
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

7-12-2014

Designing and Implementing a Data Warehouse
using Dimensional Modeling
VINAYA GANAPAVARAPU

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
GANAPAVARAPU, VINAYA. "Designing and Implementing a Data Warehouse using Dimensional Modeling." (2014).
https://digitalrepository.unm.edu/ece_etds/92

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/92?utm_source=digitalrepository.unm.edu%2Fece_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

VINAYA BHARADWAJ GANAPAVARAPU

COMPUTER ENGINEERING (ECE)

GREGORY L. HEILEMAN

TERRY J. TURNER

CHRISTOPHER C. LAMB

Designing and Implementing a Data
Warehouse using Dimensional Modeling

by

Vinaya Bharadwaj Ganapavarapu

B.Tech., Jawaharlal Nehru Technological University, 2008

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2014

c©2014, Vinaya Bharadwaj Ganapavarapu

iii

Dedication

To my family.

iv

Acknowledgements

I would like to thank my advisor, Professor Gregory Heileman and committee mem-
bers Terry Turner and Christopher Lamb for their patience, help and support. I
would also like to thank Rita Abeyta from the Office of Institutional Analytics,
UNM for helping me in understanding higher education data.

v

Designing and Implementing a Data

Warehouse using Dimensional Modeling

by

Vinaya Bharadwaj Ganapavarapu

B.Tech., Jawaharlal Nehru Technological University, 2008

M.S., Computer Engineering, University of New Mexico, 2014

Abstract

As a part of the business intelligence activities initiated at the University of New

Mexico (UNM) in the Office of Institutional Analytics, a need for a data warehouse

was established. The goal of the data warehouse is to host data related to students,

faculty, staff, finance data and research and make it readily available for the purposes

of university analytics. In addition, this data warehouse will be used to generate

required reports and help the university better analyze student success activities.

In order to build real-time reports, it is essential that the massive amounts of

transactional data related to university activities be structured in a way that is op-

timal for querying and reporting. This transactional data is stored in relational

databases in an Operational Data Store (ODS) at UNM. But for reporting purposes,

this design currently requires scores of database join operations between relational

database views in order to answer even simple questions. Apart from affecting per-

formance, i.e., the time taken to run these reports, development time is also a factor,

vi

as it is very difficult to comprehend the complex data models associated with the

ODS in order to generate the appropriate queries.

Dimensional modeling was employed to address this issue. Dimensional mod-

eling was developed by two pioneers in the field, Bill Inmon and Ralph Kimball.

This thesis explores both methods and implements Kimball’s method of dimensional

modeling leading to a dimensional data mart based on a star schema design that was

implemented using a high performance commercial database. In addition, a data

integration tool was used for performing extract-transform-load (ETL) operations

necessary to develop jobs and design work flows and to automate the loading of data

into the data mart.

HTML reports were developed from the data mart using a reporting tool and

performance was evaluated relative to reports generated directly from the ODS. On

average, the reports developed on top of the data mart were at least 65% faster than

those generated from directly from the ODS. One of the reason for this is because the

number of joins between tables were drastically reduced. Another reason is that in

the ODS, reports were built against views which when queried are slower to perform

as compared to reports developed against tables.

vii

Contents

List of Figures xi

1 Introduction 1

1.1 Overview . 1

1.2 Proposed Solution . 3

2 Background 5

2.1 Existing philosophies on data warehouses 5

2.2 Differences between Inmon and Kimball

methods of approach to data warehousing 8

2.3 Definitions . 9

3 Design and Implementation 12

3.1 Process of building a Kimball data warehouse 12

3.2 Business Matrix . 14

3.3 Grain . 14

viii

Contents

3.4 Logical and physical design . 15

3.5 Solutions provided by the data mart design 17

3.6 Further optimization of the data mart for

reports . 19

3.6.1 Building summary fact tables 19

3.7 Design issues . 20

3.7.1 Resolving many-to-many relationships 20

3.7.2 Implementing slowly changing dimensions (SCD) 21

4 Extract Transform Load (ETL) 30

4.1 Populating the data mart . 30

4.2 Logical steps in ETL . 30

4.3 Refreshing the data mart . 35

4.4 ETL performance and data validation 36

5 Reporting from the data mart 42

5.1 Data Mart Performance . 42

5.2 Reports . 44

6 Future Work 48

6.1 Student data mart table structure (DDL) 53

Appendices 72

ix

Contents

References 73

x

List of Figures

1.1 Student credit hours generated by faculty. 3

1.2 ODS versus data mart performance. 4

2.1 Inmon data warehouse Architecture [2]. 7

2.2 Kimball data warehouse Architecture [1]. 8

3.1 Kimball data warehouse life cycle [1]. 13

3.2 Business Matrix. 15

3.3 Granularity of fact tables. 15

3.4 Granularity of dimension tables. 16

3.5 Student data mart schema. 17

3.6 Student Enrollment Star Schema. 24

3.7 Course Enrollment Star Schema. 25

3.8 Instructor Course Assignment Fact Schema. 26

3.9 Summary Fact Tables. 27

3.10 Instructor Bridge Table. 28

xi

List of Figures

3.11 Slowly Changing Dimension Type 1. 28

3.12 Slowly Changing Dimension Type 2. 29

3.13 Slowly Changing Dimension Type 3. 29

3.14 Hybrid Slowly Changing Dimension. 29

4.1 Source to Target mapping in SAS R© DI Studio. 32

4.2 Populating a staging table using SQL transformations in SAS R© DI

Studio. 33

4.3 Populating a dimension table. 33

4.4 Populating a fact table - Finance Fact. 37

4.5 Joins and where conditions in SAS R© DI Studio. 38

4.6 Work flow, parallel jobs and scheduling in SAS R© DI Studio. 38

4.7 Job scheduling triggers in SAS R© DI Studio. 39

4.8 SQL Extract transform to run custom SQL. 39

4.9 Proc-SQL example to run custom queries. 40

4.10 Control flow of transformations in a job. 40

4.11 Job status. 41

4.12 Job statistics. 41

5.1 Average ODS versus data mart performance. 44

5.2 SCH generated by faculty by academic period, college. 46

5.3 Student hours enrolled by academic period, college. 47

xii

List of Figures

6.1 Sankey Diagram for 2008 Arts and Sciences Chemistry College Flow. 50

6.2 Sankey Diagram node highlight example. 51

6.3 Sankey diagram statistics display. 52

xiii

Chapter 1

Introduction

1.1 Overview

The University of New Mexico (UNM) had nearly 30,000 students enrolled in 2011

and enrollment has steadily increased by 24% as compared to the year 2001. With a

wide range of programs and courses, increase in enrollment each year and sometimes

more than one instructor per course, one can imagine the complexity and volume of

data that would have been accumulated over the years.

To ensure success of students, it is important to track their progress each semester,

i.e., to track if a student has reached a certain achievement level or not, meeting the

academic needs of students, establishing and accomplishing short-term and long-

term goals. Currently, only quantitative questions like number of students served

or number of students receiving a passing grade in a course and so on determine

measures taken to ensure progress of students. Such reports however do not enable

deeper understanding, for instance, growth of a student in a given time period,

comparing growth over years and factors contributing to this.

1

Chapter 1. Introduction

With sufficient historical data, it is now the time to make proper use of it. It is

very important to make data-based decisions. With a proper understanding of the

needs of business users, decision makers and policy makers, the historical data and

also the new data can be logically modeled to support decision-making or business

intelligence.

There are two steps to the business intelligence process. One, is to build a data

model to support the reporting requirements of users which will help them track

progress and success and the second is to build a predictive data model that will

help the policy and decision makers by providing a better vision for the purpose of

decision making.

The University of New Mexico currently has an operational data store (ODS)

which is being used to serve as the back-end to generate many reports or to cater to

many applications that were developed for the academic or the executive offices. But

with changing needs, the database design of ODS is not efficient enough to support

analytics that need to be developed.

Finally, the difficulty associated with generating the reports necessary to answer

specific questions needs to be addressed. This is very difficult to comprehend the

ODS table structure given the way it is defined and many users utilize the views in

ODS to build their reports; a very time consuming process. Reports built on top

of ODS views take a long time to run as views are not physically populated in the

database, rather they are just a logical representation of data in tables.

Consider an example as in Figure 1.1 where a report is generated for student

credit hours (sch) generated by faculty filtered by college in a given academic period.

This report requires a drop down on the academic period and when one of them is

selected, the ODS view needs to be queried and calculations need to performed on

the fly. This process of querying an un-indexed view with hundreds of columns and

2

Chapter 1. Introduction

Figure 1.1: Student credit hours generated by faculty.

performing calculations while generating the report consumes an undesirable amount

of time.

1.2 Proposed Solution

A current need, therefore involves the need to design a database that supports re-

porting, analytical and decision-making capabilities for executive offices at UNM. An

efficient way to solve the problem mentioned in the previous section, is to use one

of the industry standard methods in order to design a data warehouse that will pro-

vide a platform for running reports and to develop analytics. Bill Inmon and Ralph

Kimball are the two pioneers in the theory of building data warehouses. Kimball’s

method of approach to developing data warehouse was chosen over Inmon’s method.

The design and implementation of the data warehouse using Kimball’s approach as

described in [1] will be the main focus of this thesis. The data warehouse will contain

3

Chapter 1. Introduction

Figure 1.2: ODS versus data mart performance.

data related to students, faculty, staff, finance, research, space, academic outcomes

to list a few.

It is evident from the example shown in Figure 1.2 which demonstrates the per-

formance of the data mart against ODS. When a SQL query involving joins between

two tables and group by and order by clauses, the data mart returns the results in 3

seconds where as the ODS takes around 77 seconds to return the same results.

