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Abstract

In this dissertation, we develop a novel cognitive radio (CR) architecture, referred

to as the Radiobot [1], whose goals go beyond dynamic spectrum access (DSA) to

achieve the main features of cognition, notably, self-learning and self-reconfiguration.

The proposed CR architecture is based on a sequence of signal processing and ma-

chine learning techniques that enable the Radiobot to sense a wide frequency band

and act autonomously by learning from past experience. To achieve its goals, the

proposed CR is equipped with the following functionalities: 1) Wideband spectrum

sensing, 2) non-parametric signal classification, 3) unsupervised learning and reason-

ing and 4) decentralized decision-making.

To this end, we implement a blind spectrum sensing method based on joint en-

ergy/cyclostationary detection. Optimal wideband energy detector is designed based

on the Neyman-Pearson (NP) criterion which maximizes the detection probability of

primary signals, subject to a certain false alarm rate. Cyclostationary detection is
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proposed as a means of extracting the underlying cyclic properties of the detected

signals in order to identify the types of signals in each frequency band. Once the sig-

nal features are extracted, a Bayesian non-parametric classifier based on the Dirichlet

process is applied to determine the different types of wireless systems in the surround-

ing radio frequency (RF) environment. In this dissertation, we extend the Dirichlet

process mixture model (DPMM)-based classifier to allow for a mixture of Gaussian

and non-Gaussian vector observation models, compared to existing DPMM’s with

scalar Gaussian observation models. We also develop a sequential DPMM classifier

that can be implemented at a low processing cost, making it suitable for real-time

operation. Upon identifying the RF activities in the surrounding environment, the

Radiobot uses machine learning techniques for decision-making. Thus, we propose

a reinforcement learning (RL) algorithm that enables the Radiobot to learn by in-

teracting with its environment. The learning process is formulated in a decentral-

ized partially observable Markov decision process (DEC-POMDP) framework and is

shown to lead to a near-optimal policy with little knowledge about the environment.

As a result, using its sensing and learning capabilities, the Radiobot can switch

among multiple modes of operation to adapt to a dynamic RF environment.
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Chapter 1

Introduction

Since its inception by Mitola in 1999, the term cognitive radio (CR) has been used

to refer to intelligent radio devices that are capable of learning and adapting to

their environment [2, 3]. This concept is considered as an evolution of software-

defined radios (SDR’s) in which most of the signal processing tasks are being handled

by general-purpose processors, instead of specific-purpose hardware. However, the

transition from SDR’s to CR’s can be achieved by introducing cognition to the radio

devices themselves, making them aware of their radio frequency (RF) environment

[2].

In [4], Haykin envisioned CR’s to be brain-empowered wireless devices that are

specifically aimed at improving the utilization of the electromagnetic spectrum. Ac-

cording to Haykin, a CR is assumed to use the methodology of understanding-by-

building and is aimed at achieving two primary objectives, which are permanent

reliable communications and efficient utilization of the spectrum resources [4]. With

this interpretation of CR’s, a new era of CR’s began, focusing on dynamic spectrum

access (DSA) techniques to improve the spectrum utilization [4–8]. This led to re-

search on various aspects of communications and signal processing required for DSA
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Chapter 1. Introduction

networks [4, 9–23]. These included underlay, overlay and interweave paradigms for

spectrum co-existence by secondary CR’s in licensed spectrum bands [7,24]. In spec-

trum underlay, a CR is allowed to communicate over a wide frequency band below

a certain power level such that it does not cause harmful interference to existing

primary users. This paradigm can be implemented using power control techniques

which ensure that the interference caused by secondary users to the primary receivers

is below a certain interference cap [25, 26]. In spectrum overlay, however, CR’s are

assumed to know the primary message and they can use this knowledge in order to

reduce the interference at the primary and secondary receivers using sophisticated

implementation techniques. For example, spectrum overlay can be implemented in

an asymmetric cooperative architecture in which the secondary transmitter spends a

portion of its power to transmit its own signal, while the other portion is dedicated

to relay the primary signal to its destination [7, 24, 27]. On the other hand, a CR

operating in spectrum interweave performs spectrum sensing to determine where and

when it may transmit. By locating the spectrum holes1, secondary users can access

idle primary channels in the absence of primary users. To be specific, the interweave

mode permits secondary users to efficiently utilize the unused spectrum holes, while

avoiding, or limiting, collisions with primary transmissions. This technique was en-

visioned by the DARPA Next Generation (XP) program and it was denoted as the

opportunistic spectrum access (OSA) [24].

To perform its cognitive tasks, a CR should be aware of its RF environment.

It should sense its surrounding environment and identify all types of RF activities.

Thus, spectrum sensing was identified as a major ingredient in CR’s [28, 29]. Many

sensing techniques have been proposed over the last decade based on matched fil-

ter, energy detection, cyclostationary detection, wavelet detection and covariance

detection [18, 29–36]. In addition, cooperative spectrum sensing was proposed as a

1A spectrum hole is a licensed spectrum band that is owned by a primary system and
is not utilized at a specific time and in a particular region.
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Chapter 1. Introduction

means of improving the sensing accuracy by addressing the hidden terminal problems

inherent in wireless networks in [20, 21, 30, 32, 37–39].

In this dissertation, however, we focus on blind autonomous wideband sensing

techniques since we are interested in detecting signals with unknown characteristics.

This type of spectrum sensing applications is suitable for CR’s that are operating over

wide frequency bands in unknown RF environments in which multiple signals can be

transmitted simultaneously at multiple unknown center frequencies [40, 41]. Thus,

spectrum sensing is identified as the first stage in the signal processing chain and can

be followed by signal classification and decision-making methods. In this work, we

implement a signal processing and decision-making framework for CR’s, as illustrated

in Fig. 1.1. This architecture depicts the main functions of the proposed CR system

and shows the structural dependence among these functions. Clearly, the first step of

the signal processing chain starts with spectrum sensing which detects the active sig-

nals within a wide frequency band of interest. Spectrum sensing, itself, encompasses

multiple signal processing capabilities, including energy detection, cyclostationary

detection and matched-filter detection. Obviously, these detection methods have dif-

ferent processing costs and can achieve different performance levels. However, by

using an SDR platform, all of these detection methods can be implemented on a

single CR platform, thus enabling a wide range of signal detection capabilities. Af-

ter detecting the active signals and extracting their corresponding features, signal

classification is performed to identify the number and types of wireless systems in the

surrounding environment. In the absence of any prior knowledge about the number

of wireless systems, we refer to unsupervised non-parametric approaches to perform

signal classification [42]. Our proposed non-parametric approach is implemented

based on the Dirichlet process mixture model (DPMM) framework which is able

to infer certain hidden characteristics about the surrounding environment [42, 43].

Both spectrum sensing and signal classification outcomes are used to construct an RF

mapping of the on-going RF activities. This RF mapping characterizes the state of
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Figure 1.1: A block diagram of the proposed CR model.

the environment and assists the CR in decision-making. Decision-making is located

at the heart of the cognitive engine which provides the required artificial intelligence

tools for proper cognitive operation [44–49]. The decision-making policies are then

used to control the different modules of the CR architecture.

In the following, we introduce each of the above mentioned CR functions and

outline the main aspects of this novel CR architecture.

1.1 Wideband Spectrum Sensing

Wideband spectrum sensing has been addressed in recent CR applications such

as [40, 41, 50–59]. Such wideband capability enables a CR to operate over a wide

frequency band, thus improving the efficiency of DSA in exploiting a wide range

of frequency bands. Furthermore, a CR equipped with wideband sensing and com-
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munication abilities can achieve multi-operability over widely spaced frequencies, as

proposed in [1, 50, 60]. However, wideband operations present a real challenge for

CR implementations. These challenges are manifested in the RF front-end design as

well as in the wideband signal processing implementation [24, 40, 41, 50, 60–62]. In

order to understand the nature of these limitations, we should first note that sens-

ing a wide frequency band requires a high sampling rate since wideband RF signals

are to be sampled at least at double their bandwidths in order to avoid aliasing

while satisfying the Nyquist rate requirement. The high sampling rate requirements

of wideband signals incur high power consumption and high quantization error at

the analog-to-digital converter (ADC) [63,64]. In addition, certain wideband signals

may require sampling rates that may not be achievable by current state-of-the-art

ADC’s [63, 64].

In order to address the signal processing challenges of wideband spectrum sensing,

compressive sensing (or compressed sampling) has been proposed as a means of

sampling a wide frequency band at sub-Nyquist rates [51, 58, 65]. This approach is

found to be successful in reducing the sampling rate requirements of ADC’s. However,

compressive sensing assumes sparse signals in the frequency domain, which may not

be a valid assumption, in general [65]. Hence, a more general approach is required

to address this issue in a more realistic and practical way.

On the other hand, certain wideband limitations are due to the RF front-end de-

sign itself, prohibiting wideband operation. More precisely, most of the RF compo-

nents are designed to operate on certain nominal frequencies. These RF components

may experience performance degradation when the operating frequency changes dras-

tically over a wide frequency range. This is a major issue that should be accounted

for when designing RF front-ends for wideband operation. Hence, reconfigurable RF

components and reconfigurable antennas are proposed as a solution to allow radio

devices to operate over a wide frequency range [24, 61, 62]. With these reconfig-
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urable abilities, CR’s can switch among widely separated frequency bands, without

compromising their performance.

Our approach to wideband spectrum sensing considers both signal processing

and RF front-end characteristics of CR’s. Hence, our proposed wideband spectrum

sensing algorithms are designed in light of existing wideband RF front-end archi-

tectures, thus leading to a realistic signal processing framework for wideband opera-

tion [40,50,61,62,66]. Our proposed method is based on segmenting a wide frequency

band of interest into smaller sub-bands that could be sensed, sequentially, at a lower

rate, compared to the high sampling rate that might be required for the original un-

segmented wide frequency band [40]. Thus, we bring the sampling rate requirements

within a feasible range that can be achieved by existing ADC’s. On the RF front-end

side, we assume a reconfigurable antenna that can switch among different frequency

bands to cover the desired frequency sub-bands, as in [61, 62, 66]. By matching the

desired frequency sub-bands with the reconfigurable antenna frequency range, we

can achieve proper sensing and sampling of the RF signals in each of the sub-bands

of interest. Hence, having a reconfigurable hardware at this stage is essential to en-

sure proper operation of the RF front-end over a wide frequency range. However, we

should note that the only limitation of this model is that different sub-bands can not

be sensed simultaneously, which requires special sub-band selection policies. This

problem, however, is out of the scope of this dissertation and is addressed in [67].

When the CR operates in a particular sub-band, it receives the corresponding

RF signal, down-converts it into either baseband or intermediate frequency (IF) and

then samples it using the ADC [40]. At this stage, digital signal processing methods

will be applied to identify both number and types of the existing signals in the corre-

sponding sub-band. Note that, the sub-bands are still considered as wide frequency

bands and they may include multiple signals at different center frequencies within

the whole sensed sub-band. Hence, most of the existing signal detection methods,
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such as energy detection and cyclostationary detection, which assume single narrow-

band signals, can not be applied at this stage [22, 68, 69]. Thus, in this dissertation,

we propose a joint energy/cyclostationary detection algorithm that is able to detect

the active signals within each wide sub-band and to identify their characteristics us-

ing cyclostationary detection [40, 41, 70]. The energy detection will be implemented

using a smoothed periodogram method and is able to detect the center frequencies

of the active signals, subject to a certain desired false alarm probability [41]. Our

proposed energy detector will be designed based on the Neyman-Pearson (NP) cri-

terion to maximize the signal detection probability, while satisfying a certain false

alarm probability constraint. Once the center frequencies are determined, cyclo-

stationary detection will be applied to identify certain characteristics about each

detected signal [40, 70–73]. Note that, several cyclostationary detection algorithms

have been proposed for detecting only a single signal within the detected RF wave-

form [22,68,69]. In this dissertation, however, we propose a cyclostationary detection

algorithm that is able to detect simultaneously multiple signals within a wide fre-

quency band, while identifying the cyclic features of each signal. This leads to an

efficient implementation of cyclostationary detection for wideband spectrum sensing.

Note that, a cyclostationary detector can identify underlying periodicities in both

analog and digital signals [72, 73]. Such periodicities are due to carrier frequencies,

symbol rates, coding rates, etc. Furthermore, one of the main advantages of the

cyclostationary detector is its immunity to stationary noise processes, which makes

it robust in the low signal-to-noise ratio (SNR) regime [70–73].

In addition to its wideband characteristics, the proposed energy/cyclostationary

detector is considered as a blind detector since it does not require any prior knowl-

edge about the RF environment. This is a fundamental characteristic that makes

our proposed detector suitable for autonomous CR applications. In particular, the

proposed energy detector is considered as a blind detector since it does not require

any prior knowledge about the candidate center frequencies nor the signals’ band-
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widths. By using the NP-based smoothed periodogram, the energy detector is able

to detect the active channels within a wide frequency band. On the other hand, the

cyclostationary detector is considered a blind detector since it does not require any

prior knowledge about candidate cyclic frequencies, as opposed to existing cyclosta-

tionary detectors such as [22,34,68,69]. Furthermore, in the presence of simultaneous

RF transmissions, our proposed cyclostationary detection algorithm is able to sep-

arate and identify the corresponding cyclic frequencies of each signal, which makes

it superior to existing detectors. Hence, the proposed spectrum sensing algorithm

can be used to extract special features from the detected signals, which can be used

to construct an RF mapping of the signal activity in the wide frequency band of

interest, as we shall discuss next.

1.2 Signal Classification

After detecting the active signals and identifying their features and characteristics,

a CR may construct an RF mapping of the on-going RF activity in order to learn

certain characteristics about its RF domain. The RF mapping is assumed to ac-

cumulate the acquired knowledge about the environment over time, which can help

to assist a CR in its future decision-making. Such RF mapping can be constructed

based on feature vectors that are extracted from the sensed signals. By using ap-

propriate probabilistic methods, the extracted feature vectors can be used to infer

certain properties about the environment. In particular, if the feature vectors are

assumed to be drawn from a mixture model, then classification methods can be used

to identify the feature vectors or RF signals that belong to a certain wireless system.

As a result of a properly designed classification process, the CR can identify whether

a certain detected signal belongs to a known system or to an alien interferer or jam-

mer [74–76]. Such knowledge can help a CR to decide whether to access or avoid a
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certain frequency band or channel.

Several feature classification methods have been proposed in the literature. For

example, [68] proposed a feature classification algorithm based on neural networks

[77] and support vector machines (SVM’s) [78], but these methods required train-

ing data to initialize the classifiers’ parameters. On the other hand, parametric

classifiers were proposed based on the Gaussian mixture model (GMM) or K-means

algorithm, which do not require training data. However, these techniques assume a

fixed number of clusters, which may not be known in general. As an alternative, the

authors in [79] proposed to use the X-means algorithm [80] for unsupervised signal

classification when the number of clusters is unknown. This approach is based on

the K-means algorithms but approximates the number of clusters X by maximizing

either the Bayesian information criterion (BIC) or the Akaike information criterion

(AIC) [80]. However, similarly to the K-means algorithm, the X-means algorithm as-

sumes spherical Gaussian data, which does not offer enough flexibility when dealing

with observations having an arbitrary noise distribution [80]. Moreover, the K-means

algorithm can only converge to a local minimum of the distortion measure and its

performance heavily depends on the choice of initial center points [80].

To resolve these drawbacks, we resort to non-parametric classification approaches,

in particular, the DPMM which assumes no prior knowledge about the number of

clusters [43]. Note that, the DPMM-based classifier is considered to be a Bayesian

non-parametric method in the sense of allowing the structure of the model (i.e. num-

ber of clusters) to grow with the complexity of the data [43, 81–84]. However, the

individual observations of the DPMM can still be drawn from parametric distri-

butions. The DPMM-based classifier can infer the number of clusters (or mixture

components) from the data itself, making it a suitable candidate for unsupervised

and autonomous classifiers in CR applications. This approach has been previously

applied for galaxy clustering [85], speaker diarization [86], speaker adaptation [87],

9
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image segmentation [88] and compressive sensing [89]. However, in most of these

applications, it is assumed that the observation or feature vectors are drawn from a

GMM, the condition that may not be justified in wideband spectrum sensing since

the feature vectors are extracted from highly dynamic wireless environments that are

subject to fading and interference effects. Thus, we propose a novel DPMM-based

classifier which assumes that the feature vectors are drawn from a mixture of several

probability distributions, including both Gaussian and non-Gaussian families. Based

on this framework, the DPMM classifier not only selects the optimal cluster for each

detected feature, but it also selects the best probability distribution that matches the

observation model. Hence, the proposed classification algorithm can find the best

observation model that fits the observed data, which may improve the accuracy of

the DPMM classifier [42].

Note that, all of the above mentioned DPMM classifiers are implemented using

Markov chain Monte Carlo (MCMC) models and require an extensive number of

Gibbs sampling iterations to converge to the stationary distribution of the corre-

sponding Markov chain. This makes them computationally prohibitive for real-time

CR operation. Hence, in this dissertation, we propose a novel Gibbs sampling algo-

rithm, referred to as the simplified Gibbs sampler, which improves the convergence

rate of the DPMM classifier, especially for large scale problems [90]. The proposed al-

gorithm is based on a biased parameter selection policy that carefully selects specific

parameters to be updated at each Gibbs sampling iteration, instead of sequentially

or randomly selecting these parameters. Hence, the proposed algorithm is shown to

improve the efficiency of the Gibbs sampling-based DPMM classifier and makes a

suitable candidate for large-scale classification problems. Furthermore, we propose a

sequential Gibbs sampler that is more suitable for real-time operation, compared to

the simplified Gibbs sampler [90]. The proposed sequential Gibbs sampler selects a

current observation feature and classifies it into a certain cluster. However, in order

to achieve good performance results, the sequential Gibbs sampler requires a training
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period, which can be based on the above simplified Gibbs sampler. As a result, the

obtained sequential Gibbs sampler ensures real-time classification, which makes it an

alternative solution to simple parametric classifiers, yet without requiring additional

information about the observation model.

1.3 Learning and Reasoning

In addition to being aware of its environment, a CR should be equipped with the abil-

ities of learning and reasoning [1–3,60]. These capabilities can be achieved through

a cognitive engine which forms the core of a CR [44–49]. A cognitive engine uses

machine learning tools to coordinate the actions of the CR. However, only in re-

cent years there is a growing interest in applying machine learning techniques to

CR’s [91–94].

According to [4], a CR is defined as an intelligent wireless communication sys-

tem that is aware of its environment and uses the methodology of understanding-by-

building to learn from the environment and adapt to statistical variations in the input

stimuli. Based on this definition, it becomes clear that any CR should be equipped

with a learning ability allowing it to adapt to its surrounding environment. In this

dissertation, we focus on unsupervised learning methods that enable a CR to act

autonomously without supervision [95]. By using unsupervised learning techniques,

a learning agent can explore the environment and update its policies based on its

observations and rewards. In particular, the reinforcement learning (RL) is a type

of unsupervised learning techniques that has been used for controlling robots and

is recently presented as a promising solution for CR applications [27, 95–99]. Rein-

forcement learning algorithms allow an agent to learn by trial-and error and consist

of a combined exploitation/exploration strategy [95]. The exploration strategy helps

to avoid locally optimal policies whereas exploitation strategies try to maximize the
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expected return. Thus, the learning agent needs to balance between its exploration

and exploitation strategies to behave optimally in its environment.

In our work, we analyze the ability of CR’s to learn and adapt in a decentralized

multi-agent environment and propose an unsupervised learning algorithm to achieve

this goal [96]. This is a challenging problem in machine learning literature since it

requires action coordination among multiple agents (i.e. multiple CR’s), yet without

having any information exchange among them [100, 101]. In this setup, the reward

of each agent is a function of the joint action of all the agents. However, since

each agent only has control over its own actions, it needs to estimate the actions

of other agents in order to select the proper action maximizing its reward function.

By following an unsupervised learning approach, we show that decentralized CR’s

are able to reach near-optimal performance, without incurring any control overhead

among agents [96].

To be concrete, we consider a decentralized cognitive radio network (CRN) in

which several CR’s try to access a set of primary channels without colliding with

either primary users or other CR’s. In the absence of any control channel within

the secondary network, each CR needs to acquire a decentralized spectrum sensing

policy in order to maximize a certain reward function while satisfying certain quality

of service (QoS) requirements. The network is modeled as a decentralized partially

observable Markov decision process (DEC-POMDP) in which the primary channels’

occupancy is denoted as the system state [96, 102–104]. These states are assumed

to evolve according to a discrete-time Markov chain. The actions of CR’s define the

channels to be sensed at each time period in order to maximize the average utilization

of primary channels [96].

The optimal solution of a partially observable Markov decision process (POMDP)

can be obtained by using dynamic programming approaches [104]. However, this

is a computationally prohibitive approach due to the continuity of the environ-
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ment states which are defined as a continuous belief vector [104]. The solution

becomes even more complicated with the DEC-POMDP in which each agent does

not have complete observation of the other agents, which adds more uncertainty

to the decision-making problem [105]. In order to address this problem, we resort

machine learning techniques, in particular, the Q-learning algorithm which can lead

to satisfactory solutions in DEC-POMDP frameworks with little knowledge about

the system environment [96,99,106]. In particular, we will show that, under certain

conditions, the Q-learning algorithm, which is a type of unsupervised RL algorithms,

can lead to a near-optimal solution for the channel access problem in decentralized

CRN’s [96,107]. More importantly, this solution is obtained without any supervision

by external agents nor communications among CR’s, which makes it suitable for

autonomous CR operation.

1.4 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:

• We propose a novel CR architecture that is aimed at wideband operation

in alien RF environments. The proposed model is able to sense a wide fre-

quency band of interest and detect the ongoing RF activities, without any

prior knowledge about the active signals. This is achieved using a joint en-

ergy/cyclostationary detection method to identify the center frequencies and

cyclic frequencies of the detected signals. In contrast with similar cyclosta-

tionary detection method, our approach assumes no prior knowledge about the

candidate cyclic frequencies and it is able to detect simultaneously multiple

signals within a wide frequency band.

• We design a wideband energy detector for CR’s based on the NP criterion to
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maximize the detection probability of active signals, subject to a certain false

alarm requirement. The energy detector is implemented using a sliding-window

technique, which is shown to increase the detection probability for a given false

alarm rate. Hence, the sliding-window energy detector can overcome the poor

detection performance of energy detectors in CR applications.

• We derive an analytical expression for the decision threshold of the sliding-

window energy detector in frequency-domain. This threshold is applied to a

smoothed periodogram, which allows for signal detection in a wide frequency

band. This approach is different from existing energy detectors in two ways:

First, the frequency-domain decision threshold is derived based on the NP cri-

terion, which maximizes the detection probability of RF signals subject to a

certain false alarm rate. In contrast, most of the wideband energy detectors

use arbitrary thresholds in frequency-domain, which does not guarantee any

desired performance level. Second, optimal thresholds for energy detection are

commonly obtained analytically in time-domain using a time-series represen-

tation of the signal. Although this method can guarantee a certain optimality

criterion, it can not be used in wideband applications in which the signals ac-

tivity is not homogeneous over the wide frequency band of interest. Hence, by

properly designing our energy detector in frequency-domain, we optimize the

signal detection performance for wideband applications.

• We design a cyclostationary detection algorithm that is able to identify, si-

multaneously, the cyclic frequencies of multiple RF signals in a wide frequency

band. This is achieved by first establishing the superposition property of cy-

clostationary processes and then defining a cyclic sub-profile for each detected

signal. Thus, each cyclic sub-profile represents the cyclic properties (or RF

signature) of a single RF signal, which allows to separate the cyclic frequency

components of multiple superposed signals in a wide frequency band.

14



Chapter 1. Introduction

• In this dissertation, we focus on the importance of machine learning in CR

design and present a wide spectrum of machine learning techniques that can

be applied in this context. We classify these learning algorithms according

to a hierarchical representation showing the conditions under which each ap-

proach (or algorithm) can be applied. This hierarchical representation provides

the guidelines for selecting the appropriate learning algorithm for a particular

situation. We also present a brief and concise description of each machine

learning approach, while comparing the advantages and disadvantages of each

technique.

• We propose a Bayesian non-parametric signal classifier for CR’s based on the

DPMM framework. In contrast with similar DPMM-based classifiers, our pro-

posed model is generalized to the multi-dimensional case and is extended to

both Gaussian and non-Gaussian observation models. This generalization is

important for wideband spectrum sensing and signal classification applications

in which the simple Gaussian assumption may not be valid. Furthermore,

using an unsupervised non-parametric classifier enables the CR to infer the

number of systems (clusters) from the observed data itself. This improves the

autonomous abilities of our proposed CR architecture.

• By investigating the underlying properties of the DPMM classifier, we propose

a simplified Gibbs sampler to improve the convergence rate of the DPMM clas-

sification algorithm. This algorithm is implemented by introducing a parameter

selection policy, enabling the Gibbs sampler to select the DPMM parameters

more efficiently. On the other hand, the existing Gibbs sampling-based DPMM

classifiers suffer from an excessive number of Gibbs sampling iterations and are

limited to small-scale applications. By using our proposed simplified algo-

rithm, however, we extend the applications of DPMM classifiers to large-scale

problems, while reducing the computational burden of such classifiers in CR’s.
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• We implement a sequential DPMM classifier that can be used in real-time CR

applications. In contrast with the existing DPMM classifiers that assume a

fixed number of feature vectors, the sequential DPMM classification algorithm

is implemented in a recursive process, allowing for real-time classification of

new upcoming signal features. By combining advantages of both simplified and

sequential DPMM classifiers, we present a novel non-parametric signal classifi-

cation framework that allows the CR to autonomously classify the detected RF

signals in real-time. Note that, the proposed simplified and sequential DPMM

classifiers can be beneficial, not only to signal classification problems, but to

general unsupervised feature classification problems, as well.

• We propose a reinforcement learning algorithm to derive a spectrum sensing

policy for CR’s in a decentralized CRN. The proposed algorithm is implemented

in a DEC-POMDP framework, which is known to have a very challenging and

untractable solution, in general. By using the Q-learning algorithm, however,

we obtain a near-optimal sensing policy with little knowledge about the RF

environment. Furthermore, the resulting policy is shown to achieve action

coordination among CR users, while limiting the collision probability with

primary licensed channels. To the best of our knowledge, this is the first time

that the Q-learning algorithm is used in such OSA contexts.

1.5 Structure of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 proposes a

wideband spectrum sensing framework for CR’s using a joint energy/cyclostationary

detection method. In Chapter 3, we present the state-of-the art machine learning

techniques that can be applied to CR’s. Next, in Chapter 4, we propose a ma-

chine learning technique to perform signal classification based on a non-parametric
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Bayesian DPMM formulation. In Chapter 5, another machine learning technique

is proposed to obtain a spectrum sensing policy for CR’s in a decentralized CRN.

The sensing policy is obtained using the Q-learning algorithm by assuming a DEC-

POMDP framework. In each of these chapters, we validate our models and algo-

rithms using both analytical and simulated results. Finally, we conclude the disser-

tation in Chapter 6.

