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ABSTRACT 

Imaging genetics is an emerging field dedicated to the study of genetic underpinnings 

of brain structure and function. Over the last decade, brain imaging techniques such as 

magnetic resonance imaging (MRI) have been increasingly applied to measure 

morphometry, task-based function and connectivity in living brains. Meanwhile, 

high-throughput genotyping employing genome-wide techniques has made it feasible to 

sample the entire genome of a substantial number of individuals. While there is growing 

interest in image-wide and genome-wide approaches which allow unbiased searches over 

a large range of variants, one of the most challenging problems is the correction for the 

huge number of statistical tests used in univariate models. In contrast, a reference-guided 

multivariate approach shows specific advantage for simultaneously assessing many 
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variables for aggregate effects while leveraging prior information. It can improve the 

robustness of the results compared to a fully blind approach. 

In this dissertation we present a semi-blind multivariate approach, parallel 

independent component analysis with reference (pICA-R), to better reveal relationships 

between hidden factors of particular attributes. First, a consistency-based order estimation 

approach is introduced to advance the application of ICA to genotype data. The pICA-R 

approach is then presented, where independent components are extracted from two 

modalities in parallel and inter-modality associations are subsequently optimized for pairs 

of components. In particular, prior information is incorporated to elicit components of 

particular interests, which helps identify factors carrying small amounts of variance in 

large complex datasets. The pICA-R approach is further extended to accommodate 

multiple references whose interrelationships are unknown, allowing the investigation of 

functional influence on neurobiological traits of potentially related genetic variants 

implicated in biology. Applied to a schizophrenia study, pICA-R reveals that a complex 

genetic factor involving multiple pathways underlies schizophrenia-related gray matter 

deficits in prefrontal and temporal regions. The extended multi-reference approach, when 

employed to study alcohol dependence, delineates a complex genetic architecture, where 

the CREB-BDNF pathway plays a key role in the genetic factor underlying a proportion 

of variation in cue-elicited brain activations, which plays a role in phenotypic symptoms 

of alcohol dependence. In summary, our work makes several important contributions to 

advance the application of ICA to imaging genetics studies, which holds the promise to 

improve our understating of genetics underlying brain structure and function in healthy 

and disease. 
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CHAPTER 1 INTRODUCTION  

In this dissertation we demonstrate the extended application of independent 

component analysis (ICA), a model for blind source separation, to the imaging genetics 

field. A consistency-based order estimation approach is designed for improved robustness 

and a semi-blind parallel ICA model is proposed to enable the analysis of large complex 

multi-modal datasets. Applications to real experimental data are also presented.  

1. 1 Imaging Genetics  

Imaging genetics explores the functional impact of genetic variations on neurological 

traits, making a valuable strategy for identifying biological mechanisms mediating the 

vulnerability to diseases. 

Over the last decade, brain imaging techniques such as magnetic resonance imaging 

(MRI) (Giedd, 2004; Lawrie and Abukmeil, 1998; Paus et al., 2001) have been 

increasingly applied to study living brains. MRI can be used to measure morphometry, 

task-based function and structural and functional connectivity in the brain. Structural or 

functional imaging biomarkers are believed to be closer to the underlying biological 

mechanisms affected by genetic variants than behavioral or symptom-based measures 

(Rasch et al., 2010; Rose and Donohoe, 2013; Turner et al., 2006). Consequently, there is 

a growing interest in studying imaging measures. In the case of structural imaging, 

measurements can be obtained in different ways, ranging from single region-of-interest 

(ROI) methods, to image-wide approaches such as voxel based morphometry (VBM) 
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(Ashburner and Friston, 2005) and surface-based measures such as FreeSurfer (Fischl and 

Dale, 2000). In the case of functional imaging, blood-oxygen-level-dependent (BOLD) 

functional MRI (fMRI) has been widely used for studying the neural basis of spontaneous 

or task-related brain activities (Fox and Raichle, 2007; Logothetis, 2003).  

High-throughput genotyping employing genome-wide techniques has made it feasible 

to sample the entire genome of a substantial number of individuals (Oliphant et al., 2002; 

Shen et al., 2005). Targeted candidate gene strategies examining a limited number of 

genetic variations have been successfully applied to the investigation of illnesses such as 

Fragile X syndrome (Lightbody and Reiss, 2009). Yet, the candidate gene approach is 

less applicable when the genetic basis of a disease is very complex and less understood. 

For instance, little success has been achieved in replicating evidence for causal genes in 

schizophrenia (SZ) (Duan et al., 2010) using a candidate gene approach. In contrast, 

recent work has lent support for a polygenic model (Gottesman and Shields, 1967; 

Purcell et al., 2009b) of the disorder, where an aggregate of common genetic variants 

were shown to collectively account for a substantial proportion of variation in risk. 

Indeed, besides SZ, a variety of complex mental disorders, including bipolar disorder, 

autism and addiction, are suggested as multifactorial and polygenic (Barnett and Smoller, 

2009; Crabbe, 2002; Muhle et al., 2004). Given such evidence, an unbiased search of the 

entire genome bears more potential to delineate the underlying genetic architecture for 

complex disorders where a significant proportion of risk is likely ascribed to many 

genetic variants, each presenting a small effect size and failing to reach genome-wide 

significance individually. 
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1. 2 Motivation  

While there is growing interest in image-wide and genome-wide approaches which 

allow unbiased searches over a large range of variants, novel mathematical and 

computational methods are desired to optimally combine two modalities. One of the most 

challenging problems is the correction for the huge number of statistical tests used in 

univariate models. The correction for multiple comparisons makes it highly difficult to 

identify a factor of small effect size with a practical sample size. In addition, univariate 

approaches are not well-suited to identify weak effects across multiple variables.  

For this reason, multivariate approaches show specific advantage for simultaneously 

assessing many variables for an aggregate effect. In particular, ICA poses a promising 

candidate for modeling the linearly additive effect from multiple variables in the case of 

polygenicity. As a blind source separation approach, ICA tends to capture variants 

covarying with a same pattern into one single component, such that the data is 

decomposed into a linear combination of underlying components, whose associated 

loadings reflect the individual variations. In this way, genetic variants presenting small 

effect sizes on the same neurological or behavioral trait might be identified and the 

aggregate effect can be assessed. 

1. 3 Specific Aims  

Aim 1: Application of regular ICA to genotype data 

The first aim of this project is to advance the application of regular ICA to genotype 

data. As a blind source separation approach, ICA has been widely used in signal and 
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image processing (Comon, 1994; Hyvarinen et al., 2001). Meanwhile, to extend the 

application to genotype data, a major challenge lies in the order selection. This is due to 

the fact that genetic components in general accounting for small amounts of variance 

embedded in the genome, making it difficult to separate true signals from the background. 

To address this issue, an order selection approach is designed based on component 

stability.  

Aim 2: Parallel ICA with reference 

When applied to high-dimensional complex datasets, ICA suffers the curse of 

dimensionality. To address this issue, a semi-blind multivariate model, parallel ICA with 

reference (pICA-R), is proposed, such that prior knowledge is incorporated to guide the 

data decomposition and help elicit components related to particular attributes. 

Specifically, a closeness measure is imposed to extract independent components 

resembling the assigned reference. A formulization of the model is introduced in the 

dissertation, where the closeness is measured with L2-norm Euclidian distance. 

Aim 3: Parallel ICA with multiple references  

A third aim is to extend pICA-R to accommodate multiple references for improved 

robustness. To achieve this, the reference input is designed as a matrix, with each row (or 

reference vector) representing a referential set spanning variants likely related while the 

interrelationships between different referential sets are to be investigated. The 

constrained component is dynamically selected for each referential set and multiple 

referential sets can constrain the same component.  



Chapter 1 Introduction 

 

5 

 

Aim 4: Application of pICA-R to imaging genetics 

The proposed approaches are applied to real experimental data to investigate the 

genetic underpinnings of abnormalities in brain structure and function involved in mental 

disorders. In this dissertation, we present results of schizophrenia (SZ) and alcoholism 

studies.  

1. 4 Overview of Dissertation  

The dissertation will be organized as follows: 

Chapter 2 backgrounds the conducted research. The basic MRI technique for 

structural and functional brain imaging is explained. The concept of single nucleotide 

polymorphism (SNP) and a commonly used genotyping technique are also introduced. 

And a brief description is given to the principle and common implementations of ICA.  

Chapter 3 introduces the consistency-based order estimation approach. The proposed 

approach successfully captures the order range where ICA extracts relatively more 

accurate components and loadings. We describe in detail the assumption and the 

mathematical model. Simulation is then presented to show the performance of the 

approach under different scenarios.  

Chapter 4 introduces the pICA-R approach. The novel semi-blind multivariate model 

incorporates a priori knowledge to elicit components of specific attributes and assesses 

multiple variables for aggregate effects. A detailed description is given to the 

mathematical model and implementation. The approach has then been evaluated with 



Chapter 1 Introduction 

 

6 

 

simulated fMRI and SNP data. The results demonstrate the robustness of the approach 

and its applicability in real imaging genomics studies.  

Chapter 5 introduces the extended parallel ICA with multiple references. When 

provided with multiple referential sets whose interrelationships are unknown, the 

extended approach successfully captures those associated with the same neurobiological 

trait through dynamic constraints for individual referential sets. The concept and 

formularization are described in detail. A comprehensive evaluation of the extended 

approach with simulated fMRI and SNP data is also presented.   

Chapter 6 presents the investigation on scanning platform induced confounding 

effects in structural MRI (sMRI) studies. This is an issue difficult to avoid especially in 

imaging genetics as aggregated datasets are commonly employed to improve the sample 

size and statistical power. The initial exploration with a large sMRI dataset confirmed 

significant scanning effects from magnetic field strength, head coils and scanning 

sequences. A nonparametric correction was then designed and demonstrated with a 

second dataset to flexibly isolate scanning effects and refine the true effect of interest.  

Chapter 7 demonstrates an application of pICA-R to the investigation of SZ. 

Voxelwise gray matter concentration data were analyzed in conjunction with 

genome-wide SNP data. Guided by a referential set derived from a susceptibility gene 

ANK3, pICA-R identified a significant sMRI-SNP association, revealing a complex 

genetic component underlying the SZ-related gray matter concentration reduction in 

frontal and temporal regions. The identified genetic component exhibited significant 

enrichment for SZ-relevance when independently assessed with the Psychiatric Genomic 

Consortium (PGC) data.   
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Chapter 8 presents an application of parallel ICA with multiple references to the 

investigation of alcohol dependence. Voxelwise cue-elicited brain activation data were 

analyzed in conjunction with genome-wide SNP data. A number of referential sets were 

derived from susceptibility genes implicated in previous studies. When assessed 

simultaneously, three referential sets derived from the CREB-BDNF pathway were 

identified as contributing to the same SNP component, which was significantly associated 

with a brain network reflecting hyperactivation in precuneus, superior parietal lobule and 

thalamus for more severe alcohol dependence. The identified genetic factor involved a 

number of neural signaling and development pathways implicated in a previous 

meta-analysis, confirming a complex and polygenic nature of the disorder.  

Chapter 9 summarizes and concludes the project and provides some possibilities for 

future work. 
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CHAPTER 2 BACKGROUND  

2. 1 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a medical imaging technique developed to 

study internal structures and functions of the body. MRI images atomic nuclei by 

depicting their nuclear magnetic resonance properties and has a primary advantage over 

other imaging techniques in that it provides very high spatial resolution. In addition, MRI 

does not require ionizing radiation and yields good contrasts between different types of 

soft tissues, making it especially suitable for imaging living human brains.  

In principle, an MRI image is a map that depicts the spatial distribution of a specific 

property of magnetized nuclear spins. This property might differ among tissues where the 

nuclear spins reside, allowing the morphology to be captured. The property might vary 

with the status of the body, which enables a dynamic imaging of responses to external 

stimuli. For human bodies, owing to the abundance of water, MRI signals are generally 

derived from the behavior of hydrogen atoms. 

For a single hydrogen atom, the proton spins about itself due to thermal energy. This 

spin motion generates an electric current, which will induce a magnetic moment when 

situated within a magnetic field. Meanwhile, the spin also results in an angular 

momentum as the proton has an odd-numbered atomic mass. Under normal conditions, 

the spins are randomly oriented and the induced magnetization moments tend to cancel 

with each other, leading to a very small net magnetization. 
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When an external magnetic field is applied, the spinning proton will initiate a 

gyroscopic motion, known as precession, where the spin axis rotates around a central 

axis, as shown in Figure 2.1. The precession axis is aligned to the applied magnetic field 

and can possibly take two states: parallel (low-energy state) or antiparallel (high-energy 

state) to the magnetic field.  

 

Figure 2.1: Precession. 

The low-energy state is more stable and spins are more likely to assume this state 

under normal conditions. Meanwhile, through absorbing electromagnetic energy, spins 

can jump into the high-energy state, known as excitation. The corresponding resonance 

frequency is defined as the Larmor frequency (ν), shown in (2.1). B0 denotes the applied 

magnetic field and γ denotes the gyromagnetic ratio, which is the ratio of the magnetic 

moment over the angular momentum vector. For hydrogen, the Larmor frequency is 

within the radiofrequency (RF) band, around 42.58MHz/Tesla.  

  
 

  
                                                              (2.1) 

In the situation of receiving an excitation pulse, the precessing spins will be tipped 

from the longitudinal direction towards the transverse plane perpendicular to the 

precession axis. The net magnetization thus no longer aligns with B0, but exhibits an 
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angle, known as the flip angle. When the excitation is turned off, the tipped precession 

realigns back to the magnetic field, a phenomenon called relaxation. Figure 2.2 illustrates 

two primary relaxations: longitudinal and transverse relaxation. During longitudinal 

relaxation, excited spins return to the low-energy state, resulting in an increase of the 

longitudinal magnetization. The emitted energy is absorbed by the lattice of nuclei, also 

known as spin-lattice relaxation. The time constant associated with this recovery is called 

T1 and the process is also called T1-recovery. During transverse relaxation, the spins 

gradually lose phase coherence due to spin-spin interactions or field strength 

inhomogeneity, resulting in a decrease of the transverse magnetization. T2 constant is 

used to characterize the decay induced by spin-spin interaction, while the overall decay is 

characterized by T2
*
. 

 

Figure 2.2: Schematic illustration of spin relaxation. (a) longitudinal/T1 relaxation; (b) 

transverse/T2 relaxation (Hashemi et al., 2003).   
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The varying net magnetization can be detected by receiver coils and is a measurable 

MR signal. To encode spatial information, a gradient magnetic field is introduced. In this 

way, the magnetic field strength varies systematically over space, resulting in different 

resonance frequencies. Thus a RF pulse can be applied to selectively excite a specific 

slice, known as slice selection. After the longitudinal net magnetization of one slice is 

tipped into the transvers plane, a frequency encoding and phase encoding gradient can be 

further applied to acquire the k-space MR signals. Finally the MR images can be easily 

reconstructed from the k-space signals using Fourier transform.    

MRI can be versatilely configured to emphasize contrasts reflecting different tissue 

characteristics. As shown in Figure 2.3a, the recovery of longitudinal magnetization 

varies between tissues with different T1 constants. This allows different levels of 

T1-contrast to be obtained through adjusting the repetition time (TR, time interval 

between successive excitation pulses). T1-weighted images are the most commonly used 

to study anatomical brain structures (sMRI), given a T1 constant of ~900ms for gray 

matter (GM), ~600ms for white matter (WM) and 4200ms for cerebrospinal fluid (CSF). 

On the other hand, T2-contrast reflects the difference in T2 constants among the tissues 

and can be adjusted through the echo time (TE, time interval between the excitation and 

data acquisition), as shown in Figure 2.3b. T2*-contrast is commonly used in BOLD 

fMRI, where brain functions are approximated by the associated changes in blood flow. 

The technique relies on the fact that when a brain region is in use or activated, the blood 

oxygen level increases and this oxygenation increases the T2
*
 constant. Thus the visibility 

of blood vessels would reflect the regional brain activities in a T2
*
-contrast image. 
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Figure 2.3: Schematic illustration of (a) T1- and (b) T2- contrasts. 

2. 2 Single Nucleotide Polymorphism 

DNA sequences may differ among members of a species at a single nucleotide, a type 

of genetic variation known as single nucleotide polymorphism (SNP), as shown in Figure 

2.4. The alternate forms of base pairs are called alleles, of which the more frequently 

observed in one population is assigned as the major allele while the other as the minor 

allele. SNPs are highly abundant across the whole genome, with an occurrence rate 

estimated to be 1 out of every 300 bases for SNPs whose minor allele frequencies are 
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higher than 1%, resulting in at least 10 million common SNPs out of 3 billion bases for 

the human genome (Gibbs et al., 2003). 

 

Figure 2.4: Illustration of a SNP with C/T polymorphism (use without permission from 

Wikipedia).   

SNPs fall into both coding and non-coding regions and have different consequences 

at the phenotypic level. Polymorphisms in coding regions of genes may affect the 

structures or functions of the encoded proteins, which further contribute to diseases. For 

instance, The APOE (apolipoprotein E, chromosome 19) ε4 allele is a confirmed 

susceptibility factor for late-onset Alzheimer’s disease (Farrer et al., 1997). On the other 

hand, the majority of SNPs reside in non-coding regions. Although their direct impacts 

on phenotypes are not known, these SNPs may still affect transcription factor binding, 

messenger RNA degradation, etc.  

Consequently, SNPs pose as promising markers to locate genes that predispose 

individuals to diseases. The investigation can be performed through genotyping a 
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collection of SNPs to identify those exhibiting allele frequency differences between 

control and patient groups. The number of SNPs that needs to be genotyped depends on 

the disease to be investigated. While genotyping a few SNPs in candidate genes may be 

adequate for monogenic disorders, explorations of complex and heterogeneous diseases 

whose genetic structures are less understood favor whole-genome SNP mapping. This is 

only made available upon the advance of the high-throughput genotyping technology.   

One of the commonly used genotyping platforms is the BeadArray (Oliphant et al., 

2002; Shen et al., 2005) from Illumina, based on which a whole-genome genotyping 

assay (Infinium) is developed (Gunderson et al., 2006). In the BeadArray technology, 

each array is assembled on an optical fiber bundle fused into a hexagonally packed 

matrix, as shown in Figure 2.5a. The fiber bundle is then exposed to the bead pool, such 

that the individual beads with distinct oligonucleotide probes can be assembled into the 

array. Figure 2.5b illustrates a scanning electron micrograph of an assembled array. 

Finally the arrays are arranged into a matrix to increase throughput.  

The Infinium SNP genotyping assay consists of four steps: amplification, 

hybridization, SNP scoring and detection. Figure 2.6 illustrates the flowchart. Starting 

from a sample of 750ng, the DNA is whole-genome amplified 1000-2000× in an 

unbiased isothermal reaction (step 1-2). The amplified DNA then undergoes 

fragmentation, isopropanol precipitation and resuspension (step 3-4). Subsequently, the 

prepared sample is mounted to the BeadArray, where the designed probes capture the 

target loci through hybridization (step 5-6). Finally, the products are fluorescently stained 

(step 7), and the fluorescence intensities can be detected through BeadArray Reader (step 

8). The data will then be analyzed to generate genotype calling using automated software.    
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Figure 2.5: Assembly of an optical fiber array; (A) An etched fiber optic bundle is 

exposed to the bead pool, allowing individual beads to assemble into the microwells at 

the bundle’s end; (B) Scanning electron micrograph of an assembled array containing 

3-μm diameter silica beads ((Oliphant et al., 2002), Courtesy of Todd Dickinson).  

 

Figure 2.6: Illumina Infinium assay protocol (Gunderson et al., 2006). 
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2. 3 Independent Component Analysis  

Independent component analysis (ICA) is a blind source separation method which has 

been widely used in many fields such as signal and image processing (Comon, 1994; 

Hyvarinen et al., 2001). In an ICA model, the observed data are treated as a linear 

combination of unknown independent sources, and the aim is to decompose the observed 

data and extract the sources through maximizing the independence among them. ICA 

becomes a popular technique for biomedical signal analysis, given that the measured 

signals are commonly mixtures of various underlying sources including both features of 

interest and noise/background signals.  

A typical ICA model is shown below in (2.2), where the observed data are formed by 

a linear combination of the underlying sources, which are assumed to be not observable, 

statistically independent and non-Gaussian. X denotes the observed data with the 

dimension of sample (M) × feature (N) (typically, N ≥ M). S denotes the unknown source 

matrix, where each row represents an independent component. L is the number of 

independent components (ICs). A denotes the unknown mixing matrix, with each column 

representing the loading coefficients associated with one independent component.  

                

    [

  
 
  
]      [      ]     [

  
 
  
]                                        

                                                                  (2.2) 

In ICA, the underlying sources are extracted through estimating an unmixing matrix 

W such that Y is a good approximation to S, as shown in (2.2). The estimation of the 
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unmixing matrix W is usually an iterative process where W is updated based on a 

specific objective function to optimize the independence among components. Several 

ICA algorithms have been implemented for the estimation of W where various 

independence metrics are employed, including Infomax, fastICA, JADE, EVD, and 

AMUSE (Bell and Sejnowski, 1995a; Cardoso and Soloumiac, 1993; Georgiev and 

Cichocki, 2001; Hyvarinen and Oja, 1997; Tong et al., 1990).  

Among these ICA algorithms, Infomax (Amari, 1998; Bell and Sejnowski, 1995a) has 

been suggested as yielding reliable results for brain imaging data (Correa et al., 2007).  

More recently, the application of ICA was extended to genotype data (Chen et al., 2012c; 

Dawy et al., 2005; Liu et al., 2009) and showed great promise due to its multivariate 

nature, which helped identify components representing combined effects from multiple 

SNPs and associated with a given phenotype. 
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CHAPTER 3 CONSISTENCY-BASED ICA ORDER SELECTION  

3. 1 Introduction 

A commonly used ICA algorithms is Infomax (Amari, 1998; Bell and Sejnowski, 

1995a), which has been suggested as yielding reliable results for brain imaging data 

(Correa et al., 2007). Infomax requires selecting the order, or the component number, 

before data decomposition. Information-theoretic criteria, such as Akaike information 

criterion (AIC) and minimal description length (MDL), have been employed (Akaike, 

1973; Calhoun et al., 2001; Rissanen, 1978; Wax and Kailath, 1985) to solve this 

problem. In particular, a modified MDL criterion was specifically developed for ICA 

applied to functional magnetic resonance imaging (fMRI) data (Li et al., 2007).  

The order selection is much more challenging for genotype data compared with MRI 

data, since in general genetic components account for small amounts of variance 

embedded in the genome (except for those accounting for the population structure), 

making it difficult to separate signal of interest from non-related information. In addition, 

a principal component analysis (PCA) data reduction is usually applied before 

Infomax-ICA to select out the same number of principal components accounting for the 

most variance of the data. This PCA reduction obviously does not guarantee the inclusion 

of information related to a genetic component carrying small variance. While using 

variance to identify the true component number works less effectively for genotype data, 

we observed that using consistency leads to relatively more accurate results. Thus, 
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instead of using the information-theoretic criteria, we propose to select the order based on 

consistency for genotype data. 

3. 2 Method 

The proposed order selection procedure consists of three steps: ICA runs, consistency 

map construction and order selection.  

ICA Runs 

We apply Infomax-ICA to a given dataset XM×N with different orders (denoted as l), 

as shown in (3.1). S
l
 and A

l
 respectively represent the components and loadings extracted 

by ICA with an order of l. The maximal tested order is denoted as L. 

          
      

    (         )                                    (3.1) 

Consistency Map Construction 

Given the ICA results from different tested orders, two consistency maps are 

constructed, one for components (CS) and the other for loadings (CA). The consistency 

evaluates the overall components’ or loadings’ similarity measured by correlations within 

a range of tested orders. Specifically, for the k
th

 component extracted in an ICA run with 

order l (denoted as S
l
(k)), we identify the most similar component extracted in the 

following ICA run with order l+1 (denoted as S
l+1

(k’)), and then record the absolute 

value of their correlation as an element CS(k,l) in the component consistency map, as 

shown in (3.2). This procedure is repeated for each component extracted in each ICA run, 

and thus the component consistency map, CS, is constructed as the upper triangular part 

of an L×L matrix. In a similar way, we construct the loading consistency map CA. Within 
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the consistency matrices CS and CA, each column of the upper triangle reflects the 

overall consistency across all components or loadings extracted in one ICA run, while 

each row depicts the consistency evolution of one specific component or one set of 

loadings across all the tested orders.  

  (   )     [    (  ( )      (  ))]                                   (3.2) 

Order Selection 

In this step, we locate the desired order which leads to, relatively speaking, the most 

accurate components and loadings. Three strategies can be applied: overall consistency, 

reference-blind consistency, and reference-specific consistency.  

A. Selection based on the overall consistency (overall) 

Within the component consistency map, we focus on its upper triangle and calculate 

the mean of each column to obtain the overall component consistency CSova for each 

tested order n, as shown in (3.3). It is expected that the overall consistency remains stable 

with low orders and starts to decrease quickly when the increasing order results in a 

components over-splitting situation. Thus, the turning point provides a good guidance on 

the order selection. To avoid catching local oscillations, we search for a component order 

range, RS, covering 10 consecutive tested orders, where the overall consistency exhibits 

the largest descending gradient (G). The above procedure is repeated for the loading 

consistency map and results in an order range RA. Finally, to balance both component and 

loading consistencies, the median value of the overlapped range between RS and RA is 

selected as the final order, denoted as lsel. 
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B. Selection based on the consistency of a reference  

Given a component of interest, Sr, as a reference, we select out from each ICA run 

one counterpart component Sc
l
 that exhibits the most similar pattern to the reference. 

Then to evaluate the reference’s consistency across tested orders, we apply a sliding 

window covering 10 consecutive orders and calculate the overall consistency CSc 

(average of all pairwise correlations) among counterpart components within that window, 

as shown in (3.4). To avoid overfitting, among the windows exhibiting relatively high 

consistencies (>CSc,th, chosen empirically), we select the leftmost to be the component 

order range, denoted as RS. The above procedure is also repeated for the loadings, 

resulting in the order range RA. Finally, to balance component and loading consistencies, 

the median value of the overlapped range between RS and RA is selected as the final order 

lsel. Depending on the purpose of the study, the reference selection can be guided by the 

consistency map or phenotypical information, as described below: 

   ( ̃)      {   [            (  
      

   )]}   

                 [   (     )] 

      { ̃    ( ̃)        } 

     (     )                                                      (3.4) 
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Reference selected based on the consistency map (reference-blind): In the consistency 

map, a segment in a single row exhibiting consecutively high correlations indicates a high 

regional stability. The corresponding component is likely to be true and can serve as a 

good reference. 

