
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-3-2013

Modeling and control of a dynamic information
flow tracking system
Maria Khater

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Khater, Maria. "Modeling and control of a dynamic information flow tracking system." (2013). https://digitalrepository.unm.edu/
ece_etds/134

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/134?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/134?utm_source=digitalrepository.unm.edu%2Fece_etds%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Maria Khater
 Candidate

 Electrical and Computer Engineering

Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Professor Rafael Fierro , Chairperson

 Professor Jedidah Crandall

 Professor Chaouki Abdallah

Modeling and Control of A Dynamic
Information Flow Tracking System

by

Maria Khater

B.E., Computer and Communication Engineering,

American University of Beirut, 2011

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2013

c©2013, Maria Khater

iii

Dedication

To my parents, Elias and Hiam, for their continuous

support, encouragement and patience.

To my brother, Jad, for his motivation, laughter and

love he surrounded me with, from miles away.

To the memory of Khalo Bassam and Jeddo Toufik,

for all the precious moments I couldn’t spend

with you.

iv

Acknowledgments

I would like to thank my advisor, Professor Rafael Fierro, for giving me a great
opportunity to work on this topic. I can’t be but extremely thankful for all his
suggestions, patience and guidance he provided, in which this thesis would have never
been accomplished without it. I would also like to thank my co-advisor, Professor
Jedidiah Crandall, for his guidance and help throughout the two years I have spent
working under his supervision.

My thanks goes to Professor Chaouki Abdallah for serving on my defense com-
mittee and reading my thesis, not to forget his help and guidance since 2010 up till
now.

I would like to thank all members of MARHES Lab for their friendship and
kindness. I also want to thank my colleague Antonio Espinoza, who is a PhD student
with my co-advisor, for his invaluable help and support in working on the thesis.

I would like to extend my appreciation to my friends in Albuquerque who were
a second family to me, for the great source of happiness in the past two years. I can
never forget to thank all my friends back in Lebanon who provided support from
miles away. I am truly appreciate your presence in my life, Firas Ayoub and Sarah
Abdel Massih.

At last, words fall short of expressing my thanks to my parents and brother for
being extremely supportive. I would have never been able to do this without you.
Being away from you has never been easy. Thank you for being a great source of joy
in my life.

This work was support by NSF grant #: 1017602.

v

Modeling and Control of A Dynamic
Information Flow Tracking System

by

Maria Khater

B.E., Computer and Communication Engineering,

American University of Beirut, 2011

M.S., Electrical Engineering, University of New Mexico, 2013

Abstract

This thesis introduces and details the effort of modeling and control design of an

information tracking system for computer security purposes. It is called Dynamic

Information Flow Tracking (DIFT) system. The DIFT system is developed at the

Computer Science Department at the University of New Mexico, works by tagging

data and tracking it to measure the information flow throughout the system. DIFT

can be used for several security applications such as securing sensor networks and

honeypot – which is a trap set to detect, deflect, or counteract attempts at unautho-

rized use of information systems. Existing DIFT systems cannot track address and

control dependencies, therefore, their applicability is currently very limited because

important information flow dependencies are not tracked for stability reasons. A

new approach is taken, aimed at stabilizing DIFT systems and enabling it to detect

control dependencies at the assembly-level, through control theory.

Modern control has been used to model several cyber-physical, computing, net-

working, economical. . . systems. In an effort to model a computing system using

vi

control theory, this thesis introduces a general hybrid systems framework to model

the flow of information in DIFT when control dependencies are encountered. Infor-

mation flow in DIFT is represented by a numeric vector called “taint vector”. The

model suggested benefits from the characteristics of hybrid systems and its ability

to represent continuous variables and discrete events occurring. The system is sta-

bilized by making sure that the taint vectors represent the true information flow in

control dependencies. This problem is solved by designing a PID and model pre-

dictive controller which guarantee that system does not over taint, while allowing

information to flow properly. The modeling framework is validated by comparing

simulations of the hybrid models against. This research provides a new approach to

solve the DIFT over-tainting problems through modeling it as a hybrid system and

forcing the constraints to be obeyed by the taint values.

vii

Contents

List of Figures xi

List of Tables xiv

Glossary xv

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Contribution . 5

1.4 Organization of the Thesis . 6

2 Literature Review 8

2.1 Previous Work . 12

2.1.1 Security Applications using DIFT 13

2.1.2 Model of the Control Dependency in DIFT 14

viii

Contents

2.2 Modeling Computing Systems via Graphs 16

2.2.1 A Graph Model for Fault-Tolerant Computing Systems 16

2.2.2 Directed Graph Epidemiological Model of Computer Viruses . 17

3 Dynamic Information Flow Tracking System 19

3.1 DIFT Overview . 20

3.2 Taint of PC Vector . 23

3.3 Graph Representation of Instruction Dependencies 23

3.3.1 DIFT Graph Model . 23

3.3.2 Graph Example . 24

4 Preliminary Mathematical Model 31

4.1 Problem Formulation . 31

4.2 Hybrid Control Methodology . 35

4.3 Tandem Queue Methodology . 43

5 Mathematical Model, Validation and Results 46

5.1 Mathematical Model of the DIFT system 46

5.2 Validation and Results . 50

6 Model Predictive Control and DIFT 55

6.1 Model Predictive Control Overview 55

ix

Contents

6.2 Related Work for MPC . 57

6.3 Applying MPC for DIFT . 59

7 Conclusions 64

7.1 Future Work . 65

Appendices 67

A Graph Model MATLAB Code 68

x

List of Figures

2.1 Hybrid model of queue in TCP. 11

2.2 The three modes of recovery in a back flip from right to left. 12

3.1 Taint propagation upon copying. 20

3.2 Taint propagation upon upon arithmetic or logic operations. 21

3.3 Taint propagation upon branch and jump operations. 22

3.4 A general graph representation of a set of instructions and depen-

dencies as nodes and links. 25

3.5 Graph representation of the three instructions. 27

3.6 Graph representation of the instruction dependencies on MATLAB. 28

3.7 Graph representation of the instruction dependencies on MATLAB

of Merge Sort. 29

3.8 Graph representation of the instruction dependencies on MATLAB

of Quicksort. 30

4.1 Example 1: Propagation of the Taint during conditional jumps. . . . 33

xi

List of Figures

4.2 Example 2: Information destruction upon taint propagation. 34

4.3 The DIFT system block diagram with the controller. 37

4.4 Two modes of the system. 38

4.5 Two modes of the system in simulink. 38

4.6 Taint dynamics as modeled in Simulink. 39

4.7 The 2-norm of the taint in the system. 39

4.8 Instances when the controller is active or inactive Q = {q0, q1}. . . . 40

4.9 The overall system with the tuned PID taint norm controller. 41

4.10 The input of the system when real time data is not available. 41

4.11 The input of the system when real time data is not available. 42

4.12 Tandem queue in a networking system. 44

5.1 The hybrid system representing the taint dynamics in a program. . . 47

5.2 MATLAB result of the hybrid system representing the taint rate in

a program. 52

5.3 MATLAB result of the hybrid system representing the taint rate in

a program. 53

5.4 MATLAB result of the hybrid system representing the taint rate in

a program. 54

6.1 Hierarchy of control system functions in a typical processing plant [23]. 59

6.2 Output of the modeled DIFT system. 63

xii

List of Figures

7.1 Memory address space is represented by a variable X, labeling each

section of the physical memory space. 65

xiii

List of Tables

2.1 Table with dependency constants in [1] 15

4.1 Table listing the constants of the PID controller where N is the filter

coefficient which leads to a smoother controlled output [4] 42

6.1 Table listing the MPC design variables. 62

xiv

Glossary

R Taylor series coefficients, where l,m = {0..2}

Ap Complex-valued scalar denoting the amplitude and phase.

AT Transpose of some relativity matrix.

xv

Chapter 1

Introduction

1.1 Overview

This document introduces a model for a computing system which tracks the infor-

mation flow in a program at the assembly level. Dynamic Information Flow Tracking

system (DIFT) that is being studied in this thesis for the purpose of modeling through

control theory. Several control theorists are attempting to model complex systems,

computing systems, queuing systems, smart grids and more... Modern control is now

applied to several physical systems for instance, power grids, internet grid and cloud

computing systems in which control theory addresses the problems in such systems,

models it and provides solutions.

The authors, in [11], provide a starting point to model and control design prob-

lems of computing systems via control theory. The authors in [11] provided several

examples of modeling computing systems such as HTTP Apache server, queuing sys-

tems, load balancing and random early detection of router overloads. After defining

the problem in these systems, the authors suggest a model for each of the above

systems which represents the dynamics of the continuous and/or discrete variables

1

Chapter 1. Introduction

in the systems.

