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by 

Caleb D. Morse 

B.S., Computer Engineering, University of New Mexico, 2011          
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Abstract 

Universities have long been analyzing student cohorts in an attempt to understand the factors 

influencing whether a student continues in their major, switches to another major (often referred 

to as swirl), or drops out entirely. A visual representation of how students flow between majors 

and colleges can aid in this understanding. This thesis will study how a student cohort can be 

represented in a Sankey Diagram. In this analysis, a student cohort is represented as a weighted, 

directed, graph, where a vertex represents a distinct class status for a semester and each weighted 

edge represents the number of students moving between class statuses. To ease understanding, this 

graph is represented visually as a Sankey Diagram, a special kind of flow diagram. The purpose 

of this tool is to give university administration a visual representation of the flow of a student 

cohort between majors and colleges on a semester-by-semester basis. This representation can be 

viewed at three levels of granularity: that of an entire university, college, or a single major. 
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1. Introduction 

1.1. Background of Problem 

Humans are poorly suited for working with large heterogeneous datasets, but visual 

representations of this data can greatly increase understanding by providing succinct overviews. 

However, these visualizations must be created with care, taking into account the inherent limits of 

human cognition and perception [1]. Thus, visual analytics are often based on graphic 

summarizations of a complete dataset. 

At public flagship universities, a large number of students comprise the entering freshmen 

cohort each year, and this cohort creates a myriad of data during their time at the university. This 

data is a valuable source of information regarding student success. Unfortunately, business 

intelligence tools are often poorly suited for an academic environment because the types of 

information used by university administration for decision-making differs greatly from the 

information used in a traditional business environment. 

1.2. Sankey Diagrams 

A Sankey diagram is special a kind of flow diagram showing the proportional flow through 

a system, for example, the distribution of heat, energy, etc. through a physical system. The Sankey 

diagram is an important aid to eliciting understanding of inefficiencies within a system with 

numerous inputs and outputs. The diagrams are also been used to improve the efficiency of systems 

by highlighting areas of focus and allowing for the comparison of any changes made to evaluate 

their efficacy as shown in Figure 1. 
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In 1898, Matthew Henry 

Phineas Riall Sankey created a new 

kind of flow diagram for a 

publication to show the thermal 

efficiency of a real steam engine 

versus that of an ideal steam engine 

(Figure 1) [2]. This flow diagram 

would come to be eponymously 

named a Sankey Diagram. In the 

diagram, the width of a stream shows 

the amount of heat leaving and 

entering each part of the plant per 

unit time. The thermal efficiency of a 

steam engine can be difficult to 

understand due to the numerous areas that energy is exchanged. A Sankey Diagram puts this 

information in a visual format making it easier to understand, even upon a cursory examination. 

Historically, Sankey Diagrams had to be drawn manually [3]—a painstakingly slow and 

potentially error-prone process due to the many approximations and assumptions made in the 

creation of the diagram. Fortunately, the advent of computers allows Sankey Diagrams to be 

generated automatically; this also paves the way for substantially larger datasets to be reasonably 

utilized. 

Figure 1 – First flow (Sankey) diagrams made by Riall representing an ideal steam 

engine vs actual steam engine [2]. 
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2. Specific Requirements for Student Flows 

Thousands of students move through a large university every semester. This movement can 

include anything from changing majors, changing departments, dropping out, etc. resulting in tens 

of thousands of data points per student cohort. Thus, it is desirable to visualize these so-called 

student flows in a manner, which allows questions such as, “is a student more or less likely to 

change majors after being admitted into the college for that major” to be visually answered by 

university administration. These types of questions can be answered using existing methods, but 

representing the data as a Sankey Diagram allows for more organic user-driven exploration without 

having to request that a new report be written. 

