STIP GlobalPlatform Device / Small Terminal Interoperable Platform

GUI Graphical User Interface

HUK Hardware Unique Key

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

ME Mobile Equipment

xv



Glossary

MLTM Mobile Local-Owner Trusted Module

MPWF Mobile Phone Working Group

MRTM Mobile Remote-Owner Trusted Module

mTPM mobile Trusted Platform Module

NFC Near Field Communication

OS Operating System

PRNG Pseudo-Random Number Generator

REE Rich-OS Execution Environment

RIC Runtime Integrity Checking

RT Root-of-Trust

RTM Root-of-Trust-for-Measurement

RTR Root-of-Trust-for-Reporting

RTS Root-of-Trust-for-Storage

RTV Root-of-Trust-for-Verification

SCMS Smart Card Management System

SEE Secure Execution Environment

SIM Subscriber Identify Module

SoC System-on-a-Chip

STIP Small Terminal Interoperable Platform

xvi



Glossary

TA Trusted Application

TGG Trusted Computing Group

TEE Trusted Execution Environment

TPM Trusted Platform Module

TZ TrustZone

UICC Universal Integrated Circuit Card

WAC Wholesale Applications Community

xvii



Chapter 1

Introduction

In an article presenting results of a recent report from Cisco’s Global Mobile Data

Tra�c Forecast, it was stated, “By the end of 2012, the number of mobile-connected

devices will exceed the number of people on Earth, and by 2016 there will be 1.4

mobile devices per capita.” [5] Further, in 2011, mobile data tra�c was 8 times the

size of the entire global Internet in 2000. To say that mobile device usage is on the

rise today may be one of the greatest understatements of our age.

While the number of devices being used, combined with their respective data

usage, is in itself remarkable, the extent to which the devices are used is equally

astounding. Current predictions show anywhere from 44 to 183 billion mobile appli-

cation downloads by 2015 [6] [7]. Many of these applications, also known as “apps”,

are providing account access for membership organizations, financial institutions,

email services, and much more. Unfortunately, the question of security during these

interactions is often being answered long after these services have been deployed.

Users typically have no understanding of how their data and personal informa-

tion is transmitted to the necessary entities, or how it is handled on the mobile

device. A prime example of this is the recent disclosure that the iPhone mobile
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Chapter 1. Introduction

app for Southwest Airlines submitted a user’s username and password in plain text

over the Internet to their remote server [8]! This discovery was not found by the

application developers, but by a hacker performing random attacks on mobile appli-

cations. While the issue was eventually addressed and an update was provided, the

incident illustrates the fact that such issues are often discovered by normal users or

by members of the security community, and not by application developers.

Issues such as these lead one to question the very nature and extent of the security

provided by these mobile devices. However, such occurrences should not lead people

to believe that security is not a factor in the design of mobile devices. Security is,

in fact, one of the prime considerations by most device and software manufacturers

around the world.

A question that often comes up is, “why can’t we simply implement the same

security methods on mobile devices that already exist on our desktop systems?” In

order to answer this valid question, it is important to understand the vast di↵erences

between these two architectures.

Security for desktop systems is designed around the fact that information trans-

fers happen via a limited number of controllable interfaces, i.e. networks and remov-

able drives. While each of these provide the possibility for serious security issues, the

User has greater control over the functionality of these interfaces. For instance, if

users are concerned about network-based attacks, they can easily turn o↵ their wire-

less card or unplug their network cable. If they are concerned about the contents of

a specific CD or DVD, they can simply not insert the disk into their machine.

Users of mobile devices rarely have the same fine-grained control of their devices

as desktop users. The Short Message Service (SMS) used by mobile communication

networks to transmit small text messages between devices is not controllable by the

User. These messages are not only queued by the network in order to help ensure
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Chapter 1. Introduction

delivery, but are received whether the User requests them or not. Because of this,

SMS messages were used extensively in mobile attacks during the early 2000s, and

are still used today.

Another major di↵erence between desktop and mobile systems is the number of

entities that have a vested interest in the operating state of the device. For desktop

systems, the User is the owner of the entire system and has full control over what

software is loaded onto the system, as well as when and how it operates. If the

device is connected to a network and is found to be operating in a malicious manner,

network service providers may disable services, but otherwise have no control over

the device.

These controls, like the ones presented previously, are not the same for mobile de-

vices. Operating System (OS) providers, third-party applications, service providers,

and device manufacturers all have a justifiable need to control one or more elements

on the device. A prime example is the baseband processor on a cellular device. This

processor is responsible for controlling the modem in order to ensure the device is

operating within the correct frequency spectrum to facilitate available communica-

tions mechanisms. A device manufacturer will typically control this in accordance

with requirements dictated by the service provider. Control of this process must be

available to the manufacturer, even after the user purchases the device.

1.1 Security Concerns in Embedded Systems

Due to the complexity of a system with multiple stakeholders, the idea of developing a

“one-size-fits-all” solution is at best problematic. Further, mobile devices, or cellular

devices as they are often called, are not the only hardware platforms that are in need

of protection. Embedded systems that rely upon the same type of processing elements

include healthcare systems, automotive computers, hand-held electronics, femtocell
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devices, and radio-frequency identification (RFID) equipment. Such devices often

utilize ARM core processors, similar to the ones used in the majority of smart phone

cellular devices. That being the case, solutions developed in the mobile world can

potentially have implications in various other arenas as well.

1.1.1 Automotive Security

In 2010 and 2011, Checkoway et.al [9] [10] demonstrated the ability to hijack the

computer system inside a number of automobiles. Most modern vehicles contain a

number of di↵erent computers, each with a variety of capabilities and responsibilities

in the overall operation of the automobile. An internal network is typically used to

connect these computers, allowing them to share information and work together to

control the vehicle. However, as demonstrated by the authors, these networks rarely

have any form of authentication built in, but rather assume that commands and

information received from any other computer is valid. The authors discovered that

on the vehicles tested, any computer on the network was able to re-write the firmware

of any other computer system. By gaining execution through the radio, On-STAR

system, or even just through the standard On-Board Diagnostic (OBD-II) terminal,

the attackers were able to unlock the car, disable the security system, turn the car

on/o↵, disable the brakes, and perform a variety of other safety critical actions.

1.1.2 Medical Security

Security concerns with medical devices are also starting to crop up. The United

States Government Accountability O�ce recently issued a report advocating the

need for greater security examination of medical equipment [11], likely prompted

by reports of successful hacks, such as that performed by Jerome Radcli↵e [12]. In

order to reduce costs and increase patient comfort, hospitals have begun network-
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ing medical equipment in order to allow doctors and nurses to make changes and

monitor conditions without having to enter a patient’s room. As with vehicular net-

works, there is often no authentication mechanism in place to prohibit an attacker

from connecting to the network and sending bogus commands to connected devices.

Further, there are serious privacy concerns in regards to an attacker being able to as-

certain patient information and potential health issues by simply snooping a network

connection.

1.1.3 Mobile Infrastructure Security

Femtocells are a new device being pushed by mobile service providers as a method

for o↵-loading data usage loads on to landline based network connections. This has

been done in large part due to the acceleration in the use of smart-phone devices that

often consume what cellular provides consider “large” amounts of data. One of the

primary concerns with this approach is that an attacker is provided with access to a

resource that would normal be physically restricted, such as a cell tower. Researchers

demonstrated an exploit based upon this very concept in 2011 in which they were

able to monitor communications between the femtocell and the cellular network by

tapping the hard-wire network connection [13]. The researchers were also able to re-

write the firmware of the femtocell and gain access on a device that can inject data

directly into the cellular network, allowing them to send malicious and malformed

data packets to the cellular network backbone. This revealed a vast amount of user

information, including the locations of all femtocell devices in the entire country of

France!
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1.1.4 Mobile Device Theft

Theft of mobile devices also continues to be a problem today. Smart phones are

significantly more advanced than previous mobile devices and as such command a

much higher price on the black market. Users also tend to store much more per-

sonally identifiable information on these devices, such as contacts, email, credit card

information, membership club details, and many other such items. Depending on

the country, thieves are often able to simply remove the Subscriber Identification

Module (SIM) card from the phone and replace it with a new one. Once done, the

phone connects to the corresponding cellular network and continues to be usable.

Despite the use deterrents, such as black lists and International Mobile Equipment

Identity (IMEI) numbers, attackers have found methods of circumventing these road-

blocks and regaining access to the underlying device. Without a non-circumventable

method for associating a device with a specific user, this will continue to be a problem

for the foreseeable future.

1.2 Security Approaches

Problems such as these are currently being researched by an assortment of di↵erent

institutes delivering a potpourri of solutions. During this process, an analogy can

be made to a lake into which a variety of di↵erent rocks are thrown. The result is

chaos: waves of di↵erent sizes colliding and disrupting the beauty of the water. But

as time goes on, the waters calm and the waves dissipate, leaving the viewer with

a clear view of the lake. The conglomeration of these ideas into a simple, elegant

solution that can calm the waters is often where the real science is born.

Each solution that is developed or presented is typically tailored towards the

purposes of the originator and is not necessarily meant to provide an all-encompassing
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solution. This is not unexpected, nor is it a bad thing per say. However, it is left

of others to determine the proper methodology for merging these technologies into a

solution capable of addressing each of the concerns presented in Sec. 1.1. The three

primary questions that must be resolved by any proposed solution are: 1) How can a

family of devices that are all based o↵ the same design be protect in a unique method

that does not require di↵erences in design or maintaining massive data about each

device? 2) How can the mobile device be authenticated in a way that correlates a

device to a user on a specific network without being subject to alteration by malicious

software? and 3) How can the mechanisms developed to address these two question

be protected from both external and internal attacks on the device?

1.2.1 Device Originality

Device originality may not initially appear to address any of the issues presented

previously, but it is critical to authentication and true data protection. Changes in

the hardware design of chips result in significant financial costs and are therefore not

feasible as a method for device originality. This led to the use of the IMEI number

as a method for uniquely identifying each device. However, this number is not a

cryptographic key and has never been used for data protection. Further, this value

is generally read from software and then returned. Any malicious code running on

the device would have the potential to intercept such calls and manipulate this value.

Further, the IMEI number is often not protected in any way and is easily read even

by external software.

Most modern security solutions for desktop computing use public/private crypto-

graphic key-pairs for uniquely identifying a device and ensuring that communications

received originated from the expected party. These key-pairs are created through a

special mathematical relationship that allows a message to be encrypted using one

key and then decrypted only through the use of the other key. In this situation,
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a client would encrypt a message using a server’s public key. The server, using its

private key, would be the only entity capable of decrypting the message. If the client

then receives a valid response from the server, it knows that it received the original

message and was able to decrypt it, thereby validating that the server is who it claims

to be.

Researchers over the past few years have identified the capability of generating

unique values that can be used for identification or key generation through the use of

Physical Unclonable Functions (PUFs). A PUF generates unique-per-device values

by leveraging manufacturing di↵erences between chips. Even though chips may con-

tain the exact same hardware designs, the fabric upon with the logic is constructed

has variations and defects that don’t directly alter the functionality of the under-

lying logic, but can be utilized to generate random values that are unique for each

device. This happens on each instance of the same chip, even for chips that are

manufacturer at the same time and same location under all the same conditions. As

a result, researchers have proposed their use in the generation of secret keys of use in

Advanced Encryption Standard (AES) operations, as well as for random input into

public/private key pair generators [14] [15].

Implementing a PUF circuit does not require di↵erences in the hardware design,

yet still provides variable, non-deterministic values for each device, thereby fulfill-

ing the necessary requirements. By creating a unique-per-device AES key, a PUF

enhanced design provides the capability to uniquely protect onboard data even on

devices with identical hardware architectures and data. Additionally, no information

about the key is required to be maintained o↵-chip.

A primary example of this is protection of device firmware. Transmission of

the firmware to the device utilizes a public/private key-pair, but in a somewhat

untraditional way. The server that maintains the firmware will encrypt the firmware

and then sign it using its own private key. This encrypted blob of data is then sent
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to the mobile device along with the server’s public key. In this case, the server is

not concerned with someone being able to capture this transmission and decrypt the

firmware, but is more concerned about proving to the devices that the packet is valid.

To support this approach, a mathematical operation known as a “hash” is per-

formed on the public key, which results in a non-reproducible, and often smaller

value. This hash can be stored in non-volatile storage on the mobile device. When

the device receives the firmware update package from the server, it performs the

same hash on the received key. If the result of the hash matches what is in memory,

the device knows that the key is valid and has not been altered. It can then use

the key to verify the signature of the firmware package and decrypt the remaining

data. Once the data has been decrypted, it can then be re-encrypted using the

device-unique secret key and stored on the device. This provides a unique instance

of identical firmware on every device.

1.2.2 Device Authentication

The use of PUFs to generate a secret key and a public/private key pair also allows

designers to address the issue of device authentication. A normal cellular device uses

a SIM card to store user authentication information that is used to identify a user

to the network. This exchange has worked well for years, but does not provide any

association of the user to the actual device. In order to protect cellular networks, as

well as automotive and medical networks, a method must be used that can associate

the device itself to the network without being a↵ected by native code executing on

the device.

The use of a PUF generated value alleviates the ability of native code to simply

read the identification value or authentication (public/private) keys. When authen-

tication is requested, the processor sends a command to a PUF enhanced crypto-
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graphic unit instructing it to provide an authentication value. In conjunction with

the SIM card, the cryptographic unit receives the authentication request and returns

the necessary response. All that software running on the device can do is ignore the

request, as it has no access to the authentication values. Doing so simply prohibits

the device from connecting to the network and provides no information to the native

code, malicious or otherwise.

The identity of the device can be done using a uniquely generated value, similar to

the IMEI, or it could simply make use of the public/private key-pair for identification.

For instance, consider an automotive network. The various computers on these

networks need the ability to communicate with one another. However, a mechanism

must exist for them to identify each other and know that received communications

are legitimate and are not be spoofed by an unknown entity on the network. This

problem can be solved using the public/private key-pairs.

When the automobile is first produced, the computer systems can be set in a

“discovery” mode. Using an external computer, an identification packet can be sent

to each automotive computer. This packet would contain the public key of the send-

ing computer. The automotive computers then maintain this key by encrypting it

with their own secret key and then storing it in non-volatile memory. Each computer

can then also exchange public keys with all other computers in the automobile. Once

this process has completed, a command from the external computer can be sent to

move the computers from “discovery” mode to “operational” mode. At this point,

all communications between computers can be encrypted and identities can be vali-

dated based upon results stored during the “discovery” phase. If at any time a failure

occurs or another computer needs to be added/replaced, the dealer can implement

such a change by authenticating itself with the public key of the external computer

and place the automotive computers back into “discovery” mode.

While it would be possible to provide authentication using only the secret AES
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key, public/private keys are frequently used in RSA cryptographic operations in or-

der to facilitate the exchange of secret keys. The reason for this is that public/private

keys provide strong identification properties but are computationally expensive, es-

pecially in terms of time. For this reason, it is customary to use public/private keys

only to establish a secure communications channel and to then exchange a symmetric

secret key that can be used for all further communications.

1.2.3 Device Defense

In order for PUF generated values to be protected from attacks, the first step is

access control. Values generated by the PUF are not required to be stored in non-

volatile memory. A PUF is capable of not only producing unique-per-device values,

but also doing so consistently. Each time the device boots, the PUF regenerates the

exact same values, which can then be latched, i.e. stored, into volatile storage. By

only maintaining these values in volatile storage, they will be erased each time the

unit reboots or otherwise loses power.

The PUF values can also be used indirectly rather than allowing direct access to

their contents. For instance, modern cryptographic units receive commands through

memory-mapped registers that can be access from both the cryptographic unit and

the main processor. The processor writes values to these memory locations that

tell the crypto unit what operation to perform, what key to use, and where to

get and store the necessary data. Then, through the use of a mux (a selectable-

output device), the PUF value can be selected as the key value for the corresponding

algorithm accelerator inside the crypto unit. This prevents the PUF generated values

from being directly accessible by the cryptographic unit or by any other device in

the system.

By using a PUF generated AES key, boot-loaders, i.e. firmware, used to load
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the operating system can also be protected in a unique manner. As mentioned

previously, these boot-loaders can be sent to the device encrypted, then decrypted

and re-encrypted with the device unique key. This results in identical firmwares being

stored uniquely on each device, thereby preventing an attacker from creating a single,

modified firmware and loading it on any device. The attacker would have to gain

access to the AES key for each device before they were able to directly overwrite the

firmware file. This helps to reduce the potential for attacks across an entire family

of devices and instead makes attacks much more local in scope.

While access to the PUF enhance cryptographic unit is required, it must be re-

stricted in order to prohibit arbitrary usage by malicious code. Some encryption

algorithms are susceptible to what are called plain-text/cypher-text attacks wherein

information about the value of the key can be inferred by analysis of plain-text

and the resulting cypher-text. While there are no known plain-text/cypher-text at-

tacks on AES, it may still be possible for an attacker to spoof identification if it is

provided unrestricted access to the crypto unit. The use of Trusted Execution Envi-

ronments (TEEs) provides a mechanism for creating isolated execution environments

for trusted applications. Restricting access to the crypto unit only to applications

executing within the TEE will help absolve potential issues of identity spoofing. Fur-

ther, any application executing with the TEE is assumed to be trusted and should

never act in a malicious manner that would re-open this possibility.

Additionally, a PUF enhanced cryptographic unit is capable of not only producing

a single AES secret key, but can generate hundred or thousands. In a traditional

approach where a secret key (or its hash) is stored in non-volatile storage, no known

method exist for modifying this value in the instance that the key is compromised.

Such values are often referred to as being “burned-in” meaning that once they are set,

they can only be partially changed and only with physical access to the device. By

contrast, if the secret key of a PUF enhanced architecture is ever compromised, the
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cryptographic unit can easily change to a new key. This can be done by decrypting

any secret key protected elements using the original key and then re-encrypting them

using a newly generated key. The crypto unit only needs to maintain information

about which PUF circuitry is used for key generation at the time. Because of the

nature of PUF circuits, such information provides no leakage of key values.

1.3 Research Objectives

The purpose of this research is to prove the viability of merging the various mobile

security solutions into a singular solution that is capable of addressing each of the

issues presented thus far. The novelty of this work comes not in the development

of a new architecture or tool, but in how existing capabilities can be conjoined to

provide enhanced mobile security. Specifically, this paper will explore the use of PUF

technology to support the assurance of provenance of device boot software in mobile

systems. Additionally, it will explore how PUF technology can support the concept of

unique device authentication, together with user authentication, on mobile networks.

Finally, it will detail how PUF technology can provide authenticated, private, non-

reputable communication and protection of onboard data.

During this research, all of the modern mobile specifications and protocols, hard-

ware and software security elements, as well as academic and professionally produced

solutions were considered. Through scientific analysis of the benefits and drawbacks

of each approach, a justification for the use of PUF technology has been founded

which addresses the dire security concerns of our modern world. Rather than sim-

ply presenting yet another “security feature”, the goal of this work is to discover if

a method exist for properly conjoining a number of these approaches into a single,

PUF-based implementable solution that can be easily adopted by manufacturers and

utilized by developers.
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The details of how this analysis was performed are contained in the remaining

chapters. In Chapter 2, a history of mobile security, as well as a discussion of prior

and current work done both in the academic and corporate realms will be presented.

Chapter 3 will present a detailed description ARM TrustZone technology and how

it can support the creation of an isolated software execution environment, known as

a Trusted Execution Environment (TEE). Chapter 4 will build upon this concept

of a TEE and detail proposed modifications to standard mobile cryptographic units

that will provide enhanced security features for mobile platforms. The results of

this merger will be presented in Chapter 5, and the subsequent conclusions will be

presented in Chapter 6.
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Background

The area of mobile security is vast and complex, consisting of a variety of standards,

protocols, and specifications. Further, this topic has been and continues to be ad-

dressed by academia, private industry, manufacturers, independent organizations,

and many other parties with a vested interest in mobile security. Unfortunately

there is currently no “one-size-fits-all” solution for addressing all mobile security is-

sues, with the best software approaches being as mutable as the underlying hardware

architectures on which it runs.

In order to present information on the current secure platform ideologies in the

most concise and straightforward way, a history of mobile security will first be pre-

sented. This history provides insight on how mobile security has evolved over the

past twelve plus years and who the major players are that are impacting its direc-

tion. This also includes brief descriptions of many of the standards and specifications

that have been developed to address issues relating to mobile security. Research per-

formed by academia is presented to show how these standards and specifications may

be used on various architectures, as well as modern uses of PUF technology in chip

security applications. This chapter concludes with a few examples of commercial
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applications and how they are attempting to utilize these tools to provide platforms

with secure execution environments.

2.1 A History of Mobile Security

As with most major technology families currently in use, the area of mobile security

has multiple functional specifications that describe the various levels of operation that

are necessary to support a so-called “secure” system. There are currently two primary

organizations that are providing and maintaining these specifications: GlobalPlat-

form (GP) and the Trusted Computing Group (TCG). The Mobile Phone Working

Group (MPWG) is a part of the TCG and focuses specifically on the development

of specifications related to mobile security.

Before delving into the details of these specifications, it is important to under-

stand the history of these two organizations and how they are being supported. In

this section, information on the most commonly used specifications in mobile security

will be presented. This is intended to be an informative overview of these documents,

rather than an in-depth analysis. Future sections of the paper will dig deeper into

the details of several of these documents, but at this point a general concept of each

will be presented instead.

2.1.1 GPD/STIP

GlobalPlatform was formed in 1999 and was the primary entity overseeing the Visa

Open Platform specification [16]. Visa Open Platform was originally created to

support the development of Java-based applets that could be run on Smart Card

devices. Since that time, GP has continued to focus on smart card development,

with additional work in the areas of device and system specifications. While their
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work in card and system specifications is significant, their development of devices

specifications is of the highest relevance to the research presented in subsequent

chapters. The most influential of these is the Trusted Execution Environment (TEE),

but everything started with their development of the GlobalPlatform Device/Small

Terminal Interoperable Platform (GPD/STIP) specification.

In the year 2000, the Small Terminal Interoperable Platform (STIP) e↵ort was

started with the incorporation of the STIP Consortium. Most initial work performed

by this group related to electronic-funds-transfer/point-of-sale (EFT-POS) terminals.