Several other computing systems and networking protocols are modeled through

control theory, for instance the TCP congestion model. In [15], the authors have

used the hybrid systems in order to model the traffic flows of a communication

network. The window size, TCP queue for congestion control, timeouts and packet

drops that have discrete events and continuous dynamics, are all modeled as hybrid

system. The hybrid model starts by representing the path taken by the TCP packets

by a set of nodes representing the routers and links connecting them. The model

switches from one state (timeout, drop, full queue...) to another upon any discrete

event occurs. The hybrid model can reproduce the packet-level simulation accurately.

Such models are beneficial for analyzing and designing protocols, more details are

provided in Chapter 2.

This document discusses the modeling of a DIFT system which tracks the flow of

information through representing the transfer of the data between the input to the

different registers of a computer architecture and its memory [2,5,19,28]. The input

data to a specific program propagates through the registers and the memory of the

computer uniquely that the DIFT system tracks it and stores it. The information

flow in any program is also affected if it was provided with different input. The

DIFT system can be used for security purposes in detecting an attack through the

input by monitoring the information flow of the program. As any other system, the

DIFT system has several problems which may cause a mis-representation of the flow

of information.

The data transfer is tracked through a taint decimal vector of length N . It

represents the data transfer from the input through registers and the memory of the

computer. The flow of data is recorded through these taint vectors. A more detailed

description of the DIFT system is provided in Chapter 3. In some cases the taint

can overflow and saturate, causing the system to give an overestimation of the data

2

Chapter 1. Introduction

transfer. This phenomenon is called over-tainting, resulting with taint vectors which

are not representative of the true information flow in the DIFT system.

The taint vectors in a DIFT system vary dynamically according to the program

that is being executed. Each program has a different information flow in the com-

puter architecture, resulting with different taint vectors i.e., different information

flow. Modeling a DIFT system in terms of mathematical models –which are trans-

lated to differential equations and state-space descriptions, is crucial for analyzing

the behavior of the taint in different programs and monitoring the over-taint inci-

dents that happens. This document proposes two models for the DIFT system that

reproduces the behavior of the taint dynamics given by a specific program.

The taint dynamics are governed by the instructions of the program thus the

different dependencies of the instructions of the program causes the taint to vary.

The dependencies between all of the instructions are hard to identify and isolate, after

executing a large program the taint vector be the result of all of these dependencies.

The dynamics of the taint is analyzed when over-tainting occurs the behavior of the

DIFT system is similar to existing systems which have been addressed in control

theory.

1.2 Motivation

Dynamic Information Flow Tracking (DIFT) is a technique where tags are assigned

to data upon input to a system, then the tags follow the data as the system computes

to learn something about the flow of information within the system. The problems

DIFT systems face have been the subject of much classical and recent research in

the field of computer security. However DIFT systems’ problems are similar to

many real world problems that control theory is ideal for solving. For example, in

aerial vehicle designs, a technique called “relaxed static stability” (RSS) allows the

3

Chapter 1. Introduction

design of aircraft with advanced maneuverability and stealth capabilities by relaxing

the requirement of designing the aircraft to be asymptotically stable during flight

[11]. RSS is used for more maneuverability during the flight, it provides a tradeoff

between controllability and maneuverability. RSS favors one feature over the other

when designing the controllers of fighter jets and those of commercial airplanes. The

extra maneuverability is used in fighter jets to achieve a high angle of attack and

more aggressive motion, whereas commercial airplanes use the extra controllability

to achieve stability. The control theory involved in our DIFT system is inspired by

this concept of maneuverability and controllability in jets.

Control theory has been previously used to model several computing systems such

as the traffic on a server and the resource allocation for each user [17, 18, 27]. Such

models and control techniques may also apply for other applications and in other

communities. For instance, Relaxed Stability has been used in aircraft designs to

take advantage of the open loop characteristics of the plant in order to perform ex-

treme moves during flight. The concept of relaxed stability can be applied to DIFT.

For instance, the information flow in a program is captured in the taint vectors but

in several cases where overtainting occurs, it might be possible that the taint vec-

tors would saturate. Consequently, the information can not be tracked through the

program. The system needs to be controlled but if the DIFT system is extensively

controlled then the taint vectors will not demonstrate the information flow. In con-

clusion, relaxing some constraints results in a better tracking of information in a

program.

The model of the system will be given as a hybrid model, this will be justified

in this document. Hybrid systems are one of the most examined topics in control

theory and such systems have been proven to form a union of discrete and continuous

systems [8]. Moreover, hybrid systems are becoming one of the most researched

topics dealing with state flow systems [3]. In [25], the incident of Ariane 5 in June of

4

Chapter 1. Introduction

1996, which crashed 37 seconds after launching, was due to a failure of coordination

between continuous and discrete systems. However, hybrid modeling provides a

better representation for real-time systems, which never tend to exhibit a purely

discrete nor a purely continuous model.

DIFT systems are designed to track information as it flows through the computer

by tainting inputs of interest and propagating the taint through the system as the

program is executed. DIFT has many applications, such as malware analysis, in-

trusion detection, and security models concerned with confidentiality, integrity, and

availability. However, currently there are no working DIFT systems that correctly

deal with certain dependencies resulting in over-tainting of the system. Because of

this, current DIFT systems are used for a limited range of real world applications.

The DIFT system has been studied by computer scientist, for several purposes.

It can be used for significant security and information analysis in critical systems.

Securing sensor networks before they are deployed is critical. Today, these systems

are being deployed in military and medical applications, yet are still built on top

of architectures with simple memory models using the C language, or variants of

C [17]. Memory corruption vulnerabilities can lead to worm attacks [18] and other

remote intrusions that allow adversaries to completely take control of the network. At

the same time, compared to general purpose computers, sensor devices have design

constraints that place even more restrictions on security mechanisms designed to

thwart these attacks.

1.3 Contribution

This thesis introduces a novel approach in solving the over-tainting in a DIFT system

from the computer science community perspective. The problem of over-tainting is

approached in as a control problem. The DIFT system is modeled from the point of

5

Chapter 1. Introduction

view of control theory.

This approach is quite challenging since there almost no literature review and

previous work in modeling a computer based dynamic system. The DIFT system is

built by the Computer Science Department at University of New Mexico. The model

provided in this thesis specifically represent the DIFT system which was developed

by my co-advisor Professor Jedidihal Crandall. The DIFT system is introduced in

Chapter 3 for the purpose of modeling and designing a controller.

Moreover, the work done in terms of modeling computing systems through control

theory is limited to couple of computing systems such as servers, scheduling of tasks

in a CPU, queues and graph models of networked systems. All of those systems

are dealt with on a high level and generally was assumed in most models. It was

beneficial to study the models which are designed for computing systems, since this

thesis deals with one. However, there are few material which consider DIFT as a

control problem.

Several challenges where encountered in the modeling process of the DIFT sys-

tems. This document presents the preliminary models and the incremental changes

done to come up with the final one. Knowing the modeled computing systems in

control theory, the models was refined in order to be more reflective of the DIFT

system’s dynamics. The main contribution of this thesis is introducing a new model

of a computing system, via control theory.

1.4 Organization of the Thesis

The remainder of the document is organized as follows. After the introduction, the

Literature Review of the useful research regarding computing system and control the-

ory are presented in Chapter 2 to illustrate the previous computing systems which

6

Chapter 1. Introduction

was modeled in control theory. It also introduces the model which was presented

to a different DIFT system. Chapter 3 defines the DIFT system which being stud-

ied. Chapter 4 contains the preliminary mathematical models with the incremental

changes done and Chapter 5 discusses the final model and presents the results of the

simulations and the verification of the model. Chapter 6 provides an MPC controller

for the modeled DIFT system. In the last chapter, conclusions and future work are

stated.

7

Chapter 2

Literature Review

Modeling computing systems through control theory has been addressed earlier by

researchers. This thesis discusses an information flow tracking system. Its signifi-

cant is to provide a brief overview of the problems addressed before since it helped

in modeling the DIFT system. Some system models are built for the purpose of

replicating the output of the original system since they may require computational

resources to model the data of the real system. Other system models are used for

addressing the problems in the system and provide a solution through feedback. The

basic overview on this topic is given in the Feedback in Computing systems book

[11].

The book provided guidelines and examples of basic modeling of computing sys-

tems. For instance, they have modeled the CPU utilization in a server, by construct-

ing an empirical model for the plant by collecting real time data. The administrator

has a certain constraints on the percentage of utilization of the CPU related to the

maximum number of clients on the server. The plant is represented in a first or-

der Linear Time Invariant (LTI) discrete time transfer function, where the overall

objective is to regulate the utilization to a predefined reference utilization with a

8

Chapter 2. Literature Review

short, accurate and stable convergence. The feedback loop is closed and an integral

controller is added to achieve the desired results.