1.6 Notation

Throughout this dissertation, we use bold characters to refer to vector and matrix

quantities.
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Chapter 2

Wideband Spectrum Sensing

2.1 Introduction

The Radiobot proposed in [1] is considered as a rational radio agent that can in-

teract with its RF environment to achieve several functions such as inter-operability

in heterogeneous RF network environments, multi-mode operability and spectrum

coexistence with other primary users [1]. A cognitive engine constitutes the brain

of the Radiobot and coordinates its decision-making actions [1, 40, 44–49, 60]. For

example, the cognitive engine may determine the sensing policy, the sensing an-

tenna configurations, spectrum sensing algorithm, etc., for spectrum awareness. A

high-level system architecture of a Radiobot is shown in Fig. 2.1 which highlights

two major functions of the cognitive engine: 1) Controlling the sensing module and

2) controlling the PHY/MAC communication modules. In order to realize a com-

plete Radiobot system, both autonomous sensing and PHY/MAC decision-making

need to be developed. In this chapter, however, we restrict our attention to the

spectrum sensing module and develop blind autonomous sensing algorithms that

can be adapted, through cognitive learning, to unknown RF environments [40, 41].
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Decision-making through machine learning techniques will be addressed in the fol-

lowing chapters.

According to [1], one of the most important abilities of a Radiobot is to be aware

of the RF environment in order to self-characterize the best possible communication

mode. Spectrum sensing is considered as an essential step towards this end and

has been identified as a fundamental requirement for any CR [28, 29]. However, it

is not sufficient for a Radiobot to just detect the existence of RF activities in its

environment, but also it has to be able to identify the types of active signals. For

example, if the Radiobot were able to identify a certain signal as a jammer, it might

need to avoid it so that it preserves the security and reliability of its communication

[74–76]. Hence, detecting the type of signal activity is essential in this context, which

requires special signal processing algorithms to identify the type of each wireless

signal based on its underlying physical properties.

In order to detect and identify RF activities, we develop a growingly sophisticated

signal processing sequence based on blind joint energy/cyclostationary detection [40].

In the first step, energy detection is applied to detect the active carrier frequencies

in the frequency range of interest. Next, a cyclostationarity-based feature extraction

algorithm is used to detect the cyclic frequency components at each detected carrier

frequency. In contrast with similar two-stage spectrum sensing architectures that

assume prior knowledge of the primary channels [108, 109], our proposed spectrum

sensing does not require any a priori knowledge of the existing channels, which

makes it a suitable platform for autonomous Radiobots that operate in unknown

RF environments. The performance of the carrier frequency detector is evaluated

through its receiver operating characteristic (ROC) and the cyclostationary detection

is evaluated for a wide range of SNR and for different sensing times.

After each action and/or observation, the Radiobot applies a learning algorithm

to improve its future sensing and communications techniques based on its past ex-
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perience, as encapsulated in the Observe-Decide-Act-Learn (ODAL) cognition cy-

cle of [1]. Several learning algorithms have been previously applied to CR’s for

PHY/MAC decision-making. In particular, the RL has been applied for power con-

trol [99] and for distributed Medium Access Control (MAC) in CRN’s [96,97]. In our

case, however, the Radiobot employs a learning algorithm similar to [110], allowing

online self-reconfiguration of the spectrum sensing module. The learning algorithm

controls the threshold value of the cyclostationary detector to achieve a certain false

alarm probability. In [110], the algorithm estimates the false alarm probability dur-

ing a training period in which the signals are drawn from a null-hypothesis (denoting

no signals). In our case, however, by using the energy detection results, the false

alarm probability of the cyclostationary detector can be updated during the normal

operation of the Radiobot when no signals are detected.

The remainder of this chapter is organized as follows: In Section 2.2, we introduce

both the wideband sensing model and the feature extraction method, and analyze

the impact of superposed multiple RF signals on the feature extraction operation.

In Sections 2.3 and 2.4, we analyze the impact of wireless channel fading on both

the cyclostationary and carrier frequency detectors, respectively. In Section 2.5,

we present the self-reconfiguration of the sensing module. We show the simulation

results in Section 2.6 and conclude this chapter in Section 2.7.

2.2 System Model

The ability to sense the surrounding RF spectrum is crucial to everything a Radiobot

can perform and achieve, due to the fact that spectrum sensing measurements are

to be used in (a) detecting, identifying and classifying the signals present in the

Radiobots RF environment, and (b) making decisions on its operating mode and

subsequent sensing. In practice, a critical limitation of spectrum sensing systems
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Figure 2.1: The actions of the cognitive engine: Sensing and PHY/MAC reconfigu-
rations.

stems from the sampling hardware and the ADC’s [111]. The tradeoff is between the

sampling rate and the resolution. For example, recent research has led to an ADC

that can sample at a rate of 16GS/s but only with a 6-bit resolution [64]. Better

resolutions can only be obtained at the expense of lower sampling rates, as in the case

of the 1GS/s ADC ADS5400 [112] which allows 12-bit resolution. In order to avoid

aliasing, the sampling rate is required to be at least as large as the Nyquist frequency.

In our case, since the total bandwidth of the spectrum of interest is generally in the

scale of several Giga Hertz, it may not be realistic at the current state of the art to

expect an ADC to sample, for example, the whole ultra-wideband (UWB) spectrum

at a sufficiently high sampling rate with sufficient resolution. A solution is to segment

the spectrum of interest into several sub-bands and down-convert each sub-band to

baseband or IF for sampling. Another solution for wideband spectrum sensing based

on sub-Nyquist sampling was proposed in [113]. However, this technique can only

be applied when the signals are sparse, the condition which can hardly be satisfied,
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Figure 2.2: The wide spectrum of interest is divided into N disjoint wide sub-bands
for the purpose of sequential processing.

in general.

In addition, as in many wireless mobile communication systems, hardware com-

pactness is a major concern. Hence, it is desirable to reduce the number of RF

components and to avoid parallel RF hardware redundancies in any such system.

For instance, a communication system may have to be restricted to a limited num-

ber of RF mixers used for IF conversions. To address such hardware limitations, we

propose a Round-Robin style joint energy/cyclostationary spectrum sensing strat-

egy, which can achieve multi-band operation using a single reconfigurable RF chain.

For this, we assume that the RF environment of interest is firstly segmented into

a number of N disjoint, still wide, sub-bands, as shown in Fig. 2.2. By using the

Round-Robin strategy, the Radiobot can sequentially switch among these sub-bands

to detect the on-going RF activities.

We assume that these sub-bands are arbitrarily centered at frequencies f1, · · · , fN ,

with bandwidths of B1, · · · , BN . It is expected that this segmentation of the spec-

trum of interest into sub-bands will essentially be determined by the sensing antenna

system in use. For example, the reconfigurable sensing antenna system that was de-

veloped in [61], is capable of scanning the UWB spectrum by segmenting it into

N = 5 sub-bands. In particular, this wideband sensing antenna was shown to be

able to scan the spectrum from 2GHz to 10GHz in N = 5 bands, with f1 = 2.55GHz,

f2 = 3.2GHz, f3 = 4.48GHz, f4 = 5.8GHz, and f5 = 8.15GHz [61].
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We assume that the Radiobot system sequentially picks one of the N sub-bands

to sample at each time instant. In order to reduce the requirements on the sampling

rate, as shown in Fig. 2.3, a local variable oscillator with frequency fIn and a

corresponding digital bandpass filter is used to convert the received signal into an

IF signal, where we denote by fIn the local oscillator frequency tuned for the n-

th sub-band. By sequentially sensing the N sub-bands, the Radiobot can scan the

whole spectrum without requiring parallel hardware nor unrealistic ADC’s. Note

that, sequential spectrum sensing may lead to certain limitations. For example, if

the sensing and processing durations are too long, the Radiobot may miss certain

changes in RF conditions in the currently non-sensed sub-bands. On the other hand,

short sensing durations may lead to inaccurate sensing results. To address such

problems, sub-band selection policies may be designed to determine the optimal

selection of frequency sub-bands at each time instant. However, the problem of sub-

band selection policies is out of the scope of this dissertation and is being addressed

in [67].

Since our proposed detection procedure applies to each of the sub-bands in the

same way, in the following, we present the model formulation for a particular sub-

band n ∈ {1, · · · , N}. Hence, for brevity of notation, we drop the frequency sub-band

index n in the following sections.

2.2.1 Observed Signals Model

We denote by Ns the total number of signals at time t in the sub-band of interest.

The corresponding IF signal y(t) in Fig. 2.3 can be expressed as [114]:

y(t) = ℜ
{

Ns
∑

l=1

(
∫ ∞

0

xl(t− τ)hl(τ, t)dτ

)

ej2π(fcl−fI)t

}

+ w(t), (2.1)

where xl(t) denotes the l-th baseband signal that is to be modulated at a carrier

frequency fcl. The l-th baseband equivalent linear time-variant (LTV) impulse re-
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Figure 2.3: The cyclostationarity based RF signal detection with a scanning super-
heterodyne receiver.

sponse hl(τ, t) denotes the response of the channel at the time t to an impulse that

stimulated the channel between the l-th signal source and the Radiobot at time

t− τ [114,115]. The receiver noise, denoted by w(t), is assumed to be a white noise

process with double-sided power spectral density (PSD) of N0

2
. The average noise

power at the output of the sweeping IF filter will be Pn = N0B, where B is the

IF filter bandwidth. The resulting SNR at the output of the IF filter will thus be

SNR = Ps
Pn

where Ps is the received signal power.

Note that, for single-path (flat-fading) time invariant channel models, the channel

impulse response is equal to hl(τ, t) , hlδ(τ − τl), where δ denotes the Dirac delta

function, τl is the propagation delay of the single channel’s path and hl is the complex

channel gain. In this case, the received signal can be expressed as:

y(t) = ℜ
{

Ns
∑

l=1

(
∫ ∞

0

xl(t− τ)hlδ(τ − τl)dτ
)

ej2π(fcl−fI)t

}

+ w(t),

= ℜ
{

Ns
∑

l=1

hlxl(t− τl)ej2π(fcl−fI)t

}

+ w(t).
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2.2.2 Detection of RF Activities

In order to detect active RF signals, we propose to identify their carrier frequencies

and the associated cyclic frequencies that are induced by the underlying periodicities

of those signals. Note that, it is well-known that almost all man-made signals exhibit

such underlying periodicities due to, for example, their symbol rates, coding schemes,

packet/frame header structures and training symbol sequences, etc. [71–73]. In the

following discussion, however, we will explicitly focus on the cyclic properties induced

by the symbol and coding rates1. Using the discrete-frequency smoothing method [71]

described below, we compute an estimate S̃α
x (t, f) of the spectral correlation function

(SCF) Sα
x (f) using a discrete signal {x(t− kTs)}M−1

k=0 , for each sub-band, where Ts is

the sampling period, and M is the number of samples. Note that, this implies that

the total time duration over which the particular frequency sub-band was scanned is

T = (M − 1)Ts.

The discrete Fourier transform (DFT) X̃(t, f) of the sequence {x(t − kTs)}M−1
k=0

is defined in (2.2) over the set of frequencies {−fs
2
,−fs

2
+ Fs, · · · , fs

2
− Fs}, where

fs = 1
Ts

is the sampling rate and Fs = fs
M

is the frequency increment and a(t) is a

triangular data tapering window [71].

X̃(t, f) =
M−1
∑

k=0

a(t− kTs)x(t− kTs)e
−j2πf(t−kTs). (2.2)

An estimate of the SCF can then be obtained as [71] based on the discrete-frequency

smoothing method:

S̃α
x (t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

X̃(t, f +
α

2
+ νFs)X̃

∗(t, f − α

2
+ νFs), (2.3)

where α is the cyclic frequency and L (an odd number) is the spectral smooth-

ing window length. Note that, (2.3) can be evaluated for discrete values of α ∈
1It is fairly straightforward to generalize the method to include other periodicities that

might be present in any given signal.
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{0,±2Fs,±4Fs, · · · } since the DFT X̃(t, f) is computed at discrete spectral fre-

quencies {−fs
2
,−fs

2
+ Fs, · · · , fs

2
− Fs}. Using this method, the SCF is evaluated

at spectral frequencies corresponding to the spectral frequency resolution Fs = fs
M

,

while the SCF is computed at cyclic frequencies {0,±2Fs,±4Fs, · · · }, which does

not match the cyclic resolution Fs = fs
M

2. However, in order to compute the

SCF at cyclic frequencies corresponding to the cyclic frequency resolution, i.e. at

α ∈ {0,±Fs,±2Fs,±3Fs, · · · }, we may have to apply zero-padding to the sampled

signal sequence {x(t − kTs)}M−1
k=0 . However, this modification is not necessary, in

general, if the frequency increment Fs is small enough to resolve the desired cyclic

frequencies.

By setting α = 0, we first obtain an estimation of the PSD of the discrete signal

{x(t− kTs)}M−1
k=0 :

S̃0
x(t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

∣

∣

∣
X̃(t, f + νFs)

∣

∣

∣

2

. (2.4)

The active carrier frequencies in the spectrum sub-band of interest is determined

by setting a threshold on the above PSD. As shown in Appendix A, the threshold

ηPSD shown below can be derived based on the NP test [41]:

ηPSD =
γ−1 (L; (1− αF ) Γ(L))Pn

TsL
, (2.5)

where αF is the false alarm probability, γ−1 is the inverse lower incomplete gamma

function (where γ(k; x) =
∫ x

0
tk−1e−tdt and the inverse is with respect to the second

argument), Γ(k) =
∫ ∞

0
tk−1e−tdt is the gamma function and Pn is the noise power.

A rough estimate of the noise power Pn can be first obtained from all the frequency

components as P̂n = Ts

∑fs/2
f=−fs/2 S̃

0
x(t, f). Then, a more accurate estimate of Pn

is obtained from the periodogram where no signal has been detected, similar to

2Note that, the SCF can have the same resolution in both spectral and frequency domain
when using the frequency-smoothing approach [71].
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Figure 2.4: Carrier frequencies are estimated as the midpoints of the intersections
between the PSD curve and the threshold line.

[116]. Other methods can also be used to estimate Pn, for example, based on the

spectral kurtosis of the smallest values of the periodogram, as proposed in [117]. The

impact of noise power uncertainty was discussed and analyzed in [118, 119] where

the deterioration of the detector performance was upper-bounded by an expression

involving the peak-to-peak range of noise uncertainty [118].

Using the periodogram, the carrier frequencies are estimated as the midpoints of

the segments formed by the intersection between the PSD curve and the threshold

line ηPSD, as shown in Fig. 2.4. We denote by A the set of all detected carrier

frequencies in the sub-band of interest.

Next, an estimate of the spectral autocoherence function magnitude [71] is com-

puted as:

|C̃α
x (t, f)| = |S̃α

x (t, f)|
√

S̃0
x(t, f + α/2)S̃0

x(t, f − α/2)
. (2.6)

Note that |C̃α
x (t, f)| is normalized to be between 0 and 1. Due to the fact that for
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each carrier, the associated cyclic components show up peaks in a close range of the

carrier, we define the cyclic sub-domain profile of carrier fc ∈ A as:

Ĩx(t, α, fc) = max
f∈[fc−∆fL(fc),fc+∆fU (fc)]

|C̃α
x (t, f)| , (2.7)

where the lines f = fc − ∆fL(fc) and f = fc + ∆fU(fc) (∀fc ∈ A) partition the

(f, α)-plane into Voronoi cells whose point sites [120] are located at the detected

carrier frequency points {(fc, 0) : fc ∈ A}.

In [73], it is shown that digital signals exhibit cyclostationarity at multiples of

their baud rates. Moreover, the digital signals may exhibit other periodicities as well,

for example, due to coding. We denote the RF signature of the signal centered at

fc as RF(fc) = {α 6= 0 : IE Ĩx(t, α, fc) ≥ ζ}, where IE denotes the indicator function

of event E = {Ĩx(t, α, fc) is a local maximum}, and ζ ∈ (0, 1) is a threshold for the

peak detection in the cyclic sub-domain profile.

2.2.3 Spectral Correlation Function of Multiple Superposed

Digital Signals

In practice, the Radiobot is more likely to deal with multiple RF activities in each

spectrum sub-band of interest. Thus, it needs to know the corresponding SCF prop-

erties of superposed digital signals, in order to identify the number and types of the

detected signals accurately.

In order to analyze the impact of the superposition of multiple signals on the SCF

of a signal y(t), let us assume that y(t) = w(t) +
∑Ns

m=1 xm(t), where {xm(t)}Nsm=1

are independent zero-mean random processes (denoting Ns superposed signals) and

w(t) is an independent white noise process with a double-sided PSD of N0

2
. The

autocorrelation function of y(t) is Ryy(t, τ) = N0

2
δ(τ) +

∑Ns
m=1 Rxmxm(t, τ) , where
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Rxmxm(t, τ) is the autocorrelation functions of xm(t), for m = 1, · · · , Ns. First, we

define a Fourier transform for the cyclic autocorrelation function as [121]:

Rα
yy(τ) , lim

T→∞

1

T

∫ T/2

T/2

Ryy(t, τ)e
−j2παtdt

= lim
T→∞

1

T

∫ T/2

T/2

[

N0

2
δ(τ) +

Ns
∑

m=1

Rxmxm(t, τ)

]

e−j2παtdt

=
N0

2
δ(τ)δ(α) +

Ns
∑

m=1

Rα
xmxm(τ). (2.8)

The SCF of y(t) can then be expressed as:

Sα
y (f) =

∫

R

Rα
yy(τ)e

−j2πfτdτ =
N0

2
δ(α) +

Ns
∑

m=1

Sα
xm(f). (2.9)

This result shows that the superposition of multiple independent signals results

in a superposition of spectral peaks in the (f, α) domain. In other words, the SCF

of the superposition of multiple signals has peaks at cyclic frequencies corresponding

to integer multiples of, for example, the data rates of each signal.

2.2.4 Feature Extraction: Baud Rate and Coding Properties

The RF signature RF(fc) vector itself can be used as a feature for classifying detected

signals. For compactness, it is more convenient, however, to represent this vector

by fewer elements. To achieve this, we define two feature elements α1 and α2 that

are extracted from the RF signature, with α1 representing the baud rate induced

cyclic frequency and α2 representing the coding induced cyclic frequency. Based on

the cyclostationarity properties, the cyclic profile exhibits high peaks at the induced

cyclic frequencies α1 and α2. Moreover, since the code length is usually a multiple

of the symbol duration, the coding induced cyclic frequency α2 is smaller than the

data rate induced cyclic frequency α1. By using this information, in Algorithm 1,
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a feature extraction procedure for determining α1 and α2 is proposed. Note that,

in this algorithm, ρ ∈ (0, 1) with ρ >> 0. These feature elements can be used to

construct certain feature vectors for each detected signal in order to be classified

using proper procedures.

Algorithm 1 Feature Extraction Procedure
for each fc ∈ A do

F = [fc −∆fL, fc + ∆fR]

V1 = RF(fc), M1 = arg maxα∈V1 Ĩ(t, α, fc)

V2 = RF(fc)\M1, M2 = arg maxα∈V2 Ĩ(t, α, fc)

if M1 < M2 then

if ρĨ(t,M1, fc) > Ĩ(t,M2, fc) then

(α1, α2) = (M1, 0)

else

(α1, α2) = (M2,M1)

end if

else

(α1, α2) = (M1,M2)

end if

end for

2.3 Impact of Channel Fading on the Cyclosta-

tionary Features

In this section, we show that the cyclostationary features of signals can essentially be

preserved even in the presence of channel fading. In other words, we show that the

proposed cyclostationarity based detection method is robust against channel fading

effects.
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A continuous-time real-valued stochastic process x(t) is said to be second-order

cyclostationary in the wide sense if its mean E{x(t)} and autocorrelation function

Rxx(t, τ) , E{x(t+ τ)x(t)} are periodic with some period, say T0:

E{x(t+ T0)} = E{x(t)}, Rxx(t+ T0, τ) = Rxx(t, τ), (2.10)

for all t and τ [70]. We consider a cyclostationary digital signal x(t) and an LTV

fading channel (i.e. due to the Doppler effect), having an impulse response of h(τ ′, t).

According to the definition of cyclostationarity, we know that the autocorrelation

function of x(t) is a periodic function of t, such that Rxx(t + T0, τ) = Rxx(t, τ), for

some period T0. The received signal y(t) through the LTV fading channel can be

expressed as:

y(t) =

∫ ∞

0

x(t− τ ′)h(τ ′, t)dτ ′ + w(t), (2.11)

where w(t) is an additive wide-sense stationary (WSS) noise process. The autocor-

relation function of the received signal y(t) can then be expressed as:

Ryy(t, τ) = E {y(t+ τ)y(t)}

= E

{[
∫ ∞

0

x(t+ τ − τ ′1)h(τ ′1, t+ τ)dτ ′1 + w(t+ τ)

]

×

×
[
∫ ∞

0

x(t+ τ − τ ′2)h(τ ′2, t)dτ ′2 + w(t)

]}

= E

{∫ ∞

0

∫ ∞

0

x(t+ τ − τ ′1)x(t+ τ − τ ′2)×

× h(τ ′1, t+ τ)h(τ ′2, t)dτ
′
1dτ

′
2}+ E {w(t+ τ)w(t)}

=

∫ ∞

0

∫ ∞

0

E {x(t+ τ − τ ′1)x(t+ τ − τ ′2)}E {h(τ ′1, t+ τ)h(τ ′2, t)} dτ ′1dτ ′2 +

+Rww(t, τ)

=

∫ ∞

0

∫ ∞

0

Rxx(t, τ − τ ′1 + τ ′2)Rhh(τ
′
1, τ

′
2; t+ τ, t)dτ ′1dτ

′
2 +Rww(τ),

where Rhh(τ
′
1, τ

′
2; t1, t2) , E {h(τ ′1, t1)h(τ ′2, t2)} is the autocorrelation of the channel

impulse response h(τ ′, t), and Rww(t, τ) = Rww(τ) is the autocorrelation function of

the WSS noise.
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According to empirical studies, the channel can be considered as WSS as long as

the mobile unit covers a distance in the dimension of a few tens of the wavelength

of the carrier signal in an observation period [122]. We also assume that scattering

components with different propagation delays are statistically uncorrelated. These

channel models are called US (uncorrelated scattering) channel models or US models

[114]. The most important class of stochastic LTV channel models is represented by

models belonging both to the class of WSS and to the class of US. These channel

models are called WSS uncorrelated scattering (WSSUS) models which are almost

exclusively employed in current literature for modeling frequency selective mobile

radio channels [114, 122–125].

Under this common assumption of WSSUS, the autocorrelation function of the

impulse response of the LTV fading channel can be expressed as [114]:

Rhh(τ
′
1, τ

′
2; t+ τ, t) = δ(τ ′2 − τ ′1)Shh(τ

′
1, τ), (2.12)

where Shh(τ
′
1, τ) is called the delay cross-power spectral density [114]. We substitute

(2.12) back into (2.12) to obtain:

Ryy(t, τ) =

∫ ∞

0

∫ ∞

0

Rxx(t, τ − τ ′1 + τ ′2)× δ(τ ′2 − τ ′1)Shh(τ
′
1, τ)dτ

′
1dτ

′
2 +Rww(τ)

=

∫ ∞

0

Rxx(t, τ)Shh(τ
′
1, τ)dτ

′
1 +Rww(τ)

= Rxx(t, τ)

∫ ∞

0

Shh(τ
′
1, τ)dτ

′
1 +Rww(τ) (2.13)

so that

Ryy(t+ T0, τ) = Rxx(t+ T0, τ)
∫ ∞

0
Shh(τ

′
1, τ)dτ

′
1 +Rww(τ)

= Rxx(t, τ)
∫ ∞

0
Shh(τ

′
1, τ)dτ

′
1 +Rww(τ)

= Ryy(t, τ). (2.14)
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This shows that the autocorrelation function of the received signal y(t) is also

periodic with the same period T0 as the transmitted signal x(t). As a result, the

received signal y(t) is also cyclostationary with the same cyclic components as x(t).

A more general class of stochastic processes is obtained if the autocorrelation

function Rxx(t, τ) is almost periodic in t for each τ [121]: A continuous-time real-

valued stochastic process x(t) is said to be almost-cyclostationary (ACS) in the wide

sense if its autocorrelation function Rxx(t, τ) is an almost periodic function of t

(with frequencies not depending on τ) [70]. When the input signal x(t) is considered

as ACS, the output signal y(t) through the LTV fading channel is also ACS with

the same cyclic components as x(t), since we can see from (2.13) and (2.14) the

autocorrelation function Ryy(t, τ) is also almost periodic with the same period as

Rxx(t, τ).

As a result, we see that when fading channels are considered as general LTV

systems, the cyclostationary properties of the transmitted signals are not altered at

the output of the channel, or the received signal at the Radiobot. This justifies the

robustness of the proposed cyclostationarity based detection method in the presence

of channel fading. Note that, the proposed cyclostationarity based detection method

introduced in Section 2.2.2 also applies to the ACS assumption, since the SCF is

also defined under the assumption of ACS and it has been shown that an ACS

signal exhibits cyclostationarity at cycle frequency α if Rα
xx(τ) 6≡ 0, similarly to the

cyclostationary stochastic processes [70, 121].
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2.4 Impact of the Doppler Shift on the Detected

Carrier Frequencies

The cyclic autocorrelation function Rα
yy(τ) of the received signal y(t) is defined as

Rα
yy(τ) , limT→∞

1
T

∫
T
2

−T
2

Ryy(t, τ)e
−j2παtdt [121]. Replacing Ryy(t, τ) by its value in

(2.13), we obtain:

Rα
yy(τ) = H(τ)Rα

xx(τ) +Rww(τ)δK(α), (2.15)

where H(τ) =
∫ ∞

−∞
Shh(τ

′
1, τ)dτ

′
1 and δK denotes the Kronecker delta function. We

may compute the PSD S0
y(f) of the received signal y(t) as the Fourier transform

(denoted by the operator F) of Rα
y (τ) at α = 0, such that:

S0
y(f) = F

{
∫ ∞

−∞

Shh(τ
′
1, τ)dτ

′
1

}

∗ S0
x(f) + Sw(f)

=

∫ ∞

−∞

F {Shh(τ
′
1, τ)} dτ ′1 ∗ S0

x(f) + Sw(f)

=

∫ ∞

−∞

S(τ ′1, f)dτ ′1 ∗ S0
x(f) + Sw(f) (2.16)

= Sµµ(f) ∗ S0
x(f) + Sw(f) , (2.17)

where S(τ ′1, f) and Sµµ(f) are, respectively, the scattering function and the Doppler

power spectral density, and S0
x(f) is the PSD of the transmitted signal. Note that

(2.16) and (2.17) are obtained using (7.37) and (7.42) in [114], respectively.

The Doppler PSD is usually defined over a range [−fmax, fmax], where fmax is the

maximum Doppler frequency shift [114]. Thus, the received PSD can be expressed

as:

S0
y(f) =

∫ fmax

−fmax

Sµµ(ν)S0
x(f − ν)dν + Sww(f) . (2.18)

Based on (2.18), the convolution of S0
x(f) with a window of length 2fmax causes

the PSD to spread at most by ±fmax at each point. If the Doppler PSD Sµµ(f)
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is symmetric (such as Jakes’ type [114]), the carrier frequency components of the

detected feature points do not shift since the main lobes of the PSD are spread

evenly in both left and right directions. However, if Sµµ(f) is not symmetric (such

as Rice’s, Gauss I or Gauss II types [114]), the detected carrier frequencies will shift

by an amount smaller than fmax. Therefore, due to the Doppler shift, it may not

be possible to detect and distinguish signals that are separated by less than fmax

in the spectrum. However, based on the users activity and by using appropriate

learning algorithms, the Radiobot might be able to detect each of the signals when

they are the only transmitted signals. Then using this knowledge, it may be able

to distinguish them when both signals are transmitted simultaneously. This again

emphasizes the importance of true learning from past experience during the signal

detection and classification steps.