Despite this primary emphasis, work with mobile phones was also included. After

the release of the first comprehensive and flexible open specification for EFT-POS

in 2002 [17], several new member companies made the decision to join. The EFT-

POS and a mobile profile were both proposed the following year based upon input

and support from these new members. The success of these proposals, as well as

the fact that many members already had strong relationships with GP, lead to the

transfer of this intellectual property from the STIP Consortium to GP. This was

done with the intention of providing a more stable and long-term environment for

supporting these standards, since the STIP Consortium was never intended to be

a large standardization body. The STIP specification then became known as the

GlobalPlatform Device / STIP, or GPD/STIP for short.

GlobalPlatform continued to develop and support various specifications over the

next few years. In 2007, GP published a white paper that became an announcement

of their intention to take on a much stronger role in the development of standards in

mobile security [18]. This paper, titled “Why The Mobile Industry is Evolving To-

wards Security”, advocated the need for an isolated execution environment, dubbed

the Secure Execution Environment (SEE), to provide proper security for mobile el-

ements. At this time, GP pushed the use of their GPD/STIP technology to address

four focal areas:

17



Chapter 2. Background

1. Interoperability

2. Security

3. Flexibility

4. Reactivity

To address these four paradoxes, the GPD/STIP card specifications were de-

signed to utilize a portable base language, as well as a service control interface and

service control manager. A portable base language refers to the use of a language

that is agnostic to the underlying platform on which is it used. Supported languages

must also be object-oriented and strongly typed, such as Java. This provides devel-

opers with assurances that operations performed on one architecture will be handled

exactly the same on all other architectures. Additionally, data types and objects are

maintained and stored in an identical manner on all platforms. The theology behind

this approach was to allow developers to create single solutions that would work on

any platform. Members of GP knew that developers would be unwilling to create

unique implementations for every supporting device, nor did they wish to deal with

fragmentation issues that can result for some requirements.

Objects known as service control elements are meant to address the last two

requirements. Rather than requiring support for all possible resources that may

exist on any platform, each resource is instead treated as a service and is represented

by a software library. This library, and its associated functionality, is referred to as a

service control element. Using this methodology allows manufacturers to implement

a generic GPD/STIP compatible architecture, while including necessary libraries in

order to support devices with di↵erent resources and capabilities.
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2.1.2 Trusted Execution Environment

GlobalPlatform’s work in mobile security continued with the development of the

Trusted Execution Environment (TEE) specifications. This began in 2009 with the

adaptation of the ARM TrustZone API specification [19], which will be discussed in

more detail in section 2.2.1. After adopting this specification, GP released the TEE

Client API [20] in July of 2010. This was followed by the TEE Internal API [21] and

the TEE System Architecture [1]. (each of these will be discussed in greater detail

in subsequent paragraphs) Additional TEE specifications are scheduled for release

in late 2012 and early 2013.

TEE System Architecture – Public Release v1.0 15/24 

Copyright � 2011 GlobalPlatform Inc. All Rights Reserved. 
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this 
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly 
prohibited. 

2.2.2 REE and TEE Resources Sharing 

The REE has access to the un-trusted resources, which may be implemented on-chip or off-chip in other 
components on the PCB. The REE cannot access the trusted resources. This access control must be 
enforced and can potentially be implemented by physical isolation of trusted resources from un-trusted 
resources. The only way for the REE to get access to trusted resources is via any API entry points or 
services exposed by the TEE and accessed through, for example, the TEE Client API. This does not 
preclude the capability of the REE passing buffers to the TEE in a controlled and protected manner and vice 
versa. 

Figure 2-2:  Hardware Architectural View of REE and TEE 
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Note that the architectural view of TEE and REE as illustrated in Figure 2-2 does not dictate any specific 
physical implementation. Possible implementations include and are not limited to those illustrated in 
Figure 2-3. 

Figure 2.1: TEE hardware design [1].
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The motivating factor behind the development of the TEE specifications is the

need to ensure isolated execution of critical code. The term “isolated” is meant to

imply that the code being executed cannot be a↵ected by the state or intent of any

other code running on the system. This philosophy is meant to address the possibility

of malicious code altering or intercepting information used to perform transactions

of a sensitive nature, such as banking transactions. If the code used to perform these

transactions can be “isolated” for this malicious code, a higher level of assurance can

be provided for the legitimacy of such transactions.

In order for a TEE to provides this level of isolation, hardware support is nec-

essary. Hardware elements must provide a mechanism for switching between the

TEE and the standard execution environment, known as the Rich OS Execution

Environment (REE). It must also provides security for data and instructions store in

internal memory as well as external memory. Mechanisms must also exist for spec-

ifying which execution environments can access which peripherals. In essence, the

entire hardware architecture must support partitioning of access based upon these

two execution environments.

Further, in order for software developers to utilize these hardware features, a soft-

ware Application Programmer Interface (API) is needed. Not every manufacturer

will want the exact same hardware partitioning setup. For instance, one manufac-

turer may want the cryptographic unit to be accessible by both the TEE and the

REE, while another may want it to only be accessible from the TEE. As a result,

programmers need an API that allows them to customize the access levels of the

hardware components. Further, the API must also provide methods for control-

ling the transition between the two execution environments, determining interrupt

destinations, message passing, and a variety of other functionality.

In order to create an isolated environment, the hardware is partitioned into two

execution levels: Trusted and Non-trusted. (These terms are used interchangeably
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TEE System Architecture – Public Release v1.0 17/24 

Copyright � 2011 GlobalPlatform Inc. All Rights Reserved. 
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this 
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly 
prohibited. 

3 TEE Software Interfaces 
The TEE is a separate execution environment that runs alongside the Rich OS and provides security 
services to that rich environment and applications running inside the environment. The TEE exposes sets of 
APIs to enable communication from the REE and others to enable Trusted Application software functionality 
within the TEE. 

The following chapter describes the general software architecture associated with the TEE, the interfaces 
defined by GlobalPlatform and the relationship between the critical components found in the software 
system.  
 

There is no mandated implementation architecture for these components and they are only used here as 
logical constructions within this document. 

3.1 The TEE Software Architecture 

The relationship between the major software systems components is outlined in the block architecture below 
(Figure 3-1).  

Figure 3-1:  TEE System Architecture 

 
 

The goal of the TEE Software Architecture is to enable Trusted Applications (TA) to provide isolated and 
trustworthy capabilities for service providers, which can then be used through intermediary Client 
Applications (CA). 
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Figure 2.2: TEE Software Architecture [1].

with Secure/Non-secure, Trusted/Public, and Private/Public) This is illustrated in

Fig.2.1. Each element may be represented by a single instance capable of switching

between these two modes of operation, or by multiple independent instances. For

instance, a TEE compliant System-on-Chip (SoC) may contain two separate ROMs,

one that is used by the TEE and a separate one that is used by the REE. In contrast

to this, there would likely be only one instance of a keyboard on the device. The

keyboard would therefore need to be able to function in a manner that allowed it

to be partitioned between the TEE and REE, thereby prohibiting access of TEE

memory locations from within the REE.

From a software point of view, the execution environment is also partitioned

between two states: a trusted and non-trusted, as depicted in Fig.2.2. In this figure,

there are references to two specific software APIs: the TEE Client API and TEE
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Internal API. The TEE Client API is used by Client Applications (CAs) to make

calls into Trusted Applications (TAs) in order to access trusted operations. The TEE

Internal API is provided to developers of Trusted Applications in order to access the

underlying hardware elements included on the platform. Further, a third mechanism

is also provided to facilitate e�cient communication between the REE and TEE. This

mechanism is called the REE Communications Agent and manages shared memory

locations that are readable and writable by both worlds.

Inside of the TEE are two distinct classes of software: the Trusted OS Compo-

nents and the Trust Applications. The purpose of the Trusted OS Components is

to provide OS style functionality to the entire TEE. This includes scheduling and

context switching, and should behave exactly like a standard kernel, only it exists

inside the TEE.

The Trusted Applications then run on top of this trusted kernel and provide the

actual functionality to be used by Client Applications. Each time a CA requests

access to a TA, a new instance of the TA is created and stored with its own state

and address space, thus isolating multiple instances of a TA from one another. These

TAs then interface with the Trusted OS Components via the TEE Internal API, as

defined in [21].

It is important to note that the TEE documentation does not define a specific ar-

chitectural implementation, but rather dictates what an architecture must include in

order to be compliant. The implementation details are then left to the manufacturer

of the SoC. A more detailed analysis of TEEs will be provided in Section 3.

2.1.3 Open Mobile Terminal Platform

The concept of a Trusted Execution Environment was not introduced via the TEE

specification. In 2009, two years prior to the first TEE specification, the Open Mobile
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Terminal Platform (OMTP) released the latest versions of their Trusted Environment

and Advanced Trusted Environment specifications [22] [23]. These two specifications

helped to form the basis of many aspects of the TEE specifications.

The OMTP was originally founded in 2004. The purpose of the OMTP was

for discussion of standards with various parties in the mobile community and the

creation of standards that could be used across all areas and countries. While the

majority of their work did focus on mobile systems, they also produced standards

for a variety of wireless, embedded system type applications.

In 2010, the OMTP transitioned into a new entity called the Wholesale Appli-

cations Community [24]. At that time, the OMTP has nine full members and two

sponsors, including AT&T, Ericsson, and Nokia. Although the Wholesale Applica-

tions Community, or WAC, does still maintain the original specifications developed

by the OMTP, the primary focus has shifted to application development support

across various mobile platforms. Despite this fact, the original OMTP specifications

are still highly regarded and often sited in recently released specifications, such as

the TEE.

2.1.4 Trusted Environment: OMTP TR0

In 2009, the OMTP group released the latest version of their initial Trusted Envi-

ronment document, known as OMTP TR0 [22]. This document was released prior

to GP’s release of their TEE specifications. The TEE specifications are said to be

in compliance with this document, not vice versa, though they can be considered

complimentary. The main purpose of this document was to identify the necessary

features and functions that must exist in various architectures that attempt to im-

plement a Trusted Execution framework. This included the following applications:
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• Debug port protection

• Mobile device ID

• Subscriber Identity Module (SIM) lock

• Mobile Equipment (ME) personalization

• Digital Rights Management (DRM)

• Secure Boot (SB)

• Secure binding

• Secure flash update.

Although this document covers an array of mobile security areas, the primary

element of interest is the Secure Boot (SB) process. The SB process, as defined in

this document, stipulates the exact requirements of each stage of the boot process.

Since SB is a requirement of most other specifications, it is important to understand

how it works.

SB starts by executing code from a hardware controlled, integrity-protected mem-

ory location from within the System-on-a-Chip (SoC) device. Prior to executing any

additional code, such as multi-level bootloaders or the kernel, the integrity and au-

thenticity of the code must be verified. Further, no commands received via external

interfaces are processed as validation of user input can lead to potential security

risks. This includes interfaces such as Bluetooth, Near Field Communication (NFC),

and 802.11. And finally, in a multi-processor architecture, there are two options.

Either all processors can implement all of the secure boot requirements, which will

typically be wasteful and could lead to deadlock issues if not coded properly, or one

processor can perform all secure boot requirements while all other processors only

execute code that has already been properly authenticated.
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In addition to the SB process, the OMTP TR0 document also presents require-

ments for a Hardware Unique Key (HUK). The document requires that a HUK must

be generated using a Pseudo-Random Number Generator (PRNG) either on or o↵

the device. Once loaded, this key can never be changed and must be stored in some

form of secure hardware or hardware-controlled secure memory. Further, access to

a HUK must be done only from secured/protected hardware or memory. External

reading of the HUK should never be possible and the HUK must be a minimum of

128 bits. The use of any non-established algorithms or techniques is also prohibited.

The full list of requirements is provided in HU 1 - HU 11 of Section 6.2 of [22].

2.1.5 Advanced Trusted Environment: OMTP TR1

After completing the TR0 document, the OMTP began working on TR1, known as

the Advanced Trusted Environment [23]. This document followed the same method-

ology used in the development of TR0, but attempted to provide a more “compre-

hensive security roadmap.” Topics covered in this document include:

• Trusted Execution Environment

• Secure Storage

• Flexible Secure Boot

• Generic Bootstrapping Architecture

• Run-Time Integrity Checking

• Secure Access to User Input/Output Facility

• Secure Interaction of UICC with Mobile Equipment
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The TR1 document, which also had its latest release in 2009, was the first to

formally specify requirements for a Trusted Execution Environment. The GP TEE

specifications discussed previously are based o↵ these requirements presented in TR1

for a Trusted Execution Environment, and any GP TEE compliant architecture

would also be fully compliant with the TR1 document. In the TEE environment

portion of the document, several specific requirements are listed that pertain to

items such as a HUK, provisioning and storage of private, secret, and/or root public

keys, application support requirements, and mechanisms for interactions between the

TEE and any other execution environment (EE) on the device.

Aside for the TEE requirements, the flexible secure boot (FSB) and run-time

integrity checking (RIC) sections are also of keen interest. The TR0 document first

presented the concept of SB, but focused mostly on the integrity and verification

metrics for the initial code. In TR1, the FSB is defined as a set of requirements

regarding the update, or modification, process for the initial code. Because it is never

expected that perfect code will (if ever) be developed the first time, a mechanism

must exist for updating code that is part of the SB process and which will not

adversely a↵ect the security integrity of the SB process.

The RIC section explicitly details the requirements for analyzing software cur-

rently running on a platform in order to assure that it has not been modified in any

way. This technique is meant to mitigate attack vectors that a hacker might use to

modify the expected behavior of a specific element of code.

For instance, consider an Apple iPhone. Due to the restrictions that Apple en-

forces on application purchasing through their App Store, hackers have developed a

method known as “jailbreaking” that provides the ability to run unsigned and unau-

thorized code on the device. This allows the device owner to install applications

from any application store he is willing to use. In order to do this, modifications

to the Kernel are required. This is typically done by exploiting some application on
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the device, gaining supervisor privileges, and then overwriting the kernel check in

memory. The actual steps required are significantly more involved and have been

published in detail [25].

The purpose of RIC is to specifically address issues that occur as a result of this

type of attack. If Apple used a RIC method, it would be possible to detect alterations

made to the Kernel after it had been loaded into memory. RIC is required to run

either in the OS, EE, or run-time modifiable software, or to run in collaboration

with software that as already been check for integrity. Ideal locations would then be

either a separate device, such as a SIM card, or inside of a TEE that is loaded as

part of the FSB process.

2.1.6 Mobile Trusted Platform Module

The Mobile Trusted Platform Module, or mTPM, is a standard developed by the

Trusted Computing Group (TCG) to bring Trusted Platform Module (TPM) func-

tionality to mobile devices [2]. TPMs are frequently found on standard desktop

motherboards, as well as in laptop devices. Their primary function thus far has been

to provide a measurement/verification mechanism for implementing the SB process

on computers.

TPMs function by performing a hash of a given set of code. This value is then

hashed with an internal register to create a new value for that register. This is

called an “extend” operation. That value is then compared with a known, good

value. If they are the same, the boot continues; otherwise, the boot fails. This

continues throughout the boot process with each measurement being “extended”

onto an internal register, called a Platform Configuration Register (PCR). A prime

example of the use of TPMs is with Microsoft’s Bitlocker application [26]. Microsoft

has also mandated the use of TPMs starting with Windows 8 [27].
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While the concept of TPMs certainly has application in the mobile arena, the

implementation requirements are significantly di↵erent. The primary reason for this

is because mobile equipment (ME), specifically a cellular device, has multiple stake-

holders. A stakeholder, as defined by the TCG, is the owner of a trusted engine “...

who has exclusive control over the data protection mechanisms in their own engine,

and can permit data owners to use those data protection mechanisms.” [28]
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Figure 1. Example of a Generalized Mobile Platform 9 
A generalized trusted mobile platform, shown in Figure 1, contains multiple abstract engines, each 10 
acting on behalf of a different stakeholder. The engines in Figure 1 provide services on behalf of the 11 
entities that provide the device, cellular access, an application, and user services. The solid 12 
rectangles indicate interfaces and the solid arrows indicate dependency (the arrow pointing away 13 
from the dependant entity). 14 
In this example, the device engine provides basic platform resources, which include a user 15 
interface, debug connector, a radio transmitter and receiver, Random Number Generator, the IMEI, 16 
and a SIM interface. The device engine provides its services to an engine that provides cellular 17 
services. The cellular engine provides its services to an application engine, and the application 18 
engine provides its services to the user. 19 
In each engine, conventional services have access to Trusted Services, which make measurements of 20 
the conventional services and store those measurements in a Mobile Trusted Module (MTM). The 21 
device, cellular, and application engines have a Mobile Remote-owner Trusted Module (MRTM), 22 
because those stakeholders do not have physical access to the phone and need a secure boot 23 
process to ensure that their engines do what is needed. The user engine has a Mobile Local-owner 24 
Trusted Module (MLTM), because the user does have physical access to the phone, and can load the 25 
software he wishes to execute. The MTMs can be trusted to report the current state of their engine, 26 
and provide evidence about the current state of the engine. The MRTM differs from the MLTM 27 
primarily in that the MRTM contains additional Protected Capabilities to support a secure boot 28 
process. 29 
This specification defines the MRTM and the MLTM.  30 
End of informative comment 31 
 32 

Figure 2.3: Example of a Generalized Mobile Platform [2].

The methodology behind multiple stakeholders is the fact that on ME the owner

is not the only entity with execution requirements on the device. This is in stark con-

trast to standard desktop equipment, such as desktop computers and laptops. Such

entities include the device manufacturer, communications carriers, service providers,

and users/owners. The role played by each of these entities di↵ers, as do their exe-

cution requirements. This is illustrated best in Figure2.3.

In this depiction of a generalized mobile platform, there are four di↵erent mTPM

modules, one for each of the previously mentioned stakeholders. The stakeholders

are divided into two types: Mobile Remote-Owner Trusted Modules (MRTMs) and
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Mobile Local-Owner Trusted Modules (MLTMs). The designation between Remote

and Local is based upon how execution is initiated on the ME. The User is con-

sidered the only Local agent as their execution is established locally through direct

interaction with the ME, such as through a provided graphical user interface (GUI).

The other three stakeholders must interact with the ME via an externally provided

interface, such as cellular or Wi-Fi.TCG Mobile Trusted Module  TCG Copyright 
Specification Version 1.0, Revision 7.02   

Revision 7.02 29 April 2010  Page 15 of 103 
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Figure 2. Overview of MRTM 2 
Start of informative comment: 3 
Figure 2 shows a simple example of how a MRTM could be used. The MRTM would itself consist of a 4 
subset of the TPM v1.2 plus a set of new Mobile-specific commands designed to support the 5 
requirements set by [4]. Additionally a Root-of-Trust-for-Verification (RTV) and Root-of-Trust-for-6 
Measurement (RTM) module would be the first executable running in the runtime environment. The 7 
RTV+RTM module would first record a diagnostic measurement of its implementation. After the 8 
diagnostic extend the RTV+RTM module would measure and verify a measurement and verification 9 
agent executable using the MRTM before passing control to it. This measurement and verification 10 
agent then again measures and verifies the OS image before passing control to the OS.  11 
This structure allows a simple implementation of secure boot. See the examples in section 10 for 12 
more detailed and concrete examples. Figure 2 is a functional diagram and shall not give any 13 
implications on which elements are implemented in hardware or software, nor depict all new 14 
functionalities of the MRTM. 15 
End of informative comment. 16 

Figure 2.4: Example execution flow of MRTM [2].

The primary purpose of creating four separate mTPM instances is to provide an
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isolated EE that is capable of performing required operations outside of the influ-

ence of other stakeholders. In addition to executing in an isolated environment, the

mTPM also provides the ability to report the current state of each mTPM module.

Stakeholders are therefore able to determine the current state of their respective

modules on the ME and decide if their modules are in a state conducive to the

operations they need to perform. Such operations might include firmware/software

upgrades, network authentication, and e-Wallet transactions.

To better understand how an mTPM module would function, consider the ex-

ample MRTM execution flow shown in Figure 2.4 [2]. The MRTM is based upon

a subset of the TPM v1.2 specification, which includes a Root-of-Trust-for-Storage

(RTS) and Root-of-Trust-for-Reporting (RTR) element. A Root-of-Trust (RT) ba-

sically consists of two things: a subset of trusted code along with an initialization

value for a corresponding PCR. Each RT may be established with the same code,

such as the code contained in the SecureROM, but each should have a unique initial-

ization value for their respective PCR. Once the trusted code initializes the PCRs,

it should then verify the integrity of any subsequent code that will run as part of the

corresponding RT. Once this is done, the RT can validate its stated based upon the

current value of the PCR, and can also perform any supported operations.

Added to these two RTs are the Root-of-Trust-for-Verification (RTV) and Root-

of-Trust-for-Measurement (RTM). The RTV and RTM are the first two elements to

execute on the system and represent the first stage trusted code described in the

SB protocol. One of the requirements of this code is to perform a measurement

of its execution code, which is then used to extend the PCRs into an initial state.

Once this is done, each subsequent EE is measured and verified by the RTV+RTM

and corresponding PCRs are extended with each operation. The last step of this

process is loading the full operating system (OS), which can then query the MRTM

to determine if it booted into a secure state. This is determined by examining the
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values in one or more PCRs. Because the PCRs are contained within a secure element

and can only be indirectly modified via measured and verified code, the boot process

is declared secure if the resulting PCR values match previously defined good values.

Using this basic methodology for both MRTM and MLTM modules, a mTPM

compatible system would provide a means for multiple stakeholders to each have an

isolated measurement and reporting system for their respective collection of code

on the ME. To date, there have been no verified instantiations of a mTPM in a

consumer ME device. The TCG is currently working to produce the second version

of the mTPM specification and has already released a Use Cases document based

upon this latest version [29].

2.1.7 Other Organizations

As stated previously, this section was not intended to cover every organization cur-

rently engaged in various aspects of mobile security. However, it is also important to

mention two other organizations that are highly engaged in specification and require-

ments development of higher-level security functionality. These two organizations are

the Open Mobile Alliance (OMA) [30] and the Third Generation Partnership Project

(3GPP) [31].

The OMA is a group composed of various companies across the globe, typically

focused in one of four categories: wireless vendors, information technology compa-

nies, mobile operators, and application and content providers. When OMA was

originally form in June of 2002, there were nearly 200 companies associated with the

organization. The primary initiative of this group has been to bring together various

“mobile centered” organizations around the world to create unified specifications and

services that could be used globally. OMA also creates open standards related to

these four focal areas, such as the Multimedia Messaging Service (MMS) and Instant

31



Chapter 2. Background

Messaging (IM), both of which are heavily used on mobile devices today.