The book also demonstrates how linear programming can be used by applying

Linear Quadratic Regulator(LQR) to more complex systems, such as the workload

management in data centers and tandem queues. The dynamic controller is designed

based on a set of constraints which are defined by the system being studied resulting

with different Q and R matrices. The book defines the main principles of control

theory and provides a good start to get introduced to the area of using feedback

control in computing systems. There are more efforts to model and control several

computing systems such as the Transmission Control Protocol (TCP) network as

mentioned in Chapter 1.

The model for the data transfer in the networking system is modeled through

graphs in which the dynamics of the routes, queues and discrete events - timeouts,

drops or congestion, are modeled through a set of difference equations. The difference

equations model the packet transmission along a predefined path in the network.

There are several scenarios in which the packet can be transmitted from the sender

to the receiver. Modeling the system from the perspective of control theory as a

hybrid system, yielded with more realistic representation of the system. One of the

improvements of this model is that the Round Trip Time (RTT) is dynamic, it is

updated with the state of the system, older models have assumed a constant RTT

by averaging the value in a fluid-like model for the same system.

In this paper [15], the authors modeled the end-to-end TCP connection flow by

graph of nodes and unidirectional links, where weights are set to define the bandwidth

in the links and the delays for the nodes. The network is modeled in a dynamic way

where different paths can be taken from the end-to-end level. On the routers level or

in other words on the node level, the behavior of the packet has four possible states

which are related to the state of the queues on the nodes or routers. The queues can

9

Chapter 2. Literature Review

be empty so all the packets coming in are transmitted, not empty but not full, full

with additional incoming packet or timeouts can occur where packets are lost.

The paper introduced a reliable model for a network system using hybrid systems

benefiting from the continuous and discrete in the system. The variables of the model

are updated based on the system’s state for instance, the general form of the queue’s

dynamics is

q̇lf = slf − dlf − rlf , (2.1)

where l and f denote the link and the flow, qlf the number of bytes in the queue,

slf rate of arrival of the packets to the queue, dlf rate of packet drop, rlf rate of

transmission of packets. The above values are updated accordingly based on the

state of the system. After simulating the end-to-end model, it is shown that the

results of the model is similar to the actual data grabbed from the network system.

This paper provides insight about the significance of using hybrid models in modeling

networked and computing systems. In addition, the hybrid model 2.1 for the packet

flow in the queues in the routers was beneficial for the model presented later for the

DIFT system.

For developing the hybrid model for the DIFT system, it was essential to look

at the different approaches to develop and control thermostat model since the DIFT

system share common aspects with the ON/OFF modes in the thermostat hybrid

model. The paper [10] has examined using the LQR approach in order to track the

reference input of the cooling thermostat. The model developed is for the aggregated

power response of a homogeneous population of thermostatically controlled loads

then the results have been analyzed under the influence of disturbance and noise.

Similar papers was read in order to be more familiar with applying LQR on hybrid

systems.

One of the interesting papers which inspired the design of the controller of the

10

Chapter 2. Literature Review

Figure 2.1: Hybrid model of queue in TCP.

DIFT system is [8, 30]. A hybrid controller is developed for doing an aggressive

flip in a quadrotor through controlling the velocities of the motors [8]. Quadrotors

are inherently unstable systems, however, there are numerous number of controllers

which are implemented on board and off board. Quadrotors can’t hover at a point

in space without a tracking system, on board, off board controllers and height. All

these controllers are programmed to maintain the position of the quadrotor, without

them the quadrotor would be hard to control manually. Similarly, the DIFT system

is inherently unstable, it tracks and monitors the ow of information through the

CPU, the system will saturate with tagged data in an finite time. The DIFT system

is compared to the quadrotor’s flips done in [8]. It uses a hybrid controller which

limits the speed of the motors to ensure a safe recovery of the maneuver as seen in

Figure 2.2.

11

Chapter 2. Literature Review

Figure 2.2: The three modes of recovery in a back flip from right to left.

2.1 Previous Work

In [1], the dynamic information flow tracking (DIFT) scheme that was presented

in this paper marks all data that is read from the network (typically from a radio

device) as untrusted using a tag bit, sometimes also called a taint bit (throughout

this paper used the terms untrusted and tainted interchangeably). Tags are propa-

gated throughout the system by the architecture, with no need for modification to

the program binaries. No untrusted data can be used as the target address for a

control flow transfer such as a jump, call, or return. This restriction makes attacks

that overwrite control data, such as buffer overflows and related attacks, impossible.

Control data includes return addresses, function pointers, the bases and offsets of

linked library functions, and more. Thus the architecture presented stops any attack

that overwrites control data and hijacks control flow to take control of a network

sensor.

The PhD dissertation [1] discussed how information can flow, using Suh et al.

12

Chapter 2. Literature Review

[28] categorization of information flow dependencies into five types:

• copy dependency – when data is copied from register to register, memory

to register, or register to memory its taint tag is also copied from source to

destination,

• computation dependency – when an operation is performed on one or more

source operands and stored in a destination, the maximum taint of the source

operands is stored in the destination taint tag,

• load and store address dependency – if the address of a load or store

operation has a taint value that is greater than the source then the taint value

of the address is copied to the destination’s taint tag and

• control dependency – when tainted data is used for conditional control flow

decisions the program counter is tainted with the maximum taint of the values

compared.

The dissertation addressed the problems of the DIFT system especially the control

dependency. The key difference between the DIFT systems considered is that the

one addressed in [1] taints data with one tag bit, however, the DIFT system studied

in this thesis tracks tainted data with vectors.

2.1.1 Security Applications using DIFT

A control dependency occurs when the value of one piece of data affects the execu-

tion path of the program, which in-turn affects the value of another piece of data.

Consider the C code example below:

if (x ≤ 0)

13

Chapter 2. Literature Review

y = 0

else

y = 1

The code above has an implicit dependency between the variables x and y, the

program counter (PC) is tainted implicitly on conditional control flows.

When tainted data is used for conditional control flow decisions (e.g., x or y in

the C code “if (x == y)” compiled into a compare instruction followed a conditional

jump in assembly). The program counter is tainted with the maximum taint of the

values compared, where control dependencies become a security problem for DIFT

is when it is possible for the attacker to launder the taint bit, so that a value under

their control is no longer tainted.

The attacker can compromise the system based on his knowledge in control de-

pendencies of the code. The DIFT system starts with trusted data in the registers

and the input which is inputted from the network is considered untrusted. The taint

propagation scheme correctly handles copy, computation, load-address and store-

address dependencies [1].

2.1.2 Model of the Control Dependency in DIFT

In [1], the open-loop control system that throttles how sensitive the DIFT tracking

is to these dependencies by a pre-defined constant called throttling factor. For each

set of dependency a specific throttling factor is set, which remains constant and

independent of the input and the previous results of the DIFT system, refer to 2.1.2.

14

Chapter 2. Literature Review

Dependency Type Throttle Constant Summary

Copy Dependency 0.99 the throttle factor is mul-

tiplied by the loaded taint

value and then stored in

both the destination and

source.

Computational Dependency 1 the maximum taint of the

source operands is stored in

the destination taint tag.

Load/Store Dependency 1 these dependencies are not

throttles currently.

Control Flow Dependency 0.5 the program counter is

tainted with the maximum

taint of the values com-

pared. The throttle factor

for the program counter is

currently set to the constant

0.5 and the throttle factor

of the flag is multiplied by

0.99.

Table 2.1: Table with dependency constants in [1]

The amount of taintedness in the CPU control path is calculated for each instruction

as a moving average y of the program counter’s taintedness e, using the equation

y′ = cy + (1− c)e. (2.2)

15

Chapter 2. Literature Review

2.2 Modeling Computing Systems via Graphs

This Section provides a small overview on complex computational systems modeled

via graphs. These papers provided an insight on the methodology which computing

systems are approached and modeled via graphs. The DIFT is a system which tracks

the dependencies among the instructions and the resisters after executing a snippet

of code. The DIFT system can be viewed as a graph which is altered based on the

code being executed. More details are provided in Chapter 3. Two papers [9,13] are

considered below which considered graph models for security purposed in computing

systems.

2.2.1 A Graph Model for Fault-Tolerant Computing Sys-

tems

The paper [9] deals with modeling a system S which can execute an algorithm A.

It examines the removal of k nodes from the system, then test if the algorithm will

execute without the removed nodes. The system will have a k-fault tolerant (k-FT)

realization of S. The paper provides several techniques for designing such realizations

for single loop systems. The approach given by the paper evaluates the ability of

programs to run with hardware defects in the computer architecture. The faults

which occur in a computing system should be first classified and identified in order

to determine if the algorithm can be executed on a k-FT system. However, there are

some faults, especially physical, which can’t be identified. Redundancy and reliability

modeling techniques are employed in order to improve the performance of such fault

tolerant systems.