2.5 Self-Reconfiguration of the Spectrum Sensing

Module

The performance of the Radiobot is related to the quality and accuracy of the sensing

observations. It is required to optimize the sensing module so that it best estimates

the RF activity in the surrounding environment. Several parameters may need to be

optimized during the sensing process, such as the sensing duration, detector thresh-

olds, spectrum sensing policies, etc. based on the particular RF environment it

encounters at a given time. It is the task of the learning and reasoning abilities

of the Radiobot to make the cognitive engine dynamically adapt these parameters

based on its past experience. To be specific, assume that the Radiobot needs to

optimize its cyclic sub-profile threshold ζ such that it achieves a certain false alarm

probability. Of course, it is almost impossible to obtain analytical solutions to this

problem due to the complexity of the cyclic profile equation and to the uncertainty
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in the surrounding environment. A possible solution is to learn the optimal threshold

value iteratively based on the sensing observations, as in [110].

An online learning algorithm was proposed in [110] to adapt the threshold value

of NP test when the probability distribution of the detected signals is unknown. The

threshold is thus dynamically updated to achieve a desired false alarm probability.

The learning process is conducted during a training period in which the observed data

are drawn from a null hypothesis. In our case, however, we do not assume a train-

ing period and we propose a learning algorithm that updates the cyclic sub-profile

threshold ζ during the normal operation time itself to achieve a desired false alarm

probability φ. By the help of the energy detection, the learning algorithm identifies

the absence of transmitted signals to perform the learning process. The objective of

the learning algorithm is to minimize the Kullback-Leibler distance K(P ||Q) between

two probability distributions P and Q, similar to [110], where:

K(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (2.19)

We denote by P and Q the desired and actual probability distributions of the cy-

clostationary detector output, conditioned on the absence of transmitted signals.

These probability distributions correspond to Bernoulli random variables, represent-

ing whether a signal is (1) or is not (0) detected. By defining φ and Pf(ζ) as the

desired and actual false alarm probabilities (for a given threshold ζ), respectively,

the Kullback-Leibler distance can then be expressed as:

K(P ||Q) = K(φ, Pf(ζ)) = φ log
φ

Pf(ζ)
+ (1− φ) log

1− φ
1− Pf(ζ)

. (2.20)

Note that K(φ, Pf(ζ)) = 0 iff φ = Pf(ζ). Due to its convexity in Pf (ζ), the Kullback-

Leibler distance guarantees a global minimum. Moreover, it was shown in [110] that

K(φ, Pf(ζ)) is convex in ζ iff Pf (ζ) is monotonous, which is satisfied in our case.

However, since the analytical expression of Pf (ζ) is unknown, it can be estimated as

the ratio of sample points that exceed the threshold ζ in the cyclic profile I(α), when
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there is no transmitted signals. As noted in [110], to achieve accurate estimate for

Pf(ζ), the recursive adaptation in ζ should not be too frequent. This is taken into

account in the proposed learning algorithm (Algorithm 2), in which the threshold ζ

is updated after each Nc > 1 updates of the false alarm probability Pf(ζ).

Algorithm 2 Learning algorithm to control the cyclic sub-profile threshold ζ
Initialize: counter = 1.

while No signal is detected by the energy detector do

Update the false alarm probability Pf (ζ) and counter = counter + 1.

if counter = Nc then

Update ζ such that: ζ ← ζ + ψ (Pf (ζ)− φ).

Reset counter = 1.

end if

end while

The update rule in Algorithm 2 minimizes the Kullback-Leibler function since

it follows a gradient descent direction that reduces the difference |Pf(ζ) − φ| at a

learning rate of ψ > 0. Moreover, due to the convexity of the Kullback-Leibler

function, this algorithm is guaranteed to converge to a unique optimal threshold

value.

2.6 Simulation Results

In order to demonstrate the performance of our proposed cyclostationarity-based

autonomous signal detection procedure, we simulate several signals in the 2.4GHz

ISM band. These signals are assumed to have carriers at 2.412GHz, 2.437GHz and

2.462GHz and symbol rates of 10, 12 and 14 Mbauds, respectively. The signals

are allowed to use different quadrature amplitude modulation (QAM) schemes and

are equally likely to be in ON or OFF states during each sensing period. Wireless
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Figure 2.5: Comparison between the ROC’s of the sliding-window and conventional
energy detections. The sliding-window length is L = 11.

channel is assumed to be Rayleigh fading. The fading channels coefficients h are

normalized, such that E{h2} = 1. Also, the Radiobot’s receiver is subjected to white

Gaussian noise.

We assume that the sensed signal is downconverted to IF band with an IF os-

cillator with frequency of fI = 2.35GHz. After IF conversion, the three signals are

supposed to be centered at 62, 87 and 112 MHz. Each sensing observation takes

12µs with a receiver SNR of 20dB.

In Fig. 2.5, we show the ROC curves of the adopted sliding-window energy

detection scheme [33, 41]. This detector is compared to the conventional energy

detection and it shows superior detection performance. Next, we show in Fig. 2.6 the

detection performance of the cyclostationary detection for different values of SNR’s

and for different sensing times. The results show that 95% of detection probability

can be achieved at an SNR of−6dB and with a sensing time of T = 30µs. Afterwards,
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Figure 2.6: Probability of identification of feature points with a sampling frequency
fs = 200MHz and sliding-window length L = 59. The detected signal is a 4-QAM
with symbol rate of 5 Mbauds and down-converted to a carrier frequency of 20MHz.
The performance is compared under both non-fading and Rayleigh fading channels.

we verify, in Fig. 2.7, the convergence of the learning algorithm proposed in Section

2.5. We let φ to be the desired false alarm probability of the cyclostationary detection

and let ζ be the control threshold. Starting from ζ = 0, Algorithm 2 converges to

constant threshold at which the actual false alarm probability Pf(ζ) converges to φ.

The learning rate is set to ψ = 0.2 and the threshold ζ is updated after each Nc = 20

updates of the false alarm probability Pf(ζ). Note that a similar learning procedure

could be applied to adapt the energy detector threshold ηPSD. However, this step is

not required in our case since we have an analytical expression for ηPSD in (A.6).

Finally, in order to verify the multi-band operability of the Radiobot, we simulate,

in Fig. 2.8, the sequential sensing in two different sub-bands. Each sub-band has 2

different systems and we assume that these users can be either ON (1) or OFF (0)

at each time instant, as shown in the user activity curves of Fig. 2.8. The Radiobot
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senses sequentially these sub-bands. We plot the sensing outcomes and represent by

1 (resp. 0) whether the corresponding system is detected (resp. not detected). An

outcome of 0.5 implies that the corresponding sub-band is not sensed at a certain

time. The results in Fig. 2.8 show that the Radiobot can accurately detect the

different systems and allocate them to appropriate clusters, while switching between

different sub-bands.

2.7 Conclusion

In this chapter, we have presented an autonomous CR architecture, referred to as the

Radiobot [1]. This model is aimed at emphasizing the cognitive aspects of CR’s by

requiring that the Radiobot is able to achieve self-learning and self-reconfigurability.

The proposed Radiobot architecture employs a joint energy/cyclostationary detec-

tion to extract different features from the sensed signals. A learning algorithm is

proposed to allow self-reconfigurability of the Radiobot sensing module to match its

RF environment. We analyzed the performance of the energy detection through the

ROC and showed the robustness of the cyclostationary detection to fading and to

WSS noise. We verified, through simulations, the expected convergence of the pro-

posed learning algorithm and the multi-band operability of the Radiobot architecture

with the proposed wideband spectrum sensing approach.
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Machine Learning in CR’s

3.1 Introduction

The term cognitive radio has been used to refer to radio devices that are capable

of learning and adapting to their environment [2, 3]. Cognition, from the Latin

word cognoscere (to know), is defined as a process involved in gaining knowledge

and comprehension, including thinking, knowing, remembering, judging and prob-

lem solving [126]. A key aspect of any CR is the ability for self-programming or

autonomous learning [1, 127]. In [4], Haykin envisioned CR’s to be brain-empowered

wireless devices that are specifically aimed at improving the utilization of the electro-

magnetic spectrum. According to Haykin, a CR is assumed to use the methodology

of understanding-by-building and is aimed to achieve two primary objectives: Perma-

nent reliable communications and efficient utilization of the spectrum resources [4].

In order to be really cognitive, a CR should be equipped with the abilities of

learning and reasoning [1–3, 60, 93, 128]. These capabilities are to be embedded in

a cognitive engine which has been identified as the core of a CR [44–49], following

the pioneering vision of [3]. The cognitive engine is to coordinate the actions of the
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CR by making use of machine learning algorithms. However, only in recent years

there has been a growing interest in applying machine learning algorithms to CR’s,

as shown in [40, 41, 91, 92, 96].

In general, learning is necessary if the precise effects of the inputs on the outputs

of a given system are not known [91]. In other words, if the input-output function of

a given system is unknown, learning techniques are required to estimate that func-

tion in order to design proper inputs. For example, in wireless communications, the

wireless channels are non-ideal and may cause uncertainty. If it is desired to reduce

the probability of error over a wireless link by reducing the coding rate, learning

techniques can be applied to estimate the wireless channel characteristics and to

determine the specific coding rate that is required to achieve a certain probability

of error [91]. In this case, the probability of error, as a function of a specific coding

rate, is considered to be unknown and to be estimated using learning tools. The

problem of channel estimation is relatively simple and can be solved via estima-

tion algorithms [129]. However, in the case of CR’s and cognitive CRN’s, problems

become more complicated with the increase in the degrees of freedom of wireless sys-

tems especially with the introduction of highly-reconfigurable SDR’s. In this case,

several parameters and policies need to be adjusted simultaneously (e.g. transmit

power, coding scheme, modulation scheme, sensing algorithm, communication pro-

tocol, sensing policy, etc.) and no simple formula may be able to determine these

setup parameters simultaneously. This is due to the complex interactions among

these factors and their impact on the RF environment. Thus, learning methods can

be applied to allow efficient adaption of the CR’s to their environment, yet without

the complete knowledge of the dependence among these parameters [95].

The problem becomes even more complicated with heterogeneous CRN’s. In this

case, a CR not only has to adapt to the RF environment, but also it has to coordi-

nate its actions with respect to the other radios in the network. With only a limited
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amount of information exchange among nodes, a CR needs to estimate the behavior

of other nodes in order to select its proper actions. For example, in the context of

DSA, CR’s try to access idle primary channels while limiting collisions with both li-

censed and other secondary cognitive users [96]. In addition, if the CR’s are operating

in unknown RF environments [1], conventional solutions to the decision process (e.g.

Dynamic programming in the case of Markov decision processes (MDP’s) [102]) may

not be feasible since they require complete knowledge of the system. On the other

hand, by applying special learning algorithms such as the RL [95,96,99], it is possible

to arrive at the optimal solution to the MDP, without knowing the transition proba-

bilities of the Markov model. Therefore, given the reconfigurability requirements and

the need for autonomous operation in unknown and heterogeneous RF environment,

CR’s may use learning algorithms as a tool for adaptation to the environment and

to coordinate with peer radio devices. Moreover, incorporation of low-complexity

learning algorithms can lead to reduced system complexities in CR’s [90].

A look at the recent literature on CR’s reveals that both supervised and un-

supervised learning techniques have been proposed for various learning tasks. The

authors in [46,78,130] have considered supervised learning based on neural networks

and SVM’s for CR applications. On the other hand, unsupervised learning, such

as RL, has been considered in [131, 132] for dynamic spectrum sharing (DSS) appli-

cations. The distributed Q-learning algorithm has been shown to be effective in a

particular CR application in [99]. For example, in [133], CR’s used the Q-learning

to improve detection and classification performance of primary signals. Other appli-

cations of RL to CR’s can be found, for example, in [97, 98, 134, 135]. Recent work

in [136] introduces novel approaches to improve the efficiency of RL by adopting

a weight-driven exploration. Unsupervised Bayesian non-parametric learning based

on the Dirichlet process was proposed in [137] and was used for signal classification

in [41, 42]. A robust signal classification algorithm was also proposed in [79], based

on unsupervised learning.
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Although the RL algorithms (such as Q-learning) may provide a suitable frame-

work for autonomous unsupervised learning, their performance in partially observ-

able, non-Markovian and multi-agent systems can be unsatisfactory [100, 138–140].

Other types of learning mechanisms such as evolutionary learning [138,141], learning

by imitation, learning by instruction [142] and policy-gradient methods [139, 140]

have been shown to outperform RL on certain problems under such conditions. For

example, the policy-gradient approach has been shown to be more efficient in par-

tially observable environments since it searches directly for optimal policies in the

policy space [139, 140].

Similarly, learning in multi-agent environments has been considered in recent

years, especially when designing learning policies for CRN’s. For example, [143]

compared a cognitive network to a human society that exhibits both individual and

group behaviors, and a strategic learning framework for cognitive networks was pro-

posed in [144]. An evolutionary game framework was proposed in [145] to achieve

adaptive learning in cognitive users during their strategic interactions. By taking into

consideration the distributed nature of CRN’s and the interactions among the CR’s,

optimal learning methods can be obtained based on cooperative schemes, which helps

to avoid the selfish behaviors of individual nodes in a CRN.

One of the main challenges of learning in distributed CRN’s is the problem of

action coordination [100]. To ensure optimal behavior, centralized policies may be

applied to generate optimal joint actions for the whole network. However, centralized

schemes are not always feasible in distributed networks. Hence, the aim of cognitive

nodes in distributed networks is to apply decentralized policies that ensure near-

optimal behavior while reducing the communication overhead among nodes. For

example, a decentralized technique that was proposed in [126,146] was based on the

concept of docitive networks, from the Latin word docere (to teach), which establishes

knowledge transfer (i.e. teaching) over the wireless medium [126]. The objective
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of docitive networks is to reduce the cognitive complexity, speed up the learning

rate and generate better and more reliable decisions [126]. In a docitive network,

radios teach each others by interchanging knowledge such that each node attempts

to learn from a more intelligent node. The radios are not only supposed to teach

end-results, but rather elements of the methods of getting there [126]. For example,

in a docitive network, newly joint radios can acquire certain policies from existing

radios in the network. Of course, there will be communication overhead during

the knowledge transfer process. However, as it is demonstrated in [126, 146], this

overhead is compensated by the policy improvement achieved due to cooperative

docitive behavior.

In this chapter, we discuss the role of learning in CR’s and emphasize how crucial

the autonomous learning ability in realizing a real CR device. We present a survey of

the state-of-the-art achievements in applying machine learning techniques to CR’s.

In this chapter, specifically, we focus on the challenges that are encountered in

applying machine learning techniques to CR’s, given the importance of learning in

CR applications. In particular, we provide in-depth discussions on the different

types of learning paradigms in the two main categories: supervised learning and

unsupervised learning. The machine learning techniques discussed in this chapter

include those that have been already proposed in the literature as well as those that

might be reasonably applied to CR’s in future. The advantages and limitations of

these techniques are discussed to identify perhaps the most suitable learning methods

in a particular context or in learning a particular task or an attribute. Moreover, we

provide discussions on the centralized and decentralized learning techniques as well

as the challenging machine learning problems in the non-Markovian environments.

The remainder of this chapter is organized as follows: Section 3.2 defines the

learning problem in CR’s and presents the different learning paradigms. Sections 3.3

and 3.4 present the decision-making and feature classification problems, respectively.
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In Section 3.5, we describe the learning problem in centralized and decentralized

CRN’s and we conclude this chapter in Section 3.6.

3.2 Need of learning in CR’s

3.2.1 Definition of the Learning Problem

A CR is defined to be “an intelligent wireless communication system that is aware

of its environment and uses the methodology of understanding-by-building to learn

from the environment and adapt to statistical variations in the input stimuli” [4].

As a result, a CR is expected to be intelligent by nature. It is capable of learning

from its experience by interacting with its RF environment [1]. According to [147],

learning should be an indispensable component of any intelligent system.

As identified in [147], there are three main conditions for intelligence: 1) Per-

ception, 2) learning and 3) reasoning, as illustrated in Fig. 3.1. Perception is the

ability of sensing the surrounding environment and the internal states to acquire

information. Learning is the ability of transforming the acquired information into

knowledge by using methodologies of classification and generalization of hypotheses.

Finally, knowledge is used to achieve certain goals through reasoning. As a result,

learning is at the core of any intelligent device including, in particular, CR’s. It is

the fundamental tool that allows a CR to acquire knowledge from its observed data.

In the followings, we discuss how the above three constituents of intelligence are

built into CR’s. First, perception can be achieved through the sensing measure-

ments of the spectrum. This allows the CR to identify on-going RF activities in

its surrounding environment, as presented in Chapter 2. After acquiring the sens-

ing observations, the CR tries to learn from them in order to classify and organize

the observations into suitable categories (knowledge). Finally, the reasoning ability
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Figure 3.1: An intelligent design can transform the acquired information into knowl-
edge by learning.

allows the CR to use the knowledge acquired through learning to achieve its objec-

tives. These characteristics were initially specified by Mitola in defining the so-called

cognition cycle [2]. We illustrate in Fig. 3.2 an example of a simplified cognition

cycle that was proposed in [1] for autonomous CR’s, referred to as Radiobots [60].

Figure 3.2 shows that Radiobots can learn from their previous actions by observing

their impact on the outcomes. The learning outcomes are then used to update, for

example, the sensing (i.e. observation) and channel access (i.e. decision) policies in

DSA applications [4, 9, 22, 96].

3.2.2 Unique Characteristics of CR Learning Problems

Although the term cognitive radio has been interpreted differently in various research

communities [1], perhaps the most widely accepted definition is as a radio that can

sense and adapt to its environment [1,3,4,91]. The term cognitive implies awareness,

perception, reasoning and judgement. As we already pointed out earlier, in order for

a CR to derive reasoning and judgement from perception, it must possess the ability

for learning [147]. Learning implies that the current actions should be based on past

and current observations of the environment [148]. Thus, history plays a major role

in the learning process of CR’s.
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Figure 3.2: The cognition cycle of an autonomous CR (referred to as the Radiobot)
[1]. Decisions that drive Actions are made based on the Observations and Learnt
knowledge. The impact of actions on the system performance and environment
leads to new Learning. The Radiobot’s new Observations are guided by this Learnt
Knowledge of the effects of past Actions.

Several learning problems are specific to CR applications due to the nature of

the CR’s and their operating RF environments. First, due to noisy observations and

sensing errors, CR’s can only obtain partial observations of their state variables. The

learning problem is thus equivalent to a learning process in a partially observable

environment and must be addressed accordingly.

Second, CR’s in CRN’s try to learn and optimize their behaviors simultaneously.
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Figure 3.3: Supervised and unsupervised learning approaches for CR’s.
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Hence, the problem is naturally a multi-agent learning process. Furthermore, the de-

sired learning policy may be based on either cooperative or non-cooperative schemes

and each CR might have either full or partial knowledge of the actions of the other

cognitive users in the network. In the case of partial observability, a CR might apply

special learning algorithms to estimate the actions of the other nodes in the network

before selecting its appropriate actions, as in, for example, [100].

Finally, autonomous learning methods are desired in order to enable CR’s to

learn on its own in an unknown RF environment. In contrast to licensed wireless

users, a truly CR may be expected to operate in any available spectrum band, at any

time and in any location [1]. Thus, a CR may not have any prior knowledge of the

operating RF environment such as the noise or interference levels, noise distribution

or user traffics. Instead, it should possess autonomous learning algorithms that may

reveal the underlying nature of the environment and its components. This makes

the unsupervised learning a perfect candidate for such learning problems in CR

applications.

To sum up, the three main characteristics that need to be considered when de-

signing efficient learning algorithms for CR’s are:

1. Learning in partially observable environments.

2. Multi-agent learning in distributed CRN’s.

3. Autonomous learning in unknown RF environments.

A CR design that embeds the above capabilities will be able to operate efficiently

and optimally in any RF environment.
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3.2.3 Types of Learning Paradigms: Supervised versus Un-

supervised Learning

Learning can be either supervised or unsupervised, as depicted in Fig. 3.3. Un-

supervised learning may particularly be suitable for CR’s operating in alien RF

environments [1]. In this case, autonomous unsupervised learning algorithms per-

mit exploring the environment characteristics and self-adapting actions accordingly

without having any prior knowledge [1,40]. However, if the CR has prior information

about the environment, it might exploit this knowledge by using supervised learning

techniques. For example, if certain signal waveform characteristics are known to the

CR prior to its operation, training algorithms may help CR’s to better detect signals

with those characteristics.

In [142], the two categories of supervised and unsupervised learning are identified

as learning by instruction and learning by reinforcement, respectively. A third learn-

ing regime is defined as the learning by imitation in which an agent learns by observ-

ing the actions of similar agents [142]. In [142], it was shown that the performance

of a learning agent (learner) is influenced by its learning regime and its operating

environment. Thus, to learn efficiently, a CR must adopt the best learning regime

for a given learning problem, whether it is learning by imitation, by reinforcement or

by instruction [142]. Of course, some learning regimes may not be applicable under

certain circumstances. For example, in the absence of an instructor, the CR may not

be able to learn by instruction and may have to resort to learning by reinforcement

or imitation. An effective CR architecture is the one that can switch among different

learning regimes depending on its requirements, the available information and the

environment characteristics.
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Figure 3.4: Typical problems in CR and their corresponding learning algorithms.

3.2.4 Learning Problems in CR

Several learning algorithms can be used by CR’s to achieve different goals. In order

to obtain a better insight on the functions and similarities among the presented al-

gorithms, we identify two main problem categories and show the learning algorithms

under each category. The hierarchical organization of the learning algorithms and

their dependence is illustrated in Fig. 3.4.

Referring to Fig. 3.4, we identify two main CR problems (or tasks) as:

1. Decision-making.

2. Feature classification.

These problems are general in a sense that they cover a wide range of CR tasks.

For example, classification problems arise in spectrum sensing while decision-making

problems arise in determining the spectrum sensing policy, power control or adaptive

modulation. Learning algorithms can be classified under the above two tasks, and

can be applied under specific conditions, as illustrated in Fig. 3.4. For example,
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the classification algorithms can be split into two different categories: Supervised

and unsupervised. Supervised algorithms require training with labeled data and

include, among others, the artificial neural network (ANN) and SVM algorithms.

The ANN algorithm is based on empirical risk minimization and does require prior

knowledge of the observed process distribution, as opposed to structural models [149,

150]. However, SVM algorithms, which are based on structural risk minimization,

have shown superior performance, in particular for small training examples, since

they avoid the problem of overfitting [149, 151].

For instance, consider a set of training data denoted as {(x1, y1), · · · , (xN , yN)}
such that xi ∈ X, yi ∈ Y , ∀i ∈ {1, · · · , N}. The objective of a supervised learning

algorithm is to find a function g : X → Y that maximizes a certain score function

[149]. In ANN, g is defined as the function that minimizes the empirical risk:

R(g) = Remp(g) =
1

N

N
∑

i=1

L(yi, g(xi)) , (3.1)

where L : Y × Y → R+ is a loss function. Hence, ANN algorithms find the func-

tion g that best fits the data. However, if the function space G includes too many

candidates or the training set is not sufficiently large (i.e. small N), empirical risk

minimization may lead to high variance and poor generalization, which is known as

overfitting. In order to prevent overfitting, structural risk minimization can be used,

which incorporates a regularization penalty to the optimization process [149]. This

can be done by minimizing the following risk function:

R(g) = Remp(g) + λC(g) , (3.2)

where λ controls the bias/variance tradeoff and C is a penalty function [149].

In contrast with the supervised approaches, unsupervised classification algorithms

do not require labeled training data and can be classified as being either parametric or

non-parametric. Unsupervised parametric classifiers include the K-means and GMM
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algorithms and require prior knowledge of the number of classes (or clusters). On the

other hand, non-parametric unsupervised classifiers do not require prior knowledge

of the number of clusters and can estimate this quantity from the observed data

itself, for example using methods based on the DPMM [41–43].

Decision-making is another major task that has been widely investigated in CR

applications [22, 25, 96, 99, 152–159]. Decision-making problems can in turn be split

to policy-making and decision rules. Policy-making problems can be classified as

either centralized or decentralized. In a policy-making problem, an agent determines

its optimal set of actions over a certain time duration, thus defining an optimal

policy (or an optimal strategy in game theory terminology). In a centralized scenario

with a Markov state, RL algorithms can be used to obtain optimal solution to the

corresponding MDP, without prior knowledge of the transition probabilities [95,102].

In non-Markov environments, optimal policies can be obtained based on gradient

policy search algorithms which search directly for solutions in the policy space. On

the other hand, for multi-agent scenarios, game theory is proposed as a solution

that can capture the distributed nature of the environment and the interactions

among users. With a Markov state assumption, the system can be modeled as a

Markov game (or a stochastic game), while conventional game models can be used,

otherwise. Note that learning algorithms can be applied to the game-theoretic models

(such as the no-regret learning [160–162]) to arrive at equilibrium under uncertainty

conditions.

Finally, decision rules form another class of decision-making problems which can

be formulated as hypothesis testing problems for certain observation models. In the

presence of uncertainty about the observation model, learning tools can be applied

to implement a certain decision rule. For example, the threshold-learning algorithm

proposed in [41,110] was used to optimize the threshold of the NP test under uncer-

tainty about the noise distribution.
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In brief, we have identified two main classes of problems and have determined

the conditions under which certain algorithms can be applied for these problems.

For example, the DPMM algorithm can be applied for classification problems if the

number of clusters is unknown, whereas the SVM may be better suited if labeled

data is available for training.

The learning algorithms that are presented in this chapter help to optimize the

behavior of the learning agent (in particular the CR) under uncertainty conditions.

For example, the RL leads to the optimal policy for MDP’s [95] while game theory

leads to Nash equilibrium, whenever it exists, of certain types of games [163]. The

SVM algorithm optimizes the structural risk by finding a global minimum, whereas

the ANN only leads to local minimum of the empirical risk [150,151]. The DPMM is

useful for non-parametric classification and converges to the stationary probability

distribution of the Markov chain in the MCMC Gibbs sampling procedure [43, 164].

As a result, the proposed learning algorithms achieve certain optimality criterion

within their application contexts.

3.3 Decision-making in CR’s

3.3.1 Centralized Policy-making with Markov States: Rein-

forcement Learning

Reinforcement learning is a technique that permits an agent to modify its behavior by

interacting with its environment [95]. This type of learning can be used by agents to

learn autonomously without supervision. In this case, the only source of knowledge is

the feedback an agent receives from its environment after executing an action. Two

main features characterize the RL: trial-and-error and delayed reward. By trial-

and-error it is assumed that an agent does not have any prior knowledge about the
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environment, and executes actions blindly in order to explore the environment. The

delayed reward is the feedback signal that an agent receives from the environment

after executing each action. These rewards can be positive or negative quantities,

telling how good or bad an action is. The agent’s objective is to maximize these

rewards by exploiting the system.

Reinforcement learning is distinguished from supervised learning by not having

a supervisor to tell whether an action is correct or wrong. Therefore, the learning

agent only relies on its interactions with the environment and tries to learn on its

own. This makes the RL a basic algorithm for autonomous learning.

A key concept in RL is that the agent should observe the reward for each action

in each situation. By repetition, the agent attempts to learn to favor the actions

that lead to positive rewards, and avoids the actions that lead to negative rewards.