3GPP was created in December of 1998 and originally worked with specification

development for 3G mobile systems based on the Global System for Mobile commu-

nications (GSM) standard. 3GPP has subsequently broadened its target technologies

to include Edge, W-CDMA, HSPA, LTE, and LTE-Advanced. Standards developed

by 3GPP typically focus around radio, core network, or service architecture. As such,

their results are focused more on the use of ME on provider networks, as opposed to

the development of the ME. Significant contributions of 3GPP include the Universal

Mobile Telecommunications System (UMTS) and the Long Term Evolution (LTE)

protocols.

2.2 Hardware Support

Thus far, this paper has present information centered on formal specifications and

software support methods for mobile security. While these are certainly critical to

the goal of creating a secure mobile platform, the inclusion of hardware support is

equally critical. Further, some of the specifications developed, such as the TEE,

require hardware features in order to ensure specified capabilities. It is important

to note that all information presented on this topic was obtained through publicly

available documentation and not through non-disclosure agreements.

To better understand how these hardware features work to enable these capabil-

ities, information will be presented on several of the major security suites provided

by chip manufacturers. This information is again provided as an overview; more

extensive details will be presented in Chapter 3. It is important to note that im-

plementation details are often confidential and require a non-disclosure agreement

(NDA) with the corresponding company before any further information is released.
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2.2.1 TrustZone

TrustZone was first released by ARM, Limited, in 2003 and is currently on its 3rd

version [19]. TrustZone encompasses a collection of modifications and feature support

that provide hardware enforced, software execution isolation on ARM core processors.

In order to fully support an isolated EE, ARM updated its instruction set to include

methods of switching between environments, as well as made major modifications

to their hardware architecture in order to identify data and instructions as secure

versus non-secure.

The primary hardware change was the addition of a 33rd bit that was added to

the internal AXI bus, as well as all cache and internal memory elements. The value

of this bit is used to determine whether the transaction or memory is secure (0) or

non-secure (1). This bit is also present in a Current Status Register (CSR) and is

used to indicate the current operating state of the system. There are significantly

more details about how this functionality works, but this will be presented later in

Chapter 3.1.

2.2.2 M-Shield

Texas Instruments (TI) is one of the primary licensees of ARM technology, using

ARM based processors as the core of their OMAP processor line. M-Shield is the

name of the TI provided security suite that interfaces with ARM TrustZone tech-

nology to provide enhanced security functionality. As stated in the TI M-Shield

white paper, “...M-Shield mobile security technology is a system-level approach that

intimately interleaves optimized hardware and software..” [32]

M-Shield consists primarily of hardware components that are added to the main

SoC design, including SecureROM, SecureRAM, AES and public-key accelerators,

33



Chapter 2. Background

SecureDMA, and a Secure State Machine. By utilizing TrustZone isolation mech-

anisms, M-Shield is able to provide these elements to users in both a secure and

non-secure manner.

2.2.3 SecureMSM

SecureMSM is a collection of security features o↵ered by Qualcomm that are very

similar to those provided by TI’s M-Shield technology. Unfortunately, little infor-

mation is publicly available in with regards to implementation or functional details.

Most of the information obtained is high-level and provided through 3rd party devel-

opers.

SecureMSM is the name of Qualcomm’s security suite for their Snapdragon pro-

cessors. This suite encompasses in-house hardware security elements, such as secure

boot, cryptographic accelerators, secure storage, etc., as well as a third-party TEE

kernel called MobiCore [33]. MobiCore was developed by Giesecke & Devrient and

was included to provided secure software functionality for financial transactions, like

mobile payment and secure PIN entry, as well as key management and user authenti-

cation [34] [35]. The MobiCore kernel serves as the TEE and TAs for the Snapdragon

platform (and possibly others).

2.3 Academic Research

Because the work being presented here focuses on secure execution on mobile devices

through the use of a PUF generated secret key, academic research will be divided

into two specific areas. First, research on the development of secure mobile devices

will be presented. Second, papers specifically addressing PUF implementations and

usage cases will be discussed. Finally, a few of the commercially developed security
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suites currently available will be discussed.

2.3.1 Mobile Security Research - IAIK

There are currently several groups around the world focused on the development

of trusted execution environments for mobile devices. One of the most prominent

groups is out of the Institute for Applied Information Processing and Communica-

tions (IAIK) at the Graz University of Technology in Austria. The primary authors

in this group are Johannes Winter and Kurt Dietrich. Together, these two authors

have written several papers since 2007, each describing various aspects of a secure

mobile architecture for modern smartphone applications. The proposed architectural

elements are based on the incorporation of Mobile Trust Module (MTM) function-

ality.

As noted by the author, there were three primary implementation possibilities for

MTMs at that time. The first was completely in software, but was not feasible be-

cause no solid isolation mechanism existed at the time for code execution. (Although

TrustZone had been developed by this time, it was not widely used or adopted) The

second possibility was a separate IC on the device, which is a highly unlikely option

due to the real estate restrictions on modern devices. The final option was to embed

the functionality into an existing device or IC on the phone, such as the SIM card.

It was also noted by the author that such an implementation would need to be done

on an onboard card that is physically connected to the board, thereby reducing the

chance of an attacker or thief simply removing or replacing the SIM card.

Moving forward with the use of SIM cards with JavaCard runtime environment

support, the author presents a model architecture for a mobile device that could be

used to provide MTM functionality in support of Secure Boot (SB) and attestation

capabilities. While the idea is solid, the primary concern with this approach is
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the fact that trusted computing is being performed o↵ chip, thereby opening the

possibility of Man-in-the-Middle (MITM) attacks. The optimal architecture would

have this functionality on-chip, whether through dedicated silicon or a software-only

solution.

Johannes Winter presented a paper the following year that first introduced the

concept of using ARM TrustZone to create a trusted execution environment [36].

Winter proposed a secure mobile environment that utilizes TrustZone to support

MTM implementations in both a secure and non-secure environment. The archi-

tecture consisted of two separate operating systems, one executing inside the secure

world and one executing in the non-secure world.

The architecture further supported the use of virtual machines for each world,

allowing isolation between multiple processes and environments within each world.

Such isolation is required in order to comply with engine execution requirements, as

specified in the MTM reference architecture document [28]. The paper also addressed

issues concerning virtualization on ARM platforms, interrupt handling between mul-

tiple guest systems, and VM creation and deletion.

This paper presented a solid architecture for secure processing, but leaves seri-

ous questions about performance hits and/or processing requirements. While most

modern processors, including mobile processors, can support running two separate

kernels simultaneously, devices that require high performance or deterministic behav-

ior would possibly fail under such an architecture. The author is unable to address

this concern due to lack of an actual hardware platform on which to test the proposed

architecture. This has become a recurring issue faced by many researchers over the

last few years, whether due to lack of “o�cial” support for TrustZone, or inability

to modify boot code due to implementations of the secure boot protocol.

Building upon these two papers, Dietrich and Winter released another paper in
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2008 [37]. In their paper, the authors presented a software-only MTM architecture

enforced via ARM TrustZone technology. The methodology presented makes use

of SB to measure and verify the standard kernel image using MTM functionality.

Embedded in the kernel, as well as other applications, is a Reference Integrity Metric

(RIM) that can be used to validate the respective code. In order to provide this

functionality with as little alteration as possible, the authors proposed incorporating

RIM certificates inside the “notes” section of ELF binaries.

To prove that code has not been tampered with, the MTM performs a standard

set of measure->verify->extend operations on each code element in the SB process.

The result of each code segment measurement is compared with the value in the RIM

certificate. If that value matches, the associated Platform Configuration Register

(PCR) is extended and the boot sequence continues. Once the kernel is loaded and

begins execution, the final value in the PCR can be checked to determine if the

system booted into a trusted state, based on the final value of the PCRs.

The process described by the authors is e↵ective and is actually quite similar

to the process adopted by Apple for distribution of firmware files. Apple uses a

proprietary format known as Img3 that uses tags to identify di↵erent sections of a

firmware file. Each file contains at least these three sections: TYPE, DATA, and

CERT. The TYPE section provides information on the type of firmware for which

this file is used. The DATA section contains an encrypted copy of the compressed

firmware and is the actual code that is run on the device. The CERT section contains

an X.507 certificate that can be used to verify the firmware file and ensure it has

not been tampered with. If at any stage in the boot process a firmware file does

not pass the test, bootup is aborted and the system enters a recovery state where

it stays until a restore is performed and valid code is again loaded onto the system.

As noted previously, this is very similar to the approach presented by Dietrich and

Winter.
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These two authors continued their research in 2009 with another paper presenting

two design approaches for providing trusted computing building blocks [38]. The

first approach was based on a software emulated mobile TPM which used processor

extensions to achieve isolation, while the second makes use of onboard smart cards

as secure processing elements. These approaches were further discussed in a paper

presented the following year [39]. Such approaches were most likely pursued at this

point due to the lack of a customizable hardware platform that could be used to test

the previously discussed architectures. This di�culty was addressed by Winter and

presented in a paper in 2012 [40]. Having determined a hardware platform on which

to proceed, it is assumed that follow-on papers will provide implementation results

for each of these various architectures.

2.3.2 Mobile Security Research - Others

Dietrich and Winter were not the only two researchers to explore implementations

for supporting TEEs or MTM functionality. In a paper by Grossschadl et al. [41], the

authors discussed three concerns with the MTM specification that they felt needed

to be addressed.

The first concern dealt with the isolation requirements required for proper MTM

functionality. The authors made a valid point in stating that a separate chip with

dedicated MTM functionality is often not feasible due to cost and/or board space.

Their recommendation for attending to these concerns is the use of protected execu-

tion domains, such as the one provided via the use of ARM TrustZone. The second

and third concerns deal with the minimal cryptographic primitives required by the

MTM specification. The specification requires at least RSA with 2048-bit keys and

SHA-1 hashes, both of which are significantly outdated.

Further, as noted by the authors, there is no defined mechanism for updating
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exploited or outdated algorithms. However, MTM implementations typically make

use of the native functionality provided by the chip manufacturer in order to operate

properly, which is part of the reason the MTM specification does not provide a

specific design implementation. As such, it should be the responsibility of the chip

manufacturer, or the TEE developer, to provide a mechanism for adding or removing

cryptographic capabilities. Once that is done, the MTM specification does provide a

method for updating its own code, which could then make use of the newly provided

features.

Another group from Samsung also presented a collection of papers on the de-

velopment of a new trusted mobile security architecture [42] [43]. This architecture

is also based around the implementation of the MTM specification and details the

use of Linux variants that support mandatory access control (MAC) mechanisms,

such as Security Enhanced Linux (SELinux). The concept here is the exact same

as what was presented by Dietrich and Winter in that such security mechanisms

could be used to ensure isolation between multiple processes in the same operating

system, thereby ensuring each stakeholder’s MTMs are appropriately isolated from

one another.

Although the authors present a novel approach, which was likely used by Dietrich

and Winter in their work, it does not provide any information on how the “secure”

kernel is protected other than to state that it must be loaded as part of a secure

boot process. While the approach conceivably works for providing isolation between

MTM engines, it still resolves down to a software-protecting-software approach if it

is not accompanied by any hardware support mechanisms. If the “secure” kernel is

not isolated from all other applications on the devices, it is still subject to attack

by any installed application. However, considering the time at which the papers

were written (2007 and 2008), such mechanisms were not widely available or even

publicized. As such, the papers should be considered a novel and meaningful first
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step towards a secure mobile environment.

A paper presented by SuGil et al. also provides a MTM architecture for mobile

devices [44]. The approach taken by the authors was very similar to the approaches

already discussed. The primary features supported by this architecture were the

measure->verify->extend and remote attestation. The authors also propose the use

of RIM certificates for each application and element run on the device, allowing for

the analysis of each code element prior to execution.

However, as the authors noted, this does not prevent code injection methods once

the code has been stored in memory. Further, a white-list/black-list methodology

was used that lacks re-validation capabilities. Once an application is verified, it is

added to the white-list; any subsequent loads are not verified because the application

would have been added to the white-list. This implies that the application must only

pass verification once in order to be considered “good”. The application could be

modified in any number of ways after that point, but the architecture would continue

to load it based upon the whitepaper. Further, no information is provided on how

these lists are maintained or protected.

Researchers have also explored higher-level isolation techniques, such as those

presented by Muthukumaran et al. [45]. While their approach mentions dependence

upon MTM functionality to ensure secure boot, their primary focus is on the devel-

opment of secure measurement capabilities inside the kernel. The group discusses

several integrity methodologies, such as Biba, LOMAC, Clark-Wilson, Clark-Wilson

Lite, Linux Integrity Architecture, and PRIMA. Their final architecture utilized

SELinux for MAC enforcement, together with PRIMA support, in order to protect

the software installation process. This process is considered to be the primary con-

cern due to its need for interaction with untrusted programs.

Software MTM solutions are not the only implementation being considered. In
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2010, a paper by Kim et al. presented a complete MTM hardware design with

strong performance results [46]. The solution presented provided the first known

implementation of a dedicated chip that was compliant with the MTM specification.

Comparisons were made between this device and a USIM chip, largely based on the

functional similarities between the two elements.

However, as has been stated previously, performing such operations on a separate

chip always broadens the attack space of the overall device. If the interface bus, which

in this case is Inter-Integrated Circuit (I2C), can be monitored, input and output

values are capable of being spoofed. Because the authors were primarily focused with

minimizing power consumption requirements, it is unlikely that communications into

and out of the chip are encrypted or otherwise obfuscated.

Despite addressing a serious security issue, the design does so by adding another

security concern. A complete security suite must perform all security related op-

erations on-chip, rather than relying on o↵-chip to provide critical information and

results. Most modern SoC devices provide an internal cryptographic acceleration

unit, making it the ideal element for performing such operations.

As claimed previously in Section 1.3, the best method for maintaining critical data

elements, such as keys, known-good-results, and certificates, is through encryption

with a unique-per-device key that is not stored in any form of non-volatile stor-

age. Further, the most secure method for implementing secure boot, secure storage,

MTMs, or any other secure service is via trusted software interfacing with internal

cryptographic units. The best-known method for accomplishing this is through the

use of a PUF generated secret key, as well as a Public/Private key pair. To better

understand how this can be accomplished, information of PUF research will now be

presented.
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2.3.3 Physically Unclonable Function Research

The concept of a Physically Unclonable Functions (PUFs) where originally proposed

in 1983 by D.W. Bauder at Sandia National Laboratory as a method for identifying

counterfeiting, or alteration, of a chip design [47]. PUFs continued to be explored

as a solution to such issues but soon found an additional use: random number

generation. PUFs provide a path through a collection of decision nodes that result

in a 0 or 1 value based upon the manufacturing characteristics of the device. A

PUF is provided with a challenge, which represents a collection of decision values for

each of the decision nodes, and produces a set of responses. Because of variations in

the manufacturing process, each device will produce di↵erent responses to the same

challenge.

As a result, many researchers have claimed that the “device unique” values gen-

erated by a PUF could be used as keys for cryptographic operations. This was first

proposed in 2004 by Lee et al. [14], and then in 2007 by Suh and Devadas [15]. Their

goal was to generate a key that could be used to provide device authentication. Their

research provided several methods for attempting to stabilize the results of a PUF in

order to provide consistent and repeatable results that could be used to generate a

cryptographic key. Once stabilized, the authors proposed the ability to use this key

in device authentication mechanism, such as IC identification. They also proposed

the use of the data as a seed for a random number generator, as well as using the

data as a key that could be tightly coupled with the processor in order to enable a

physically secure processor. The inherent weakness of this approach is that if the

key is successfully tied to the processor, an attacker may gain the ability to execute

on the processor and then read back the resulting key.

Further, the authors describe using a generated key in collaboration with a set

of challenges to provide an authentication mechanism. The process would require
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a trusted party to record responses produced by the IC to the provided challenges.

These responses would be maintained in a database, allowing the trusted party to

later send a challenge and compare the provided response with the one on record,

thereby proving the identify of the device. However, as stated by the author, chal-

lenges are never reused, an idea meant to alleviate concerns with MITM attacks. Such

a constraint though would either place an unnecessary constraint on the number of

authentications possible, require a significant amount of storage for challenge/re-

sponse pair per device, or necessitate a update policy in which the device much be

taken back by the trusted party in order to create new sets of challenge/response

pairs. This also begs the question of what would prohibit an attacker from stealing

the device and running these tests on their own? While the attacker would not likely

be able to generate or store all possible challenge/response pairs, they could simply

re-invoke the authentication mechanism until they were provided with a challenge

that they had a valid response for, thereby allowing them to spoof the actual device.

Finally, the authors presented information on using PUFs to further generate run-

time cryptographic keys that could be used for standard cryptographic operations.

The results produced by a PUF can at times change, based upon current physiological

conditions, such as voltage and temperature. This characteristic, as mentioned by the

authors, allows a PUF to be used as a random number generator (RNG) that could

produce unique keys for cryptographic operations at any time. Some cryptographic

operations might require a stable key, therefore obliging the developer to include

error correction code (ECC), while others may only be able to use keys with specific

characteristics, such as RSA. The authors do present satisfactory research into both

of these areas, but do not provide further information about how these keys are

accessed or used on the platform. This is a topic that will be addressed in the next

two chapters.

The concept of using PUFs to authenticate an entire system, rather than just a
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single device, was presented by Ibrahim and Nair [48]. The authors proposed the

use of a trusted party to maintain challenge/response pairs, similar to that of Suh

and Devadas. Various PUF capable elements on the device are provided with a chal-

lenge, and then provide their responses to a reader in the system. This reader then

aggregates all the responses received in order to generate a single system response.

This response can then be used to verify the entire system, as well as isolate which

element generated an invalid response if the overall system response was incorrect.

While this idea is certainly feasible and provides a strong status mechanism for

the system, it is still limited by the same problems mentioned previously for Suh

and Devadas. Further, the architecture presented by the authors lists wireless trans-

mission mechanisms for transmission of PUF responses, and touts the fact that all

processing is performed o↵-chip. As a result, there is no mechanism for proving that

the IC inside the device actually generated the response. The original chip could be

removed, replaced by another, and then powered up at a nearby location. Because

all challenge/responses are conducted wirelessly, the chip can still provide the neces-

sary responses without even being on the device, thereby presenting a false-positive

response for a valid operating state. Again, the concept of what was present is solid,

but the implementation mechanism is subject to a variety of attack methods.

Ibrahim and Nair also discussed the ability to generate a key and use it to aid in

the development of a Cyber Physical System, or CPS [48]. To this end, the authors

discussed the ability to incorporate multiple PUFs into a system in order to create

a paradigm called security fusion. Although details of how this new paradigm would

permeate into software were not included, the authors presented a system architec-

ture wherein multiple elements, equipped with their own PUFs, would communicate

with a reader to provide results for generation of a system response. The collated

results from each of the elements would be compared with a known result to ensure

each element is functioning properly. A match would indicate that all systems are
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verified, while an incorrect value would cause the system to track down and identify

the malfunctioning element. This approach does seem feasible for helping to ensure

overall hardware security, but as it currently stands does nothing to ensure secure

execution of software.

The usage of PUF results in cryptographic applications has also been discussed.

To date, most of the applied uses involve using PUF generated results with RFID

elements [49] [50]. While this is a valid and useful application for PUFs, our primary

concern is the security of the TEE executing on the processor, an approach that to

date has not been formally defined by any research groups.

A critical aspect of using PUFs to provide cryptographic information of identifi-

cation is dependent upon the ability to provide stable, repeatable results. As such,

a variety of groups began looking into methods of stabilizing the output generated

by a PUF. Such research included the ECC scheme presented previously by Suh and

Devadas [15], as well as the use of a SRAM-PUF by Bohm et al. [51], 2D Hamming

codes [52], XOR masking [53], longest increasing subsequence algorithm (LISA) [54],

majority voting [55], and soft decision decoders [56].

The primary security concern generated by these proposed solutions is the re-

quirement to store the syndrome, or helper data, about the PUF publicly. This

allows an attacker to ascertain a certain amount of information about the PUF sim-

ply by observing these data. This problem was specifically addressed by [57]. A

second method was also proposed by Paral and Davadas that use pattern matching

to regenerate keys, but uses indices into sets of PUF challenges as secret key bits,

rather than the typical approach which simply uses the PUF response bits as the

actual secret key [58].

Other security concerns also cropped up in some of these approaches. The SRAM

PUF [51] is a prime example. As the authors noted, the ability of a software appli-

45



Chapter 2. Background

cation to read the contents of the SRAM would prove critical to the security of the

generated key. While the ability to use the SRAM to create a stabilized key may be

a viable method, from a security standpoint it would be di�cult to ensure that no

attacker was ever able to gain execution privileges or code access to the SecureROM.

A prominent example of such an attack is the A4 bootROM exploit developed by

GeoHot [59].

2.4 Commercial Implementations

Now beginning to realize the vast market currently available in the mobile world,

companies have also begun creating “secure” execution environments for consumer

devices. These companies, like the academic researchers, are attempting to address

the need for security during critical mobile transactions, such as banking and NFC.

Although most major banking companies will likely wait for a definitive standard

before committing to full entry into the mobile world, that is not stopping security

companies from touting the high security services provided by their solutions. Fur-

ther, if their solutions can align themselves with the current trajectory of many of

the specifications presented previously, adaptation once the specification is approved

should be achieved relatively quickly.

OKLabs out of Australia was one of the first mobile security companies to present

a security solution. Their approach involves the use of virtualization to provide

isolation between various processes running on the system [60] [61] [62]. OKLabs

also heavily advertises the use of a microkernel in conjunction with virtualization

as a method for minimizing the overhead of multiple simultaneous OS instances

[63] [64] [65]. To prove the feasibility of their approach, OK Labs presented a case

study of their technology on the Motorola Evoke QA4 device [66]. While their

work is impressive, it is yet again another example of software protecting software.
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Further, the attack space on a software application that attempts to virtualize all

the underlying hardware is enormous in comparison to two execution environments

with hardware-enforced control of access privileges.

Another company that has been diligently working in the mobile security area

is Trusted Logic in France. Trusted Logic boasts a security suite called Trusted

Foundations [67] that provides a software API that interfaces with on-chip security

peripherals, such as cryptographic engines. This software suite has been incorporated

into variants of the TI OMAP 4 processor family [68]. Further, the financial firm

Gemalto has even worked with TI to create a secure banking product that can be run

on OMAP processors equipped with the Trusted Foundations software [69]. The fact

that Trusted Logic has been able to garner such support for its product just further

illustrates that companies are very interested in utilizing this type of technology.