Faults in this paper can be hardware (control units, arithmetic processors) and

software(executable files, compilers) failures. A system is defined by a graph where

16

Chapter 2. Literature Review

the nodes of the graph are the facilities - in other words, the software and the

hardware are components of the system S. The algorithm A will be also represented

by a facility graph which includes the facilities that the algorithm uses for execution

and the edges are defined by the links of the facilities. k- fault F in the system S is

defined by the removal of k nodes, in addition to the connecting edges. The design

of a k-FT system is said to be optimal if there is no system that has less number of

nodes with the same node fault tolerance value. One more definition is required, the

single loop system is a graph consisting 3 or more nodes each node has a degree 2.

To construct the k-FT optimal realization, the single loop system when k is even, is

as follows:

1. Form the single loop system with n+ k nodes.

2. Join the nodes to all the nodes of distance j, where j is greater than 2 and less

than k/2 + 1.

2.2.2 Directed Graph Epidemiological Model of Computer

Viruses

The previous paper has dealt with computing systems which had malfunctions in ei-

ther hardware or software faults, however this paper [13] deals with the malfunctions

of the caused by viruses. The propagation of software viruses is similar to biological

viruses. The mathematical epidemiological study of the spread of biological viruses

can be extended to software viruses. The epidemiological model considered in this

paper is called SIS which stands for susceptible - infected - susceptible. The com-

puter virus is modeled through a random graph of N nodes and N(N − 1) edges.

The probability adding an edge (i.e a new infection) is p, therefore, the total number

of possible edges in the graph modeling the system is pN(N − 1). Each node is

associated with a birth rate (infection) and a death rate (cured). The epidemic can

17

Chapter 2. Literature Review

be analyzed through a dynamic approximation. The connections of the graph are

unimportant for the dynamics of the graph in this approach. The dynamics of the

graph is captured by a differential equation which models the infection and cure rate

of the graph. Assuming that the node which is infected will only infect i neighbors

with a probability b. Another approach is suggested in this paper, which is a proba-

bilistic approximation. It considers the stochastic nature of the epidemic unlike the

deterministic model. This model associates the infected nodes with a probability in

function of time t and the current infected nodes at that particular time t. Moreover,

a transition rate is assigned from each state to another, where the states represent

the amount of infected nodes in the system. It can indicate an increase or a de-

crease. The paper provides more details about the distribution of the states, given

certain infection rates taken at different time. More models are given in the paper:

hierarchical and spatial model.

18

Chapter 3

Dynamic Information Flow

Tracking System

Before describing the DIFT system, some definitions are needed. The Program

Counter (PC) is the register which stores the address of the next instruction to be

executed in the Central Processing Unit (CPU). A taint mark is a binary flag used

to indicate whether or not a bit, or set of bits, is tainted. In the DIFT system

considered we use a vector of floating point numbers. Inputs are assigned random

vectors. The length of the vector represents the amount of taint (specifically, the

mutual information the tainted data shares with the original tainted input), and the

directions of the vectors have no meaning except that correlated pieces of information

(with a similar provenance) will have correlated vectors.

A branch is an instruction that can alter the flow of instructions during execution.

A branch predictor tries to guess the outcome of the branch based on the success of

past predictions. It is mainly used to save time during execution. The actual result

will be compared with the prediction made, if the predictor picked the right decision

about branching then it is a hit. If the predictor picked the wrong decision then it

19

Chapter 3. Dynamic Information Flow Tracking System

is a miss [22].

3.1 DIFT Overview

This document considers a system which tracks information flow at the assembly

level. There are several types of instructions such as arithmetic, logic, memory and

branch or jump instructions. The system tracks the information at the registers and

memory locations of the system by assigning to each a taint vector. This vector

associated with the program variables is modified according to the operations which

manipulate their values. For instance copying from one word in the system to another

causes the taint to also be copied. This is called a copy dependency. Figure 3.1

illustrates when the taint is copied as it is from the input to the var.

Figure 3.1: Taint propagation upon copying.

Considering another example of adding the values of two variables which each

have their own taint vector, the resulting taint will be a Euclidean sum of two

vectors. The taint vector of var2 will have a representation of the information in

both variables a and b. This example uses the addition operation. However, it also

applies to logic and other arithmetic operations. Let ~Tvar denote the taint vector

20

Chapter 3. Dynamic Information Flow Tracking System

of the corresponding variable var. The below addition operation is an example of a

computation dependency.

Figure 3.2: Taint propagation upon upon arithmetic or logic operations.

Copy and computation dependencies will not cause the system to saturate. Over-

tainting should be avoided since the information flow cannot be tracked effectively

when there is too much taint in the system. If everything is always tainted at the

end of a computation we can learn nothing about the flow of information for that

computation.

When each high-level program is converted to assembly language for execution,

the computer will keep track of the next instruction to be executed by storing its

address in a designated register called PC. In some cases of the DIFT system, the

PC might get tainted in branch operations, therefore the next instructions executed

will have their variables tainted as well. This is a control dependency. In addition,

all the instructions which will have their addresses stored in the PC register will get

tainted resulting in a positive feedback loop and over-tainting of the system.

Since 1986 commercial computers have included branch predictors in their com-

puting units [21, 22]. When a branch is encountered the program will pick the next

21

Chapter 3. Dynamic Information Flow Tracking System

instruction to be executed based on the past branch results. This is commonly used

to make the CPU execute faster since branch results take a long time to be com-

puted. For instance, in Figure 3.3 assume that predictor would pick a = 1; as the

next instruction to be executed. These predictors are useful since later they are

used to reduce the taint in the system and as an avoidance mechanism to reduce

the taint. In Figure 3.3 below, the system will take a = 1; as the next instruction

but this branch result was taken based on the value of the input which is marked

as untrusted by its taint. Consequently, all the instructions which are executed next

are tainted, as well as the PC register since the address of the next instruction is

stored in it.

Figure 3.3: Taint propagation upon branch and jump operations.

Aside from the branch operations, another problem is encountered when the

program is loading a value from memory. When the program requests the data from

a memory location information flows from the address used for the lookup into the

value that is loaded from memory. This is called an address dependency.

22

Chapter 3. Dynamic Information Flow Tracking System

3.2 Taint of PC Vector

After examining the DIFT system and researching the existing models for computing

systems. The taint for the PC is a vector of N decimal values, the vector is modified

based on the instructions in the program. The taint vector variations are random

since each program has different instructions. The input to the taint vector is the

additional taint variations due to the new instructions.

The series of instructions cause the taint associated with the taint vector to get

modified. In order to measure this variation, the angle between the previous vector

and the updated vector is calculated. The size of the PC taint vector is monitored to

check if it is constant. In addition, to measure the variation of the taint with respect

to the input, the cosine similarity is designed to indicate the difference between two

programs after performing the cosine similarity.

3.3 Graph Representation of Instruction Depen-

dencies

3.3.1 DIFT Graph Model

A graph representation of the DIFT system is needed for defining the dependency

of the tainted registers/memory locations. The instructions are the nodes and the

edges represent the dependency of the instruction’s variables. Consider N set of

instructions – nodes, connected by a set of links L. The graph is directed and the

edges are weighted based of the vectors modeling the dependency of the different

instructions. In order to construct the graph of the dependencies in a program, some

instructions should be given. Thus, we have generated a random set of assembly

23

Chapter 3. Dynamic Information Flow Tracking System

instructions to analyze the dependencies among them. The links are denoted as lij

from node i∈ N to node j∈ N and every link is weighted by a finite taint value.

For a given set of instructions I, it includes a number M of nodes ∈ N . The nodes

are connected with links which represent the dependency based on the operands and

the memory locations involved in Ii. The links are denoted as li,j indicating the

dependency between nodes i and j, the link is associated with a register, memory

location or a flag. Weight of each link can be defined as dl
τ where τ is the taint value

associated with a specific operand. In addition, the link also represents the type

of dependency which the two nodes are related to each other, refer to the example

below to see the dependency representation via colors. There is a function f where

the value of the taint, register or memory location which is tainted by τ is mapped

to the link l(i,i+m) ∈ L where m ∈ Z∗+ is a positive integer indicating offset of the

dependent instruction from instruction i. Let f be a function where f(l(i,i+m)) = dl
τ

f : L → RN , where τ is the taint value associated with a specific operand (memory

location or register). A general representation of the graph given in Figure 3.4 to

represent a set of instructions executed in the DIFT system. dl
τ is defined to be a

vector of size N – the size of the taint vector defined in the DIFT system, where

dl
τ ∈ RN . N is a preset value of the taint size in the DIFT system, the bigger the

value of N the more the DIFT system is representative of the flow of information.

3.3.2 Graph Example

A random set of assembly instructions is generated in MATLAB at run time. The

instructions have arithmetic or branch dependency. The initial computing system

should have 32 or 64 registers in its representation however, for the sake of illus-

tration, the number of registers is assumed to be 8. The analysis in this section is

done based on the assumption that there is a probability that the number of control

24

Chapter 3. Dynamic Information Flow Tracking System

Figure 3.4: A general graph representation of a set of instructions and dependencies
as nodes and links.

dependency instructions is less than that for the arithmetic dependency. In addition,

the instructions are narrowed down to two formats as given in the example below:

• add $r1, $r2, $r3 – add the content of registers

• beq $r1, address – command checking if the content of $r1 is equal to zero

if this condition is met then the PC register is modified to the new address.