Moreover, a learning agent can use the RL to choose the actions that permit avoiding

certain bad situations. After several repetitions, the agent acquires an optimal policy

and adapts its actions and behavior to the environment.

The theory of RL has evolved along three main threads [95]. The first thread

is the learning by trial-and-error which has its roots in the psychology of animals.

This approach goes back to 1898 and has led to the revival of the RL in the early

1980’s [165]. For example, in his analysis of animal behavior, Thorndike observed

that animals tend to reselect actions that are followed by good outcomes, and they

try to avoid the actions that lead to bad outcomes [166].

The second thread originates from the problem of optimal control and its dynamic

programming-based solution. One approach to this problem was developed in the mid

1950’s by Bellman and others by extending the theory of Hamilton and Jacobi. The

dynamic programming is found to be the most efficient solution to the optimal control

problem. However it suffers from what Bellman called ”the curse of dimensionality”
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because the complexity of dynamic programming increases exponentially with the

number of state variables [95]. Also, it requires complete knowledge of the system.

The third thread that led to the RL is the temporal difference concept which was

first applied to learning problems by Samuel [167]. This idea consists of updating

an evaluation function about the environment in order to improve the total reward.

The three threads that constitute the RL were joined together in 1989 by Watkins

when he developed the Q-learning algorithm [107,168].

An RL-based cognition cycle for CR’s was defined in [132], as illustrated in Fig.

3.5. It shows the interactions between the CR and its RF environment. The learning

agent receives an observation ot of the state st at time instant t. The observation is

accompanied by a delayed reward rt(st−1, at−1) representing the reward received at

time t resulting from taking action at−1 in state st−1 at time t−1. The learning agent

uses the observation ot and the delayed reward rt(st−1, at−1) to compute the action

at that should be taken at time t. The action at results in a state transition from st

to st+1 and a delayed reward rt+1(st, at). It should be noted that here the learning

agent is not passive and does not only observe the outcomes from the environment,

but also affects the state of the system via its actions such that it might be able to

drive the environment to a desired state that brings the highest reward to the agent.

An MDP Framework for RL

Reinforcement learning algorithms are applied under the assumption that the agent-

environment interaction forms an MDP. An MDP is characterized by the following

elements [102]:

• A set of decision epochs T including the point of times at which decisions are

made. The time interval between decision epoch t ∈ T and decision epoch

t+ 1 ∈ T is denoted as period t.
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Figure 3.5: The RL cycle: At the beginning of each learning cycle, the agent receives
a full or partial observation of the current state, as well as the accrued reward. By
using the state observation and the reward value, the agent updates its policy (e.g.
updating the Q-values) during the learning stage. Finally, during the decision stage,
the agent selects a certain action according to the updated policy.

• A finite set S of states for the agent (i.e. secondary user).

• A finite set A of actions that are available to the agent. In particular, in each

state s ∈ S, a subset As ⊆ A might be available.

• A non-negative function pt(s
′|s, a) denoting the probability that the system is

in state s′ at time epoch t+ 1, when the decision-maker chooses action a ∈ A
in state s ∈ S at time t. Note that, the subscript t might be dropped from

pt(s
′|s, a) if the system is stationary.

• A real-valued function rMDP
t (s, a) defined for state s ∈ S and action a ∈ A to

denote the value at time t of the reward received in period t [102]. Note that,

in RL literature, the reward function is usually defined as the delayed reward

rt+1(s, a) that is obtained at time epoch t + 1 after taking action a in state s
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at time t [95].

At each time epoch t, the agent observes the current state s and chooses an

action a. An optimum policy maximizes the total expected rewards, which is usually

discounted by a discount factor γ ∈ [0, 1) in case of an infinite time horizon. Thus,

the objective is to find the optimal policy π that maximizes the expected discounted

return [95]:

R(t) =

∞
∑

k=0

γkrt+k+1(st+k, at+k) , (3.3)

where st and at are, respectively, the state and action at time t ∈ Z.

The optimal solution of an MDP can be obtained by using several methods such

as the value iteration algorithm based on dynamic programming [102]1. Given a

certain policy π, the value of state s ∈ S is defined as the expected discounted

return if the system starts in state s and follows policy π thereafter [95, 102]. This

value function can be expressed as [95]:

V π(s) = Eπ

{

∞
∑

k=0

γkrt+k+1(st+k, at+k)|st = s

}

, (3.4)

where Eπ{.} denotes the expected value given that the agent follows policy π. Sim-

ilarly, the value of taking action a in state s under a policy π is defined as the

action-value function [95]:

Qπ(s, a) = Eπ

{

∞
∑

k=0

γkrt+k+1(st+k, at+k)|st = s, at = a

}

. (3.5)

The value iteration algorithm finds an ε-optimal policy assuming stationary re-

wards and transition probabilities (i.e. rt(s, a) = r(s, a) and pt(s
′|s, a) = p(s′|s, a)).

The algorithm initializes a v0(s) for each s ∈ S arbitrarily and iteratively updates

1There are other algorithms that can be applied to find the optimal policy of an MDP
such as policy iteration and linear programming methods. Interested readers are referred
to [102] for additional information regarding these methods.
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vn(s) (where vn(s) is the estimated value of state s after the n-th iteration) for each

s ∈ S as follows [102]:

vn+1(s) = max
a∈A

{

r(s, a) + γ
∑

j∈S

p(j|s, a)vn(j)

}

. (3.6)

The algorithm stops when ‖vn+1 − vn‖ < ε1−γ
2γ

and the ε-optimal decision dǫ(s) of

each state s ∈ S is defined as:

dǫ(s) = arg max
a∈A

{

r(s, a) + γ
∑

j∈S

p(j|s, a)vn+1(j)

}

. (3.7)

Obviously, the value iteration algorithm requires explicit knowledge of the tran-

sition probability p(s′|s, a). On the other hand, an RL algorithm, referred to as

the Q-learning, was proposed by Watkins in 1989 [168] to solve the MDP problem

without knowledge of the transition probabilities and has been recently applied to

CR’s [96, 99, 133, 169]. The Q-learning algorithm is one of the important temporal

difference (TD) methods [95, 168]. It has been shown to converge to the optimal

policy when applied to single agent MDP models (i.e. centralized control) in [168]

and [95]. However, it can also generate satisfactory near-optimal solutions even for

DEC-POMDP’s, as shown in [99]. The one-step Q-learning is defined as follows:

Q(st, at)← (1− α)Q(st, at) + α
[

rt+1 (st, at) + γmax
a
Q(st+1, a)

]

. (3.8)

The learned action-value function, Q in (3.8), directly approximates the optimal

action-value function Q∗ [95]. However, it is required that all state-action pairs need

to be continuously updated in order to guarantee correct convergence to Q∗. This

can be achieved by applying an ε-greedy policy that ensures that all state-action

pairs are updated with a non-zero probability, thus leading to an optimal policy [95].

If the system is in state s ∈ S, the ε-greedy policy selects action a∗(s) such that:

a∗(s)







= arg maxa∈AQ(s, a) , with Pr = 1− ε
∼ U(A) , with Pr = ε

, (3.9)
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where U(A) is the discrete uniform probability distribution over the set of actions

A.

3.3.2 Centralized Policy-making with Non-Markov States:

Gradient-policy Search

While RL and value-iteration methods [95, 102] can lead to optimal policies for the

MDP problem, their performance in non-Markovian environments remains question-

able [139,140]. Hence, the authors in [138–140] proposed the policy-search approach

as an alternative solution method for non-Markovian learning tasks. Policy-search

algorithms directly look for optimal policies in the policy space itself, without having

to estimate the actual states of the systems [139, 140]. In particular, by adopting

policy gradient algorithms, the policy vector can be updated to reach an optimal

solution (or a local optimum) in non-Markovian environments.

The value-iteration approach has several other limitations as well: First, it is

restricted to deterministic policies. Second, any small changes in the estimated value

of an action can cause that action to be, or not to be selected [139]. This would affect

the optimality of the resulting policy since optimal actions might be eliminated due

to an underestimation of their value functions.

On the other hand, the gradient-policy approach has shown promising results, for

example, in robotics applications [170, 171]. Compared to value-iteration methods,

the gradient-policy approach requires fewer parameters in the learning process and

can be applied in model-free setups not requiring prefect knowledge of the controlled

system.

The policy-search approach can be illustrated by the following overview of policy-

gradient algorithms from [140]. We consider a class of stochastic policies that are
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parameterized by θ ∈ RK . By computing the gradient with respect to θ of the average

reward, the policy could be improved by adjusting the parameters in the gradient

direction. To be concrete, assume r(X) to be a reward function that depends on

a random variable X. Let q(θ, x) be the probability of the event {X = x}. The

gradient with respect to θ of the expected performance η(θ) = E{r(X)} can be

expressed as:

∇η(θ) = E

{

r(X)
∇q(θ, x)
q(θ, x)

}

. (3.10)

An unbiased estimate of the gradient can be obtained via simulation by generating

N independent identically distributed (i.i.d.) random variables X1, · · · , XN that are

distributed according to q(θ, x). The unbiased estimate of ∇η(θ) is thus expressed

as:

∇̂η(θ) =
1

N

N
∑

i=1

r(Xi)
∇q(θ,Xi)

q(θ,Xi)
. (3.11)

By the law of large numbers, ∇̂η(θ) → ∇η(θ) with probability one. Note that

the quantity ∇q(θ,Xi)
q(θ,Xi)

is referred to as the likelihood ratio or the score function [140].

By having an estimate of the reward gradient, the policy parameter θ ∈ R
K can be

updated by following the gradient direction, such that:

θk+1 ← θk + αk∇η(θ) , (3.12)

for some step size αk > 0.

Authors in [170, 171] identify two major steps when performing policy gradient

methods:

1. A policy evaluation step in which an estimate of the gradient ∇η(θ) of the

expected return η(θ) is obtained, given a certain policy πθ.
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2. A policy improvement step which updates the policy parameter θ through

steepest gradient ascent θk+1 = θk + αk∇η(θ).

Note that, estimating the gradient ∇η(θ) is not straight-forward, especially in

the absence of simulators that generate the Xi’s. To resolve this problem, special

algorithms can be designed to obtain reasonable approximations of the gradient.

Indeed, several approaches have been proposed to estimate the gradient policy vector,

mainly in robotics applications [170, 171]. Three different approaches have been

considered in [171] for policy gradient estimation:

1. Finite difference (FD) methods.

2. Vanilla policy gradient (VPG) methods.

3. Natural policy gradient (NG) methods.

Finite difference methods, originally used in stochastic simulations literature, are

among the oldest policy gradient approaches. The idea is based on changing the

current policy parameter θk by small perturbations δθi and computing δηi = η(θk +

δθi)− η(θk). The policy gradient ∇η(θ) can be thus estimated as:

gFD =
(

∆ΘT ∆Θ
)−1

∆Θ∆η , (3.13)

where ∆Θ = [δθ1, · · · , δθI ]
T , ∆η = [δη1, · · · , δηI ]

T and I is the number of sam-

ples [170,171]. Advantages of this approach is that it is straightforward to implement

and does not introduce significant noise to the system during exploration. However,

the gradient estimate can be very sensitive to perturbations (i.e. δθi) which may

lead to bad results [171].

Instead of perturbing the parameter θk of a deterministic policy u = π(x) (with

u being the action and x being the state), the VPG approach assumes a stochas-

tic policy u ∼ π(u|x) and obtains an unbiased gradient estimate [171]. However,
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in using the VPG method, the variance of the gradient estimate depends on the

squared average magnitude of the reward, which can be very large. In addition, the

convergence of the VPG to the optimal solution can be very slow, even with an opti-

mal baseline [171]. The NG approach which leads to fast policy gradient algorithms

can alleviate this problem. Natural gradient approaches use the Fisher information

F (θ) to characterize the information about the policy parameters θ that is contained

in the observed path τ [171]. A path (or a trajectory) τ = [x0:H , u0:H ] is defined

as the sequence of states and actions, where H denotes the horizon which can be

infinite [170]. Thus, the Fisher information F (θ) can be expressed as:

F (θ) = E
{

∇θ log p(τ |θ)∇θ log p(τ |θ)T
}

, (3.14)

where p(τ |θ) is the probability of trajectory τ , given certain policy parameter θ. For

a given policy change δθ, there is an information loss of lθ(δθ) ≈ δθTF (θ)δθ, which

can also be seen as the change in path distribution p(τ |θ). By searching for the policy

change δθ that maximizes the expected return η(θ + δθ) for a constant information

loss lθ(δθ) ≈ ε, the algorithms searches for the highest return value on an ellipse

around the current parameter θ and then goes in the direction of the highest values.

More formally, the direction of the steepest ascent on the ellipse around θ can be

expressed as [171]:

δθ = arg max
δθ s.t. lθ(δθ)=ε

δθT∇θη(θ) = F−1(θ)∇θη(θ) . (3.15)

This algorithm is further explained in [171] and can be easily implemented based on

the Natural Actor-Critic algorithms [171].

By comparing the above three approaches, the authors in [171] showed that NG

and VPG methods are considerably faster and result in better performance, compared

to FD. However, FD has the advantage of being simpler and applicable in more

general situations.
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3.3.3 Decentralized Policy-making: Game Theory

Game theory [172] presents a suitable platform for modeling rational behavior among

CR’s in CRN’s. There is a rich literature on game theoretic techniques in CR, as

can be found in [173–183]. Game theory [172] is a mathematical tool that attempts

to model the behavior of rational entities in an environment of conflict. This branch

of mathematics has primarily been popular in economics, and has later found its

way into biology, political science, engineering and philosophy [163]. In wireless

communications, game theory has been applied to data communication networking,

in particular, to model and analyze routing and resource allocation in competitive

environments [184].

A game model consists of several rational entities that are denoted as the players.

Assuming a game model G = (N , (Ai)i∈N , (Ui)i∈N ), where N = {1, · · · , N} denotes

the set of N players and each player i ∈ N has a set Ai of available actions and

a utility function Ui. Let A = A1 × · · · × AN be the set of strategy profiles of all

players. In general, the utility function of an individual player i ∈ N depends on the

actions taken by all the players involved in the game and is denoted as Ui(ai, a−i),

where ai ∈ Ai is an action (or strategy) of player i and a−i ∈ A−i is a strategy profile

of all players except player i. Each player selects its strategy in order to maximize

its utility function. A Nash equilibrium of a game is defined as a point at which

the utility function of each player does not increase if the player deviates from that

point, given that all the other players’ actions are fixed. Formally, a strategy profile

(a∗1, · · · , a∗N) ∈ A is a Nash equilibrium if [161]:

Ui(a
∗
i , a−i) ≥ Ui(a

′
i, a−i), ∀i ∈ N , ∀a′i ∈ Ai . (3.16)

A key advantage of applying game theoretic solutions to CR protocols is in re-

ducing the complexity of adaptation algorithms in large cognitive networks. While

optimal centralized control can be computationally prohibitive in most CRN’s, due
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to communication overhead and algorithm complexity, game theory presents a dis-

tributed platform to handle such situations [94]. Another justification for applying

game theoretic approaches to CR’s is the assumed cognition in the CR behavior,

which induces rationality among CR’s, similar to the players in a game.

Game Theoretic Approaches in Wireless Communications

There are two major game theoretic approaches that can be used to model the

behavior of nodes in a wireless medium: Cooperative and non-cooperative games. In

a non-cooperative game, the players make rational decisions considering only their

individual payoff. In a cooperative game, however, players are grouped together and

establish an enforceable agreement in their group [163].

A non-cooperative game can be classified as either a complete or an incomplete

information game. In a complete information game, each player can observe the

information of other players such as their payoffs and their strategies. On the other

hand, in an incomplete information game, this information is not available to other

players. A game with incomplete information can be modeled as a Bayesian game in

which the game outcomes can be estimated based on Bayesian analysis. A Bayesian

Nash equilibrium is defined for the Bayesian game, similar to the Nash equilibrium

in the complete information game [163].

In addition, a game can also be classified as either static or dynamic. In a static

game, each player takes its actions without knowledge of the strategies taken by the

other players. This is denoted as a one-shot game which ends when actions of all

players are taken and payoffs are received. In a dynamic game, however, a player

selects an action in the current stage based on the knowledge of the actions taken

by the other players in the current or previous stages. A dynamic game is also

called a sequential game since it consists of a sequence of repeated static games.

The common equilibrium solution in dynamic games is the subgame perfect Nash
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equilibrium which represents a Nash equilibrium of every subgame in the original

game [163].

Applications of Game Theory to CR’s

Several types of games have been adapted to model different situations in CRN’s [94].

For example, supermodular games (the games having the following important and

useful property: there exists at least one pure strategy Nash equilibrium) have been

used for distributed power control in [185, 186] and for rate adaptation in [187].

Repeated games were applied for DSA by multiple secondary users that share the

same spectrum hole in [188]. In this context, repeated games are useful in building

reputations and applying punishments in order to reinforce a certain desired outcome.

The Stackelberg game model can be used as a model for implementing CR behavior

in cooperative spectrum leasing where the primary users act as the game-leaders and

secondary cognitive users as the followers [189].

Auctions are one of the most popular methods used for selling a variety of items,

ranging from antiques to wireless spectrum. In auction games the players are the

buyers who must select the appropriate bidding strategy in order to maximize their

perceived utility (i.e., the value of the acquired items minus the payment to the seller).

The concept of auction games has successfully been applied to cooperative dynamic

spectrum leasing (DSL) in [27, 190], as well as to spectrum allocation problems in

[191]. The basics of the auction games and the open challenges of applying auction

games to the field of spectrum management are discussed in [192].

Stochastic games (or Markov games) can be used to model the greedy selfish

behavior of CR’s in a CRN, where CR’s try to learn their best response and improve

their strategies over time [193]. In the context of CR’s, stochastic games are dynamic,

competitive games with probabilistic actions played by secondary spectrum users.

67



Chapter 3. Machine Learning in CR’s

The game is played in a sequence of stages. At the beginning of each stage, the game

is in a certain state. The secondary users choose their actions, and each secondary

user receives a reward that depends on both its current state and its selected actions.

The game then moves to the next stage having a new state with a certain probability,

which depends on the previous state as well as the actions selected by the secondary

users. The process continues for a finite or infinite number of stages. The stochastic

games are generalizations of repeated games that have only a single state.

Learning in Game Theoretic Models

There are several learning algorithms that have been proposed to estimate unknown

parameters in a game model (e.g. other players’ strategies, environment states,

etc.). In particular, no-regret learning allows initially uninformed players to acquire

knowledge about their environment state in a repeated game [160]. This algorithm

does not require prior knowledge of the number of players nor the strategies of

other players. Instead, each player will learn a better strategy based on the rewards

obtained from playing each of its strategies [160].

The concept of regret is related to the benefit a player feels after taking a particu-

lar action, compared to other possible actions. This can be computed as the average

reward the player gets from a particular action, averaged over all other possible ac-

tions that could be taken instead of that particular action. Actions resulting in lower

regret are updated with higher weights and are thus selected more frequently [160].

In general, no-regret learning algorithms help players to choose their policies when

they do not know the other players’ actions. Furthermore, no-regret learning can

adapt to a dynamic environment with little system overhead [160].

No-regret learning was applied in [160] to allow a CR to update both its trans-

mission power and frequencies simultaneously. In [162], it was used to detect ma-
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licious nodes in spectrum sensing whereas in [161] no-regret learning was used to

achieve a correlated equilibrium in OSA for CR’s. Assuming the game model G =

(N , (Ai)i∈N , (Ui)i∈N ) defined above, in a correlated equilibrium, a strategy profile

(a1, · · · , aN) ∈ A is chosen randomly according to a certain probability distribution

p [161]. A probability distribution p is a correlated strategy, if and only if, for all

i ∈ N , ai ∈ Ai, a−i ∈ A−i [161]:

∑

a−i∈A−i

p(ai, a−i) [Ui(a
′
i, a−i)− Ui(ai, a−i)] ≤ 0, ∀a′i ∈ Ai . (3.17)

Note that, every Nash equilibrium is a correlated equilibrium and Nash equilibria

correspond to the special case where p(ai, a−i) is a product of each individual player’s

probability for different actions, i.e. the play of the different players is independent

[161]. Compared to the non-cooperative Nash equilibrium, the correlated equilibrium

in [161] was shown to achieve better performance and fairness.

Recently, [194] proposed a game-theoretic stochastic learning solution for OSA

when the channel availability statistics and the number of secondary users are un-

known a priori. This model attempts to resolve non-feasible OSA solution which

requires prior knowledge of the environment and the actions taken by the other

users. By applying the stochastic learning solution in [194], the communication

overhead among the CR users is reduced. Furthermore, the model in [194] provides

an alternative solution to OSA schemes proposed in [152, 154] that do not consider

the interactions among multiple secondary users in a POMDP framework [194].

Thus, learning in a game theoretic framework can help CR’s to adapt to en-

vironment variations given a certain uncertainty about the other users’ strategies.

Therefore, it provides a potential solution for multi-agent learning problems under

partial observability assumptions.
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3.3.4 Decision Rules under Uncertainty: Threshold-learning

A CR may be implemented on a mobile device that changes location over time and

switches transmissions among several channels. This mobility and multi-band/multi-

channels operability may pose a major challenge for CR’s in adapting to their RF

environments. A CR may encounter different noise or interference levels when switch-

ing among different bands or when moving from one place to another. Hence, the

operating parameters (e.g. test thresholds and sampling rate) of CR’s need to be

adapted with respect to each particular situation. Moreover, CR’s may be operating

in unknown RF environments and may not have perfect knowledge of the character-

istics of the other existing primary or secondary signals, requiring special learning

algorithms to allow the CR to explore and adapt to its surrounding environment. In

this context, special types of learning can be applied to directly learn the optimal

values of certain design and operation parameters.

Threshold-learning presents a technique that permits such dynamic adaptation

of operating parameters to satisfy the performance requirements, while continuously

learning from the past experience. By assessing the effect of previous parameter

values on the system performance, the learning algorithm optimizes the parameters

values to ensure a desired performance. For example, in considering energy detection,

after measuring the energy levels at each frequency, a CR decides on the occupancy

of a certain frequency band by comparing the measured energy levels to a certain

threshold. The threshold levels are usually designed based on NP tests in order to

maximize the detection probability of primary signals, while satisfying a constraint

on the false alarm. However, in such tests, the optimal threshold depends on the noise

level. An erroneous estimation of the noise level might cause sub-optimal behavior

and violation of the operation constraints (for example, exceeding a tolerable collision

probability with primary users). In this case, and in the absence of perfect knowledge

about the noise levels, threshold-learning algorithms can be devised to learn the
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optimal threshold values. Given each choice of a threshold, the resulting false alarm

rate determines how the test threshold should be regulated to achieve a desired false

alarm probability. An example of application of threshold learning can be found

in [195] where a threshold learning algorithm was derived for optimizing spectrum

sensing in CR’s. The resulting algorithm was shown to converge to the optimal

threshold that satisfies a given false alarm probability.

3.4 Feature Classification in CR’s

3.4.1 Non-parametric Unsupervised Classification:

The DPMM

A major challenge an autonomous CR can face is the lack of knowledge about the sur-

rounding RF environment, in particular, when operating in the presence of unknown

primary signals [1]. Even in such situations, a CR is expected to be able to adapt to

its environment while satisfying certain requirements. For example, in DSA, a CR

must not exceed a certain collision probability with primary users. For this reason,

a CR should be equipped with the ability to autonomously explore its surrounding

environment and to make decisions about the primary activity based on the observed

data. In particular, a CR must be able to extract knowledge concerning the statis-

tics of the primary signals based on measurements [1, 41]. This makes unsupervised

learning an appealing approach for CR’s in this context. In the following, we may

explore a Dirichlet process prior based [196, 197] technique as a framework for such

non-parametric learning and point out its potentials and limitations. The Dirichlet

process prior based techniques are considered as unsupervised learning methods since

they make few assumptions about the distribution from which the data is drawn [43],

as can been seen in the following discussion.
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A Dirichlet process DP (α0, G0) is defined to be the distribution of a random prob-

ability measure G over a measurable space (Θ,B), such that, for any finite measurable

partition (A1, · · · , Ar) of Θ, the random vector (G(A1), · · · , G(Ar)) is distributed as a

finite dimensional Dirichlet distribution with parameters (α0G0(A1), · · · , α0G0(Ar))

such that:

(G(A1), · · · , G(Ar)) ∼ Dir(α0G0(A1), · · · , α0G0(Ar)) , (3.18)

where α0 > 0. A vector (X1, · · · , Xn) ∼ Dir(a1, · · · , an) is said to be distributed

according to a Dirichlet distribution with parameters (a1, · · · , an) if:

f (x1, · · · , xn|a1, · · · , an) =
Γ (

∑n
i=1 ai)

∏n
i=1 Γ(ai)

n
∏

i=1

xai−1
i , (3.19)

subject to
∑n

i=1 xi = 1, with xi > 0, ai > 0, for all i = 1, · · · , n.

We denote G ∼ DP (α0, G0) to represent the probability measure G that is drawn

from the Dirichlet process DP (α0, G0). In other words, G is a random probability

measure whose distribution is given by the Dirichlet process DP (α0, G0) [43]. That

is, the realizations G of a Dirichlet process are random probability distributions, in

contrast with random variables or random processes that are usually assumed in

probabilistic models.

Construction of the Dirichlet Process

Teh [43] describes several ways of constructing the Dirichlet process. A first method

is a direct approach that constructs the random probability distribution G based on

the stick-breaking method. The stick-breaking construction of G can be summarized

as follows [43]:

1. Generate independent i.i.d. sequences {π′
k}∞k=1 and {φk}∞k=1 such that







π′
k|α0, G0 ∼ Beta(1, α0)

φk|α0, G0 ∼ G0

, (3.20)
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Figure 3.6: One realization of the Dirichlet process.

where Beta(a, b) is the beta distribution whose probability density function

(pdf) is given by f(x, a, b) = xa−1(1−x)b−1

∫ 1
0

ua−1(1−u)b−1du
.

2. Define πk = π′
k

∏k−1
l=1 (1 − π′

l). We can write π = (π1, π2, · · · ) ∼ GEM(α0),

where GEM stands for Griffiths, Engen and McCloskey [43]. The GEM(α)

process generates the vector π as described above, given a parameter α0 in

(3.20).

3. Define G =
∑∞

k=1 πkδφk , where δφ is a probability measure concentrated at φ

(and
∑∞

k=1 πk = 1).

In the above construction G is a random probability measure distributed accord-

ing to DP (α0, G0). The randomness in G stems from the random nature of both the

weights πk and the weights positions φk. A sample distribution G of a Dirichlet pro-

cess is illustrated in Fig. 3.6, using the steps described above in the stick-breaking

method. Since G has an infinite discrete support (i.e. {φk}∞k=1), this makes it a

suitable candidate for non-parametric Bayesian classification problems in which the

number of clusters is unknown a priori (i.e. allowing for infinite number of clusters),
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with the infinite discrete support (i.e. {φk}∞k=1 being the set of clusters. However,

due to the infinite sum in G, it may not be practical to construct G directly by using

this approach in many applications. An alternative approach to construct G is by us-

ing either the Polya urn model [197] or the Chinese restaurant process (CRP) [198].

The CRP is a discrete-time stochastic process. A typical example of this process

can be described by a Chinese restaurant with infinitely many tables and each table

(cluster) having infinite capacity. Each customer (feature point) that arrives at the

restaurant (RF spectrum) will choose a table with a probability proportional to the

number of customers on that table. It may also choose a new table with a certain

fixed probability.