Reference selected based on phenotypical information (reference-specific): The 

selection of reference can also be guided by phenotypical information such as diagnoses 

labels. For instance, in a schizophrenia study, we can select a component whose loadings 

differentiate patients from controls as a reference. 

3. 3 Simulation 

We simulated a primary SNP dataset consisting of 200 samples and 5,000 SNP loci. 8 

components were simulated using PLink (Purcell et al., 2007b), each involving 150 

causal loci and a different case-control pattern. The causal loci exhibited different levels 

of effect sizes, ranging from 1.77 to 18.86 with a median of 2.20. Furthermore, we 

investigated the robustness of the procedure under different conditions, including effect 

size of causal loci, number of samples, number of SNP loci and number of true 

components. 

ICA results derived from different orders were compared with the ground truth, and 

the average accuracies were calculated as a function of the tested order. Specifically, the 

component accuracy was evaluated by sensitivity, which is the ratio of correctly 

identified causal loci over the known true loci. The loading accuracy was reported as the 

absolute value of the correlation between the simulated case-control pattern and the 
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extracted loadings. Based on the resulting accuracy, we examined whether the selected 

order would lead to the optimal results.  

In the primary test, we performed ICA runs with orders ranging from 2 to 100 and 

then constructed the component and loading consistency maps, as shown in Figure 3.1, 

where the color map indicates the strength of correlation. All three selection strategies 

were tested. Using the overall consistency, the order was selected to be 19. Using the 8
th

 

component extracted with the order 17 as a reference (reference-blind), the order was 

selected to be 18. Using the case-control pattern of the first simulated component as a 

reference (reference-specific), the order was selected to be 21. The selected orders are 

marked in Figure 3.1 and 3.2, where Figure 3.1 shows the positions and consistency 

values of the selected orders in the two consistency maps, and Figure 3.2 provides a 

summary of the performance evaluation across tested orders, indicating that the selected 

orders lead to the optimal results.  

3. 4 Results 

The performances of the proposed procedure on datasets with different conditions are 

summarized in Figure 3.3-3.5, where the selected orders are marked and compared with 

other tested orders in terms of the resulting accuracies. It can be seen that we are mainly 

identifying the leftmost sliding window exhibiting an optimal accuracy. In general, the 

selected orders lead to relatively accurate components and loadings regardless of the ICA 

performances. 
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Figure 3.1: Component and loading consistency maps. 

 

Figure 3.2: Performance evaluation of the primary test (200 samples, 5K SNP loci, 8 true 

components, median effect size of 2.20). 
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Figure 3.3: Performance evaluations on datasets with causal loci of different effect sizes 

(200 samples, 5K SNP loci, 8 true components). Black and gray lines represent 

component and loading accuracies respectively. 

 

 

Figure 3.4: Performance evaluations on datasets with different sample sizes (5K SNP 

loci, 8 true components, median effect size of 1.99). Black and gray lines represent 

component and loading accuracies respectively. 

 

 

Figure 3.5: Performance evaluations on datasets with different numbers of SNP loci (200 

samples, 8 true components, median effect size of 2.04). Black and gray lines represent 

component and loading accuracies respectively. 
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Figure 3.6: Performance evaluations on datasets with different numbers of true 

components (200 samples, 5K SNP loci, median effect size of 1.95). Black and gray lines 

represent component and loading accuracies respectively. 

3. 5 Discussion 

The proposed order selection procedure employs consistency as a criterion to locate 

the optimal order that results in relatively accurate components and loadings. Given its 

robustness, we expect that ICA can consistently extract a true component within a range 

of varying orders. This consistent region can be captured with different strategies, either 

through evaluating the overall consistency across all components or evaluating the 

consistency of a specific component across different orders, which can be selected based 

on regional stability or phenotypical information. Simulations demonstrate robust 

performances of all three strategies under different conditions.  

Effect size of causal loci, number of samples and number of SNP loci: These varying 

conditions result in components accounting for different amounts of variance of the data. 

With a larger effect size, more samples or less input SNP loci, the simulated components 

account for more variance of the data than those with a smaller effect size, less samples 

or more input loci. When the components carry an adequate amount of variance, they can 
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be accurately identified by ICA. In cases where ICA performs well, the order selection 

procedure accurately pinpoints the optimal order providing the best results. In cases 

where components are extracted with low accuracies, the proposed procedure still 

captures the range where relatively accurate components and loadings can be obtained, as 

shown in Figure 3.3-3.5. 

Number of true components: We also simulated datasets with different numbers of 

true components, ranging from 2 to 14. Figure 3.6 summarizes the performance on these 

datasets. Overall, the proposed procedure exhibits robust performance where the selected 

order consistently leads to reasonable results regardless of varying numbers of true 

components. In addition, this evaluation clearly shows that, when a genetic component 

accounts for a small amount of variance, a true component number does not guarantee 

optimal results, since the component may be neglected in the PCA reduction applied 

before Infomax-ICA. 

Among the three order selection strategies, the “overall” and the “reference-blind” 

methods are completely data-driven, while the “reference-specific” method involves 

phenotypical information. To investigate whether the selection of phenotypical 

information would affect the performance of the “reference-specific” method, we 

simulated components with different case-control patterns, yet always used the pattern of 

the first component to guide the reference selection. The simulation results indicate that 

the selected orders result in optimal average accuracies of all components and loadings 

regardless of the choice of phenotype. Thus we conclude that the reference selection can 

be guided by any phenotypical information and the performance of the procedure is not 

sensitive to this selection. 
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In summary, we design a procedure to select the ICA order based on consistency. The 

goal is to locate an order which allows ICA to extract relatively accurate, consistent 

components and loadings, while the components and background signal carry comparable 

variations. Three strategies have been implemented based on Infomax-ICA to achieve 

this goal. Simulation results indicate robust performances of all three strategies under 

different conditions and it is noteworthy that the procedure is able to select a reasonable 

order even when ICA operates less efficiently. While it awaits further evaluation with 

different ICA algorithms, we believe that there will be many applications for this 

procedure, not limited to genotype data, but any data with very low signal-to-noise ratio. 

Although the procedure proposed here is not mathematically ‘hard’ or ‘novel’, it will 

bring in great practical benefit for many researches.
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CHAPTER 4 PARALLEL INDEPENDENT COMPONENT 

ANALYSIS WITH REFERENCE 

4. 1 Introduction 

Novel mathematical and computational methods are desired in imaging genetics to 

optimally combine the image-wide and genome-wide approaches which allow unbiased 

searches over a large range of variants. One of the most challenging problems is the 

correction for the huge number of statistical tests in univariate models. The correction 

makes it highly difficult to identify a factor of small effect size with a practical sample 

size. In addition, univariate approaches are not well-suited to identify weak effects across 

multiple variables. For this reason, multivariate approaches show specific advantage for 

simultaneously assessing many variables for an aggregate effect. To better identify 

aggregate effects across many variables, a number of models have been derived, 

including principal component regression (PCReg) (Wang and Abbott, 2008), sparse 

reduced-rank regression (sRRR) (Vounou et al., 2010) and parallel independent 

component analysis (pICA) (Liu et al., 2009).  

PCReg, sRRR, and pICA are designed to deal with datasets of high dimensionality 

and yield interpretable results. However these approaches are not able to take prior 

information into account. Such information can be useful to enable a guided yet flexible 

approach and can improve the robustness of the results compared to a fully blind 

approach. For instance, some genes known to participate in a biological pathway critical 
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to a disease may help identify a set of genes contributing in a coordinated way to a larger 

network. As observed in pilot studies, incorporation of prior information may be 

especially helpful in analyzing genomic data, where a component usually accounts for a 

small amount of variance in the data and is more difficult to identify (Chen et al., 2012c; 

Liu et al., 2012). Thus, we propose parallel independent component analysis with 

reference (pICA-R), which extends pICA to incorporate prior information to provide a 

reference to guide analyses. While pICA is designed based on regular (blind) ICA to 

enhance correlation between two modalities, pICA-R further takes advantage of a priori 

knowledge to guide the analysis and pinpoint a particular component of interest 

embedded in a large complex dataset. In this chapter, we compare pICA-R with other 

multivariate models through simulated data and evaluate the models under several 

scenarios.  

4. 2 Method 

Parallel independent component analysis with reference (pICA-R) is formulated by 

incorporating a reference constraint into parallel independent component analysis (pICA) 

(Liu et al., 2009) to guide the component extraction towards a priori knowledge. Typical 

pICA builds on regular infomax (Amari et al., 1996; Bell and Sejnowski, 1995b) to 

extract independent components in parallel for each modality, followed by a conditional 

enhancement of the inter-modality correlations. In comparison, pICA-R imposes an 

additional constraint upon the infomax framework to minimize the distance between a 

certain component and the reference. The mathematical model is shown below, and 

Figure 4.1 illustrates the flow of the approach.  
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Given a dataset X with dimension of sample (i.e., subjects) × feature (i.e., voxels 

[d=1], SNPs [d=2]), (4.1) illustrates the mathematical model of data decomposition, 

where  

                      
                                        (4.1) 
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Figure 4.1: Flow chart of pICA-R. W1 and W2 denote the unmixing matrices of the two 

modalities, respectively. F1, F2 and F3 represent the objective functions based on which 

unmixing matrices are updated. 



Chapter 4 Parallel Independent Component Analysis with Reference 

 

32 

 

the observed dataset X is decomposed into a linear combination of the underlying 

independent components, or sources. S is the component matrix, A is the loading or 

mixing matrix (estimated as the pseudo inverse of W), W is the unmixing matrix, and the 

subscript d runs from 1 to 2, denoting the data modality. Specifically, pICA-R iteratively 

solves the unmixing matrices W1 and W2 simultaneously for the two modalities, 

gradually maximizing the objective functions F1, F2 and F3 in the manner described in 

Figure 4.1. In particular, F1 is the objective function of the regular infomax (Bell and 

Sejnowski, 1995b) for modality 1, where independence among components is achieved 

by maximizing the entropy (H), as shown in (4.2). fy(Y) is the probability density 

function of Y and W0 is the bias vector. In contrast, F2 is the objective function for 

modality 2, where an additional closeness metric is imposed to extract maximally 

independent components, one of which also closely resembles the reference r. The 

inter-modality correlation function F3 shown in (4.3) is designed to maximize the 

correlations computed over the columns of the loading matrices A1 and A2, capturing 

connections between pairs of inter-modality components. 

pICA-R incorporates an additional constraint to the unmixing matrix of modality 2 

(W2), detaching itself from regular blind pICA. The objective function F2 is shown in 

(4.2) and Figure 4.2 illustrates how the constraint is applied. In this application modality 

2 is the genomic data. The reference r is a binary vector with the same number of loci as 

the genomic data, where the selected reference loci are set to “1” and the rest are “0”s. 

This binary reference effectively serves as a mask such that the closeness between the 

component and reference vector is measured on the reference loci only. This design 

considers that for a given reference a group of loci are presumably of interest and set to 1,  
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Figure 4.2: Illustration of the applied distance constraint: (a) the underlying component 

with highlighted causal loci (black region); (b) the generated reference, where r is the 

reference vector with selected reference loci set to 1 (gray region) and other loci set to 0. 

r̃ denotes a subvector consisting of all the reference loci; (c) the closeness is optimized 

specifically for the selected reference loci of one component. W2 is the unmixing matrix 

of modality 2, X2 is the data matrix and S2 is the component matrix. S̃ i denotes a 

subvector of S2i (the i
th

 row of S2), W2i denotes the i
th

 row of W2 and  ̃  denotes a 

submatrix of X2. 

however status of the remaining loci is to-be-determined instead of not interesting. 

Therefore, we choose to optimize the closeness specifically for the selected reference loci 

while allowing the remaining loci to show their own importance driven by data. This is 

equivalent to minimizing ‖| ̃  |   ̃‖ 
 
 in F2, where  ̃ denotes a subvector of r,  ̃   

denotes a subvector of S2k (the k
th

 row of S2), W2k denotes the k
th

 row of W2 and  ̃  

denotes a submatrix of X2, as illustrated in Figure 4.2. ||·||2 represents the L2-norm 

Euclidian distance, and λ is a weighting parameter. It should be noted that we apply the 

constraint only to one modality in this work, which provides a simple proof-of-concept 
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and also fits the proposed application in imaging genetics. The constraint can be extended 

to both modalities if necessary. 

With the distance measure incorporated as an additional metric, the estimation of the 

unmixing matrix W2 turns into a multi-objective optimization problem. It is well 

understood that objective functions of individual objectives can be linearly weighted and 

combined into a single aggregate objective function (F2), resulting in a less-complex 

problem. And by choosing different values for the weighting parameter λ, we can explore 

different points of the Pareto front (Klamroth and Tind, 2007), which justifies a strategy 

of choosing the weight via simulation. In addition, we have adopted several strategies to 

avoid overfitting. First, the constrained component (i.e., S2k in F2) is selected 

dynamically based on the data. Specifically, in each iteration, we examine the distances 

between the reference and all the components, and then select only the closest component 

to be constrained. Second, to avoid over-emphasizing the distance metric, we adaptively 

adjust the constraint weight λ. Starting with a heuristic weight, we monitor the overall 

independence (log|det(W2)|) and the distance measure after each iteration, then adjust λ 

accordingly to ensure the balance between the two objectives in the objective function. 

The three objective functions (F1, F2 and F3) are optimized using gradient 

maximization. Specifically, for F1 and F2, W1 and W2 are updated by the natural gradient 

learning rule (Amari, 1998), and for F3, A1 and A2 are updated by the steepest descent 

learning rule (Liu et al., 2009), as shown in Equations (4.4)-(4.6). α1, α2, αc1 and αc2 

denote the leaning rates.   

       [  (     )  
 ]                                          (4.4)                    

         [  (     )  
 ]     
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4. 3 Simulation 

The proposed pICA-R approach was evaluated using simulated functional MRI 

(fMRI) and SNP data for its capability to extract factors of interest, particularly in the 

genetic modality. The fMRI data consisted of 200 samples (i.e., subjects) and 10K 

voxels. Eight non-overlapping brain networks were simulated using the SimTB toolbox 

((Erhardt et al., 2011), http://mialab.mrn.org/software). The SNP data were simulated to 

investigate the performances of pICA-R when components accounted for different 

amounts of variance in the data, which was achieved through adjusting sample-to-SNP 

ratios, causal loci ratios, and effect sizes of causal loci. The sample-to-SNP ratio 

compared the sample size (or number of subjects) with the total number of SNP loci (or 

SNP dimensionality); the causal loci ratio compared the number of causal loci with the 

SNP dimensionality; the effect size of causal loci was measured by percentage of 

variance explained in disease status. Specifically, the SNP data consisted of 200 

simulated samples (subjects), each with equal SNP dimensionality, which ranged from 

10K to 500K. Eight non-overlapping SNP components were simulated using PLink 
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(Purcell et al., 2007a), each involving 150 causal loci associated with a randomly 

generated case-control pattern. The resulting sample-to-SNP ratio ranged from 0.02 

(200/10K) to 4.00×10
-4

 (200/500K), and the causal loci ratio ranged from 0.015 

(150/10K) to 3.00×10
-4

 (150/500K). The effect size of individual causal loci ranged from 

0.003 to 0.21. None of the SNP components shared common causal loci. No high linkage 

disequilibrium (LD) was observed among causal loci (maximum correlation < 0.39). We 

further designed a mixing matrix for the fMRI data where randomly selected columns 

were correlated to particular case-control patterns of the SNP components. The simulated 

brain networks were then combined into one fMRI observation matrix through this 

mixing matrix. Random Gaussian noise was superimposed afterwards. We did not adjust 

the number of components in the simulations as the ability to recover the independent 

hidden factors is not significantly affected by how many components are embedded, 

provided that the number of components can be correctly approximated. We used 

second-level (subject × feature) fMRI data in this simulation, however we would expect 

comparable performances when pICA-R is applied to structural grey matter images, 

given that both are feature-based maps and structure-function associations have been 

observed at the feature level in an ICA framework (Calhoun et al., 2006; Segall et al., 

2012).  

We then applied pICA-R to the simulated datasets and compared its performance with 

those of ICA (regular infomax), ICA with reference (ICA-R) (Lin et al., 2010) and pICA. 

Default settings were used for infomax, ICA-R and pICA. Since infomax, pICA and 

pICA-R require selection of the component number, we set this to 8, the true component 

number for the simulated data, for the fMRI modality in all tests. For the SNP modality, 
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due to different data properties, the true component number may not yield reliable results 

(Chen et al., 2012b). Therefore, in the tests with infomax and pICA, we examined 

component numbers ranging from 5 to 50 (in steps of 5), and selected the one yielding 

optimal results. The number of components was selected to be 50 in all pICA-R tests, 

given our observation that the proposed pICA-R tends to be robust to over-estimation. 

The performance was evaluated based on accuracies of the genetic components and 

loadings, as well as the inter-modality connections. The SNP component accuracy was 

assessed by a sensitivity measure, the ratio of correctly identified causal loci (among the 

top 150 loci) to the built-in true causal loci. The genetic loading accuracy was reported as 

the absolute value of the correlation between the simulated case-control pattern and the 

extracted loadings. We also calculated the correlations between loadings of the two 

components (SNP and fMRI) that most resembled the ground truth of the two modalities, 

respectively, to assess the accuracy of the inter-modality connections.  

Particularly, for the two semi-blind methods (pICA-R and ICA-R), we investigated 

how their performances would be affected by the reference accuracies (ratio of true 

causal loci in the reference, as illustrated in Figure 4.2). Previous work indicated that a 

20-loci reference of accuracy 1 was required for ICA-R to reliably extract factors of 

interest when the sample-to-SNP ratio was 0.02 (Liu et al., 2012). Guided by this, we first 

tested a reference of accuracy 1, spanning 20 randomly selected true causal loci. We then 

tested a 40-loci reference of accuracy 0.5, primarily to investigate how the performances 

would be affected by adding random loci. Then accuracies were adjusted from 0.1 to 0.5 

for the 40-loci references to investigate the influence. The performance was evaluated in 

terms of sensitivity (as described above) and reference-imposed false discovery rate 
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(FDR), which was to assess the overfitting by evaluating how many random referential 

loci were falsely elevated as causal.  

4. 4 Results 

 

Figure 4.3: Performance comparisons among pICA-R, ICA (infomax), ICA-R and pICA: 

(a) on simulated datasets with different effect sizes when the sample-to-SNP ratio was 

controlled at 0.02 and causal loci ratio at 0.015; (b) on simulated datasets with SNP 

dimensionality ranging from 10K to 500K, resulting in sample-to-SNP ratios ranging 

from 0.02 to 4×10
-4

 and causal loci ratios from 0.015 to 3×10
-4

, the median effect sizes 

were 0.057, 0.055, 0.050 and 0.050 respectively. For pICA-R and ICA-R, results were 

obtained with a 20-loci reference of accuracy 1. The error bars reflect mean ± SD based 

on 100 runs. 

As expected, fMRI components were accurately identified (component and loading 

accuracies higher than 0.9) in all tests, given that each component carried a considerable 

amount of variance in the data. Regarding the SNP modality, with a 20-loci reference of 

accuracy 1, pICA-R exhibited consistently better performance than the other algorithms 
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in identifying SNP components with different levels of sample-to-SNP ratio, causal loci 

ratio and effect size. Figure 4.3a and 4.3b summarize the simulation results, where the 

error bar reflects mean ± SD based on 100 runs. It can be seen that accuracies of SNP 

components, associated loadings and connections between SNP and fMRI measured by 

sensitivity or correlation were all improved compared with infomax, ICA-R and pICA. 

Also it is noted that pICA-R was able to identify the component with a sensitivity above 

0.5 given a median effect size as low as 0.024 while the sample-to-SNP ratio was 

controlled at 0.02 and the causal loci ratio at 0.015. While the median effect size was 

controlled around 0.05, pICA-R in general exhibited robust performances within the 

tested ranges of sample-to-SNP ratio and causal loci ratio. We also conducted a 

simulation at the low sample-to-SNP ratio (200/500K) with an increased causal loci ratio 

(1000/500K), a scenario similar to real data SZ application, and found that pICA-R 

exhibited a comparable sensitivity (0.53) using a 20-loci reference of accuracy 1 (not 

shown). Therefore, we assume that a reference spanning at least 20 true causal loci is 

suitable for the real data application provided that the causal loci ratio is above 3.00×10
-4

. 

The reference accuracy is crucial for identifying the correct component, as illustrated 

in Figure 4.4. As expected, pICA-R showed increased sensitivities with references of 

higher accuracies. It is also noted that a 40-loci reference of accuracy 0.5 yielded a 

sensitivity around 0.5, comparable to that obtained with a 20-loci reference of accuracy 1. 

Most importantly, the results indicated that when the sample-to-SNP ratio was lower than 

0.004 (200/50K) and the causal loci ratio lower than 0.003 (150/50K), pICA-R started to 

benefit in sensitivity compared to ICA and pICA with a reference accuracy as low as 0.2. 

In contrast to sensitivity, the performance in reference-imposed FDR was less affected by 
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the reference accuracy and remained below 0.05. Overall, pICA-R exhibited 

improvements in both sensitivity and reference-imposed FDR compared to ICA-R.  

 

Figure 4.4: Performance comparisons between pICA-R and ICA-R, with 40-loci 

references of different accuracies: (a) on simulated datasets with different effect sizes 

when the sample-to-SNP ratio was controlled at 0.02 and causal loci ratio at 0.015; (b) on 

simulated datasets with SNP dimensionality ranging from 10K to 500K, resulting in 

sample-to-SNP ratios ranging from 0.02 to 4×10
-4

 and causal loci ratios from 0.015 to 

3×10
-4

, the median effect sizes were 0.057, 0.055, 0.050 and 0.050 respectively. The solid 

and dotted lines reflect results of pICA-R and ICA-R, respectively.  

4. 5 Discussion  

The simulation results demonstrate that the approach helps capture factors of interest 

more accurately. As illustrated in Figure 4.3a and 4.3b, pICA-R show consistently better 

results for component accuracy, component loadings and inter-modality link compared to 

regular ICA, ICA-R and pICA, and the improvement becomes more pronounced with 

lower sample-to-SNP ratio and causal loci ratio, or smaller effect size. It can be seen that 
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the proposed approach yields a sensitivity above 0.5 at a low sample-to-SNP ratio of 

4.00×10
-4

 (200/500K) and a causal loci ratio of 3.00×10
-4

 (150/500K), while the median 

effect size is around 0.05. This observation encourages the application of pICA-R to 

genomic data with comparable sample-to-SNP and causal loci ratios, where a million or 

so loci may be involved given an increased yet affordable sample size and hundreds of 

causal loci.  

On the other hand, it needs to be emphasized that reference accuracy plays an 

important role in the performance of pICA-R. As clearly shown in Figure 4.4, when 

random loci are incorrectly selected as references, pICA-R exhibits reduced sensitivity. 

However, at relatively low sample-to-SNP ratios (below 200/50K), even with accuracies 

as low as 0.2, pICA-R still benefits in sensitivities compared to blind ICA and pICA, 

indicating a big tolerance of false inputs. Meanwhile, the reference-imposed FDR 

remains below 0.05, and decreases to 0 with accuracies greater than 0.3. This effective 

control on reference-imposed FDR is believed to result from a well maintained balance 

between independence and closeness metric such that the latter never dominates to 

excessively elevate the referential random loci. Based on the simulation results, a general 

conclusion can be drawn that a relatively accurate reference is recommended for pICA-R. 

Compared to a large number of reference loci with low confidence, a small set of reliable 

reference loci would lead to a better performance. Retrospectively, through investigating 

the sensitivity and reference-imposed FDR as functions of reference accuracy, we can 

empirically infer the quality of a reference. The simulation shows that, if more than 10% 

of the reference SNPs show up in the most significant (i.e., top component weights) 

findings, the reference accuracy is most likely higher than 0.2 and, the reference benefits 
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the performance. In contrast, a low ratio of reference loci in the most significant findings 

usually indicates the distance metric being de-emphasized due to low reference accuracy. 

In pICA-R, reference SNPs are predicted to contribute simultaneously to only a single 

component. Therefore, it may be inappropriate to directly combine multiple presumed 

susceptibility loci identified in univariate analyses, which may then result in a reference 

containing true SNP hits from multiple components. In this case, the reference is 

essentially of low accuracy as pICA-R is currently designed to optimize the distance 

between the reference and one constrained component and the true hits from other 

components cannot be recognized. Given a low-accuracy reference, minimizing distance 

will contradict with maximizing independence, which can be captured by the online 

monitoring of the overall independence. pICA-R will then adaptively adjust the constraint 

weight to de-emphasize the distance metric to assure the integrity of independent 

components (as reflected in simulations, Figure 4.4). When the distance metric is 

significantly de-emphasized, pICA-R effectively converges with results from blind pICA.  

While it is true that reference accuracy plays an important role in pICA-R 

performance, this should not compromise the applicability of the model. First, we 

implement a binary reference, thus users only need to determine whether the loci are 

relevant or not to the trait of interest instead of specifying the accurate effect sizes. 

Second, the model is highly robust to inaccurate reference SNPs. As demonstrated in 

simulations, pICA-R outperforms blind methods with the accuracy as low as 0.2 when 

the sample-to-SNP ratio is lower than 4.00×10
-3

 (Figure 4.3 and Figure 4.4). Last but not 

least, while the choice of reference SNPs is informed by evidence, this is not necessarily 

limited to association studies. Independent molecular, cellular or system biological 
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knowledge can also guide the selection. Even when informed by association studies, an 

enormous sample is not a necessity. Replication across studies can help increase 

confidence in the selection. For example, an association is more likely to be true and 

poses a good candidate for the reference if consistently observed in several independent 

studies of small sample sizes. Overall, we believe that the large amount of available data 

and information learned from previous studies are sufficient to generate testable 

references for a particular research interest, which can be leveraged by our pICA-R 

method to increase, broaden or deepen our knowledge at large. 