A student cohort can be represented as a weighted, directed, graph, where a vertex 

represents a distinct class status for a semester and each weighted edge represents the number of 

students moving between two class statuses. This directed graph can be represented visually as a 

Sankey Diagram representing the major/college that students in a cohort were enrolled in on a 

semester-by-semester level. The Sankey Diagram will also support three separate levels of 

granularity: (1) a university-level view (i.e., all students in the cohort and the colleges they are 

enrolled in); (2) a college-level view (i.e., all students enrolled in a college and their declared 

major); and (3) a major-level view (i.e., all students with a specific declared major). 
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3. Architecture and Design Choices 

The application was designed in a traditional client-server model. In the context of 

generating Sankey Diagrams from student cohort data, this model is advantageous for a number 

of reasons. (1) The quantity of student data necessary to generate the Sankey Diagrams can be 

quite substantial in size; the size of the 2006 cohort at the University of New Mexico was 

approximately 3,000 students. The data for 8 semesters on 3,000 students is unsuitable for 

transmission to the client. (2) The student data required to generate the Sankey Diagrams could 

potentially contain information of a personally identifiable nature, even in an anonymized form, 

making it of concern under FERPA (Family Educational Rights and Privacy Act). (3) A substantial 

quantity of pre-processing is necessary to output the information necessary to render a Sankey 

Diagram, making the application unusable on many portable devices if a majority of the data 

processing were done on the client side. 

Storage for the server-side application is provided by PostgreSQL1, a traditional relational 

database management system. PostgreSQL is used because the student data used in generating the 

Sankey Diagrams is in a highly structured format, which is ideal for storage and querying in an 

SQL database. Currently, the database server is resident with the web server; this was done for 

convenience during development, there is no technical reason that the database server cannot be 

run on a separate server. The primary work of filtering the student data is performed by the 

PostgreSQL server with queries generated by a Ruby script. That is, the student data returned by 

an SQL query is only the data specifically related to the current client query; this way, the Ruby 

                                                 
1 http://www.postgresql.org/ 

http://www.postgresql.org/
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script on the server side need only assign the students to their respective edges. Details on the 

database schema used are in section 4.3. 

Performance of the application on the server-side is a concern; for every request, the server 

must run one or more complex SQL query and then run post-processing on the query result. With 

many simultaneous users, performance could quickly degrade. To mitigate this, Redis2 (REmote 

DIctionary Server), a key-value store was used to cache the data associated with previous queries. 

More details regarding the caching strategy is in section 4.5. 

On the client side, the D3.js3 (Data-Driven Documents) JavaScript library is the primary 

component used. D3 is a visualization-focused abstraction of the SVG4 (Scalable Vector Graphics) 

and DOM (Document Object Model) APIs found in all modern web browsers [4]. This library 

allows the rendering of the Sankey Diagrams to be done on the client side, greatly simplifying the 

complexity of the both the server and client-side applications. The D3 library also allows for 

dynamic user interaction with visualizations; this kind of interaction would not be possible with a 

scheme using static imagery generated by the server-side application. 

Communication between the client and the server is done via HTTP (Hypertext Transfer 

Protocol), support for which is part of the basic functionality of every web browser, which is why 

it is used as the application protocol. Support for HTTP on the server side is provided by the 

Sinatra5 project. The data returned to the client is encoded in the JSON (JavaScript Object 

Notation) format, which was picked because of widespread support for the format in web browsers 

that also support SVG. 

                                                 
2 http://redis.io 
3 http://d3js.org 
4 http://www.w3.org/Graphics/SVG 
5 http://www.sinatrarb.com/ 

http://redis.io/
http://d3js.org/
http://www.w3.org/Graphics/SVG
http://www.sinatrarb.com/
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The server component was designed to support deployment on Amazon EC2 (Elastic 

Compute Cloud) virtual machines. This introduced some variables that would not have otherwise 

been a factor. The first issue is that the larger an instance is, the greater its per-hour cost. The 

second issue is that the instance may have significant performance variability due to the noisy 

neighbor problem. For these reasons, it is important that the server-side application have 

reasonable response times, even in the face of performance variability. Using Redis-based caching 

substantially improves request response times, especially for common requests. In practice, the 

server application was deployed on an m1.large EC2 instance. If additional performance is 

required, EC2 instances such as m1.xlarge that are more powerful could be used. Alternatively, 

the Redis and PostgreSQL servers could be moved to separate instances from the webserver that 

are better suited for the memory-based and database-style workloads. 
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4. Implementation and Experimentation 

The development of the client component were done in a largely platform-agnostic way, 

in that any platform which includes a web browser with support for SVG, CSS3 Transitions, and 

JavaScript is capable of displaying the Sankey Diagrams. All major web browsers have SVG 

support, including Internet Explorer, Google Chrome, Firefox, Opera, and Safari; including the 

mobile versions of these web browsers [4]. The client side code has been used under many of these 

browsers under a variety of operating systems without any issues. Figure 2 shows a high-level 

block diagram for the client-server application design. 