After generating the set of assembly instructions, dependency is defined when an

instruction uses the data of a register which has been previously modified or saved

by an executed instruction. The type of the dependency is determined by checking

the type of the instruction using the register. For instance, consider the code sample

below:

25

Chapter 3. Dynamic Information Flow Tracking System

add $r1, $r2, $r3 I1

sub $r4, $r1, $r2 I2

The use of $r1 as an argument for the second arithmetic instruction I2 will result in

an arithmetic dependency. It should be noted that when an instruction updates the

value of register $r1 given that the previous instructions have been executed, then

there can not be a dependency with $r1 on I1. It now depends of the most recent

instruction which updated its value.

All the dependencies are directional; however, they have one direction only; since

all the dependencies are from the instruction which generate a value towards the

instruction which used that same value, thus, it is insignificant to indicate that.

Consider the example given above; all the directions of the edges will be similar to

(I1, I2) I1 to I2.

To get a simpler idea on a small scale consider this quick example below of the

following instructions:

fadd $r1, $r2, I1

inc $r1 I2

sub $r3, $r1, I3

The dependency representation of the the above small code is shown in Figure

3.5 below:

26

Chapter 3. Dynamic Information Flow Tracking System

Figure 3.5: Graph representation of the three instructions.

The Figure 3.6 below, is the simulated result of having 100 random instructions

in the program and having a 0.75 probability that the instructions would be arith-

metic instead of control ones. Random Program dependency graph: blue edges for

arithmetic dependencies and red for branch dependencies. Nodes are represented in

circles.

It is measured by identifying the important nodes in a graph. The definition

of an important node in this paper is the number of edges which is similar to the

friendship network. The degree of each node is important since one can tell if the

variable or register contains valuable information for other instructions. It can be

used in analyzing the information flow in the system. After several runs of the

MATLAB code provided in the appendix the degree centrality vary from 0 to 20.

Along the lines of modeling two different programs which do the same thing how-

ever their translation to assembly is different, merge sort and quicksort are considered

to illustrate the difference between these two programs. Merge sort has a worst case

scenario comparisons O(nlog(n)) [14] while quick sort has O(n2) [7] where n is the

number of elements in the list being compared. Branch instructions are used when a

piece of code requires comparison. Therefore, merge sort has less comparisons than

quick sort in Figures 3.7 and 3.8.

27

Chapter 3. Dynamic Information Flow Tracking System

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Random Program dependency graph: blue edges for arithmetic dependencies and red for branch dependencies. Edges are represented in circles.

Figure 3.6: Graph representation of the instruction dependencies on MATLAB.

Graph Theory Analysis

Small world effect is not possible due to the fact that there are no loops in the

system and there is no way we can construct a certain number of variables which are

dependent on each other in a loop manner since it is a one directional dependency.

The graph is built to identify the dependencies of the graph and count the degree

of each node. Such graphs can be used for information flow analysis which is crucial

in security to identify the significant nodes and enforce more protection on them.

28

Chapter 3. Dynamic Information Flow Tracking System

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Random Program dependency graph: blue edges for arithmetic dependencies and red for branch dependencies. Edges are represented in circles.

Figure 3.7: Graph representation of the instruction dependencies on MATLAB of
Merge Sort.

29

Chapter 3. Dynamic Information Flow Tracking System

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Random Program dependency graph: blue edges for arithmetic dependencies and red for branch dependencies. Edges are represented in circles.

Figure 3.8: Graph representation of the instruction dependencies on MATLAB of
Quicksort.

30

Chapter 4

Preliminary Mathematical Model

This Chapter introduces the model of the PC taint behavior in the DIFT system.

The taint is a value quantifying the modifications done to the bits of the registers

in a computer architectural system. The taint is a vector of length 65. Each value

represents the data operations performed on the data in the registers. The control

dependencies have a direct effect on the PC register- which controls the instruc-

tion flow of the program. The taint of the PC register should be well monitored

since it contains the address of the next instruction to be executed, in other words

determining the execution flow of the program.

4.1 Problem Formulation

After giving an overview about the DIFT system, this Section focuses specifically on

defining the problem of PC over-tainting and the information destruction in the DIFT

system. Over-tainting occurs when the taint associated to the PC register is high,

causing all the taint vectors representing the data flow in the registers used in the

next instructions to be highly tainted - since the PC register specifies the instruction

31

Chapter 4. Preliminary Mathematical Model

to be executed next in the pipeline. This phenomena is called over-tainting. The

consequence of over-tainting is the inaccurate representation of the information flow

in the program, this usually happens in loop and in conditional instructions. The

trace of the taint in the DIFT system is over estimated, thus, the misrepresentation

of the information flow of a set of instructions will be inconclusive.

For illustrating the effect of over-tainting in the PC register, consider the following

conditional branch x86-instruction JNZ jump if not equal. The branch instruction

jumps if the zero flag ZF is equal 0 – meaning that the jump is associated with a

condition that checks if two variables are equal. Therefore, if the condition is false –

meaning the two variables are not equal, then the flag is set to 0 and the execution

of the instruction should jump to a pre-defined address by updating the PC register

content.

When the DIFT system is updating the taint vectors when the program is being

executed, it encounters several jump instructions. The taint transfers from the vari-

ables of the condition statement to the ZF and if the branch was taken, the taint

transfers from the ZF to the PC register. Since the PC register holds the address

of the next instruction to be executed, the taint associated with the PC register

is transferred to the rest of the instructions following the jump instruction in the

pipeline. An example is provided below in order to demonstrate the taint which may

transfer from the PC register to the

if(i == j) jnz L1

i+ +; addi $r1, $r1, 1

j −−; L1 : addi $r2, $r2,−1

Figure 4.1 below illustrates the propagation of the taint while the execution of

the above assembly code. The left part of the figure shows the execution of the

instructions, the arrows indicate how the execution is happening. The right part

32

Chapter 4. Preliminary Mathematical Model

demonstrates the propagation of the taint while the execution is happening. For

clarity the taint in this example is assumed to be colors, however, in the DIFT

system the taint is a vector with a length N. The taint in Figure 4.1 is denoted

as T($r1) where $r1 is a register in the pipeline. Figure 4.1 below illustrates the

propagation of the taint in a set of instructions of branch instruction flowed by

arithmetic instructions depending on the result of the branch. The registers $r1 and

$r2 are initially tainted with green and yellow respectively. Assume that the ZF

depends on the values of $r1 and $r2, therefore the value of the taint in the two

registers is combined and transferred to ZF resulting with a blue taint. The branch

is conditioned on the ZF thus the taint is transferred to the PC register, since branch

instructions update the value of PC and changing the flow of the program. After

the jump occurs, indicated in red in the figure, the taint is transferred to the $r2

register resulting with over-tainting. If the T(PC) is high and it can’t be cleared it

will taint all the instructions to be executed causing a misrepresentation in the taint

at the end of the program. The end result of the DIFT system will be inaccurate in

this case and the vectors will reflect the flow of the program.

jnz L1

addi $r1, $r1, 1

L1: addi $r2, $r2, -1

T(ZF)

T(r1) T(r2)

T(PC)

T(r2)...

jump

Instructions
Executed

Taint
Propagation

Figure 4.1: Example 1: Propagation of the Taint during conditional jumps.

Once the PC is over-tainted, the DIFT system does not give a correct information

33

Chapter 4. Preliminary Mathematical Model

flow in a set of instructions. Another problem is the destruction of information,

where the information held in the taint vector is getting destroyed because of the

new taint added. When the DIFT system encounters an arithmetic operation or

branch instruction (most of these instructions use two registers in their operations),

it combines the vectors by adding the taint vectors. A two dimensional illustration

is given in Figure 4.1, the taint vector in the DIFT system is of length N , where N

is usually a large number by design. Information destruction occurs when the taint

is accumulated in the vector in such a way that the newest taint added is the most

significant. The taint is most affected by the most recent instructions executed. The

older information is being destroyed and replaced by newer information. In order to

reduce this effect control theory is used to reduce information destruction especially

in the branch instructions. The following Section provides a model for the taint

associated with the PC.

add $r3, $r2, $r1

jnz L1

T(r1)

T(r2)

T(r3)

T(r3) / T(ZF)

T(PC)

T(PC)

Figure 4.2: Example 2: Information destruction upon taint propagation.