A primary strategy to generate a testable reference is through dissecting the natural 

LD blocks for individual genes. This is because genome-wide association study (GWAS) 

is based on the premise that a causal variant is located on a haplotype, and thus a marker 

allele in LD with the causal variant should show (by proxy) an association with the trait 

of interest (Stranger et al., 2011). Therefore, SNPs in one LD cluster are more likely to 

contribute simultaneously to one single component and serve as good candidates for 

reference. Given the current formulization that one single component is constrained in 

pICA-R, this primary strategy for reference generation can only test one LD referential 

set at a time. To improve the robustness, we will extend pICA-R to accommodate 

multiple referential sets where the interrelationships are unknown. The related contents 

are presented in the next chapter. 
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CHAPTER 5 PARALLEL INDEPENDENT COMPONENT 

ANALYSIS WITH MULTIPLE REFERENCES 

5. 1 Introduction 

A key factor that affects the performance of pICA-R is the reference accuracy. As 

shown in the previous chapter, degradation is expected in component, loading and 

linkage accuracies when the reference accuracy is below 0.2. This raises an issue on how 

an applicable reference can be effectively derived in real applications where the reference 

accuracy cannot be reliably estimated. One primary strategy is to derive a referential SNP 

set based on the natural LD clusters of individual genes. A marker allele in LD with the 

causal variant should show (by proxy) an association with the trait of interest (Stranger et 

al., 2011). Compared to random loci, LD loci are more likely to covary with a same 

underlying pattern (e.g. the trait of interest) and be captured in one component in pICA-R 

which inherits the linearly additive model from ICA. Based on this assumption, a 

referential SNP set derived from LD clusters is considered more homogeneous and 

exhibiting relatively high reference accuracy, which facilitates the pICA-R analysis.  

While a single accurate referential SNP set is shown to greatly improve the 

performance compared to blind approaches, a capability to accommodate multiple 

referential SNP sets is desired in light of the real applications of pICA-R. For instance, 

one challenging issue in imaging genetics studies is that, a complex genetic structure is 

envisaged for plenty of neurological disorders which are polygenic and heterogeneous. 
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Polygenicity means that a number of genetic variants with possibly small individual 

effect sizes are involved in the etiology of a disease. Heterogeneity is often reflected in 

phenotypic or endophenotypic complexity which might indicate contributions from 

distinct pathological mechanisms. Therefore, computationally assessing multiple 

referential SNP sets for potential convergence of functional influences on neurobiological 

traits should help better delineate the genetic architecture underlying the complex 

disorders.       

5. 2 Method  

Given the formularization of pICA-R, it is inappropriate to directly combine multiple 

referential SNP sets, as this imposes an assumption that all the referential SNPs are 

expected to contribute to the same component, which is not necessarily the case. Instead, 

the extended approach, parallel ICA with multiple references, is designed to investigate 

how each of the referential sets is represented in the observed data such that those 

potentially related will be naturally grasped when they guide the algorithm to constrain 

the same component.  

Recall that in pICA-R, the reference is designed as a binary vector where candidate 

causal loci are set to “1” and others set to “0”. When multiple referential sets are 

involved, the reference vector is expanded into a reference matrix. Each row represents a 

referential set which comprises a group of loci likely related. The interrelationship among 

different reference vectors is to be investigated. Figure 5.1 and Equations (5.1)-(5.3) 

illustrate the extended model, where the notations are consistent with those used for 

pICA-R in the previous chapter. The observed dataset X (sample × feature) is 
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decomposed into a linear combination of the underlying independent components, or 

sources. S, A and W denote the component, mixing and unmixing matrices, respectively. 

The subscript d runs from 1 to 2, denoting the data modality. The unmixing matrices W1 

and W2 are iteratively updated to maximize the objective functions F1, F2 and F3. Similar 

to single-reference pICA-R, F1 represents the objective function of the regular infomax 

(Bell and Sejnowski, 1995b) for modality 1, and the inter-modality association function 

F3 is designed to maximize the correlations computed over the columns of the loading 

matrices A1 and A2. In contrast, F2, the objective function for modality 2, is modified so 

that multiple components might be constrained to closely resemble the reference matrix 

r. Specifically, when each row of r represents a referential set, the algorithm sequentially 

works with each reference vector ri to determine the closest component and then apply 

the constraint, as shown in (5.2). The subscript i denotes the row index in matrix r and I 

denotes the total number of rows. Figure 5.1illustrates the measurement of closeness. For 

a particular reference vector   , the referential loci are represented by  ̃ , a subvector of 

  . The algorithm calculates the Euclidean distance between each of the components and 

the reference for the referential loci (‖| ̃   |   ̃ ‖ 
 

), based on which the closest 

component is selected to be constrained, such that the distance is further minimized. 

 ̃    represents a subvector of the constrained component      (i.e. the ki
th

 row of S2); 

     denotes the ki
th

 row of W2 and  ̃  denotes a submatrix of X2; ||·||2 represents the 

L2-norm Euclidian distance, and λ is the weighting parameter. 

                      
                                        (5.1) 
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Figure 5.1: Parallel ICA with multiple reference sets. Each row (e.g.,     and    ,) 

represents a set of referential loci residing in one single LD cluster. In this demonstration, 

    and     constrain the same component (       ) represented by     . 

Again, the three objective functions (F1, F2 and F3) are optimized using gradient 

maximization. For F1 and F3, the updating rules are same as those for single-reference 

pICA-R, and we refer readers to Equations (4.4) and (4.6). For F2, two situations will be 

discussed. (a) When reference vectors    and     select out different constrained 

components       and      , the corresponding rows of the unmixing matrix       

and      will be updated separately, as shown in (5.4). (b) When the two reference 
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vectors select out the same constrained component     , the corresponding row of the 

unmixing matrix      will be updated sequentially for     and    . As shown in (5.5) 

and Figure 5.1, this is essentially equivalent to      being updated for a single-reference 

vector    harboring both     and      and is expected to yield comparable performances 

with single-reference pICA-R. Such, pICA-R is extended to accommodate multiple 

referential sets without making any assumption on whether or not the loci highlighted in 

different referential sets are independent from each other, and the constraint of each 

referential set is applied based on how it is represented in the data.   
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5. 3 Simulation 

Similar to single-reference pICA-R, the extended multi-reference approach was firstly 

evaluated with simulated fMRI and SNP data for its effectiveness. As we already 

compared pICA-R with other competing approaches (see chapter 4), the key point for the 

extended approach then lied in whether it is able to correctly capture referential sets 

contributing to the same component. Therefore, the simulation was focused on 

investigating the true and false positive rates with respect to this issue. Again the 

tolerance of reference accuracy was comprehensively assessed. For proof-of-concept, we 

conducted the simulations with two referential sets imposed. However, the algorithm is 

able to deal with more.  

The simulated data consisted of 200 samples (i.e., subjects). Eight independent 

vectors were randomly generated from normal distributions to form a mixing matrix for 

the fMRI data. Subsequently, eight case-control patterns were correspondingly generated 

through linear transformations of the fMRI mixing vectors with random Gaussian noises 

superimposed, such that associations were built between fMRI and diagnosis. The 
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case-control patterns would then be used in PLink (Purcell et al., 2007b) for simulating 

SNP data.     

The simulated fMRI data had a feature dimension of 40K voxels. Eight 

non-overlapping brain networks were simulated using the SimTB toolbox ((Erhardt et al., 

2011), http://mialab.mrn.org/software) to serve as the fMRI components. The fMRI 

observation matrix was then obtained as the product of the mixing and component 

matrices with random Gaussian noises superimposed onto each sample. Similar to 

single-reference simulations, the SNP data were simulated via PLink. The performances 

of the approach was investigated with components accounting for different amounts of 

variance in the data, which was achieved through adjusting the SNP dimensionality and 

causal loci effect size. Eight non-overlapping SNP components were simulated using 

PLink (Purcell et al., 2007a), each involving 150 causal loci. The SNP dimensionality 

ranged from 50K to 500K, resulting in the sample-to-SNP ratio from 0.004 (200/50K) to 

0.0004 (200/500K), and the causal loci ratio from 0.003 (150/50K) to 0.0003 (150/500K). 

These eight SNP components consisted of 4 pairs, where each pair comprised two 

components whose causal loci were linked to the same case-control pattern. Note that 

PLink does not generate SNPs in LD. Thus through linking two components to the same 

case-control pattern, we obtained two groups of SNPs associated with the same diagnosis 

and fMRI loadings. A two-sample t-test showed that the correlations among SNPs linked 

to the same diagnosis were not significantly different from the correlations among 

randomly generated SNPs (p = 0.35). Evaluated with explained variances, the effect sizes 

of individual causal loci ranged from 0.0037 to 0.1926.  
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To evaluate the performance of the extended approach, we first investigated out of 

100 runs, what would be the ratio for the algorithm to accurately detect the referential 

sets contributing to the same SNP component and neurobiological trait, denoted as linked 

reference matching ratio in the following text. Specifically, a reference matrix was 

generated, with each vector harboring a referential set derived from one of the two groups 

of causal loci that were linked to the same case-control pattern and fMRI loading. The 

evaluation started with two accurate referential sets, each spanning 20 true causal loci. 

Then referential sets spanning 40 loci of accuracies ranging from 0 to 0.5 were tested to 

investigate the performance boundary. Equivalently, we also evaluated the ratio for the 

algorithm to falsely constrain the same SNP component for two isolated referential sets, 

denoted as isolated reference mismatching ratio. For this purpose, the reference matrix 

was generated to harbor two referential sets derived from two groups of causal loci that 

were linked to distinct case-control patterns. Again, the same range of reference 

accuracies was evaluated, as for the linked reference matching ratio. 

The model requires selection of the component number. In the simulations, the fMRI 

component number was set to 8, the true component number for the simulated data, for 

all tests. For the SNP modality, the number of components was in general selected to be 

50 given our observation that the semi-blind pICA-R model tends to be robust to 

over-estimation. However, when isolated reference mismatching ratio was evaluated with 

two isolated referential sets, the SNP component number was set to 100. The reason is 

the following. When ICA was applied to the genotype data, referenced PCA was 

commonly employed for data reduction instead of regular PCA, where a case-control 

pattern was employed such that top phenotype-related PCs, instead of those explaining 
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the largest amounts of variance, were selected. Obviously, referenced PCA is not robust 

to multiple phenotypic references, for which the top related PCs might be different. To 

address this issue, in our simulation we ranked together the projected eigenvalues when 

multiple phenotypic references were used and then selected out top related PCs. This 

strategy favors an objective selection based on how phenotypes are represented in the 

data. It should be noted that this is majorly for simulations to test the isolated reference 

mismatching ratio and is not expected to be a common practice in real applications, 

where isolated referential sets potentially contributing to different phenotypes should be 

tested in two runs.     

Besides the linked reference matching ratio and isolated reference mismatching ratio, 

accuracies of genetic components, loadings, and inter-modality connections, as well as 

the reference-imposed FDR were also evaluated for the extended approach. The SNP 

component accuracy was assessed with the ratio of correctly identified causal loci to the 

built-in true causal loci. The genetic loading accuracy was reported as the absolute value 

of the correlation between the simulated case-control pattern and the extracted loadings. 

The correlation between loadings of the two components (SNP and fMRI) most 

resembling the ground truth of the two modalities, respectively, was calculated and 

compared with the built-in correlation to reflect the linkage accuracy. In addition, when 

two isolated referential sets were tested, the performance of a combined run was 

compared with that of two separated runs. The former conducted the analysis with the 

extended approach where two isolated referential sets were assessed simultaneously, and 

the latter conducted two separate analyses with single-reference pICA-R. Due to the 
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computation burden, we did this combined versus separate comparison only for one 

dataset with a SNP dimensionality of 50K and median effect size of 0.059.  

5. 4 Results 

Overall, the extended approach successfully captured the reference structure when 

two referential sets were assessed simultaneously.  

 

Figure 5.2: Performance of parallel ICA with multiple references: (a) on simulated 

datasets with different effect sizes when the sample-to-SNP ratio was controlled at 0.004 

and causal loci ratio at 0.003; (b) on simulated datasets with SNP dimensionality ranging 

from 50K to 500K, resulting in sample-to-SNP ratios from 0.004 to 0.0004 and causal 

loci ratios from 0.003 to 0.0003, the median effect sizes were 0.059, 0.057 and 0.060, 

respectively. Results were obtained with 20-loci references of accuracy 1. The error bars 

reflect mean ± SD based on 100 runs. 

Given referential sets of 20 true causal loci (accuracy = 1), the linked reference 

matching ratio was 1 based on 100 runs, regardless of the causal loci effect size or SNP 
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dimensionality. As demonstrated in (5.5), this is equivalent to one component being 

constrained by a single reference vector harboring both referential sets. Figure 5.2 shows 

the corresponding performances of component, loading and link accuracies, measured 

with sensitivity and correlations, respectively. In agreement with single-reference 

pICA-R, the extended approach showed robust performances under different scenarios. 

Given a sample-to-SNP ratio of 0.004 (200/50K), the component accuracy remained 

close to 0.5 when the median causal loci effect size was decreased to 0.03. Meanwhile, 

consistent performances were observed when the sample-to-SNP ratio decreased from 

0.004 to 0.0004 (200/500K). 

 

Figure 5.3: Performance comparisons with 40-loci references of different accuracies: (a) 

on simulated datasets with different effect sizes when the sample-to-SNP ratio was 

controlled at 0.004 and causal loci ratio at 0.003; (b) on simulated datasets with SNP 

dimensionality ranging from 50K to 500K, resulting in sample-to-SNP ratios ranging 

from 0.004 to 0.0004 and causal loci ratios from 0.003 to 0.0003, the median effect sizes 

were 0.059, 0.057, and 0.060, respectively. The error bars reflect mean ± SD based on 

100 runs. 
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As expected, linked reference matching ratio was significantly affected by reference 

accuracies. Given 40-loci referential sets, a reference accuracy above 0.2 was required for 

the algorithm to effectively capture the reference structure, as shown in Figure 5.3. When 

the reference accuracy was below 0.2, the linked reference matching ratio was lower than 

0.2, indicating that for more than 80 out of 100 runs, the algorithm did not constrain the 

same SNP component for the two referential sets. Meanwhile, a dramatic improvement 

was in general observed at the reference accuracy of 0.3 for the linked reference 

matching ratio, which reached 0.9. When the reference accuracy was further increased to 

0.5, a linked reference matching ratio of 1 was obtained regardless of the causal loci 

effect size or SNP dimensionality, consistent with the previous observation for referential 

sets spanning 20 true causal loci. With respect to component accuracies, the 

performances of the extend approach were comparable to those of single-reference 

pICA-R when the reference structure was correctly identified given relatively higher 

accuracies (> 0.3). On the other hand, larger performance deviations were observed for 

lower reference accuracies, which was possibly due to component splitting when the 

algorithm could not identify the reference structure such that two distinct SNP 

components were constrained for the two referential sets. Again the reference-imposed 

component FDR was not affected by the reference accuracy, remaining below 0.05 for all 

the tested scenarios. 

When two isolated referential sets were assessed simultaneously, the isolated 

reference mismatching ratio was below 0.05 for all the tested reference accuracies, as 

shown in Figure 5.4. This suggests that there is a low chance for the algorithm to 

mistakenly constrain the same component when the two referential sets are essentially not 
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related. It was also noted that, when two isolated referential sets were assessed 

simultaneously, it yielded (a) comparable component accuracies (Figure 5.4) to those 

obtained from the single-reference analysis for referential set A; (b) degraded accuracies 

for referential set B. Meanwhile, no significant difference in reference-imposed 

component FDR was observed between combined and separate runs. 

 

Figure 5.4: Performance comparisons with 40-loci references of different accuracies 

when two isolated reference sets were assessed in a combined run (parallel ICA with 

multiple references) or two separate runs (single-reference pICA-R), respectively. The 

tested dataset has a sample-to-SNP ratio of 0.004 and a median effect size of 0.059. The 

error bars reflect mean ± SD based on 100 runs. The isolated reference mismatching ratio 

was reported for the combined runs.  

5. 5 Discussion 

The simulation results demonstrate that the extended approach helps capture the 

embedded reference structure in a nonparametric manner. As illustrated in Figure 5.2, 

when provided with accurate referential sets associated with the same trait of interest, the 
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algorithm correctly recognizes that they contribute to the same component and applies the 

constraints. The resulting component, loading and link accuracies are comparable to 

those previously observed in single-reference analyses. In particular, reliable detection of 

underlying reference structure is observed for a low sample-to-SNP ratio (200/500K) 

given a median effect size around 0.06, confirming the feasibility of applying the 

extended approach to real imaging genomics studies to analyze a million or so loci 

provided that hundreds of subjects are available.  

Meanwhile, it is noticed that reference accuracy plays an important role in the 

performance of linked reference matching ratio for parallel ICA with multiple references. 

As shown in Figure 5.3, for reference accuracies below 0.2, the linked reference 

matching ratio is lower than 0.2. This is not surprising, as for the proposed data-driven 

approach, when random loci are incorrectly selected to be referential, the distance 

between the reference vector and the component is smeared and no longer distinguishes 

itself from those randomly observed. On the other hand, it’s encouraging to observe a 

dramatic improvement of linked reference matching ratio to around 0.9 at the reference 

accuracy of 0.3, which is likely to achieve when using the strategy of deriving a single 

referential set based on LD loci. 

Besides reference accuracy, the performance of linked reference matching ratio is 

also affected by causal loci effect size. Obviously, degradation is observed for data with 

lower causal loci effect sizes (0.029), for which the linked reference matching ratio only 

reaches 0.5 at a reference accuracy of 0.3, as shown in Figure 5.3. Interestingly, the 

performance is less vulnerable to the increase of SNP dimensionality. This might be 

attributable to the design of the model. Recall that the Euclidean distance is calculated 
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between the component and the reference vector specifically for those referential loci. 

Thus, an increased SNP dimensionality simply results in an increased number of 

to-be-investigated loci, which might not significantly affect the estimated distance metric. 

Instead, decrease in effect sizes is expected to increase the distance between the reference 

vector and the true component, such that other components might by chance be closer to 

the reference vector and selected for constraint, resulting in in a low linked reference 

matching ratio.   

While linked reference matching ratio is more sensitive to reference accuracy and 

data properties, isolated reference mismatching ratio is less affected and reliably below 

0.05 when two isolated referential sets are assessed simultaneously, as shown in Figure 

5.4. Note that when the reference accuracy is 0, the two isolated referential sets 

essentially consist of random loci, which is equivalent to the situation when linked 

reference matching ratio is evaluated for two referential sets of accuracy 0. In both cases, 

the chance is below 5% for the algorithm to constrain the same component for the two 

tested referential sets, as consistently observed in Figure 5.3 and 5.4. This also applies to 

the situations when the reference accuracy is increased for the two isolated referential 

sets, as the added true causal loci of one set are essentially recognized as random loci by 

the other set when they are indeed not related. Therefore, the linked reference matching 

ratio is expected to remain below 0.05, regardless of reference accuracy. 

When two referential sets associated with different phenotypes are assessed in one 

run, the resulting performances might be affected by the data reduction if referenced PCA 

is employed. In our simulation, we adopted an objective selection such that more related 

information would be included for the phenotype better represented in the observed data. 
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As shown in Figure 5.4, for referential set A, comparable component accuracies are 

observed between combined and separate runs, while degradation is observed for 

referential set B. It’s noted that the median causal loci effect sizes for these two 

components are 0.059 and 0.057, respectively. Thus, more information related to 

component A is included through referenced PCA, which results in higher sensitivity in 

the combined runs. 

Overall, parallel ICA with multiple references is able to assess multiple referential 

sets simultaneously while the interrelationships are not known. Compared to 

single-reference pICA-R, the extended approach is more flexible in dynamically 

identifying the constrained component for individual referential set and allows some 

extent of heterogeneity in the reference. Simulation results demonstrate high linked 

reference matching ratio and low isolated reference mismatching ratio, confirming the 

validity of Euclidean distance as a metric for the assessment of reference structure. 

Meanwhile, some cautions need to be exercised when conducting an analysis. First, an 

accurate reference is favored. Compared to single-reference pICA-R, the extended 

approach is slightly more sensitive to reference accuracy. This is because when two 

referential sets of low accuracies (e.g. accuracy <= 0.2) are employed, component 

splitting is likely to happen if they fail to constrain the same component while some of 

the referential loci are indeed related. A practical strategy is to derive individual 

referential sets based on LD blocks of genes. In general SNPs in LD are more likely 

associated with the same trait of interest, and hence contribute to the same component. 

Second, when referenced PCA is employed for data reduction, it is not recommended to 

test a variety of hypotheses in one single run. As different behavioral manifestations may 
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involve different biological mechanisms, when one of the phenotypes is selected as a 

PCA reference, the reduced data better represents mechanisms underlying this specific 

phenotype than those underlying other phenotypes. Consequently, there is little chance to 

identify components accurately representing those unattended mechanisms even if the 

references are accurate. Instead, the extended approach is more suitable for assessing the 

architecture of genes which, although previously implicated in the same biological 

mechanism, still await investigations on their homogeneous or heterogeneous functional 

influences on neurobiological conditions. 
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CHAPTER 6 EXPLORATION OF SCANNING EFFECTS IN 

MULTI-SITE STRUCTURAL MRI STUDIES 

6. 1 Introduction 

Structural magnetic resonance imaging (sMRI) is increasingly used to study 

morphology of living brain given its non-invasive nature. Based on high resolution 

T1-weighted images, measures can be derived to quantify brain structure for further 

analysis such as assessment of neurological diseases (Fornito et al., 2009; Glahn et al., 

2008). A variety of computational methods have been developed to deal with the 

anatomical complexity, one of those commonly used is voxel-based morphometry 

(VBM) (Ashburner and Friston, 2000, 2005). VBM involves tissue segmentation, spatial 

normalization and smoothing procedures, followed by voxelwise univariate statistical 

tests on feature changes across subjects. This method has been successfully applied to 

characterize structural abnormalities in a variety of diseases such as schizophrenia (SZ) 

and Alzheimer’s disease (Ferreira et al., 2011; Giuliani et al., 2005; Honea et al., 2005) as 

well as track the structural changes as a response of environmental factors (Maguire et 

al., 2000).  

Most sMRI studies are performed at a single site; however pooling of multi-site data 

is becoming more common, especially imaging genetics studies. This is due to a desire 

for a large sample size to provide sufficient statistical power for the investigation of 

subgroups, or a rare condition, or a factor of relatively small effect size. In contrast to the 

desire for data pooling, collaborative sMRI studies face some big challenges, one of 
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which is that inconsistent collection platforms can introduce systematic differences to 

distort the image information and confound the true effect of interest. In addition, even in 

single-site studies a scanner will likely undergo hardware exchanges or software 

upgrades over time, making it difficult to keep the status consistent over the period of a 

longer study. Previous work has revealed scanning effects resulting from a number of 

factors, including static magnetic field inhomogeneity, imaging gradient nonlinearity and 

difference in subject positioning (Focke et al., 2011; Jovicich et al., 2006; Littmann et al., 

2006; Vovk et al., 2007). On the other hand, it is also noted that these scanning effects 

may be orthogonal to and not necessarily interfere with the true effects of interest (Segall 

et al., 2009; Stonnington et al., 2008), or that a specific statistical modeling will 

ameliorate the scanning effects (Fennema-Notestine et al., 2007), which encourages more 

efforts towards collaborative studies.  

In the present study, we aim to explore how various scanning parameters influence 

the sMRI image pattern and whether a correction is applicable. Through studying gray 

matter concentration (GMC) images collected from a large cohort of 1,460 healthy 

subjects, we expect to locate pivotal scanning parameters, which may be calibrated to 

avoid significant systematic differences, or be selectively included as covariates in 

post-hoc analyses. Specifically, ICA (Amari, 1998; Bell and Sejnowski, 1995a) is applied 

to decompose the data into a linear combination of underlying sources, which are then 

investigated for associations with various scanning parameters to assess the influence 

(also called source-based morphometry (SBM) (Xu et al., 2009)). A correction procedure 

has also been designed and tested in a second study (110 SZ patients versus 124 healthy 
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controls), which allows evaluating the effectiveness in reducing scanning effects and in 

particular, refining true effects of interest.   

6. 2 Materials and Methods 

BIG Data 

Subjects: The exploratory study included 1,460 subjects from the ongoing Brain 

Imaging Genetics (BIG) study, being conducted at the Radboud University Nijmegen 

(Nijmegen, the Netherlands). The regional medical ethics committee approved the study 

and all subjects provided written informed consents. The cohort included in this study 

consisted of 617 males (age: 23.35±4.22) and 843 females (age: 22.69±3.66) whose MRI 

scans were pooled from various studies conducted since 2003. All subjects are healthy, 

highly educated adults of Caucasian origin, and free of neurological or psychiatric history 

according to self-reports.  

Neuroimaging: Structural images were acquired at the Donders Centre for Cognitive 

Neuroimaging (Nijmegen, the Netherlands). Table 6.1 provides a summary of the 

scanning settings. Subjects were scanned using different scanners, i.e. 1.5T Siemens 

Avanto and Sonata, as well as 3.0T Siemens Trio and TIM Trio. Transmitting and 

receiving coils also differed across subjects. A standard coronal T1-weighted 

three-dimensional magnetization prepared rapid gradient echo (MP-RAGE) sequence was 

employed, while some variations were observed in repetition, inversion and echo time, as 

well as pixel bandwidth and flip angle. The use of parallel imaging (GRAPPA) with an 

acceleration factor of 2 was also included.  
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Table 6.1: Summary of BIG scanning parameters. 

Scanning parameter Variations across subjects 

StationName avanto (572), sonata (175), trio (56), triotim (657) 

SequenceName *tfl3d1 (16), *tfl3d1_ns (1101), spc3d1rr282ns (6), tfl3d1 (2), tfl3d1_ns (335) 

SliceThickness 0.8 (2), 0.84 (2), 0.87 (1), 0.91 (1), 1 (1453), 1.1 (1) 

RepetitionTime 1660 (3), 1960 (16), 2250 (645), 2300 (690), 2730 (100), 3200 (6) 

EchoTime 2.02 (3), 2.86 (1), 2.92 (28), 2.94 (1), 2.95 (572), 2.96 (193), 2.99 (15), 3.03 (403),  

3.04 (1), 3.08 (1), 3.11 (1), 3.13 (1), 3.55 (2), 3.68 (162), 3.93 (54), 4.01 (6), 4.43 (9), 4.58 (4), 5.59 (3) 
InversionTime 1000 (100), 1100 (704), 750 (3), 850 (645), 900 (2), null (6) 

NumberOfAverages 1 (1457), 2 (3) 

MagneticFieldStrength 1.494 (112), 1.5 (635), 2.89362 (56), 3 (657) 

NumberOfPhaseEncodin

gSteps 

176 (3), 196 (6), 253 (5), 255 (658), 256 (786), 320 (2) 

PercentPhaseFieldOfVie

w 

100 (1441), 68.75 (3), 81.25 (16) 

PixelBandwidth 130 (714), 140 (735), 240 (2), 260 (3), 751 (6) 

TransmittingCoil body (1259), cp_head (53), txrx_head (148) 

AcquisitionMatrix [0 256 176 0] (3),[ 0 256 208 0] (16), [0 256 256 0] (1433), [0 256 258 0] (6), [0 320 320 0] (2) 

FlipAngle 120 (6), 15 (645), 7 (100), 8 (707), 9 (2) 

PixelSpacing [0.5 0.5] (17), [0.8 0.8] (2), [1.0 1.0] (1440), [1.1 1.1] (1) 

LAccelFactPE 1 (787), 2 (662), 3 (3), 4 (5), null (3) 

tcoilID/ReceivingCoil 32ch_head (281), 8ch_head (667), body (1), cp_head (430), headmatrix (78), null (3) 

Note: Each scanning setting is followed by the number of subjects that have been scanned using this setting. Scanning 

parameters with small variances across the subjects (displayed in gray) are excluded from the subsequent analysis.  