4

Chapter 2

Background

2.1 Existing philosophies on data warehouses

With exponential growth in data and with increasing interest to analyze and un-

derstand it to derive some knowledge out of it, it is absolutely necessary that the

historical data be stored in a manner that can be easily analyzed. It is also impor-

tant to derive some important statistics and various performance metrics. But this

cannot be effectively implemented using the ODS. The data needs to be reorganized

into a dimensional model.

A third normal form (3NF) is an entity relationship (ER) model where the tables

are normalized to a state where there is no data redundancy, attributes in an entity

are solely dependent on whole of the primary key of the entity. A primary key can

be just one attribute or a composite key consisting of two or more attributes.

The 3NF was initially defined by E.F.Codd and was later expressed differently

by Carlo Zaniolo. According to [5], it is defined as follows.

A table is in third normal form (3NF)if and only if for every nontrivial

5

Chapter 2. Background

functional dependency X → A, where X and A are either simple or com-

posite attributes, one of two conditions must hold. Either attribute X is

a superkey, or attribute A is a member of a candidate key. If attribute

A is a member of a candidate key, A is called a prime attribute. Note: a

trivial FD is of the form YZ → Z.

A 3NF ER model is good design to handle transactional data. Examples for trans-

actional data are courses taken by students in each term, proposals filed by each

principal investigator each year and so on. This type of design is good for perform-

ing quick inserts, updates and deletes because the tables usually have a small number

of fields with foreign keys to other tables.The reason behind this is that, to generate a

simple report one would end up joining scores of tables in a 3NF environment which

ends up being very time and resource (hardware) intensive. Apart from this, the

model becomes very complex very quickly as a result of which it becomes very diffi-

cult to understand and navigate the model even for a developer let alone a business

user.

To address this problem, Bill Inmon in Figure 2.1 proposed an idea with a top-

down approach and named the system as corporate information factory (CIF) defined

in [2]. The components of a CIF include a data warehouse which is built in 3NF and

individual de-normalized data marts which are populated from the data warehouse.

These data marts cater to individual business process needs. Reporting cubes are

built as required on top of the data marts. The data warehouse as defined by Bill

Inmon, contains enterprise data without any redundancy at the lowest level of detail

i.e., transactional data in 3NF.

According to Inmon, a data warehouse is subject-oriented, non-volatile, inte-

grated, time-variant and has no virtualization.

Another pioneer, Ralph Kimball proposed his own version of a data warehouse

6

Chapter 2. Background

Figure 2.1: Inmon data warehouse Architecture [2].

Figure 2.2 which is termed as a bottom-up approach. A data warehouse as defined by

Kimball in [1] is the conglomeration of all individual data marts. These data marts

are built using dimensional modeling. Each data mart contains data specific to a

business process. This method was chosen as part of business intelligence architecture

that has been implemented at UNM.

The benefits of dimensional modeling technique are:

Better data navigation and presentation: The logical data model is designed

in a way that is easy to understand and navigate even for business users. This enables

them to build their own reports.

Easy and low-cost maintenance: The data is stored in the same way as it

is presented unlike in the case of relational databases where in most cases views are

built in order to build any reports. This increases the maintenance cost in the case

of relational databases or ODS.

Better performance: Most reports require summarized data which results

7

Chapter 2. Background

Figure 2.2: Kimball data warehouse Architecture [1].

in a slower performance due to on-the-fly calculations in the case of non-indexed

views in ODS. In the case of dimensional modeling, summarized tables are built as

required. It also allows the ability to store data history in a manner that is easy to

query and build reports on. Such a design delivers faster query performance and to

drill down and drill across hierarchies.

2.2 Differences between Inmon and Kimball

methods of approach to data warehousing

Data warehousing is the process of building a data warehouse. Reports are currently

being built on top of the views in ODS. The ODS is not actually optimized for

reporting or analytics.

Now in the case of Inmon’s approach of data warehousing, the architecture sug-

gests that a 3NF data warehouse be built as the next step, which would contain

8

Chapter 2. Background

all the data in the organization, and then build a data marts layer to support the

reporting layer. In our case, with ODS and a staging layer in place, it is not optimal

in terms of time and money to build another layer of 3NF data warehouse which can

be seen as nothing but another staging layer for the data. This data warehouse has

no independent deliverable of its own.

In the case of Kimball’s approach however, the idea is to build the data marts

layer right after the staging layer. These data marts cater to individual business

processes identified. All the data marts together then form the data warehouse as

defined by Kimball. The common dimensions between the business processes are

however shared between them, without building a separate version of it, to maintain

a single version of truth and make it simple to update. These are called conformed

dimensions. Using this approach, we do not need a second staging layer and since

the data marts are specific to a business process, reports can be generated out of it,

without waiting for rest of data marts to be designed and implemented.

Therefore, considering reasons like cost-effectiveness and the ability to deliver

reports quickly, it has been decided that the Kimball methodology would be used for

designing a data warehouse to address our problem.

2.3 Definitions

A few of the common terms of data warehousing used in this thesis are explained

below as defined by Kimball in [1], [4] and [6].

A Fact table consists of the foreign keys to all the dimension tables in the schema

and facts that are numerical business measurements. It is a transaction based table.

A Dimension table is an explicitly defined subject area in a business. it is a

non-transaction based table.

9

Chapter 2. Background

Conformed dimensions are standardized tables modeled once and shared

across multiple fact tables in the same schema or even a different data mart. This

is determined by the Bus Matrix. These tables support the ability to drill across

and integrate data from multiple business processes. The main advantage of using

conformed dimensions is to save storage space. It is also easier to maintain and

refresh one table versus multiple versions of the same table.

An enterprise data warehouse bus matrix is the architectural blueprint

providing the top-down strategic perspective to ensure that data can be integrated

across the enterprise.

The grain is defined as the lowest level of detail in a table. The grain of a

fact/dimension table is the definition of what constitutes a unique fact/dimension

table record.

A factless fact table is a fact table that contains no facts but captures certain

many-to-many relationships between the dimension keys. Most often it is used to

represent events or provide coverage information that does not appear in other fact

tables. Some examples include tracking student attendance or registration events,

identification numbers of building or facility.

The business key or natural key identifies a business entity. Examples include

student id, course id and program id.

The primary key uniquely identifies a record in a table. A primary key can

consist of a single field or multiple fields and cannot be a NULL value.

The Foreign key is a single field or multiple fields which uniquely identifies a

record in another table.

The Surrogate Key uniquely identifies a record in a dimension table. It is usu-

ally ETL generated and provides the means to maintain data warehouse information

10

Chapter 2. Background

when dimensions change. One simple way improve performance of queries is to use

surrogate keys. Surrogate keys can be derived from the existing natural keys or it

can be a simple integer. As an example, a surrogate key can be a composite key,

being the combination, student id + academic period or just an integer value gener-

ated by the ETL program while a record is being inserted the table. Using integer

surrogate keys means a thinner fact table and the thinner the fact table, the better

the performance.

The star schema is a dimensional design for a relational database. In a star

schema, related dimensions are grouped as columns in dimension tables, and the

facts are stored as columns in a fact table. The star schema gets its name from its

appearance: when drawn with the fact table in the center, it looks like a star or

asterisk.

The snowflake schema is a variation on the star schema. When principles

of normalization are applied to a dimension table, the result is called a snowflake

schema.

A degenerate dimension is present in the fact table. For example this may be a

transaction number, invoice number, ticket number, or bill-of-lading number, that

has no attributes and hence does not join to an actual dimension table. A junk

dimension is present in the fact table. Examples include boolean indicator or flag

fields such as enrolled flag, ethnicity indicators, etl timestamp and so on.

11

Chapter 3

Design and Implementation

Kimball’s approach was chosen as the base architecture for supporting business in-

telligence at UNM. The conceptual model and logical model were designed based on

the requirements analysis and source data analysis.

3.1 Process of building a Kimball data warehouse

Various steps involved building a Kimball data warehouse include business/user re-

quirements gathering, requirements analysis, source data analysis, target database

logical model design, target database physical design, source data cleansing, extract

transform load (ETL) process design, data validation, report development and per-

formance analysis. All design principles are based on Kimball’s approach to data

warehousing as defined in [1].

Different approaches were used for gathering requirements including phone inter-

views, personal interviews with individual end users and stake holders and also group

meetings. A requirements document was prepared in agreement with the business.

12

Chapter 3. Design and Implementation

Figure 3.1: Kimball data warehouse life cycle [1].

Requirements analysis was done keeping the structure of the source data in mind.

A conceptual data model was prepared which laid out a high level structure of the en-

tities and the relationships between them after identifying separate business needs.

Facts and dimensions were identified. Grain of the tables was determined. Con-

formed dimensions are identified using the business matrix. A data mart may have

multiple star schemas but dimensions can be shared between different fact tables or

business processes. For example, the student data mart has multiple star schemas.

One star schema is dedicated to the academic progress of the student, student detail,

program, department, courses, instructors and person data. The second schema cap-

tures financial aid. Another star schema is dedicated to applications and admissions.

Next, the logical data model and the physical data model (for Oracle 11g environ-

ment) were designed using licensed software, Toad data modeler. There were some

13

Chapter 3. Design and Implementation

design issues which needed special handling including many-to-many relationships

and slowly changing dimensions which are explained later in this thesis.

A document was prepared which contained the source table fields mapped to the

target table fields. This is called the source-to-target mapping document. Preparing

this mapping document is very essential as it is the base for the extract transform

and load (ETL) development process.

The next step in the data warehousing process is the ETL design. SAS R© data

integration software was used to perform the ETL tasks.

Using the data mart as the back end, HTML reports as required by various

business units were designed using Web Focus which is the primary reporting tool

currently being used at UNM.