 

Figure 2 – Block Diagram for High-Level Application Design 
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The development of the server was done exclusively on Linux (Ubuntu 13.04) with 

PostgreSQL 9.1 and Ruby 1.96. In theory, the server software component could run on any system 

that supports a compatible version of PostgreSQL and a minimum of the Ruby 1.9 interpreter, but 

this has not been tested. The Ruby-based Arel7 (A RElational aLgebra) project was used to 

generate SQL queries. The Arel project includes support for generating queries for MySQL and 

Oracle databases, so, in theory, it should be possible to use any of the databases supported by Arel 

in lieu of PostgreSQL. 

4.1. Client Implementation 

The first time that the client runs the application, it 

requests a configuration file from the server. This 

configuration file contains information regarding the 

cohorts, colleges available for each cohort, and the majors 

that are available within each department. This 

configuration information is used to provide an interface 

allowing for the selection of any valid combination of cohort year, college, and major. An example 

of this interface is in Figure 3. A more detailed description of how this configuration file is created 

can be found in section 4.2. 

After loading the configuration file, the user can then select a combination of the cohort 

year, and optionally a college and major. A major can only be selected if a college has been 

selected. If a major is not selected (i.e., the user selected the “ALL” option), then the view will 

display all of the possible majors within the selected college for the given cohort year. Similarly, 

                                                 
6 https://ruby-lang.org/ 
7 http://github.com/rails/arel 

Figure 3 – Client configuration interface 

https://ruby-lang.org/
http://github.com/rails/arel
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if a college is not selected, then the view will display all of the possible colleges for the given 

cohort year. 

After an appropriate selection has been made, the client will send a request to the server 

for the desired information. This request must include the selected cohort year and college (Details 

on how the server creates a response to this request can be found in section 4.4). The data that the 

server returns to the client is encoded as a JSON object that contains a list of the vertices and a list 

of the edges and their respective weights for the weighted, directed, graph that makes up the 

Sankey Diagram. Vertex positioning information can be calculated automatically on the client-side 

using the Gauss-Seidel method of iterative relaxation [5], but this algorithm has a runtime 

complexity of 𝑂(𝑛3) [6]. Some of the graphs at the coarsest level of granularity (e.g., graphs at the 

University-level and those at the college-level) contain in excess of 200 vertices and 800 edges. 

Data from an earlier cohort or a larger university would result in a substantially larger numbers of 

vertices and edges. In such cases, the algorithm’s complexity creates a noticeable delay on the 

client in displaying the diagram. Each vertex contains information on vertical and horizontal 

(i.e., which semester) positioning.  

Once the client has received data from the server, boxes a created that represent each of the 

vertices whose vertical height is proportional to the number of students that pass through that 

vertex relative to the total number of students in the cohort as shown in Figure 4. The labelling of 

the vertices varies depending on the current view of the Sankey Diagram. For all vertices, an 

integer is appended to the end of the name, representing the number of semesters since the cohort 

began, where the fall is counted as the first semester. For all views, “STOP” and “GRAD” vertices 

are included, each representing students dropping out and graduating, respectively. For the 

university-level view, the vertices are named for every college available in the university. For the 
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college-level view, the vertices are named for every possible major available in the college. For 

the major-level view, the vertices are named for the major in the current college as well as the 

major within zero or more secondary colleges (e.g., University College). For the college-level and 

major-level views, additional “OUTSIDE,” “GRAD_OUTSIDE,” and “STOP_OUTSIDE” vertices 

are added. These vertices represent students who are outside of the selected college, major, or 

secondary college, and whether the students is currently enrolled, has graduated, or has 

dropped out. 

 
Figure 4 – Sankey Diagram for Electrical Engineering students in the 2007 cohort. 

The client application then draws the edges between their respective vertices, with the 

width of the edge being proportional to the number of students moving through that edge. The 

colors for the edges are generated from a custom color palette such that the color is the same for 

every edge with a starting vertex that has the same name, excluding the semester number. Currently 

20 unique edge colors are supported in addition to the “STOP” and “GRAD” edges, which are 

always red and green, respectively. 