The last company that will be discussed is Giesecke & Devrient out of Germany.

This company developed the MobiCore security suite that was mentioned as part of

the Qualcomm SecureMSM solution in Section 2.2.3. MobiCore is a secure OS that

makes use of ARM TrustZone technology to create a TEE [34]. G&D have lauded

this new technology for providing DRM protection [70] [71], DRM for mobile [72],

virtual private networking (VPN) [73], and even secure smartphone applications [35].

MobiCore got a big lift when it was announced that it would be incorporated in the

eagerly anticipated Samsung Galaxy S III devices [74]. The incorporation of this

technology allowed Samsung to begin using the NFC communications provided with

the Google Android OS.

As can be seen from the vast amount of research and development that is currently

being conducted, mobile security is an extremely popular and prized area of interest.

While all of these solutions are cropping up for securing execution on mobile devices,

the primary question of interest should be, to paraphrase Lois Lane, “who’s got

you?” It can be seen how all of these standards and technologies provide protection
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for applications and providing secure execution, but how are they being protected

when they are not running? Is the secure boot process su�cient to protect these

executing environments and prove that everything is running properly? In order to

address these questions, it is necessary to better understand what ARM TrustZone is

and exactly how it provides the means for creating a trusted execution environment.

Further, how can ARM TrustZone work with a TEE to control access to critical data

and properly authenticate a device?
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TrustZone and Trusted Execution

Environments

In 2003, ARM released the first version of a new technology suite called TrustZone [3].

In addition to the hardware features provided, ARM developed a TZ Application

Programmer Interface (API) that could be used by software developers to interact

with the underlying hardware features. This API, currently at version 3.0, became

the basis for the Trusted Execution Environment (TEE) specifications [19]. It is

important to note that TZ is not a software security implementation; it is a collection

of hardware extensions to the ARM core architecture that support software isolation.

The provided API is a suggested framework and can be altered or replaced by any

software developer.

Using TZ to provide software isolation has allowed for the creation of a variety

of mobile security solutions and specifications, such as TEEs. The question be-

comes whether or not this functionality is capable of addressing the issues of security

for system critical resources and authentication. This question is addressed in this

chapter, as greater details about TrustZone and Trusted Execution Environments
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Page 5 of 8 

architecture and memory system. One of the key changes to the architecture is the 
addition of a ‘security’ or ‘S-bit’. The S-bit acts as a simple identifier to denote the 
parts of the system which are secure. The S-bit is applied to the core, memory 
system and can even enable security within on-chip peripherals. 
 
The S-bit indicates the current operating state of the core. A separate processor 
operating mode (Monitor) is used to control the security operating state and checks 
that data and instruction accesses are permitted. The Monitor mode manages the 
transition between secure and non-secure states of operation through the 
manipulation of the S-bit. Acting as the security gatekeeper, the Monitor mode 
manages tasks such as saving the current context and, if necessary, flushing 
registers before switching between secure and non-secure states. 
 
The S-bit is used throughout the system to keep the secure and non-secure domains 
completely distinct. TrustZone technology includes a modified memory system – the 
cache and MMU incorporate the S-bit and so become security-aware.  The S-bit can 
only be accessed by the Monitor, which itself can only be entered through a limited 
number of defined entry points. By controlling access to the Monitor, proving the 
security of the system becomes a practical possibility. 
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Figure 2. Modified security structure using TrustZone technology 

 
Figure 3.1: Security structure of the original TrustZone technology [3].

are presented.

3.1 TrustZone Architecture

When ARM initially presented TrustZone to the electronics community at large [3]

[75], the primary new architectural feature they touted was the inclusion of a 33rd

address/data bit known as the “security” or “S-bit”. This bit serves a single purpose:

identify the address, data value, or system state as either secure or non-secure.

The value of this bit is controlled via a special software element known as the

“Monitor”. The monitor runs in a special operation mode (Monitor mode) and is in

charge of handling the transition between the secure and non-secure worlds, as well

as intercepting interrupts and forwarding them to their corresponding world. The

Monitor can only be entered by way of a fixed set of entry points, thereby reducing
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the attack surface through which attackers can inject data. This approach allows

testing of the interface to become a somewhat practical idea, which in turn allows

the idea of a secure system to reemerge. The layout of this design is shown in Fig.

3.1.

In addition to being used within the ARM core itself, the S-bit has also been

incorporated into the Advanced Microcontroller Bus Architecture (AMBA) bus. This

bus served as the primary bus at the time TZ was originally developed and was

used to connect peripherals to the microprocessor. The inclusion of the S-bit allows

designers to establish peripheral devices and their coinciding transactions as secure

or non-secure. Developers of external peripherals only need to add a small wrapper

to their design that is capable of reading this bit and handling it accordingly. In

most cases this allows the majority of hardware designs to remain unaltered.

The S-bit has also been merged into the cache and Memory Management Unit

(MMU). Doing so allows data and instructions fetched from memory to remain in the

cache regardless of the current state of the system. One of the biggest performance

hits of this style of segregation is the flushing of memory locations when the proces-

sor moves between states. Ordinarily failure to perform such a flush would pose a

potential security risk as the normal world might be able to analyze what the secure

world was doing and possibly even retrieve secure data still located in the cache. By

identifying each memory address as containing a secure or non-secure value, flushes

are no longer needed because the processor can enforce access controls on the data

based upon the current state.

Since TZ was initially created in 2003, the S-bit has continued to be a critical

element of the overall design. It is di�cult to determine exactly what changes have

occurred since the original TZ architecture was released, as documentation of earlier

versions is no longer available. However, recent documentation emphasizes several

features not discussed in the original white paper provided by ARM.
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As depicted in a paper in 2009 [4], such features include:

1. AMBA3 Advanced eXtensible Interface (AXI) bus support

2. The Secure Configuration Register (SCR) in the system control CoProcessor

15 (CP15)

3. The Secure Monitor Call (SMC) instruction

While there are also other important and noteworthy components of TZ, such as

secure debugging capabilities, only the portions that relate directly to the research

being presented will be covered. The next three sections will discuss each of these in

greater detail.

3.1.1 TrustZone AXI Support

In order to best understand the changes made to the TZ-compatible devices, consider

the generic mobile architecture presented in Fig. 3.2. The ARM processor core is

only a small piece of the overall device architecture, and as such must maintain a

mechanism for identifying peripherals and transactions as secure or non-secure. By

incorporating support for TZ into the AXI bus via the inclusion of the S-bit, TZ

aware peripherals can be properly configured and act accordingly based upon the

state of each transaction.

It is important to note that not every element in this architecture must be TZ-

aware. For instance, by making only the MMU TZ aware, other memory peripherals,

such as the Boot ROM, SRAM, DRAM, and Flash, can be automatically protected by

requiring all memory accesses to be controlled by the MMU. Further, some elements

may not even need to be included. Which elements are and are not included is

dictated by the system designer and is often based upon what is needed by the
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2.1 System security
System designs for embedded devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, and large numbers of 
memory and peripheral bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive and non-invasive debug 
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST) 
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a 
way that it works with the security solution, rather than developing each sub-system 
independently of the security requirements. If the threat model for a device indicates 
that it needs to protect against shack attacks, there is no point securing only the 
functional part of the system. An attacker with unrestricted access to a debug port can 
bypass many of the functional protections that may exist. 

This section aims to look at some of the security architectures that have historically been 
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design
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Figure 3.2: Generic mobile device architecture with ARM processor core [4].

architecture, rather than simply including everything that is available. A designer

may want one timer to be TZ-aware, but may leave another as generally accessible.

This is illustrated in Fig 3.3, an example architecture showing how TZ support may

be partitioned throughout a mobile architecture design.

3.1.2 TrustZone Secure Configuration Register

The Secure Configuration Register, or SCR, is used to maintain information about

the TrustZone security settings currently being used. While the specific bits and their

associated purposes may vary from one architecture to another, the least significant
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Figure 6-1 : The Gadget2008 SoC design

Note
 Note that this design only shows the aspects that are relevant to, or overlap with, the 
security of the system. Most Normal world peripherals, and all system peripherals, such 
as power controllers, are not shown.

Putting the software together

The software architecture can similarly be outlined, as shown in Figure 6-2 on 
page 6-16. In this design the Secure world is implemented around microkernel 
principles and pushes critical system components, such as device drivers, into unique 
user-space tasks. 

Three separate security services are installed into the Secure world, one for each of the 
DRM, GadgetStore and mobile payment use cases. These services are responsible for 
managing all of the sensitive assets associated with each use case and making use of 
hardware, via the secure device drivers, to adequately protect them. 
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Figure 3.3: Example mobile architecture supporting ARM TrustZone [4].

bit is always used to identify the current TZ state of the system with “0” representing

secure and “1” representing non-secure. Although the SCR is a 32-bit register, only

8-10 bits are typically ever used. These bits are usually used to dictate how the

system responds to specific actions, such as an IRQ or FIQ interrupt, and what

functionality is present while in the secure and non-secure worlds.

For example, the ARMv7 architecture uses 10 bits of the SCR [76]. One of

these bits, called the F-bit Writable (FW) bit, is used to control access to the F-bit

of the Current Program Status Register (CPSR). The F-bit of the CPSR is used to

enable masking of the Fast Interrupt (FIQ). By disabling the ability of the non-secure

world to mask this interrupt, the secure world can establish a timer that triggers on
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a regular interval and generates an FIQ exception, thereby assuring that the secure

world executes on a deterministic period. This is the most common approach used

and is recommend by ARM as the defacto method for preemptive execution of the

TEE.

Access to this register is also restricted to software running in the “supervisor”

mode within the secure world. For systems that implement a full-fledged kernel

within the secure world, this provides access restrictions that the kernel can utilize

to ensure individual applications running within the TEE cannot change these values.

While it would be assumed that any application executing inside the secure world

has been proven “trusted”, placing all control into the hands of the trusted kernel

provides a small amount of added security.

3.1.3 TrustZone Secure Monitor Call

The Secure Monitor Call (SMC) instruction, formerly known as the Secure Monitor

Interrupt (SMI), is a part of the security extensions added to the ARM core. The

intended use of this function it to provide a mechanism through which the non-secure

world can call into the Monitor, thereby invoking a switch to the secure world. This

capability is controlled through the SCR discussed previously. The execution of

the SMC instruction will either result in the normal execution of the SMC or will be

treated as an “UNDEFINED” instruction and generate the corresponding exception,

depending upon how its functionality is defined in the by the secure world.

This instruction is the primary mechanism used by drivers developed within the

REE, or more specifically the REE communications agent. Rather than forcing the

system to wait until the TEE next executes, the SMC provides a mechanism by which

the REE can call into the TEE for access to trusted peripherals or for execution of

trusted applications. Once the secure world completes the requested operation, the
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Monitor will restore execution to the REE, one instruction after the SMC instruction.

3.1.4 TrustZone Memory Support

Memory support in a TZ architecture is significantly di↵erent than what is found in

most modern CPU architectures. This is primarily due to the support requirements

inherent to implementing two isolated execution environments. As discussed previ-

ously, flushing of the internal cache, instruction pipelines, and Translation Lookaside

Bu↵ers (TLBs) can result in significant performance hits. To address these concerns,

ARM decided to integrate the S-bit directly into the internal level one cache of its

processor cores.

The internal memory structure in an ARM core consists of two primary elements,

a TLB for maintaining virtual-to-physical mappings, and the level one (L1) cache

area. Using the standard cache methodology, instructions and data are prefetched

into the L1 for access by the processor. When the processor requests this information,

it includes a marker called the Non-Secure (NS) bit. The NS-bit is another name

for the S-bit and represents the value of the NS-bit in the CPSR at the time of the

access. Each instruction and data value fetched is correspondingly labeled when it

arrives in the cache.

The virtual address that is used by the processor to request a specific piece of

data also includes an additional bit, called the Non-Secure Table Identifier (NSTID).

This bit does not indicate the state of the system when the request is made, but

rather identifies the state to which the memory belongs. It is important to note that

in TZ architectures, it is possible for the secure world and the non-secure world to

share memory, as well as for the secure world to provide introspection of non-secure

memory. Therefore, even if the processor is currently executing in the secure world,

it may wish to retrieve data values from the non-secure world memory. In this case,
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the NSTID bit would be set to “1”, indicating that the memory address is to be

retrieved from the non-secure world memory map even though the current value

of the NS-bit in the SCR is “0”. The TLB would then contain a mapping to the

appropriate physical address and compare the current state with the NS bit for that

entry. As long as the values match, or the current state is secure, access should be

granted. Otherwise, an exception is raised.

Other memory devices on the system typically act in a similar fashion, but usually

require some type of TZ interface logic to maintain the NS bits for each address or

block of addresses, rather than requiring incorporation of this bit into the chip fabric.

TrustZone Hardware Architecture 
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Example

Putting all of the concepts described above together, Figure 3-2 shows how the L1 
memory system of a theoretical ARM processor might handle the state associated with 
Security Extensions when accessing the memory system.

1. The core processing logic attempts a data load, a data store, or an instruction 
prefetch. The hardware passes the Virtual Address (VA) and the current world 
(Non-Secure Table Identifier, or NSTID) to the TLB to enable it to perform 
address translation. 

2. The TLB loads the Physical Address (PA) and the NS-bit associated with the VA 
and NSTID it was passed, performing a page-table walk and forcing NS=1 if 
NSTID=1 if necessary. The TLB then passes this information to the cache to 
perform the actual data or instruction access.

3. The cache attempts the match the PA and the NS-bit from the TLB with the tag of 
an existing cache line. If this succeeds it will return the data from that cache line, 
otherwise it will load the cache line from the external memory system.

Figure 3-2 : Level one memory system for a theoretical ARM core
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An example of this was shown in Fig. 3.3. This figure contains a module called the

TrustZone Address Space Controller, or TZASC. Such a module can be placed in-

between the main processor and the memory element, thereby allowing the memory

element to remain unchanged. The purpose of the TZASC is to monitor transactions

to the memory and determine access permissions based upon the value of the NS

bit. The TZASC must maintain partition information in the event physical memory

is partitioned between secure and non-secure memory, again allowing for the co-

existence of mixed memory elements. To reduce storage requirements for security

settings, memory is usually identified as secure or non-secure in variably sized pages,

rather than individual byte addresses.

3.1.5 TrustZone Interrupt Handling

Interrupt handling is the last major change required by the TZ architecture. Inter-

rupts are used to indicate to the processor that some external peripheral needs to

communicate with the processor. Based upon how this peripheral has been set up,

such a request could indicate the need to transfer non-secure or secure information.

It is therefore necessary for the processor to determine which type of interrupt has

been generated and whether a change in the execution state is necessary in order to

service the interrupt.

To handle this type of situation, ARM has advocated the use of multiple Excep-

tion Vector Tables (EVTs), used to maintain the address of interrupt service routines.

Such an implementation is shown in Fig. 3.5. As illustrated, the ARM architecture

supports seven possible interrupts. In order to firewall the transfer of information

between the non-secure and secure world, it is necessary to keep separate EVTs for

each world, plus one additional EVT for the Monitor. Once an interrupt occurs, the

current state of the processor is compared with the state of the interrupt. If they are

the same, the interrupt is simply forwarded on to the appropriate execution environ-
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Figure 3-3 : One possible IRQ routing in a design with IRQ configured as a non-secure interrupt

To prevent malicious Normal world software masking sensitive Secure world interrupts 
the processor hardware includes a configuration register in CP15 which can be used to 
prevent any Normal world software modifying the F (FIQ mask) and A (external abort 
mask) bits in the CPSR. This control register can only be accessed by Secure world 
software. Note that there is no option to prevent the Normal world masking IRQ 
interrupts.

Processor exception vector tables

To provide the exception behavior described above, a TrustZone-enabled processor 
implements three sets of exception vector tables. One of these tables is for the Normal 
world, one is for the Secure world, and the other is for Monitor mode. 

The base address of the Secure world table at reset is in accordance with the setting of 
the VINITHI processor input signal; 0x00000000 if it is not asserted, 0xFFFF0000 if it is. 
The base address of the other tables is undefined, and should be set by software before 
use. 

Unlike previous generations of ARM processors, the location of each of the tables can 
be moved at run-time. This is achieved by programming the appropriate Vector Base 
Address Register (VBAR) in CP15.
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Figure 3.5: Example interrupt table structure for TrustZone architectures [4].

ment. If not, execution is transferred to the Monitor, which determines the correct

state and performs the required transition. Isolation of the EVTs can be done in

two ways: separate interrupt controllers, or the use of a single TZ-aware interrupt

controller, such as the PL390 shown in Fig. 3.3.

Trapping interrupts in the Monitor is not possible for all interrupts. Such trapping

is only supported for IRQ and FIQ interrupts, configurable in the SCR. Because

IRQs are the most common interrupt, it is suggested that this interrupt maintain

its normal functionality whenever possible. As mentioned in Sec. 3.1.2, the secure

world can setup the FIQ to trap into the Monitor and then disable masking of this

interrupt by the non-secure world. This ensures the ability of the secure world to

run and prohibits malicious code running in the non-secure world from preventing

execution of the TEE.
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3.2 Trusted Execution Environments

The Trusted Execution Environment (TEE) specification was originally started in

2009 after the TZ API was donated to the GlobalPlatform group. The TEE is based

on security requirements outlines in the OMTP TR1 document [1] [23], but resembles

the TZ examples from an architectural standpoint. The collection of TEE documents

released thus far are explicit in a�rming that the specifications do not advocate or

require any specific hardware implementation, but rather state what functionality is

necessary in a supporting architecture.

An initial overview of the TEE specification was presented previously in Sec.

2.1.2. Because the TEE specification is mostly focused on the software implementa-

tion, this section will focus predominately on software only. It will be assumed that

whatever architecture is used to execute the TEE is fully compatible with hardware

requirements, or has full ARM TZ support, which is TEE compliant.

3.2.1 TEE Software Architecture

As stated by the TEE documentation, “the goal of the TEE Software Architecture

is to enable Trusted Applications to provide isolated and trustworthy capabilities

for service providers, which can then be used through intermediary Client Appli-

cations” [1]. This is illustrated in the previously presented TEE reference software

architecture, shown again Fig. 3.6.

Based upon this design concept, the entire execution environment and device pe-

ripherals can be divided into two groups: public (non-secure) and trusted (secure).

The Rich-OS Execution Environment (REE) consists of the Rich-OS, as well as all

untrusted applications and public peripherals. The Trusted Execution Environment

consists of some primary program, perhaps a full-fledged kernel, with trusted appli-
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TEE System Architecture – Public Release v1.0 17/24 

Copyright � 2011 GlobalPlatform Inc. All Rights Reserved. 
The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. Use of this 
information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly 
prohibited. 

3 TEE Software Interfaces 
The TEE is a separate execution environment that runs alongside the Rich OS and provides security 
services to that rich environment and applications running inside the environment. The TEE exposes sets of 
APIs to enable communication from the REE and others to enable Trusted Application software functionality 
within the TEE. 

The following chapter describes the general software architecture associated with the TEE, the interfaces 
defined by GlobalPlatform and the relationship between the critical components found in the software 
system.  
 

There is no mandated implementation architecture for these components and they are only used here as 
logical constructions within this document. 

3.1 The TEE Software Architecture 

The relationship between the major software systems components is outlined in the block architecture below 
(Figure 3-1).  

Figure 3-1:  TEE System Architecture 

 
 

The goal of the TEE Software Architecture is to enable Trusted Applications (TA) to provide isolated and 
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Figure 3.6: TEE reference software architecture [1].

cations and trusted peripherals. Any peripheral available to both environments is

considered public. Additionally, in order to help facilitate communications between

the two worlds, shared memory locations can be established for the transfer of data.

The REE consists of three primary elements: TEE Functional Application Pro-

gramming Interface (API), TEE Client API, and the REE Communications Agent.

In most cases the communications agent will consist of any required kernel drivers

that will populate communication structures for message and data passing between

the REE and TEE, as well as the invocation of SMC instructions where possible. The

TEE Client API is used to facilitate communications between the REE and the TEE

by making appropriate calls to the communications agent. The TEE Functional API

sits at the highest level and is meant to provide a set of Rich-OS friendly APIs that

can utilize the Client API and communications agent to access TEE applications.
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A communications agent also exists on the TEE side. The communications agent

is responsible for interpreting requests from the REE and forwarding the request to

the corresponding Trusted Application (TA) or Trusted Kernel. The TEE Internal

API “defines a set of C APIs for the development of Trusted Applications running

inside a Trusted Execution Environment.” [21]. In addition, the API provides access

to the trusted peripherals via interactions with the Trusted OS Components, also

knows as the “hosting code”.

When a Client Application (CA) needs to communicate with a TA, a session is

opened. The session begins by first invoking an instance of the TA. Each session in-

volves a unique instance of the TA, each with its own independent physical memory

space. Once the instance is created, commands and data can be exchanged between

the CA and TA, either through the communications agents, or via a shared mem-

ory location. Once the transaction completes, the TA instance is terminated and

execution resumes.

3.3 Security and Customization of Trusted Exe-

cution Environments

At the time this paper was written, GP was still working on the development of

additional TEE documents, including information on the lifecycle of TAs. Some of

the primary issues in this regard are: “What services are available within the TEE?”,

“How long do TAs stay on the device?”, and “How are new services uploaded to the

device?” Additionally, “How are updates of the TEE handled?”

TrustZone provides a mechanism for implementing and support TEEs, but it pro-

vides no inherent mechanism for upgrading or customizing such an implementation.

The Secure Boot (SB) specification discussed previously requires measurement and
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verification of every software element used in the boot process prior to its execution.

Storage of “known-good” values used for comparison is often located on the device,

and a TZ-TEE combination could be used to protect these values.

But what happens if a device is compromised? Firmware files are almost always

unique per platform, not per device. Leakage of a key, certificate, hash, or other

value, may result in the compromise of a single system initially, but because such

information is not unique, a leakage on one device results in a leakage to all such

devices. Firmware files could be decrypted, modified, encrypted, and then written

to any other device with no way of knowing that such files are not legitimate.

Addressing such concerns requires the ability to secure this type of information

in a unique manner on each device, yet still provide a mechanism for SB. Not many

companies are going to want to independently encrypt the firmware for each device.