3.2 Business Matrix

The business matrix Figure 3.2 is tabular representation of the business process ver-

sus the dimension tables. This is an agile modeling method and is done so as to

identify the Conformed dimensions. In the figure, we can see that the dimensions

academic calendar, course, department and person are shared between multiple busi-

ness processes. These are called conformed dimensions.

3.3 Grain

The grain of a table is defined as its lowest level of detail. The tables in Figure 3.3

and Figure 3.4 show the grain of the fact and dimension tables in the student data

mart. For example, the student enrollment fact table has one row per student per

14

Chapter 3. Design and Implementation

Figure 3.2: Business Matrix.

Figure 3.3: Granularity of fact tables.

course per semester which means that this table will have all the records of a student

with respect to all the courses the student was ever enrolled in. Also mentioned

are the primary facts in that table. Similarly the dimension tables granularity in

Figure 3.4 shows a few main fields in that table.

3.4 Logical and physical design

After designing the business matrix and determining the granularity of tables, the

next step is logical designing of the data mart. This was done using the Toad data

15

Chapter 3. Design and Implementation

Figure 3.4: Granularity of dimension tables.

modeling tool and most of the business processes or subject areas mentioned in the

business matrix diagram were designed using the star schema approach. In a star

schema, there is a fact table, which has all the foreign keys to the dimension tables in

that subject area and the facts. The dimension tables have data related to different

areas like person, course, student, department, program and so on. Figure 3.5 shows

the student subject areas within the enterprise university data warehouse. Other

subject areas include finance, research and so on. In the student data mart, there

are different aspects that have been identified like student enrollment, course enroll-

ment, admissions, financial aid and some summary tables. Each of these aspects

have their dimension tables and a fact table. For example, the student enrollment

schema has a fact table named student enrollment fact and dimension tables aca-

demic calendar dim, student dim, course dim and instructor dim. The dimension

tables have a surrogate key apart from the natural keys. This is done in order to

uniquely identify each record in the table. This surrogate key is usually a number

and is automatically generated when the table is being loaded. Figure 3.6 shows

the student enrollment star schema with the student enrollment fact table having all

the foreign keys to the surrounding dimension tables and then the actual facts like

grades and credit hours. Similarly Figure 3.7 shows the

16

Chapter 3. Design and Implementation

Figure 3.5: Student data mart schema.

course enrollement. Figure 3.8 shows the instructor course assignment fact schema.

This schema captures all the courses assigned to various instructors over years. It

shows a instructional assignment fact table having facts like percent responsibility

of each instructor assigned to a course with multiple instructors. The fact table is

connected to the required dimensions. It can also be observed, the table and field

names are quite intuitive and are easily understood by anyone.

Indexing the tables appropriately and partitioning the tables if required are part

of the physical design. After the physical design, the table definitions are captured

into a data definition language (DDL) file and are installed on the database.

3.5 Solutions provided by the data mart design

The following is a non-comprehensive list of solutions offered by this Data Mart:

17

Chapter 3. Design and Implementation

Student level facts and statistics: The data mart can answer questions at

the most transactional level about students like courses registered by a student in a

given term, final grades of each student in a course, enrolled date and drop date of

a course and bio-demographic information.

Course level facts and statistics: These include total active enrollment in

a term in a course, total drop outs out of a course, instructor details of a course

including cases multiple instructors per course, total enrollment in each course and

enrollment categorized by ethnic groups, average grade of all students in each course

and average grade by ethnicity.

Instructor level facts and statistics: These statistics include all courses

taught by an instructor in a given term, percentage contribution of each instructor

in a course with multiple instructors, bio-demographic information about instructors

and HR and departmental information about instructors.

Department level facts and statistics: Examples for department level statis-

tics that are provided by the data mart include courses offered by a department in a

given term and their corresponding facts and summarized reports include enrollment

in each course offered by a department over many semesters and grade distribution,

i.e., number of students in each grade, in each course offered by a department in a

semester.

Program level facts and statistics: The data mart provides program level

statistics like courses in a program in a given term and their corresponding facts.

Some of the summarized level of information includes count of students registered in

a program over a period of many semesters.

Financial aid facts and statistics: These are statistics on students who have

been awarded financial aid in a given term. The data mart can also be used to see

how many students received a Pell grant or submitted the free application for Federal

18

Chapter 3. Design and Implementation

Student Aid (FAFSA) in a semester. This data can be analyzed together with the

grades data resulting in interesting information.

Applications and admissions statistics: These include account of those who

have submitted their test scores and prior GPAs to UNM, count of applicants to

each program in each academic period versus count of admitted students, average test

scores of applicants who were admitted into each department or program, distribution

of admitted students with various test scores and so on.

3.6 Further optimization of the data mart for

reports

Sometimes, it is required to see reports that need aggregation of the fact tables.

Examples include reports needed by some of the executive offices at UNM which

require summarized data from the student enrollment fact table rolled up to the

department, program, degrees awarded or student data summarized by term and

level. To generate the appropriate reports according to these requirements, the

reporting tool needs to perform aggregation on the fly. This may take a lot of time

depending on the complexity.

3.6.1 Building summary fact tables

To overcome this issue, summary fact tables have been designed to readliy address

such report requirements. Figure 3.9 shows a few summary fact tables that have

been designed as a part of the student data mart. The summary fact tables con-

tain rolled up version of the actual transaction level data. For instance, the pro-

gram enrollment fact table has one record per program per semester which states

19

Chapter 3. Design and Implementation

facts like total enrollment in the program and enrollment distribution by ethnicity.

Similarly, the grain of student level summary fact table is one record per student

and contains cumulative data of the student until that point of time since inception.

The table student term summary fact has one record per student per semester and

keeps track of student GPA, credit hours and such for each semester. The degree-

sawarded fact table has degrees awarded to all the students at UNM. These tables

enable quicker reporting as on-the-fly calculations can be avoided. In spite of it be-

ing true that more storage is required, the creation of these summary tables can be

justified considering the facts that storage is not very expensive and the tremendous

performance benefit the creation of these tables has to offer.

3.7 Design issues

3.7.1 Resolving many-to-many relationships

It is impossible to implement many-to-many relationships between tables, on a phys-

ical database except by having another table between them which splits the many-

to-many relationship to many-to-one and one-to-many relationships. In Kimball’s

dimensional modeling, this is called the bridge table [1].

In this design, the student enrollment fact table takes care of the many-to-many

relationship between student-dimension and course-dimension tables. However, at

UNM, we also have multiple instructors for some courses. To implement this, an

instructor group dimension table was introduced which has an instructor group key

attribute. There is a one-to-many relationship between instructor group dimension

table and student enrollment fact table.

An instructor group bridge table is introduced which has an instructor group key

and instructor key (from the instructor dimension) having many-to-one relationship

20

Chapter 3. Design and Implementation

to both instructor group dimension and instructor dim tables. Thus we are breaking

up a many-to-many relationship into two many-to-one relationships.

3.7.2 Implementing slowly changing dimensions (SCD)

The fact tables see frequent insertion of new records in sync with the transactions

taking place. Thus, fact table grows quickly over time, but updates to these records

are rare. In the case of Dimension tables, the data growth is relatively slow, however

updates may be necessary to those records with changes to the business rules, or

student data, personal data and so on.

These changes may or may not be tracked based on business requirements. The

following are some of the different ways to do so. These methods are based on

Kimball’s approach to slowly changing dimensions in a data warehouse in [1].

SCD TYPE 1: Overwrite existing record

In slowly changing dimension Type 1 [1], the existing attribute is updated, i.e., it

is over-written with the new value. This type of SCD is used when the business

requirements state that no history of data is required for any analysis.

In the example Figure 3.11 shown below, the address is replaced with the new

value.

SCD TYPE 2: Add a New Record

In this type of slowly changing dimension, a new record is added whenever there is

a change, instead of updating the existing record with the new value. This is done

with the help of two date fields, effective start date and effective end date. These

21

Chapter 3. Design and Implementation

dates are manipulated, whenever there is a change [1].

This type of SCD, is the most commonly used and preferred because of its ability

to store unlimited history as well as to store the time of that change.

In the example Figure 3.12, The effective end date field is initially populated with

a random future date value, preferably a few years away, keeping the life cycle of

the data warehouse in mind. Now, whenever there is a change to address, the effec-

tive end date is changed to the when the address effectively ends, and a new record is

added with the new address value along with the respective effective start date. Also,

there is another field called current flag which is a boolean value indicating whether

the record is active or not. This column in included in order to further optimize the

query performance on this table when finding active or inactive records.

For example, to pull the active/current records, one may just look for current flag

= 1 instead of looking at (or joining on) the effective start date and effective end date

values.

SCD TYPE 3: Add new column

In slowly changing dimension type 3, a new field is introduced to keep limited track

of the changes [1].

This type of SCD is used when the business requirements state that only limited

history needs to be stored in the data mart. If there is a pre-determined value for

the number of versions of history being tracked, this type of SCD handling is helpful

in reducing redundancy and thus save storage space.

In the example Figure 3.13, assuming that we are keeping history of two values

for social security number, one field is the current social security number called SSN

and the previous or expired value is under the field name Prior SSN. Whenever a

22

Chapter 3. Design and Implementation

change is reported, the prior SSN field is updated with the existing value in SSN

field and the SSN field is updated with the new value. We could also have dates to

keep track of when the change has occurred.

Hybrid SCD (SCD Type 6): SCD Type 1 + Type 2

There are many types of hybrid slowly changing dimensions, one of which is a com-

bination of SCD types 1 and 2. This is also termed as SCD type 6 [1].