Once the initial Sankey Diagram has been rendered by the client (as seen in Figure 4), the 

client can highlight the paths of students who moved through a particular vertex (e.g., all students 
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in the 2008 cohort, who majored in Electrical Engineering, and were enrolled in the School of 

Engineering for their 5th semester). This behavior is triggered by the user hovering their cursor 

over a vertex. When this occurs, the client sends a vertex intersection request to the server. The 

client then overlays these new edges on the existing edges, but with a height that is proportional 

to the weight of the original edges. Details on how this vertex intersection is calculated can be 

found in section 4.4. The data returned from the server for the vertex intersection only includes 

edges for students that move through the intersection vertex. This reduces the amount of bandwidth 

and processing necessary on both the client and server sides. Figure 5 shows an example of 

highlighting behavior applied to the Sankey Diagram shown in Figure 4 for students who were in 

the EN (Engineering) college and majoring in EE (Electrical Engineering) during their 5th 

semester. Additional Sankey Diagrams, as well as higher-resolution versions of Figure 4 and 

Figure 5 can be found in Appendix A. 

 
Figure 5 – Sankey Diagram highlighting students who passed through the EN_EE5 for Electrical Engineering students in the 2007 

cohort. 
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In addition to a Sankey Diagram, the client-side application also renders a table showing 

the number of students in every vertex. The four and six-year graduation rates, along with totals, 

are displayed as well. In the future, cells within this table could be highlighted when the user is 

highlighting students who passed through a vertex. 

Table 1 – Example output of vertex synopsis on client-side application 

4.2. Server Implementation 

When the server component is first executed, before allowing any client connections, a 

JSON configuration information is generated that every client must request before any Sankey 

Diagrams can be rendered. This configuration information contains a list of the distinct majors and 

colleges available for each cohort year. It is important to generate this information at startup 

because there is no guarantee that this data will remain static from cohort-to-cohort. To generate 

this data, first the database is queried to retrieve a list of the distinct cohorts. Then, for each cohort, 

the database is queried again for the distinct colleges in that cohort. Finally, for each distinct 

cohort-college pair, the database is queried to retrieve a list of the distinct majors available. This 

series of queries is time consuming, and is immutable, which is why it is computed and cached 
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before allowing any client connections. After this initialization process is completed, the server 

waits for incoming requests from the client-side application. 

For the server-side as a whole, there are two distinct cases for generating queries. In the 

first case (hereinafter referred to as the “College Group”), the client has specified a college, but 

the major is unspecified. In the second case (hereinafter referred to as the “Major Group”), the 

client has specified both a major, a primary college (e.g., Engineering College), and zero or more 

secondary colleges (e.g., University College). Requests where a major is specified, but no primary 

college is specified, are considered invalid. For both of these cases, the cohort year must also be 

specified. 

When the server receives a request from the client-side application, the Redis server is 

checked, using the query string received from the client as the hash key. If Redis has cached the 

query string response then the cached value is returned immediately without performing any of the 

query validation performed below because that the value is cached indicates that it has previously 

passed the query validation. A more detailed explanation of the caching strategy can be found in 

section 4.5. If the value has not been cached in Redis, the server performs a preliminary validation 

in order to check that the values are within the expected ranges (e.g., a valid cohort year is one for 

which student data is available). If any of the following validation fails, then no further processing 

is done, and an error message is returned to the client. In a College Group case, the server checks 

the database to ensure that the requested college exists within the cohort year requested. 

Additionally, for the College Group case, the primary college is the only valid college. In  Major 

Group cases, the list of valid colleges will include both the specific college for the major 

(e.g., Engineering) and zero or more secondary colleges that also include the major 

(e.g., University College); for the purposes of the Sankey Diagram, any of these colleges 
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constitutes a student being in a correct college. Thus, the server checks the database to ensure that 

the requested major exists within the colleges and cohort year requested. Figure 6 shows the flow 

chart for this validation process. 