MCIC Data 

Subjects: The second dataset included 234 subjects from the Mind Clinical Imaging 

Consortium (MCIC) study (Gollub et al., in press), a collaborative effort of four research 

teams from University of New Mexico-Mind Research Network, Massachusetts General 

Hospital, University of Minnesota and University of Iowa. The institutional review board 

at each site approved the study and all subjects provided written informed consents. The 

cohort consisted of 110 SZ patients and 124 healthy controls. All healthy subjects were 

screened to ensure that they were free of any medical, neurological or psychiatric 

illnesses, including any history of substance abuse. The inclusion criteria for patients 

were based on a diagnosis of schizophrenia, schizophreniform or schizoaffective disorder 

confirmed by the Structured Clinical Interview for DSM-IV-TR disorders (SCID, (First et 
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al., 1997)) or the Comprehensive Assessment of Symptoms and History (CASH, 

(Andreasen et al., 1992)). Table 6.2 provides the demographic information. 

Neuroimaging: The brain images were coronal T1-weighted MRIs collected at 

multiple sites. Subjects were scanned using different scanners, i.e. 1.5T Siemens Sonata 

and GE Signa, as well as 3.0T Siemens Trio. Closely matched acquisition sequences were 

used. Compared to the BIG data, the MCIC data have relatively limited scanning 

information, as summarized in Table 6.3 (Segall et al., 2009). Slight collinearity was 

observed between SZ diagnosis and scanner (r
2
 = 0.043), as well as slice thickness (r

2
 = 

0.039). 

Table 6.2: Demographic information of MCIC subjects. 

Demographics   SZ (110) HC (124) 

Sex Male 82 75 

 Female 28 49 

Age Mean ± SD 35 ± 11 32 ± 11  

 Range 18 - 60 18 - 58 

Race/Ethnicity Caucasian 83 110 

 African American 17 4 

 Asian 5 5 

 American Indian 1 1 

 Unreported 4 4 

Collection site Harvard 28 23 

 Iowa 32 60 

 Minnesota 29 18 

  New Mexico 21 23 

 

Table 6.3: Summary of MCIC scanning parameters. 

Site Scanner Field  

strength (T) 

TR/TE  

(ms) 

Slice  

thickness (mm) 

Bandwidth Voxel  

dimensions (mm) 

Sequence 

M021 (51) Siemens Sonata 1.5 12/4.76 1.5 110 0.625 × 0.625 × 1.5 Gradient Echo 

M522 (92) GE Signa 1.5 20/6 1.6 122 0.6641 × 0.6641 × 1.6 Gradient Echo 

M554 (47) Siemens Trio 3 2530/3.81 1.5 110 0.625 × 0.625 × 1.5 MP-RAGE 

M871 (44) Siemens Sonata 1.5 12/4.76 1.5 110 0.625 × 0.625 × 1.5 Gradient Echo 

Note: Each site is followed by the number of subjects that have been scanned at that station. 
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Preprocessing 

The T1-weighted sMRI data were preprocessed in Statistical Parametric Mapping 5 

(SPM5, http://www.fil.ion.ucl.ac.uk/spm) using unified segmentation (Ashburner and 

Friston, 2005), in which image registration, bias correction and tissue classification are 

performed using a single integrated algorithm. Brains were segmented into gray matter, 

white matter and cerebrospinal fluid and non-linearly transformed into the ICBM152 

standard space (without Jacobian modulation). The resulting GMC images were re-sliced 

to 2 × 2 × 2 mm, with a field-of-view of 91 × 109 × 91 voxels. In the subsequent quality 

check, we excluded 4 subjects from the BIG data whose GMC images were four standard 

deviations away from the average GMC image across all subjects. No outliers were found 

for the MCIC data. A mask was then generated (mean GMC > 0) to include only the 

segmented gray matter voxels, resulting in a total of 298,707 voxels for the BIG data and 

292,998 voxels for the MCIC data. Finally, a voxelwise linear regression analysis was 

performed to remove the effects of age and sex.  

Analysis 

The unsmoothed GMC images corrected for age and sex were investigated for 

associations with scanning parameters in SBM model, as illustrated in Figure 6.1. SBM 

analysis consists of data decomposition using ICA (infomax) (Amari, 1998; Bell and 

Sejnowski, 1995b) and association tests between loadings and scanning parameters. First, 

spatial ICA is applied to decompose the group GMC images into a linear combination of 

independent components (ICs), or sources, as illustrated in Figure 6.1.1 and (6.1). X, A 

and S denote the observed data, loading matrix and component matrix, respectively. Each 

row of S represents an underlying component and each column of A represents the 
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loadings associated with one single component. The subscripts m, n and l denote the 

number of samples, voxels and components, respectively. After data decomposition, each 

of the extracted loadings (i.e. each column of A) is then assessed for association with 

each continuous or categorical scanning parameter using regression or ANOVA, 

respectively. The pairwise association tests result in a series of p-values. Given the 

dependence among scanning parameters, we choose to estimate the threshold for 

significant associations (pth) based on the p-value distribution. Specifically, we plot the 

p-values (-log10(p)) in a descending order and then perform linear fits to the two segments 

of the curve, as shown in Figure 6.1.3. The intersection A of the fitted lines L1 and L2 is 

then determined. Subsequently, we connect the origin and the intersection A to obtain the 

line L3, which is extended to intersect the p-value curve at the point B. The p-value 

corresponding to B is then selected as the threshold p-value. Compared with the 

commonly used FDR control, our approach is conservative and yields a more stringent 

threshold p-value.   

                

    [

  
 
  
]      [      ]     [

  
 
  
]                                        

                                                                  (6.1) 

Based on the estimated threshold p-value (pth), the scanning parameters significantly 

affecting (p <= pth) the image values and the IC loadings can be identified. To be more 

cautious, the identified components are also examined for associations with traits of 

interest. If a component is identified as scanning-related while not exhibiting any 

significant effect of interest, a correction can then be performed to eliminate the 
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scanning-related IC to improve data integrity. For instance, if the k
th

 component is to be 

corrected, we simply subtract the reconstructed Xk from the original dataset X to 

eliminate the variance induced by that factor, as illustrated in (6.2). The corrected data 

are denoted as Xc.  

          (∑     
 
   )  (    )                                     (6.2) 

 

Figure 6.1: A flow chart of the SBM model. 

The above procedure was applied to the BIG data to explore the pivotal parameters 

significantly affecting the image pattern. We first excluded scanning parameters with few 

variations across the subjects (displayed in gray in Table 6.1). Then we performed a 

pruning process to further exclude highly collinear (r
2
 > 0.85) parameters, after which 8 

parameters were retained. In particular, the inversion time (TI) was modeled as a function 

of the field strength (i.e. inversion time per field strength), as the direct effect of TI 

depends on the relaxation times which are different per field strength. In addition, for 
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each subject, we calculated the signal-to-noise ratio (SNR) of the image, which is 

proportional to the ratio of the average T1-contrast in the gray and white matter regions 

over the standard deviation of the T1-contrast in air regions (Henkelman, 1985), as 

described in (6.3). The gray and white matter regions are defined as voxels exhibiting 

gray or white matter concentrations greater than 0.5, and the air regions are voxels with a 

relatively low signal intensity, as shown in (6.3). The SNR parameter was also 

investigated for its effect on the image pattern.  

          
    (               )

   (        )
 

     {                     (               )}                     (6.3)                                                                        

Besides the exploration with the BIG data, we evaluated the detection and correction 

procedure in a second dataset by examining GMC images of 234 subjects (110 SZ 

patients and 124 healthy controls) from the MCIC study. First the data were corrected 

using SBM and general linear model (GLM), respectively. The SBM correction used the 

same procedure as described above, where components were extracted and subsequently 

assessed for associations with three scanning parameters while controlling for SZ 

diagnosis. The included parameters were scanner which was completely collinear with 

TR/TE (as shown in Table 6.3), field strength which was collinear with sequence, as well 

as slice thickness which was collinear with bandwidth and voxel dimensions. For GLM 

correction, the same three scanning parameters and SZ diagnosis were included as 

predictors. The estimated scanning effects were then regressed out at each voxel from the 

original data. The uncorrected, SBM- and GLM-corrected data were subsequently 

compared regarding the scanning and SZ effect sizes. Specifically, we investigated the 
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scanning and disease effects using both component (ICA) and voxelwise (VBM) 

approaches. For ICA, the scanning and SZ effects were assessed based on the 

associations of extracted IC loadings with scanning parameters and SZ diagnosis. For 

VBM, a univariate analysis was performed to examine the associations between GMC 

and scanning parameters or SZ diagnosis at each voxel. Then voxels exhibiting 

significant scanning or SZ effects were identified using a false discovery rate (FDR) 

control for multiple comparisons. 

Component Number Selection 

PCA was applied before ICA for data whitening and reduction. It was noted that the 

PC variance curve turned between component 50 and 100, and the top 100 components 

explained a relatively larger amount of variance than the remainder. We thus performed 

ICA with the component numbers from 50 to 100, and found that the most significant 

scanning-related components (due to magnetic field strength and receiving coil) remained 

stable within the tested range. Meanwhile, with the increase of component numbers, edge 

effects appeared to be refined, manifested as increases in the level of significance. Given 

these observations, we chose to perform the SBM analysis with a component number of 

100.  

6. 3 Results 

BIG Data 

We applied ICA to extract 100 components from the GMC images. The 100 resulting 

ICs were then assessed for associations with 9 scanning parameters, as listed in Table 6.4. 
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Based on the resulting p-values, the threshold of significance (pth) was estimated to be 

1.40×10
-23

, as shown in Figure 6.1.3. Nine ICs were significantly associated (p <= pth, 

highlighted in bold in Table 6.4) with various parameters, including magnetic field 

strength and receiving coil. Figure 6.2 shows the spatial maps of the scanning-related ICs, 

thresholded at |Z| > 2. 

 

Figure 6.2: Spatial maps of the scanning-related components identified in the BIG data. 
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Table 6.4: Scanning effects in the BIG sMRI data. 

Scanning/IC Index 1 3 5 7 9 20 30 74 97 

StationName 1.65E-40 1.44E-52 1.30E-28 2.98E-63 1.48E-241 9.80E-38 1.63E-20 7.80E-98 1.24E-25 

SequenceName 6.64E-01 1.91E-01 9.45E-01 9.41E-21 6.21E-17 6.01E-01 9.28E-01 3.10E-03 2.73E-03 

TI-FieldStrength 2.08E-11 2.73E-63 2.93E-32 3.64E-06 5.56E-239 6.10E-52 3.09E-29 1.32E-28 1.09E-18 

FieldStrength 2.40E-05 3.98E-47 2.11E-05 4.62E-07 4.44E-216 1.65E-28 3.50E-23 2.89E-23 1.45E-21 

PixelBandwidth 8.86E-10 6.17E-52 2.25E-08 3.95E-11 2.63E-247 1.50E-27 1.13E-21 2.73E-23 7.89E-19 

TransmittingCoil 1.12E-16 7.27E-08 8.09E-10 1.22E-47 2.73E-26 1.86E-03 5.91E-05 9.46E-14 1.26E-07 

laccelFactPE 4.68E-13 2.77E-09 1.23E-12 7.78E-16 6.76E-15 1.74E-25 1.28E-04 3.91E-08 2.24E-03 

tCoilID 3.83E-04 1.65E-15 1.06E-03 3.86E-115 1.50E-22 1.85E-10 2.11E-01 6.25E-11 3.07E-06 

SNR 6.79E-01 8.34E-01 3.10E-06 1.40E-23 5.46E-05 1.75E-03 2.20E-01 5.02E-01 1.05E-06 

Note: Significant scanning effects (p < pth) are highlighted in bold. 

 

Table 6.5: Talairach regions of the scanning-related components (BIG data).  

Component Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z) 

IC3 pos Superior Frontal Gyrus 8, 6, 9, 10, 11 9.1/10.2 3.73(-6,45,46)/4.07(4,45,46) 

 Middle Frontal Gyrus 9, 6, 8, 10, 46 5.8/5.4 3.12(-30,46,35)/2.77(22,22,58) 

 Postcentral Gyrus 5, 7, 3, 40, 2, 1 3.4/3.5 2.62(-12,-43,70)/2.60(16,-45,69) 

 Inferior Parietal Lobule 40, 7, 39, 2 2.9/2.8 2.64(-50,-52,50)/2.88(48,-44,54) 

 Superior Parietal Lobule 7 2.3/2.6 2.73(-34,-49,61)/3.01(24,-57,62) 

 Precentral Gyrus 6, 4, 9, 44 2.1/2.4 2.55(-46,-1,53)/2.57(22,-20,67) 

 Precuneus 7, 19, 39, 31 1.3/1.7 2.03(-22,-71,51)/2.51(4,-49,63) 

IC3 neg Lentiform Nucleus  3.7/4.8 7.75(-30,-14,1)/8.53(28,-17,3) 

 Middle Temporal Gyrus 21, 20, 39, 37, 22, 19, 38 1.7/1.4 7.29(-42,1,-29)/6.68(53,-37,-3) 

 Precuneus 7, 31, 19, 39 1.7/1.1 7.50(-22,-68,33)/5.72(16,-47,34) 

 Middle Frontal Gyrus 10, 46, 8, 6, 11, 9, 47 1.5/0.9 6.36(-32,38,17)/6.35(40,13,20) 

 Superior Temporal Gyrus 22, 13, 38, 39, 21, 41 1.4/0.8 6.18(-53,0,-3)/5.77(46,-42,24) 

IC7 pos Thalamus  4.2/4.4 6.00(-10,-23,1)/6.07(8,-23,1) 

 Superior Temporal Gyrus 22, 41, 13, 39, 38, 21, 42 1.5/1.8 4.75(-50,-17,5)/6.79(44,-25,5) 

 Middle Temporal Gyrus 21, 37, 22, 19, 39, 20 1.9/1.0 3.74(-57,7,-19)/3.65(50,-26,-7) 

 Middle Frontal Gyrus 10, 6, 9, 11, 8, 46, 47 1.1/1.2 4.10(-26,64,6)/3.28(26,32,26) 

IC9 pos Thalamus  2.2/2.7 5.48(-6,-29,-4)/5.54(6,-29,-5) 

 Rectal Gyrus 11 0.9/1.0 4.80(-10,16,-23)/7.18(4,14,-21) 

IC97 pos Superior Temporal Gyrus 38, 22, 13, 41, 42, 21, 39 4.2/3.8 6.58(-42,11,-16)/7.18(40,11,-16) 

 Anterior Cingulate 25, 24, 33, 32 2.7/0.4 6.77(0,6,-5)/4.46(2,3,-10) 

 Insula 13, 22, 40, 41, 47 2.4/3.2 5.91(-44,-11,10)/6.40(44,-6,0) 

 Parahippocampal Gyrus 34, 28, 35, 27, 30, 19, 36 2.3/2.0 8.08(-10,-9,-16)/8.09(10,-7,-18) 

 Inferior Frontal Gyrus 47, 13, 46, 44, 9, 45, 11 1.7/1.8 6.23(-40,15,-16)/6.90(38,13,-17) 

 Medial Frontal Gyrus 25, 10, 9, 6, 11, 8, 32 1.7/0.8 4.66(0,20,-18)/4.72(10,7,-19) 

 Thalamus  1.6/0.8 8.26(0,-16,1)/7.77(6,-31,3) 

 Cingulate Gyrus 24, 32, 31, 23 1.4/0.1 4.80(0,15,27)/3.48(8,-31,35) 

 Caudate  1.3/1.2 7.69(-6,10,3)/7.39(6,6,5) 
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Figure 6.3: Boxplots of two components exhibiting the most significant scanning effects 

in the BIG data; (a) IC9 loadings versus magnetic field strength-inversion time-pixel 

bandwidth; (b) IC7 loadings versus receiving coil.  

IC1, 5, 20, 30 and 74 reflected likely scanning effects at brain edges, while IC97 

reflected scanning effects in the ventricle region. IC9 was predominantly located in the 

brainstem region and exhibited the most significant scanning effect, associated with 

station, TI-field strength, magnetic field strength and pixel bandwidth, among which 

slight collinearity (r
2
 > 0.088) was observed. Specifically, 634 out of 1,460 subjects were 

scanned in 1.5T scanners with a 850ms inversion time and 140Hz pixel bandwidth. These 

subjects exhibited higher regional GMC in IC9 compared to 704 subjects scanned in 3T 

scanners with a 1,100ms inversion time and 130Hz pixel bandwidth, as shown in Figure 

6.3a. Meanwhile, the type of receiving coil showed a unique effect on IC7. This 

component was primarily localized to the thalamus region and reflected higher regional 

GMC in subjects scanned with multichannel phased-array coils, as shown in Figure 6.3b. 

Table 6.5 provides a summary of the Talairach atlas labels (Lancaster et al., 1997; 

Lancaster et al., 2000) of for IC3, 7, 9 and 97 thresholded at |Z| > 2. It needs to be pointed 

out that in this work the components were mapped to the nearest gray matter, therefore 

brainstem areas were not included in the table.  
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MCIC Data 

We applied the same procedure to the MCIC GMC images. 100 ICs were extracted 

and assessed for associations with scanner, field strength and slice thickness, while 

controlling for SZ diagnosis. The threshold of significance (pth) was estimated to be 

5.28×10
-3

, based on which 8 ICs were identified as scanning-related, as summarized in 

Table 6.6. Figure 6.4 shows the spatial maps of these ICs, thresholded at |Z| > 2. It can be 

seen that scanning effects were again observed at brain edges, as represented by IC9, 63 

and 92, as well as in the ventricle region, as reflected by IC 98. For the remaining 

scanning-related components, Table 6.7 provides a summary of the Talairach atlas labels 

of mapped gray matter regions with components thresholded at |Z| > 2. The most 

significant scanning effect was observed in IC 53 (inferior temporal region), associated 

with scanner and field strength. Again moderate collinearity was observed between these 

2 parameters (r
2
 > 0.64). Boxplots illustrated that scans acquired with lower field strength 

and shorter TR exhibited higher regional GMC in IC53, as shown in Figure 6.5. Finally 

the 8 scanning-related components were used for SBM-based data correction.  

 

Table 6.6: Scanning effects in the MCIC sMRI data. 

Scanning / IC Index 7 9 33 38 53 63 92 98 

Scanner 2.06E-02 1.94E-05 5.51E-03 5.18E-03 8.62E-53 2.68E-20 2.71E-09 2.96E-04 

FieldStrength 2.87E-01 3.33E-06 3.98E-01 8.17E-01 3.57E-49 1.54E-02 1.02E-01 1.54E-03 

SliceThickness 5.28E-03 1.49E-01 1.37E-03 3.84E-03 5.88E-02 4.14E-21 4.47E-10 4.69E-04 

Note: Significant scanning effects (p < pth) are highlighted in bold. 
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Table 6.7: Talairach regions of the scanning-related components (MCIC data). 

Component Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z) 

IC7 pos Middle Frontal Gyrus 11, 9, 8, 6, 46, 10, 47 2.7/2.1 4.76(-36,40,-10)/4.13(38,21,30) 

 Inferior Frontal Gyrus 47, 9, 44, 45, 13, 10, 46 1.6/1.2 3.83(-55,15,29)/3.91(32,13,-17) 

 Superior Frontal Gyrus 9, 6, 8, 10, 11 1.4/2.1 4.30(-16,58,28)/4.86(16,54,32) 

 Superior Temporal Gyrus 21, 22, 39, 42, 38, 41, 13 1.4/1.9 4.48(-59,-8,-1)/4.34(40,-55,27) 

IC7 neg Middle Frontal Gyrus 6, 9, 11, 10, 8, 46, 47 2.6/2.4 4.32(-38,27,28)/4.79(28,8,44) 

 Middle Temporal Gyrus 20, 39, 21, 19, 22, 37, 38 2.1/2.2 5.20(-53,-43,-10)/4.97(42,-59,20) 

IC33 pos Middle Frontal Gyrus 9, 6, 46, 10, 8, 11, 47 5.3/2.8 7.17(-36,13,31)/5.41(36,14,49) 

 Superior Temporal Gyrus 41, 39, 42, 22, 38, 13, 21 3.8/3.0 8.24(-46,-39,6)/5.15(30,8,-29) 

 Superior Frontal Gyrus 8, 6, 10, 11, 9 3.6/2.9 4.55(-12,30,48)/5.52(38,16,47) 

 Precuneus 39, 7, 31, 19 3.3/3.0 7.03(-34,-62,36)/4.16(20,-76,28) 

 Precentral Gyrus 9, 44, 6, 3, 43 3.2/1.6 7.65(-36,11,31)/7.28(48,12,10) 

 Middle Temporal Gyrus 22, 21, 39, 37, 20, 38, 19 3.0/2.5 7.20(-48,-39,6)/5.96(55,-26,-10) 

 Inferior Parietal Lobule 39, 40, 7, 2 2.6/1.6 7.48(-36,-62,38)/4.45(44,-48,45) 

 Inferior Frontal Gyrus 44, 9, 46, 45, 13, 47, 10, 11 2.2/2.5 6.17(-34,9,29)/7.59(48,12,12) 

IC33 neg Middle Frontal Gyrus 6, 8, 10, 9, 46, 11, 47 3.3/2.3 5.10(-36,10,47)/4.57(38,14,53) 

 Superior Frontal Gyrus 6, 10, 8, 9, 11 2.8/2.5 4.99(-20,58,25)/5.34(12,22,58) 

 Middle Temporal Gyrus 39, 21, 20, 19, 37, 22, 38 2.2/1.9 5.40(-30,-61,31)/4.75(55,-9,-18) 

 Inferior Parietal Lobule 40, 7, 39 2.2/1.3 6.11(-38,-49,39)/4.23(65,-42,24) 

 Precuneus 7, 31, 19, 39 2.0/2.1 8.09(-24,-60,36)/4.63(14,-59,31) 

IC38 pos Middle Frontal Gyrus 10, 8, 6, 9, 11, 46, 47 3.4/2.6 6.06(-36,39,13)/5.14(32,37,11) 

 Superior Frontal Gyrus 10, 6, 9, 8, 11 2.4/1.9 4.97(-24,44,18)/4.50(20,43,38) 

 Cuneus 18, 7, 19, 17, 30, 23 2.2/2.3 6.07(-20,-81,21)/5.55(16,-74,26) 

 Parahippocampal Gyrus  30, 19, 37, 36, 27, 28, 35 2.1/1.0 5.52(-12,-41,6)/4.35(24,-32,-9) 

 Lingual Gyrus 19, 18:*, 17, 30 1.9/1.2 4.30(-20,-95,-2)/4.46(16,-47,-3) 

 Inferior Frontal Gyrus 9, 47, 45, 46, 13, 10, 44, 6 1.5/1.8 4.74(-36,9,25)/4.33(30,28,-13) 

IC38 neg Middle Frontal Gyrus 46, 9, 10, 6, 8, 11, 47 2.9/1.9 4.65(-42,51,14)/3.83(32,23,38) 

 Superior Frontal Gyrus 10, 6, 9, 11, 8 2.1/1.4 5.40(-20,46,23)/4.02(12,56,30) 

 Middle Temporal Gyrus 22, 37, 39, 19, 21, 20, 38 1.8/1.9 4.80(-50,-41,4)/4.12(42,-55,-2) 

 Parahippocampal Gyrus 30, 35, 27, 36, 28, 34, 19 1.8/0.9 6.64(-8,-39,4)/4.03(10,-41,-1) 

 Superior Temporal Gyrus 38, 39, 21, 41, 22, 42, 13 1.6/1.5 3.56(-46,-39,6)/4.46(24,8,-26) 

 Inferior Frontal Gyrus 45, 44, 47, 10, 9, 11, 13, 46 1.5/1.5 5.66(-38,45,0)/4.65(34,32,-18) 

IC53 pos Inferior Temporal Gyrus 20, 21, 37, 19 3.5/3.4 10.76(-46,-21,-28)/8.66(46,-21,-28) 

 Superior Frontal Gyrus 11, 6, 10, 8, 9 3.1/2.7 6.24(-8,57,-23)/5.41(10,53,-23) 

 Middle Frontal Gyrus 11, 9, 10, 8, 46, 6, 47 3.0/2.1 4.01(-32,39,11)/4.33(42,48,-14) 

 Middle Temporal Gyrus 38, 39, 22, 21, 20, 37, 19 2.5/2.1 4.46(-36,10,-37)/4.36(55,-47,2) 

 Fusiform Gyrus 20, 36, 18, 19, 37 2.3/2.6 8.67(-50,-23,-27)/9.08(50,-25,-26) 

 Inferior Frontal Gyrus 47, 9, 11, 45, 46, 13, 44, 10 1.9/1.6 3.72(-50,38,-14)/3.56(53,3,27) 

 Superior Temporal Gyrus 38, 22, 13, 39, 42, 41, 21 1.7/2.4 4.42(-22,10,-36)/5.44(30,4,-39) 

IC53 neg Precentral Gyrus 6, 4, 44, 9, 13, 43, 3 3.8/4.2 4.56(-30,-7,52)/4.84(18,-18,65) 

 Superior Frontal Gyrus 6, 8, 11, 9, 10 3.4/2.5 4.64(-8,3,68)/5.54(14,-12,71) 

 Middle Frontal Gyrus 6, 11, 8, 46, 10, 9, 47 2.2/1.2 5.57(-20,-1,61)/4.80(18,-7,59) 

 Medial Frontal Gyrus 6, 9, 10, 8, 25, 32, 11 1.9/2.4 4.64(-6,-20,71)/5.01(6,-20,71) 
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Figure 6.4: Spatial maps of the scanning-related components identified in the MCIC 

data. 

Table 6.8: Comparisons of the scanning and SZ effects in the uncorrected, SBM- 

and GLM-corrected data evaluated with ICA and VBM (MCIC data). 

a. ICA (p-value)  Uncorrected SBM-corrected GLM-corrected 

Scanner  8.62E-53 0.01 0.32 

MagneticFieldStrength  3.57E-49 0.05 0.48 

SliceThickness  4.14E-21 0.01 0.35 

SZ  5.50E-06 (IC94) 5.55E-07 (IC81) 1.40E-06 (IC12) 

  1.72E-05 (IC98)  1.72E-04 (IC15) 

  3.00E-04 (IC53)  7.24E-04 (IC34) 

  2.36E-03 (IC7)  7.80E-04 (IC91) 

b. VBM (number of voxels passing FDR)  Uncorrected SBM-corrected GLM-corrected 

Scanner  20265 0 0 

MagneticFieldStrength  22318 0 0 

SliceThickness  10623 0 0 

SZ  421 14 228 
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Figure 6.5: Boxplots of the component exhibiting the most significant scanning effect in 

the MCIC data; (a) IC53 loadings versus magnetic field strength-Sequence; (b) IC53 

loadings versus TR/TE.  