A second approach to constructing a Dirichlet process does not define G explic-

itly. Instead, it characterizes the distribution of the drawings θ of G. Note that

G is discrete with probability 1. For example, the Polya urn model [197] does not

construct G directly, but it characterizes the draws from G. Let θ1, θ2, · · · be i.i.d.

random variables distributed according to G. These random variables are indepen-

dent, given G. However, if G is integrated out, θ1, θ2, · · · are no more conditionally

independent and they can be characterized as:

θi|{θj}i−1
j=1, α0, G0 ∼

K
∑

k=1

mk

i− 1 + α0
δφk +

α0

i− 1 + α0
G0 , (3.21)

where {φk}Kk=1 are the K distinct values of θi’s and mk is the number of values of

θi that are equal to φk. Note that, this conditional distribution is not necessarily

discrete since G0 might be a continuous distribution (in contrast with G which is

discrete with probability 1). The θi’s that are drawn from G exhibit a clustering

behavior since a certain value of θi is most likely to reoccur with a nonnegative prob-

ability (due to the point mass functions in the conditional distribution). Moreover,

the number of distinct θi values is infinite, in general, since there is a nonnegative

probability that the new θi value is distinct from the previous θ1, · · · , θi−1. This con-

forms with the definition of G as a probability mass function (pmf) over an infinite
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discrete set. Since θi’s are distributed according to G, given G, we denote:

θi|G ∼ G . (3.22)

Dirichlet Process Mixture Model

The Dirichlet process makes a perfect candidate for non-parametric classification

problems through the DPMM. The DPMM imposes a non-parametric prior on the

parameters of the mixture model [43]. The DPMM can be defined as follows:


















G ∼ DP (α0, G0)

θi|G ∼ G

yi|θi ∼ fθi(yi)

, (3.23)

where the likelihood function fθ(yi) , f(yi|θi = θ), with θi being the parameter of

yi. In (3.23), G is drawn from a non-parametric set of distributions and is discrete

with probability 1 [43]. Given a certain realization G, parameters θi’s can be drawn

from G, forming a set of mixture components for the DPMM. Feature vectors yi can

thus be drawn from the distribution fθi(yi).

DPMM-based Classification using Gibbs Sampling

The problem of DPMM-based classification is to estimate the mixture component θi

for each feature vector yi, for all i ∈ {1, · · · , N}. In particular, we are interested in

finding the maximum a posteriori probability (MAP) estimates of θi (i = 1, · · · , N),

given the feature vectors y1:N , {y1, · · · ,yN}. This can be obtained using MCMC

methods, in particular, the Gibbs sampling to draw samples from the joint poste-

rior distribution of (θ1, · · · , θN) [42, 85]. The Gibbs sampling method samples each

parameter θi, given the other parameters {θj}j 6=i. Hence, it can be efficiently im-

plemented with the DPMM framework in which a closed-form expression of the

conditional distribution of θi|{θj}j 6=i can be obtained.
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θi|{θj}j 6=i,y1:N







= θj with prob. qj =
fθj (yi)

α0f(yi)+
∑N
j=1,j 6=i fθj (yi)

∼ f(θi|yi) with prob. q0 = α0f(yi)

α0f(yi)+
∑N
j=1,j 6=i fθj (yi)

. (3.24)

However, it is hard to find analytical MAP estimates of θi’s since the joint dis-

tribution of (θ1, · · · , θN), given y1:N , is unknown. As an alternative, we may use

Monte Carlo methods to compute the MAP estimates by sampling from the poste-

rior distribution of θi’s, given y1:N [199, 200]. In particular, in situations that we

have the conditional distribution of each θi, given the other parameters {θj}j 6=i, we

can construct an MCMC algorithm based on Gibbs sampling to draw samples from

the joint posterior distribution of (θ1, · · · , θN) [201].

The Gibbs sampling algorithm starts with arbitrary estimates of θi’s and draws

samples from the conditional distribution of each parameter θi, given the other pa-

rameters {θj}j 6=i, where {θj}j 6=i take the values of their most recent estimates [201].

It can be shown that these samples converge in probability to the actual posterior

distribution of (θ1, · · · , θN ), giving an effective way to estimate θi’s [85]. However,

the Gibbs sampler usually samples the parameters θi’s sequentially, which makes the

process computationally prohibitive, especially for large N . As an alternative, we

propose in Chapter 4 simplified and sequential Gibbs sampling algorithms to improve

the convergence rate of the Gibbs sampling process, taking into consideration the

clustering behavior of the DPMM classifier.

By assuming a DPMM framework, the posterior distribution of θi|{θj}j 6=i,y1:N

can be computed as in (3.24), where f(yi) =
∫

θ
fθ(yi)G0(θ)dθ is the marginal dis-

tribution of yi, assuming a prior G0(θ), and fθ(yi) , f(yi|θi = θ), for all θ’s, where

θi stands for the parameter of the feature vector yi [164]. Note that, the required

posterior distribution f(θi|yi) can easily be obtained if θi has a conjugate prior for

the likelihood fθi(yi). In this case, G0(θi) and f(θi|yi) will belong to the same fam-
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ily of distributions. A complete framework for DPMM-based signal classification

algorithms in CR’s is discussed thoroughly in Chapter 4.

In practice, the DPMM-based Gibbs sampling process can be described as in

Algorithm 3. In this algorithm, the parameters θi’s are selected sequentially in

a Round-Robin scheme. This scheme is computationally inefficient since it keeps

revisiting all the parameters uniformly, even after certain parameters may have con-

verged. In order to improve the convergence rate of this process, we will define a

parameter selection policy that selects specific parameters to be sampled at each

iteration. This policy is described in details in Chapter 4.

Algorithm 3 Gibbs sampling for DPMM classification.

Initialize θi = yi, ∀i ∈ {1, · · · , N}.
while Convergence condition not satisfied do

for i = 1, · · · , N do

Use Gibbs sampling to obtain θi from the posterior distribution in (3.24).

end for

end while

3.4.2 Supervised Classification Methods in CR’s

Unlike the unsupervised learning techniques discussed in the previous section that

may be used in alien environments without having any prior knowledge, supervised

learning techniques can generally be used in familiar/known environments with prior

knowledge about the characteristics of the environment. In the following, we intro-

duce some of the major supervised learning techniques that have been applied to

classification tasks in CR’s.
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Artificial Neural Network

The ANN has been motivated by the recognition that human brain computes in an

entirely different way compared to the conventional digital computers [202]. A neural

network is defined to be “a massively parallel distributed processor made up of simple

processing units, which has a natural propensity for storing experiential knowledge

and making it available for use” [202]. An ANN resembles the brain in two respects

[202]: 1) Knowledge is acquired by the network from its environment through a

learning process and 2) interneuron connection strengths, known as synaptic weights,

are used to store the acquired knowledge.

Some of the most beneficial properties and capabilities of ANN’s include: 1)

Nonlinear fitness to underlying physical mechanisms, 2) adaptation ability to minor

changes in surrounding environment and 3) providing information about the con-

fidence in the decision made. However, the disadvantages of ANN’s are that they

require training under many different environment conditions and their training out-

comes may depend crucially on the choice of initial parameters.

Various applications of ANN’s to CR’s can be found in recent literature [150,203–

207]. The authors in [203], for example, proposed the use of multilayered feed-forward

neural networks (MFNN’s) as a technique to synthesize performance evaluation func-

tions in CR’s. The benefit of using MFNN’s is that they provide a general-purpose

black-box modeling of the performance as a function of the measurements collected

by the CR; furthermore, this characterization can be obtained and updated by a

CR at run-time, thus effectively achieving a certain level of learning capability. The

authors in [203] also demonstrated in several IEEE 802.11 based environments how

these modeling capabilities can be used for optimizing the configuration of a CR.

In [204], the authors proposed an ANN-based cognitive engine that learns how

environmental measurements and the status of the network affect its performance
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on different channels. In particular, an implementation of the proposed “cogni-

tive controller” for dynamic channel selection in IEEE 802.11 wireless networks was

presented. Performance evaluation carried out on an IEEE 802.11 wireless network

deployment demonstrated that the cognitive controller is able to effectively learn how

the network performance is affected by changes in the environment, and to perform

dynamic channel selection thereby providing significant throughput enhancements.

In [205], an application of a feedbackward ANN in conjunction with the cyclosta-

tionary spectrum sensing was presented to perform spectrum sensing. The results

showed that the proposed approach is able to detect the signals at considerably low

SNR values. In [150], the authors designed a channel status predictor using a MFNN

model. The authors argued that their proposed MFNN-based prediction is superior

to the hidden Markov model (HMM)-based approaches, by pointing out that the

HMM-based approaches require a huge memory space to store a large number of

past observations with high computational complexity.

In [206], the authors proposed a methodology for spectrum prediction by modeling

licensed user features as a multivariate chaotic time series, which is then input to

an ANN that predicts the evolution of RF time series to decide if the unlicensed

user can exploit the spectrum band. Experimental results showed a similar trend

between predicted and observed values. This proposed spectrum evolution prediction

method was done by exploiting the cyclostationary signal features to construct an

RF multivariate time series that contain more information than the univariate time

series, in contrast to most of the previously suggested modeling methodologies which

focused on univariate time series prediction [208].

To illustrate the operation of ANN’s in CR contexts, we present the model pro-

posed in [130] and describe the main steps in the implementation of ANN’s. In par-

ticular, [130] considers a multilayer perceptron (MLP) neural network which maps

sets of input data onto a set of appropriate outputs. An MLP consists of multi-
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ple layers of nodes in a directed graph, which is fully connected from one layer to

the next [130]. Except the input nodes, each node in the MLP is a neuron with

a nonlinear activation function that computes a weighted sum of the up-layer out-

put (denoted as the activation). An example of one of the most popular activation

functions that is used in ANN’s is the sigmoid function:

f(a) =
1

1 + e−a
. (3.25)

The ANN proposed in [130] has an input layer, output layer and multiple hidden

layers. Note that, having additional hidden layers improves the nonlinear perfor-

mance of the ANN in terms of classifying linearly non-separable data. However,

adding more hidden layers makes the network more complicated and may require

longer training time.

In the following, we consider an MLP network and let yl
j to be the output of the

j-th neuron in the l-th layer. Denote also by wl
ji the weight between the j-th neuron

in the l-th layer and the i-th neuron in the l− 1-th layer. The output yl
j is given by:

yl
j =

1

1 + e−
∑

i wljiy
l−1
i

. (3.26)

During the training, the network tries to match the target value tk to the output

ok of the k-th output neuron2. The error between the target and actual outputs is

evaluated, for example, according to the mean-squared error (MSE):

MSE =
1

K

K
∑

k=1

(tk − ok)
2 , (3.27)

where K is the number of output nodes. The update process will repeat until the

MSE is smaller than a certain threshold.

The update rule can be performed according to a delta rule which adjusts the

2Since a certain target value (i.e. a label) is required during the training process, neural
networks are considered as supervised learning algorithms.
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weights wl
ji by an amount [130]:

∆wl
ji = ηδl

jy
l−1
i , (3.28)

where η is a learning rate and δl
j is defined as:

δl
j =

{

oj(tj − oj)(1 − oj) if l is the output layer

yl
j(1− yl

j)
∑

k δ
l+1
k wl+1

kj if l is the hidden layer
.

The authors in [130] used the above described MLP neural network to implement

a learner in a cognitive engine. By assuming a WiMax configurable radio technology,

the learner is able to choose a certain modulation mode according to the SNR, such

that a certain bit-error rate (BER) will be achieved. Thus, the inputs of the neural

network consists of the code rate and SNR values and the output is the resulting SNR.

By supplying training data to the neural network, the cognitive engine is trained to

identify the BER that results from a certain choice of modulation, given a certain

SNR level. By comparing the performance of different scales of neural networks,

the simulation results in [130] showed that increasing the number of hidden layers

reduces the speed of convergence but leads to a smaller MSE. However, more training

data are required for larger number of hidden layers. Thus, given a certain set of

training data, a trade-off must be made between the speed of convergence and the

convergence accuracy of the neural network.

Support Vector Machine

The SVM, developed by Vapnik and others [209], has been used for many machine

learning tasks such as pattern recognition and object classifications. The SVM is

characterized by the absence of local minima, the sparseness of the solution and the

capacity control obtained by acting on the margin, or on other dimension independent

quantities such as the number of support vectors [209]. SVM-based techniques have
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achieved superior performances in a wide variety of real world problems due to their

generalization ability and robustness against noise and outliers [111].

The basic idea of SVM’s is to map the input vectors into a high-dimensional

feature space in which they become linearly separable. This mapping from the input

vector space to the feature space is a non-linear mapping which is achieved by using

kernel functions. Depending on the application different types of kernel functions can

be used. A common choice for classification problems is the Gaussian kernel which

is a polynomial kernel of infinite degree. In performing classification, a hyperplane

which allows for the largest generalization in this high-dimensional space is found.

This is so-called a maximal margin classifier [210]. Note that, the margin is defined

as the distance from a separating hyperplane to the closest data points. As shown in

Fig. 3.7, there could be many possible separating hyperplanes between the two classes

of data, but only one of them allows for the maximum margin. The corresponding

closest data points are named support vectors and the hyperplane allowing for the

maximum margin is called an optimal separating hyperplane. The interested reader

is referred to [78, 151, 211] for insightful discussion on SVM’s.

An SVM-based classifier was described in [151] for signal classification in CR’s.

The classifier in [151] assumed a training set {(xi, yi)}li=1 with x ∈ RN and y ∈
{−1, 1}. The objective is to find a hyperplane:

wTϕ(x) + b = 0 , (3.29)

where ϕ can be a non-linear function that maps x into a higher dimensional Hilbert

space [211], w is a weight vector and b is a scalar parameter. In general, it is not

possible to obtain an expression for the mapping function ϕ. However, this function

can be characterized by a Kernel function K(xi,xj) and, as it turns out fortunately,

the Kernel function is sufficient to optimize the parameters w and b in (3.29) [211].

The hyperplane in (3.29) is assumed to separate the data into two classes such that

the distance between the closest points of each class to the hyperplane is maximized.
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Figure 3.7: A diagram showing the basic idea of SVM: optimal separation hyperplane
(solid red line) and two margin hyperplanes (dashed lines) in a binary classification
example; Support vectors are bolded.

This can be achieved by minimizing the norm ‖w‖2 [211].

In order to solve the optimization problem, the slacks variables {ξi, i = 1, · · · , l}
are introduced and the optimization problem can be formulated as [151]:

minw,b,ξi
1
2
wTw + C

∑l
i=1 ξi (3.30)

s.t. yi

(

wTϕ(xi) + b
)

≥ 1− ξi, ∀i = 1, · · · , l (3.31)

ξi ≥ 0, ∀i = 1, · · · , l (3.32)

where C is the penalty parameter that controls the training error.

The Lagrangian of the above optimization problem can be written as:

L =
1

2
‖w‖2 + C

l
∑

i=1

ξi −
l

∑

i=1

βiξi −
l

∑

i=1

αi

[

wTϕ(xi + b)− 1 + ξi
]

, (3.33)

where αi, βi ≥ 0 are the Lagrange multipliers. By computing the derivatives with

respect to w, b and ξi, the dual representation of the optimization problem can be
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expressed as [151]:

max(α1,··· ,αl)

∑l
i=1 αi − 1

2

∑l
j=1 αiαjyiyjK(xi,xj)

s.t. 0 ≤ αi ≤ C, ∀i = 1, · · · , l
∑l

i=1 yiαi = 0

where K(xi,xj) = ϕ(xi)
Tϕ(xj) is the Kernel function.

In this case, the decision function (i.e. the learning machine [211]) is computed

as:

f(x) = sgn

{

l
∑

i=1

αiyiK(xi,x) + b

}

. (3.34)

Other applications of SVM’s to CR can be found in current literature, including

[46, 78, 111, 151, 212–217]. Most of these applications of the SVM in CR context,

however, has been for performing signal classification.

In [214], for example, an MAC protocol classification scheme was proposed to

classify contention-based and control-based MAC protocols in an unknown primary

network based on SVM’s. To perform the classification in an unknown primary

network, the mean and variance of the received power are chosen as two features

for the SVM. The SVM is embedded in a CR terminal of the secondary network.

A time division multiple access (TDMA) and a slotted Aloha network were setup

as the primary networks. Simulation results showed that TDMA and slotted Aloha

MAC protocol could be effectively classified by the CR terminal and the correct

classification rate was proportional to the transmission rate of the primary networks,

where the transmission rate for the primary networks is defined as the new packet

generating/arriving probability in each time slot. The reason for the increase in

the correct classification rate when the transmission rate increases is the following:

for slotted Aloha network, the higher transmission rate brings the higher collision
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probability, and thus the higher instantaneous received power captured by a CR

terminal; for TDMA network, however, there is no relation between transmission

rate and instantaneous captured received power. Therefore, when the transmission

rates of both primary networks increase, it makes a CR terminal easier to differentiate

TDMA and slotted Aloha.

Support vector machine classifiers can not only be a binary classifier as shown

in the previous example, but also it can be easily used as a multi-class classifiers

by treating a K-class classification problem as K two-class problems. For example,

in [215] the authors presented a study of multi-class signal classification based on

automatic modulation classification (AMC) through SVM’s. A simulated model of

an SVM signal classifier was implemented and trained to recognize seven distinct

modulation schemes; five digital (BPSK, QPSK, GMSK, 16-QAM and 64-QAM)

and two analog (FM and AM). The signals were generated using realistic carrier

frequency, sampling frequency and symbol rate values, and realistic raised-cosine and

Gaussian pulse shaping filters. The results showed that the implemented classifier

can correctly classify signals with high probabilities.

3.5 Centralized and Decentralized Learning in CR

Since noise uncertainties, shadowing, and multi-path fading effects limit the per-

formance of spectrum sensing, when the received primary SNR is too low, there

exists an SNR wall, below which reliable spectrum detection is impossible in some

cases [218,219]. If secondary users cannot detect the primary transmitter, while the

primary receiver is within the secondary users transmission range, a hidden termi-

nal problem occurs [220,221], and the primary user’s transmission will be interfered

with. By taking advantage of diversity offered by multiple independent fading chan-

nels (multiuser diversity), cooperative spectrum sensing improves the reliability of
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Reinforcement

learning (RL) 
x    Optimal solution for MDP’s 

In general, suboptimal for 

POMDP’s, DEC-MDP’s and DEC-

POMDP’s 

Non-parametric

Learning: DPMM 
 x   

Does not require prior knowledge 

about the number of mixture 

components

Requires large number of iterations, 

compared to parametric methods 

Game theory-

based Learning 
x  x  

Suitable for multi-player decision 

problems

Requires knowledge of different 

parameters (e.g. SINR, power, price 

from base stations, etc.) which is 

impractical in many situations 

Threshold

Learning 
   x 

Suitable for controlling specific 

parameters under uncertainty 

conditions 

Requires training data 
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Artificial Neural 

Network (ANN) 
 x   

Does not require prior knowledge 

of the distribution of the observed 

process

 Suffers from overfitting

 Requires data labeling 

Support Vector 

Machine (SVM) 
 x   

Has better performance for small 

training examples, compared to 

ANN 

 Requires prior knowledge of the 

distribution of the observed 

process

 Requires data labeling 

Figure 3.8: A comparison among the learning algorithms that are presented in this
survey.

spectrum sensing and the utilization of idle spectrum [158,159], as opposed to non-

cooperative spectrum sensing.

In centralized cooperative spectrum sensing [158,159], a central controller collects

local observations from multiple secondary users, decides the spectrum occupancy

by using decision fusion rules, and informs the secondary users which channels to

access. In distributed cooperative spectrum sensing [222, 223], on the other hand,

secondary users within a CRN exchange their local sensing results among themselves

without requiring a backbone or centralized infrastructure. On the other hand, in the

non-cooperative decentralized sensing framework, no communications are assumed

among the secondary users [224].
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In [144], the authors showed how various centralized and decentralized spectrum

access markets (where CR’s can compete over time for dynamically available trans-

mission opportunities) can be designed based on a stochastic game (discussed above

in Section 3.3.3) framework and solved using a learning algorithm. Their proposed

learning algorithm was to learn the following information in the stochastic game:

state transition model, state and the policy of other secondary users and the network

resource state. The proposed learning algorithm was similar to Q-learning. However,

the main difference compared to Q-learning was that it explicitly considered the im-

pact of other secondary user actions through the state classifications and transition

probability approximation. The computational complexity and performance were

also discussed in [144].

In [27], the authors proposed and analyzed both a centralized and a decentralized

decision-making architecture with RL for the secondary CRN. In this work, a new

way to encourage primary users to lease their spectrum was proposed: the secondary

users place bids indicating how much power they are willing to spend for relaying the

primary signals to their destinations. In this formulation, the primary users achieve

power savings due to asymmetric cooperation. In the centralized architecture, a

secondary system decision center (SSDC) selects a bid for each primary channel

based on optimal channel assignment for secondary users. In a decentralized CRN

architecture, an auction game-based protocol was proposed in which each secondary

user independently places bids for each primary channel and receivers of each primary

link pick the bid that will lead to the most power savings. A simple and robust

distributed RL mechanism was developed to allow the users to revise their bids and

to increase their subsequent rewards. The performance results given in [27] showed

the significant impact of RL in both improving spectrum utilization and meeting

individual secondary user performance requirements.

In general, there is always a trade-off between the centralized and decentralized
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control in radio networks. This is also true for CRN’s. While the centralized schemes

ensure efficient management of the spectrum resources, they often suffer from signal-

ing and processing overhead. On the other hand, a decentralized scheme can reduce

the complexity of the decision-making in cognitive networks. However, radios that

act according to a decentralized scheme may adopt a selfish behavior and try to

maximize their own utilities, at the expense of the sum-utility of the network (social

welfare), leading to overall network inefficiency. This problem can become particu-

larly severe when considering heterogeneous networks in which different nodes belong

to different types of systems and have different objectives (usually conflicting objec-

tives). To resolve this problem, [225] proposes a hybrid approach for heterogeneous

CRN’s where the wireless users are assisted in their decisions by the network which

broadcasts aggregated information to the users [225]. At some states of the system,

the network manager imposes its decisions on users in the network. In other states,

the mobile nodes may take autonomous actions in response to the information sent

by the network center. As a result, the model in [225] avoids having a completely

decentralized network, due to possible inefficiency of such non-cooperative networks.

Nevertheless, a large part of the decision-making is still delegated to the mobile nodes

to reduce the processing overhead at the central node.

3.6 Conclusion

In this chapter, we have characterized the learning problems in CR’s and stated

the importance of machine learning in developing real CR’s. We have presented

the state-of-the-art learning methods that have been applied to CR’s classifying

them under supervised and unsupervised learning. A discussion of some of the most

important, and commonly used, learning algorithms was provided along with their

advantages and disadvantages. We also showed some of the challenging learning
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problems encountered in CR’s and presented possible solution methods to address

them. In the following chapters, we present two machine learning frameworks for

CR’s addressing both signal classification and decision-making methods, respectively.
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Bayesian Non-Parametric

Classification using the Dirichlet

Process

4.1 Introduction

Signal classification has been identified as an important task for CR’s [42, 79, 93].

Several feature detection and signal classification methods have been proposed in the

literature. For example, [68] proposed a cyclostationarity-based feature detection and

an HMM-based signal classification for CR’s. However, this technique requires prior

training with ideal feature vectors for each signal type, which may not be possible

if the CR is operating in an unknown environment without any prior knowledge

of the existing signal types. Other classification methods have also been proposed

based on neural networks [77] and SVM’s [78], but they also required training data

to initialize the classifiers’ parameters. On the other hand, feature classification can

be performed based on parametric classification approaches such as the GMM or K-
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means algorithm that do not require training data. However, these techniques assume

a fixed number of classes, which may not be known in an alien RF environment in

which the number of active wireless systems is unknown a priori. As an alternative,

the authors in [79] proposed to use the X-means algorithm [80] for unsupervised signal

classification when the number of clusters is unknown. This approach is based on

the K-means algorithms but approximates the number of clusters X by maximizing

either the BIC or the AIC [80]. However, similarly to the K-means algorithm, the

X-means algorithm assumes spherical Gaussian data, which does not offer enough

flexibility when dealing with observations having an arbitrary noise distribution [80].

Moreover, the K-means algorithm can only converge to a local minimum of the

distortion measure and its performance heavily depends on the choice of initial center

points [80].

To resolve these drawbacks, we resort to non-parametric classification approaches.

In particular, the DPMM that assumes no prior knowledge of the number of clus-

ters [43]. Note that, the DPMM-based classifier is considered to be a Bayesian non-

parametric method in the sense of allowing the structure of the model (i.e. number

of clusters) to grow with the complexity of the data [43, 81–84]. However, the indi-

vidual observations of the DPMM can still be drawn from parametric distributions.

The DPMM-based classifier can infer the number of clusters (or mixture compo-

nents) from the data itself, making it a suitable candidate for unsupervised and

autonomous classifiers. This approach has been previously applied for galaxy clus-

tering [85], speaker diarization [86], speaker adaptation [87], image segmentation [88]

and compressive sensing [89]. In this chapter, we propose the DPMM classification

approach to infer the number and types of wireless systems that are sensed by a CR

in an unknown environment. The non-parametric nature of the DPMM allows for

an arbitrary number of clusters and helps the CR to learn and act autonomously in

any RF environment.
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Note that, most of the existing DPMM classifiers assume Gaussian observation

models, which may not accurately represent complex observations encountered in

wireless systems [40,41,43,87–89,164,226]. In this work, hence, we extend the DPMM

framework to both Gaussian and non-Gaussian observation models by allowing the

cluster parameters to be drawn from a mixture model where each mixture component

is used to parameterize a particular observation model, including both Gaussian and

non-Gaussian distributions. By applying the Gibbs sampling, we determine the

observation model that best fits each cluster, while estimating the corresponding

parameters. To the best of our knowledge, this is the first DPMM that assumes such

a framework, thus offering flexibility in handling arbitrary observation models, as

opposed to both K-means and X-means algorithms which assume spherical Gaussian

observations [80].

Most of DPMM formulations, however, require an extensive number of Gibbs

sampling iterations making them computationally prohibitive in real-time operation.

Hence, we propose a novel Gibbs sampling algorithm, referred to as the simplified

Gibbs sampler, which improves the convergence rate of the DPMM classifier. The

proposed algorithm is based on a parameter selection policy that carefully selects

specific parameters to be updated at each Gibbs sampling iteration, instead of se-

quentially or randomly selecting all parameters. Hence, the proposed algorithm is

shown to improve the efficiency of the Gibbs sampling-based DPMM classifier and

makes a suitable candidate for large-scale classification problems.

Furthermore, we propose a sequential Gibbs sampler that is suitable for real-

time operation. Given a new feature vector input, the proposed sequential Gibbs

sampler first classifies it into a certain cluster. The DPMM approach allows this to

be either one of the already existing clusters or a new cluster. In order to achieve

good performance, the sequential Gibbs sampler requires a training period, which

can be implemented using the above simplified Gibbs sampler. As a result, the
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obtained sequential Gibbs sampler ensures real-time classification, which makes it an

alternative solution to simple parametric classifiers, yet without requiring additional

information about the observation model.

The remainder of this chapter is organized as follows: In Section 4.2, we describe

the Bayesian DPMM classification method and in Section 4.3 we derive the predictive

distribution of the observed feature points. The convergence of the algorithm is

discussed in Section 4.4 and we derive the MSE of the cluster means in Section 4.5.