Such an approach would not only be time consuming, but would also require the

company to know the secure key for each device in order to encrypt it prior to

uploading or burning the information into the device. This would necessitate storage

and resource consumption that not only cost time, but also would require a significant

financial investment. The maintenance of this information would also provide a huge

financial liability because loss of this information would prohibit a user from updating

his or her device, thereby exposing the company to potential lawsuits. Further, this

method would still require a key to be burned into the device, or stored in some form

of non-volatile, secure memory. Thus, there is still no mechanism for updating the

key in the case of compromise.

In order to develop a mobile security solution that is capable of addressing all

of the issues presented thus far, research needed to be conducted into each of the

following areas:

1. Generation of unique-per-device secret key
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2. Storage of unique-per-device secret key

3. Protection of TEE in storage

4. Protection of TEE measurement/verification values

5. Update/modification mechanism for TEE

In Sec. 1.1, a collection of concerns were presented that are all a direct result of

these types of security holes. Properly merging and applying a set of solutions from

various mobile platform can generate a new solution that is capable of alleviating

such concerns by providing a mechanism to handle each of these areas. Additionally,

this solution is also capable of addressing the need for a device-unique authentication

method, as discussed in Sec. 1.3.

The solution presented in this research is based upon the use of a Physically

Unclonable Function (PUF) to generate a “unique-per-device” secret key, as well as

a random number to be used as a seed for generation of a RSA public/private key

pair. These three keys can be reproduced at boot time, thereby eliminating the need

to store them in any form of nonvolatile storage. Once generated, they can also

be used to protect system critical information in a unique manner without altering

or diminishing any of the original protection mechanisms. A detailed explanation

of this approach, as well as a comprehensive view of its internal structure, will be

presented in Chapter 4.
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ECE Architecture

As stated previously, the purpose of this research is an analysis of current mobile

security mechanisms and a determination of how PUF technology can be leveraged

to provide enhanced data security and device authentication on mobile platforms.

A variety of implementations and methodologies have been presented that have at-

tempted to address many of the security issues that the mobile world faces today.

But in order for those mechanisms to keep a system safe, they must themselves be

kept safe from attacks that would seek to bypass or disable their functionality.

Currently, most systems rely upon cryptography to protect sensitive informa-

tion stored on a device, such as trusted code used during the secure boot process.

Symmetric encryption is typically used for protecting data, and SoC manufacturers

have even begun providing locations for “secure” storage of cryptographic keys with

the device [32] [33]. Such locations include secure ROMs and electronically pro-

grammable eFuse arrays, as well as o↵ chip devices, like smart cards and SIM cards.

Based upon the increased use of these elements in a growing number of applications,

it would be di�cult to make a claim that mobile security has not been enhanced by

their incorporation into designs. However, that does not imply that the security of
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these architectures cannot be improved upon, or that their security is infallible.

The primary security risk inherent to storing cryptographic information on these

devices is the potential for such value to be leaked or otherwise exposed. Since these

keys are often used to protect security critical elements, access to the key or its

value would allow for the unauthorized modification of such elements on any a↵ected

device. The risk to devices is further compounded by the potential for key values to

be shared across multiple devices.

Manufacturers occasionally send firmware updates to devices in order address

software bugs and security issues. These files are usually encrypted and/or digitally

signed. Rather than creating a unique version of the firmware file for every device

manufactured, it is more logical that a manufacturer would use a single secret key

or public/private key pair to perform cryptographic operations on these files. In

order for each device to able to verify the authenticity of the firmware files, the

corresponding key(s) must be stored in some form of non-volatile storage on the

device. Additionally, this key would be the same on all supporting devices.

In cases such as this, leakage of the key or information about the key can have

a much broader impact. Once an attacker has been able to obtain the necessary

information from one device, that information can be used in attacks against all

other devices that utilize the same key(s). Because there have been no recorded

incidents of leakage of such keys, it is logical to assume that the odds of such a leak

or exposure are small. It is, nonetheless, an unnecessary risk.

In addition to concerns about the security of the system if the key is every ex-

posed, theft of mobile devices is also a concern that needs to be addressed. To

protect against theft, there must exist a mechanism for accurately identifying mobile

equipment and associating this equipment with a mobile user. The reason for this

is that it is often possible for a thief to steal a device and then active it for use on
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another cellular account. The International Mobile Equipment Identifier, or IMEI,

was developed specifically for the purposes of uniquely identifying mobile devices.

Because IMEI numbers are supposed to be unique per device, most manufacturers

store the IMEI in a one-time programmable, non-volatile memory location, such as

an eFuse array. The use of an eFuse array provides manufacturers with an easy

method for setting this information on a per device basis without having to modify

the design of every device produced. What this means though is that the value

can be changed by anyone with the necessary equipment to blow the fuses, though

changes can only be made to previously un-blown fuses. Since the eFuse array value

is frequently read and returned via software, an exploited device can be programmed

to return any arbitrary value, rather than the valid IMEI number programmed by

the manufacturer.

Considering the security issues presented thus far, it is easy to see that a better

system is needed if any progress is to be made in the field of mobile security. In this

chapter, an architecture for mobile devices is presented that addresses many of the

security issues discussed here and in previous chapters. Specifically, this architecture

utilizes a PUF to generate unique, per device values that may be used for crypto-

graphic operations and device identification. It is proposed that by integrating PUF

technology into a cryptographic processor in an isolated environment within the SoC,

secure cryptographic key generation is possible and that the results will be unique

for every supporting device. Further, it is proposed that a software Application Pro-

gramming Interface (API) operating inside of a Trusted Execution Environment can

be used to provide the required functionality in the most secure manner possible.

By combining these two architectural features, a new mobile security framework can

be developed that will greatly increase the overall security of the device, as well as

providing stronger mechanisms for device authentication and protection of security

critical code and data.
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4.1 PUF Enhanced Cryptographic Engine

Of all the issues that have been discussed thus far, some of the primary questions

that could be asked are:

• “Why is so much of the security analysis done on the CPU, where every attacker

yearns to live?”,

• “Why are these security critical elements accessible by the processor, and thus

by the associated OS?”,

• “How can the processor be trusted to accurately identify itself if unaltered

execution of the corresponding code cannot be guaranteed?”,

• “Would moving this functionality to a more secure location to which attackers

don’t have access fix the problem?”, and

• “If so, is creation of such an environment possible?”

Section 2.3.3 discussed the capability of generating secret keys, as well as pub-

lic/private key pairs, through the use of PUFs. Because most modern SoC designers

have begun adding cryptographic accelerators to their chips [32] [33], it would be

fairly straightforward to simply tie in the response of a PUF challenge directly to

the cryptographic unit. Since cryptographic accelerators are considered separate el-

ements in a SoC and are not a part of the processor, access to the results of the PUF

challenge can be isolated from the main processor. This method would restrict access

to the PUF results to within the cryptographic engine, while still providing the pro-

cess with the capability to interface with the crypto engine and perform operations

that utilize the provided results.

To better illustrate the proposed architecture, consider the generic SoC design

depicted in Figure 4.1. This figure shows a very simple SoC architecture consisting

68



Chapter 4. ECE Architecture
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Figure 4.1: Simplified, generic SoC architecture

of a CPU with connections to DRAM, SRAM, eFuse array, and the crypto engine.

Figure 4.2 shows what might be contained with the crypto engine. The engine

will typically have some form of FIFO/DMA input/output features for moving data

through the engine, as well as a small micro-controller and various cryptographic

accelerator units.

In order to perform a cryptographic operation, the processor will write infor-

mation into the control registers for the crypto engine, which are usually memory-

mapped into the address space of the processor. These registers will provide informa-

tion that tells the crypto engine what addresses to access, what type of cryptographic

algorithm to use, whether to encrypt or decrypt the data, and a variety of other plat-

form specific information. One of the critical pieces of information is which key to

use, and if it is a custom key, where it is located.

In order to make a crypto engine as flexible as possible, designers have typically

provided a set of registers that can contain the key to be used, or instead may contain
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Figure 4.2: Generic cryptographic engine with various cryptographic accelerators

the address of where to find the key. This may not always be the case, and if the same

manufacturer that produced the SoC designs the crypto engine, some key addresses

could be hard-coded into the engine. How each chip handles this is almost always

confidential and can only be obtained through a non-disclosure agreement (NDA), if

at all.

It is assumed that most modern SoC architectures store cryptographic keys in the

eFuse array, or some other memory-mapped non-volatile memory location. eFuses

where initially designed by IBM as a mechanism for enabling or disable functionality

within a SoC [77]. Use cases for eFuse arrays continued to grow and quickly found

their way into mobile security applications. Motorola is rumored to have used them to

block downgrading of the Operating System on Droid devices [78]. Subsequently, chip
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manufacturers have begun o↵ering eFuse arrays as a location for the secure storage

of cryptographic keys [32] [33]. While specifics of which manufacturers are providing

this capability and which OS vendors are utilizing it is di�cult to determine, it can

be determined that this is the approach being pushed by a number of manufacturers.

Unfortunately, by storing keys in non-volatile storage, the value of the key be-

comes susceptible to a variety of attacks, many of which were discussed by Chakra-

borty [79]. Most of the reasons cited by the author for such attacks are centered

more on the acquisition of intellectual property (IP) rather than keys. However, as

stated by Simons et al. [80], “Tools for attacking hardware have become very ad-

vanced, which has decreased the protection provided by storing a key in memory to a

minimum.” Therefore, these keys must be protected from discovery through attacks

like those presented by these two authors.

In order to protect against hardware attacks aimed at key extraction, such as

those mentioned by these two authors, it is necessary to remove the keys from any

form of non-volatile storage. This can be accomplished with PUFs, as shown in

Figure 4.3. The first step is simply adding a PUF to the overall SoC architecture

and connecting the results directly into the cryptographic engine.

When presented with a set of challenges, the PUF generates a set of responses

which are feed into a key generation unit, shown in Figure 4.4. As proven by previ-

ously discussed research, these responses should contain random data that is unique

for each device. The random data is used for two purposes: first, as an actual secret

key for symmetric key operations, and second, as random input into an RSA key

pair generation unit. As there are no mathematical constraints on the value of an

AES symmetric key (aside from size), the random data can simply be fed straight

through. On the other hand, RSA key pairs must be related mathematically and

therefore cannot be random data values. Rather, the random data is presented as a

seed for generation of random RSA keys. Since RSA key values are generated based
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Figure 4.4: PUF Result Key Generator (PRBKG)

upon the value of the seed, the resulting keys will be unique per device.
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Figure 4.5: PUF Enhanced Cryptographic Engine

Once the PUF successfully generates the necessary keys and values, they can be

fed into the crypto engine for access during cryptographic operations. Figure 4.5

shows the resulting architecture from adding the key generation modules into the

generic architecture presented previously. The keys generated for use in this case

must be static, meaning the PUF must always generate the exact same keys every

time it is run. It will likely also be of interest to include key generation functionality

that is based upon random PUF results and could be used sporadically by the device.

The purposes of these random keys will be discussed in greater detail later in this

chapter.
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4.2 Crypto Engine Communication Architecture

A PUF-enhanced cryptographic engine can be integrated into a mobile system to

support secure operations. However, several key considerations must be weighed

in order to achieve the goals of improved system level security. First, any access

methods that might exist that would allow code running on the processor to access

the key must be eliminated. While it would be unusual for a designer to establish

a direct communication mechanism between the processor and the micro-controller

running inside the crypto engine, which does not mean that such an architecture

will never exist. As such, a truly secure cryptographic engine should never make

assumptions about which element it is communicating with and should therefore

restrict all access to critical components.

Therefore, it is proposed that the key value be stored in some form of latched,

volatile memory and fed directly into the corresponding cryptographic accelerators

or muxed with any other key input lines going into the accelerator. The crypto

micro-controller would then only control the mux that feeds the accelerators, rather

than directly supplying the requisite values. In this way, no device or logic unit has

direct access to the generated keys and they are only available when the device is

running. The processor can then utilize these keys in the same method described

previously: through the use of control registers.

As for when the keys are used, it is necessary to first understand their purpose.

The purpose of the secret key is encryption of sensitive information, such as the

TEE. It could also be used to encrypt known good values for MTM functional-

ity, public/private key pairs, DRM authorization information, authentication, and

various other applications which will be discussed in greater detail in Section 4.3.

However, the use of the device secret keys should be as limited as possible. Instead,

additional keys can be generated and encrypted with the device secret key. Upon
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boot up, these keys can be decrypted and used to protect the majority of sensitive

information, while encryption with the device secret key is disabled. This provides

a dramatically smaller window in which an attacker might attempt to gain access to

the device secret keys.

The public/private pair would be used in conjunction with the secret key for

authentication. Authentication can be used to verify the identity of the mobile

device based upon the processor it’s using, as this is unlikely to change. Instead of

burning a key into the eFuse array, a hash of the network’s public key can be stored

instead. This will allow the device to verify any authentication requests. When the

device is first associated with the network, a simple value exchange can occur, using

the following process:

Alice : C = E

Apriv(Tnonce

+ T

challenge

)) + A

pub

(4.2.1)

Bob : T
nonce

+ T
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= D

Apub
(C) (4.2.2)
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Alice : T
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= E

Bsecret(Tchallenge

) (4.2.6)

(4.2.7)

For this example, the two users “Alice” and “Bob” will be used to represent the

network and device respectively. In step 4.2.1, Alice will generate two items, a nonce

and a challenge, and encrypt them using her private key. This information, along

with Alice’s public key, is then sent to Bob. Assuming Bob has a hash of Alice’s public

key stored in some form of non-volatile memory, he can verify the provided key and
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then use it to decrypt the nonce and challenge (step 4.2.2). Bob then encrypts the

challenge using his device secret key, combines it with the nonce, and encrypts them

together using his device private key. Bob combines that with his device public key,

encrypts it all with Alice’s public key, and returns the result to Alice (step 4.2.3).

Finally, Alice can decrypt all of this information, thereby providing her with the

Bob’s public key (step 4.2.4), which can then be used to decrypt the origin nonce

and the result of the challenge issued to Bob (step 4.2.5).

In order for this approach to work, there are a few conditions required in order

to ensure security. First, this transaction must take place over a closed-network

environment. With mobile devices, this could be done by a carrier prior to selling

the device, or be done over hard-wire with the customer. Second, it should be

understood that the nonce and data value being sent over in step 4.2.1 could be

seen by anyone on the network. This value is not meant to be a secret, but rather a

signature generated by Alice. Bob can store the challenge and use it to verify that

any further authentication request do in fact originate from Alice. By adding the

nonce, we eliminate the ability of an attacker to replay this communication or spoof

these values in the future. This exchange of the nonce and data value is consistent

with the challenge/response methodology discussed in Chapter 2.

In addition, the nonce is always encrypted prior to the challenge. The reason for

this is that the nonce should always change, or repeat so infrequently as to make

storage of all values in between infeasible. If the key were placed in front, an attacker

could ascertain when a challenge is being issued, even if they cannot determine the

value of the challenge. This could be somewhat mitigated by making the challenge

longer than the block size when using a block cypher, or by changing the padding

scheme used by a streaming cypher. However, it is simply a better idea to place

the nonce first followed by the challenge, thereby making comparisons of subsequent

cypher-text basically pointless. Further, this transaction should only need to occur
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once, as Alice should be able to use Bob’s public key for any follow-on transactions.

Should the need ever arise, Alice can issue a new challenge to Bob at any time over

a completely encrypted channel.

The primary purpose of this approach is to provide a method of authentication

for the device. Rather than using an approach similar to the ones presented in

previous research e↵orts where a database of challenge/response pairs is maintained,

this methodology requires only a single challenge/response pair to be maintained per

device. In addition, it also provides a simple method for updating this information

should any security compromise occur with regards to the stored data or keys.

From the users’ point of view, it would be impractical to expect them to bring

their device in to an authorized repair facility or to the Information Technologies (IT)

department at work every time a potential security incident occurs. Not only would

such requirements result in personal inconvenience, they could also create significant

support requirements for carriers and/or manufacturers. Therefore, a policy must

exist that allows for the update, modification, or removal of these challenge/response

pair that can be done without direct impact on the user. This approach directly

addresses this need.

Once this initial transaction occurs, subsequent exchanges can be optimized by

removing the need to exchange Alice and Bob’s public key. Instead, Bob can maintain

an encrypted copy of Alice’s public key in some form of non-volatile storage. Each

time a transaction occurs, Bob simply decrypts Alice’s public key using his own secret

key, verifies the hash, and then uses the key as though it were passed in directly from

Alice. This then reduces the exchange requirements, as shown below.
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Although Alice’s public key is public and disclosure of it should not be considered

a significant security risk, it can provide information to an attacker who might have a

presence on the device. If the attacker is able to simply read a section of memory and

pull out all public keys that are stored by the device, (s)he could ascertain certain

information about whom the device communicates with. Further, an attacker could

modify the key with the public key of another device, thereby allowing the attacker to

spoof the identity of the original device. For these reasons, it is highly recommended

that all association and authentication keys, challenges, and supporting information

be maintained completely encrypted while not in use and removed from memory as

soon as possible after use.

4.3 PUF Generated Key Usage

The previous sections described how it would be possible to leverage a PUF-enhanced

cryptographic engine to produce keys that can be used to perform secure authenti-

cation, as well as protecting security sensitive information on mobile devices. The

capabilities provided by such an architecture are critical to the development of a se-

cure system. Although the user is the primary owner of a mobile device after it has

been purchased, the incorporation of these features can greatly reduce the adverse

e↵ect of malicious software on network providers and OS vendors. Additionally, each

feature presented has applicability in all three arenas: network provider, OS vendor,
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and user.

To illustrate exactly how e↵ective this architecture can be at addressing the secure

concerned presented thus far, a number of use cases will be presented. First, it will

be shown how the use of device unique secret key can be used to protect the TEE

during the secure-boot process. Second, an example of how public/private key pairs

can be used to protect and enforce DRM protections on streaming media will be

presented. Finally, a device authentication mechanism aimed at eliminating theft

that utilizes the authentication scheme detailed previously will be discussed.

4.3.1 Use Case: “Secure” Secure-Boot

Throughout this paper the concept of securing the TEE has been mentioned. It is

proposed that the best method for doing this is by incorporating the use of the PUF

enhanced crypto engine with its unique-per-device secret key. The generated secret

key can be used to encrypt the entire TEE as it resides on disk, or to just encrypt

another key that is used to encrypt the TEE. For this reason, it is critical that the

PUF be able to generate a consistent, repeatable value for the device secret key.

A number of approaches have been taken to address this concern, as discussed in

Section 2.3.3. Multiple secret keys can be generated if needed, allowing for redundant

copies in the event that one of the PUFs fails. For the purposes of this research, it

is assumed that the PUF is stable, though contingencies are discussed should they

ever be necessary.

When a device boots for the first time, it is expected that the non-volatile storage

will be empty and no software will be loaded, other than initial boot code located in

the secure-ROM. From here, the first step should be loading a TEE onto the device.

In order to support encryption and protection of the TEE, it is necessary to store

a header at the beginning of the disk, similar to the Master Boot Record (MBR)
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Section Size
TEE marker 4 Bytes
TEE version 4 Bytes
TEE SHA-256 hash encrypted 20 Bytes
TEE encryption routine 4 Bytes
TEE size 8 Bytes
O↵set to boot-loader 8 Bytes
TEE Manufacturer 80 Bytes
Padding 384 Bytes

Table 4.1: Example TEE header

used on many desktop systems. This header contains all the information necessary

to identify the location of, and then decrypt, the TEE. An example of such a header

is shown in Table 4.1.

The example header shown provides a number of fields that can be used to store

information about the TEE. For the decryption process, the critical pieces of infor-

mation are the encryption routine used and the SHA-256 hash of the decrypted TEE.

The identification of the algorithm allows for future changes, though it is expected

that this will always be some form of AES. The hash value is used to verify that the

TEE was not maliciously altered at any time and represents a hash of the decrypted

TEE, not the encrypted version.

The header also contains a number of fields that can be used to provide informa-

tion about the TEE and who manufactured it. The o↵set field provides information

on where the TEE resides on disk, and the size field contains the size of the encrypted

TEE. All other fields are for manufacturer identification and backward compatibility

support, assuming manufacturers will produce multiple versions of their TEE over

the years.

Once the TEE has been located, decrypted, and verified, execution can be passed

to the TEE and the boot process can continue. The inclusion of this mechanism
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Figure 4.6: TEE boot process options

results in the boot process shown in Figure 4.6. As illustrated in this figure, the first

step in the process is decrypting the TEE header. This should be done using the

device secret key. If a TEE is identified, it is then decrypted, measured, and verified,

and then executed. If no TEE is found on disk, a check should be performed to

determine if a TEE was ever loaded onto the device. This can be done using a

single eFuses bit. The eFuse bit should be enabled initially until a TEE is loaded

for the first time. Once the TEE is loaded, the fuse can be blown. If the fuse is

blown, if not TEE is found or if the TEE verification process fails, the device will

not boot. Manufacturers may also allow for non-secure execution, though this will

be implementation specific.

To protect against “bricking” the device in the event that a flash disk fails or the
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TEE is inadvertently modified, manufacturers can upload a new TEE to the device.

The process should be similar to what is done when the TEE is initially loaded. For

optimal security, this process should require authentication of any device attempting

to upload a new TEE. The process described in Section 4.2 would work perfectly for

this issue.

It is important to note that this approach does not prevent the alteration of the

TEE; instead, it intentionally allows the TEE to be updated. This is possible because

the header that identifies the TEE only contains a SHA-256 hash of the decrypted

TEE. In order to update the TEE, the new TEE sent to the device, encrypted using

the device secret key, written to disk, and a new hash is generated and stored at

the proper location in the TEE header. The ability to perform an update must be

controlled via the TEE or the secure-ROM, which must both include functionality

for verifying the authenticity of any TEE updates received. This architecture merely

allows such an update to occur, while prohibiting an attacker from removing the

TEE and booting in a non-secure fashion, nor modifying the TEE and overwriting

the hash.

For this to work, both the TEE and the crypto engine will require enhanced

support and greater API functionality. From the TEE perspective, it must include

mechanisms for communicating with the crypto engine, performing updates, and

restricting access to critical information in memory. The crypto engine must not

ever assume that the entity using it is functioning properly and therefore must not

allow arbitrary usage of either the secret key or the private key. How this can be

handled will be addressed in Section 4.4.
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4.3.2 Use Case: DRM Protection

Digital Rights Management, or DRM, is a term for the collection of protection mech-

anisms used by various digital media companies to protect media from copyright

infringement and unauthorized usage. DRM incorporates a variety of di↵erent pro-

tection mechanisms and is used to protect a variety of electronic media from video

games to streaming video. Rather than attempting to address how this technology

could help each DRM technology available, the use case discussed here is a single spe-

cific technology. In this section, it will be shown how a protocol called FairPlay such

could be enhanced with the PUF enhanced crypto engine. The FairPlay protocol is

used extensively by Apple, Inc. [81].