In this type of SCD, as in Figure 3.14, one field in the table can be a Type 2 SCD

(field: Address) and another is handled as a type 1 SCD (field: SSN). Initially we

have a record with an address and SSN. When there is a change in the address, it

is updated according the rules of SCD type 2 i.e., updating the effective start date,

effective end date and current flag fields. However when there is a change in the

SSN, it is updated according to the SCD type 1 rules which is to just replace or

over-write the old value.

23

Chapter 3. Design and Implementation

Figure 3.6: Student Enrollment Star Schema.

24

Chapter 3. Design and Implementation

Figure 3.7: Course Enrollment Star Schema.

25

Chapter 3. Design and Implementation

Figure 3.8: Instructor Course Assignment Fact Schema.

26

Chapter 3. Design and Implementation

Figure 3.9: Summary Fact Tables.

27

Chapter 3. Design and Implementation

Figure 3.10: Instructor Bridge Table.

Figure 3.11: Slowly Changing Dimension Type 1.

28

Chapter 3. Design and Implementation

Figure 3.12: Slowly Changing Dimension Type 2.

Figure 3.13: Slowly Changing Dimension Type 3.

Figure 3.14: Hybrid Slowly Changing Dimension.

29

Chapter 4

Extract Transform Load (ETL)

4.1 Populating the data mart

Extract transform and load (ETL) process is implemented after source tables have

been analyzed and target tables have been designed and installed in the database.

The SAS R© data integration (DI) studio is the ETL software piece of the SAS R© suite

of products. It has a more complex learning curve compared to some other ETL

tools like Pentaho or Talend; however,f it offers more flexibility in scheduling parallel

jobs and work flows.

4.2 Logical steps in ETL

The method used for the ETL process is based on the principles from [3] and the

technical details of ETL implementation is based on methods defined in [7]. After

the data mart has been implemented on the target database, staging tables are

designed. Data from various sources including ODS, pre-award research data stored

30

Chapter 4. Extract Transform Load (ETL)

in a database system called cayuse, space data stored in a database system called

famis is brought into a staging area using ETL jobs. Here the data is cleansed and

validated along with other quality checking and improvement processes as required.

From the staging tables, data is brought into the data mart tables using SAS R© data

integration studio. First, records are inserted into the dimension tables from the

respective staging tables along with ETL generated surrogate keys and then fact

tables are loaded by capturing numerical columns from the staging tables and the

corresponding surrogate keys from the dimension tables as foreign keys.

The first step in ETL is to define libraries in DI studio that contain connection

information to back end database servers. After this, metadata or definitions of

tables or views from the source and target environments are imported into the DI

studio environment. As a next step, the staging tables are populated using simple

transformations in DI studio. Further steps include loading the dimension tables and

finally loading the fact tables.

The dimension tables are loaded before the fact tables. The reason behind this

is that the fact table contains foreign keys to records from the dimension tables and

needs to pick it up while being loaded. This helps to maintain referential integrity of

the fact table i.e., a record exists in a fact table if and only if all the corresponding

key records exist in the respective dimension tables.

Source to target mapping: In the DI studio, within some transformations like

‘table loader‘, and ‘splitter‘, we have an option to select what input columns we need

and then map it to the respective output column. This is done automatically if the

source and target column names are same, otherwise the columns need to be mapped

manually using point-click and drag method. Figure 4.1 shows such an example.

Populating a staging table: Figure 4.2 demonstrates use of simple transfor-

mations like ‘extract‘ and ‘insert rows‘ to populate a staging table called

31

Chapter 4. Extract Transform Load (ETL)

Figure 4.1: Source to Target mapping in SAS R© DI Studio.

stg operating ledger cunm using and ODS source table operating ledger cunm.

Within the extract transformation there is an option to filter the rows extracted

according our needs. This operation is similar to ‘select‘ used along with a ‘where‘

condition in plain structured query language (SQL).

Loading a dimension table: Figure 4.3 shows how a dimension table in a

data mart is loaded. The source table is year type definition from the ODS and

the target dimension table is academic calendar dim. In the first step, some simple

SQL is run which truncates the dimension table, then the next steps show data

extraction from the source table based on some filter conditions mentioned in the

extract transformation. The SCD type 1 transformation is then used to generate a

value for time key which is the surrogate key for the target table. This generates an

integer incremented by 1 for each new record inserted into the table. The consequent

32

Chapter 4. Extract Transform Load (ETL)

Figure 4.2: Populating a staging table using SQL transformations in SAS R© DI Studio.

steps show execution of SQL for some calculated or derived fields in the target table.

Loading a fact table: The fact table contains the foreign keys to the respective

Figure 4.3: Populating a dimension table.

33

Chapter 4. Extract Transform Load (ETL)

dimensions which is the reason why fact table needs to be loaded after all the dimen-

sion tables have been loaded. In Figure 4.4 an ETL job to populate a fact table is

demonstrated. The target table is finance fact. It can be noticed that the facts are

coming from the staging table while the keys come from the dimension tables and

are pulled using join or lookup transformations.

Joins and where conditions can be specified with in the DI studio, and Figure 4.5

shows such an example. Join types like left, right, full, inner. cross or union can be

specified and clauses like where, group by, having, order by and sub-query can be

given with in this GUI tool which makes complicated SQL easier to implement.

Generating a work flow in the DI studio is very intuitive. Once jobs are created,

they can be run directly from the DI studio interface or can be deployed to a schedul-

ing server. These jobs generate a ‘.sas‘ file which is the actual executable program

run on the server. Once jobs are created in the DI studio, they are deployed to the

scheduling server. Here a work flow is created and jobs are selected to run as part

of the flow. In Figure 4.6 a complete flow of loading a star schema tables is shown.

First all the staging tables are refreshed. When only all of them are successful, which

is represented by the ’and’ gate, the work flow moves on to the next jobs, which is to

load the dimension tables. These jobs can also be run simultaneously, which can be

seen in the comments ‘start(index dim)‘ which means the next job kicks off as soon

as the current one starts. And finally the fact table is loaded after all dimension

tables have been loaded seen as ‘done(account dim)‘ in the comments.

In DI studio, a work flow can be scheduled or run based on many conditions.

Figure 4.7 shows the wide range of options available. It can be run manually any

time, or it can be scheduled to run multiple times at specified points of time. Triggers

can be programmed to run the flow at any time or file event including conditions

like arrival of a file and increase in a file size.

34

Chapter 4. Extract Transform Load (ETL)

The DI studio allows enough flexibility to run custom SAS code. This option

is present in many transformations including execute, table-loader, splitter, data-

transfer and surrogate-key-generator. Figure 4.8 shows a simple job containing an

SQL extract transformation which contains SQL code wrapped around by proc-

SQL which is a function used by SAS R© to interpret SQL code. Figure 4.9 shows

sample proc-SQL code. This code starts with a proc-SQL command. The option

nosymbolgen specifies that log messages about macro variable references will not be

displayed. Within the connect string, details like database, path which is defined in a

SAS R© library, user name and password are provided. The password can be encoded

by using SAS R© function called pwencode. The actual SQL statement is an execute

statement. Control flow of transformations in a job in Figure 4.10 shows how order

by which transformations are run can be changed by dragging them and placing them

where desired. The control flow can then be validated with the press of a button.

Job status shows progress of a job can be checked for any errors or warnings or

successful completion at each stage or transformation. Figure 4.11 shows the status

window in the DI studio GUI for the academic calendar dim job. The engine looks

for any precode first and runs it if present and then follows through all the steps and

checks for any postcode after the final step. Job statistics as shown in Figure 4.12

play an important role in optimization of jobs. It helps in understanding duration

of each job, CPU time, memory occupied and threads on the server. Depending on

the necessity, parameters in the job or on the server can be changed to allow more

threads or more memory.

4.3 Refreshing the data mart

Currently SAS R© scheduler within the management console is being used to schedule

jobs and work flows depending on the refresh needs. There are two ways of refreshing

35

Chapter 4. Extract Transform Load (ETL)

the data mart tables. Complete reload and incremental load.

The refresh strategy for each table may vary depending on how the source table

data is refreshed. For example, in the case of person dimension table, we have one

record per person and any change in the detail, is replicated by replacing old data.

In such a situation, it is better to opt for a complete reload, instead of tracking and

updating changes. Even in the case of a fact table for instance, it is more practical

to re-build it each time. This will ensure proper referential integrity of the fact table

and that the keys are pointing back to the correct record in the dimension table.

However in the case of student or course dimensions, the data in the respective

source tables in the ODS is not manipulated. Only new records are added to them.

Therefore an incremental load process may suffice here.

Data mart maintenance is relatively easier and cheaper as compared to a 3NF

database because of fewer number of tables involved. A proper naming convention

was also followed when naming fact, dimension or staging tables and indexes.

4.4 ETL performance and data validation

The SAS R© DI Studio was able to perform row inserts into Oracle tables at a rate

of one million records per minute. This was achieved while running multiple jobs in

parallel. After the data mart is populated, simple tests are run like record counts.

More complex queries are also run to check performance and also data validation.

Sample results are sent to business users for validation before moving jobs and data

to production environment. After this stage, data is automatically refreshed by the

time event or trigger events in the scheduling server.

36

Chapter 4. Extract Transform Load (ETL)

Figure 4.4: Populating a fact table - Finance Fact.

37

Chapter 4. Extract Transform Load (ETL)

Figure 4.5: Joins and where conditions in SAS R© DI Studio.

Figure 4.6: Work flow, parallel jobs and scheduling in SAS R© DI Studio.

38

Chapter 4. Extract Transform Load (ETL)

Figure 4.7: Job scheduling triggers in SAS R© DI Studio.

Figure 4.8: SQL Extract transform to run custom SQL.

39

Chapter 4. Extract Transform Load (ETL)

Figure 4.9: Proc-SQL example to run custom queries.

Figure 4.10: Control flow of transformations in a job.