 

Figure 6 – Client Query Validation block diagram 

After performing the client input validation the server checks if additional information is 

necessary to construct the list of all possible vertices. There are three potential cases. (1) If a user 

does not request data for a specific college or major, the database is queried to retrieve a list of all 

distinct colleges within the requested cohort year. (2) For a College Group type request, the 
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database is queried to retrieve a list of all 

distinct majors within the college within the 

requested cohort year. (3) For a Major Group 

request, no additional database queries are 

necessary because the no additional 

information is necessary to create the list of 

all possible vertices. Figure 7 shows the flow 

chart for how the server checks if more 

information is necessary to construct the list 

of possible vertices. 

Once the list of all possible vertices 

has been constructed, the server builds an 

SQL query to be sent to the PostgreSQL 

database server. These queries are done as a series of sub-queries each of which successively filters 

the data returned by the previous query. Information regarding the database schema can be found 

in section 4.3. The first of these queries is used to filter out students who are outside of the selected 

cohort year and within the selected college and major for a minimum of one semester; additionally, 

students that do not fit within optional filtering criterion such as gender, ACT score, SAT score, 

etc. This first query is used as the basis for every type of incoming query, including queries for a 

vertex intersection. The next set of queries is only run when calculating a vertex intersection. The 

final query returns each distinct student returned from the previous filtering queries the set of all 

semesters enrolled, including the students major, college, and whether a degree was obtained. 

Figure 7 – Flow chart for requesting additional information from 

database 
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With the data returned from the SQL query, the server then iterates through every student’s 

sequential list of semesters, building a list of the edges and vertices based on where the current 

student is for each semester. Every type of request includes the vertices for graduation and 

dropping out. There are three cases for how the vertices are named: (1) If no college or major is 

Figure 8 – Flow chart for detecting which flow a student is currently part of for the College Group case 
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specified, then vertices are created for every college available. (2) In the Major Group case, 

vertices are created for the college, each of the valid colleges, and for graduating and dropping out 

outside of the valid major. (3) In the College Group case, vertices are created for every possible 

major within the college as well as for graduating and dropout out outside of the college. A block 

diagram for placing students at a particular vertex along a path for the College Group case is in 

Figure 8. The cardinality (i.e., the weight) of students in each edge is the only state information 

maintained during the building of the weighted directed graph. 

4.3. Server Database Schema 

The student data was separated into two 

tables named student and student_semester. The 

student table contains pre-institutional factors that 

remain constant, such as gender, ACT or SAT score, 

and high school GPA. The student_semester table 

contains data on each semester such as college, 

major, enrolled status, degree attainment, and GPA. 

Each semester has a separate row in this table, and 

has a student_id foreign key creating a many-to-one 

relationship between the student_semester and 

student tables. A visual representation of the database schema can be found in Figure 9. 

4.4. Server Handling Client Queries for Vertex Intersection 

For a vertex intersection request, the client has requested all of the edges for students who 

passed through a particular vertex in the Sankey Diagram. As with the non-vertex intersection 

Figure 9 – Database Schema 
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requests, there are two distinct cases for generating this kind of query are the College Group and 

Major Group. 

The College Group has three separate cases for the query: (1) student is enrolled in the 

valid college; (2) student is outside of the valid college; (3) Student has graduated or dropped out. 

The Major Group has four separate cases for the query: (1) student is enrolled in a valid college 

and a valid major; (2) student is enrolled in a valid college, but outside of the valid major; (3) 

student is outside of the valid colleges; (4) student has graduated or dropped out. 

Cases where neither a college nor major are specified are general cases of the filtering that 

occurs with the Major Group. The primary difference is that there are no longer vertices for 

“outside” graduation or dropping out because this special case includes every student regardless 

of declared college or major. 

For case (1) of the College Group, the query includes all students who were enrolled in any 

valid college for the semester specified by the intersection vertex. For case (2) of the College 

Group, the query includes all students who were not enrolled in any of the valid colleges for the 

semester specified by the intersection vertex. For case (3) of the College Group (a special instance 

of case 2), the query must determine what college a student was enrolled in when they graduated 

or dropped out. This must be the most recent case, before the semester specified by the intersection 

vertex, of either graduating or dropping out as both can occur multiple times during a student’s 

time at a university. If the original client request matches the status of the student (e.g., “grad,” 

“grad outside,” “drop out,” “drop out outside”), then the student is included in the results. 