FairPlay is a DRM protection mechanism used and developed by Apple to protect

audio and video media. The protocol calls for the encryption of an audio/video

stream of each file with a “master” key that is stored encrypted within the metadata

for the file. Each time a user downloads a file, a random “user” key is generated and

used to encrypt the master key. FairPlay servers maintain a list of user keys assigned

to each user and download this information to client applications for each authorized

machine. The client application then maintains this information in its own internal

key repository. Whenever a user wants to play a file, the application pulls the user

key from its key repository, decrypts the master key, and then uses it to decrypt the

audio/video stream.

Although Apple stopped using FairPlay in 2009 for audio tracks, it continues to

use this technology for videos purchased or rented on various devices. However, in

the words of Steve Jobs,

“The problem, of course, is that there are many smart people in the

world, some with a lot of time on their hands, who love to discover such

secrets and publish a way for everyone to get free (and stolen) music.
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They are often successful in doing just that, so any company trying to

protect content using a DRM must frequently update it with new and

harder to discover secrets. It is a cat-and-mouse game.’ ’ [82]

Steve was correct about hackers breaking DRM, and FairPlay was no exception.

Various groups and individuals were able to reverse engineer iTunes and discover

methods for obtaining the master keys used to protect files, as well as intercepting

the unencrypted tra�c delivered to sound cards [81].

In addition to security issues related to the DRM protection scheme, FairPlay

and Apple have both received a lot of backlash from consumers about the process

of “authorizing” their devices. For instance, Apple restricts the number of authorize

devices per account, currently set at five. Additionally, problems have arisen from

the need to have an Internet connection available in order to authorize a device to

play protected media. Even if a device is authorized with iTunes and almost has

music purchased with the correct account, if the key for each file is not in the iTunes

key repository, the device will not play the respective file. So the question is, how

can DRM be used in a way that is not inhibited by network connectivity and that

is not so restrictive on device usage?

In order to make the most of the capabilities provided by the ECE, an update is

required to the mechanism for associating devices with FairPlay compatible accounts.

Consider a simplified UML model of a FairPlay account stored on a FairPlay Server

and a user device, as shown in Fig 4.7. These models show the necessary information

and functions that are used by each entity to support this relationship. In addition,

each has zero or more associated keys and media files.

Now, let us consider how a device would associate itself with a FairPlay server.

The first step is to generate a random secret key that can be used to encrypt the

“master” key for any media purchased via this device. This key, along with the
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AddDevice
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EncryptMediaFileMasterKey

Name: Matt
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(a) FairPlay Account
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DecryptMasterKey

Owner: Matt
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iTunes Password: ilovesteve
Secret Key: ask_the_crypto_engine
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Album:
Key:
KeyNumber:
Data:

Media File
Key Number:
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Key
0*0*

(b) User Device

Figure 4.7: Simplified UML models of a FairPlay account and user device.

account information and whatever FairPlay currently uses as the unique identifier, are

sent to the FairPlay server. The FairPlay server then verifies the account information

and determines if there are any device slots available for the account. If so, the secret

key provided is added to the account. The FairPlay server then returns to the device

all secret keys currently associated with the account. These keys are then stored on

the device and encrypted using the device’s secret key. This process is illustrated in

Figure 4.8.

Most of the steps in this process should be fairly straightforward and easy to

understand. However, the purpose behind sending each device all the secret keys

associated with the account might appear somewhat suspicious. The reason for

doing this is simple: by allowing all devices to know the secret key used by all other

devices on the account, each device can play any supported media file, regardless of

where it was purchased and how it was transferred to the device. As long as the
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Generate random secret 
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Encrypt and store all 
keys registered with 
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Figure 4.8: Device association with FairPlay servers

device has been registered with the FairPlay account, it will have access to all keys

used to encrypt any media files belonging to the account. Additionally, there is no

inherent risk to the overall security of the device if these keys are exposed as they

are only used to protect media files and nothing else.

If a device ever needs to be removed from the account, whether due to security

issues or because it is no longer being used, the FairPlay servers simply need to go

through the account and change the Key and KeyNumber attributes for each media

file that was purchased by that devices. If the account maintains a “primary device”,
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its key can be used to re-encrypt the master key and then the KeyNumber value can

be set to that key. If there are no other devices on the account, the key can be

reset to the master key and stay that way until a new device is associated with the

account.

This technique can also be used support movie rentals where not only is there

data encryption to consider, but also a timeframe. For instance, most movies rented

through the Apple iTunes store or Amazon are only valid for 24 hours from the time

it was rented. But what happens if during that time the user wants to watch the

video on a di↵erent device, but doesn’t have Internet access in order to authorize

such a transaction? There is currently no mechanism for transferring a rental movie

from one device to another. There is now.

By maintaining a list of keys for all devices on an account on each device, the

capability exists to transfer files between devices and maintain the ability to play

them. All information about the movie, including expiration time, can be secured

on the initial device through the device’s iTunes secret key. If a user wants to move

the movie to another device, all it needs to do is transfer the file. Because each of

the devices have all the keys, each will be able to decrypt a file meant for any other

device on the account. Once on the new device, the new device can decrypt the

information and play the movie using the appropriate account key.

The “key” here is that any device on the account can transfer a protected file to

any other device without needing to determine whether or not it is associated with

the same account. Because the information needed to play the file is encrypted, the

only way another device could play the file is if it was already registered with the

FairPlay account and had the full list of keys associated with the account. The only

information necessary needed by an associated device in order to decrypt the file is

which of the keys was used to encrypt the data. This could easily be stored in the

file metadata, as shown in Fig 4.7, or it could use a simple trial-and-error approach
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wherein the device tries decrypting the file with each account key until it finds the

one the correctly decrypts the data.

As can be seen from these DRM examples, this architecture provides the capa-

bility of providing significantly enhanced functionality and security. The primary

advantage that this approach provides is in the ability to provide unique and pro-

tected keys that can be easily changed when needed without significant impact on a

user’s ability to access their files. Further, it provides a means of securely transfer-

ring files between multiple devices associated with the same FairPlay account that

does not infringe on any copyright policies. DRM is a “cat-and-mouse” game and it

is not expected that this will be a definitive security solution to the problems faced

by DRM. However, this approach does provide significant benefits over any know

approach used today.

4.3.3 Use Case: Deterring Theft

The final use case being presented details how this architecture can assist in deterring

theft of mobile devices. The currently proposed approach is to use International

Mobile Equipment Identity (IMEI) numbers to uniquely identify mobile devices. This

should not be confused with the International Mobile Subscriber Identity (IMSI)

number, which is usually stored within a Subscriber Identity Module (SIM) card.

The IMSI is used to associate the user with the network, while the IMEI is used to

associate the device with the network. However, there is currently no mechanism for

associating the user with the device, and both together with the network.

In addition to this lack of functionality, the usage of the IMEI number has not

been as e↵ective as was originally hoped. The first problem revolves around the fact

that even if the device is reported as stolen and the IMEI is known, the device may

only be placed on a blacklist for a specific carrier. This means a thief only needs to
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take the device to a di↵erent carrier in order to use it. While many devices may be

“locked” to a specific carrier, or carrier frequency rather, there almost always exist

tools for “unlocking” these devices in order to allow them to work on any carrier.

Further, many countries don’t even use black-lists thereby creating hot spots for

thieves to buy and sell mobile devices.

Second, if the IMEI number is read and returned via software running on the

device, the number can never be trusted to be accurate. If the OS has been hacked,

the user can hard-code any value (s)he wants and thereby make the device appear

to have a di↵erent number. Without any reliable verification mechanism, there is no

method available to determine from the carrier end whether or not the real IMEI

was returned or a spoofed version generated by some arbitrary code.

And finally, because this value is often stored in a programmable, non-volatile

memory location, such as an eFuse array, they can be modified. If a device manufac-

turer has the capability of programming this area after manufacturing, a hacker will

likely have the capability as well. This often requires nothing more than re-soldering

a few connections and then having the necessary programming equipment. Such al-

terations are typically illegal, but then so is theft, so that’s often of little consequence

to a thief.

To best understand how an ECE can help address these problems, it is necessary

to understand exactly how a mobile device user is authenticated with a cellular

network. For this example, a Global System for Mobile computing, or GSM, network

will be considered.

The first time a user attempts to connect to the network with their device, it

sends the IMSI number to the network. The network verifies this IMSI number

and a new number is generated, called the Temporary Mobile Subscriber Identity

(TMSI). From this point on, the device uses this number to associate itself with the
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Figure 4.9: Device authentication on GSM networks

network rather than the IMEI. This is illustrated in Fig 4.9.

Each network also contains an Authentication Center (AC) that handles the

association of devices with the network. Both the SIM card and the AC have access

to a user authentication code and mathematical algorithm that are used in this

process. To initiate the association, the AC sends a random number to the mobile

device. This random number, along with the user code, is fed into the algorithm on

the SIM card of the device. The AC also performs the exact same operation. Once

the device completes the operation, it returns the response to the AC. The AC can

then compare the device’s result with its own and verify that they are the same. If

so, the device is authenticated. Otherwise, the device is considered “unknown” and

is denied access to the network.
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While the ECE is not meant to provide any enhanced security to the communi-

cations channel between the device and the base station, it is important to see how

this authentication works. Figure 4.10 shows more detail about how this is done.

Using a shared key, K
i

, which is programmed into the SIM card, the random number

is run through the A3 algorithm on both sides. This results in a Signed RESponse

(SRES) that is transmitted back to the base station to prove the authenticity of the

device. The result is also feed into the A8 algorithm in order to create a session

key, K
c

. (The A3 and A8 algorithms are key-dependent, one-way hashes that today

have been combined into what is known as the COMP128 algorithm) This key is

then used to encrypt/decrypt all tra�c between the device and the network. This

approach is e↵ective in that it allows encryption of tra�c without ever having to

transmit the key between element, but it should be noted that these algorithms and

Device Cellular Network

Generate random 
number for challenge

A3 AlgorithmA3 Algorithm

Ki

A8 Algorithm A8 Algorithm

Ki

RAND

SRES

RAND

SRES

Kc Kc

En(de)crypt data using 
A5 algorithm

En(de)crypt data using 
A5 algorithm

Session DataSession Data

Ki
Kc

Key Purpose
Individual Subscriber Authentication Key, pre-programmed into SIM
Session key

Figure 4.10: Cryptographic operations during the authentication process
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Figure 4.11: Example internal communication flow during network authentication

the keys involved can typically be broken anywhere between a few minutes (A5) to

a few hours (A3 and A8) [83].

It is also important to understand exactly how these operations are performed

on the device, as well as how the data is handled. As shown in Fig 4.11, the ran-

dom number generated by the cellular network is received at the modem and then

transmitted to the main processor. Once the main CPU receives the request, it is
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forwarded on to the SIM card along with the random number that was received.

The SIM card then sends the random number, plus the user authentication number,

through the appropriate algorithm and generates the response. This response is then

returned to the CPU, which then passes it along to the modem for broadcast to the

cellular network.

Once the device is authenticated, the AC will periodically send out requests for

the IMEI number of the device. The process for generating a request is similar to

the cellular authentication process, except that the CPU, not the SIM card, provides

the IMEI value. The reason for this is that the IMEI number is typically not stored

inside the SIM card. Instead, it is likely stored in an eFuse array, which is internal

to the processor and thus inaccessible to the SIM card.

The primary security concern in each of these communication processes is the

fact that everything is channeled through the main CPU which means that whatever

software is running on the CPU has the ability to manufacture whatever value it

wants. What this means is that any form of malicious code could manufacture a

bogus value for the IMEI number rather than the actual value stored on the chip.

While it would be unusual for an attacker to interfere with the initial authentication

mechanism (since they likely want the device connected to the cellular network), there

is certainly reason to alter the results of an IMEI request. As mentioned previously,

if a thief or attacker wanted to bypass blacklisting functionality, they need only

intercept these requests and change the value returned for the IMEI number.

To counter the problem of IMEI spoofing or tampering, as well as to protect

against theft, the ECE can be used to provide a simple solution. For authentication

with the cellular network, a challenge/response test can be issued once a secure

channel has been established between the device and the cellular network. The

challenge/response test would utilize the device secret key to encrypt a challenge

value and then return the response. This approach would require the least changes
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in existing cellular network protocols. However, a better method would be for the

mobile device to provide the cellular network with its device public key. It could then

sign the response provided to the CPU in Step 3 of Figure 4.11 and return it with

the response. The cellular network could then verify the signature with the device’s

public key, thereby providing authentication information on the user and the device

simultaneously.

In regards to IMEI spoofing, the ECE can also provide a random number that

would take the place of the IMEI number and would also be inaccessible to the

processor. The di�culty with this is having the processor acknowledge and response

to the IMEI request, but not be able to manipulate the value. Unfortunately, there

is no easy method for doing this. However, modern SoC designs provide a solution.

In addition to the main processor, most cellular devices have an additional proces-

sor called the baseband processor (BBP). This processor, also known as the modem,

handles the cellular communications into and out of the mobile device. As such, it

has the capability to identify authentication and IMEI request from the cellular net-

work. Using its own PUF to generate a random, unique-per-device value, the BBP

could provide an identification value for the mobile device that could be used in place

of the IMEI number. By doing so, the main processor, or Application Processor as

it is often called, has no control over the value returned during IMEI requests, nor

would the cellular network have any idea the number was generated by the BBP

rather than the application processor.

The solutions presented here provide two critical points. First, the ECE can

be used by the application processor to counter theft in mobile devices. Second,

the ECE has potential uses in more than just the application processor. While the

identification of additional elements that can utilize an ECE is a subject for further

research, it is important to note that even on a mobile processor, benefits can be

gained by implementation on multiple elements.
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4.4 Enhanced Crypto Engine API

In order for the Enhanced Cryptographic Engine (ECE) to be of use to the mobile

device, it is necessary to provide an Application Programming Interface (API) that

will allow the unit and its associated functionality to be accessible to developers.

The API proposed in this section consists of a small number of functions providing

the necessary interface, as well as enums and #defines to generate parameter values.

The complete API header file is shown in Appendix A.

While the API does provide the functionality to support increased mobile secu-

rity, it is the usage implementation, requirements, and restrictions that provide the

enhanced security capabilities discussed thus far. In this section, the functions de-

fined by the API will be presented. After discussing these functions, the next section

will discuss the restrictions and requirements that must be met in order to ensure the

highest level of security on the mobile device. In Chapter 5, a complete implemen-

tation will be presented that shows an example of a software API that implements

all the specified functionality and does so in accordance with all listed requirements

and restrictions.

4.4.1 ECE API Functions

Although the API functions may be accessed for a number of di↵erent purposes, it is

easiest to consider their use in one of four di↵erent operational modes in which the

processor may be executing. These modes are illustrated in Fig. 4.12. As shown,

the processor can be in one of four di↵erent operating modes: Uninitialized mode,

TEE Loading mode, Discovery mode, or Standard mode. During execution within

each of these modes, the processor has specific responsibilities that require certain

interactions with the ECE. To depict the functionality provided by the API, each

mode will be considered independently.
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Figure 4.12: Operational modes of a mobile architecture using an enhanced crypto-
graphic engine

Uninitialized Mode

A device enters the uninitialized mode when no TEE has been loaded into memory,

or when a corrupted TEE has been detected. This will be the case when the device is

turned on for the first time, or whenever a problem has occurred during the attempted

boot of the TEE. Prior to loading a TEE onto the device, or executing an existing

TEE, it is necessary to generate the AES secret key and the RSA key-pair from the

PUF results inside the ECE. To support this need, two functions are necessary to

instruct the ECE to generate the needed keys:

Once these two functions have been called from the SecureROM code on the de-

vice, the processor can move to the next mode. Because the TEE header is encrypted
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using the device secret key, it is necessary to enable access to this key prior to moving

to the next mode.

Listing 4.1: Uninitialized Mode Functions

ERROR_CODE ECE_Generate_Secret_Key( void );

ERROR_CODE ECE_Generate_RSA_Key_Pair( void );

TEE Loading Mode

With the device-unique key loaded and accessible, the next step is discovery and

verification of the TEE. Discovery of an existing TEE is handled via the process

outlined in Figure 4.6. Using an approach similar to the Master Boot Record (MBR)

used in desktop systems, the TEE header should be located at the beginning of the

first sector of the disk. If no TEE is present, it will first be necessary to upload a

TEE onto the system before continuing execution. The ability to scan for and load

a TEE can be handled with one function, and the ability to load a new TEE and

generate the corresponding header can be handled with another. These two functions

are:

Listing 4.2: TEE Loading Mode Functions

ERROR_CODE ECE_TEE_Verification( uint32_t * load_address );

ERROR_CODE ECE_TEE_Initialization( void );

The first function, ECE TEE Verification, is used to scan for an existing TEE

and then decrypt and load it at a specified address. Before the TEE header can be

analyzed, it must first be decrypted using the device secret key. Once decrypted,

the header provides all necessary information about the TEE in order to verify its

integrity and to load the TEE into memory prior to execution.

The ECE TEE Initialization function is used for loading an initial TEE onto an

internal storage device, as well as providing updates to an existing TEE. This function
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must therefore support the use of one or more communication protocols for uploading

the TEE to the device. Which protocols are supported is platform dependent and is

not dictated by this API. Once a TEE has been uploaded or modified, this function

then invokes ECE TEE Verification to begin execution of the new TEE.

Additional functions are necessary to facilitate the cryptographic operations nec-

essary to decrypt or encrypt the TEE and its header. The functions provided must

also support access to the device secret key. To meet this need, two more functions

are included that allow code to encrypt or decrypt data using a variety of modes and

customized features. These functions are:

Listing 4.3: Crypto Loading Mode Functions

ERROR_CODE ECE_AES_Crypto( uint8_t *input, uint8_t *output, uint32_t length, uint32_t op_type, uint8_t *key,

uint8_t *iv );

ERROR_CODE ECE_RSA_Crytpo( uint8_t *input, uint8_t *output, uint32_t length, uint32_t op_type, uint8_t *key );

Each function contains an op type parameter that is used to define specific infor-

mation about the respective operation, such as key size, encryption or decryption,

and algorithm selection. A full listing of possible values is shown in Appendix A and

is based o↵ the open source OpenSSL library. This portion of the API is platform

dependent and may include fewer, more, or the same number of options. The lack of

a desired implementation in the provided API does not correlate to a lack of func-

tionality in the design. Designers have full liberty to modify the provided API in

any manner that fits their needs.

After the TEE has been loaded and begun execution, there are two possible modes

into which the system may move. The Discovery’ mode is used when it is necessary

to associate one device with another device through the exchange of public keys.

The other supported mode is called Standard mode and provides all other generic

capabilities and interfaces to the ECE. The Discovery mode will be considered next.

98



Chapter 4. ECE Architecture

Discovery Mode

Discovery mode is a special mode that allows for the exchange of public keys between

two devices. Once in Discovery mode, a mobile device may issue a discovery request

to another device, or it may received a discover request from another device. The

required parameters for a discovery request consist of an address and an interface

method, i.e. communication protocol. The device then issues a request using this

information and exchanges keys using the algorithm defined in Section 4.2.

Discovery mode also supports the ability to authenticate a mobile device with

a cellular network, Wi-Fi network, or any other necessary device or infrastructure.

This authentication method includes the ability to associate a device with a user

during authentication with a cellular network, as discussed in Section 4.3.3.

To support the ability to association and authenticate a device, five additional

functions are needed. These functions are shown below.

Listing 4.4: Discovery Mode Functions

ERROR_CODE ECE_Device_Authentication( uint8_t *key, uint32_t method, uint8_t *address );

ERROR_CODE ECE_Device_Association( uint32_t method, uint8_t *address );

ERROR_CODE ECE_Device_Disassociation( uint32_t method, uint32_t *address );

uint8_t * ECE_AES_Keygen( void );

uint8_t * ECE_RSA_Keygen( void );

The first function, ECE Device Authentication, is used to verify the identity of

a connecting device. Once in discovery mode, the function ECE Device Association

is used to association with a given device. The function ECE Device Disassociation

is used to remove a previously recorded association with another device. The last

two functions, ECE AES Keygen and ECE RSA- Keygen, are used by both devices

to generate a public/private key pair and a shared secret key that may be used

to facilitate secure communications between the two devices. Once all discovery

operations have been performed, the system moves into Standard mode.
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Standard Mode

Standard mode is where the device will spend most of its time. This mode is predom-

inately concerned with the protection of data and information controlled by both the

REE and the TEE. The TEE should not rely upon TZ protections alone to protect

access to sensitive information, but should instead generate keys for encryption of

such information. The REE can also utilize key generation capabilities to protect its

data and information, as well as to support standard cryptographic operations, such

as Secure Sockets Layer (SSL) and Transport Layer Security (TLS).

Support of this functionality requires additional methods, though it may still

utilize some of the functions previously listed, like ECE AES Keygen. The additional

functions provided are shown below.

Listing 4.5: Standard Mode Functions

ERROR_CODE ECE_Change_Secret_Key( void );

ERROR_CODE ECE_Change_RSA_Key_Pair( void );

The last two functions provided are ECE Change Secret Key and ECE Change-

RSA Key Pair. These functions are used to change the primary keys used by the

device. This may be done at any time if it is believed that the device has potentially

been compromised. Performing this operation is a fairly simple and straightforward

procedure. The TEE is the only element that is encrypted with the device secret

key. Therefore, it must be decrypted prior to changing the key and then re-encrypted

after a new key has been generated.

To update the RSA key pair, a command must be sent to any authenticated

network alerting the appropriate entity of the expected change. Once a new key

pair is generated, a new challenge/response exchange can be initiated in order to

re-authenticate the device with the network. This can be done by following the same

procedure that was performed initially to authenticate the device. As long as the
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network is expecting this change, it is possible to initiate this update in a secure

fashion.

4.4.2 ECE API Restrictions and Requirements

True security in almost any application does not come in the features that are pro-

vided, but in the restrictions and requirements for utilizing the provided functionality.

The ECE is no exception. While the use of the ECE will likely vary from one im-

plementation to another, there are a few critical rules that must be met completely

in all applications. Other restrictions and requirements are flexible based upon the

implementation and platform details for the design. This should not be mistaken as

meaning that the restrictions and requirements could be ignored. Rather, this means

that some platforms may wish to adhere to them in one way, while it would be more

logical to do so in a di↵erent manner on another platform. Similar to the previous

section, it will be easiest to consider these restrictions and requirements by looking

at the four modes of operation.