40

Chapter 4. Extract Transform Load (ETL)

Figure 4.11: Job status.

Figure 4.12: Job statistics.

41

Chapter 5

Reporting from the data mart

5.1 Data Mart Performance

The data mart was designed and implemented using a dimensional modeling method

namely star schema. A star schema is essentially easy to understand, implement and

maintain. As seen in the previous chapters, a star schema has a fact table and a

few dimension tables. The student data mart has several subject areas like student

enrollment, course enrollment, admissions, financial aid and so on. Each subject area

has a fact table with dimension tables shared between these multiple subject areas.

Such tables are called conformed dimensions. For example the student enrollment

star schema has one fact table student enrollment fact and dimension tables like

academic calendar dim, student dim, course dim etc.. The naming convention has

been chosen in such a way that it is apparent as to what data is present in that

table. A dimension table contains comprehensive information about that aspect of

the subject area. For example, course dim table contains all information regarding a

course like college, department, course reference number, academic period in which

it was offered, section number and so on. The fact table contains transaction level

42

Chapter 5. Reporting from the data mart

data capturing all events regarding that subject area.

As each subject area is defined and the tables designed, it becomes very clear as

to what tables need to be used for a given query to that subject area. Reports can be

generated very easily based on a proper understanding of the data mart structure.

A fact table may contain many records, but because it contains a very small

number of columns querying the fact table is much faster. This is one of the main

reasons why the data mart should be able to perform better than the ODS in response

to report generation requests. More reasons are mentioned below.

Logical design: The star schema design requires fewer number of joins to build

a report as compared to the number of joins required to build the same report from

ODS tables.

Indexing appropriate columns: Columns in the tables of this star schema

are indexed optimally according the query or report requirements. Whereas in ODS,

the tables if they are indexed it is not done optimally. Also most of the time, views

rather than tables in ODS are used to build reports by most users at UNM, which

are slower to access.

Using surrogate keys: We use just this one numerical field to join a fact and

a dimension table as compared to using multiple fields to join tables in ODS. For

instance, when querying course level statistics, the fact table used is

course enrollment fact which is joined to dimension table academic calendar dim on

time key and to course dim on course key. Time key and course key are numerical

fields generated by the ETL job having unique values for each record in a dimension

table.

Using summary fact tables: In reports which require the use of aggregate

functions, summary fact tables are built with the aggregate fields pre-populated so

that the reports can directly read from these tables avoiding calculations on-the-fly

43

Chapter 5. Reporting from the data mart

Figure 5.1: Average ODS versus data mart performance.

thus ensuring faster delivery of reports.

I received response the times for the SQL queries against both ODS and the data

mart. These queries were based the grade distribution report and also a few other

reports which gives grade distributions and pass rates for courses, section, ethnicity.

Figure 5.1 shows an averaged performance of data mart versus ODS over different

queries. The data mart performed better than the ODS. On an average, the data

mart is more than 50% faster than the ODS.

5.2 Reports

The purpose building a data mart using star schema is to enable the development

of a wide variety of reports and predictive analytics. This is possible because of

44

Chapter 5. Reporting from the data mart

the flexible way in which the data is organized. It is the same data as in ODS but

organized in a different, more logical way. It is also relatively easy to develop reports

out of the data mart as compared to ODS because of the fewer number of tables

involved.

Several specific reports were proposed to be generated for a project based on this

student mart. Some have been built while others are still in development. Below is

a non-exhaustive description of a few of them. The WebFOCUS reporting tool is

being used to generate these reports.

General ad-hoc class performance report: For a given semester, this report

allows one to get grade distributions, withdrawal rates and pass rates for selected

courses and sections. Courses can be selected by instructor, course reference num-

ber, or by selecting a series of courses and sections. This report will also need to

have the ability to restrict its output to various sub-populations based on ethnic-

ity, financial aid, or other demographic conditions. Inputs can be course reference

number, instructor, academic period, subject code, course number, section number,

ethnicity, financial aid status, category of financial aid received, status as a first

generation college student (if possible) Outputs are grade distribution, withdrawal

rate and pass rate. As an example of demonstrating the simplicity of building a

report from the data mart, in this report, dimension tables used are course dim, aca-

demic calendar dim, student dim and the fact table used is course enrollment fact

joined on the surrogate keys time key, student key and course key. Therefore with

relatively simple SQL joins and select operations, this complex report was built en-

abling drill-down and drill-across capabilities which allow dynamic reporting based

on selecting academic period, department, course and section.

Two course grade comparison report: This report will compare how stu-

dents in one course during one semester performed in another course during a sub-

sequent semester (e.g. Physics I during Fall of 2012 and Physics II during Spring of

45

Chapter 5. Reporting from the data mart

2013). This report will also be able to look at sub-populations in a similar manner

as the previous report.

A few other reports that are supported by the data mart are mentioned below:

• A report that shows the transitions to and the transitions from a given major.

For a given time period, it shows the number and majors of students that

transferred into a given major. Also for a given time period, it shows the

number and majors of students who transferred from a given major.

• A report that gives the percentage of STEM classes taken by STEM majors,

broken down by major for a given academic period.

• A report that gives the number of degrees granted, broken down by major and

level of degree including average GPA for a given semester.

• A report that gives the number and percentage of non-STEM majors in STEM

courses broken down by course.

Figure 5.2 is a report which shows student credit hours (sch) generated by faculty

in each academic period by college. The report in Figure 5.3 shows student enrolled

hours in an academic period by college and by course level, i.e., lower undergraduate,

upper undergraduate or graduate.

46

Chapter 5. Reporting from the data mart

Figure 5.2: SCH generated by faculty by academic period, college.

Figure 5.3: Student hours enrolled by academic period, college.

47

Chapter 6

Future Work

The student data mart being discussed in this thesis currently has a star schema that

incorporates fact tables for applications and admissions, student enrollment, course

enrollment, semester performance and financial aid. In the near future, we also look

to incorporate curriculum data, student assessment data, career services and alumni

data. Having this kind of data from high school GPA and admission test scores,

academic performance at UNM and how well students are able to move onto a job

or higher studies helps us to better understand and measure student success.

A finance data mart is also being built to analyze the flow of money through

various organizations for various activities. The finance reports and applications

for the president’s and the provost’s office as well as individual departments will be

supported by this data mart.

In the near future, the University of New Mexico plans to build a research space

data mart which will have information about the research space allotted to each

principal investigator bringing in funding to UNM. This data mart includes the

investigator data, research proposal, grant, fund, organization, program, account

and activity data. It would also contain the space data which includes what space

48

Chapter 6. Future Work

was allotted to which researcher and how it was used during a certain period of time.

This data mart would give UNM scope to do analytics on how efficiently space is

being used on campus, improve space allotment and also predict future usage.

The ETL process will be automated further to support nightly updates of the

data mart and automatic report generation and publication. There is scope to take

leverage of the built-in transformations in the SAS R© data integration studio to sup-

port dimensional modeling, handle many-to-many relationships and slowly changing

dimensions. Apart from that it includes top of the line tools which will help build

interesting analytic models including forecasting, what-if analysis and predictive an-

alytic models. Reports will be built using SAS R© visual analytics (VA).

Sankey diagrams shown below were developed as a part of another analytics

initiative and are currently run on Amazon EC2 cloud with a Postgres database as

the back end. The data was loaded into this database using Excel spreadsheets. In

future, these Sankey diagrams will be supported by the data marts.

The Sankey diagrams can be viewed at www.provostcloud.unm.edu. The first

example shown in Figure 6.1 is the college flow of majors by semester in 2008,

Arts and Sciences college, Chemistry department. There are a bunch of filters and

statistics provided at the bottom of the page to drill down to the user’s needs.

The second sankey diagram in Figure 6.2 highlights part of the flow when one of

the nodes is hovered upon by the mouse. This uses Data-Driven Documents (D3)

Javascript programming. At the bottom of the web page there are some filters and

the corresponding statistics displayed. This is shown in Figure 6.3.

49

Chapter 6. Future Work

Figure 6.1: Sankey Diagram for 2008 Arts and Sciences Chemistry College Flow.
50

Chapter 6. Future Work

Figure 6.2: Sankey Diagram node highlight example.
51

Chapter 6. Future Work

Figure 6.3: Sankey diagram statistics display.

52

Appendices

6.1 Student data mart table structure (DDL)

The table structure of the student data mart designed, implemented and in

production environment, is given below.