For case (1) of the Major Group, the query includes all students enrolled in any valid 

college and the valid major for the semester specified by the intersection vertex. For case (2) of 
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the Major Group, the query includes all students who were not enrolled in the valid major within 

any valid college for the semester specified by the intersection vertex. For case (3) of the Major 

Group, the query includes all students enrolled in any of the valid primary colleges but not in any 

of the valid secondary colleges (e.g., include Engineering College, but exclude University College) 

for the semester specified by the intersection vertex. For case (4) of the Major Group (a special 

instance of case 2), the query must determine what major and college a student was enrolled in 

when they graduated or dropped out. This must be the most recent case, before the semester 

specified by the intersection vertex, of either graduating or dropping out as both can occur multiple 

times during a student’s time at a university. If the original client request matches the class status 

of the student (e.g., graduated or dropped out), then the student is included in the results. 

4.5. Server Caching Strategies 

Currently, the response for every unique 

client request (based on the client query string) 

is cached by the Redis key-value store. The 

Redis cache is then checked for every incoming 

client request. The key for the cached response 

is generated from the query string from the 

original client request. This caching strategy 

substantially improves the performance of the 

web application, as shown in Figure 10. Caching client responses in Redis improves performance 

because it replaces the complex series of SQL queries and post-processing on a query result with 

a single lookup in a key-value store. 
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Figure 10 – Query response time comparison 
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The aforementioned caching strategy was adopted was because the application is intended 

to support a cloud-based deployment. This additional efficiency has a direct effect on the cost of 

running the application in the cloud because it allows cheaper systems to be utilized while 

maintaining a similar level of performance. The caching strategy also improves responsiveness to 

the end users, whether or not running the application is running in the cloud or on physical 

hardware. 

Pre-computing and caching the response to every potential request was explored as a 

potential strategy. However, the overhead of this strategy is substantial. Consider a hypothetical 

college with six distinct majors over twelve semesters for a given cohort year. Each major has 

(6 ∗ 12) nodes, and, in addition, the vertex intersection values must be calculated for each of those 

nodes. This results in 62 ⋅ 12 =  432 calculations that must be pre-computed for this single 

college. This quickly results in a large number of values that must be pre-calculated and stored, 

making it a poor choice as a caching strategy in regards to both the time and memory necessary. 

The caching strategy used here could be optimized with some simple heuristics so that the 

application’s performance is still improved while avoiding caching queries that can be completed 

quickly. In cases where the client has requested information for building an entire Sankey 

Diagram, the time for the server to respond to a request can be approximately one to two seconds, 

and potentially more if the server is under heavy load. This is particularly true in cases where the 

graph covers a large number of students (e.g., the university-level graph or, to a lesser degree, the 

college-level graph). These types of queries are the most important to cache in Redis as they have 

a large effect on the overall performance of the application.   
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5. Conclusions and Future Work 

This thesis described a client-server application that is capable of transforming student 

cohort data into a weighted, directed, graph, at differing levels of granularity, which is rendered 

graphically as a Sankey Diagram. Visually representing student data in this manner gives 

university administration a powerful tool to support attempts to both understand and improve the 

factors affecting student success that are related to student flows through the university. 

The potential exists for attempting to correlate student declared major changes to both 

academic and non-academic events. For example, there could be courses that an unusually high 

number of students change their declared major or drop out after taking the course (often 

colloquially referred to as a “weed-out” course). This correlation could be used by university 

administration to determine if the course is too difficult or the prerequisite coursework leaves 

students inadequately prepared. This analysis could be expanded to include some form of 

automated modeling which predicts student outcomes so that an intervention can be made before 

the student withdraws from the university [7]. In addition, allowing an analyst to control the visual 

analytics process by dynamically steering (i.e., choosing various methods of culling the data being 

shown to allow for a better understanding of what is happening at a university) the creation of the 

Sankey Diagram [1]. 

The Sankey Diagrams could be expanded to include changes that occur during the summer 

session. This additional feature could be used to give a more complete picture of student 

progression. Adding support for summer sessions introduces complications in displaying the data 

in a Sankey Diagram as only a subset of enrolled students attend for the summer session. One 

potential way to solve this problem would be to represent the summer sessions as a sub-flow. That 
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is, represent the summer session with a vertex that the students pass through only if enrolled for a 

summer session. 