The uninitialized mode is where the device keys are generated. The functionality

provided by this mode must only be available during the first stage of boot. At no

other time should any code be able to regenerate the device keys. At a later stage

access to these keys must be disabled. Therefore it is absolutely critical that the

functionality to regenerate these keys not be available at any other stage. Other-

wise, an attacker could potentially gain access to the ECE and perform arbitrary

encryption and decryption of device critical data with the device secret key, allowing

them the ability to modify or remove the data.

The TEE Loading mode provides the mechanisms necessary to modify and upload

a TEE to the device. Because the TEE will be responsible for controlling access to

the ECE, it is critical that the TEE be properly verified and tested prior to use. All
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TEEs must be signed before being uploaded to the device. A public key must be used

to verify the signature for the TEE prior to loading it onto disk. To accommodate this

need, a hash of the key must be stored on the device. The recommended location

is the onboard eFuse array. In the case that an eFuse array is not available, the

hash can also be stored in an unused section of the SecureROM. If neither of these

two components is available, any other form of non-volatile, one-time programmable

memory can be used. Developers may also choose to store the entire public key on

the device rather than the hash. This is an acceptable alternative, but will likely

restrict the number of suitable locations due to the size of a public key.

The TEE loading mode must also only be entered prior to loading of any existing

TEE. A TEE may be partitioned between the trusted kernel and trusted applications.

If such partitioning were done, it would be acceptable to allow for the uploading of

new trusted applications or the updating of existing applications from within the

TEE kernel while operating in Standard mode. However, the TEE kernel itself must

never be updated at any time other than during the TEE Loading mode. This ensures

that the proper verification of any provided update is performed prior to accepting

the changes. While the TEE may initiate the update process while running in the

Standard mode, the update must only be performed in TEE Loading mode prior to

execution of the TEE. This ensures that even if an attacker were to gain execution

within the TEE, (s)he cannot upload an arbitrary TEE update to the device. This

is critical since the TEE is not re-verified after beginning executed. If an attacker is

able to modify the TEE after it has been loaded into memory, there is not mechanism

for detection. Therefore, even the TEE has an element of untrustworthiness of which

must be accounted.

Discovery mode is the most highly implementation dependent mode. This is

primarily due to the fact that the need to associate with other devices, as well as

the method of association, is very implementation dependent. Regardless of the
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implementation, discovery mode must rely upon a trusted entity to approve its use.

For a large number of devices, this can be achieved via user interactions. In other

instances, user interaction is not possible and the trusted entity must be provided in

another fashion. In either case, device association must be instituted via the TEE

running in Standard mode. However, the association must only occur in Discovery

mode. Therefore, if the device is running in Standard mode and an association is

requested, the device must reboot into Discovery mode. A direct transition from

Standard mode back to Discovery mode is not allowed. This requirement is in place

for the same reason that was presented for TEE updating. An attacker must not be

provided with the ability to arbitrarily associate or disassociate with other devices.

Another reason that discovery must only be performed while in Discovery mode

is that the device secret key must be disabled prior to leaving Discovery mode and

entering Standard mode. At this point, the TEE header and TEE have been de-

crypted and the TEE is running. The only remaining use for the device secret key

is decryption of stored association information. A device will always enter discovery

mode even if it is only to check for existing association information. After existing

association information is decrypted, the device secret key must be un-latched. Dur-

ing Uninitialized mode, the ECE latches the PUF generated keys into registers so

they can be accessed. These latches should be cleared once the association informa-

tion is decrypted, thereby prohibiting access to the device secret keys. The device

public/private key pair can still be enabled as they are used primarily for continual

authentication purposes and do not provide protection of any device critical data.

In regards to how discovery it initiated, the simplest case is that association

is only performed as needed by the user and with the user’s permission. In other

situations, such as automotive networks, discovery mode can be initiated via an

external mechanism. In automotive systems, the On-Board Network (OBD) interface

can be used to facilitate communications between computer systems. Networked
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devices can store the public key or key-hash internally for the manufacturer of the

automobile. An external device can be pre-loaded with the manufacturer’s private

key and connected to the OBD network. This device can then send a command

to each computer instructing it to enter discovery mode. This command must be

signed using the private key, thereby allowing each networked computer to verify the

authenticity of the command prior to transitioning to Standard mode. Once every

internal computer has associated with all other computers, the external device then

broadcasts an “end-association” command that tells each device to leave Discovery

mode and enter Standard mode.

While such an approach might be appropriate for automotive networks, it is not

recommended for standard user operated devices. User operated devices must always

obtain user permission prior to entering Discovery mode. In the event a user is not

available, some trust mechanism must be established prior to allowing any device

to put another device into Discovery mode, such as the one presented previously.

Although the exact approach presented here is not required, the secure establishment

of trust between the two devices is, however that may be accomplished.

As stated before, once in Standard mode, access to the device secret key must be

disabled. The TEE may continue to utilize the ECE to generate other secret keys

in order to form a key-chain for encryption of other security sensitive data values.

At this point, the majority of restrictions and requirements will be the responsibility

of the TEE developer. Aside from access to the device secret key, all other ECE

functions should be available. The functions for changing the device secret keys

must also only initiate the action, rather than perform them. As with the transition

to Discovery mode and the modification of the TEE, this must be performed at

an earlier level. In this case, changing of the device secret keys must take place

from with code executing out of the SecureROM. Any commands needed to support

the changing of the private key can occur outside the SecureROM code since such
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modem and/or baseband processor support is typically not available here. However,

the actual command to change the key must occur only in the SecureROM code.

The ECE contains a small amount of non-volatile memory that can maintain

helper data for identifying viable PUF circuits for use in generating these keys. By

changing which PUF circuits are used, the resulting keys can be changed. The new

circuit information is stored as helper data within the non-volatile memory. The use

of helper data does not provide any information about the key itself, as discussed in

Section 2.3.3. After changing the helper data, the device will then have a new secret

key that can be used to protect the TEE.

It is expected that the functionality to change the device secret key will be main-

tained within the TEE, though the request to do so will likely come from code

executing within the REE. To provide the highest degree of assurance that the re-

quest is valid, the REE must be measured and verified prior to accepting any such

requests. Further, the user must be prompted from the TEE, not the REE, for ap-

proval of such an action. All ECE requests that necessitate user interaction must be

performed via the TEE, not the REE. This provides the highest level of confidence

that such requests come from a trusted source. Additionally, all requests that re-

quire user approval must include a cool-down timer. If an attacker was able to gain

access inside the TEE, (s)he must not be allowed to continually change the key as it

might be possible for them to eventually guess the right value. It is recommended

that a cool-down time of 24 hours be used, though shorter periods may be used if

necessary. It is highly recommended that no time period shorter than one hour be

used. Where possible, the timer should be placed inside the ECE and not the TEE.

If an attacker has gained execution within the TEE, they would likely be able to

bypass any internal cool-down timers.
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Implementation and Results

In Chapter 4, the ECE architecture was presented, along with a collection of use

cases that can benefit from the functionality provided by the ECE. While a full

hardware implementation of the ECE would be ideal, the purpose of this research

is to prove the feasibility of this approach and determine any weaknesses that may

exist or any changes that might strengthen its security. Further, complications with

hardware platforms that would support such an architecture have made a hardware

implementation impractical at this time.

In order to overcome the limitation presented by not having a viable hardware

platform, while still providing solid results on the e↵ectiveness of this architecture,

a software emulator of the ECE has been developed. In this chapter, the structure

of this emulator will be discussed and a number of test cases that were conducted

with the emulator will be presented. The test cases include protection of a TEE and

association between a number of devices. Details about the API presented in Section

4.4 and how the functions were implemented in this emulator will also be covered.

In conclusion, this chapter will present the results discovered through the use of

this software emulator and how they a↵ect the proposed architecture and security
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approach.

5.1 ECE Software Emulator Architecture

The software emulator consists of two executables: ece emulator and tee client. As

discussed in Section 4.4 and shown in Fig. 4.12, the ECE is accessed by a pro-

cessor running in one of four execution modes. These four execution modes are

split between these two applications. The ece emulator handles the Uninitialized

and TEE Initialization modes, while the tee client handles Discovery and Standard

modes. This was done because logically the first two modes happen outside of any

TEE on the device, while the last two modes are either handled or invoked by the

TEE. While the tee client is not meant to emulate a fully compliant GlobalPlat-

form TEE, it does contain all the necessary functionality to support the ECE API

functions that must exist within a TEE. Both applications utilize the OpenSSL li-

brary [84] in order to implement cryptographic operations, such as key generation

and encryption and decryption routines.

To better understand how these two applications work together to emulate the

ECE and its corresponding software API, consider the execution flow of the ece-

emulator shown in Fig. 5.1. When the ece emulator application is started, it is

provided with a command line argument that represents the name of an ECE disk

file. An ECE disk file is a 128MB file that is used to emulate a simple flash chip on

a mobile device. This file maintains several items that are necessary for the proper

functionality of the ece emulator application. The size of this file is completely

arbitrary, with 128MB being chosen because it is large enough to store a significant

amount of test data while not taking an excessive amount of disk space on any

modern desktop computer. The ECE disk file is also mapped into memory when

used by the ece emulator, so that was a factor in its size as well.
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ece_emulator

Does ECE disk 
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disk
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requests

Yes

Yes

No

No

Figure 5.1: Operational flow of ece emulator application.

The ECE disk file starts with a header that identifies the files as containing a

valid ECE format. The header used is shown in Table 5.1. This header contains all

information necessary to initialize the ECE environment. Because OpenSSL is not

setup to generate the same key each time its key generation functions are called, it is

necessary to store the secret keys inside the ECE disk file after they are generated.

This allows the application to maintain the same secret keys across multiple runs

and represents the only significant deviance from the actual ECE architecture.

This portion of execution represents the Unitialized mode. The first time the pro-

gram is run, the ECE disk file will not exist. The program therefore initializes a new
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Section Size
ECE marker 4 Bytes
ECE header size 4 Bytes
ECE section size 4 Bytes
O↵set to secret AES key 8 Bytes
O↵set to secret RSA key pair 8 Bytes
O↵set to TEE header 8 Bytes
Padding 476 Bytes

Table 5.1: ECE disk header

disk file and generates the necessary device secret keys using the ECE Generate -

Secret Key and ECE Generate RSA Key Pair functions, as shown in Figure 5.2. Ini-

tialization consists of creating the file, expanding it, generating the keys, writing

them to the file, and then writing the ECE header to file. Memory mapping is not

absolutely necessary, but rather makes access to the header and corresponding data

ECE Error Code ECE Generate Secret Key ( )
key <� RAND bytes ( 32 ) ;
i v <� RAND bytes ( 16 ) ;

ECE Error Code ECE Generate RSA Key Pair ( )
keyPair <� RSA generate key ( s i z e , exponent , NULL, NULL ) ;

ECE Error Code ECE In i t ia l i z e New Disk ( diskName )
i f ( diskName does not e x i s t )

Crea t eF i l e ( diskName ) ;
ExpandFi leSize ( diskName , 128 ⇤ 1024 ⇤ 1024 ) ;
data = MapFileToMemory ( diskName ) ;
deviceAESKey = ECE Generate Secret Key ( ) ;
deviceRSAKeyPair = ECE Generate RSA Secret Key Pair ( ) ;
hdr = ECE Generate ECE Header ( deviceAESKey , deviceRSAKeyPair ) ;
ECE Write AES Key To File ( data , deviceAESKey ) ;
ECE Write RSA Key Pair To File ( data , deviceRSAKeyPair ) ;
ECE Write ECE Header To File ( data , hdr ) ;

e l s e
data = MapFileToMemory ( diskName ) ;
hdr = ECE Read ECE Header From File ( deviceAESKey , deviceRSAKeyPair ) ;
deviceAESKey = ECE Read Secret Key From File ( ) ;
deviceRSAKeyPair = ECE Read RSA Secret Key Pair From File ( ) ;

Figure 5.2: ECE disk initialization
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easier. If the disk file already exists, the header and keys need to be read from the

file.

In addition to the secret key information, the ECE header also provides informa-

tion about the location of the TEE header. In a standard ECE implementation, the

ECE header will not exist and the TEE header will be located at the first sector of

the disk. However, due to the need to maintain key information, the TEE is located

at a di↵erent location in the ECE disk file.

Once the ece emulator has verified and parsed the information contained in the

ECE header, it moves on to the next operational mode. In the TEE Loading mode,

the ece emulator is responsible for implementing the ECE TEE Verification and

ECE TEE Initialization functions by utilizing the ECE AES Crypto and ECE RSA-

Crypto routines. If the disk file is brand new, a new TEE will need to be loaded. For

i n t 3 2 t ECE AES Crypto ( input , output , length , op type , key , i v )
EVP CIPHER CTX init ( cryptCTX ) ;
EVP CIPHER CTX set padding ( cryptCTX , 0 ) ;
a lgor i thm = ECE Get AES Algorithm ( op type ) ;
i f ( op type i s encrypt )

EVP EncryptInit ex ( cryptCTX , algor ithm , NULL, key , i v ) ;
EVP EncryptUpdate ( cryptCTX , output , bytesEncrypted , input , l ength ) ;
EVP EncryptFinal ex ( cryptCTX , output+bytesEncrypted , bytesEncrypted ) ;
r e turn bytesEncrypted ;

e l s e
EVP DecryptInit ex ( cryptCTX , algor ithm , NULL, key , i v ) ;
EVP DecryptUpdate ( cryptCTX , output , bytesDecrypted , input , l ength ) ;
EVP DecryptFinal ex ( cryptCTX , output+bytesDecrypted , bytesDecrypted ) ;
r e turn bytesDecrypted ;

i n t 3 2 t ECE RSA Crypto ( input , output , length , op type , key )
padding = RSA PKCS1 OAEP PADDING;
i f ( op type i s encrypt )

bytesEncrypted = RSA publ ic encrypt ( length , input , output , keyPair ,
padding ) ;

r e turn bytesEncrypted ;
e l s e

bytesDecrypted = RSA private decrypt ( length , input , output , keyPair ,
padding ) ;

r e turn bytesDecrypted ;

Figure 5.3: ECE AES and RSA crypto operations
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ECE Error Code ECE TEE Init ia l i zat ion ( teeFileName )
teeHdr = ECE Generate Blank Header ( ) ;
ECE Fil l TEE Manufacturer Info ( teeHdr ) ;
teeData = ECE Read TEE Executable ( teeFileName ) ;
i f ( ECE Veri fy Signature ( teeData ) < 0 )

re turn ECE ERROR;
teeHdr�>hash = ECE SHA 256( teeData ) ;
teeHdr�>r ou t in e = AES 256 CBC ;
teeHdr�>s i z e = ECE AES Crypto ( teeData , encData , f i l e S i z e , encyrypt ,

secretKey , s e c r e t IV ) ;
memcpy( teeHdr + teeHdr�>o f f s e t } , teeData , teeHdr�>s i z e ) ;
ECE AES Crypto ( teeHdr , encHdr , teeHdrSize , encrypt , secretKey , s e c r e t IV ) ;
memcpy( teeHdr , encHdr , teeHdrSize ) ;

ECE Error Code ECE TEE Verif ication ( diskData )
i f ( ECE Does TEE Header Exist ( diskData ) == FALSE )

i f ( ECE TEE Init ia l i zat ion ( diskData ) < 0 )
re turn ECE ERROR;

teeData = ECE Read TEE Header ( diskData ) ;
i f ( ECE Verify TEE Header ( teeData ) < 0 )

re turn ECE ERROR;
ECE Execute TEE( teeData ) ;

Figure 5.4: TEE initialization and verification

the emulator, this is the tee client executable. Initialization consists of reading in

the tee client executable, encrypting it using the device secret key, and then writing

it to disk. Additionally, a TEE header must be created based upon file attributes

for the tee client file, such as size. This header must also be encrypted prior to

storing it in the ECE disk file. The complete pseudo code for the ECE AES Crypto

and ECE RSA Crypto functions are shown in Figure 5.3 and the TEE functions are

shown in Figure 5.4.

Although OpenSSL provides a significant number of functions and features that

make this emulator possible, it is important to note that there is no RSA private -

encrypt and RSA public decrypt functions. Or rather, there are none that function

the same as the converse functions. The RSA private encrypt function is really a

signature generation function as opposed to a function that will actually encrypt a

specified string of data with a private key. The same is true for public decryption.

Fortunately this was only slightly limiting and is not a problem that should occur
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Figure 5.5: Execution flow of TEE client application

with regular cryptographic engines, as they typically have no method for detecting

whether the key being used is the public or private key.

After both applications have been started, it is necessary to provide a commu-

nications mechanism in order for the tee client to request certain operations by the

ece emulator. To facilitate this need, the ece emulator opens a localhost only net-

work socket that can be used by the tee client to make requests. Once this port is

open, the ece emulator awaits connections and then services any requests as they

arrive. Supported requests include en(de)cryption with the secret AES and RSA

keys, AES and RSA key generation, and changing of the AES and RSA secret keys.

The tee client has a more complex execution flow, as it has to listen for commands

locally from the user, as well as from remote locations. Additionally, it must be able
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to initiate requests to remote devices as requested by the user. The full execution

flow for the tee client is shown in Fig. 5.5.

Execution starts by first looking for an existing association file inside the ECE

disk file. Anytime an association is made with another device, there is a collection

of values that must be stored in order to open a secure communication channel

with an associated device. To support the storage of association information, the

header shown in Table 5.2 is used. This header maintains all necessary association

information. For the RSA keys, both the public and private local keys are stored.

Although the local public key should never be used after it is transmitted to the

associated device, it was decided to simply maintain it. This was mostly because

the OpenSSL function PEM write bio RSAPrivateKey, which is used to write the

private key to a bu↵er, actually writes out both the public and private keys. Rather

than hacking OpenSSL to only write the private key, it was determined to simply

maintain both as doing so results in no serious security risk to the emulator.

In Discovery mode, the tee client supports all of the necessary functionality to

support association and authentication. In the case of the ece emulator, the gen-

Section Size
associationTag 4 bytes
headerLength 4 bytes
totalLength 4 bytes
addressType 4 bytes
associationAddress 20 bytes
o↵setToLocalAESKey 4 bytes
localAESKeyLength 4 bytes
o↵setToLocalRSAKeys 4 bytes
localRSAKeysLength 4 bytes
o↵setToRemoteRSAKey 4 bytes
remoteRSAKeyLength 4 bytes

Table 5.2: Device association header

113



Chapter 5. Implementation and Results

TEE Error Code TEE Associat ion Request ( remoteAddress )
i f ( user does not approved )

re turn TEE ERROR;
rsaKeys = ECE RSA Keygen ( ) ;
aesKey = ECE AES Keygen ( ) ;
nonce = Read Random Data ( ) ;
cha l l eng e = nonce + SHA 256 Hash ( loca lAddress , remoteAddress ) ;
packet = ECE RSA Crypto ( cha l l enge , encChal lenge , s t r l e n ( cha l l eng e ) , encrypt

, rsaKeys�>pr i va t e ) ;
packet = packet + rsaKeys�>pub l i c ;
Send Request ( packet , remoteAddress ) ;
Get Response ( re sponse ) ;
i f r e sponse < 0

re turn TEE ERROR;
decResponse = TEE Decrypt Response ( re sponse ) ;
remoteKey = decResponse�>pubKey ;
cha l l eng e = decResponse�>cha l l eng e ;
TEE Write Assoc iat ion To Fi le ( remoteAddress , cha l l enge , aesKey , rsaKeys ,

remoteKey ) ;
r e turn TEE SUCCESS;

TEE Error Code TEE Association Response ( c l i en tAddre s s )
r eque s t = Get Request ( ) ;
i f ( use r does not approve r eque s t from c l i en tAddre s s )

re turn TEE ERROR;
rsaKey = ECE RSA Keygen ( ) ;
ECE RSA Crypto ( request�>data , decReq , s t r l e n ( request�>data ) , decrypt ,

request�>pubKey ) ;
cha l l eng e = SHA 256 HASH( loca lAddress , c l i en tAddre s s ) ;
i f ( cha l l eng e not same as decReq�>cha l l eng e )

re turn TEE ERROR;
ECE AES Crypto ( cha l l enge , encChal lenge , length , encrypt , secretKey ,

s e c r e t IV ) ;
ECE RSA Crypto ( encChal lenge + request�>nonce , encPacket , length , encrypt ,

rsaKey�>pr i va t e ) ;
ECE RSA Crypto ( encPacket + rsaKey�>publ ic , encResponse , length , encrypt ,

request�>pubKey ) ;
SendResponse ( encResponse ) ;
TEE Write Assoc iat ion To Fi le ( c l i entAddre s s , decReq�>cha l l enge , decReq�>

aesKey , rsaKey , decReq�>pubKey ) ;
r e turn TEE SUCCESS;

TEE Error Code TEE Disassoc iat ion ( remoteAddress )
i f ( user does not approved )

re turn TEE ERROR:
i f ( a s s o c i a t i o n does not e x i s t f o r remoteAddress )

re turn TEE ERROR;
TEE Remove Association From File ( remoteAddress ) ;
r e turn TEE SUCCESS;

Figure 5.6: TEE association and disassociation

eration of AES and RSA keys are identical to what was shown in Figure 5.2 for

generating the device secret keys. The only di↵erence is that these keys are not
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stored in the ECE disk file. Instead, the ece emulator calls the same functions and

then returns the resulting keys over the network connection. For this reason, the

pseudo code for these functions is not included. The pseudo code for the association

function is shown in Figure 5.6. Because the authentication function operates in

virtually the exact same manner, it is not included. It is important to note that

functionality for association is split in two routines: one routine for making a re-

quest, and another routine for receiving a request. Authentication does not require

two functions, as a mobile device should never request authentication; only a network

should initiate such a procedure. Associated devices may use their stored challenge

values as part of subsequent interactions to prove their identities and therefore have

no need for an independent authentication routine.