Figure 4.2 , provides an example of the information destruction. First, assume

that the jump instruction depends on the value stored in $r3 hence the taint asso-

34

Chapter 4. Preliminary Mathematical Model

ciated with $r3 is transferred to the ZF. The first instruction transfers the taint to

T($r3). It is transferred later after the execution of the following instruction to the

taint of the PC. The resulting taint in the PC is a combination of the taint of $r3

and PC. It can be easily seen that the effect of the taint associated with $r1 is now

gone.

4.2 Hybrid Control Methodology

As a solution for the taint problem, the system should have some limits on the taint

value of the overall system so that if the taint value is high then certain actions

should be taken to avoid over-tainting. The instructions should stop execution on

the CPU and wait for the result of the branch predictor. Based on the predictor’s

result the DIFT system will modify the taint vectors. This can be viewed as an

analogy with a thermostat system. The system is modeled in a hybrid manner since

it has a switching mode whether the PC register gets tainted or if the DIFT system

would reach the threshold of over-tainting.

Why do branch predictors decrease the amount of the taint? Branch predictors

pick a branch and execute the corresponding instruction according to the past history

of branches and misses. When something is predicted correctly then it is most likely

has no significant information, because the result was expected. But, when something

cannot be predicted correctly then it is unknown and we learn more information from

the result. By this argument, we can say that if the branch predictor chooses the

correct branch then less taint should be propagated than if the branch predictor

misses.

The constraints on the taint vector of the PC are limiting its 2-norm within the

range of 32 to 16. In addition to this constraint the throttle factor is determined

through a feedback loop in order to avoid information destruction. The throttle

35

Chapter 4. Preliminary Mathematical Model

factor is responsible for determining what percentage of each vector is being added

to the new taint vector after branch operations. Therefore, it preserves important

data by computing a throttle factor scaling the old information up or down. This

decision is made through monitoring the branch misses and hits which are recorded

in the branch predictor.

The DIFT system is modeled through control theory as a hybrid system. The

state of the DIFT system changes when branch misses occur, i.e. the taint should

be modified. The 2-norm of the taint increases as the program progress, the DIFT

system cuts it down back to 8 in all cases. The Figure 4.3 below gives a block

diagram of the DIFT system after adding controller for correcting the throttle factor

for the DIFT system. The plant is the taint vector of the PC which accumulates

the additional taint from the new instructions executed. The branch predictor is an

important part of the DIFT system where it determines the state of the controller in

the cases of hits and misses in branch conditions. The branch predictors vary in each

processor some examples of predictors are: saturating counter, two-level adaptive

predictor, local branch prediction, global branch prediction, agree predictor, hybrid

predictor and more. They are all based on the history of the executed branches and

how many times the predictor was right in branch predictions. The throttle factor is

used to reduce the 2-norm of the PC taint vector. In addition, based on the previous

discussion, the taint value which calculated through combining two vectors should

be throttled in order avoid information destruction.

One of the main reasons to use the hybrid system in representing the dynamics

of the taint vector associated with the PC register, is achieving maneuverability and

controllability in the system. Since these two notions are complementary, the system

is viewed in a hybrid model where one state maneuverability is high and the second

state the system is controlled in order to restore the correct amount of taint in the

PC vector.

36

Chapter 4. Preliminary Mathematical Model

PC Taint
Vectors(Plant)

I9: add $r3, $r1, $r2

I8: JNZ L2

I7: addi $r2, $r3, -1

I6: addi $r1, $r1, 2

....

DIFT

Added
Taint

Branch
Predictor

Hit/Miss
Past

Information

Controller
Throttle

Taint Vectors

Figure 4.3: The DIFT system block diagram with the controller.

The output of the plant is the taint vector {y|y ∈ RN} of the PC of size N .

The DIFT system as represented above has a continuous state, {x|x ∈ R>0} which is

the norm of the taint vector in the PC. The norm of the taint’s dynamics in the PC

vector is monitored and has a first order representation in the hybrid model. The

Figure below 4.4 introduces the hybrid model of the system.

The discrete states are Q = {q0, q1}.

• q0 := branch predicted correctly: hit

• q1 := branch predicted incorrectly: miss

Let TL and TH be the low-level and high-level taint norm respectively, where TL

and TH ∈ Z+.

Vector Field f(., .) : Q×X → R

Dom(q0) = {x ∈ R|x < TL} and Dom(q1) = {x ∈ R|x > TH}.

37

Chapter 4. Preliminary Mathematical Model

Figure 4.4: Two modes of the system.

Figure 4.5: Two modes of the system in simulink.

E = {(q0, q1), (q1, q0)} the possible switching in the system.

G(q0, q1) = {x ∈ R|x < TL} and G(q1, q0) = {x ∈ R|x < TH},

Figure 4.5 shows the state chart in the system where the TH was set to 7 and the

output of the system is positive or negative integer which will pick the state variables

of the system.

The above Figures 4.6, 4.7 and 4.8 describe the taint in the PC vector and its

variations in the system after running a program where it modifies the taint vectors

associated with the registers and the memory locations in the computer. The taint

in the PC register is decreased when the branch predictor hits i.e., the prediction

38

Chapter 4. Preliminary Mathematical Model

Figure 4.6: Taint dynamics as modeled in Simulink.

Figure 4.7: The 2-norm of the taint in the system.

was correct. The taint length should be reduced based on how much the predictor

39

Chapter 4. Preliminary Mathematical Model

Figure 4.8: Instances when the controller is active or inactive Q = {q0, q1}.

is guessing the correct instruction to be executed next. When the taint bounds are

violated the system goes into the conservative state q1 where the taint is reduced

according to the hits of the branch predictor and the taint overage in the DIFT

system. The controller in this Section is a PID controller where the values have been

tuned in order to achieve the smoothness in the taint reduction.

Figures 4.9, 4.10 and 4.11 are screen caps of the Simulink files used to design the

DIFT system. The controller used for the taint system is a PID controller with the

following constants. The taint norm doesn’t exceed the bounds which was set to 8 in

this design and DIFT model. The PID compensator has the following characteristics

in 4.2. The purpose of using compensation that can be employed to help fix certain

system metrics that are outside of a proper operating range, which is the case in this

model.

However in this paper the solution for address dependencies are left for future

work. We discuss the first two states. The system switches between two modes where

each will affect the taint differently. The DIFT system in general has two modes of

operation: q0 is tainting regularly at the program’s pace and, (ii) q1 is when the

system should wait for the predictors result to decrease the taint in the system.

40

Chapter 4. Preliminary Mathematical Model

Figure 4.9: The overall system with the tuned PID taint norm controller.

Figure 4.10: The input of the system when real time data is not available.

The hybrid model of the DIFT system has two modes of operation. The first is

when the system is executing at normal pace but while monitoring the amount of

taint and checking if the PC register is tainted. The second mode is when the system

is waiting for the branch predictors and the memory location predictors to reduce

the amount of taint in the system, or, more specifically, the PC register. It is ensured

41

Chapter 4. Preliminary Mathematical Model

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

instructions

ta
in

t n
or

m

Figure 4.11: The input of the system when real time data is not available.

by having guards on each mode. By definition, an invariant is a necessary condition

for switching between the two modes of the DIFT system. The switch between the

PID Constant Value

P 0.3456
I 0.0001
D -0.648
N 0.5333

Table 4.1: Table listing the constants of the PID controller where N is the filter
coefficient which leads to a smoother controlled output [4]
.

42

Chapter 4. Preliminary Mathematical Model

two modes of the system happens when the guard is satisfied. Whenever the location

invariants fail the new mode (state) will be determined by the guards.

Figure 4.8 describes the two different modes of the system. The first will keep

the system running when the taint level is below 50% while the second will force the

system to wait for the result of the predictors. The model of the system ensures that

the system will keep the taint bounded between the limits by the set guards.

4.3 Tandem Queue Methodology

The taint associated with the PC register has a similar behavior as a queue. The

taint is used to model the data operations done to the content of the PC - the

instruction’s address to be executed next .The model which will be presented will be

similar to a queue model but it includes some modifications in order to reflect the

variations of the taint vector associated with the PC.

After examining the DIFT system and researching the existing models for com-

puting systems. The taint for the PC is a vector of N decimal values, the vector is

modified based on the instructions in the program. The taint vector variations are

random since each program has different instructions. The input to the taint vector

is the additional taint variations due to the new instructions.

In correlation with several models of computing systems, a model has been used

to represent the taint in each element in the vector. After studying several models in

the computing systems, it is significant to introduce the model for the tandem queue.

A tandem queue consists of several queues connected in series, it is used to model

complex systems such as multi-tiered e-commerce applications with interconnected

components. These applications are modeled a networked queuing systems, in other

words, a tandem queue.

43

Chapter 4. Preliminary Mathematical Model

Figure 4.12: Tandem queue in a networking system.

In the DIFT system, each element in the taint vector will be modeled as a queuing

system. Each queue will represent the taint value in each element. The taint value

can be negative, thus, the queue will be associated with the absolute value of the

taint. However, it will be noted that the queue is associated with a negative taint.