Client-side application accessibility could be improved by adding an option for selecting 

color-blindness friendly color palettes for the Sankey Diagrams. Color-blindness affects 

approximately 8.5% of the population–a large enough proportion of the population to make this 

change worth considering. D3.js includes full support for using ColorBrewer8, which has multiple 

color-blind safe color palettes.  

                                                 
8 http://colorbrewer2.org/ 

http://colorbrewer2.org/
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Appendix A  Supplementary Sankey Diagrams 

In this appendix, a number of additional Sankey Diagrams are presented in order to demonstrate the versatility of the application. 

In order to create these diagrams interactively, please visit http://provostcloud.unm.edu and select Student Flows Sankey Diagrams. 

A.1 All students in 2007 cohort (university-level view) 

Figure 11 shows all students in the 2007 cohort. Note how the university-level view shows every available college within the 

university, and the GRAD_OUTSIDE and STOP_OUTSIDE vertices are not present. 

 
Figure 11 – Sankey Diagram for all students in the 2007 cohort.  

http://provostcloud.unm.edu/
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Figure 12 shows highlighting applied to Figure 11 for all students in the 2007 cohort who were enrolled in the AS 

(Arts & Sciences) college during their 5th semester. 

 
Figure 12 – Sankey Diagram highlighting students who passed through the AS5 vertex for all students in the 2007 cohort.  
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A.2 College of Engineering students in 2007 cohort (college-level view) 

Figure 13 shows all students in the 2007 cohort. Note how the college-level view shows every available major within the college, 

and the GRAD_OUTSIDE and STOP_OUTSIDE vertices are present. 

 
Figure 13 – Sankey Diagram for engineering students in the 2007 cohort.  
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Figure 14 shows highlighting applied to Figure 13 for all students in the 2007 cohort who were enrolled in the College of 

Engineering and majored in GENG (General Engineering) during their 5th semester. 

 
Figure 14 – Sankey Diagram highlighting students who passed through the GENG5 vertex for engineering students in the 2007 cohort.  
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A.3 English students in 2007 cohort (major-level view) 

Figure 15 shows all students who majored in English in the college of Arts & Sciences for a minimum of one semester. Note 

how the major-level view shows the secondary UC (University College) as well as the primary AS (Arts & Sciences) college, and the 

GRAD_OUTSIDE and STOP_OUTSIDE vertices are present. 

 
Figure 15 – Sankey Diagram for English students in the 2007 cohort.  
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Figure 16 shows highlighting applied to Figure 15 for all students in the 2007 cohort who were enrolled in the College of 

Arts & Sciences but were in a major other than ENGL (English) during their 5th semester. 

 
Figure 16 – Sankey Diagram highlighting students who passed through the AS_NON_ENGL5 vertex for English students in the 2007 cohort.  
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Figure 17 shows highlighting applied to Figure 15 for all students in the 2007 cohort who were enrolled in the College of 

Arts & Sciences and majored in ENGL (English) during their 5th semester. 

 
Figure 17 – Sankey Diagram highlighting students who passed through the AS_ENGL5 vertex for English students in the 2007 cohort.  
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A.4 Electrical Engineering students in 2007 cohort (major-level view) 

Figure 18 shows all students who majored in Electrical Engineering in the College of Engineering for a minimum of one semester. 

Note how the major-level view shows the secondary UC (University College) as well as the primary EN (Engineering) college, and the 

GRAD_OUTSIDE and STOP_OUTSIDE vertices are present. 

 
Figure 18 – Sankey Diagram for Electrical Engineering students in the 2007 cohort.  
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Figure 19 shows highlighting applied to Figure 18 for all students in the 2007 cohort who were enrolled in the College of 

Engineering but were in a major other than EE (Electrical Engineering) during their 5th semester. 

 
Figure 19 – Sankey Diagram highlighting students who passed through the EN_NON_EE5 vertex for Electrical Engineering students in the 2007 cohort.  
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Figure 20 shows highlighting applied to Figure 18 for all students in the 2007 cohort who were enrolled in the College of 

Engineering and majored in EE (Electrical Engineering) during their 5th semester. 

 
Figure 20 – Sankey Diagram highlighting students who passed through the EN_EE5 vertex for Electrical Engineering students in the 2007 cohort. 
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