Both SBM and GLM correction appeared to effectively eliminate the scanning effects 

when evaluated with ICA, as summarized in Table 6.8a. Meanwhile, the SZ effect was 

refined with increasing significance levels. Figure 6.6a shows the spatial maps of the 

SZ-related components (thresholded at |Z| > 2) identified in the uncorrected, SBM- and 

GLM-corrected data. It can be seen that the mapped brain regions were highly consistent, 

highlighting a frontal-temporal network. IC94 identified in the uncorrected data exhibited 

a SZ effect with a p-value of 5.50×10
-6

 while controlling for scanning parameters. IC12 

identified in the GLM-corrected data exhibited a more significant effect with p-value 

decreasing to 1.40×10
-6

. The most significant SZ effect was observed from IC81 

identified in the SBM-corrected data, presenting a p-value of 5.55×10
-7

, as shown in 

Table 6.8a. The uncorrected data also presented marginal SZ effects captured by IC7, 53 

and 98, whose spatial maps have been illustrated in Figure 6.4. Marginal SZ effects were 

also observed in the GLM-corrected data, as captured by IC15, 34 and 91, whose spatial 

maps are illustrated in Figure 6.6b.  
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Figure 6.6: Spatial maps of the SZ-related components identified with ICA (|Z| > 2): (a) 

the frontal temporal network identified in the uncorrected (IC94), GLM-corrected (IC12) 

and SBM-corrected (IC81) data, respectively; (b) components exhibiting marginal SZ 

effects in the GLM-corrected data.  

For VBM analyses, no voxels exhibited significant scanning effects passing FDR 

control after either SBM or GLM correction while number of voxels exhibiting 

significant SZ effect decreased after correction, as summarized in Table 6.8b. In the 

uncorrected data, 421 voxels showed SZ effect with scanning parameters included as 

covariates. In the SBM- and GLM-corrected data, 14 and 228 SZ-related voxels were 

identified, respectively. When we used a liberal threshold of 0.05, 29,853 voxels showed 

SZ effect in the uncorrected data, 23,836 voxels in the SBM-corrected data and 28,117 

voxels in the GLM-corrected data. Figure 6.7 illustrates the spatial maps of the 

highlighted voxels for the three cases, where the uncorrected and the GLM-corrected data 

presented highly comparable maps, highlighting more voxels in the brainstem region 

compared to the map presented by the SBM-corrected data.  
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Figure 6.7: Spatial maps of the SZ-related voxels (p < 0.05) identified with VBM in the 

uncorrected, SBM-corrected and GLM-corrected data, respectively. 

6. 4 Discussion 

Pooling of multi-site structural MRI scans is desired in large scale brain morphometry 

analyses, which lead to increased statistical power and provide opportunities to identify 

reliable biomarkers. However, the true effect of interest may be confounded by the 

systematic differences introduced by inconsistent acquisition schemes and scanning 

platforms. This issue is especially inevitable in longitudinal studies. Thus it becomes 

important to investigate the image comparability when different scanning platforms are 



Chapter 6 Exploration of Scanning Effects in Multi-site Structural MRI Studies 

 

80 

 

involved. In this study, we explore the effects of various scanning parameters and 

determine if a data correction is applicable in the SBM framework. The exploration was 

performed with GMC images collected from 1,460 healthy subjects. As expected, we 

observed significant scanning effects in distributed brain regions. The most pronounced 

effects were observed from magnetic field strength and receiving coil. In the second 

study with the MCIC data of 110 SZ patients and 124 healthy controls, the results 

confirmed significant scanning effects. In addition, it was also demonstrated that the 

SBM approach effectively separated scanning effects from the SZ-related GMC changes, 

thus enabling a correction which helped refine the true effect of interest.  

BIG Data 

In the exploration with the BIG data, the most significant scanning effect is observed 

in IC9. This component highlights the brainstem region, where the GMC exhibits 

differences among subjects scanned at various stations, which primarily involve 

differences in magnetic field strength, inversion time and pixel bandwidth. Magnetic field 

strength affects the T1-relaxation and, hence, the imaging contrast between gray and 

white matter (Duewell et al., 1996), which is consistent with our observation. Higher 

field strength also results in increased magnetic susceptibility artifacts (Bernstein et al., 

2006). The brainstem is particularly prone to these artifacts (Focke et al., 2011), which 

can cause geometric distortions and signal loss, and influence the effective excitation 

field and flip angle, thus affecting contrast in T1-weighted images (Truong et al., 2006). 

Inversion time is typically chosen in line with T1-relaxation (and hence field strength) as 

it determines the magnetization before excitation in each tissue, and thus the T1-contrast. 

Pixel bandwidth, or receiver bandwidth, refers to the difference in magnetic resonance 
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frequencies between adjacent pixels. This parameter is most commonly associated with 

chemical shift between fat and water and has a direct effect on image SNR (Schmitz et 

al., 2005). In the present study, it is difficult to disentangle the effects of individual 

parameters due to collinearity. However, it appears likely that the GMC variability 

observed in brainstem region is majorly attributable to the inversion time-field strength 

interaction. 

A second notable scanning effect is observed in IC7. This component highlights the 

thalamus region and reflects GMC variability induced by RF coils, especially the 

receiving coil. As illustrated in Table 6.1, the majority of the cohorts (1259 out of 1460) 

were scanned using the same type of transmitting coil. Therefore, the present data may 

not appropriately reflect how transmitting coil influences the image pattern. Moreover, 

effects of transmitting coil only become more substantial at 7T or higher (Vaughan et al., 

2001). Regarding the receiving coil, Figure 6.3b shows that subjects scanned with 

32-channel head coil exhibit higher GMC in the highlighted thalamus region of IC7. 

Meanwhile it is noteworthy that IC7 is the only component associated with SNR (r = 

0.26, p = 1.40×10
-23

). Not surprisingly, SNR exhibits a significant group difference 

among different types of receiving coils (p = 3.28×10
-46

), where 32-channel head coil 

yields the highest overall SNR and 8-channel head coil the second. This observation is 

consistent with previous studies that have found spatially dependent gains in SNR with 

the addition of element coils in multichannel phased-array head coils (de Zwart et al., 

2004; Wintersperger et al., 2006). Overall, our finding reveals interrelationships between 

SNR and RF receiving coil, and indicates that coil design may lead to a significant 

variability in the image pattern. Given these observations, it is strongly recommended 
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that in addition to calibrating magnetic field strength and inversion time, inconsistency in 

RF coil designs should also be avoided in aggregated sMRI analyses. 

MCIC Data 

The second study with the MCIC data confirms significant systematic differences in 

the image pattern induced by scanning parameters. The most affected component is IC53, 

highlighting inferior temporal region and showing a relationship with scanner and field 

strength. It should be noted that magnetic field strength is completely collinear with 

sequence, and scanner completely collinear with TR/TE in the MCIC data. Magnetic field 

strength, as discussed above, can significantly influence the T1-contrast. The observation 

in the MCIC data is consistent with the BIG data in that scans obtained with lower field 

strength exhibit higher regional GMC, as shown in Figure 6.5a. Repetition time 

determines the recovery of magnetization and directly affects the T1-contrast. The 

boxplot with TR/TE (Figure 6.5b) illustrates that MCIC scans acquired with shorter 

repetition time exhibit higher regional GMC, consistent with the general concept of 

shorter TR leading to higher contrast. In contrast, no linear relation is observed between 

the component loadings and TE, suggesting that the observed image variability is more 

attributable to repetition time instead of echo time. Although due to collinearity we 

cannot determine which parameter is the major contributor to the image variability 

observed in IC53, the results confirm that inconsistency in field strength and sequence 

design can introduce significant systematic differences in multi-site sMRI studies 

(Fennema-Notestine et al., 2007; Stonnington et al., 2008). 

IC 53, IC98 and IC7 exhibit association with both scanning parameters and SZ 

diagnosis, as shown in Table 6.6 and Table 6.8a. Due to the collinearity, it is impossible 
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to accurately estimate the effects of individual parameters. However, IC53 is much more 

significantly associated with scanning settings (p = 8.62×10
-53

, 3.57×10
-49

, Table 6.6) 

than SZ diagnosis (p = 3.00×10
-4

, Table 6.8), suggesting that the observed variability is 

likely more attributable to scanning settings. IC98 highlights the ventricle region, making 

the observed SZ effect questionable. IC7 exhibits spatial overlapping with IC9 identified 

from the BIG data in brainstem and cerebellum regions. Since IC9 exhibits the most 

significant scanning effect in the BIG data, suggesting a high susceptibility to scanning 

settings in the region, we incline towards IC7 more likely representing scanning effects 

and decide to have it corrected in this study.  

After SBM-correction, no significant scanning effects are observed and the SZ effect 

is refined when evaluated with ICA, as shown in Table 6.8a. The most significant SZ 

effect is observed from IC81, which is spatially consistent with those identified in the 

uncorrected (IC94) and GLM-corrected (IC12) data. The component suggests SZ-related 

gray matter reduction in a frontal-temporal network, one of the most consistently 

identified structural variations in SZ (Cannon et al., 2002; Glahn et al., 2008; Kuperberg 

et al., 2003; Turner et al., 2012; Xu et al., 2009). The SBM- and GLM-corrected data 

present more significant SZ-effects in the frontal-temporal network compared to the 

uncorrected data, suggesting that correcting for confounding effects helps refine the true 

effect of interest. Meanwhile, the GLM-corrected data also presents other marginal 

effects, as illustrated in Fig 6b. It can be seen that IC15 spatially overlaps with 

IC7-uncorrected which has been identified as scanning-related and eliminated in 

SBM-correction. IC34 and IC91 reflect sparse and edge effects. In contrast, the 

SBM-corrected data presents one single frontal-temporal network exhibiting the most 
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significant SZ effect (p = 5.55×10
-7

), suggesting that the data is more effectively 

corrected.  

The evaluation with VBM echoes the results obtained with the ICA approach. Both 

SBM- and GLM-correction effectively eliminate the scanning effects. On the other hand, 

the uncorrected data present more SZ-related voxels than the GLM- and SBM-corrected 

data, as illustrated in Table 6.8b. For the GLM-corrected data, the identified 228 voxels 

are a subset of the 421 voxels identified in the uncorrected data. The difference is 

believed to result from the collinearity among regressors. It is expected that the scanning 

parameters capture more of the shared variance when they are modeled alone in the 

GLM-correction, leaving less variance for the SZ diagnosis in the subsequent VBM 

analysis. For the SBM-corrected data, a side-by-side slice view (Figure 6.7) illustrates 

that much fewer voxels are identified in brainstem and cerebellum regions. Clearly, these 

voxels are largely captured in the uncorrected data by IC7, which is subsequently 

eliminated in the SBM-correction. Therefore, no significant effects are expected in this 

region.  

The comparison between GLM and SBM correction demonstrates that the former is 

more model-based while the latter more data-driven. In a GLM model, all the variances 

that can be explained by the predictors are regressed out. As shown in Table 6.8a, the 

GLM approach seems eliminating effects from scanner, field strength and slice thickness 

more completely than the SBM approach (p-values are higher than those obtained from 

the SBM approach although both are not significant). However, one concern is that the 

GLM model is not able to deal with embedded collinearity, such that variance shared 

between scanning parameters and traits of interest may also be eliminated. In contrast, in 
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the SBM model, ICA is able to extract components attributed to different sources. This 

particularly manifests in the observation that the SZ effect is split into independent 

components (IC94, IC98, IC53 and IC7 in the uncorrected data, see Table 6.8a). While 

the GLM approach cannot separate the SZ-related voxels from each other, ICA 

acknowledges that they covary with different underlying patterns and extracts meaningful 

components. Subsequent analyses suggest that IC94 shows no scanning effects, while 

others are likely confounded. Thus, ICA-based SBM model enables the researchers to 

recognize the heterogeneity and allows flexibility on whether a correction is necessary for 

each component.  

In summary, our study explores scanning effects in multi-site sMRI studies and 

demonstrates an effective approach for correction. The results suggest that magnetic field 

strength and sequence design (including repetition time, inversion time) are likely the 

most significant contributors to the image variability, although the individual effects 

could not be disentangled in the present data and await more investigations. Another 

significant confounder highlighted is RF receiving coil, which needs to be considered in 

the current atmosphere of data sharing and aggregation for large-scale analyses. The 

second study demonstrates that scanning effects can be isolated from the disease effect 

through SBM approach, and a correction could be further applied to refine the true effect 

of interest. Overall, consistent field strength, sequence design and RF coil are strongly 

recommended for multi-site sMRI studies, though SBM proves a flexible and effective 

approach to detect and clean scanning effects, which helps reduce the risk of false 

positives. 
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CHAPTER 7 GUIDED EXPLORATION OF GENOMIC RISK 

FOR GRAY MATTER ABNORMALITIES IN SCHZIOHRENIA 

7. 1 Introduction 

Schizophrenia (SZ) is a severe psychiatric disorder demonstrating a strong genetic 

component with heritability estimated up to 80% based on family and twin studies 

(Cardno and Gottesman, 2000). In the past decade, a number of susceptibility genes have 

been identified from linkage and association studies (Duan et al., 2010; Harrison and 

Owen, 2003). However, the associations between SZ diagnosis and individual 

polymorphisms were often weak (Duan et al., 2010). These results suggest a polygenic 

model for SZ (Gottesman and Shields, 1967), hypothesizing that multiple alleles with 

small individual effects may interact synergistically to increase the susceptibility to the 

disorder. The hypothesis is supported by a recent study, demonstrating the involvement 

of an aggregate of common (frequency > 0.05) single nucleotide polymorphisms (SNPs), 

collectively accounting for a substantial proportion of variation in risk to the disorder 

(Purcell et al., 2009b).  

In response to the complex genetic architecture underlying SZ, a multivariate 

approach is well positioned to examine associations between SZ-related phenotypes and 

genetic components derived from various potential susceptibility alleles. Prata et al., 

examining epistasis between DAT and COMT genes, demonstrated that the nonadditive 

DAT-COMT interaction was associated with a SZ-altered modulation effect on cortical 

function during executive processing (Prata et al., 2009). Expanding the variables to 24 
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SNPs spanning 14 SZ putative risk genes, Meda et al. identified two genetic components 

(DAT and BDNF; SLC6A4, 5HTTLPR and 5HTTLPR_AG) correlating with three 

functional brain networks; the combined brain function-gene effects showed significant 

group differences in SZ (Meda et al., 2010). These positive findings have encouraged 

researchers to explore more genetic influences, including interactions among known risk 

genes and novel genes. 

Simultaneously, an allied line of research has focused on defining endophenotypes 

given the heterogeneity of symptoms, course and outcome in SZ (Gottesman and Gould, 

2003). Some identified endophenotypes are based on magnetic resonance imaging (MRI), 

which has demonstrated its specific value in identifying regional brain abnormalities 

(Rapoport et al., 2005), including structural endophenotypes (Lawrie et al., 2003; 

McDonald et al., 2006; Nelson et al., 1998; Sun et al., 2009) and functional networks 

recorded in fMRI that discriminate SZ patients from healthy controls. 

In this work, we performed a guided exploration of genomic risk for SZ-related gray 

matter abnormalities using the proposed pICA-R approach. Whole-brain gray matter 

concentration images were analyzed in conjunction with genome-wide single 

nucleotide polymorphisms (SNPs) to investigate the genetic factors possibly 

underlying the regional variations in brain structure which relates to clinical 

manifestations. In particular, a genetic reference was derived from a previous SZ 

genome-wide association study with the largest sample size to guide the data 

decomposition such that reliable genetic components emphasizing specific biological 

mechanisms can be extracted.  
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7. 2 Materials and Methods  

Participants 

Structural MRI and SNP data were obtained from The Mind Clinical Imaging 

Consortium (MCIC), a collaborative effort of four research teams from University of 

New Mexico-Mind Research Network, Massachusetts General Hospital, University of 

Minnesota and University of Iowa) and from a local COBRE (Center of Biomedical 

Research Excellence) study. The institutional review board at each site approved the 

study and all participants provided written informed consents. All healthy participants 

were screened to ensure that they were free of any medical, neurological or psychiatric 

illnesses, including any history of substance abuse. The inclusion criteria for patients 

were based on a diagnosis of schizophrenia, schizophreniform or schizoaffective disorder 

confirmed by the Structured Clinical Interview for DSM-IV-TR disorders (SCID, (First et 

al., 1997)) or the Comprehensive Assessment of Symptoms and History (CASH, 

(Andreasen et al., 1992)). After preprocessing, we obtained a total of 300 participants 

(160 healthy controls and 140 SZ patients) for which both sMRI and SNP data were 

collected. Table 7.1 provides the demographic information.  

Data Collection and Preprocessing   

The brain images were T1-weighted MRIs collected from 440 participants at multiple 

sites. 1.5T scanners were used at Massachusetts General Hospital (Siemens), University 

of New Mexico (Siemens) and University of Iowa (GE), and a 3T scanner was used at 

University of Minnesota (Siemens). Imaging parameters for the scans at MGH and New 
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Mexico were TR/TE = 12/4.76ms, slice thickness = 1.5mm, bandwidth = 110Hz, 

voxelsize 

Table 7.1: Demographic information of participants. 

Demographics   SZ (140) HC (160) P-value 

Sex Male 106 104 0.04 

 
Female 34 56 

 
Age Mean ± SD 36 ± 12 33 ± 11  0.03 

 
Range 18 - 63 18 - 63 

 
Race/Ethnicity Caucasian 109 140 0.19 

 
African American 20 8 

 

 
Asian 5 5 

 

 
Native Hawaiian 1 0 

 

 
American Indian 1 2 

 

 
Unreported 4 5 

 
Collection site Harvard 28 24 0.85 

 
Iowa 32 59 

 

 
Minnesota 30 19 

 
  New Mexico 50 58   

 

= 0.625 × 0.625×1.5mm. At Iowa the parameters were TR/TE = 20/6ms, slice thickness = 

1.6mm, bandwidth = 122Hz, and voxel size = 0.664 × 0.664×1.6mm. At Minnesota the 

parameters were TR/TE = 2530/3.81ms, slice thickness = 1.5mm, bandwidth = 110Hz, 

voxel size = 0.625 × 0.625×1.5mm (Segall et al., 2009). All scans were collected in a 

coronal orientation. 

The T1-weighted sMRI data were preprocessed in Statistical Parametric Mapping 5 

(SPM5, http://www.fil.ion.ucl.ac.uk/spm) using voxel based morphometry (VBM) 

(Ashburner and Friston, 2005), a unified model where image registration, bias correction 

and tissue classification are integrated. Brains were segmented into gray matter, white 

matter and cerebrospinal fluid based on unmodulated normalized parameters. The 

resulting gray matter images consisted of voxelwise gray matter concentrations. Images 

were re-sliced to 2 × 2 × 2 mm, resulting in 91 × 109 × 91 voxels. The gray matter 

images were then smoothed with 10mm full width at half-maximum Gaussian kernel. In 
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the subsequent quality check, we further excluded two participants whose images were 

four standard deviations away from the average gray matter image. A mask was then 

generated to include only the voxels inside the brain as well as exhibiting an average gray 

matter concentration greater than 0.1, resulting in a total of 253,632 voxels. Finally, a 

voxel-wise regression analysis was performed at each voxel to eliminate the effects from 

age, sex and collection site. The gray matter images corrected for the above variables 

were then analyzed in conjunction with the SNP data. 

DNA was extracted from blood samples of 255 MCIC participants and saliva samples 

of 84 COBRE participants respectively (six participants appeared in both studies). 

Genotyping for all participants was performed at the Mind Research Network using the 

Illumina Infinium HumanOmni1-Quad assay spanning 1,140,419 SNP loci. BeadStudio 

was used to make the final genotype calls. No significant difference was observed in 

genotyping call rates between blood and saliva samples. 

PLink (Purcell et al., 2007a) was used to perform a series of quality control 

procedures. Gender was imputed based on x-chromosome heterozygosity rates and 

checked against internal QC files; SNPs and participants were checked for a genotyping 

rate of less than 90%; SNPs were excluded if they showed deviation from 

Hardy-Weinberg Equilibrium in controls with a threshold of 10
-6

 or if they failed to be 

missing at random with a threshold of 10
-10

; 4 participant was excluded due to relatedness 

with an identity-by-descent value > 0.1875; 2 participants were also excluded with 

heterozygosity ratios 3-SD away from the average; minor allele frequency cut-off was set 

to 0.01. Discrete numbers were then assigned to the categorical genotypes: 0 for no minor 

allele, 1 for one minor allele and 2 for two minor alleles. Subsequently, we replaced the 
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missing genotypes using haplotype genotypes of high linkage disequilibrium loci if 

available (LD, correlation > 0.80). After the above procedures, 777,365 autosomal SNPs 

were retained for MCIC data and 823,733 autosomal SNPs were retained for COBRE 

data, resulting in the final dataset of 327 samples × 728,683 common SNPs. It was noted 

that the minor allele differed between MCIC and COBRE data for 23,716 SNPs. We then 

adjusted the minor allele codings of these 23,716 SNPs in COBRE data to be consistent 

with those in MCIC data. Finally, as we decided to admit participants from all ethnic 

groups, population stratification was investigated through PCA (Price et al., 2006). 

Specifically, the SNP data were decomposed into a linear combination of underlying 

components, four of which differed significantly among ethnicities (p = 2.40×10
-99

, 

1.51×10
-85

, 1.25×10
-30

, 1.28×10
-18

, respectively) while not differentiating between 

schizophrenia patients and healthy controls, suggesting weak associations with the 

disorder. Therefore, we eliminated these four components from the original data. 

Afterwards, a Q-Q plot (Chanock et al., 2007) for p-values of group differences between 

patients and controls tested against a uniform distribution showed no clear indication of 

population structure (Figure 7.1). 

 

Figure 7.1: Q-Q plot of p-values (two sample t-test, group difference between patients 

and controls in terms of MAF) tested against a uniform distribution. 
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Association Analysis 

Parallel ICA with reference (pICA-R) was used for the association analysis. 

Regarding the genetic reference, we leveraged the results from an independent 

genome-wide SZ study to obtain genetic references. First, we selected a potential 

susceptibility gene ANK3 with intragenic SNPs exhibiting top genome-wide associations 

in the Psychiatric Genomics Consortium (PGC) SZ study ((Ripke et al., 2011), Table 

S10), which is currently the SZ study with the largest sample size. This gene is involved 

in neuronal activities (Lambert et al., 1997; Zhou et al., 1998) and therefore poses a 

promising candidate to be a reference in this imaging genetics study. We then identified 

the corresponding SNPs in ANK3 and grouped neighboring SNPs with moderate LD (|r| 

> 0.5) into a cluster, which could serve as a reference set. The LD threshold was 

determined by a visual inspection of our data, while also considering that SNPs with r
2
 > 

0.2 are not considered independent (Ripke et al., 2011). For this proof-of-principle and 

method development study, our primary strategy for reference selection was that, in 

pICA-R, the reference loci are expected to contribute simultaneously to one single 

component, which is the case most likely to happen for SNPs in LD. Therefore, we chose 

to use LD clusters as references to elicit more SNPs contributing in a coordinated 

manner. Finally we tested three reference sets from ANK3, each spanning more than 40 

SNPs, which were to yield at least 20 true loci with an accuracy of 0.5, a reasonable size 

as observed in simulations. It should be noted that we only examined a limited number of 

references in this work, as the major purpose was to demonstrate an application of the 

proposed approach instead of performing a complete SZ study. While there are also other 

genes that are of great importance, they will be left for future investigations. 



Chapter 7 Guided Exploration of Genomic Risk for Gray Matter Abnormalities in 

Schizophrenia 

93 

 

For the purpose of validating our finding, the SNP component identified by pICA-R 

was examined for its SZ enrichment based on the independent results of the PGC SZ 

study (Ripke et al., 2011). We first selected out SNPs significantly contributing to the 

identified component. Next, we compared the ratios of SZ-related SNPs in the selected 

top contributing SNPs and in the whole genome. For each SNP, the SZ-relevance was 

determined based on the significance of association reported in the PGC SZ study, such 

that a SNP exhibiting SZ association with a p-value less than Pth was considered as 

SZ-related. To examine the enrichment across different significance levels, we tested a 

Pth range from the standard level of 0.05 to a more significant level of 0.001. Then based 

on this criterion of SZ-relevance, we performed Fisher’s exact test to evaluate the 

significance of SZ enrichment in our finding compared to the whole genome. 

In addition, we applied ICA, pICA and ICA-R to the sMRI-SNP dataset for a 

comparison. In case of ICA, we applied two separate regular ICAs to the sMRI and SNP 

data respectively. Then pairwise correlations were calculated based on the loadings. In 

case of pICA, the dataset were directly analyzed for inter-modality associations. In case 

of ICA-R, we applied regular ICA to the sMRI data while ICA-R was used to extract the 

SNP component given the same reference. As in pICA-R, the number of components was 

selected to be 10 for the sMRI data and 27 for the SNP data, if a component number 

estimation applied. 

7. 3 Results 

The number of components was estimated to be 10 on uncorrelated voxels of the 

sMRI data using minimum description length (MDL) (Rissanen, 1978). For the SNP data, 
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27 components were extracted based on the metric of consistency (Chen et al., 2012b). 

We tested the three reference sets generated from ANK3 (Ripke et al., 2011), and one 

reference set spanning 82 SNPs helped elicit significant inter-modality connection. These 

82 SNPs exhibited moderate LD with an average correlation of 0.57 and were separated 

by an average of 1,276 base pairs. Guided by this reference, pICA-R identified one 

component pair exhibiting the highest correlation of -0.27 and a p-value of 1.64×10
-6

 

(passing Bonferroni correction of 0.05/10/27). After regressing out variables (specifically 

age, sex, race/ethnicity, collection site and SZ diagnosis for the SNP component; 

race/ethnicity and SZ diagnosis for the sMRI component), the sMRI-SNP association 

remained significant, exhibiting a partial correlation of -0.24 (p = 2.81×10
-5

), as shown in 

Figure 7.2.  