For a better understanding of the tandem queue, the Figure 4.12 below represents

two queuing systems in a simple networking concept.

The tandem queue is modeled by monitoring the average response time of each

queuing system. The overall system will measure the response time of all of the

individual queuing systems in the tandem queue. The state variables are r1, r2

representing the response time in each queue. The input to the tandem queue is the

offset value in the buffer at time k, and the output is the average response time of

all the queues.

Comparing the DIFT system to the tandem queue, the input to the networked

system is the available requests in the queues while in the DIFT system is the ad-

ditional taint added at time k to the taint vector associated with the PC register.

The output of the DIFT system is the angle between the successive taint vectors

associated with the PC register measuring the taintedness of the system, while the

output for the queuing system measures the response time of the overall system.

44

Chapter 4. Preliminary Mathematical Model

The queuing system is modeled through using the ARX (Auto-Regressive with

external input estimator) model in MATLAB using the system identification toolbox.

It will return the model of the system as a state-space representation. The same

modeling scheme can be applied to the DIFT system, since the two systems exhibit

similar characteristics, as explained above. The only difference between the two

systems is the output.

The data is recorded from the DIFT system by saving the taint vector associated

with the PC register. To assess the data and the degree of difficulty in identifying

a model, you first estimate the simplest, discrete-time model to get a relationship

between u(t) and y(t)– the ARX model. This black-box approach does not require

you to model the physics of your system. The ARX model is a linear difference

equation that relates the input to the output. System Identification Toolbox uses

these parameters to compute delayed inputs and outputs in the difference equation

[29].

Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

45

Chapter 5

Mathematical Model, Validation

and Results

5.1 Mathematical Model of the DIFT system

The DIFT system has a hybrid model which is built based on the similarity between

the taint accumulation and the queue model. There are three states which the system

can be operating. The system is a non-linear time variant system. The system could

be modeled with a difference equation and discrete variables however the choice of

having it modeled as a continuous system represented by differential equations due to

the delays encountered in branch instructions especially when misses are encountered

and PC register’s taint is not updated at each instruction, although the value of the

PC register is. The discrete model is left for the future work the sampling time

should be the clock cycle of the computer, since at each clock cycle an instruction is

being executed.

The data transfer is studied on the four bytes of the register, where the taint is

added and subtracted from a byte of the register. The dynamics of the taint is viewed

46

Chapter 5. Mathematical Model, Validation and Results

in the same manner as the packet transfer in the TCP connection model which was

presented in the Chapter 2. The taint is modeled as follows

ẋ = −(x− τInyIn), (5.1)

where ẋ is the taint dynamics in the byte of the PC register, x is the rate of increase

of the taint in the specific byte, yIn is the taint decrease rate in the byte due to the

instruction In and τIn is the tainting factor for the corresponding instruction In. The

variables are updated when the taint of the PC register is updated. The value of

τIn varies depending on the state of the system and the instructions executed in the

pipeline. yIn is the input to the model representing the amount of taint being added

or removed to the taint vector associated with the PC register. The dynamics of the

taint in the PC register is modeled as a hybrid system and it is illustrated in the

diagram below.

Figure 5.1: The hybrid system representing the taint dynamics in a program.

The DIFT system hybrid model has three states which represent the dynamics of

47

Chapter 5. Mathematical Model, Validation and Results

the taint in the PC register as a queue. There are three possible states in the model

presented above where the taint is quantified by the rate of variation of taint. The

states are described as follows:

• Constant Taint ˙xIn = 0: The taint in the PC vector shows no variation,

it happens in the case where the taint in the PC vector is not altered in the

DIFT system. For instance, some instructions are executed and no changes

should be done to the taint associated with the PC register, as in arithmetic

instructions (addi, subi). Such instructions will only change the taint in the

registers storing the values involved in the operation thus there is no need to

update the PC taint. A state is needed when the taint is constant, xn stays

constant or in other words ẋn = 0. In this case xn and pIn are equal to zero,

there is no change in the PC taint xn 6= pIn .

The above discussion can be summarized by the below equations, the state has

no changes in the variables of the differential equation 5.1.

• Increasing Taint ˙xIn > 0: The taint in the PC vector increases in this case

since the τ is negative. In this case the taint associated with the PC register

is increasing since the instruction which was executed has tainted data and

should be transferred to the PC register since it affects the next instruction to

be executed – for example, branch instructions. A state is needed in order to

indicate the increase in the taint based on the instructional dependency.

• Decreasing Taint ˙xIn < 0: The taint in the PC vector decreases based on

the dependency of the previously executed instructions. The decrease in the

taint associated with the PC register is the desirable since DIFT systems have

a misrepresentation with continuous increase in the taint. Some cases in the

code being studied in a DIFT system, the next instruction to be executed is

dependent on a non-tainted variable or a variable that has a low taint value,

48

Chapter 5. Mathematical Model, Validation and Results

thus it causes the taint to decrease. A state is needed to represent the decrease

in the taint dynamics.

The hybrid model provided gives a partition between the continuous states x and

the discrete states q. The hybrid automata for the DIFT system given by:

• the modes of the system Q = {1, 2, 3}

• the domain map Domain: Q→ R for each q ∈ Q in which xIn changes

Domain(1) = R,Domain(2) = R,Domain(3) = R (5.2)

• a flow map f : Q× R→ R describing the variation of the state

f(1, xIn) = −(xIn − τpIn)

f(2, xIn) = 0

f(3, xIn) = −(xIn + τpIn) (5.3)

• a set of edges Edges ⊂ Q × Q, which identifies the pairs (qi, qj) such that a

transition from the mode qi to the mode qj is possible where qi, qj ∈ Q such

that Q = {(1, 2), (2, 1), (3, 2), (2, 3), (3, 1), (1, 3)}.

• a guard map Guard : Edges → R, which identifies, for each edge (qi, qj) ∈

Edges, such that i 6= j the set Guard

Guard(1, 2) : ˙xIn = 0, Guard(2, 1) : 8 ≥ xIn ≥ 16

Guard(3, 2) : ˙xIn = 0, Guard(2, 3) : {xIn < 8} ∪ {xIn > 16}

Guard(3, 1) : {xIn < 8} ∪ {xIn > 16}, Guard(1, 3) : 8 ≥ xIn ≥ 16 (5.4)

• a reset map Reset : Edges × R → R, which describes, for each edge (qi, qj) ∈

Edges, where i 6= j the value of the continuous state during the transition.

Reset(qi, qj, x) = x (5.5)

49

Chapter 5. Mathematical Model, Validation and Results

The three-state hybrid system represent the possible taint dynamics of the taint in the

PC register and it can be used to represent the taint in the memory locations based

on probabilistic predictions on where would the code access the memory location.

More details are provided in the future work in Chapter 7.

The variable τIn in the case of modeling the taint dynamics in the PC register

only is equal to 1. This is because the system is not controlled or regulated by the

predictability of the branch predictor. The same differential equation 5.1 is still used

to reflect the changes in the taint levels when the controller is added. It can obey

an adhoc control law with static values or the value of τ can be changed based on a

closed control loop which is computed based on a certain control law that is chosen

to provide the most desirable output.

5.2 Validation and Results

The hybrid model is compared with data from the DIFT system which is provided

by UNM’s Computer Science Department where a code sample is executed and the

trace of the taint is saved. The taint is recorded at each instruction including the

branch if it is taken or not.

The model is simulated on MATLAB using the ode45 function for solving dif-

ferential equations and is fed input from the taint dynamics on the DIFT system.

The hybrid system discrete events are modeled through events interrupting the each

function corresponding to each state. The input was chosen to be the variation of the

taint rate in the PC vector given from the real DIFT system. In some experiments,

the input of the model was given to be a stochastic random variable with different

characteristics in terms of the branch hits and misses, the taint variation of the PC

vector, it was used to validate the model and the its limitations.

50

Chapter 5. Mathematical Model, Validation and Results

The simulation of the differential equation 5.1 representing the state of the system

depending on the variations in the taint rate update. The hybrid model is highly

dependent on random variables which require update after each ode45 function eval-

uation especially τIn and yIn .

After observing the taint variations in the simulated results from the DIFT system

developed at the CS department, the hybrid model is tested after imputing several

types of random distributions, after adding the appropriate offset. The parameters

of the equation representing the plant is highly random. In contrast to the TCP

hybrid system model provided in Chapter 2, the TCP system has more predefined

rules where packets are heading and rules in which the flow is regulated. It is eas-

ier to model the input and the expected behavior of the flows at the router level.

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

instructions k

T
a

in
t

v
a

ri
a

ti
o

n
 i
n

 o
n

e
 e

le
m

e
n

t
in

 t
h

e
 t

a
in

t
v
e

c
to

r.