Simplified and sequential DPMM-based Gibbs samplers are proposed in Sections 4.6

and 4.7, respectively. Simulation results are presented in Section 4.8 and we conclude

the paper in Section 4.9.

4.2 Data Clustering based on the DPMM and the

Gibbs Sampling

Consider a sequence of observations y1:N , {yi}Ni=1, where yi , [yi,1, · · · , yi,d]
T ∈ Rd,

and assume that these observations are drawn from a mixture model. If we do not

know the number of mixture components, it is reasonable to assume a non-parametric

model, such as the DPMM which allows the number of mixture components to

increase with the complexity of the data. Thus, let us assume that the mixture

components θi are drawn from a G ∼ DP (α0, G0), for G =
∑∞

k=1 πkδφk , where φk

are the unique values of θi and πk their corresponding probabilities.

The problem is to estimate the mixture component θ̂i for each observation yi, for

all i ∈ {1, · · · , N}. In particular, we are interested in finding MAP estimates of θi

(i = 1, · · · , N), given the observations y1:N . However, it is hard to find analytical

MAP estimates of θi’s since the joint distribution of (θ1, · · · , θN ), given y1:N , is un-

known. As an alternative, we may use Monte Carlo methods to compute the MAP
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estimates by sampling from the posterior distribution of θi’s, given y1:N [199, 200].

In particular, in situations that we have the conditional distribution of each θi, given

the other parameters {θj}j 6=i, as in the DPMM formulation, we can construct an

MCMC algorithm based on Gibbs sampling to draw samples from the joint posterior

distribution of (θ1, · · · , θN) [201]. The Gibbs sampling algorithm starts with arbi-

trary estimates of θi’s and draws samples from the conditional distribution of each

parameter θi, given the other parameters {θj}j 6=i, where {θj}j 6=i take the values of

their most recent estimates [201]. It can be shown that these samples converge in

probability to the actual posterior distribution of (θ1, · · · , θN), thus leading to an

efficient method for estimating θi’s [85].

By assuming a DPMM framework, the posterior distribution of θi|{θj}j 6=i,y1:N

can be computed as [164]:

θi|{θj}j 6=i,y1:N











= θj with prob. qj =
fθj (yi)

α0f(yi)+
∑N
j=1,j 6=i fθj (yi)

∼ f(θi|yi) with prob. q0 = α0f(yi)

α0f(yi)+
∑N
j=1,j 6=i fθj (yi)

, (4.1)

where f(yi) =
∫

θ
fθ(yi)G0(θ)dθ is the marginal distribution of yi, assuming a prior

G0(θ), and fθ(yi) , f(yi|θi = θ), for all θ’s, where θi stands for the parameter of

observation yi. In other words, the assumption of an underlying DPMM for the

cluster parameters θi’s implies that θi is equal to θj with probability qj , or it is a

new value drawn according to the conditional distributions f(θi|yi) with probability

q0. Note that, the required posterior distribution f(θi|yi) can easily be obtained if

θi has a conjugate prior for the likelihood fθi(yi)
1. In this case, G0(θi) and f(θi|yi)

will belong to the same family of distributions. In particular, if both the prior dis-

tribution G0(θi) and the likelihood function fθi(yi) are Gaussian, then the posterior

1If the posterior distribution p(θ|x) is in the same family as the prior probability dis-
tribution p(θ), the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior for the likelihood. All the members of the exponential
family have conjugate priors. In particular, the normal, gamma, exponential, Wishart and
inverse-Wishart distributions have conjugate priors [227].
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distribution f(θi|yi) will also be Gaussian. Thus, most of the literature on DPMM

problems assumes conjugate priors [43,88,164]. In the following, we first present the

Gibbs sampling algorithm for the multivariate Gaussian case and then generalize the

model to a mixture of Gaussian and non-Gaussian observations.

4.2.1 DPMM-based Clustering with a Gaussian Observation

Model

A Gibbs sampling algorithm for estimating the parameters θi of a DPMM was pro-

posed in [164], which showed that the outcomes of the developed algorithm converge,

in probability, to those of the posterior distribution of (θ1, · · · , θN), given y1:N . How-

ever, [164] assumed that the prior distribution G0(θi) can be chosen as a uniform

distribution, presuming prior knowledge of the range of the observations, which, in

general, may not be available. In addition, it also assumed that the observations y1:N

are distributed according to a standard Gaussian distribution, given the parameters

θi’s. This assumption was relaxed in [85] in which a Bayesian method was proposed

to estimate both mean and variance of the Gaussian observation model from the

observations y1:N .

In this section, we follow an approach similar to [85] in developing a multi-

dimensional Bayesian non-parametric estimator for DPMM’s. In the next section,

we generalize this method to non-Gaussian observation models.

Let us assume a sequence of observations y1:N from a DPMM that are normally

distributed given the mixture component parameters θ1:N , {θi}Ni=1. We may thus

denote yi|θi ∼ N (µi,Vi), where θi = (µi,Vi) for i ∈ {1, · · · , N}. The prior distri-

bution G0(θi) can be modeled as the normal/inverse-Wishart conjugate prior such

that V−1
i ∼ W (S/2, s/2), where W (S/2, s/2) is the Wishart distribution with a pos-

itive definite scale matrix S/2 and s/2 degrees of freedom, and µi|Vi ∼ N (m, τVi),
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for some mean m and scale factor τ > 0. Note that, this is the most commonly used

conjugate prior distribution for the mean and the covariance matrix of a multivariate

Gaussian observation model2. Furthermore, a large value of τ implies a large dis-

persion among the cluster means, whereas parameter m is a prior estimate of these

means [85].

On the other hand, the parameter s reflects the confidence in the value of the

covariance matrix Vi. That is, a large value of s corresponds to the case where Vi is

believed to be approximately equal to its prior estimate S. However, a small value

of s corresponds to the case where little knowledge is available about Vi [85].

The posterior distribution f(θi|yi) is a bivariate normal/inverse-Wishart distri-

bution whose components are [85]:

V−1
i ∼ W

(

Si

2
,
1 + s

2

)

,

µi|Vi ∼ N (xi, XVi) ,

where Si = S + (yi−m)(yi−m)T

1+τ
, X = τ

1+τ
and xi = m+τyi

1+τ
. The corresponding weights

q0 and qj in (4.1) can shown to be [85]:

q0 ∝
α0c(s)

|M|1/2

(

1 +
(yi −m)TM−1(yi −m)

s

)−(1+s)/2

and

qj ∝
1

√

2|Vj|
e

−(yj−µj)
TV

−1
j

(yj−µj)

2 ,

for j ∈ {1, · · · , N}, j 6= i and subject to
∑N

j=1,j 6=i qj = 1, with M = 1+τ
s

S and

c(s) = Γ(1+s
2

)Γ( s
2
)s−1/2.

We may use the above posterior marginal distribution to perform Gibbs sampling.

The resulting number of distinct values of θ1:N (denoted by {φk}Kk=1) is then an

2Note that, families of conjugate priors are not unique. In particular, the set of all
probability distributions is always a conjugate prior.
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estimate of the number of components (or clusters) in the mixture model. Algorithm

3 summarizes this DPMM classification procedure based on the Gibbs sampling.

Upon convergence, the observations yi’s that share identical values of θi’s are assumed

to belong to the same cluster.

4.2.2 DPMM-based Clustering with a Mixture of Gaussian

and non-Gaussian Priors for θi

Most of the existing DPMM-based classification problems assume that the observa-

tions y1:N are normally distributed, given the cluster parameters θi’s [43,88,164]. In

this work, however, we relax this condition to allow yi|θi to be non-Gaussian dis-

tributed. In modifying the likelihood fθi(yi), however, we also need to adapt the

prior distribution of θi accordingly so that it is a conjugate prior for the assumed

likelihood. This is necessary since if we were to loose the conjugate property of

the prior, a closed-form expression for the posterior distribution of θi, as in (4.1),

may not be possible. For example, the Gaussian prior is conjugate for the Gaussian

likelihood. However, if we were to use a different likelihood function, such as the

log-normal distribution, the Gaussian prior is no more conjugate for this particular

likelihood. In this case, a possible conjugate prior would be the Gamma distribu-

tion [228]. Thus, modifying the likelihood fθi(yi) should be done in conjunction with

adapting the prior distribution of θi, accordingly.

Hence, we allow the likelihood function fθi(yi) to belong to one of the L differ-

ent distributions (e.g. Gaussian, or Gamma or log-normal, etc.). The parameter θi

denotes the distribution parameter and we let Zi ∈ {1, · · · , L} to denote the distri-

bution index, which specifies the type of the distribution fθi(yi). Clearly, θi can be

modeled as a mixture model of L components where each component is a random

parameter drawn from a certain set Sl, for l = 1, · · · , L. The set Sl contains all pos-
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sible parameters of the l-th distribution model. By following a Bayesian approach,

we can estimate the parameters θi’s, given the observations yi’s, by using (4.1).

We denote a discrete prior distribution for Zi such that P{Zi = l} , κl, for

l = 1, · · · , L. Given a certain observation model Zi = l for the observation yi, we

denote the conditional prior distribution of θi as θi|{Zi = l} ∼ G
(l)
0 (θi), where θi ∈ Sl.

We define f
(l)
θ (yi) , f(yi|θi = θ, Zi = l), for all θ ∈ Sl, to be the likelihood

function of the observation yi, given that Zi = l. Thus, we can write yi|{θi, Zi} ∼
f

(1)
θi

(yi)I{Zi=1} + · · · + f
(L)
θi

(yi)I{Zi=L}, where the indicator function IA is defined

as IA = 1 if the event A is true, and 0 otherwise. Note that, the distribution of

yi|{θi, Zi} is defined for θi ∈ SZi such that θi is a valid parameter for the Zi-th

distribution model.

Under the above formulation, the posterior distribution of the parameter θi, given

the observation yi, is defined over the set S ,
⋃L

l=1 Sl such that:

f(θi|yi) =
L

∑

l=1

f(θi, Zi = l|yi)

=
L

∑

l=1

f(θi|yi, Zi = l)P{Zi = l|yi}

=

L
∑

l=1

κ̂l,if(θi|yi, Zi = l) , (4.2)
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where

κ̂l,i , P{Zi = l|yi}

=
P{Zi = l}f(yi|Zi = l)

∑L
l′=1 P{Zi = l′}f(yi|Zi = l′)

=
κlf(yi|Zi = l)

∑L
l′=1 κl′f(yi|Zi = l′)

=
κl

∫

θ∈Sl
f

(l)
θ (yi)G

(l)
0 (θ)dθ

∑L
l′=1 κl′

∫

θ∈Sl′
f

(l′)
θ (yi)G

(l′)
0 (θ)dθ

, (4.3)

and f(θi|yi, Zi = l) = 0 if θi /∈ Sl. In general, if a closed-form expression can not be

obtained for (4.3), κ̂l,i can be evaluated numerically.

The expression in (4.2) implies that θi can be sampled from the posterior dis-

tribution f (θi|yi, Zi = l) with a probability κ̂l,i, for l = 1, · · · , L. In other words,

given an observation yi, the distribution index Zi is first sampled from the discrete

set {1, · · · , L}, with corresponding probabilities {κ̂l,i}Ll=1. Given the sampled value

of Zi, θi can be sampled from SZi using the posterior distribution f(θi|yi, Zi). Fur-

thermore, if f(θi|yi, Zi = l) and G
(l)
0 (θi) are conjugate for the likelihood f

(l)
θi

(yi),

∀l ∈ {1, · · · , L}, then the posterior in (4.2) can be expressed in closed-form. If not,

the posterior may not be derived in closed-form. However, the approach can still be

used with numerical methods.

The marginal distribution of the observation yi can be computed as:

f(yi) =

L
∑

l=1

κl

∫

θ∈Sl

f
(l)
θ (yi)G

(l)
0 (θ)dθ . (4.4)

By substituting (4.2) and (4.4) in (4.1), we obtain the posterior distribution of

θi|{θj}j 6=i,y1:N .
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An Example (Clustering with a mixture of Gamma, log-normal and Gaussian

observation models):

For example, let us assume that yi = [yi,1, · · · , yi,d]
T ∈ Rd and L = 3, so that each

yi|θi is a mixture of Gaussian, Gamma and log-normal distributions. For analytical

tractability, the likelihood functions of the observations yi’s are selected so that

the prior and posterior distributions of θi are conjugate. We also assume that the

elements of yi’s are independent in the case of non-Gaussian observation models.

First, as in Section 4.2.1, we may define S1 , Rd × Rd×d to be the set of possi-

ble parameters of the Gaussian likelihood function corresponding to θi|{Zi = 1} ,

(µi,Vi). In this case, the likelihood f
(1)
θi

(yi), the posterior f(θi|yi, Zi = 1), the

marginal
∫

θ∈S1
f

(1)
θ (yi)G

(1)
0 (θ)dθ and the prior G

(1)
0 (θi) can be computed as described

in Section 4.2.1.

Next, we define S2 , R
d, such that θi|{Zi = 2} , a, where a = [a1, · · · , ad]

T are

the shape parameters of a Gamma distributed likelihood function (assuming fixed

rate parameters {bk}dk=1) such that:

f
(2)
θ (yi) =

d
∏

k=1

bakk
Γ(ak)

yak−1
i,k e−bkyi,k , (4.5)

where we have let θ = a, i.e. yi,k|{θi = θ, Zi = 2} ∼ Ga(ak, bk) and are independent.

Note that, (4.5) denotes the likelihood of observation yi joining a cluster with pa-

rameter θ. In this case, to preserve the conjugate property, the prior distribution of

a is assumed to be equal to:

G
(2)
0 (θi) = G

(2)
0 (a) =

d
∏

k=1

1

J(a0, b0, bk, c0)
.
aak−1

0 bc0ak
k

Γ(ak)b0
, (4.6)

where a0, b0 and c0 are the corresponding hyper-parameters and J(a0, b0, bk, c0) ,
∫ ∞

0

ax−1
0 b

c0x
k

Γ(x)b0
dx is the normalization term. The posterior distribution of θi can be
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obtained as in [228] and can be shown to be equal to:

f(θi|yi, Zi = 2) = f(a|yi) =
d

∏

k=1

1

J(a0yi,k, b0 + 1, bk, c0 + 1)
.
(a0yi,k)

ak−1 b
(c0+1)ak
k

Γ(ak)b0+1
.

(4.7)

The marginal distribution of y can thus be computed as:

f(yi|Zi = 2) =
d

∏

k=1

∫ ∞

0

bzk
Γ(z)

yz−1
i,k e−bkyi,k

az−1
0 bc0z

k

Γ(z)b0

[
∫ ∞

0

at−1
0 bc0t

k

Γ(t)b0
dt

]−1

dz . (4.8)

Note that, in practice, the above marginal distribution of y can be estimated using

numerical methods since it has to be only evaluated for a particular value of yi.

Finally, we define S3 , Rd such that θi|{Zi = 3} , ρ, where ρ = [ρ1, · · · , ρd]
T are

the log-scale parameters of a log-normal likelihood function (assuming fixed shape

parameters {ξk}dk=1) such that:

f
(3)
θ (yi) =

d
∏

k=1

1

yi,k

√

2πξ2
k

e
−

(ln yi,k−ρk)
2

2ξ2
k , (4.9)

where we let θ = ρ, i.e. yi,k|{θi = θ, Zi = 3} ∼ lnN (ρk, ξ
2
k) and are independent.

The prior distribution of ρ is assumed to be equal to:

G
(3)
0 (θi) = G

(3)
0 (ρ) =

d
∏

k=1

1
√

2πξ2
0,k

e
−

(ρk−ρ0,k)
2

2ξ2
0,k , (4.10)

i.e. ρk ∼ N
(

ρ0,k, ξ
2
0,k

)

, where ρ0,k and ξ0,k (k = 1, · · · , d) are the corresponding

hyper-parameters. The posterior distribution of θi is equal to [228]:

f(θi|yi, Zi = 3) = f(ρ|yi) =
d

∏

k=1

1√
2πψk

e
−

(ρk−νk)
2

2ψk , (4.11)

i.e. ρk|yi,k ∼ N (νk, ψk), where νk =
ξ2
0,kρ2

0,k+ξ2
k
yi,k

ξ2
0,k+ξ2

k

and ψk = ξ2
0,k + ξ2

k. The marginal

distribution of y can thus be computed as:

f(yi|Zi = 3) =

d
∏

k=1

1

2πyi,k

√

ξ2
kξ

2
0,k

∫ ∞

−∞

e
−

(ln yi,k−ρ)
2

2ξ2
k e

−
(ρ−ρ0,k)

2

2ξ2
0,k dρ . (4.12)
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which can again be estimated numerically.

Once we have the marginal posterior distributions characterized as above, we can

apply the Gibbs sampling as in Algorithm 3 to find the best observation model that

fits each cluster.

4.2.3 Prior and Posterior Distributions for α0

In [229], it was shown that the posterior distribution for α0 can be represented in

a simple conditional form, given a certain class of prior distributions for α0 [84]. In

particular, if the prior distribution of α0 follows the Gamma distribution, such that

α0 ∼ Ga(a, b) with shape a > 0 and scale b > 03, then the conditional posterior

distribution of α0 may be expressed as a mixture of two Gamma distributions, where

the mixing parameter follows a Beta distribution, such that:

α0|x,K ∼ πxGa (a +K, b− log (x))+(1− πx)Ga (a+K − 1, b− log (x)) , (4.13)

where K > 1 is the number of clusters and x|α0, K ∼ Beta (α0 + 1, N) with Beta

denoting the Beta distribution [84, 229]. The mixing parameter πx is defined such

that:

πx

1− πx
=

a+K − 1

N (b− log (x))
, (4.14)

It should be noted that α0 and K should be sampled at each iteration of the Gibbs

sampling and that the prior distribution of K is given by [229]:

P (K|α0, N) = cN(K)N !αK
0

Γ(α0)

Γ(α0 +N)
, (4.15)

where cN (K) = P (K|α0 = 1, N) can be computed using recurrence formulae for

Stirling numbers [229]. Note that this prior distribution depends only on the number

of data points N and on the concentration parameter α0.

3It is very hard to estimate a and b from real-world data. However, it is noticed in [84]
that small values of a and b lead to nearly similar values of the α probability density, thus
resulting in a lack of variability in the distribution of θi.
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Moreover, for large N , the number of clusters generated by this model can be

approximated as K = X + 1, where X is a Poisson random variable with mean

α0 (γ + log (N)) and γ ≈ 0.5772156649 being the Euler constant [229]. This approx-

imation is useful if the number of clusters K is much smaller than the number of

data points N , when N is large [229]. In wireless applications, we may assume that

different wireless systems form different clusters. The data points within each cluster

may represent the signals corresponding to that system (cluster). If the signals are

detected frequently with respect to the operation time of a certain system, a large

number of feature points will be observed in a single cluster, which makes the number

of feature points N to grow at a much faster rate compared to K, thus justifying the

use of above approximation.

On the other hand, in order to compute the posterior distribution of K, given the

observed data points, the authors in [85,229] proposed a Monte Carlo approach. This

method was based on counting the number of distinct mixture components at each

Gibbs iteration and updating the posterior of K accordingly. Hence, the empirical

posterior probability of K can be approximated by the histogram of the number of

mixture components that are encountered throughout the Gibbs sampling iterations.

4.3 Bayesian Prediction (Density Estimation) of

the Observation Variables

Upon observing and classifying N feature points, a CR may need to predict the

occurrence of a particular observation yN+1 in the next time step. The predictive

probability distribution of the random observation YN+1 can help to achieve this

goal by using the previously observed features. Such predictive distribution can be

useful in decision-making applications, allowing CR’s to coordinate their actions with
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other wireless users by predicting their behavior.

The posterior distribution of YN+1, given the observations y1:N and the cluster

parameters θ1:N , is denoted by P (YN+1|θ1:N ,y1:N). Since {Yi}Ni=1 are independent,

given θ1:N , we have P (YN+1|θ1:N ,y1:N) = P (YN+1|θ1:N ) which may be evaluated as
∫

P (YN+1|θN+1) dP (θN+1|θ1:N) [85]. According to [85], the probability distribution

of YN+1, given the components θ1:N , can be computed as:

(YN+1|θ1:N) ∼ α0

α0 +N
f(yN+1) +

1

α0 +N

N
∑

i=1

fθi (yN+1) , (4.16)

where f(yN+1) is the marginal distribution of YN+1 which was defined in (4.4). If the

observation model follows the Gaussian distribution, then the marginal distribution

f(yN+1) follows the Student-t distribution such that:

(YN+1|θ1:N) ∼ α0

α0 +N
Ts(m,M) +

1

α0 +N

N
∑

i=1

fθi (yN+1) , (4.17)

where Ts(m,M) is the Student-t distribution whose pdf is given by:

f(x) = |sM|1/2 Γ [(1 + s) /2]

Γ (s/2) Γ (1/2)

[

1 +
(x−m)T M−1 (x−m)

s

]−(1+s)/2

, (4.18)

with s degrees of freedom, mode m and scale factor M = (1+τ)S
s

.

In general, we may re-write (4.16) as:

(YN+1|θ1:N) ∼ α0

α0 +N
f(yN+1) +

N

α0 +N

K
∑

k=1

nk

N
fθk (yN+1) , (4.19)

where nk is the number of data points in cluster k ∈ {1, · · · , K}. Note that (4.19) im-

plies that the observation YN+1 is drawn from a mixture of a Student t-distribution

and an observation mixture model with mixing parameters α0

α0+N
and n

α0+N
, respec-

tively. In wireless applications, it is reasonable to assume that a detected signal may

belong to a previously detected system (cluster) with a probability proportional to

the number of signals observed from that system. However, since we assume that
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the number of systems (clusters) is unknown, a priori, a signal belonging to a new

system may arise with a probability proportional to α0. Thus, the probability dis-

tribution in (4.16) may be used to predict the occurrence of a certain signal, given

past information.

Since past information may consist of only noisy observations y1:N , in the follow-

ing, we show the predictive distribution of Yn+1, given the past observations y1:N .

Thus, we integrate out the cluster parameters θ1:N from the posterior distribution of

YN+1 since these parameters are not fully observable by the classifier. Hence, the

Bayesian prediction, or density estimation, problem can be solved by evaluating the

unconditional predictive distribution:

P (YN+1|y1:N) =

∫

P (YN+1|θ1:N) dP (θ1:N |y1:N) . (4.20)

The complexity of the above expression stems from the inherent complexity of

the posterior P (θ1:N |y1:N). However, by using the Monte Carlo approach of [85,164],

it is possible to obtain an approximation for this density function, iteratively. For a

given m and τ parameters, the estimated density function is given by [85]:

P (YN+1|y1:N) ≈ 1
Nr

∑Nr
r=1 P (YN+1|θ1:N(r)) (4.21)

=
1

Nr

∑Nr
r=1

[

α0(r)
α0(r)+N

f(yN+1) + 1
α0(r)+N

∑N
i=1 fθi(r) (yN+1)

]

(4.22)

where Nr is the number of Gibbs sampling iterations, θi(r) and α0(r) are the sampled

parameters at the r-th iteration. In particular, if the observation model is assumed

to have a Gaussian distribution, then (4.22) can be expressed as:

P (YN+1|y1:N) ≈ 1

Nr

Nr
∑

r=1

[

α0(r)

α0(r) +N
Ts(m,M) +

1

α0(r) +N

N
∑

i=1

fθi(r) (yN+1)

]

,(4.23)

where Ts(m,M) is the Student-t distribution that is defined in (4.18).
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The authors in [85] have shown the convergence of the above estimate to the

actual predictive distribution P (YN+1|y1:N) for almost all starting values. That is:

lim
Nr→∞

1

Nr

Nr
∑

r=1

P (YN+1|θ1:N(r)) = P (YN+1|y1:N) . (4.24)

The above identity shows that the predictive distribution of YN+1 is equivalent to the

average likelihood function of YN+1, averaged over the Gibbs sampling iterations.

4.4 Convergence of the DPMM-based Classifica-

tion Algorithm

The convergence of Algorithm 3 has been proven in [85, 164] based on the MCMC

approach. The convergence result can be stated as follows.

Let QI(θ1:N(0), A) be the probability that, with an initial value θ1:N (0) and after

one iteration, Algorithm 3 produces a sample value that is contained in the mea-

surable set A, i.e. QI(θ1:N(0), A) = P {θ1:N (1) ∈ A|θ1:N(0)}. QI(., .) is called the

transition kernel of the Markov chain.

Similarly, let Qs
I(θ1:N(0), A) = P {θ1:N (s) ∈ A|θ1:N(0), s} and let us denote by

P (θ1:N |y1:N) the posterior distribution of θ1:N .

Theorem 1 of [85] states that, for almost all starting values of θ1:N (0), the prob-

ability measure Qs
I (defined over the measurable space Ω ⊃ A) converges in total

variation norm to the posterior distribution as s goes to infinity. That is, for almost

all θ1:N (0), lims→∞ ‖Qs
I(θ1:N (0), .)−P (θ1:N |y1:N)‖ = 0. Of course, this convergence in

probability is a weaker type of convergence, compared to the almost sure convergence

for which P {limr→∞ ‖θ1:N (r)− θ1:N‖ > δ} = 0, for some δ > 0. In other words, The-

orem 1 of [85] does not state that θi(r) → θi for all i ∈ {1, · · · , N}. However, it

ensures that the Gibbs sampling outcomes θ1:N (r) will be distributed according to
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the actual posterior distribution of θ1:N |y1:N , for large r. This result is particularly

important to justify the use of the Gibbs sampling outcomes in constructing the

posterior distribution of θ1:N |y1:N and finding an estimation of θ1:N .

4.5 Mean-Squared Error Analysis of the Cluster

Means

In this section, we derive the MSE of the estimated cluster means and, under certain

regularity conditions, we establish an asymptotic upper bound on the MSE. Denote

by µ̂k and µk to be, respectively, the estimated and actual mean vectors of cluster

k ∈ {1, · · · , K}.

By assuming that the DPMM-based classifier results in correct clustering of the

observation points (after sufficiently many Gibbs sampling iterations), the MSE of

the estimated cluster means µk can be expressed as:

MSEk = tr

(

1

nk
Vk

)

=
1

nk
tr (Vk) , (4.25)

where Vk is the covariance matrix of the observations in cluster k, and nk is the

number of data points belonging to cluster k.

In a DPMM with N data points and with K clusters, the average MSE becomes:

MSE = E

{

1

K

K
∑

k=1

MSEk|N
}

, (4.26)

where the prior distribution of K is as given in (4.15). For large N , K can be

approximated with a Poisson random variable such that [229]:

P {K = k|α0, N} =
e−α0(γ+log N) [α0 (γ + logN)]k

k!
, for k = 0, 1, · · · . (4.27)
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Thus, we have:

MSE = E

{

1

K

K
∑

k=1

MSEk|N
}

= E

{

1

K

K
∑

k=1

1

nk
tr (Vk) |N, nk 6= 0

}

. (4.28)

Due to the complexity of the distribution of 1
nk

, it is hard to obtain a closed form

for the above MSE expression. However, if the observations are equally partitioned

among the clusters (i.e. nk = N
K

), we have:

MSE = E

{

1

K

K
∑

k=1

1

nk
tr (Vk) |N, nk 6= 0

}

= E

{

1

K

K
∑

k=1

K

N
tr (Vk) |N

}

≤ 1

N
E

{

K
∑

k=1

Vmax|N
}

=
1

N
VmaxE {K|N} (4.29)

=
1

N
Vmax (γ + logN) E {α0}

=
ab

N
Vmax (γ + logN)

= MSE ,

where V max = maxk=1,··· ,K tr(Vk) and α0 ∼ Ga(a, b). Thus, under the above assumed

conditions and for large N , an upper bound for MSE of the cluster mean estimates

can be taken to be proportional to:

MSE ∝ logN

N
.