 

Figure 7.2: Scatter plots of loading coefficients associated with the identified sMRI and 

SNP components in patient and control group respectively. Controlling variables (age, 

sex, race/ethnicity, collection site) are corrected. 
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The loadings of the linked sMRI component significantly differed between SZ 

patients and healthy controls (two tailed t-test, p = 1.33×10
-15

). Note that effects from 

age, sex and collection site were already regressed out from the data and we did not 

observe any significant regression (two tailed t-test, p = 0.11) effect from the 

race/ethnicity on the sMRI component while controlling for diagnosis. We further 

examined whether medication affected the identified brain network in patients and found 

no significant regression effect (two-tailed t-test, p = 0.62) from the reported 

chlorpromazine equivalent dosage (Gardner et al., 2010) on the sMRI loadings while 

controlling for race/ethnicity. Figure 7.3 shows the spatial map of the sMRI component 

thresholded at |Z| > 3. The identified brain network included medial and inferior frontal 

gyri, superior temporal gyrus, insula and anterior cingulate, as listed in Table 7.2. 

Table 7.2: Talairach labels of identified brain regions (|Z| > 3). 

Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z) 

Medial Frontal Gyrus 9, 10, 6, 8 3.2/1.4 4.21(0,42,22)/3.98(2,49,10) 

Inferior Frontal Gyrus 47, 13 2.6/2.8 5.09(-40,17,-14)/5.67(44,13,-9) 

Superior Temporal Gyrus 38, 22, 13 2.3/3.8 4.94(-44,17,-13)/5.54(44,13,-11) 

Insula 13, 22, 47 0.4/1.8 3.74(-44,9,-6)/5.28(44,9,-7) 

Anterior Cingulate 32, 10 0.7/0.3 4.01(0,49,7)/3.86(2,47,9) 

 

 

Figure 7.3: Spatial map of brain network for the identified sMRI component (|Z| > 3). 
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The loadings associated with the linked SNP component exhibited a significant group 

difference between patients and controls (two tailed t-test, p = 0.04). The SNP component 

followed a super-Gaussian distribution and Figure 7.4 shows a logistic fit to the 

histogram. Based on the normalized component weights, we selected out 1,030 top 

contributing SNPs (top 1,030 based on the absolute values of the normalized component 

weights, corresponding to |Z| > 3.60, p = 0.003 based on the logistic fit, see Figure 7.5) as 

our finding.  

 

Figure 7.4: Logistic fit to the identified SNP component. 

 

Figure 7.5: Illustration: how the number of top contributing SNPs is determined. The 

blue curve shows the plot of normalized component weights (descending absolute 

values); L1 and L2 represent the linear fits to the two segments of the component curve; 
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A denotes the intersection of L1 and L2; the green line (L3) represents the line 

connecting the origin and the intersection A; B denotes the intersection of L3 and the 

component curve. 

 

Figure 7.6: Manhattan plot for the identified SNP component (threshold at |Z| > 3.60 for 

top contributing SNPs). 

Figure 7.6 shows a Manhattan plot of weights of loci for the identified SNP 

component, where clusters spanning more than 10 top contributing SNPs are marked. 

Table S1 provides a summary of the identified 1,030 SNPs, including SNP position, 

corresponding gene, normalized component weight, and MAFs in patient and control 

groups. Fifty-four out of the top 1,030 contributing SNPs were from the reference set and 

are marked in Table S1. A complete list of the 82 reference SNPs is also provided in 

Table S2. After these 54 reference SNPs were excluded, 656 out of the remaining 976 

SNPs had been investigated in the PGC study for associations with SZ. We then 

conducted Fisher’s exact test on SZ enrichment between these 656 matched SNPs and the 

whole genome of PGC data (spanning a total of 1,252,901 SNPs). As shown in Figure 
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7.7, significant SZ enrichment was consistently observed within the entire range of tested 

Pth’s. 

 

Figure 7.7: Fisher’s exact test on SZ enrichment between the identified SNPs and the 

whole genome based on PGC results. Pth denotes the threshold p-value of SZ-relevance, 

ranging from 0.001 to 0.05. 

We further investigated biological functions in which these top contributing SNPs are 

involved. While 522 out of 1,030 SNPs were mapped to 228 unique genes, Ingenuity 

Pathway Analysis (IPA: Ingenuity® Systems, http://www.ingenuity.com) indicated a 

significant enrichment of the domain of central nervous system development (p = 

2.88×10
-4

) in our finding, where 7 genes were involved, as highlighted in Table 7.3a. The 

identified genes were also significantly overrepresented in glutamate receptor signaling 

(p = 2.75×10
-2

) and DARPP32 regulated pathway (p = 4.07×10
-2

), as well as synaptic 

long term depression (LTD, p = 1.58×10
-2

) and potentiation (LTP, p = 3.24×10
-2

), as 

highlighted in Table 7.3b. In addition, the DAVID (Database for Annotation, 

Visualization and Integrated Discovery) bioinformatics resource (Huang et al., 2009a, b) 

identified significant clusters functionally related to cell adhesion (p = 1.14×10
-5

), 

synaptic transmission (p = 2.86×10
-4

)
 
and neuron projection morphogenesis (p = 
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1.75×10
-3

)
 
respectively, as highlighted in Table 7.3c. The identified canonical pathways 

and functional annotation clusters remained highly stable when the number of top 

contributing SNPs was adjusted from 1,000 to 5,000, as shown in Table 7.4 and 7.5. 

 

Table 7.3: Biological Pathway analysis and functional annotation clustering. 

1a. IPA biological function Genes P-value/P-value (B-H) 

Coronary disease ACE, ASIC2, CACNA1C, CERS6, CHRNA5,  
CSMD1, CSMD2, ITGB2, MECOM, MGAM,  

PPARA, PTPRM, SAMD12 

2.24E-05/1.68E-02 

Vascular disease ACE, ASIC2, CACNA1A, CACNA1C, CERS6,  
CHRNA5, COL4A1, COL4A2 (includes EG:12827),  

CSMD1, CSMD2, ITGB2, MECOM, MGAM,  

PPARA, PTPRM, SAMD12, TEK 

8.53E-05/2.25E-02 

Aggregation of tumor cell lines CMIP, DAPK3, IGF1R, ITGB2, PRKD1 9.70E-05/2.25E-02 

Coronary artery disease ASIC2, CACNA1C, CERS6, CSMD1,  

CSMD2, ITGB2, MECOM, MGAM,  
PPARA, PTPRM, SAMD12 

1.20E-04/2.25E-02 

Development of central nervous system ADAM22, ASIC2, CNTNAP2, DSCAML1, MYO16, 

PARK2, ZBTB16 

2.88E-04/4.31E-02 

Atherosclerosis ACE, ASIC2, CACNA1C, CERS6, CSMD1, CSMD2, 

ITGB2, MECOM, MGAM, PPARA, PTPRM, SAMD12 

4.26E-04/5.33E-02 

   

1b. IPA Canonical Pathway Genes P-value/P-value (B-H) 

AMPK Signaling PFKFB3, AK5, ACACB, PPP2R2C, PFKP, CHRNA5 4.17E-03/7.93E-01 

Aldosterone Signaling in Epithelial Cells DNAJC17, ASIC2, DNAJC18, PLCB1, DNAJC10, PRKD1 9.77E-03/8.08E-01 

Synaptic Long Term Depression IGF1R, PLCB1, PPP2R2C, GRM4, PRKD1 1.58E-02/8.08E-01 

Maturity Onset Diabetes of Young 

(MODY) Signaling 

CACNA1C, CACNA1A 2.04E-02/8.08E-01 

Glutamate Receptor Signaling SLC1A1, GRM4, GNG2 2.75E-02/8.08E-01 

Synaptic Long Term Potentiation CACNA1C, PLCB1, GRM4, PRKD1 3.24E-02/8.08E-01 

Dopamine-DARPP32 Feedback in cAMP 

Signaling 

CACNA1C, PLCB1, PPP2R2C, PRKD1, CACNA1A 4.07E-02/8.08E-01 

Agrin Interactions at Neuromuscular 
Junction 

ITGB2, NRG3, ARHGEF7 4.37E-02/8.08E-01 

G Protein Signaling Mediated by Tubby PLCB1, GNG2 5.01E-02/8.08E-01 

RhoGDI Signaling CDH12, ARHGEF7, CDH10, GNG2,  
ARHGAP8/PRR5-ARHGAP8 

5.13E-02/8.08E-01 

   

1c. DAVID functional annotation cluster Genes P-value/P-value (B-H) 

Cell adhesion PTPRM, CLSTN2, MAGI1, TNC, PCDH9, FBLIM1, 

DSCAML1, ITGB2, PTPRT, COL5A1, BTBD9, CDH12, 

SEMA5A, PKP2, TEK, PECAM1, CNTNAP2, RELN,  

CNTN4, IZUMO1, ADAM22, CDH10 

1.14E-05/1.14E-02 

Synaptic transmission GRM4, ACCN1, DLGAP1, GABRR1, CHRNA5, 

PARK2, VIPR1, CACNA1C, KCNIP1, RIMS1, 

SLC1A1, CACNA1A 

2.86E-04/9.18E-02 

Neuron projection morphogenesis SEMA5A, IGF1R, PTPRM, ANK3, DSCAML1, 

CNTN4, RELN, GAS7, CACNA1A 

1.75E-03/1.78E-01 

Note: P-value(B-H) represents the Benjamini-Hochberg corrected p-value of enrichment.   
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Table 7.4: IPA canonical pathways with varying numbers of top contributing SNPs. 

IPA canonical  

pathway 
N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 

p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) 

Synaptic long  

term depression 
1.58E-02/8.08E-01 4.68E-04/1.29E-01 2.57E-04/2.00E-02 9.33E-05/8.71E-03 2.63E-04/2.57E-02 

PRKCQ,GRM8,RYR2,GRM4,GRM7,GRM5,PLCD1,PRKG1,GRID1,PLCG2,PPP2R2B,IGF1R,PLCB1, 
PRKCE,PPP2R2C,PRKD3,PRKD1,PRKCB 

Glutamate  

receptor signaling 
2.75E-02/8.08E-01 1.10E-02/6.00E-01 1.20E-02/3.51E-01 1.05E-02/1.33E-01 7.94E-03/1.78E-01 

GRM5,GRM7,GRIN2B,GRID1,GRM8,SLC1A1,GRM4,GNG2 

Synaptic  

long term  

potentiation 

3.24E-02/8.08E-01 6.92E-03/6.00E-01 1.66E-04/1.74E-02 4.17E-05/5.13E-03 1.00E-04/1.32E-02 

GRIN2B,PRKCQ,GRM8,CACNA1C,GRM4,PRKAG1,GRM7,PLCD1,GRM5,PLCG2,PRKAG2,PRKCE, 

PLCB1,PRKD3,PRKD1,CAMK2B,PRKCB 

Dopamine-ARPP32 
feedback in cAMP  

signaling 

4.07E-02/8.08E-01 3.72E-02/7.21E-01 1.07E-03/5.62E-02 5.25E-04/2.45E-02 1.45E-03/6.31E-02 

KCNJ12,GRIN2B,PRKCQ,CACNA1C,CACNA1A,PRKAG1,PLCD1,PRKG1,KCNJ10,PLCG2,PPP2R2B, 

PRKAG2,PLCB1,PRKCE,PPP2R2C,PRKD3,PRKD1,PRKCB 

Note: N represents the number of top contributing SNPs; p and p(B-H) represent the uncorrected and 

Benjamini-Hochberg corrected p-values of enrichment.   

 

Table 7.5: DAVID functional annotation clusters with varying numbers of top SNPs. 

DAVID  

annotation cluster 

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 

p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) 

Cell  
adhesion 

1.14E-05/1.14E-02 4.40E-06/2.41E-03 2.64E-06/5.43E-03 1.73E-06/8.53E-04 1.44E-09/3.77E-06 

NRP2, CLSTN2, OPCML, PCDHGA1, CDH22, WISP1, ROBO1, CNTNAP2, ROBO2, IZUMO1, 

DSCAM, SYK, PTPRK, PTPRM, MAGI1, CNTN5, TRPM7, LEF1, PCDH9, FBLIM1, PTPRT, MFGE8, 

PTPRU, NRXN1, CERCAM, BTBD9, SLC26A6, PGM5, RELN, CNTN4, DST, DCHS2, GNE, TNC, 
DSCAML1, SPOCK1, IL32, ITGB2, SOX9, CDH4, ITGBL1, SEMA5A, FAT3, TNR, COL6A3, TEK, 

BAI1, CD2, SSX2IP, COL18A1, BMP1, GMDS, ADAM23, COL13A1, LPP, PPFIBP1, CELSR3, ITGA2, 

PCDH15, COL5A1, CDH12, CDH13, COL19A1, PKP2, PKP3, CDH18, FBLN5, PECAM1, ADAM22, 
CDH10, NTM, HABP2, MUC16 

Synaptic 
transmission 

2.86E-04/9.18E-02 7.79E-08/1.28E-04 6.31E-06/4.32E-03 8.30E-07/1.02E-03 2.51E-06/5.50E-04 

SYT1, KCNC4, CACNB2, VIPR1, RIMS1, KCNIP1, AMPH, KCNQ5, GRIN2B, CHRNA5, SLC1A1,  
HTR1F, CHRNA3, KCNMA1, DLGAP1, GABRG3, DLGAP2, NRXN1, PARK2, PARK7, GRM5, GRM4, 

ACCN1, GABRR1, NPY, PNOC, GRM8, GRM7, KCNN3, SLC6A5, GHRL, UNC13C, CACNA1C, 

UNC13B, CACNA1A 

Neuron projection 

or development 
1.75E-03/1.78E-01 7.99E-05/1.07E-02 2.03E-05/8.34E-03 1.64E-06/1.01E-03 3.69E-07/1.61E-04 

DCC, NRP2, NRTN, OPCML, DSCAML1, PRKG1, CDH4, SEMA5A, ATP2B2, IGF1R, ROBO1, ANK3, 

TNR, NUMB, BAI1, CNTNAP2, ROBO2, B3GNT2, DSCAM, KLF7, PTPRM, SPTBN4, NTNG1, 

CELSR3, NRXN1, LMX1A, FIG4, GAS7, TP73, SLIT3, SLC26A6, CLIC5, MAP2, GHRL, RELN, 
CNTN4, EFNA5, DST, NTM, CACNA1A, GFRA3 

Note: N represents the number of top contributing SNPs; p and p(B-H) represent the uncorrected and 

Benjamini-Hochberg corrected p-values of enrichment.   
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Compared to pICA-R, ICA did not identify any significant association between the 

two modalities (r = -0.16, p = 6.68×10
-3

). pICA identified a significant sMRI-SNP 

association (r = -0.24, p = 3.13×10
-5

). After regressing out possibly confounding 

variables (age, sex, collection site, ethnicity and diagnosis), the partial correlation was 

-0.18 (p = 1.40×10
-3

). Using the same reference set as in pICA-R, ICA-R did not identify 

any significant sMRI-SNP association (r = -0.13, p = 0.03). Given that pICA identified a 

significant association, we then performed a cross validation for that SNP component 

based on the PGC SZ study, and did not observe any significant SZ enrichment compared 

to the whole genome (Figure 7.8). Thus pICA-R was the only approach that identified a 

significant sMRI-SNP association and also showed significant SZ enrichment in our 

validation study. 

 

Figure 7.8: Fisher’s exact test on SZ enrichment between the SNPs identified by pICA 

and the whole genome based on PGC results. pth denotes the threshold p-value of 

SZ-relevance, ranging from 0.001 to 0.05. 

7. 4 Discussion 

Given a sample-to-SNP ratio around 4.12×10
-4

, pICA-R identified one sMRI-SNP 

component pair exhibiting a significant association (r = 0.24, p = 2.81×10
-5

) while 
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controlling for age, sex, race/ethnicity, collection site and SZ diagnosis, indicating that 

the association was not mainly attributable to these factors. The loadings associated with 

the SNP component differentiated patients from healthy controls (p = 0.04), while the 

sMRI loadings showed a more significant group difference (p = 1.33×10
-15

). Overall, the 

results suggest that the identified genetic factor might underlie a proportion of variation 

in gray matter concentration that further contributes to SZ phenotypic symptoms 

(Harrison, 1999). 

sMRI component: The loadings associated with the sMRI component were 

significantly lower in patients, indicating an overall SZ-related loss of gray matter, which 

has been indicated in a number of studies (Glahn et al., 2008; Gur et al., 2007; Narr et al., 

2005; van Haren et al., 2007). The identified brain network consisted of dorsolateral 

(Brodmann Areas (BA) 9) and ventrolateral (BA6 and 47) prefrontal cortices (DLPFC 

and VLPFC), as well as anterior cingulate (BA32) and insular cortex (BA13). This 

network overlaps considerably with an SMRI component identified before in these data, 

and found to be heritable in a sibling-pair analysis (Turner et al., 2012). DLPFC is 

connected to a variety of brain areas and plays an important role in working memory 

(WM), executive function and other higher-order cognitive processes. Recent work also 

lends support for DLPFC contributing to the encoding of relational memory, which may 

further promote long-term memory (LTM) formation, through its role in WM 

organization (Blumenfeld et al., 2011; Murray and Ranganath, 2007). VLPFC, compared 

with DLPFC, is generally considered as involved in LTM formation, where the left 

frontal region is more associated with verbal memory while the non-verbal memory 

activates more of the right frontal region (Buckner et al., 1999). The anterior cingulate 
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(BA32) consists of affective and cognitive subdivisions, the former more associated with 

emotional processes and the latter more activated by tasks requiring cognitive and 

attentional control (Davidson et al., 2002; Pizzagalli, 2011). The above highlighted 

regions have been consistently reported to be altered in SZ patients, including reductions 

in gray matter and cortical thickness (Cannon et al., 2002; Glahn et al., 2008; Kuperberg 

et al., 2003; Shenton et al., 2001; Xu et al., 2008), as well as exhibiting abnormal 

task-related functional activation (Glahn et al., 2005; Manoach, 2002; Minzenberg et al., 

2009). Overall, our findings are in line with a considerable evidence of gray matter 

abnormalities in prefrontal and temporal regions as one of the characteristic deficits in 

SZ. 

SNP reference: In this work, we adopted the most straightforward strategy to generate 

a reference set based on LD clusters of one single gene (ANK3). Genome-wide 

association study (GWAS) is based on the premise that a causal variant is located on a 

haplotype, and thus a marker allele in LD with the causal variant should show (by proxy) 

an association with the trait of interest (Stranger et al., 2011). Therefore, SNPs in one LD 

cluster are more likely to contribute simultaneously to one single component and serve as 

good candidates for reference. 

Although the SNP highlighted in the PGC study (rs10994359 from ANK3) is not 

covered in our data, the nearest SNP (rs10761503, 307bp upstream, in LD with 

rs10994359 with a D-prime of 1 according to the HapMap CEU LD data) is in moderate 

LD with the reference set (exhibiting a mean correlation of 0.43). In addition, we mapped 

the selected reference SNPs to the PGC data. 18 out of the 82 reference SNPs were 

investigated in the PGC study, and 12 were implicated for SZ relevance (p < 0.05), 
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leading to a true causal loci ratio of 0.67 (12/18). Given that the 18 PGC-mapped SNPs 

were uniformly distributed along the 82 reference SNPs, this ratio of 0.67 provided a 

reference for estimating the number of true casual loci in our reference set, which should 

be about 55 (0.67*82). In fact, our results did echo this true causal loci ratio, where 54 

out of the 82 reference SNPs were identified as top-contributing. The 54 identified SNPs 

included 9 PGC-implicated causal loci, and the remaining 45 SNPs demonstrated very 

high LD with the PGC findings. According to the HapMap CEU LD data, 16 SNPs are in 

complete LD with the 12 PGC-implicated SNPs (D-prime = 1), and another 4 

demonstrate a D-prime of 0.871, 0.875, 0.939 and 0.883, respectively. For other 25 SNPs 

not covered in the HapMap CEU LD data, we evaluated in our data their relations with 

the 12 PGC-implicated SNPs and found high correlations (r > 0.96) except for one locus. 

These observations suggest that LD can provide good guidance in reference selection. 

When limited causal loci are known, searching clusters of SNPs exhibiting LD with them 

may be the most effective approach to generate a testable reference in this pICA-R 

model. 

SNP component: The SNP component was significantly associated with the sMRI 

component. On average, SZ patients carried higher loadings on the SNP component while 

exhibiting lower gray matter concentration in the identified regions of the sMRI 

component. The SNP component was predominantly contributed to by 1,030 SNPs 

exhibiting top component weights. Cross-evaluation based on PGC results confirmed that 

the top contributing SNPs were significantly overrepresented in terms of SZ-relevance, 

which validated our finding. It is noted that when the threshold of SZ-relevance (Pth) 

increased, the enrichment diminished, which is reasonable. The top contributing SNPs 
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comprised a number of clusters distributed across the whole genome, which is not 

surprising given our model, where SNPs in LDs would exhibit comparable effects. 

Clusters spanning more than 10 top contributing SNPs are highlighted in Figure 7.6 and 

marked by the corresponding cytogenetic bands, some of which have been implicated in 

previous studies, such as 5q15 for bipolar disorder (Scott et al., 2009), 15q15.1 for 

attention deficit/hyperactivity disorder (Bakker et al., 2003), as well as 17q23.3 for 

autism (Girirajan et al., 2011) and schizophrenia (Wahlbeck et al., 2000). 

Among the 1,030 top contributing SNPs, 522 reside in a total of 228 unique genes. 

The remaining 508 intergenic SNPs lie within sequences not presently annotated but they 

could have a regulatory function on large non-coding RNAs and other regulatory 

non-coding RNAs. 

Pathway analyses of the 228 known genes revealed that they participate in a number 

of neurotransmitter and nervous signaling pathways, including glutamate receptor 

signaling and DARPP32 regulated pathway, as well as synaptic LTP and LTD. It was 

noted that some pathways and clusters were no longer significant after the Benjamini–

Hochberg correction; however this does not necessarily indicate a false positive finding. 

First, the correction was performed for all candidate pathways, which may not be 

independent from each other, indicating a possibility of over-correction. Second, the 

identified canonical pathways and functional annotation clusters remained highly stable 

when we adjusted the number of top contributing SNPs from 1,000 to 5,000. In 

particular, the enrichment became significant even after the correction at some point 

(Table 7.4 and 7.5). Finally, as emphasized by IPA, the enrichment score simply provides 

guidance for interpretation, and it is more important to further explore the functions of 
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involved genes to interpret the finding. In this study, the pathway analyses results are 

provided to help unravel the genetic architecture. The involved genes are discussed in 

more details to understand the biological connections between the identified component 

and the disorder. 

Glutamate receptor signaling (SLC1A1, GRM4, GNG2): Glutamate receptor signaling 

plays a crucial role in neurocognitive processes and aberrant glutamate neurotransmission 

may be associated with positive and negative symptoms as well as cognitive deficits in 

SZ (Coyle, 2006; Egan et al., 2004; Krystal et al., 2010). Recent work also provides 

evidence for an association between perturbed glutamate function and gray matter 

volume variation in prodromal SZ (Stone et al., 2009). In particular, one SNP in GNG2 

(encoding guanine nucleotide-binding protein, gamma-2) has been identified, with its 

minor allele relating to an increased gray matter volume in medial prefrontal cortex 

(Chavarria-Siles et al., 2012). Also, some glutamate transporters including SLC1A1 

(encoding excitatory amino-acid transporter 3) are believed to have pivotal functions in 

mediating neurotoxicity, which raises the possibility of underlying structural changes in 

SZ (Deutsch et al., 2001; Olney and Farber, 1995). In our finding, three SNPs contributed 

to the glutamate pathway, including rs 150195_A (SLC1A1, ‘A’ denotes the minor 

allele), rs1873249_G (GRM4) and rs10150721_G (GNG2). The first SNP contributed 

with a positive weight, indicating an increased MAF being associated with lower gray 

matter concentration; and the latter two SNPs presented negative weights, implying gray 

matter loss being associated with decreased MAFs. 

Dopamine-DARPP32 signaling (CACNA1A, CACNA1C, PLCB1, PPP2R2C, 

PRKD1): These proteins modulate dopamine and DARPP32 regulated gene expression 
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and function, which likely influences synaptic plasticity such as LTP and LTD (Jay, 

2003; Svenningsson et al., 2004) as well as being associated with SZ risk (Albert et al., 

2002; Howes and Kapur, 2009). In our finding, five genes are involved in this pathway, 

including CACNA1A (rs4926278_C and rs4926279_C), CACNA1C (rs2238070_T), 

PLCB1 (rs2745764_T), PPP2R2C (rs7688267_G) and PRKD1 (rs12883327_T). 

CACNA1C is likely a major risk gene for bipolar disorder (Ferreira et al., 2008). 

Meanwhile, it is of particulate interest that CACNA1A and CACNA1C (calcium 

channels, voltage-dependent) also participate in calcium signaling, which plays an 

important role in neuronal processes (Lidow, 2003; Mattson, 1992) and may also 

contribute to the reduction in neuronal number given its suggested role in cell death 

(Sastry and Rao, 2000; Toescu, 1998). 

Synaptic LTP and LTD (IGF1R, PLCB1, PPP2R2C, GRM4, PRKD1, CACNA1C): 

synaptic LTP and LTD are two forms of synaptic plasticity resulting in altered synaptic 

strength, which underlie learning and memory (Collingridge et al., 2010; Cooke and 

Bliss, 2006; Linden and Connor, 1995). While learning and memory impairments are 

well documented in SZ (Aleman et al., 1999; Paulsen et al., 1995), direct evidence has 

also been provided for disrupted LTP/LTD in SZ (Frantseva et al., 2008; Weng et al., 

2011). In our finding, three genes are involved in both LTD and LTP processes, including 

PLCB1, GRM4 and PRKD1. GRM4 (encoding metabotropic glutamate receptor 4) is 

also implicated in glutamate signaling, while PLCB1 (1-phosphatidylinositol 4, 

5-bisphosphate phosphodiesterase beta-1), PRKD1 (Serine/threonine-protein kinase D1) 

and PPP2R2C (Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B 

gamma isoform) are also implicated in DARPP32 regulated pathway, indicating a 
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possible convergence in pathology. On the other hand, IGF1R (Insulin-like growth factor 

1 receptor, rs8038015_C and rs6598542_G) is involved only in LTD, where both of two 

SNPs contributed with positive weights. 