Once all associations are retrieved, the tee client sends a command to the ece -

emulator to disable use of the device secret key. To protect the key from being

accessed directly by the tee client, the ece emulator program is run with root privi-

leges and spawns the tee client as a standard user application. The TEE disk file that

is created by ece emulator is therefore only accessible by root, so tee client has no

ability to access the file and read the key values. Since the ece emulator application

is run as root and opens a network port, a closed-network is highly recommended

for any testing. Associated security risks should be mitigated by the fact that the

connection accepts localhost connections only, but that opens the system up to ma-

licious local applications. However, the purpose of doing this was to attempt to

emulate the same protective environment that would exist on a mobile device. Both

programs could also be run as a standard user and the claim could be made that

the tee client is assumed safe and would never attempt to access the key. Either

approach is viable.

The tee client also opens a network socket that may be used to receive requests

from external devices. The tee client monitors this connection for available clients.
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TEE Error Code TEE Change Secret Key ( )
i f ( user does not approve )

re turn TEE ERROR;
decTee = ECE AES Crypto ( tee , length , decrypt , secretKey , s e c r e t IV ) ;
d e cAs soc i a t i on s = ECE AES Crypto ( a s s o c i a t i o n s , length , decrypt , secretKey ,

s e c r e t IV ) ;

ECE Change Secret Key ( ) ;

a s s o c i a t i o n s = ECE AES Crypto ( decAssoc ia t i ons , length , encrypt , secretKey ,
s e c r e t IV ) ;

t e e = ECE AES Crypto ( decTee , length , encrypt , secretKey , s e c r e t IV ) ;

ECE Write Associat ions ( a s s o c i a t i o n s ) ;
ECE TEE Init ia l ize ( t e e ) ;

TEE Error Code TEE Change RSA Key Pair ( )
i f ( user does not approve )

re turn TEE ERROR;
DeauthenticateWithNetwork ( ) ;
ECE Change RSA Key Pair ( ) ;
AuthenticateWithNetwork ( ) ;

Figure 5.7: TEE secret key and key pair change

If a request has been made, it must be determined if this request requires interac-

tions with the ece emulator. For instance, association requests require generation of

a new public/private RSA key pair and AES key, as well as encryption services dur-

ing the transaction. Therefore, if communication is needed with the ece emulator,

a connection is made and the request(s) is issued. Other requests may require a

connection to a remote device, such as an association request made locally. In this

case, a connection must be opened to the remote device and the request issued. All

association requests, whether received locally or remotely, require user approval in

order to proceed.

After all remote requests have been serviced, the tee client next looks for local

request made via the command line. A user is able to issue local commands to the

tee client and may also provide input for certain requests that have been received.

Anytime a remote device requests an association, the user must approve the trans-

action, as mentioned previously. The user can also issue the command to change the
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secret keys, disassociate with a device, or generate a new key. The pseudo code for

changing the secret keys is shown in Figure 5.7.

Figure 5.8: ECE disk header and AES key in ECE disk file
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Figure 5.9: RSA key in ECE disk file

5.2 ECE Software Emulator Results

Using the pseudo code presented in the previous section as a basis, a full software

emulator was developed and tested using three desktop devices. These devices in-

cluded a 2012 Apple Macbook Pro laptop, a VMware virtual machine running 64-bit

Ubuntu 12.04 Server, and a custom desktop with a quad-core AMD processor run-

ning 64-bit Ubuntu 11.10. Since timing analysis and overhead from cryptographic

operations is highly implementation dependent and not the focus of this research, a

detailed listing of the specifications for each desktop device is not included. Instead,

the results focus on the implementation of the proposed API.

The first test conducted was the generation of ECE disk files along with the

encryption and storage of a TEE executable. This was performed on all three devices

using a natively compiled tee client application as the TEE. The disk files generated

contain an ECE header, along with the AES and RSA keys (Figure 5.8 and Figure

5.9), and the TEE header (Figure 5.10).

Next, it was necessary to prove that the secret key generated by each desktop

device was unique and that the code properly encrypted each TEE. To show this, an

entropy test was performed on the TEE section of each corresponding ECE disk file.

The entropy results are shown in Table 5.3, which provides the entropy measurement,
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Figure 5.10: TEE header and encrypted TEE in ECE disk file

Laptop VM Desktop Optimal
File Size (bytes) 1266096 1333920 1339392 N/A
Entropy 7.999867 7.999876 7.999831 8.0
Arithmetic Mean 127.4433 127.4774 127.3839 127.5
Serial Correlation Coe↵ 0.001216% -0.000163% -0.000036% 0.0

Table 5.3: Entropy measures of platform specific, encrypted TEE

the arithmetic mean, and the serial correlation coe�cient.

The entropy measurement is for each bit in a bytes. As there are eight bits in a

bytes, the optimal value would be eight. The arithmetic mean is the average value of
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each byte in the file. Since bytes can contain values between 0 and 255, the median

value is 127.5. Thus, the optimal arithmetic mean is 127.5. The serial correlation

coe�cient refers to the e↵ect that the value of one byte will have on the subsequent

byte. For encrypted or compressed data, the optimal value is zero. As shown in

this table, each of the encrypted TEE sections are very close to the optimal values

for their respective measurements. However, this is to be excepted since the data

is encrypted using AES-256, which is known to produce data with such randomness

values.

An additional item to note from Table 5.3 is the fact that the TEE file sizes

are not identical. This is because the TEE for each device was compiled natively.

Because each desktop device has a di↵erent version of the GCC compiler, and was

compiled against a di↵erent kernel source, the resulting TEEs vary in size. To further

prove that the device keys are unique, the same TEE was provided to each device

Figure 5.11: Transmission of TEE association request header
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Figure 5.12: Transmission of public key of initiating device

and then encrypted and stored inside the ECE disk file. The TEE sections were then

extracted and compared with one another to determine if there was any correlation

between to values of each byte in the encrypted TEE files. This test also resulted in

a correlation of nearly zero, as expected.

In addition to test on the randomness of the TEE, the full functionality of the

software emulator was tested to ensure proper execution of the API functions. Each

test conducted produced successful results. While it is di�cult to quantify success

for many of these features, a collection of network packet captures were generated

that show a full association between two devices, followed by the transmission of a

file encrypted using the public keys exchanged during the association.

The first step of the association is illustrated in Figure 5.11. In this step, the

association request is sent to the remote device. All request and responses start with

a 12 bytes header that contains the command, the header size, and the data size.

Once the header is transmitted, the corresponding data is relayed. In this case, the
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Figure 5.13: Transmission of TEE association response header

Figure 5.14: Transmission of public key of remote device
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Figure 5.15: Transmission of TEE association request

data is the public key of the initiating device, as shown in Figure 5.12. Once the

key is received and the remote device has obtained approval for the association to

proceed, a response is returned, shown in Figure 5.13. After the response header

is transmitted, the public key of the remote device is transmitted, as depicted in

Figure 5.14. While the public key of the remote device would normally be encrypted

using the public key of the initiating device, the key was instead transmitted in the

clear in order to more easily illustrate what is being sent during each step. A version

that is fully compliant with the association algorithm presented previously has been

developed and was tested to ensure proper operation.

After completing the association, an additional function was added to the ECE

API that supported transmission of data files between two associated devices. This

functionality was developed to prove to capability of this technology to provide a

secure communication channel between two devices. This technique addresses the

protection of DRM material that could be exchanged between devices registered with
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Figure 5.16: Transmission of TEE association request

Figure 5.17: Transmission of TEE association request
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a FairPlay account, as detailed in Section 4.3.2.

As shown in Figure 5.15, the file transfer starts with the transmission of a request

header. This header identifies this request as a file transmission request, provides a

header length of 12 bytes, and a data length of 1266112. If this file size is compared

with the TEE files listed in Table 5.3, it may be noted that this file is only 16 bytes

larger than the TEE compiled on the MacBook Pro. In fact, that is the file being

transferred in this example. The additional 16 bytes are the result of padding during

the AES algorithm. Figure 5.16 shows the beginning of the transmission of the

encrypted TEE file. The transmission of the file is then completed and a response

header is generated and returned by the remote device, as illustrated in Figure 5.17.

5.3 ECE API Implementation Results

Although it is di�cult to illustrate the full functionality of this software emulator

through figures and tables, the examples provided demonstrated each of the capa-

bilities necessary to support the use cases presented in Chapter 4. The randomness

values presented on the encrypted TEE files show the ability of this tool to uniquely

protect a TEE resident on a mobile device, a need addressed in Section 4.3.1. Ad-

ditionally, the use of the TEE header provides the functionality to support updates,

authorized modifications, and additions to the TEE. The association performed illus-

trates how multiple devices can exchange device keys and authentication information,

thereby allowing the device to uniquely authenticate itself not only to other device,

but also to a network. This capability addresses the need for stronger authentication

presented in Section 4.3.3. The association mechanism also facilitates the ability to

securely transfer information between multiple devices, which can lead to the trans-

fer of DRM protected materials between di↵erent devices on an account, per Section

4.3.2.
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The results in this section have proven the strength of the ECE in addressing

some of the most critical needs in the world of mobile security. The API presented

provides all the functionality need to support authentication, secure communications,

and unique protection of system critical code and data values. Incorporation of this

architecture into any mobile framework will greatly enhance its ability to provide

reliable mobile security that is far ahead of anything currently on the market today.
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Conclusions

Mobile security is a complex and ever changing research area. As detailed in Section

2, there are an immense number of solutions, specifications, protocols, and method-

ologies available which attempt to address a variety of areas in the realm of mobile

security. These various implementations cover security related issues from device

manufacturing all the way to communications and device interactions. As evidenced

by the amount of research being done on mobile devices, this is definitely a growing

area that will continue to face a number of challenges with its incredible growth.

The research presented in this paper was conducted first with a desire to under-

stand all of the many security related research areas dealing with mobile devices.

Once a solid pool of knowledge was generated, the research transitioned into a dis-

covery process of how PUF technology might be leveraged to address some of the

most pressing issues facing users, developers, cellular provides, and a host of other

players. Does PUF technology provide any features or capabilities that are not al-

ready available? If so, could they be used to enhance current security technologies

to provide greater protection of data and communications?

Over the course of conducting this research, these questions were answered. This
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has been accomplished by first conducting an in-depth analysis of modern mobile

security technologies has been presented. Additionally, a novel new architecture has

been proposed for providing enhanced security on mobile devices. The use of PUFs

to generate unique-per-device keys is a substantial finding that provides researchers

with a unique opportunity to strengthen mobile security in a way never done before.

The API provided gives software developer a new set of tools for combating cyber

crime in ways never before imagined. The findings of this research have shown that

PUF technology can not only aid, but can greatly enhance, the mobile security world.

6.1 Additional Research

The results shown as a result of this research have proven that PUF technology has

the required features and abilities to aid in the creation of significantly more secure

mobile devices. This research has also lead to the discovery of a number of additional

topics for further research. For instance, homes are starting to become more and more

advanced with cellular accessible security devices, smart appliances, and remotely

controlled environmental systems. Automobiles are also starting to come stock with

3G and 4G compatible computer systems that are able to monitor vehicle conditions,

provide real-time tra�c information, download media files for viewing on internal

entertainment systems, and an array of other electronic enhancements. While one

area of automotive security was addressed earlier, there are still many other areas

that must be researched and may benefit from the capabilities provided by an ECE

architecture.

Additional research can also be conducted in the same areas presented thus far.

Although currently available hardware platforms have made a full hardware solution

impractical at this time, this is a step that still must be performed. The software

emulator discussed was the right first step, but it is not the only step necessary. As
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mentioned previously, Xilinx has created a new FPGA platform with an embedded

dual-core ARM processor called Zynq. Although a bug currently prohibits access to

the TrustZone secure world, and thus the cryptographic unit, a promised fix may

provide researchers with a viable platform for testing of a full hardware implemen-

tation [85].

As additional research areas are explored, it may also be discovered that the

ECE architecture provides additional benefits beyond those discussed herein. As

mentioned in Section 4.3.3, processors like the baseband processor may also find a

use for an ECE in device authentication, secure cellular communication, or for a

full on-board authentication mechanism, such as the architecture described in [48].

While a determination of every possible application for the ECE is not possible

without years of additional research, it has been shown through this research that

PUF-enhanced cryptographic engines can be used for dramatically increased security.

6.2 Future of Mobile Security

In an almost constant “tug-of-war” battle, mobile security researchers attempt to

counter attacks made by black-hat and white-hat hackers alike. Software security

researchers are aided in their e↵orts by new hardware security features that are added

to SoC designs with nearly every revision. The inevitability of new features is driven

by an equally powerful certainty: their defeat.

Attackers will continue to find methods for circumventing, or out-right breaking,

the latest and greatest security metric developed. The results of such exploits will

continue to be accompanied with an ever increasing price tag, both in terms of

financial lose and development time for updates. In a recent article, Christopher

Soghoian describe the security issues with Android as being, ”..like a really dry

forest, and it’s just waiting for a match [86].” As such, security researchers can no
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longer a↵ord to wait around for current methods to be broken before developing

enhanced security methods.

While developers may claim that current approaches are su�cient, this ideology

has never worked in the past and will never work in the future. Current security

simply is not su�cient. Use of the ECE architecture presented will allow device

manufacturers and security researchers to take a significant leap forward in their

battle against cyber criminals and hack-tivist. It does not provide an all-power,

never to be defeated solution, but it has the potential to put us in the drivers seat

with the foot on the gas!

130



Appendices

131



Appendix A

Enhanced Cryptographic Engine

API

#ifndef _ece_interface_h

#define _ece_interface_h

typedef enum aes_op_type {

AES_128_CBC = 0x00,

AES_128_CFB = 0x01,

AES_128_CFB1 = 0x02,

AES_128_CFB8 = 0x03,

AES_128_ECB = 0x04,

AES_128_OFB = 0x05,

AES_192_CBC = 0x06,

AES_192_CFB = 0x07,

AES_192_CFB1 = 0x08,

AES_192_CFB8 = 0x09,

AES_192_ECB = 0x0A,

AES_192_OFB = 0x0B,

AES_256_CBC = 0x0C,

AES_256_CFB = 0x0D,

AES_256_CFB1 = 0x0E,

AES_256_CFB8 = 0x0F,

AES_256_ECB = 0x10,

AES_256_OFB = 0x11,

AES128 = 0x12,

AES192 = 0x13,

AES256 = 0x14,

} aes_op_type;

typedef enum aes_key_size {

AES_KEY_SIZE_128 = 0x0100;

AES_KEY_SIZE_192 = 0x0200;

AES_KEY_SIZE_256 = 0x0300;
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} aes_key_size;

typedef enum rsa_op_type {

RSA_STANDARD = 0x0,

RSA_NO_PADDING = 0x2,

RSA_SSL2_PADDING = 0x1,

RSA_PKCS1_1_5_PADDING = 0x3,

RSA_PKCS1_OAEP_PADDING = 0x4,

} rsa_op_type;

typedef enum rsa_key_size {

RSA_KEY_SIZE_1024 = 0x0000,

RSA_KEY_SIZE_2048 = 0x0100,

RSA_KEY_SIZE_4096 = 0x0200,

} rsa_key_size;

typedef enum rsa_block_size {

RSA_BLOCK_SIZE_1024 = 0x0000,

RSA_BLOCK_SIZE_2048 = 0x0100,

RSA_BLOCK_SIZE_4096 = 0x0200,

} rsa_block_size;

typedef enum crypto_key_type {

CRYPTO_KEY_AES_INTERNAL = 0x000000;

CRYPTO_KEY_AES_CUSTOM = 0x100000;

CRYPTO_KEY_RSA_INTERNAL = 0x200000;

CRYPTO_KEY_RSA_PUBLIC_INTERNAL = 0x300000;

CRYPTO_KEY_RSA_PRIVATE_INTERNAL = 0x400000;

CRYPTO_KEY_RSA_PUBLIC_CUSTOM = 0x500000;

CRYPTO_KEY_RSA_PRIVATE_CUSTOM = 0x600000;

} crypto_key_type;

typedef enum crypto_method {

CRYPTO_ENCRYPT = 0x00000000,

CRYPTO_DECRYPT = 0x80000000,

CRYPTO_GENERATE = 0xC0000000,

} crypto_method;

typedef enum association_method {

ASSOCIATION_WIFI = 0x0;

ASSOCIATION_BLUETOOTH = 0x1;

ASSOCIATION_USB = 0x2;

ASSOCIATION_NFC = 0x3;

}

/* Function: ECE_AES_CRYPTO
Parameters: input - pointer to a buffer containing the data to be processed

output - pointer to a buffer inwhich to store the result
length - number of bytes to process
op_type - number representing the requested AES operation, keysize, key type, and crypto method
key - pointer to a buffer containing the key to be used, if applicable
iv - pointer to a buffer containing the iv to be used, if applicable

Result: int32_t, 0 representing success; otherwise negative value representing error
Purpose: The purpose of this function is provide the capability of performing and AES operation using

either a custom key or the internal secret key.

*/
int32_t ECE_AES_CRYPTO( uint8_t *input,

uint8_t *output,
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uint32_t length,

uint32_t op_type,

uint8_t *key,

uint8_t *iv );

/* Function: ECE_RSA_CRYPTO
Parameters: input - pointer to a buffer containing the data to be processed

output - pointer to a buffer inwhich to store the result
length - number of bytes to process
op_type - number representing the requested RSA operation, keysize, key type, and crypto method
key - pointer to a buffer containing the key to be used, if applicable

Result: int32_t, 0 representing success; otherwise negative value representing error
Purpose: The purpose of this function is provide the capability of performing an RSA operation using either

a custom key or the internal secret key.

*/
int32_t ECE_RSA_CRYPTO( uint8_t *input,

uint8_t *output,

uint32_t length,

uint32_t op_type,

uint8_t *key );

/* Function: ECE_AES_KEYGEN
Parameters: key_size - value representing the size of the AES key to generate
Result: uint8_t *, a pointer to a valid key; otherwise NULL
Purpose: The purpose of this function is to provide a mechanism for generating ad-hoc AES keys that can be

used for protection of communications or system data.

*/
uint8_t * ECE_AES_KEYGEN( uint32_t key_size );

/* Function: ECE_RSA_KEYGEN
Parameters: key_size - value representing the size of the RSA keys to generate
Result: uint8_t **, a pointer to a valid public/private key-pair; otherwise NULL
Purpose: The purpose of this function is to provide a mechanism for generating ad-hoc RSA key pairs that

can be used for protection of communications or system data.

*/
uint8_t ** ECE_RSA_CRYPTO( uint32_t key_type );

/* Function: ECE_DEVICE_AUTHENTICATION
Parameters: key - the proposed public key of the device being authenticated

method - the protocol used to authenticate
address - the address of the device requestingauthentication

Result: int32_t, 0 representing success; otherwise a negative value representing error authentication
response for the device. This will result in a direct exchange of information with an onboard SE, such
as the SIM card. No information is passed to this call as control of this functionality should mostly
exist outside the device.

*/
int32_t ECE_DEVICE_AUTHENTICATION( uint8_t *key,

uint32_t method,

uint8_t *address );

/* Function: ECE_DEVICE_ASSOCIATION
Parameters: device_address - address of device with which to associate
Result: int32_t, 0 representing success; otherwise a negative value representing error
Purpose: The purpose of this function is to provide a method for associating, i.e. exchanging public keys,

with another device. This can happen over any supportedcommunications interface, which may be an added
parameter in later versions. This method will fail if the system is not in "discovery" mode.

*/
int32_t ECE_DEVICE_ASSOCIATION( uint32_t method,
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uint8_t *device_address );

/* Function: ECE_DEVICE_ASSOCIATION
Parameters: device_address - address of device with which to associate
Result: int32_t, 0 representingsuccess; otherwise a negative value representing error
Purpose: The purpose of this function is to provide a method for associating, i.e. exchanging public keys,

with another device. This can happen over any supportedcommunications interface, which may be an added
parameter in later versions. This method will fail if the system is not in "discovery" mode.

*/
int32_t ECE_DEVICE_DISASSOCIATION( uint32_t method,

uint8_t *device_address );

/* Function: ECE_TEE_VERIFICATION
Parameters: load_address - address at which to load the decrypted TEE
Result: int32_t, 0 representing success; otherwise a negative value representing error
Purpose: The purpose of this function is to verify that a TEE exist and to decrypt it from memory and load

it into the provided address. This is done by looking for a TEE header at a predefined address. If the
header exist, its information will be used to decrypt the TEE and then load it into memory. If not, an
error is returned.

*/
int32_t ECE_TEE_VERIFICATION( uint32_t *load_address );

/* Function: ECE_TEE_INITIALIZATION
Parameters: None
Result: int32_t, 0 represents success; otherwise a negative value representing error
Purpose: The purpose of this function is to initialize a TEE environment. When the system boots for the

first time, no firmware or TEE will typically be loaded. This function will accept a new TEE, encrypt it
at the correct location, and then generate a corresponding TEE header that may be used to boot the TEE.

*/
int32_t ECE_TEE_INITIALIZATION( void );

/* Function: ECE_GENERATE_SECRET_KEY
Parameters: None
Result: uint8_t *, pointer to the location of the new secret key
Purpose: The purpose of this function is to instruct the cryptographic unit to generate the system secret

key by executing the PUF and storing the result. This is done to ensure that the key is not loaded
automatically in case access to the secureROM is somehow bypassed. Operations with the system secret
keys should only be granted when the system is in a known "good" state.

*/
uint8_t * ECE_GENERATE_SECRET_KEY( void );

/* Function: ECE_GENERATE_RSA_KEY_PAIR
Parameters: None
Result: uint8_t *, pointer to the location of the new RSA key pair
Purpose: The purpose of this function is to instruct the cryptographic unit to generate the system RSA key

pair by executing the PUF and storing the result. This is done to ensure that the key is not loaded
automatically in case access to the secureROM is somehow bypassed. Operations with the system secret
keys should only be granted when the system is in a known "good" state.

*/
uint8_t * ECE_GENERATE_RSA_KEY_PAIR( void );

/* Function: ECE_CHANGE_SECRET_KEY
Parameters: None
Result: int32_t, 0 represents success; otherwise a negative value representing error
Purpose: The purpose of this function is to provide a mechanism for changing the system AES secret key in

the event of suspecteddisclosure of the current key, or simply as a precautionarymeasure on a periodic
basis.

*/
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int32_t ECE_CHANGE_SECRET_KEY( void );

/* Function: ECE_CHANGE_RSA_KEY_PAIR
Parameters: None
Result: int32_t, 0 represents success; otherwise a negative value representing error
Purpose: The purpose of this function is to provide a mechanism for changing the system RSA key pair in the

event of suspecteddisclosure of the current keys, or simply as a precautionarymeasure on a periodic
basis.

*/
int32_t ECE_CHANGE_RSA_KEY_PAIR( void );

#endif
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