This result shows that the MSE of the cluster mean estimates decreases with N .

However, the convergence of the Gibbs sampling algorithm becomes slower as N

increases. Thus, a tradeoff should be made between the estimation accuracy and the

convergence speed when selecting a particular data set of size N for clustering.
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The above asymptotic bound is valid for large values of N , which can be justified

in spectrum sensing applications when the sensing periods are very short, as in [40].

In this case, we consider a time window that includes a large number of sensing

intervals as the processing period. Feature points are extracted after each sensing

interval, thus leading to a large number of feature points N during this time window.

These N feature points are then used in DPMM classification, justifying the use

of large N in the above result. In addition, if the RF activities remain constant

during the time window, feature points will be observed from the same clusters over

successive sensing intervals. Then, we may assume that the total number of feature

points will be equally partitioned among all the clusters.

4.6 A Low-complexity Parameter Selection Policy

for Gibbs Sampling

After running the Gibbs sampler in Algorithm 3 for a certain number of iterations,

certain parameters are not likely to change if they were assigned to large clusters. In

other words, if feature vector yi is assigned to a certain cluster with large number of

elements, it is most likely to be re-assigned to the same cluster if its corresponding

parameter θi is sampled again using (4.1). This is a direct consequence of the un-

derlying CRP property of the DPMM in which the probability of assigning a feature

vector to a certain cluster is proportional to the number of elements in that clus-

ter [42,43]. Hence, frequently sampling the parameters θi’s that correspond to large

clusters may be unnecessary.

On the other hand, given the CRP property, a feature vector yi that is assigned to

a small cluster is more likely to join a different cluster if its parameter θi is re-sampled

using (4.1). Thus, in order to improve the convergence rate of the Gibbs sampler,
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the parameters θi’s should be selected for sampling in a non-uniform way such that

parameters belonging to small clusters are sampled more frequently, compared to

parameters belonging to large clusters.

For this, we define a parameter selection policy that selects specific parameters

θi’s to be sampled at a particular iteration. The selection process should favor

elements belonging to small clusters. Hence, the parameter selection policy is defined

using {wi}Ni=1 such that wi is the probability of selecting parameter θi to be sampled

according to (4.1). We let wi to be inversely proportional to the number of elements

of the cluster containing yi such that
∑N

i=1wi = 1. In other words, if θi = φk, then

wi ∝ 1
mk

, where mk is the number of elements of the cluster with parameter φk
4.

Since, initially, each point is assigned to a different cluster, we have mk = 1 for all

k = 1, · · · , K, implying that parameters θi’s are selected uniformly in that case. The

proposed biased selection policy is described in Algorithm 4.

After several Gibbs sampling iterations, Algorithm 4 becomes biased to selecting

parameters θi’s belonging to smaller clusters. Note that, other parameter selection

methods can be proposed based, for example, on the Boltzman distribution which

offers certain flexibility in modifying the selection policy over time. Other parameter

selection policies can be proposed to achieve specific purpose algorithms, such as the

sequential classification algorithm that is proposed in Section 4.7.

Algorithm 4 A biased selection strategy for DPMM-based Gibbs sampling.

Initialize θi = yi, ∀i ∈ {1, · · · , N}.
while Convergence condition not satisfied do

Select θi from {θi}Ni=1 with probability wi.

Update θi by sampling from the posterior distribution in (4.1).

Update the parameter selection policy {wi}Ni=1.

end while

4Recall that φk’s are the unique elements of {θi}Ni=1
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4.7 A Sequential Gibbs Sampler for DPMM Clas-

sifiers

The DPMM-based Gibbs sampler that is presented in Algorithm 3 can be considered

as an offline classifier since it assumes a fixed number N of feature vectors and

requires large number of iterations, which makes it unfeasible for real-time operation.

The biased parameter selection-based Gibbs sampler that was proposed in Section

4.6 may reduce the computational complexity of Gibbs sampling, yet it cannot be

considered as a sequential algorithm since it also assumes that the number of feature

vectors is fixed. In this section, however, we propose a sequential formulation for

DPMM classification by assuming that the number of feature vectors increases over

time.

The proposed sequential DPMM classification algorithm is defined as a recursive

process that is performed in two consecutive stages:

1. The Gibbs sampler selects a newly detected feature vector yN+1 to be classified

according to the DPMM approach. The parameter θN+1 of yN+1 is thus sam-

pled according to (4.1). Hence, the new feature vector yN+1 will be assigned to

either an existing or a new cluster, and the parameter selection policy {wi}N+1
i=1

is updated accordingly.

2. A parameter θi is selected from {θi}N+1
i=1 with a probability wi and is sampled

according to (4.1). This ensures that all parameters θi’s are being continuously

sampled as time progresses and new feature vectors are detected. Note that, if

required, the operation in this second stage may be repeated consecutively J

times in order to improve the classification results.

The sequential DPMM-based classification algorithm can be characterized as in

Algorithm 5. Note that, for efficient implementation of this algorithm, an offline
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training step is introduced before running the sequential classification method in

order to initialize the clusters and improve the real-time performance.

Algorithm 5 A sequential DPMM-based Gibbs sampling.

Training: Apply offline DPMM classification to y1:N .

Sequential classification:

for k = N + 1, · · · do

Sample θk using the posterior distribution in (4.1).

Update the parameter selection policy {wi}ki=1.

for j = 1, · · · , J do

Select θi from {θi}ki=1 with probability wi.

Update θi by sampling from the posterior distribution in (4.1).

Update the parameter selection policy {wi}ki=1.

end for

end for

4.8 Simulation Example: Signal Classification in

the ISM Band

In this section, we apply above developed non-parametric signal classification algo-

rithm based on DPMM to the problem of RF mapping. In particular, to start with,

we consider 2 IEEE 802.11.b WiFi signals (channels 2 and 13) transmitting at 2.417

and 2.472GHz, respectively. We also consider a Bluetooth signal transmitting at 2.45

GHz during the sensing process. The SNR at the receiver is 5 dB and each sensing

window is 30µs. We assume a fast-fading Rayleigh channel with normalized fading

coefficients h such that E{h2} = 1.

After each 30µs sensing time, feature points (fc, α, B) are extracted from the
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sensed signal, where fc denotes the carrier frequency (down-converted to zero-IF),

α is the cyclic frequency component corresponding to the symbol rate and B is the

estimated signal bandwidth. The carrier frequencies fc and cyclic frequencies α are

obtained by applying the energy and cyclostationary detection algorithms in [41] and

the signal bandwidth is estimated from the smoothed PSD of the received signal. In

this setup, each WiFi signal has a bandwidth of 22 MHz and the Bluetooth signal

has a bandwidth of 1 MHz. Furthermore, the Bluetooth signal has a symbol rate of

1 Mbaud and the WiFi has a chiprate of 11 Mchips/s that is manifested in the α

component of the feature points.

We perform 50 repetitions of the sensing process (over a total sensing time of

50×30µs) and obtain the feature points. We then apply our proposed DPMM-based

feature classification algorithm to classify the observed feature points. The feature

points that are marked with the same marker shape in Fig. 4.1 are assigned to the

same cluster. We show in Fig. 4.1 the results of the DPMM classification in a 3D

feature space where the two WiFi signals are estimated to have Gaussian observation

models while the Bluetooth signal is assigned a log-normal model. The classification

accuracy, denoting the percentage of feature points classified into correct clusters, is

estimated as 100% in this setup.

In the next set of simulations, we compare performance of the proposed DPMM-

based classification algorithm to that of the approach proposed in [79] based on

the K-means and X-means algorithms [80]. In the simulation setup, we consider an

additional 4-QAM digital signal transmitting at 2440 MHz. For simplicity, we limit

the feature vectors to be 2-D data (fc, B). Figures 4.2 and 4.3 show the performance

of the K-means algorithm for K = 4 with different initial cluster centroids. Figure

4.2 shows that the data are clustered perfectly for K = 4. However, in some cases,

the QAM and Bluetooth signals are merged into a single cluster, whereas each of the

WiFi clusters is split into multiple clusters, as shown in Fig. 4.3. This is because

113



Chapter 4. Bayesian Non-Parametric Classification using the Dirichlet Process

2410
2420

2430
2440

2450
2460

2470
2480

0

2

4

6

8

10

12
6

8

10

12

14

16

18

20

22

First coordinate of the feature vector

Bayesian Non−parametric classifcation with Gibbs sampling after 20000 iterations

Second coordinate
of the feature vector

T
hi

rd
 c

oo
rd

in
at

e 
of

 th
e 

fe
at

ur
e 

ve
ct

or

Log−normal likelihood
ρ

i
=[3.91, 0, 2.16]T

Bluetooth signal
at 2440MHz

IEEE 802.11b
channel 2

IEEE 802.11b
channel 13

Gaussian likelihood
µ

i
=[16.84, 11, 20.2]T 

Gaussian likelihood
µ

i
=[71.97, 11, 20.7]T 

Figure 4.1: Signal Classification of 2 WiFi and a Bluetooth signal. The feature point
is denoted by (fc, α, B), where fc is the carrier frequency, α is the cyclic frequency
component corresponding to the symbol rate and B is the estimated bandwidth.
Energy detection is applied for 30µs at an SNR of 5 dB with Rayleigh fading (fast
fading). The probability of correct classification is 100% after 20000 Gibbs sampling
iterations.

the K-means algorithm depends on the choice of initial centroid locations and it

converges to a local minimum of the distortion measure [79, 80]. Hence, the initial

centroid in Fig. 4.2 has lead to a perfect classification result. However, for a different

initial centroid, as in Fig. 4.3, the K-means lead to a poor classification performance.

Furthermore, the K-means algorithm assumes that the observation noise is circular

Gaussian with a covariance matrix that is a scaled version of the identity matrix.

Thus, the performance of K-means-based clustering deteriorates in the presence of

observation models with arbitrary noise characteristics.

Next, we apply the X-means and the proposed DPMM-based algorithms to the

same data, and we show the results in Figs. 4.4 and 4.5, respectively. The X-means
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Figure 4.2: K-means classification with K = 4 gives a classification accuracy of 100%
with arbitrary initialization of centroid locations.
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accuracy of 100%
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algorithm suffers from the same drawbacks of the K-means by not being able to

match the distributions of the observed data. In this simulation, the feature points

of WiFi channels were split into multiple clusters. On the other hand, the results

of the proposed DPMM-based classification in Fig. 4.5 show perfect clustering due

to the ability of the DPMM to estimate the noise characteristics and to infer the

number of clusters from the observed data. In this case, the classification accuracy

was estimated to be 100% with the DPMM classifier, whereas X-means achieved a

classification accuracy of only 55.88%. On the other hand, the K-means algorithm

achieved 100% accuracy if K = 4 was given as prior information, as shown in Fig.

4.2, but the performance still dropped to 79.41% depending on the initial choice of

centroid locations, as in Fig. 4.3. Clearly, the advantage of the proposed DPMM-

based method is that it does not require neither the number of clusters K = 4 nor

their centroids as prior information.

In Fig. 4.6, we plot the predictive probability distribution of future feature points.

For simplicity of representation, we again consider a 2D feature space with feature

points (fc, B) and represent the pdf of the predictive distribution in contour lines.

The result shows four main clusters corresponding to the WiFi, Bluetooth and QAM

signals where the feature points corresponding to channel 2 of the WiFi system

is estimated to have a log-normal distribution while the other feature points are

estimated to have Gaussian distributions. The obtained distribution forms an RF

mapping of the RF environment and can help CR’s to adapt their actions by using

this information (beyond the scope of this work).
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Figure 4.6: Signal Classification of 2 WiFi and a Bluetooth signal. The feature
point is denoted by (fc, B), where fc is the carrier frequency and B is the estimated
bandwidth of the signal. Energy detection is applied for 30µs at an SNR of 5 dB
with Rayleigh fading (fast fading). The probability of correct classification is 100%
after 5000 Gibbs sampling iterations.

4.8.1 Simulation Example: Performance of the Simplified

and Sequential DPMM Classifiers

In this section, we demonstrate the efficiency of the proposed simplified Gibbs sam-

pler (Algorithm 4) in improving the convergence rate of the DPMM classifier. Thus,

we consider four different QAM signals (BPSK, 4-QAM, 16-QAM and 64-QAM) that

are transmitted simultaneously at baseband-equivalent center frequencies −80, −40,

0 and 50 MHz and with respective symbol rates 2, 2, 5 and 5 MBauds. We perform

spectrum sensing for T = 50µs in each sensing interval at a sampling rate fs = 200

MHz and with smoothing window length L = 151. We extract N = 100 feature

vectors (whose components are the center frequencies, cyclostationary feature and

kurtosis feature) after 25 sensing intervals. We assume a multi-path Rayleigh fading
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Figure 4.7: DPMM classification of four different QAM signals at a received SNR =
10dB using Algorithm 4. Feature vectors assigned to the same cluster are represented
with identical markers. Classification accuracy is equal to 100%.

channel with unity paths gains and we assume a received SNR of 10 dB.

We apply DPMM-based classification using three different parameter selection

policies for Gibbs sampling: Random parameter selection, Round-Robin parameter

selection and biased parameter selection (i.e. simplified Gibbs sampler), respec-

tively. The hyper-parameters of the DPMM are selected such that: κ1 = κ2 = 0.5,

m = [0, 0, 0]T , τ = 1, s = 5, S = diag(0.1, 0.1, 1), ρ0 = [log(50), log(2), log(5)]T ,

ξ0 = [1, 1, 1]T and α0 = 1. After 20000 Gibbs sampling iterations, all of the above

parameter selection policies lead to perfect classification results, as shown in Fig.

4.7 where we represent features assigned to the same cluster using identical markers.

By computing the number of clusters K at each iteration step, we observe that each

of the parameter selection policies converges to the optimal number of clusters (i.e.

K = 4) after different numbers of iterations, as shown in Fig. 4.8. The simpli-

fied Gibbs sampler with random biased parameter selection policy converges after
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Figure 4.8: Convergence of the DPMM classifier using random uniform, Round-Robin
and random biased parameter selection policies for Gibbs sampling.

343 iterations, compared to 1665 and 3113 iterations for the Round-Robin and ran-

dom uniform selection policies, respectively. This shows that the proposed simplified

Gibbs sampler can improve the convergence rate of the traditional Gibbs sampler by

5 times, in this case. This result can be interpreted by observing that the number of

clusters stabilizes for longer durations in both random and Round-Robin selection

policies before updating the proper feature vector parameters θi’s to lead to conver-

gence. On the other hand, by biasing the selection of parameters θi’s, the proposed

simplified Gibbs sampler selects more efficiently the parameters θi’s to be updated

according to (4.1), which leads to faster convergence.

The above simplified Gibbs sampler-based DPMM classifier is also applied during

the training stage of the sequential DPMM classifier (Algorithm 5) to initialize the

clusters’ parameters. In the training stage, we consider the same observation model as

above. However, during real-time operation, we assume that the signal transmitting

at −80MHz changes its symbol rate to 5MBauds and its modulation scheme to 16-
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Figure 4.9: Sequential DPMM classification of different QAM signals at a received
SNR = 10dB using Algorithm 5. Classification accuracy is equal to 100%.

QAM, while the other signals’ parameters remain unchanged. We run the spectrum

sensing and feature extraction algorithm for 10 sensing intervals while extracting

the signals features at each sensing interval and classifying the extracted features

using the sequential DPMM algorithm. Note that, in contrast with the simplified

algorithm, the sequential algorithm classifies the detected features at the end of each

sensing interval. We show, in Fig. 4.9, the resulting feature space at the end of the

10 sensing intervals, including feature vectors that are observed during both training

and real-time stages. These results show that a new cluster has been created to

include feature points corresponding to the 16-QAM signal that is transmitting at

−80MHz. However, the other signals still correctly join the old clusters, resulting in

perfect overall classification performance.

It is also worth comparing the proposed sequential DPMM classifier to a non-

parametric unsupervised classifier referred to as the X-means algorithm [79] to iden-

tifying under what conditions and in what scenarios the proposed algorithm can be
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Figure 4.10: X-means classification of different QAM signals at a received SNR =
10dB. Classification accuracy is equal to 71%.

most advantageous. By applying the X-means algorithm to the same set of data

assumed in Fig. 4.9, we observe, in Fig. 4.10, that many feature vectors have not

been classified correctly, which resulted in a classification accuracy of only 71%. The

primary reason of the poor performance is that the X-means algorithm was not able

to estimate the number of clusters in this case. Indeed, it was estimated to be 11,

instead of 5. This is due to the underlying spherical Gaussian observation model as-

sumed by the X-means algorithm, which is not a good representation of our feature

vectors distribution [42].

Note that, in detecting and classifying signals in the presence of noise, there can be

two types of errors: 1) Feature extraction errors and 2) signal classification errors. In

our problem, the feature extraction errors are due to the generation of feature vectors

not corresponding to existing signals, which is equivalent to false alarm errors in

signal detection literature [230]. The feature extraction errors depend mainly on the

design and characteristics of the feature extraction algorithm. On the other hand,
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the classification error is defined as the misclassification rate of the detected feature

vectors, which mainly depends on the classifier design. Hence, we may define the

following types of errors to be considered for further performance evaluation:

1. Feature extraction error: Defined as the proportion of feature vectors that do

not correspond to existing signals.

2. Misclassification rate: Defined as the proportion of feature vectors that are not

classified into correct clusters. In this case, correct classification implies that

feature vectors corresponding to different signals are classified into different

clusters and erroneous features (due to false alarm) are classified into separate

clusters.

3. Overall feature extraction and signal classification error: Defined as the pro-

portion of feature vectors that do not correspond to existing signals and/or

are misclassified. This is the complementary rate of the overall classification

accuracy.

We first compute the misclassification rates of the DPMM during both training

and sequential classification stages (denoted as ”DPMM Training” and ”DPMM

Sequential” in Fig. 4.11). We also compute the overall misclassification rate of

DPMM over the whole training and sequential stages (denoted as ”Overall DPMM”

in Fig. 4.11). The training stage is performed over 25 sensing intervals, followed by

25 sensing intervals for sequential classification. During the whole time horizon, we

consider a similar setup of QAM signals as described above. The misclassification

rates of both training and sequential stages are shown in Fig. 4.11. At low SNR

values (−10dB and −5dB), the sequential misclassification rate is higher than the

training misclassification rate. However, the misclassification rate drops to 0% for

large SNR values, resulting in perfect overall DPMM classification.
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Figure 4.11: Misclassification rates of the DPMM algorithm for different SNR lev-
els. Misclassification rates of both training and sequential stages are obtained over
25 sensing intervals for each stage (denoted as ”DPMM Training” and ”DPMM Se-
quential”, respectively). The overall misclassification rate of the DPMM, including
both training and sequential stages, is denoted as ”Overall DPMM”. Four differ-
ent QAM signals are being transmitted simultaneously and are sampled at a rate
fs = 200 MHz for a duration T = 50µs in each sensing interval.

Next, we compute the feature extraction error (denoted as ”Feature Extraction”

in Fig. 4.12) as well as both DPMM and X-means misclassification rates (denoted

as ”Overall DPMM” and ”X-means”, respectively). Combined feature extraction

errors and signal classification errors are also computed for each of the DPMM and

X-means classifiers, and are denoted as ”Overall DPMM + Feature Extraction” and

”X-means + Feature Extraction” in Fig. 4.12, respectively. The results show that

the feature extraction error drops as the SNR increases. In the DPMM classification

case, Fig. 4.12 shows that the overall classification accuracy is degraded mostly due

to the high level of feature extraction errors at low SNR. However, perfect feature

extraction and DPMM classification is obtained at high SNR. In other words, as

long as the feature extraction errors are small, we may expect the performance of
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Figure 4.12: Misclassification rates of the DPMM and X-means algorithms for differ-
ent SNR levels. Overall DPMM misclassification rates are obtained over 50 sensing
intervals, including both training and sequential stages. Misclassification rates of the
X-means are also obtained over the whole 50 sensing intervals. Combined feature
extraction errors and signal classification errors are computed using DPMM and X-
means classifiers, and are denoted as ”Overall DPMM + Feature Extraction” and
”X-means + Feature Extraction”, respectively. Four different QAM signals are being
transmitted simultaneously and are sampled at a rate fs = 200 MHz for a duration
T = 50µs in each sensing interval.

the DPMM classification to be very good. On the other hand, the X-means shows

poor classification performance at low SNR. However, in contrast to the DPMM, the

X-means does not lead to perfect classification even when the SNR is high. This is

because the X-means classification algorithm leads to a significant amount of its own

errors when the features are not spherical Gaussian distributed as presumed.
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4.9 Conclusion

In this chapter, we proposed a Bayesian non-parametric signal classification method

to identify/classify active wireless systems in an unknown RF environment. This pro-

posed technique is suitable for autonomous CR’s, such as Radiobots of [1] and [60],

in performing spectrum sensing and signal classification in alien RF bands. Since

our non-parametric technique does not require any prior knowledge of the existing

signals in the sensed spectrum, it can ensure autonomous operation of CR’s. The

proposed DPMM framework extends to both Gaussian and non-Gaussian observa-

tion models and it uses the Gibbs sampling to estimate the appropriate distribution

for each cluster. We derived an upper bound for the MSE of the estimate of the

cluster means as a function of the number of feature points N . A Bayesian pre-

dictive distribution was also derived to construct an RF mapping for the on-going

RF activity. A sequential Gibbs sampler was also proposed to improve the compu-

tational efficiency of the DPMM-based classification algorithm. Simulation results

were presented to compare the performance of the proposed DPMM-based algorithm

to those of existing classifiers such as K-means and X-means. These example results

show that the new DPMM-based non-parametric classification algorithm, and its

sequential version, can be highly effective in unknown RF environments compared

to comparable algorithms such as X-means.
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Chapter 5

Distributed Reinforcement

Learning for CRN’s

5.1 Introduction

Opportunistic spectrum access [231] has been envisioned as a promising technique

to exploit the spectrum vacancies, which permits unlicensed secondary users to ac-

cess the primary channels opportunistically when the primary users who own the

spectrum rights are not transmitting. Cognitive radio devices provide a platform to

realize such OSA techniques. In general, CR’s are assumed to be able to sense and

adapt to their RF environment.

In this chapter, we consider a decentralized CRN in which each secondary user

tries to obtain, independently, the best estimate of the status of the primary channels

based on its own local information. In particular, when the primary channel states

follow a Markovian evolution, a cognitive user can utilize its history of observations

and actions in order to derive a better sensing/accessing policy. This problem can

then be formulated as a DEC-POMDP and has been discussed in several recent stud-
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ies. For example, in [152], the authors suggested a MAC protocol for decentralized

ad-hoc CRN’s by modeling the system as a POMDP that is equivalent to a MDP

with an infinite number of states. The corresponding optimal sensing policy that

maximizes the total discounted return was shown to be computationally prohibitive.

Thus, an optimal myopic policy was derived such that it maximizes the instantaneous

rewards. The myopic policy that was formulated in [152] is optimal for a single-user

setup, and is suboptimal when applied to a multiuser setting because it would lead

to collisions between secondary users when more than one user try to access the same

channel. On the other hand, in [232] the authors proposed three different sensing

policies for multiuser OSA: The first policy is based on a cooperative protocol in

which secondary users exchange their beliefs about the channel states at each time

slot. The second policy applies learning techniques to obtain an estimate of the other

users’ beliefs, and the third policy is based on a single-user approach in which the

cognitive users act non-cooperatively. We note that [232] assumes perfect sensing of

the primary channels, which we do not assume throughout this work.

In [38], a suboptimal sensing/access policy was derived for cooperative cognitive

networks since it is not easy to solve the Bellman equation that corresponds to

the formulated POMDP model. However, the assumed model did not ensure full

utilization of spectrum resources because only one primary channel was accessed

at each time instant collectively by all secondary users. This leads to low network

throughput since all the secondary users are assumed to sense the same primary

channel at a time. The main advantage of this model, however, was that it achieves

better sensing performance. The trade-off between the sensing accuracy and the

secondary throughput has been discussed recently in [233].

We believe that the solution to these issues is to make the so-called CR’s indeed

cognitive, i.e. to achieve smart performance, the CR’s should have the ability to learn

from their observed environment and the past actions. Indeed, it can be argued that
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learning from experience must be at the heart of any cognitive system. Recently,

this view is gaining importance within the CR research community as is evident

by the application of learning techniques to CR’s, as we discussed in Chapter 3.

For example, the multi-agent RL algorithm, known as Q-Learning, was applied in

[99] to achieve interference control in decentralized wireless regional area networks

(WRAN’s). In [234], the authors developed a Q-learning algorithm for an auction-

based DSA protocol, which is different from the DEC-POMDP structure of our

proposed model. To the best of our knowledge, none of the CR studies that assume

an underlying POMDP structure has used the Q-learning algorithm to solve the OSA

problem [152,232]. The literature on learning techniques to achieve CR goals is still

at an infancy, although there is a rich literature on machine learning in computer

science and classical statistical learning that provides a great starting point [95].

In this chapter, we formulate the channel sensing in decentralized cognitive net-

works as a DEC-POMDP problem. Unlike [152], our approach considers a multi-user

setting and we propose a channel sensing policy that takes into account the collisions

among secondary users. Our proposed sensing policy is based on the distributed RL.

Note that, we use the RL to derive the sensing policy rather than to obtain interfer-

ence control as in [99]. This algorithm achieves two main goals: Deriving a sensing

policy based on the history of actions and observations, and minimizing the colli-

sions between secondary users while competing for channel access opportunities. On

the other hand, we propose a channel access mechanism that limits the collisions

between primary and secondary users when secondary users have noisy observations

about the primary channels. Our channel access scheme ensures high accuracy and

robustness in controlling the collision probability with primary channels, thus guar-

anteeing the QoS requirements of primary users.

The remainder of this chapter is organized as follows: Section 5.2 defines the

system model. In sections 5.3 and 5.4, we derive both the accessing and sensing

policies for cognitive users. We show the simulation results in section 5.5. Section
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5.6 concludes the paper.

5.2 System Model

We consider a wireless network having a set of primary channels C = {1, ..., L}. The

channels’ occupancy states are assumed to be independent and following a Markovian

evolution. A set of distributed users form a secondary network that is assumed to

rely on cognitive techniques to access these primary channels when they are idle. The

set of secondary users in the system is denoted by Ks = {1, ..., Ks}. The secondary

network forms a multiple access channel in which each secondary user independently

searches for a spectrum opportunity in order to communicate with a secondary base

station, as depicted in Fig. 5.1. Every secondary user j ∈ Ks is assumed to be able

to sense only one primary channel at a time, and we assume that secondary users do

not cooperate. This is a reasonable assumption in decentralized networks in which

there is no control channels for ensuring collaboration among secondary users.