Besides those genes implicated in the aforementioned neurotransmitter and nervous 

signaling pathways, it is noteworthy that a number of the remaining detected genes have 

been implicated in other neuronal processes. For instance, CNTNAP2 (encoding 

contactin-associated protein-like 2) and RELN (encoding reelin), as reported by DAVID, 

are among the functional cluster of cell adhesion, which plays an important role in brain 

development (Edelman, 1983; Rutishauser and Jessell, 1988). CNTNAP2 is shown to 

mediate intercellular interactions during latter phases of neuroblast migration and laminar 

organization (Strauss et al., 2006). This gene exhibits a high expression in anterior 

temporal and prefrontal regions in humans, yet low or absent expression in rodents 

(Abrahams et al., 2007), suggesting a possible role in higher cognitive functions such as 

language (Vernes et al., 2008). RELN is suggested to regulate neurogenesis and 

migration, as well as enhance synaptic LTP (Hoe et al., 2009; Pujadas et al., 2010; 

Spalice et al., 2009). In addition, RELN mutations have been associated with SZ 

(Guidotti and Di-Giorgi-Gerevini, 2002; Wedenoja et al., 2008). 

It’s noted that IPA indicates an enrichment of coronary artery and vascular disease in 

the identified component, as shown in Table 7.3a. While comorbidity between these 

diseases and SZ has been documented, most of the previous works highlighted 

environmental factors, such as cigarette smoking and metabolic syndrome (Hennekens et 

al., 2005; Jeste et al., 1996). This issue may deserve further investigation. 
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Combining the sMRI and SNP findings, pICA-R revealed an association between one 

genetic component and SZ-related reduction in gray matter concentration in distributed 

brain regions. The identified brain regions are among those shown to exhibit gray matter 

deficits partly attributable to genetic factors (Cannon et al., 2002; Thompson et al., 2001). 

The genetic component reflects enrichment in neuronal processes. It is noteworthy that 

both genetic and imaging findings show a particular relevance to cognition, especially 

memory function. While the underlying mechanism remains to be elucidated, our finding 

strongly suggests that the identified genetic component may affect neurobiological 

conditions that play a role in the cognitive deficits of SZ.
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CHAPTER 8 CREB-BDNF GUIDED EXPLORATION OF 

GENOMIC RISK FOR CUE-ELICITED HYPERACTIVATION IN 

ALCOHOL DEPENDENCE  

8. 1 Introduction 

 Alcohol addiction is a prevalent devastating disease. It is estimated that ~14% of 

alcohol users experience dependence, presenting a substantial healthy and economic issue 

(Grant et al., 2001). Genetic factors have been shown to affect liability to alcohol 

dependence, with the heritability estimated to be 40-80 % while the remainder variances 

might be majorly attributable to environmental factors (Heath et al., 1997; Knopik et al., 

2004; Uhl, 2004). Great efforts have been made towards unraveling the genetic etiology 

of alcoholism. Targeted gene and large-scale genome-wide studies have provided 

evidences for a number of susceptibility variants, highlighting genes involved in a variety 

of neural signaling pathways, including dopaminergic (Conner et al., 2005; Filbey et al., 

2008c; Noble, 2000), glutamatergic (Krystal et al., 2003; Mayfield et al., 2008; 

Schumann et al., 2008) and GABAergic (Bierut et al., 2010; Enoch et al., 2009; Radel et 

al., 2005) systems. Genes encoding alcohol dehydrogenase (ADH) enzymes playing a 

key role in alcohol metabolism are also implicated in the vulnerability (Edenberg and 

Foroud, 2006; Luo et al., 2007). 

Despite the growing knowledge on susceptibility loci contributing to the individual 

differences in drinking behavior, the genetic findings in general suffer small effect sizes. 
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For instance, in a large genome-wide association study of alcohol dependence where 

thousands of subjects were included for investigations, no SNP could pass the 

genome-wide significance threshold of 5×10
-8

 (Stranger et al., 2011). Instead the 

highlighted 15 SNPs yielded suggestive associations with p < 10
-5

 (Bierut et al., 2010), 

yet none of them could be replicated in two independence studies with nominal threshold 

of 0.05, and nor did they replicate findings of a previous GWAS (Treutlein et al., 2010). 

This is essentially a common challenge in complex genetic trait mapping. Like many 

other complex disorders, addiction is also suggested as polygenic (Enoch and Goldman, 

1999; Goldman, 1993; Johnson et al., 2006), such that the underlying genetic factor 

involves many loci with small individual effect sizes. The interpretation of genetic effect 

becomes even more complicated due to heterogeneity with different genetic variants 

exert influences on phenotypes through different biological mechanisms (Pickens et al., 

1991; Wong and Schumann, 2008).  

In this work, we employ parallel ICA with multiple references for the investigation of 

genetic effect on alcohol dependence. The multivariate approach assesses many variables 

for aggregate effects, posing a promising model for polygenicity. In addition, prior 

knowledge is incorporated to guide the data decomposition, such that genetic factors of 

specific attributes can be elicited from high-dimensional complex data. Furthermore, 

instead of directly linking genetic factors to behavioral assessments, the associations with 

neurobiological traits are emphasized. Specifically, brain activations were measured from 

subjects exposed to the taste of alcohol which has been shown to appropriately draw forth 

altered functions related to alcohol abuse (Myrick et al., 2008; Tapert et al., 2004). Thus, 

the approach provides a three-way translational framework for exploring the genetic 
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underpinnings of neuronal functions, which might ultimately lead to clinical 

manifestations of the disorder.  

8. 2 Materials and Methods 

Participants 

A total of 326 subjects participated in the study to investigate genetic and 

neurobiological traits in heavy drinking (Claus et al., 2011). The institutional review 

board approved the study. All the participants were recruited from the greater 

Albuquerque metropolitan region and provided written informed consents. The inclusion 

criterion was based on alcohol consumption, requiring participants to have at least 5 (for 

men) or 4 (for women) drinks per drinking occasion at least five times in the past month. 

The exclusion criteria included a history of severe alcohol withdrawal, brain-related 

medical problems, or symptoms of psychosis. In addition, participants were required to 

be sober during the data collection, with a breath alcohol concentration of 0.00. After 

preprocessing, 315 participants were admitted into the analysis, for which good quality 

fMRI and SNP data were collected. Table 8.1 provides the demographic information.  

Table 8.1: Demographic information of participants. 

Number of participants Male (220) Female (95) 

Race/Ethnicity Caucasian 99 43 

 
African American 4 2 

 
Asian 2 0 

 
Latino 54 28 

 
Native American 13 3 

 
Mixed 47 19 

 Unreported 1 0 

Age Mean ± SD 31.74 ± 9.43 32.52 ± 10.58  

 
Range 21 – 56 21 – 55 
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Table 8.2: Alcohol dependence assessment.  

Assessment Sub-category Description 

ADS ADS-con Loss of behavior control   

 ADS-obs Obsessive drinking style  

 ADS-per Psychoperceptual withdrawal  

 ADS-phy Psychophysical withdrawal  

 ADS-tot Total ADS  

AUDIT AUDIT-1 How often do you have a drink containing alcohol?  

 AUDIT-2 How many drinks do you have on a typical day when you are drinking? 

 AUDIT-3 How often do you have 6 or more drinks on one occasion?   

 AUDIT-4 How often during the last year have you found that you were unable to 

stop drinking once you had started?  

 AUDIT-5 How often during the last year have you failed to do what was 

normally expected from you because of drinking?  

 AUDIT-6 How often during the last year have you needed a first drink in the 

morning to get yourself going after a heavy drinking session?  

 AUDIT-7 How often during the last year have you had a feeling of guilt or 

remorse after drinking?  

 AUDIT-8 How often during the last year have you been unable to remember 

what happened the night before because you had been drinking?  

 AUDIT-9 Have you or someone else been injured as the result of your drinking?  

 AUDIT-10 Has a relative, friend, or a doctor or other health worker been 

concerned about your drinking or suggested you cut down?  

 AUDIT-tot Total AUDIT score 

 AUDIT-consump Alcohol consumption total (sum of AUDIT-1, -2, and -3) 

 AUDIT-dep Alcohol dependence total (sum of AUDIT-4, -5, and -6) 

 AUDIT-probs Alcohol problems total (sum of AUDIT-7, -8, -9 and -10) 

ICS ICS-total Total ICS  

 ICS-ac Attempted control  

 ICS-fc Failed control  

 ICS-pc Percieved control 

Alcohol symptom count PA-count Past alcohol abuse symptom count 

 CA-count Current alcohol abuse symptom count 

 PD-count Past alcohol dependence symptom count 

 CD-count Current alcohol dependence symptom count 

Drinking history NewAgeDrink Probable age that regular drinking first occurred 

 NewYearsDrink Probable number of years of regular drinking 

 AgeFirstDrink Probable age of first drink 

 LastDrink Number of days since last drink from Time-Line Follow-Back 

Stress EStress-tot Total early stress for ages before 19 (0-18 years old) 

 Stress-tot Early Stress total (all ages reported) 

 BDI-tot Total Beck Depression Inventory 

 

Data Collection and Preprocessing 

Behavioral assessment: The assessment was administered through a variety of 

questionnaires, including the Alcohol Dependence Scale (ADS) (Skinner and Horn, 

1984), the Alcohol Use Disorder Identification Test (AUDIT) (Babor et al., 2001) and the 
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Failed Control Subscale of Impaired Control Scale (ICS) (Heather et al., 1998; Heather et 

al., 1993). We excluded those relatively incomplete measurements where data were 

missing for more than 25 subjects. Finally a total of 34 related behavioral measurements 

were used in the subsequent analysis, as listed in Table 8.2. The missing ratio was no 

greater than 4/315. It should be noted that most of these behavioral assessments showed 

significant associations with age, except for AUDIT-9, AgeFirstDrink, LastDrink, 

EStress-tot and Stress-tot.  

 Functional MRI: Brain activation data were collected during an alcohol craving task 

(Claus et al., 2011; Filbey et al., 2008a). Participants were exposed to small amounts of 

alcoholic (subjects preferred) or juice (litchi) beverages pseudorandomly presented to 

them during the MRI scans. Figure 8.1 shows the schematic of a single taste cue trial. 

Each trial sequentially consisted of a  s “Ready” prompt, a 24s taste cue presentation and 

a 16s washout period. During the cue presentation, participants tasted the presented 

beverage (second 1-10 and 12-22) and then swallowed (second 10-12 and 22-24). No 

stimuli were presented during the washout and participants viewed the word “Rest”. Two 

9min runs were conducted for each participant, with a single run spanning 12 trials, 6 for 

each tastant. A 3T Siemens Trio was used for the data collection. The echo-planar 

gradient-echo pulse sequence was configured as follows: TR = 2s, TE = 29ms, flip angle 

= 75°, voxel size = 3.75mm × 3.75mm × 4.55mm. The collected fMRI data were 

preprocessed with FSL ((Smith et al., 2004), http://www.fmrib.ox.ac.uk/fsl/). Standard 

motion correction was performed and images were normalized to the Montreal 

Neurological Institute (MNI) template (Jenkinson et al., 2002). An 8mm full-width 

half-maximum Gaussian kernel was used for spatial smoothing. Finally alcohol versus 
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juice contrast images spanning a total of 54,937 voxels were extracted for subsequent 

association analyses.   

 

Figure 8.1: Schematic of a single taste cue trial (Filbey et al., 2008a). 

SNP data: Saliva samples were collected from participants for DNA extraction. 

Genotyping for all participants was performed at the Mind Research Network using the 

Illumina Infinium Human 1M-Duo assay spanning 1,199,187 SNP loci. BeadStudio was 

used to make the final genotype calls. PLink (Purcell et al., 2007a) was used to perform a 

series of quality control procedures as described in the previous chapter for the MCIC 

and COBRE data. Specifically, SNPs and participants were first examined for a 

genotyping rate threshold of 95%; SNPs were excluded if they showed deviation from 

Hardy-Weinberg Equilibrium with a threshold of 10
-6

 or if they failed to be missing at 

random with a threshold of 10
-10

; 2 participants were excluded due to high heterozygosity 

(3-SD greater than the mean across all subjects); Another 2 participants were excluded 

due to relatedness with an identity-by-descent value > 0.1875; Minor allele frequency 

cut-off was set to 0.01. After the standard quality control, discrete numbers were then 
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assigned to the categorical genotypes: 0 for no minor allele, 1 for one minor allele and 2 

for two minor alleles. Subsequently, we replaced the missing genotypes using haplotype 

genotypes of high LD loci if available (correlation > 0.80). After the above procedures, 

missing genotypes were still observed in 123,159 out of a total of 735,938 autosomal 

SNPs. We then excluded 18,809 SNPs with a missing ratio greater than 1% and saved the 

rest through replacing the missing genotypes using the major alleles of individual loci. 

The resulting data spanning 717,129 autosomal SNPs were then investigated for 

population stratification using PCA (Price et al., 2006), as we decided to admit 

participants from all ethnic groups. Specifically, the SNP data were decomposed into a 

linear combination of underlying PCs, three of which (PC1, 2, and 4) differed 

significantly among ethnicities (p = 9.85×10
-79

, 3.23×10
-86

, 3.21×10
-55

, respectively) 

while exhibiting no association with alcohol dependence. These three components were 

then eliminated from the original data. Afterwards, a Q-Q plot (Chanock et al., 2007) for 

p-values of AUDIT associations tested against a uniform distribution showed no clear 

indication of population structure (Figure 8.2). 

 

Figure 8.2: Q-Q plot of p-values (correlation test between SNP and AUDIT-tot) tested 

against a uniform distribution. 
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Association Analysis 

The fMRI contrast images were analyzed in conjunction with the SNP data using 

parallel ICA with multiple references. The number of fMRI components was estimated 

by minimum description length (MDL) (Rissanen, 1978) on uncorrelated voxels. The 

number of SNP components was estimated based on the metric of consistency (Chen et 

al., 2012b). With respect to genetic references, hotspots or pathways harboring 

susceptibility genes implicated in previous studies were recruited, as listed in Table 8.3. 

The gene cluster CHRNA3-CHRNA5-CHRNB4 is the most replicated finding for 

nicotine dependence (Bierut, 2010; Caporaso et al., 2009) while also implicated in risk of 

alcohol dependence (Wang et al., 2009). SNPs in 4p12 hosting GABA receptors were 

shown to present moderate odds ratios in a GWAS on alcohol dependence (Bierut et al., 

2010) and independent contributions from individual receptors have been suggested. 

Another cluster of GABA receptors resides in 5q34. Both mouse and human studies 

provided evidences for their modulatory roles in alcohol dependence (Radel et al., 2005). 

Alcohol dehydrogenase (ADH) is a primary enzyme involved in alcohol dependence and 

variants in the investigated gene cluster, ADH1A-ADH1B-ADH1C have been found 

associated with risk of alcoholism (Edenberg and Foroud, 2006; Luo et al., 2007). The 

opioidergic system is considered as mediating drug-induced feelings and playing an 

important role in substance rewarding properties (Gianoulakis, 2001). Related 

polymorphisms have been identified as associated with alcohol dependence (Filbey et al., 

2008b; Zhang et al., 2008). CREB is a key transcriptional factor for neuronal growth and 

regulates the expression of BDNF. These two genes have been found to interact in a 
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variety of brain regions and play a critical role in addiction (Carlezon et al., 2005; Crews 

et al., 2007; Pandey, 2003).  

Table 8.3: Tested genetic references. 

Reference Genes Evidence 

15q24-25  CHRNA3, CHRNA5, CHRNB4 Bierut, 2010; Caporaso et al., 2009; Wang et al., 2009 

4p12 GABRA4, GABRA2, GABRG1, GABRB1 Bierut et al., 2010; Enoch et al., 2009 

5q34 GABRB2, GABRA6, GABRA1, GABRG2 Radel et al., 2005 

4q23 ADH1A, ADH1B, ADH1C Edenberg et al., 2006; Luo et al., 2007 

Opioid system  OPRM1, OPRK1, OPRD1  Filbey et al., 2008; Zhang et al., 2008 

CREB-BDNF CREB1, CREB5, BDNF Carlezon et al., 2005; Crews et al., 2007; Pandey, 2003 

 

Following the design of parallel ICA with multiple references, we tested each of these 

hotspots or pathways separately, where each produced multiple referential SNP sets. 

Specifically, for each hotpot or pathway, a reference matrix was generated with each row 

representing a reference vector highlighting a group of SNP loci selected from a single 

gene. In this study, most of the referential genes spanned tens of SNPs forming a single 

LD block, which were directly used to generate a reference vector. One exception was 

CREB5 hosting 228 SNPs, for which multiple LD blocks were identified (neighboring 

SNPs with moderate LD |r| > 0.5). The LD threshold was determined by a visual 

inspection of our data, and also considering that SNPs with r
2
 > 0.2 are not considered 

independent (Ripke et al., 2011). The CREB5 referential set was then derived from each 

LD block and combined with the referential sets derived from BDNF and CREB1 to from 

the reference matrix. It should be noted that we only examined a limited number of 

hotspots and pathways in this work. While there are also other pathways such as 

dopaminergic and glutamatergic systems that are of great importance, they will be left for 

future investigations. 
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To assess the fidelity of the identified association, we applied a subset evaluation test. 

Ten runs, each with 90% of the subjects, were conducted for the evaluation of association, 

and the fMRI-SNP association identified in the full dataset was tested for its replication 

in the subset results. More informatively, we performed a permutation test to assess the 

validity of the identified fMRI-SNP association, that is, to investigate the possibility of 

the identified association occurring in randomly rearranged subjects. Given the estimated 

numbers of components, parallel ICA with multiple references extracted 165 fMRI-SNP 

component pairs in each of the 1,000 permutations. We then calculated the tail 

probability to evaluate the significance level of the identified fMRI-SNP association 

based on the top linked component pair of each run.   

The identified linked fMRI-SNP components were further investigated for 

connections with behavioral assessments (Table 8.2) to confirm the functional influences. 

Partial correlation or regression analysis was conducted to evaluate the association while 

controlling for sex and race/ethnicity. False discovery rate (FDR) was applied to correct 

for multiple comparisons given the associations among most of the behavioral 

measurements. Due to the collinearity, age was not included as a covariate as it is 

impossible to isolate its contribution from those of phenotypes.   

8. 3 Results 

The numbers of components was estimated to be 15 and 11 for the fMRI and SNP 

data, respectively. Among the tested hotspots or pathways listed in Table 8.3, three 

referential SNP sets derived from the CREB-BDNF pathway were identified as 

contributing to the same genetic component, which showed a significant correlation with 
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an fMRI component (r = -0.38, p = 3.98×10
-12

, passing Bonferroni correction of 

0.05/15/11). Table 8.4 summarizes the recruited referential loci, which consisted of all 

the genotyped loci in BDNF (15 SNPs) and CREB1 (20 SNPs), and an LD block 

spanning 20 SNPs in CREB5. After regressing out controlling variables (age, sex, 

race/ethnicity), the fMRI-SNP association remained significant, exhibiting a partial 

correlation of -0.36 (p = 2.98×10
-11

), as shown in Figure 8.3a.   

Table 8.4: Recruited reference SNPs for the CREB-BDNF pathway. 

Gene SNP Chr Position 

BDNF rs1519480 11 27632288 

 

rs7124442 11 27633617 

 

rs6265 11 27636492 

 

rs11030104 11 27641093 

 

rs12291063 11 27650677 

 

rs11030108 11 27652040 

 

rs7103411 11 27656701 

 

rs10835211 11 27657941 

 

rs1013402 11 27668957 

 

rs7127507 11 27671460 

 

rs11030119 11 27684678 

 

rs2030323 11 27685115 

 

rs7934165 11 27688559 

 

rs962369 11 27690996 

 

rs12273363 11 27701435 

CREB1 rs889895 2 208107174 

 

rs2551640 2 208116138 

 

rs2551641 2 208118512 

 

rs2709356 2 208120337 

 

rs2709357 2 208120777 

 

rs2551642 2 208121742 

 

rs11904814 2 208135043 

 

rs6740584 2 208137596 

 

rs2551921 2 208143800 

 

rs2709387 2 208150340 

 

rs2254137 2 208152273 

 

rs2551645 2 208159033 

 

rs2464978 2 208166163 

 

rs13029936 2 208173789 

 

rs2551928 2 208174023 

 

rs1045780 2 208175395 

 

rs6785 2 208176242 

 

rs2551929 2 208176717 

 

rs2256941 2 208177429 

 

rs2551931 2 208179725 

CREB5 rs160337 7 28594314 

 

rs160338 7 28594727 

 

rs1008262 7 28602266 

 

rs310353 7 28603649 

 

rs310361 7 28607509 
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rs13233942 7 28607958 

 

rs310338 7 28609570 

 

rs41273 7 28611382 

 

rs1637457 7 28615963 

 

rs17156919 7 28616653 

 

rs41276 7 28616788 

 

rs160375 7 28621226 

 

rs917275 7 28625047 

 

rs160342 7 28630355 

 

rs160343 7 28632292 

 

rs41295 7 28633161 

 

rs160357 7 28635027 

 

rs41298 7 28635305 

 

rs160359 7 28635520 

 

rs41305 7 28640066 

 

 

 

Figure 8.3: Scatter plots of: (a) the fMRI and SNP loadings; (b) the fMRI loading and 

CD-count; (c) the SNP loading and AUDIT-4.  

 

 

Figure 8.4: Spatial map of brain network for the identified fMRI component (|Z| > 2). 
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Table 8.5: Talairach labels of identified brain regions (|Z| > 2). 

Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z) 

Precuneus 7, 19, 39, 31 16.8/14.1 9.18(0,-58,61)/9.41(3,-58,64) 

Superior Parietal Lobule 7, 5 8.9/7.6 8.55(-3,-67,56)/8.72(6,-64,58) 

Postcentral Gyrus 7, 5, 3, 2, 40, 1 5.3/4.5 8.06(0,-46,66)/9.03(3,-52,66) 

Inferior Parietal Lobule 40, 7, 39 3.5/3.5 4.28(-39,-49,61)/5.11(39,-52,58) 

Cuneus 19, 18, 7, 30 2.7/3.7 4.53(0,-82,40)/4.59(27,-83,37) 

Paracentral Lobule 5, 4, 6, 7 2.9/1.8 7.28(0,-46,63)/5.71(3,-37,68) 

Posterior Cingulate 29, 30, 23 1.6/1.0 3.25(-6,-41,5)/2.99(6,-41,5) 

 

 

The identified fMRI-SNP pair was replicated in all subset evaluations, where we 

observed stable fMRI-SNP correlations ranging from 0.23 to 0.33 with a median of 0.27 

in the 10 subset evaluations. More importantly, in the 1000-run permutation, the top 

linked component pair of each run exhibited an fMRI-SNP correlation ranging from 0.11 

to 0.38 with a median of 0.16 (absolute values). Only one permuted sample yielded an 

fMRI-SNP association higher than that observed in the original data, resulting in a 

significant p-value of 0.001
 
(1/1000) for the identified association (r = -0.38).  

The linked fMRI component, after FDR control, was found significantly associated 

with a number of behavioral assessments, including CD-count, ICS-fc, and AUDIT-4. 

The most significant association was observed from CD-count, exhibiting a partial 

correlation of 0.25 (p = 7.04×10
-06

) after regressing out sex and race/ethnicity, as shown 

in Figure 8.3b. In addition, the partial correlation remained significant (r = 0.19, p = 

6.45×10
-04

) after age was further regressed out, suggesting that the observed altered 

activation might be more related to current dependence symptoms than alcohol use 

history. The fMRI loadings also showed significant associations with ICS-fc and 

AUDIT-4 (correlations of 0.24 and 0.21, respectively), where both measures were highly 

correlated with CD-count (correlations of 0.68 and 0.76, respectively). Due to this 
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collinearity, the individual effect could not be disentangled and we chose to focus on the 

most significantly linked symptom CD-count in the following discussion. Figure 8.4 

shows the spatial map of the identified fMRI component thresholded at |Z| > 2. The brain 

network included precuneus, superior and inferior parietal lobules, as well as postcentral 

gyrus, as listed in Table 8.5. 

The linked SNP component, with FDR control, exhibited a significant partial 

correlation with one single behavioral assessment AUDIT-4 (r = -0.21, p = 1.57×10
-04

) 

after regressing out sex and race/ethnicity, as shown in Figure 8.3c. Again this 

association might be majorly attributable to current drinking behavior, given that a 

significant partial correlation (r = -0.18, p = 1.05×10
-03

) was still observed after further 

regressing out age. Figure 8.5 demonstrates that 2,020 top contributing SNPs were 

selected out based on the absolute values of the normalized component weights using the 

same approach as introduced in section 7.3. Figure 8.6 shows a Manhattan plot of 

weights of loci for the identified SNP component, where clusters spanning more than 15 

top contributing SNPs are marked. Table S3 provides a summary of all the identified 

SNPs, including SNP position, corresponding gene and normalized component weight.  

While 1,019 out of 2,020 SNPs were mapped to 457 unique genes, Ingenuity Pathway 

Analysis (IPA: Ingenuity® Systems, http://www.ingenuity.com) indicated a significant 

enrichment of neurological diseases in our finding, including bipolar disorder 

(7.56×10
-4

), schizophrenia (5.50×10
-3

) and major depression (4.37×10
-2

), as highlighted 

in Table 8.6a. The identified genes were also significantly overrepresented in 

neuritogenesis (2.81×10
-4

) and other developmental functions, as listed in Table 8.6b. 

IPA also revealed a number of enriched canonical pathways, including synaptic long term 
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depression (LTD, 1.70×10
-5

) and potentiation (LTP, 5.89×10
-3

), CREB Signaling in 

Neurons (6.31×10
-4

), protein kinase A (PKA) signaling (1.26×10
-2

), as well as GABA 

receptor signaling (2.24×10
-2

). Table 8.6c provides a complete summary. In addition, the 

DAVID (Database for Annotation, Visualization and Integrated Discovery) 

bioinformatics resource (Huang et al., 2009a, b) identified ion channel activity 

(1.07×10
-5

), cell adhesion (9.76×10
-5

)
 
and transmission of nerve impulse (5.37×10

-4
) to be 

the top enriched functional clusters, as highlighted in Table 8.6d. The identified pathways 

remained highly stable when the number of top contributing SNPs was adjusted from 

1,000 to 5,000, as shown in Table 8.7. 

 

Figure 8.5: Number of top contributing SNPs. The blue curve shows the plot of 

descending normalized component weights; L1 and L2 represent the linear fits to the two 

segments of the component curve; A denotes the intersection of L1 and L2; L3 represents 

the line connecting the origin and the intersection A; B denotes the intersection of L3 and 

the component curve. 
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Figure 8.6: Manhattan plot for the identified SNP component. 