CREATE TABLE ACADEMIC CALENDAR DIM

(

TIME KEY NUMBER,

ACADEMIC PERIOD VARCHAR2(63 CHAR) ,

ACADEMIC PERIOD DESC VARCHAR2(255 CHAR) ,

ACADEMIC YEAR VARCHAR2(63 CHAR) ,

ACADEMIC YEAR DESC VARCHAR2(255 CHAR) ,

SEMESTER START DATE,

SEMESTER END DATE,

AID YEAR VARCHAR2(63 CHAR) ,

AID YEAR DESC VARCHAR2(255 CHAR) ,

CALENDAR YEAR NUMBER(4) ,

HED REGDATE VARCHAR2(5 CHAR) ,

ACASEM VARCHAR2(30 CHAR) ,

ETL TIMESTAMP TIMESTAMP(6)

53

Chapter 6. Future Work

) ;

CREATE TABLE COURSE DIM

(

COURSE KEY NUMBER,

ACADEMIC PERIOD VARCHAR2(64 CHAR) ,

ACADEMIC PERIOD DESC VARCHAR2(255 CHAR) ,

SUB ACADEMIC PERIOD VARCHAR2(12 CHAR) ,

SUB ACADEMIC PERIOD DESC VARCHAR2(50 CHAR) ,

COURSE REFERENCE NUMBER VARCHAR2(5 CHAR) ,

SUBJECT CODE VARCHAR2(4 CHAR) ,

SUBJECT CODE DESC VARCHAR2(30 CHAR) ,

COURSE NUMBER VARCHAR2(5 CHAR) ,

SECTION NUMBER VARCHAR2(3 CHAR) ,

COURSE TITLE SHORT VARCHAR2(30 CHAR) ,

COURSE STATUS CODE VARCHAR2(63 CHAR) ,

COURSE STATUS CODE DESC VARCHAR2(255 CHAR) ,

CAMPUS CODE VARCHAR2(63 CHAR) ,

CAMPUS CODE DESC VARCHAR2(255 CHAR) ,

COLLEGE CODE VARCHAR2(63 CHAR) ,

COLLEGE CODE DESC VARCHAR2(255 CHAR) ,

DEPARTMENT CODE VARCHAR2(63 CHAR) ,

DEPARTMENT CODE DESC VARCHAR2(255 CHAR) ,

GENERATED CREDITS NUMBER(9 , 3) ,

MIN CREDIT HRS NUMBER(7 , 3) ,

MAX CREDIT HRS NUMBER(7 , 3) ,

MIN BILLING HRS NUMBER(7 , 3) ,

MAX BILLING HRS NUMBER(7 , 3) ,

54

Chapter 6. Future Work

SCHEDULE TYPE VARCHAR2(3 CHAR) ,

SCHEDULE TYPE DESC VARCHAR2(30 CHAR) ,

INSTRUCTIONAL METHOD CODE VARCHAR2(8 CHAR) ,

INSTRUCTIONAL METHOD CODE DESC VARCHAR2(255 CHAR) ,

INTEGRATION CODE VARCHAR2(5 CHAR) ,

SESSION ID VARCHAR2(8 CHAR) ,

COURSE LEVEL VARCHAR2(2 CHAR) ,

COURSE LEVEL DESC VARCHAR2(120 CHAR) ,

CROSS LIST GROUP CODE VARCHAR2(2 CHAR) ,

ACTUAL ENROLLMENT NUMBER(4) ,

PREV ENROLLMENT NUMBER(4) ,

COURSE FEES NUMBER(12 , 2) ,

COURSE START DATE DATE,

COURSE END DATE DATE,

CENSUS ENROLLMENT DATE1 DATE,

CENSUS ENROLLMENT1 NUMBER(4) ,

CENUS ENROLLMENT DATE2 DATE,

CENSUS ENROLLMENT2 NUMBER(4) ,

EFFECTIVE START DATE DATE,

EFFECTIVE END DATE DATE,

GRADE TYPE CHAR(20 CHAR) ,

GRADE TYPE DESC CHAR(40 CHAR) ,

ACTIVE FLAG NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE COURSE ENROLLMENT FACT

(

55

Chapter 6. Future Work

TIME KEY NUMBER,

COURSE KEY NUMBER,

DEPARTMENT KEY NUMBER,

INSTRUCTOR GROUP KEY NUMBER,

CROSS LIST GROUP CODE VARCHAR2(2 CHAR) ,

TOTAL ENROLLMENT NUMBER,

A PLUS COUNT NUMBER,

A COUNT NUMBER,

A MINUS COUNT NUMBER,

B PLUS COUNT NUMBER,

B COUNT NUMBER,

B MINUS COUNT NUMBER,

C PLUS COUNT NUMBER,

C COUNT NUMBER,

C MINUS COUNT NUMBER,

D PLUS COUNT NUMBER,

D COUNT NUMBER,

D MINUS COUNT NUMBER,

F COUNT NUMBER,

CR COUNT NUMBER,

NR COUNT NUMBER,

NC COUNT NUMBER,

WCOUNT NUMBER,

WP COUNT NUMBER,

WF COUNT NUMBER,

WNCCOUNT NUMBER,

W TOTAL COUNT NUMBER,

AUD COUNT NUMBER,

56

Chapter 6. Future Work

WHITE COUNT NUMBER,

AFRICAN AMERICAN COUNT NUMBER,

AMERICAN INDIAN COUNT NUMBER,

HISPANIC COUNT NUMBER,

ASIAN COUNT NUMBER,

NATIVE HAWAIIAN COUNT NUMBER,

TWO MORE RACES COUNT NUMBER,

RACE ETHN UNKOWN COUNT NUMBER,

NON RES COUNT NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE DEGREESAWARDED FACT

(

TIME KEY NUMBER,

STUDENT KEY NUMBER,

PERSON KEY NUMBER,

PERSON UID NUMBER,

STUDENT ID VARCHAR2(9 CHAR) ,

DEGREE CODE VARCHAR2(63 CHAR) ,

DEGREE CODE DESC VARCHAR2(255 CHAR) ,

AWARDCATEGORY VARCHAR2(63 CHAR) ,

AWARD CATEGORY DESC VARCHAR2(255 CHAR) ,

STATUS CODE VARCHAR2(63 CHAR) ,

STATUS CODE DESC VARCHAR2(255 CHAR) ,

OUTCOME AWARDED IND VARCHAR2(1 CHAR) ,

GRADUATED IND VARCHAR2(1 CHAR) ,

TRANSFER WORK EXISTS IND VARCHAR2(1 CHAR) ,

57

Chapter 6. Future Work

OUTCOME GRADUATION DATE DATE,

ACADEMIC PERIOD VARCHAR2(63 CHAR) ,

ACADEMIC PERIOD GRADUATION VARCHAR2(63 CHAR) ,

GRADUATION STATUS VARCHAR2(3 CHAR) ,

GRADUATION STATUS DESC VARCHAR2(255 CHAR) ,

CREDITS ATTEMPED NUMBER,

CREDITS EARNED NUMBER,

GPA CREDITS NUMBER,

QUALITY POINTS NUMBER,

CREDITS PASSED NUMBER,

GPA NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE DEPARTMENT DIM

(

DEPARTMENT KEY NUMBER,

DEPARTMENT CODE VARCHAR2(63 CHAR) ,

DEPARTMENT CODE DESC VARCHAR2(255 CHAR) ,

COLLEGE CODE VARCHAR2(63 CHAR) ,

COLLEGE CODE DESC VARCHAR2(255 CHAR) ,

CAMPUS CODE VARCHAR2(63 CHAR) ,

CAMPUS CODE DESC VARCHAR2(255 CHAR) ,

ORGANIZATION LEVEL 2 VARCHAR2(63 CHAR) ,

ORGANIZATION DESC 2 VARCHAR2(255 CHAR) ,

ETL TIMESTAMP TIMESTAMP(6)

) ;

58

Chapter 6. Future Work

CREATE TABLE FINANCIAL AID FACT

(

TIME KEY NUMBER,

STUDENT KEY NUMBER,

FINANCIAL AID KEY NUMBER,

STUDENT ID VARCHAR2(9 CHAR) ,

PERSON UID NUMBER,

AID YEAR VARCHAR2(63 CHAR) ,

CAMPUS CODE VARCHAR2(63 CHAR) ,

AID YEAR DESC VARCHAR2(255 CHAR) ,

AWARD STATUS VARCHAR2(63 CHAR) ,

AWARD STATUS DESC VARCHAR2(255 CHAR) ,

AWARD STATUS DATE DATE,

AWARD OFFER IND VARCHAR2(63 CHAR) ,

AWARD ACCEPT IND VARCHAR2(63 CHAR) ,

AWARD DECLINE IND VARCHAR2(63 CHAR) ,

AWARD CANCEL IND VARCHAR2(63 CHAR) ,

AWARDOFFERAMOUNT NUMBER,

AWARDACCEPTAMOUNT NUMBER,

AWARD PAID AMOUNT NUMBER,

PELL GRANT RECEIVED FLAG NUMBER,

PELL ELIGIBLE FLAG NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE FINANCIAL AID FUND DIM

(

FINANCIAL AID FUND KEY NUMBER,

59

Chapter 6. Future Work

AID YEAR VARCHAR2(63 CHAR) ,

AID YEAR DESC VARCHAR2(255 CHAR) ,

FUND VARCHAR2(63 CHAR) ,

FUND TITLE VARCHAR2(255 CHAR) ,

FUND SOURCE VARCHAR2(63 CHAR) ,

FUND SOURCE DESC VARCHAR2(255 CHAR) ,

FUND TYPE CODE VARCHAR2(63 CHAR) ,

FUND TYPE DESC VARCHAR2(255 CHAR) ,

GIFT OR SELF HELP AID VARCHAR2(63 CHAR) ,

GIFT OR SELF HELP AID DESC VARCHAR2(255 CHAR) ,

FUND DETAIL CODE VARCHAR2(63 CHAR) ,

FEDERAL FUND ID VARCHAR2(63 CHAR) ,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE INSTRUCTIONAL ASSIGNMENT FACT

(

TIME KEY NUMBER,

INSTRUCTOR KEY NUMBER,

COURSE KEY NUMBER,

SUB ACADEMIC PERIOD VARCHAR2(63 CHAR) ,

SUB ACADEMIC PERIOD DESC VARCHAR2(255 CHAR) ,

CATEGORY VARCHAR2(2 CHAR) ,

PRIMARY IND VARCHAR2(1 CHAR) ,

PERCENT RESPONSIBILITY NUMBER,

SESSION PERCENTAGE NUMBER

) ;