We identify the overall system made of primary channels and the Ks-secondary

users as a DEC-POMDP [103] by defining the state of the system as:

s(k) = (s1(k), ..., sL(k)) ∈ S, (5.1)

where si(k) ∈ {0, 1} represents the state of channel i ∈ C as being idle (0) or busy (1)

in time slot k, and S is the set of all possible states s(k). We define a , (a1, · · · , aKs
)

as the joint action of all secondary users (agents) and P (s, a, s′) to be the probability

of transition from state s to s′ when taking the joint action a. The transitions of

every channel’s state are independent of the other states and these transitions are

assumed to follow a Markovian evolution as mentioned above. The state transition

matrix P of the state vector s(k) is therefore P = P1 ⊗ · · · ⊗ PL, where Pi is the

state transition matrix of channel i, and ⊗ denotes the Kronecker product.
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Figure 5.1: Cognitive radio network with distributed secondary nodes

Note that, the transition probabilities P (s, a, s′) (for (s, s′) ∈ S2) are independent

of the secondary user actions since they are determined by the evolution of the pri-

mary channels states, i.e. P (s, a, s′) = P (s, s′), where P (s, s′) is obtained from the

state transition matrix P. Similarly, for an individual channel i ∈ C, the transition

probabilities Pi(l, l
′) (for (l, l′) ∈ {0, 1}2) are obtained from Pi.

The action of secondary user j ∈ Ks at time k is denoted by aj(k) ∈ C which

represents the index of the primary channel that user j ∈ Ks should sense during

time slot k. We define Yi(k, j) to be the observation of secondary j ∈ Ks on channel

i ∈ C in time slot k which is assumed to be the output of a Binary Symmetric Chan-

nel (BSC) where Pr{Yi(k, j) 6= si(k)} = νi is the crossover probability. As a result,

Yi(k, j) is a discrete random variable with distinct pmf f0 and f1 when si(k) = 0 and

si(k) = 1, respectively.

Let Yk
i (j) denotes the vector of observations up to time slot k obtained by sec-

ondary j ∈ Ks on channel i ∈ C. Let Kk
i (j) denote the time slot indices up to slot k

when channel i was sensed by secondary user j. Also, let Yk(j) = {Yk
i (j) : i ∈ C}
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Figure 5.2: Channel Access Policies

be the collection of observations up to slot k on all primary channels obtained by the

j-th secondary user.

5.3 Channel Access Mechanism

The sensing and access operations of the secondary users are scheduled as is shown

in Fig. 5.2, where we consider that a secondary user senses a primary channel during

the sensing period τ . Primary users are assumed to always start their transmission

at the beginning of a frame of duration Tf so that a primary channel will remain free

during the secondary access duration if it was free during the corresponding sensing

period.

A cognitive device that has sensed a channel can access that channel during the

remaining frame duration of Tf − τ . In order to avoid collisions among secondary

users, we assume that each secondary user generates a random backoff time before

transmitting [152]. If more than one secondary users decide to access the same

channel, the channel access will be granted to the secondary user that has the smallest

backoff time.

After sensing channel i = aj(k), secondary user j ∈ Ks decides whether to access

channel i based on its observation sequence yk
i (j) , {yi(k

′, j) : k′ ∈ Kk
i } where

yi(k
′, j) is a realization of Yi(k

′, j). In order to achieve a probability of collision be-
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low a certain bound, we may apply an NP type detector [230]. An optimal access

decision for the j-th secondary user would choose one of the two possible hypothesis

H1 = {si(k) = 0} or H0 = {si(k) = 1} in time slot k based on the whole observa-

tion sequence yk
i (j). However, implementing such an optimal detector becomes too

complicated due to the need for computing the distribution of the likelihood ratio of

Yk
i (j) which is a random sequence whose length increases linearly with time. Hence,

we simplify the detection rule by assuming that the decision to access a channel in

time slot k is based only on the current observation.

Let α be the false alarm probability such that α ≤ 0.5. The optimal NP detector

then is as randomized access decision rule δ̃i(k, j) for secondary j to access channel i

at time k. This access decision can be viewed as a Bernoulli random variable denoted

by δi(k, j) whose parameter δ̃i(k, j) is given by:

δ̃i(k, j) =







α
νi
I{yi(k,j)=0}I

(k)
i,j if α < νi

(

I{yi(k,j)=0} + α−νi
1−νi
I{yi(k,j)=1}

)

I
(k)
i,j if α ≥ νi

where I
(k)
i,j = I{aj(k)=i}, and IB = 1 if condition B is satisfied, and 0 otherwise.

Therefore, secondary user j decides to access a sensed channel i in time slot k only

if δi(k, j) = 1, which happens with probability δ̃i(k, j).

It can be observed that the collision probability on a particular channel can go

beyond the desired threshold because the accessing rule in a decentralized network

follows an OR-rule. For that reason, we will design a channel access mechanism that

guarantees a certain collision probability with the primary channels.

We define Ej,i(k) to be the event that secondary user j ∈ Ks decides to access

channel i ∈ C at time k, given that secondary user j has sensed channel i at time k.

Also, we let Ei(k) to be the event that channel i ∈ C is busy at time k. When several

secondary users sense and try to access the same primary channel i ∈ C, we define

the resulting collision probability as Pc(i) = Pr
{

⋃

j∈Zi(k)Ej,i(k)|Ei(k)
}

, where Zi(k)
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is the set of secondary users that sense channel i in time slot k.

Note that the events {Ej,i(k)|Ei(k) : j ∈ Ks} are independent because each sec-

ondary user makes its access decision independently of the other users, after having

sensed the channel i. As a result, the collision probability on channel i can be ex-

pressed as Pc(i) = 1− (1− α)Zi(k), where Zi(k) = |Zi(k)| and α = Pr {Ej,i(k)|Ei(k)}
is the false alarm probability of each secondary detector that results from claim-

ing H1 = {si(k) = 0} (or equivalently {δi(k, j) = 1}) when H0 = {si(k) = 1} is

true. Therefore, in order to ensure an overall collision probability Pc(i) = α0 in

channel i, each secondary user j ∈ Zi(k) should set its false alarm probability to

α = 1− (1− α0)
1/Zi(k).

Since each secondary user does not know the total number of users Zi(k) that are

sensing primary channel i ∈ C at a particular time k, it uses the expected value of

Zi(k) to compute its false alarm probability such that α = 1− (1− α0)
1/E{Zi(k)}. We

will compute this expected value in the followings and show, through simulations,

that the proposed access technique can guarantee an upper bound on the collision

between primary and secondary users.

5.4 Spectrum Sensing Policy for Distributed Sec-

ondary Users

We define the belief vector of channel i ∈ C as p (k, j, i) = [p0(k, j, i), p1(k, j, i)]

where pl(k, j, i) = Pr{si(k) = l|Yk−1
i (j)} which represents the probability of si(k)

being in state l ∈ {0, 1} in time slot k, given the past observations Yk−1
i (j). Let

bj(k) =
[

bj(1, k), · · · , bj(2L, k)
]

be the belief vector of the primary system according

to secondary user j, where

bj (u (s (k)) , k) =

L
∏

i=1

psi(k)(k, j, i), (5.2)
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Figure 5.3: Sensing and Updating the Beliefs

given that u(s) ∈ U =
{

1, · · · , 2L
}

is the index of state s(k) = (s1(k), · · · , sL(k)).

The belief vector bj(k) is a sufficient statistic for an optimal OSA protocol in a

single-user setup [152]. However, in our case, we consider a distributed multi-user

scenario and bj(k) is no longer a sufficient statistic for optimal decisions. But since

we are interested in applying RL techniques to solve the DEC-POMDP problem, we

may still use belief vector bj(k) to obtain a reasonably good suboptimal solution in

a distributed multi-user setting, as shown in [99]. This would simplify the problem,

yet leading to near-optimal solutions.

At each time slot, each secondary user updates its belief vector about the states

of the channels in the next slot. Suppose secondary user j senses channel i = aj(k)

in time slot k and observes Yi(k, j). Then it updates its belief about the state of

channel i in time k + 1 using Bayes’ formula as follows:

pm(k + 1, j, i) =

∑1
l=0 Pi(l,m)fl(Yi(k, j))pl(k, j, i)
∑1

l=0 fl(Yi(k, j))pl(k, j, i)
, (5.3)

where m ∈ {0, 1}. For the unsensed primary channels i′ 6= aj(k), the j-th secondary

user’s belief vector is simply updated based on the assumed Markovian evolution:

p(k + 1, j, i′) = p(k, j, i′)Pi′ , ∀i′ 6= aj(k).

Figure 5.3 shows the update procedure in which thick arrows represent the up-

dates using Bayes’ formula, whereas thin arrows represent the updating of beliefs

based only on the assumed Markovian nature of the channels.
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5.4.1 The Reward and Value Functions

We define the total discounted return of user j ∈ Ks in time slot k as Rj(k) =
∑∞

n=0 γ
nrj(k + n), where rj(k) is the reward of secondary user j in time slot k and

γ ∈ (0, 1) is a discounting factor. In a fully observable MDP, an agent j ∈ Ks may

define the value of a state s in slot k and under a policy πj as [95]:

V
πj
j (s, k) = E {Rj(k)|s(k) = s} . (5.4)

Similarly, the function Qj(s, a) is defined as the expected return starting from

state s, taking the action a, and then following a policy πj thereafter as:

Q
πj
j (s, a, k) = E {Rj(k)|s(k) = s, aj(k) = a} . (5.5)

In the case of a POMDP, however, the actual state of the system is the belief

vector bj(k). Hence, the resulting process is an infinite state MDP which makes the

solutions of (5.4) and (5.5) computationally expensive. In particular, our assumed

model of a DEC-POMDP is a non-cooperative multi-agent system whose solution

is shown to be NEXP-hard [103]. Hence, we will solve this problem by finding the

Q values of the DEC-POMDP model by using the underlying MDP model [106], as

explained in the next section.

5.4.2 Reinforcement Learning for DEC-POMDP

In the following, we extend the Q-learning algorithm that is defined for centralized

fully observable environments in [95] by extending it to the partially observable

channel sensing problem. This can be made by assigning a Q(s, a) table for each

secondary user j, where s ∈ S is the channels’ states vector with u(s) ∈ U =
{

1, · · · , 2L
}

being the index of state s and a ∈ C is the index of the sensed channel.

However, we do not use the belief vector bj(k) as the actual state. Instead, we
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solve for the values of Q(s, a) in the underlying MDP model by using bj(k) as a

weighting vector, as described in [106]. Although this is not the optimal solution of

the DEC-POMDP problem, [106] shows that this approach leads to a near-optimal

solution with a very low computational complexity if the algorithm adopts an ε-

greedy policy [95].

Since the secondary users cannot fully observe the state of the primary system in

the POMDP environment, the sensing policy of each secondary user is based on the

belief vector bj(k) =
[

bj(1, k), ..., bj(2
L, k)

]

. We describe the Q-learning procedure

for each user j ∈ Ks in Algorithm 6. Given a belief vector b = [b(1), · · · , b(2L)], we

define the Q-value of the belief vector b as:

Qb(a) =
∑

s∈S

b(u(s))Q(s, a), (5.6)

and the update function as:

∆Qb(s, a) = ξb(u(s))

[

rj(k) + γmax
a′∈C

Qb′(a
′)−Q(s, a)

]

.

We define ξ to be the learning rate. The Q-value Q(s, a) is updated after taking

every action using:

Q(s, a)← Q(s, a) + ∆Qb(s, a). (5.7)

This update is done for every state s ∈ S.

5.5 Simulation Results

We assume that all primary channels i ∈ C have the same transition probabilities

that are governed by the transition matrix:

Pi =





0.9 0.1

0.2 0.8



 . (5.8)
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We define the average spectrum hole utilization as:

U =

∑Ks

j=1

∑∞
k=1 I{rj(k)=1}

∑L
i=1

∑∞
k=1 I{si(k)=0}

. (5.9)

The reinforcement values (rewards) are selected as follows:

1. rj(k) = 1 if secondary j successfully accesses channel aj(k) at time k.

2. rj(k) = −0.5 if secondary j back-off due to collision with another secondary

user, and conditioned on the channel being idle.

3. rj(k) = 0 if the sensed channel is busy.

In the random sensing scenario, the average number of secondary users that

are sensing a given primary channel is E {Zi(k)} = Ks

L(1−(1−1/L)Ks)
, where Zi(k) ∈

{1, · · · , Ks} is a zero-truncated binomial random variable with parameters Ks and

1/L. Thus, in the random sensing scenario, we set the false alarm probability of each

secondary user to α = 1− (1− α0)
1/E{Zi(k)}.

On the other hand, when applying the Q-learning algorithm, the secondary users

will be evenly distributed over the channels. Therefore, E {Zi(k)} = Ks

L
if Ks ≥ L,

and E {Zi(k)} = 1 otherwise.

We note that E {Zi(k)} is conditioned on the channel i being sensed (i.e. condi-

tioned on {Zi(k) 6= 0}).

In the following simulations, we model the sensing observations of channel i ∈ C
as the output of a BSC with cross-over probability νi, and we let ν = [ν1, · · · , νL].

The use of a BSC permits to simplify the analysis, yet it is applicable to different

channel environments since νi can depend on the channel fading model, the detector

type, the signal and noise power, and the prior distributions of the information

message. Interested readers are referred to [158, 159, 235] for the computation of νi

under different channel conditions and with different detection methods.
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Figure 5.4: Average Utilization of Primary channels for α0 = 0.1.

We compare the performance of our proposed channel access/sensing mechanism

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crossover Probability of BSC (νi)

A
ve

ra
g
e

U
tl
iz

a
ti
o
n

Average Utilization of primary channels with L =3, Ks =3, ε =0.0005, ξ=0.6 and γ =0.25

 

 

Q-RL: α0 =0.1

Greedy: α0 =0.1

Rand: α0 =0.1

Q-RL: α0 =0.2

Greedy: α0 =0.2

Rand: α0 =0.2

Figure 5.5: Average Utilization of Primary channels for Ks = 3.

139



Chapter 5. Distributed Reinforcement Learning for CRN’s

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

Collision Probability (α0)

A
ve

ra
g
e

C
o
ll
is
io

n

Average Collision with primary channels with L =3, Ks =3, ε =0.0005, ξ=0.4 and γ =0

 

 

Greedy: ν =[0.01 0.025 0.05]
Q-RL: ν =[0.01 0.025 0.05]
Rand: ν =[0.01 0.025 0.05]
Greedy: ν =[0.05 0.2 0.3]
Q-RL: ν =[0.05 0.2 0.3]
Rand: ν =[0.05 0.2 0.3]
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to the greedy approach that was proposed in [152]. This greedy approach is equivalent

to the single-user approach that is defined in [232] and which is applied as a non-

cooperative myopic policy in multiuser OSA. In Fig. 5.4, we observe that RL permits

to achieve high utilization of the spectrum opportunities in the primary channels.

In particular, in the low-noise regime, the spectrum utilization approaches 100%.

Moreover, the RL algorithm has a significant advantage over the greedy algorithm

of [152] because the greedy algorithm makes most of the secondary users to sense

the channel that is most likely to be idle, thus ignoring other possible spectrum

opportunities and causing collisions among secondary users, as stated in [232]. This

is expected because the greedy algorithm is an optimal myopic strategy for a single-

user case and can only be a suboptimal strategy in a multiuser context. On the other

hand, a simple random sensing policy that selects randomly a channel at each time

instant can outperform the greedy algorithm of [152] as the number of secondary

users Ks increases. That is because a random policy reduces the collisions among

the secondary users, compared to the greedy policy of [152].
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Next, we assume all primary channels to have the same crossover probability νi

and we show in Fig. 5.5 the impact of the sensing noise on the performance of both

the Q-learning and random sensing systems. We see that the performance drops at

a higher rate when the crossover probability of the sensing BSC (νi) becomes greater

than the false alarm probability α of each secondary user.

In Fig. 5.6, we analyze the collision probability that results from our designed

NP detectors. Here we are controlling the collision probability with the primary

channels during the time slots in which a primary channel is being sensed. Figure

5.6 shows the accuracy of the proposed decentralized collision probability control in

maintaining the collision rate equal to the prescribed threshold α0, by using either

of the RL or the random sensing protocols that are proposed in this chapter. From

Fig. 5.6 it can be seen that these algorithms are robust against channel impairments

as captured by νi. The efficiency of these algorithms is due to the fact that they

estimate the number of secondary users that are sensing each channel, and based

on this information, the channel access rule is updated so that the collision rate

with primary users is maintained within the required bound. We observe also that

the greedy policy violates the prescribed collision probability with primary users

when the observation noise νi is low. However, in this case, the excess in collision

probability is not very large, compared with α0, because most of the users sense the

most likely idle channel, whereas a small number of users would sense a busy channel

according to the greedy approach.

5.6 Conclusion

In this chapter, we derived channel sensing and accessing protocols for secondary

users in decentralized cognitive networks. The sensing policy is completely decen-

tralized and is obtained by using RL. The proposed policy ensures efficient utilization
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of the spectrum resources since it exploits the Markovian nature of the primary chan-

nel traffic and limits the collisions among competing secondary users. Also, we have

designed a secondary detector that maximizes the detection probability of the idle

channels while satisfying the collision probability constraint imposed by primary

users. The designed policies are characterized by their robustness and accuracy, and

help to enhance the cognitive capabilities of secondary users.
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Algorithm 6 Q-learning Algorithm for agent j ∈ Ks

for each s ∈ S. a ∈ C do

Initialize Q(s, a) = 0.

end for

Initialize the belief vector b arbitrarily.

for each time slot k do

Generate a random number rnd between 0 and 1.

if rnd < ε then

Select action a∗ randomly.

else

Select action a∗ = arg maxaQb(a).

end if

Execute action a∗ (i.e. sense channel a∗).

Receive the immediate reward rj(k).

Update p0(a
∗, k, j) using the observation y(k):

p0(a
∗, k, j)← f0(y(k))p0(a∗,k,j)

∑1
l=0 fl(y(k))pl(a∗,k,j)

Update the current belief b according to p0(a
∗, k, j).

Evaluate the next belief vector b′ based on (5.3).

Update the table entries as follows:

Q(s, a∗)← Q(s, a∗) + ∆Qb(s, a∗), ∀s ∈ S.

b← b′.

end for
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Summary of the Dissertation and

Research Directions

In this dissertation, we have developed a CR architecture that is equipped with au-

tonomous sensing and learning abilities to adapt to alien radio environments. The

proposed architecture uses sophisticated spectrum sensing tools as well as machine

learning techniques to explore and act autonomously in the surrounding RF envi-

ronment.

In the followings, we summarize the main aspects and contributions of this dis-

sertation, and propose possible research directions that can be addressed in future

works.

6.1 Summary of the Dissertation

In Chapter 2, we proposed an autonomous CR architecture that is characterized by

its wideband operation and self-learning ability. The proposed architecture uses so-
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phisticated signal processing and machine learning tools. Throughout our study, we

focused mainly on developing wideband signal processing algorithms to detect and

identify the active signals in a certain RF domain. The proposed sensing algorithm

is based, in part, on a sliding-window energy detector that maximizes the detection

probability of active signals, subject to a certain false alarm constraint. Cyclosta-

tionary detection was used at the second stage of spectrum sensing to detect the

underlying cyclic properties of the detected signals. As a result, feature vectors

can be extracted from the detected signals, characterizing the active signals in the

surrounding environment. We analyzed the performance of the proposed sensing al-

gorithm in both non-fading and Rayleigh fading environments. The results showed

efficient signal detection, even at relatively low SNR’s.

In Chapter 3, we presented a survey of machine learning techniques in CR’s, fo-

cusing mainly on signal classification and decision-making methods. We identified

the unique nature of learning in CR’s and showed its importance in achieving a real

CR system. We also presented several machine learning techniques that can be ap-

plied in CR applications, and listed them under different categories in a hierarchical

order. As a result, we have identified the most appropriate machine learning algo-

rithm that can be used in a particular situation. Furthermore, we provided a brief

description of the presented machine learning tools, while showing the advantages

and disadvantages of each technique.

In Chapter 4, we considered the problem of signal classification using a Bayesian

non-parameteric approach based on the DPMM framework. The DPMM-based clas-

sifier was shown to be a suitable candidate for our classification problem due to its

non-parametric support probability distribution, which allows for an infinite number

of mixture components, and therefore, an infinite number of clusters. The DPMM

classifier was extended to both Gaussian and non-Gaussian observation models to

improve the flexibility of this algorithm in matching the feature observation model.
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In addition, we proposed a simplified and a sequential DPMM classifier that reduce

the computational burden of the DPMM classifier by exploiting the underlying CRP

structure of the Dirichlet process. This was achieved by defining a parameter selec-

tion policy for the Gibbs sampler, which was shown to improve the efficiency of the

Gibbs sampling-based DPMM classifier. We have shown, through simulations, that

our proposed DPMM-based classification algorithm can lead to perfect classification

results in most of the scenarios.

Finally, in Chapter 5, we developed a spectrum sensing and channel access policy

for CR’s in distributed CRN’s based on DSA. The proposed policy is aimed at multi-

agent scenarios in which multiple CR’s try to sense and access, independently, a set

of primary channels. The problem was formulated in a DEC-POMDP framework

which is well-known to be an open problem in decision-making literature. Hence, we

proposed an efficient RL algorithm that can be applied in this setup in order to reach

action coordination among CR’s in a distributed CRN. The proposed algorithm was

shown to achieve near-optimal policy without incurring any control overhead among

cognitive users. The overall system can achieve spectrum awareness and self-learning

abilities, thus laying down the fundamental structure of autonomous CR’s.

6.2 Future Research Directions

The work that is presented in this dissertation can be extended along several direc-

tions, focusing on either spectrum sensing or decision-making applications.

Robust Signal Detection

In spectrum sensing applications, we may consider the problem of robust signal detec-

tion in the presence of outliers and contaminating non-Gaussian noise models [236].
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This problem is particularly important for wideband spectrum sensing applications

in which CR’s can be subject to a wide range of RF activities, including potential

interferers and jammers. The conventional energy detection method is vulnerable

to such non-Gaussian noise scenarios, which may cause degradation in the detection

performance. Hence, in order to overcome this problem, robust detection methods

can be implemented by assuming a certain contaminating noise model or by using

robust cost functions for power spectral estimation [230, 236]. The obtained robust

signal detectors would be able to improve the reliability of spectrum sensing in highly

dynamic RF environments.

Compressive Sensing

Another aspect of spectrum sensing applications may consider compressive sensing

methods to reduce the computational complexity of wideband CR applications [65].

Although this problem usually assumes sparse RF signals in the spectral frequency

domain, it is worth to be addressed in cyclostationary detection applications. In

particular, compressive sensing can be applied to cyclostationary feature detection

due to the sparsity of the SCF in the 2-dimensional (f, α)-plane [237]. Therefore,

compressive sensing can be a perfect candidate for cyclostationary detection of wide-

band signals and can help to reduce both computational burden and hardware cost

of such techniques.

Multi-agent RL in decentralized CRN’s

The problem of decentralized decision-making in CRN’s can be investigated further

in multi-agent scenarios. Although our proposed RL algorithm was shown to lead to a

satisfactory solution in decentralized networks, it is initially aimed at fully observable

single-agent decision-making scenarios. Hence, the RL algorithm should be analyzed
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further in decentralized control problems. This is still an open problem and has been

identified as the multi-agent RL problem which aims at achieving optimal action

coordination among distributed learning agents [100].

In contrast with RL-based MDP solutions, the optimal policy of a multi-agent

RL is not necessarily deterministic [238]. Therefore, any formulation of the multi-

agent RL problem should be based on stochastic policies. Several attempts have

been made to address this problem using a Markov game formulation, as in [238].

The proposed solution in [238] is obtained by using the minimax approach, but

this solution does not scale very easily with the number of learning agents. On the

other hand, [239] proposed a Q-learning algorithm for multi-agent RL with partially

observable environments and showed the convergence of this algorithm. However, the

performance of this algorithm was only analyzed numerically without any analytical

interpretation.
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Derivation of the ROC for Carrier

Frequency Detection

Consider a sampled data sequence {x(k)}M−1
k=0 , with Ts as the sampling period. We

denote by {X(n)}M−1
n=0 its DFT obtained by fast Fourier transform (FFT) algorithm:

X(n) =

M−1
∑

k=0

x(k)e−j2πn k
M , for n = 0, · · · ,M − 1. (A.1)

The average power in a spectral window of odd length L, centered at n, can be

approximated by T (n) =
∑(L−1)/2

l=−(L−1)/2 |X(n+ l)|2. In order to derive the ROC of the

NP detector, we determine the distribution of T (n) under the two hypotheses:

H0 : x(k) = w(k), (A.2)

H1 : x(k) = s(k) + w(k), (A.3)

where {w(k)}M−1
k=0 are modeled as i.i.d. Gaussian random variables, s.t. w(k) ∼

N (0, Pn). The signal {s(k)}M−1
k=0 in (A.3) can be modeled as i.i.d. Gaussian random

variables, s.t. s(k) ∼ N (0, Ps). This is a reasonable assumption for signals that are

perturbed by propagation through turbulent media and multipath fading [240]. It is
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well-known that the energy detector is the optimal detector for unknown (random)

signals.

In the following, we let x = [x(0), · · · , x(M − 1)]T , X = [X(0), · · · , X(M − 1)]T ,

XR = [ℜ{X(0)}, · · · ,ℜ{X(M − 1)}]T and XI = [ℑ{X(0)}, · · · ,ℑ{X(M − 1)}]T ,

where ℜ{} and ℑ{} denote the real and imaginary parts, respectively. The DFT in

(A.1) can be expressed as:

XC ,

[

X
R

X
I

]

= Ax , (A.4)

where A is a 2M-by-M matrix of DFT coefficients. Since {x(k)}M−1
k=0 are zero-mean

i.i.d. Gaussian random variables, then XC is a jointly Gaussian random vector. It

can be shown that, under H0, E{XC
(

XC
)T} = MPn

2
IM (where IM is an M-by-M

identity matrix) and under H1 E{XC
(

XC
)T} = M(Ps+Pn)

2
IM . Therefore, elements of

XC are uncorrelated. Since XC is jointly Gaussian with uncorrelated elements, the

elements of XC are then independent. Also, since all the elements have the same

variance under the same hypothesis, elements of XC are assumed to be i.i.d. zero-

mean Gaussian random variables with variance MPn
2

under H0, and M(Pn+Ps)
2

under

H1.

Under the above assumptions, T ′(n) = 2
MPn

T (n) is a sufficient statistic for the

hypothesis testing and follows a χ2
2L distribution. The threshold η for carrier fre-

quency detection is defined s.t. Pr{T ′(n) > η|H0} ≤ αF , where αF is the acceptable

false alarm probability. Note that the noise power Pn can be estimated, for example,

by using the method proposed in [117].

The NP decision rule δ for carrier frequency detection is then defined as:

δ (T ′(n)) =

{

0 if T ′(n) < η

1 otherwise
, (A.5)

where η = 2γ−1 (L; (1− αF ) Γ(L)), γ−1 is the inverse lower incomplete gamma func-
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tion (where γ(k; x) =
∫ x

0
tk−1e−tdt and the inverse is w.r.t. the second argument)

and Γ(k) =
∫ ∞

0
tk−1e−tdt is the gamma function. By applying this to the PSD in

(2.4), the threshold is given by:

ηPSD =
ηPn

2TsL
=
γ−1 (L; (1− αF ) Γ(L))Pn

TsL
. (A.6)

The resulting detection probability of this detector can be expressed as:

PD = Pr{T ′(n) > η|H1} = 1−
γ

(

L; η
2(1+SNR)

)

Γ(L)
, (A.7)

which represents the ROC of the carrier frequency detector.
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