Table 8.6: Pathway analyses. 

a. IPA neurological disease Genes P-value P-value (B-H) 

Bipolar disorder ALG9,CA10,CACNA1G,CMTM8,DLAT,FLJ35024, 

GABRG3,GRID1,GRIN2A,GRM5,HTR4,ME1,MRPL48, 

NCAM1,PRKCA,PRKCB,SYN3,THRB,TRPM2 

7.56E-04 1.75E-01 

Pervasive developmental disorder AUTS2,CNTNAP2,GNA14,GRIN2A,MBD5,NLGN1 3.49E-03 1.75E-01 

Schizophrenia ACSBG1,CACNA1G,CACNG2,CNTNAP2,DPYD, 

GABRG3,GRID1,GRIN2A,GRM5,GRM7,NCAM1, 

NELL1,NELL2,PRKCB,RBFOX1,ROBO1,RTN4,SHANK3, 

SND1,ST8SIA2,SYN3,TEKT5,TMTC1,UHMK1,ZFHX3 

5.50E-03 1.75E-01 

Partial seizure CACNA1G,CACNA2D3,GABRG3,GABRR3,GRIN2A,KCNQ5 9.86E-03 1.75E-01 

Autosomal dominant mental 

retardation 

CACNG2,KIF1A,MBD5 1.08E-02 1.75E-01 

Complex partial seizure CACNA1G,CACNA2D3,GABRG3,GABRR3 1.51E-02 1.75E-01 

Localization-related epilepsy CACNA1G,CACNA2D3,CNTNAP2,GABRG3,GABRR3 1.69E-02 1.75E-01 

Epilepsy CACNA1G,CACNA2D3,CH25H,CNTNAP2,GABRG3,GABRR3, 

GRIN2A,KCNQ5,KCTD7,ME2,STXBP1,TMTC1,TRIB1 

2.79E-02 2.03E-01 

Absence seizure CACNA1G,GABRG3,GABRR3 4.14E-02 2.34E-01 

Major depression CEP68,GABRG3,GRIN2A,GRM5,ITIH4,KCNK2,NCAM1, 

RCAN1,RSU1 

4.37E-02 2.34E-01 

b. IPA nervous system 

development and function 

Genes P-value P-value (B-H) 

Neuritogenesis CAMK1D,CNTN4,DCC,LRRC4C,MARCO,NCAM1,RAC1 2.81E-04 9.88E-02 

Formation of neurites CAMK1D,MARCO,RAC1,ROBO1 1.55E-03 1.75E-01 

Formation of dendrites CAMK1D,MARCO,RAC1 2.39E-03 1.75E-01 

Cell-cell adhesion of neurons CNTN4,NLGN1 5.21E-03 1.75E-01 

Axonogenesis CNTN4,DCC,LRRC4C 5.68E-03 1.75E-01 

c. IPA canonical pathway Genes P-value P-value (B-H) 

Synaptic Long Term Depression GNA14,ITPR1,GRM5,GRM7,GNAI3,GRID1,PLB1, 

RYR3,LYN,GNAT2,PPP2R1B,PRKCB,PRKCA 

1.70E-05 5.50E-03 

CREB Signaling in Neurons GRM5,GRM7,GNAI3,GRIN2A,GRID1,GNAT2, 

PIK3CD,GNA14,ITPR1,CREB5,PRKCA,PRKCB 

6.31E-04 1.02E-01 

Neuropathic Pain Signaling In 

Dorsal Horn Neurons 

GRM5,GRM7,GRIN2A,CAMK1D,PIK3CD,ITPR1, 

PRKCA,PRKCB 

2.24E-03 2.08E-01 
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CXCR4 Signaling GNAI3,RAC1,LYN,GNAT2,PIK3CD,GNA14,ITPR1, 

ELMO1,PRKCA,PRKCB 

2.95E-03 2.08E-01 

Virus Entry via Endocytic 
Pathways 

AP2M1,ITSN1,RAC1,PIK3CD,AP1B1,PRKCA,PRKCB 4.90E-03 2.08E-01 

Axonal Guidance Signaling LRRC4C,ITSN1,KALRN,RAC1,GNA14,ROBO1, 

ADAMTS2,GNAI3,SRGAP3,NTRK3,DCC,ADAM19,RTN4, 

ADAM23,GNAT2,PIK3CD,WNT5B,PRKCA,PRKCB 

5.13E-03 2.08E-01 

Heparan Sulfate Biosynthesis 
(Late Stages) 

AADAC,EXT1,EXTL2,HS3ST4,CHST15 5.13E-03 2.08E-01 

Breast Cancer Regulation by 

Stathmin1 

GNAI3,CAMK1D,RAC1,UHMK1,PIK3CD,ARHGEF3, 

ITPR1,E2F3,PPP2R1B,PRKCA,PRKCB 

5.25E-03 2.08E-01 

Synaptic Long Term 

Potentiation 

GRM5,GRM7,GRIN2A,GNA14,ITPR1,CREB5,PRKCA, 

PRKCB 

5.89E-03 2.11E-01 

Ephrin B Signaling GNAI3,KALRN,ITSN1,RAC1,GNAT2,GNA14 7.24E-03 2.30E-01 

Heparan Sulfate Biosynthesis AADAC,EXT1,EXTL2,HS3ST4,CHST15 9.12E-03 2.65E-01 

GNRH Signaling GNAI3,RAC1,GNA14,ITPR1,CREB5,NFKB1,PRKCA, 

PRKCB 

1.00E-02 2.68E-01 

Protein Kinase A Signaling PTPN7,PTPRD,PTPN3,ITPR1,NFKB1,CREB5,PDE1C, 

GNAI3,HHAT,ADD3,RYR3,DCC,PTPRS,PDE8B, 

PRKCB,PRKCA 

1.26E-02 2.74E-01 

Thrombin Signaling GNAI3,CAMK1D,GNAT2,PIK3CD,ARHGEF3, 
GNA14,ITPR1,NFKB1,PRKCA,PRKCB 

1.29E-02 2.74E-01 

fMLP Signaling in Neutrophils GNAI3,RAC1,PIK3CD,ITPR1,NFKB1,PRKCA,PRKCB 1.29E-02 2.74E-01 

Role of IL-17F in Allergic 

Inflammatory Airway Diseases 

TRAF6,RPS6KA2,CREB5,NFKB1 1.51E-02 2.85E-01 

G-Protein Coupled Receptor 

Signaling 

GRM5,GRM7,GNAI3,HTR4,PDE8B,PIK3CD, 

GNA14,CREB5,NFKB1,PDE1C,PRKCA,PRKCB 

1.66E-02 2.85E-01 

Role of NFAT in Regulation of the 
Immune Response 

RCAN1,GNAI3,LYN,GNAT2,PIK3CD,GNA14, 
ITPR1,NFKB1,LCP2 

1.70E-02 2.85E-01 

Endothelin-1 Signaling GNAI3,PLB1,GNAT2,EDNRA,PIK3CD,GNA14, 

ITPR1,PRKCA,PRKCB 

1.70E-02 2.85E-01 

GABA Receptor Signaling GABRG3,GABRR3,AP2M1,AP1B1 2.24E-02 3.56E-01 

Nitric Oxide Signaling in the 

Cardiovascular System 

CACNA1E,PIK3CD,ITPR1,PDE1C,PRKCA,PRKCB 2.40E-02 3.66E-01 

LPS-stimulated MAPK Signaling RAC1,PIK3CD,NFKB1,PRKCA,PRKCB 2.82E-02 3.94E-01 

Tec Kinase Signaling GNAI3,LYN,GNAT2,PIK3CD,GNA14,NFKB1, 
PRKCA,PRKCB 

2.88E-02 3.94E-01 

Dopamine-DARPP32 Feedback 

in cAMP Signaling 

GNAI3,GRIN2A,CACNA1E,ITPR1,CREB5, 

PPP2R1B,PRKCA,PRKCB 

3.16E-02 3.94E-01 

Role of p14/p19ARF in Tumor 

Suppression 

RAC1,PIK3CD,NPM2 3.24E-02 3.94E-01 

Relaxin Signaling GNAI3,GNAT2,PDE8B,PIK3CD,GNA14,NFKB1,PDE1C 3.55E-02 3.94E-01 

NGF Signaling TRAF6,RAC1,PIK3CD,RPS6KA2,CREB5,NFKB1 3.80E-02 3.94E-01 

Role of Tissue Factor in Cancer RAC1,LYN,PIK3CD,GNA14,RPS6KA2,PRKCA 3.98E-02 3.94E-01 

Renin-Angiotensin Signaling RAC1,PIK3CD,ITPR1,NFKB1,PRKCA,PRKCB 4.17E-02 3.94E-01 

Glutamate Receptor Signaling GRM5,GRM7,GRIN2A,GRID1 4.17E-02 3.94E-01 

Fc Epsilon RI Signaling RAC1,LYN,PIK3CD,LCP2,PRKCA,PRKCB 4.27E-02 3.94E-01 

Androgen Signaling GNAI3,GNAT2,GNA14,NFKB1,PRKCA,PRKCB 4.47E-02 3.94E-01 

FGF Signaling RAC1,PIK3CD,ITPR1,CREB5,PRKCA 4.90E-02 3.94E-01 

d. DAVID functional annotation Genes P-value P-value (B-H) 

Ion channel activity KCNK17,GABRG3,KCND3,NOX5,GRIN2A,CACNG2, 

CACNA2D3,KCNIP1, KCNK2, ITPR1, KCNIP4,  

TRPM2,KCTD7,GABRR3,ACCN1,KCNQ5,KCNK9,RYR3, 
GRM7,CACNA1G,ABCC4,CACNA1E,NALCN,GRID1 

1.07E-05 2.70E-03 

Cell adhesion PPFIA2,MPZL2,MYBPC2,PKHD1,GNE,NELL1,NELL2, 

CTNND2,EDIL3,ITGBL1,ROBO1,RAC1,CNTNAP2, 
COL12A1,CD6,FLRT2,SELP,HAPLN1,GMDS,CNTNAP4, 

ADAM23,NLGN1,STXBP1,PTPRS,AJAP1,CTNNA3, 

CDH12,NCAM1,SIGLEC1,SNED1,CNTN4,NTM 

9.76E-05 1.57E-01 

Transmission of nerve impulse PRKCA,GABRG3,GRIN2A,NLGN1,CACNG2,KCNIP1, 
ACSBG1,GRM5,HCRTR2,ACCN1,KCNQ5,GABRR3, 

CBLN1.GRM7,SYN3,SLC22A3,CNTNAP2,CACNA1E,UNC13C 

5.37E-04 2.70E-01 
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Table 8.7: IPA canonical pathways with varying numbers of top contributing SNPs. 

IPA canonical 

pathway 

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 

p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) p/p (B-H) 

Synaptic Long Term 

Depression 
5.62E-03/7.29E-01 7.24E-05/2.34E-02 2.04E-05/7.08E-03 3.55E-04/1.37E-01 1.86E-3/1.87E-01 

ITPR1,GNA14,GRM5,GRM7,GNAI3,GRID1,PLB1,PLCG2,RYR3,LYN,IGF1R, 

GNAT2,PPP2R1B,PRKCB,PRKCA 

CREB Signaling in 

Neurons 
1.62E-02/7.29E-01 2.00E-03/2.28E-01 2.51E-03/2.93E-01 1.35E-03/1.95E-01 2.82E-03/1.89E-01 

GRIN2A,ITPR1,GNA14,CREB5,GRM5,GRM7,GNAI3,GRID1, 

PLCG2,CREB1,PRKAG2,GNAT2,PIK3CD,GRIK1,ATM,PRKCA,PRKCB 

Protein Kinase A 

Signaling 
1.29E-02/7.29E-01 1.17E-02/3.59E-01 5.50E-03/2.93E-01 2.40E-02/4.65E-01 6.46E-04/1.31E-01 

FLNB,SMAD3,NFKB1,TGFBR2,HHAT,RYR3,CREB1,DCC,TGFB2,PTPRT,EYA2,PRKCA,PTPN7, 
PTPRG,PTPRD,PTPN3,TCF7L1,PDE4B,ITPR1,PDE4D,CREB5,PDE1C,GNAI3,ADD3,PLCG2,PDE1B, 

PTPRS,PRKAG2,PDE8B,SIRPA,PRKCB,AKAP1 

GABA Receptor 

Signaling 
1.74E-02/7.29E-01 2.19E-02/4.42E-01 5.50E-02/4.73E-01 2.29E-03/1.95E-01 4.68E-05/1.91E-02 

GABRG3,GABBR2,GABRR3,AP2M1,UBQLN1,GAD1,GABRB1,AP1B1,GPHN,GABRB2 

Synaptic Long Term 
Potentiation 

1.62E-01/7.97E-01 1.86E-02/4.42E-01 1.05E-02/3.61E-01 1.86E-02/4.65E-01 2.19E-02/4.88E-01 

GRM5,GRM7,GRIN2A,PLCG2,CREB1,PRKAG2,GNA14,ITPR1,CREB5,PRKCA,PRKCB 

Note: N represents the number of top contributing SNPs; p and p(B-H) represent the uncorrected and 

Benjamini-Hochberg corrected p-values of enrichment.   

We further performed a regression analysis between the fMRI and SNP loadings with 

additional controlling variables of associated behavioral assessments, as shown in (8.1). 

The SNP component still showed a significant regression effect (p = 8.37×10
-11

) on the 

fMRI component when controlling for CD-count, AUDIT-4 and ICS-fc.  

                                  -                      -   

                                                                (8.1) 

8. 4 Discussion 

One fMRI-SNP component pair was identified presenting a significant association (r 

= -0.38, p = 3.98×10
-12

). Both the genetic and fMRI components were found to be 

associated with clinical measures of alcohol dependence (fMRI versus CD-count: p = 

7.04×10
-06

 and SNP versus AUDIT-4: p = 1.57×10
-04

). The fMRI-SNP association was 
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not due to age, sex or race/ethnicity, and it was beyond the shared variance of behavioral 

assessments, as confirmed with the partial correction and regression analysis. The genetic 

component was elicited by a reference comprising three SNP sets derived from the 

CREB-BDNF pathway. Parallel ICA with multiple references detected that the three 

referential sets contributed to the same genetic component, suggesting convergent 

functional influence on neurobiological conditions. The linked fMRI component reflected 

regional hyperactivation for more severe alcohol dependence. Overall, the results suggest 

that the CREB-BDNF pathway plays a key role in the genetic factor underlying a 

proportion of variation in cue-elicited brain activations, which might play a role in 

phenotypic symptoms of alcohol dependence.  

fMRI component: The loadings associated with the fMRI component exhibits a 

positive correlation with CD-count while the highlighted voxels present positive 

component weights, indicating that subjects experiencing more severe alcohol 

dependence symptoms have higher regional activations when exposed to the taste of 

alcohol. The hyperactivated region majorly comprises precuneus, superior parietal lobule 

(SPL) and posterior cingulate cortex (PCC), as listed in Table 8.5. Precuneus belongs to 

associative cortices and is known to be directly involved in a wide spectrum of highly 

integrated tasks, including episodic memory retrieval (Addis et al., 2004; Lundstrom et 

al., 2005), self-referential processes (den Ouden et al., 2005; Ochsner et al., 2004) and 

consciousness (Laureys et al., 2004). Also, precuneus may subserve a variety of 

functional processes given its wide-spread connections with both adjacent areas such as 

PCC and SPL, and frontal lobes including prefrontal cortex and anterior cingulate cortex 

(Cavanna and Trimble, 2006). Although not generally targeted for addiction, precuneus 
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and adjacent parietal regions have been robustly implicated in craving studies, where 

hyperactivation elicited by drug-related cues are found relating to severity of dependence 

(Claus et al., 2011; Liu et al., 2013; Park et al., 2007; Tapert et al., 2004; Yalachkov et 

al., 2010). PCC is suggested as functioning to rapidly associate particularly familiar 

sensory stimuli (Buccino et al., 2001) and frequently implicated in the processing of 

drug-related stimuli (Garavan et al., 2000; Kosten et al., 2006; Tapert et al., 2004; Wrase 

et al., 2007). In particular, there is evidence that increased activation to cocaine cues in 

PCC is associated with relapse to cocaine abuse (Kosten et al., 2006). Of particular 

interest, as implicated in a meta-analysis on fMRI studies of alcohol cue reactivity, brain 

activation in precuneus and PCC, instead of the mesolimbic system, most effectively 

differentiates cases from controls in terms of alcohol use severity (Schacht et al., 2013). 

Overall, the identified brain network echoes considerable similar findings and deserves 

more attention to elucidate the neuropathology of addiction.  

SNP component: The linked SNP component exhibits a negative correlation with the 

fMRI component and behavioral assessment, indicating that subjects carrying lower 

loadings on the SNP component present higher brain activation in the identified 

precuneus region. Top 2,020 SNPs are selected out as predominantly contributing to the 

identified component, among which 1,019 reside in 457 unique genes. Pathway analyses 

delineate a complex genetic architecture emphasizing synaptic plasticity and other neural 

signaling pathways. Considering that a meta-analysis identified 3,800 genes differentially 

expressed between models of high and low amounts alcohol consumption (Mulligan et al., 

2006), our finding highlights one side of the story where CREB serves as a convergence 

point of various neurocircuitries related to alcohol dependence.      
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CREB signaling: Given that the reference is derived from CREB and BDNF genes, 

it’s not surprising that the related pathway is enriched in the finding. cAMP-response 

element-binding protein (CREB) functions as a transcription factor and is well known for 

its role in neuronal plasticity and long-term memory (Carlezon et al., 2005; Lonze and 

Ginty, 2002; Silva et al., 1998). Brain derived neurotrophic factor (BDNF) is a CREB 

regulated gene that also plays an important role in synaptic plasticity (Bramham and 

Messaoudi, 2005; Mattson et al., 2004). While drug addiction might be partly considered 

as a result of adaptations in specific brain neurons due to repeated exposure to a 

substance of abuse, there is considerable evidence that learning/memory and addiction 

converge in a variety of aspects, one of which being that both are modulated by 

transcription factor CREB and neurotrophic factors (Bolanos and Nestler, 2004; Nestler, 

2002, 2005; Pandey et al., 2005; Pierce and Bari, 2001). In particular, one SNP in BDNF 

(rs6265_A or Val66Met, ‘A’ represents the minor allele) has been identified as predicting 

relapse in alcohol dependence patients, where minor allele carriers show decreased 

vulnerability to relapse (Wojnar et al., 2009). This is consistent with our finding where 

the same SNP exhibits a positive weight, indicating that minor allele carriers exhibit 

lower brain activation which is associated with less severe alcohol dependence.   

Synaptic LTD and LTP: Synaptic LTP and LTD are two forms of synaptic plasticity 

which enhances or weakens, respectively, the synchronized stimulations between neurons, 

thus allowing the refinement of neuronal circuits underlying learning and memory 

(Malenka and Bear, 2004). It’s commonly recognized that synaptic plasticity plays an 

important role in the development of addiction, through which use of drug progresses 

from impulsive to compulsive behavior (Kauer and Malenka, 2007; Mameli and Luscher, 
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2011; Nestler, 2001). Genetic variations may also account for a proportion of variation in 

synaptic plasticity. As revealed by a meta-analysis, LTD and LTP are among the top 

enriched pathways for the 396 addiction-related genes implicated in two or more 

independent studies (Li et al., 2008). In our finding, the synaptic LTD and LTP pathways 

strongly overlap with the CREB signaling pathway, highlighting metabotropic glutamate 

receptors (GRM5 and GRM7) and ionotropic glutamate receptors (GRID1 and GRIN2A), 

as well as protein kinase C (PRKCA and PRKCB). The SNP in GRIN2A (rs4628972_G) 

and three SNPs in PRKCA (rs17688881_C, rs721429_A and rs7217618_C) present 

negative weights, indicating that the minor allele carriers show high brain activation and 

more severe alcohol dependence. The opposite is observed for the rest (rs1000061_G in 

GRM5, rs1353832_C in GRM7, rs1863824_C in GRID1, rs8077110_T in PRKCA and 

rs880824_A in PRKCB) which all present positive weights. 

Protein kinase A signaling (PKA): The cAMP-PKA pathway is a primary signaling 

cascade that modulates numerous cellular events in neurons, including synaptic plasticity 

(Abel and Kandel, 1998; Skalhegg and Tasken, 2000; Waltereit and Weller, 2003). It’s 

documented that all drugs of abuse alter cAMP-PKA signaling and activation of the 

cAMP-PKA pathway leads to increased activity of the transcription factor CREB (Ron 

and Jurd, 2005). Direct evidence is also provided that genetic mutation reducing 

cAMP-PKA signaling results in increased sensitivity to the sedative effects of ethanol 

(Wand et al., 2001). In our finding, a number of genes are involved in this pathway, 4 of 

which encode protein tyrosine phosphatase (PTPN3, PTPN7, PTPRD and PTPRS), 

known to be signaling molecules regulating a variety of cellular processes including cell 

growth and differentiation (Denhertog et al., 1993). Specifically, both two SNPs in 
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PTPN3 (rs10979861_C and rs7046039_T) exhibit negative weights while the rest 

(rs10920336_C in PTPN7, rs10815927_C and rs10756029_C in PTPRD, and 

rs1015675_A in PTPRS) contribute with positive weights.  

GABA receptor signaling: As a major inhibitory neurotransmitter in the central 

nervous system, GABAergic signaling has been implicated in addiction in numerous 

studies (Kauer and Malenka, 2007; Pandey, 1998). It’s reported that chronic cocaine uses      

decrease GABAergic synapse function, such that LTP induction is not effectively 

suppressed at excitatory synapses, which is believed to increase the likelihood of firing to 

a stimulus (Liu et al., 2005). Polymorphisms in GABA receptors are consistently 

identified as susceptibility loci to addiction in genome-wide association studies (Bierut et 

al., 2010; Enoch et al., 2009; Radel et al., 2005). In particular, a number of SNPs in 

GABRG3 are shown to be associated with alcohol dependence (Dick et al., 2004). In our 

finding, all the three identified SNPs in GABRG3 (rs12439549_G, rs4438262_G and 

rs3922613_G) contribute with positive weights. Regarding GABRR3, two SNPs 

(rs1874864_G and rs7638369_T) present positive weights while the rest (rs1844934_T, 

rs1688378_A and rs1492054_C) exhibit negative weights. Although not targeted as 

references, these two genes deserve more attention in future investigations. 

The identified genetic component is not specific to alcohol use disorders. As 

suggested by IPA, the genes harboring top contributing SNPs are overrepresented for 

other neurobiological diseases, including bipolar disorder, schizophrenia and major 

depression. This suggests a genetic basis for the comorbidity among these disorders, for 

which accumulated evidence has been provided (Johnson et al., 2009; Kendler et al., 

2003; Purcell et al., 2009a). The genetic component also captures neurodevelopmental 
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functions such as neuritogenesis and cell adhesion, which conforms with the notion that 

adolescent cortical development is a critical period of vulnerability for both addiction 

(Crews et al., 2007) and schizophrenia (Rapoport et al., 2012). On the other hand, it 

needs to be emphasized that the genetic component is more tightly associated with the 

imaging component, explaining a relatively large amount of variance in the observed 

alterations in brain activation. As the fMRI-SNP association is not majorly due to the 

shared relationship with alcohol dependence, the observed variation of brain function is 

partly regulated by the genetic variations. The remainder variances might be due to other 

genetic or environmental factors or their interactions which awaits further investigations.  

In summary, our finding confirms the genetic variation induced vulnerability to 

disruptions in brain function which might play a role in alcohol dependence. The 

identified genetic component reflects polygenicity and heterogeneity, involving a variety 

of synaptic plasticity and neural signaling pathways implicated in a wide spectrum of 

disorders including addiction. Association analyses reveal that this complex genetic 

factor strongly affects neurobiological conditions, contributing to altered cue-elicited 

brain activations in precuneus. While the identified brain network is known to participate 

in many cognitive processes and robustly implicated in craving-related studies, our work 

emphasizes the genetic underpinnings and highlights a key role of the CREB-BDNF 

pathway. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

In summary, our work makes several important contributions to advance the 

application of ICA to imaging genetics studies. First, as presented in Chapter 3, we 

designed a consistency-based order estimation approach to locate the order range which 

allows ICA to extract relatively accurate, consistent components and loadings for 

genotype data. Subsequently, to assist the decomposition of high-dimensional data, we 

developed a semi-blind multivariate model, pICA-R, as presented in Chapter 4. The new 

approach assesses many variables for aggregate effects while incorporating prior 

knowledge. It helps pinpoint a particular component of interest embedded in a large 

complex dataset, thus improving the robustness of the results. Guided by a single 

referential SNP set derived from ANK3, pICA-R identified a significant sMRI-SNP 

association, revealing a complex genetic component underlying the SZ-related gray 

matter concentration reduction in frontal and temporal regions. In Chapter 5, we further 

extended pICA-R to accommodate multiple referential SNP sets whose interrelationship 

is unknown. The extended model enables robust investigations on potentially related 

genetic variants implicated in molecular, cellular or system biology. When the extended 

parallel ICA with multiple references was employed to study the genetic influence on 

alcohol dependence, three referential SNP sets derived from the CREB-BDNF pathway 

were identified as contributing to the same SNP component significantly linked to altered 

regional brain activation. The results strongly suggest that the CREB-BDNF pathway 

functions as a convergence point of various synaptic and neural signaling processes 
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underlying the variation in cue-elicited brain activations in precuneus, which might be 

involved in phenotypic symptoms of alcohol dependence.  

There are still many aspects to be explored in the future regarding the application of 

ICA in the imaging genetics field. For instance, from the method’s point of view, a 

regularization of sparsity can be introduced to further improve the robustness of the 

model in high-dimensional space. The assumption is that when millions of genetic 

variants are included in a model as potential causal loci, it’s more likely that most of 

them do not contribute significantly to the trait of interest. Consequently, the underlying 

component (or source) is expected to be sparse. Sparsity-regularized linear models have 

been used for model selection in the context of genome wide association (Cantor et al., 

2010; Vounou et al., 2010; Wu et al., 2009), however yet investigated in commonly used 

ICA frameworks. On the other hand, it would also be interesting to investigate the genetic 

factors underlying neurobiological traits captured with other imaging modalities, such as 

functional network connectivity in resting-state fMRI and tractography in diffusion tensor 

imaging. For instance, it has been widely acknowledged that SZ patients tend to have less 

integrated, more diverse profiles of brain functional connectivity (Lynall et al., 2010). 

This is at least partly due to deficits in white matter tracts which result in a disconnected 

configuration of gray matter regions (Bassett et al., 2008; Zhou et al., 2008). 

Investigation on the genetic underpinnings is expected to further improve our 

understanding of the biological mechanisms underlying the disorder.   

Some of the works in this dissertation have been published. The consistency-based 

order estimation approach appears in (Chen et al., 2012a); the preliminary investigation 

of guided exploration of genomic risk for SZ is in (Chen et al., 2012c) and the pICA-R 
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approach appears in (Chen et al., 2013). A manuscript is ready for submission for the 

exploration of scanning effects and another manuscript is under preparation for the 

extended parallel ICA with multiple references and its application to alcohol dependence. 
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