60

Chapter 6. Future Work

CREATE TABLE INSTRUCTOR DIM

(

INSTRUCTOR KEY NUMBER,

INSTRUCTOR ID VARCHAR2(9 CHAR) ,

INSTRUCTOR UID NUMBER,

INSTRUCTOR FIRST NAME VARCHAR2(60 CHAR) ,

INSTRUCTOR LAST NAME VARCHAR2(60 CHAR) ,

INSTRUCTOR RANK CODE VARCHAR2(63 CHAR) ,

INSTRUCTOR RANK CODE DESC VARCHAR2(255 CHAR) ,

INSTRUCTOR BASE SALARY CHAR(20 CHAR) ,

PRIM APPOINTMENT DESC VARCHAR2(30 CHAR) ,

PRIM APPOINTMENT DEPT CODE VARCHAR2(4 CHAR) ,

PRIM APPT DEPT DESC VARCHAR2(30 CHAR) ,

PRIM EFFECTIVE START DT DATE,

PRIM EFFECTIVE END DT DATE,

ACADEMIC TITLE CHAR(20 CHAR) ,

PRIM TENURE CODE VARCHAR2(2 CHAR) ,

PRIM TENURE DEPT CODE VARCHAR2(4 CHAR) ,

PRIM TENURE EFF DATE DATE,

PRIM TENURE TRACK BEGIN DATE DATE,

PRIM TENURE REVIEW DATE DATE,

SEC APPOINTMENT DESC VARCHAR2(30 CHAR) ,

SEC APPOINTMENT DEPT CODE VARCHAR2(30 CHAR) ,

SEC APPT DEPT DESC VARCHAR2(30 CHAR) ,

SEC TENURE CODE VARCHAR2(2 CHAR) ,

SEC TENURE DEPT CODE VARCHAR2(4 CHAR) ,

SEC TENURE EFF DATE DATE,

SEC TENURE TRACK BEGIN DATE DATE,

61

Chapter 6. Future Work

SEC TENURE REVIEW DATE DATE,

RANK EFFECTIVE START DT DATE,

RANK EFFECTIVE END DT DATE,

ACTIVE FLAG NUMBER,

EFFECTIVE START DATE DATE,

EFFECTIVE END DATE DATE,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE MAJOR DEPT XWALK

(

MAJOR CODE VARCHAR2(10 CHAR) ,

MAJOR DESCRIPTION VARCHAR2(31 CHAR) ,

ORGANIZATION LEVEL 5 VARCHAR2(7 CHAR) ,

ORGANIZATION DESC 5 VARCHAR2(34 CHAR) ,

OBSOLETE VARCHAR2(8 CHAR) ,

BANNER MAJOR CODE VARCHAR2(10 CHAR) ,

BANNER ORG CODE VARCHAR2(15 CHAR) ,

ORGANIZATION LEVEL 3 VARCHAR2(7 CHAR) ,

ORGANIZATION DESC 3 VARCHAR2(34 CHAR) ,

ORGANIZATION LEVEL 2 VARCHAR2(7 CHAR) ,

ORGANIZAITON DESC 2 VARCHAR2(25 CHAR)

) ;

CREATE TABLE PERSON DIM

(

PERSON KEY NUMBER,

PERSON ID VARCHAR2(9 CHAR) ,

62

Chapter 6. Future Work

PERSON UID NUMBER,

FIRST NAME VARCHAR2(63 CHAR) ,

LAST NAME VARCHAR2(63 CHAR) ,

MIDDLE INITIAL VARCHAR2(15 CHAR) ,

MIDDLE NAME VARCHAR2(63 CHAR) ,

NAME SUFFIX VARCHAR2(20 CHAR) ,

FULL NAME FMIL VARCHAR2(255 CHAR) ,

FULL NAME LFMI VARCHAR2(255 CHAR) ,

NETID VARCHAR2(30 CHAR) ,

GENDER VARCHAR2(63 CHAR) ,

GENDER DESC VARCHAR2(63 CHAR) ,

BIRTH DATE DATE,

CURRENT AGE NUMBER,

DECEASED STATUS VARCHAR2(1 CHAR) ,

DECEASED DATE DATE,

CONFIDENTIALITY IND VARCHAR2(1 CHAR) ,

PRIMARY ETHNICITY VARCHAR2(63 CHAR) ,

PRIMARY ETHNICITY DESC VARCHAR2(255 CHAR) ,

PRIM ETHNICITY CATEGORY VARCHAR2(63 CHAR) ,

PRIM ETHNICITY CATEGORY DESC VARCHAR2(255 CHAR) ,

HISPANIC LATINO ETHNICITY IND VARCHAR2(1 CHAR) ,

IPEDS VALUES NUMBER,

IPEDS VALUES DESC VARCHAR2(63 CHAR) ,

HISPANIC NUMBER,

AMERICAN INDIAN NUMBER,

ASIAN NUMBER,

AFRICAN AMERICAN NUMBER,

NATIVE HAWAIIAN NUMBER,

63

Chapter 6. Future Work

WHITE NUMBER,

NON RESIDENT ALIEN NUMBER,

RACE CATEGORY COUNT NUMBER,

RACE COUNT NUMBER,

RACE ETHNICITY CONFIRM IND VARCHAR2(1 CHAR) ,

RACE ETHNICITY CONFIRM DATE DATE,

CITIZENSHIP TYPE VARCHAR2(63 CHAR) ,

CITIZENSHIP TYPE DESC VARCHAR2(255 CHAR) ,

CITIZENSHIP IND VARCHAR2(1 CHAR) ,

NATION OF CITIZENSHIP VARCHAR2(63 CHAR) ,

NATION OF CITIZENSHIP DESC VARCHAR2(255 CHAR) ,

VISA TYPE VARCHAR2(63 CHAR) ,

VISA TYPE DESC VARCHAR2(255 CHAR) ,

VETERAN CATEGORY VARCHAR2(1 CHAR) ,

VETERAN CATEGORY DESC VARCHAR2(45 CHAR) ,

VETERAN SPECIAL DISABLED IND VARCHAR2(1 CHAR) ,

MILITARY SEPARATION DATE DATE,

MA ADDRESS TYPE VARCHAR2(2 CHAR) ,

MA ADDRESS TYPE DESC VARCHAR2(50 CHAR) ,

MA ACTIVE ADDRESS IND VARCHAR2(2 CHAR) ,

MA STREET LINE1 VARCHAR2(100 CHAR) ,

MA STREET LINE2 VARCHAR2(100 CHAR) ,

MA STREET LINE3 VARCHAR2(100 CHAR) ,

MA CITY VARCHAR2(63 CHAR) ,

MA STATE PROVINCE VARCHAR2(3 CHAR) ,

MA STATE PROVINCE DESC VARCHAR2(35 CHAR) ,

MA POSTAL CODE VARCHAR2(30 CHAR) ,

MA COUNTY CODE VARCHAR2(6 CHAR) ,

64

Chapter 6. Future Work

MA COUNTY CODE DESC VARCHAR2(20 CHAR) ,

MA NATION CODE VARCHAR2(5 CHAR) ,

MA NATION CODE DESC VARCHAR2(50 CHAR) ,

ADDRESS COUNT NUMBER,

PHONE NUMBER COMBINED VARCHAR2(35 CHAR) ,

PHONE TYPE VARCHAR2(5 CHAR) ,

PHONE DESC VARCHAR2(50 CHAR) ,

PHONE COUNT NUMBER,

EMAIL ADDRESS VARCHAR2(255 CHAR) ,

EMAIL TYPE VARCHAR2(35 CHAR) ,

EMAIL TYPE DESC VARCHAR2(255 CHAR) ,

EMAIL COMMENT VARCHAR2(255 CHAR) ,

EMAIL PREFERRED ADDRESS VARCHAR2(255 CHAR) ,

PE ADDRESS TYPE VARCHAR2(63 CHAR) ,

PE ADDRESS TYPE DESC VARCHAR2(255 CHAR) ,

PE ACTIVE ADDRESS IND VARCHAR2(2 CHAR) ,

PE STREET LINE1 VARCHAR2(255 CHAR) ,

PE STREET LINE2 VARCHAR2(255 CHAR) ,

PE STREET LINE3 VARCHAR2(255 CHAR) ,

PE CITY VARCHAR2(63 CHAR) ,

PE STATE PROVINCE VARCHAR2(63 CHAR) ,

PE STATE PROVINCE DESC VARCHAR2(255 CHAR) ,

PE POSTAL CODE VARCHAR2(63 CHAR) ,

PE COUNTY CODE VARCHAR2(63 CHAR) ,

PE COUNTY CODE DESC VARCHAR2(255 CHAR) ,

PE NATION CODE VARCHAR2(63 CHAR) ,

PE NATION CODE DESC VARCHAR2(255 CHAR) ,

EFFECTIVE START DATE DATE,

65

Chapter 6. Future Work

EFFECTIVE END DATE DATE,

SSN VARCHAR2(63 CHAR) ,

STARS ID VARCHAR2(50 CHAR) ,

ACTIVE FLAG NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE PROGRAM DIM

(

PROGRAMKEY INTEGER,

PROGRAMCODE VARCHAR2(12 CHAR) ,

PROGRAM DESC VARCHAR2(30 CHAR) ,

LEVEL CODE VARCHAR2(2 CHAR) ,

CAMPUS CODE VARCHAR2(3 CHAR) ,

COLLEGE CODE VARCHAR2(2 CHAR) ,

DEGC CODE VARCHAR2(6 CHAR) ,

ETL TIMESTAMP DATE

) ;

CREATE TABLE PROGRAM ENROLLMENT FACT

(

TIME KEY NUMBER,

PROGRAMKEY NUMBER,

TOTAL ENROLLMENT NUMBER,

WHITE COUNT NUMBER,

AFRICAN AMERICAN COUNT NUMBER,

AMERICAN INDIAN COUNT NUMBER,

HISPANIC COUNT NUMBER,

66

Chapter 6. Future Work

ASIAN COUNT NUMBER,

NATIVE HAWAIIAN COUNT NUMBER,

TWO MORE RACES COUNT NUMBER,

RACE ETHN UNKOWN COUNT NUMBER,

NON RES COUNT NUMBER,

ETL TIMESTAMP DATE

) ;

CREATE TABLE STUDENT DIM

(

STUDENT KEY NUMBER,

STUDENT ID VARCHAR2(15 CHAR) ,

PERSON UID NUMBER,

ACADEMIC PERIOD VARCHAR2(30 CHAR) ,

ACADEMIC PERIOD DESC VARCHAR2(30 CHAR) ,

PROGRAMCODE VARCHAR2(12 CHAR) ,

PROGRAM CODE DESC VARCHAR2(30 CHAR) ,

PRIMARY PROGRAM IND VARCHAR2(1 CHAR) ,

YEAR ADMITTED VARCHAR2(4 CHAR) ,

YEAR ADMITTED DESC VARCHAR2(20 CHAR) ,

AGE ADMITTED NUMBER,

CATALOG ACADEMIC PERIOD VARCHAR2(6 CHAR) ,

CATALOG ACADEMIC PERIOD DESC VARCHAR2(30 CHAR) ,

AWARDCATEGORY VARCHAR2(2 CHAR) ,

AWARD CATEGORY DESC VARCHAR2(30 CHAR) ,

NEW STUDENT IND VARCHAR2(1 CHAR) ,

ADMISSIONS POPULATION VARCHAR2(2 CHAR) ,

ADMISSIONS POPULATION DESC VARCHAR2(30 CHAR) ,

67

Chapter 6. Future Work

DEGREE CODE VARCHAR2(6 CHAR) ,

DEGREE CODE DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CODE VARCHAR2(4 CHAR) ,

FIRST MAJOR CODE DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CIP CODE VARCHAR2(6 CHAR) ,

FIRST MAJOR CIP DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CONC1 VARCHAR2(4 CHAR) ,

FIRST MAJOR CONC1 DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CONC2 VARCHAR2(4 CHAR) ,

FIRST MAJOR CONC2 DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CONC3 VARCHAR2(4 CHAR) ,

FIRST MAJOR CONC3 DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR DEPT CODE VARCHAR2(4 CHAR) ,

FIRST MAJOR DEPT CODE DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR COLLEGE CODE VARCHAR2(2 CHAR) ,

FIRST MAJOR COLLEGE CODE DESC VARCHAR2(30 CHAR) ,

FIRST MAJOR CAMPUS CODE VARCHAR2(3 CHAR) ,

FIRST MAJOR CAMPUS CODE DESC VARCHAR2(30 CHAR) ,

SECOND MAJOR CODE VARCHAR2(4 CHAR) ,

SECOND MAJOR DESC VARCHAR2(30 CHAR) ,

SECOND MAJOR CIP CODE VARCHAR2(6 CHAR) ,

SECOND MAJOR CIP DESC VARCHAR2(30 CHAR) ,

SECOND MAJOR CONC1 VARCHAR2(4 CHAR) ,

SECOND MAJOR CONC1 DESC VARCHAR2(30 CHAR) ,

SECOND MAJOR CONC2 VARCHAR2(4 CHAR) ,

SECOND MAJOR CONC2 DESC VARCHAR2(30 CHAR) ,

SECOND MAJOR CONC3 VARCHAR2(4 CHAR) ,

SECOND MAJOR CONC3 DESC VARCHAR2(30 CHAR) ,

68

Chapter 6. Future Work

SECOND MAJOR DEPT CODE VARCHAR2(4 CHAR) ,

SECOND MAJOR DEPT CODE DESC VARCHAR2(30 CHAR) ,

FIRST MINOR CODE VARCHAR2(4 CHAR) ,

FIRST MINOR CODE DESC VARCHAR2(30 CHAR) ,

SECOND MINOR CODE VARCHAR2(4 CHAR) ,

SECOND MINOR CODE DESC VARCHAR2(30 CHAR) ,

STUDENT STATUS CODE VARCHAR2(2 CHAR) ,

STUDENT STATUS CODE DESC VARCHAR2(10 CHAR) ,

CURRENT TIME STATUS CODE VARCHAR2(2 CHAR) ,

CURRENT TIME STATUS CODE DESC VARCHAR2(30 CHAR) ,

STUDENT CLASS BOAP CODE VARCHAR2(2 CHAR) ,

STUDENT CLASS BOAP CODE DESC VARCHAR2(30 CHAR) ,

STUDENT CLASSIFICATION VARCHAR2(2 CHAR) ,

STUDENT CLASSIFICATION DESC VARCHAR2(30 CHAR) ,

STUDENT LEVEL CODE VARCHAR2(2 CHAR) ,

STUDENT LEVEL CODE DESC VARCHAR2(30 CHAR) ,

RESIDENCY CODE VARCHAR2(2 CHAR) ,

RESIDENCY DESC VARCHAR2(30 CHAR) ,

RESIDENCY IND VARCHAR2(1 CHAR) ,

FINANCIAL AID ELIGIBLE FLAG NUMBER,

FINANCIAL AID RECEIVED FLAG NUMBER,

FINAID APPLICANT IND VARCHAR2(1 CHAR) ,

STUDENT RATE CODE VARCHAR2(2 CHAR) ,

STUDENT RATE CODE DESC VARCHAR2(21 CHAR) ,

STUDENT ATTRIBUTE CODE VARCHAR2(63 CHAR) ,

STUDENT ATTRIBUTE CODE DESC VARCHAR2(255 CHAR) ,

ENROLLED IND VARCHAR2(1 CHAR) ,

REGISTERED IND VARCHAR2(1 CHAR) ,

69

Chapter 6. Future Work

REGISTERED ABQ VARCHAR2(1 CHAR) ,

REGISTERED LOS ALAMOS VARCHAR2(1 CHAR) ,

REGISTERED TAOS VARCHAR2(1 CHAR) ,

REGISTERED GALLUP VARCHAR2(1 CHAR) ,

REGISTERED VALENCIA VARCHAR2(1 CHAR) ,

EFFECTIVE START DATE DATE,

EFFECTIVE END DATE DATE,

STUDENT POPULATION VARCHAR2(1 CHAR) ,

STUDENT POPULATION DESC VARCHAR2(30 CHAR) ,

ACTIVE FLAG NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE STUDENT ENROLLMENT FACT

(

TIME KEY NUMBER,

STUDENT KEY NUMBER,

PERSON KEY NUMBER,

COURSE KEY NUMBER,

PROGRAMKEY NUMBER,

INSTRUCTOR GROUP KEY NUMBER,

STUDENT ID VARCHAR2(9 CHAR) ,

CREDIT HRS ATTEMPTED NUMBER,

CREDIT HRS EARNED NUMBER,

COURSE CREDITS NUMBER,

FINAL GRADE RECEIVED VARCHAR2(63 CHAR) ,

GRADE POINTS RECEIVED NUMBER,

REGISTRATION STATUS VARCHAR2(63 CHAR) ,

70

Chapter 6. Future Work

REGISTRATION STATUS DESC VARCHAR2(255 CHAR) ,

COMPLETED FLAG NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE STUDENT LEVEL SUMMARY FACT

(

PERSON KEY NUMBER,

STUDENT ID VARCHAR2(9 CHAR) ,

PERSON UID NUMBER,

NAME VARCHAR2(255 CHAR) ,

NO OF COURSES ENROLLED NUMBER,

GPA TYPE VARCHAR2(1 CHAR) ,

GPA TYPE DESC VARCHAR2(11 CHAR) ,

ACADEMIC STUDY VALUE VARCHAR2(63 CHAR) ,

ACADEMIC STUDY VALUE DESC VARCHAR2(255 CHAR) ,

GPA NUMBER,

GPA CREDITS NUMBER,

CREDITS ATTEMPTED NUMBER,

CREDITS EARNED NUMBER,

CREDITS PASSED NUMBER,

QUALITY POINTS NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

CREATE TABLE STUDENT TERM SUMMARY FACT

(

TIME KEY NUMBER,

71

Chapter 6. Future Work

PERSON KEY NUMBER,

STUDENT KEY NUMBER,

ACADEMIC PERIOD VARCHAR2(6 CHAR) ,

STUDENT ID VARCHAR2(9 CHAR) ,

PERSON UID NUMBER,

NO OF COURSES ENROLLED NUMBER,

GPA TYPE VARCHAR2(1 CHAR) ,

GPA TYPE DESC VARCHAR2(11 CHAR) ,

ACADEMIC STUDY VALUE VARCHAR2(63 CHAR) ,

ACADEMIC STUDY VALUE DESC VARCHAR2(255 CHAR) ,

GPA NUMBER,

GPA CREDITS NUMBER,

CREDITS ATTEMPTED NUMBER,

CREDITS EARNED NUMBER,

CREDITS PASSED NUMBER,

QUALITY POINTS NUMBER,

ETL TIMESTAMP TIMESTAMP(6)

) ;

72

References

[1] R. Kimball and M. Ross. The Data Warehouse Toolkit. The definitive guide to
dimensional modeling.

[2] W. H. Inmon. Building the Data Warehouse. Getting Started.

[3] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit. Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering data.

[4] R. Kimball and M. Ross. The Kimball Group Reader. Relentlessly Practical
Tools for Data Warehousing and Business Intelligence.

[5] T. Teorey, S. Lightstone and T.Nadeau. Database Modeling and Design. Logical
Design.

[6] C. Adamson. Star Schema. The complete reference.

[7] SAS Institute Inc.. SAS R© Data Integration Studio 4.7 User Guide 2013.

73

	University of New Mexico
	UNM Digital Repository
	7-12-2014

	Designing and Implementing a Data Warehouse using Dimensional Modeling
	VINAYA GANAPAVARAPU
	Recommended Citation

	tmp.1472502609.pdf.7UKmH