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

instructions k

T
a

in
t

v
a

ri
a

ti
o

n
 i
n

 o
n

e
 e

le
m

e
n

t
in

 t
h

e
 t

a
in

t
v
e

c
to

r.

51

Chapter 5. Mathematical Model, Validation and Results

The Figure below 5.2 is the performance of the hybrid model represented in

the equation 5.1 and τ is changed based on a random uniform distribution. The

model considers a random number of instructions and takes into consideration that

every program is written differently and is translated differently into set of assembly

instructions.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

time

ta
in

t

Figure 5.2: MATLAB result of the hybrid system representing the taint rate in a
program.

52

Chapter 5. Mathematical Model, Validation and Results

After simulating the model on a strictly random input, the model is tested using

data from the original DIFT system. The input was the actual variation of taint

from both bubble and selection sort.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

instructions n

T
h

e
 h

y
b

ri
d

 s
y
s
te

m
 r

e
s
u

lt
 w

h
e

n
 t

h
e

 t
a

in
t

v
a

ri
a

ti
o

n
 o

f
b

u
b

b
le

 s
o

rt
 i
s
 f

e
d

 t
o

 t
h

e
 m

o
d

e
l.

Figure 5.3: MATLAB result of the hybrid system representing the taint rate in a
program.

53

Chapter 5. Mathematical Model, Validation and Results

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

instructionT
he

 ta
in

t v
ar

ia
tio

n
of

 s
el

ec
tio

n
so

rt
 r

es
ul

tin
g

fr
om

 th
e

hy
br

id
 s

ys
te

m
.

Figure 5.4: MATLAB result of the hybrid system representing the taint rate in a
program.

54

Chapter 6

Model Predictive Control and

DIFT

6.1 Model Predictive Control Overview

The model provided above is a time varying hybrid model where its parameters are

stochastic and the input of the hybrid system follows few to no rules. In order to

optimize the model, we have decided to use model predictor control (MPC) for the

purpose of regulating a highly inter-related DIFT system.

MPC is used to tackle multivariable problems which exhibit nonlinearities and

difficult dynamic behavior. Model predictive control (MPC) provides an appropriate

control approach for taking into account, system dynamics and forecast uncertainties.

In addition, it is widely used whenever there are a lot of constraints on the input

and the output [16,20,26]. The overall objectives of MPC are:

• Prevent violations of input and output constraints.

• Drive some output variables to their optimal set points, while maintaining other

55

Chapter 6. Model Predictive Control and DIFT

outputs within specified ranges.

• Prevent excessive movement of the input variables.

The behavior of dynamic systems is generally represented as

x(t+ 1) = Ax(t) +Bu(t) (6.1)

where t is an instant of time, x is the state of the system and A and B are constants.

There are three components in the MPC approcach: Prediction model, Objective

function and Obtaining the control law. The objective of the MPC is to compute a

control signal which will satisfy the cost function with the constraints on the input

and the output taken into consideration. The MPC algorithm is set to compute an

optimal control signal over some period of time. The predicted future output is a

function of the current state, feedback, feedfarward and future input adjustment of

the controlled system. The control calculations are based on both future predictions

and current measurements.

MPC is based on iterative, a finite horizon optimization of a plant model. At a

specific point in time t, the system (6.1) is sampled and a cost minimizing control

algorithm is applied for a short time T . After a cost minimizing strategy is found

for the next T seconds. The plant is sampled again to update the current state the

computation of the possible trajectories is done thus the control law is updated based

on the predictions done.

The main advantage of MPC is the fact that it allows the current timeslot to be

optimized, while keeping future timeslots in account. This is achieved by optimizing

a finite time-horizon, but only implementing the current timeslot.

The cost function is given

56

Chapter 6. Model Predictive Control and DIFT

J =
N∑
i=1

wxi(ri − xi)2 +
∑

wi∆u
2
iwhere, (6.2)

xi = i-th controlled variable,

ri = i-th reference variable,

ui = i-th manipulated variable,

wxi = weighting coefficient reflecting the relative importance of,

wui = weighting coefficient penalizing relative big changes in.

6.2 Related Work for MPC

This Section provides a small overview on how the MPC was developed and what are

the significant MPC applications and research papers. MPC is not new, Kalman [12]

added the algorithm to solve the Riccati Equation in a Linear Quadratic Regulator for

finite horizon and extended his finding to cover the infinite-horizon. In the late 1970’s,

Richalet et al. [24] and Cutler and Ramaker [6] emulated the infinite-horizon LQR

for constrained processes, marking the beginning of the industrial implementation of

what comes to be known as model predictive control (MPC) [23]. Shell Oil started

using MPC and it became the most applied control technique in the industry. In

the 1980’s, the theoretical development of MPC with constraints ran into serious

difficulties, and it became increasingly apparent that a return to an infinite-horizon

formulation is required to produce stabilizing control law [26].

As mentioned before, the MPC was common in industrial processes, since predict-

ing the future output based on the current state and input of the industrial process

is valuable. Qin et al. provided a great survey of the MPC progress, from 1970 till

57

Chapter 6. Model Predictive Control and DIFT

2002. According to the authors in [23], MPC was first developed to meet the spe-

cialized control needs of power plants and petroleum refineries, now can be found in

a wide variety of application areas including chemicals, food processing, automotive,

and aerospace applications. The authors proceed by stating that successful industrial

controller for the process industries must therefore maintain the system as close as

possible to constraints without violating them. The application oriented industries

have used LQR and LQG since it was more feasible for them to obtain accurate

models. In addition, although the industry benefited from the MPC and contributed

to its variations, researchers also were interested in MPC and they have developed

LQR algorithms in which they would take into consideration the errors done in the

modeling process of the plant.

Qin et al. provided a comparison between the conventional structure of a con-

trolled system and one using MPC. Figure 6.1 provides a hierarchical block diagram

of the control flow. The top part is the optimization for the whole plant which

computes the optimal steady-state for each unit in the plant. The data can be opti-

mized in local optimizers dedicated to each unit which can run more iterations than

the plant-wide optimizer. The optimization unit computes the optimal steady state

and then passes it to the dynamic constraint for implementation. The control unit

monitors the transitions from one steady state to another while, satisfying the con-

straints. In the conventional structure, the transitions are accomplished by using a

combination of PID algorithms, lead-lag (L/L) blocks and high/low select logic. It is

often difficult to translate the control requirements at this level into an appropriate

conventional control structure.

In [26], the authors Scokaert et al. has provided a huge contribution to LQR to

extend it to MPC notion with finite-horizon linear program subjected to inequality

constraints in the input and the output, in which it is useful in controlling the hybrid

model in the DIFT system, more details in the following Section.

58

Chapter 6. Model Predictive Control and DIFT

Figure 6.1: Hierarchy of control system functions in a typical processing plant [23].

6.3 Applying MPC for DIFT

The DIFT system has a hybrid model, as seen in the previous chapter, the states

are in continuous time and discrete events are occurring and causing the state to

alter. MPC is applied to the system after the discretization of the states based on a

sampling time ∆t.

59

Chapter 6. Model Predictive Control and DIFT

In [26], consider a discrete time system represented as:

xt+1 = Axt +But (6.3)

where xt ∈ Rn and ut ∈ Rm are the states and input vectors at time t, A and B

are the state transition and input distribution matrices. Assuming that (A,B) are

stabilizable.

The objective function is defined as:

φ(xt, π) =
∞∑
j=0

x′j|tQxj|t + u′j|tRuj|t (6.4)

where Q ≥ 0 and R > 0 are symmetric weighting matrices, such that (Q1/2;A)

is detectable, and

π = {ut|t, ut+1|t, ...} (6.5)

xj+1|t = Axj|t +Buj|t, where t ≥ j (6.6)

The constraints are defined as

Hxj+1|t ≥ h,where t ≥ j (6.7)

Duj|t ≥ d (6.8)

where h ∈ Rnh
+ and d ∈ Rnd

+ dene the constraint levels, with nh and nd denoting the

number of state and input constraints respectively, and H and D are the state and

input constraint distribution matrices.

Let XK ∈ Rn denotes the set of states xt for which the unconstrained LQR law,

uj|t = −Kxj|t (t ≥ j), satisfies 6.7 and 6.6 as defined in [26].

60

Chapter 6. Model Predictive Control and DIFT

The objective is,

φN(x) = minπ inPNφ(x, π) (6.9)

φ(x, π) =
N−1∑
j=t

(x′j|tQxj|t + u′j|tRuj|t) + x′t+N |tQ̃xt+N |t (6.10)

where Q̃ = Q+K ′RK + (A−BK)′Q̃(A−BK)

The algorithm of solving for the steady state solution using MPC by implementing

infinite-horizon LQR by increasing the N .

1. Choose a finite horizon N0, set N = N0.

2. Solve 6.10

3. If xNt+N |t ∈ XK skip to 5

4. increase N , if N ≥ Nmax then go to 2, terminate and apply MPC.

5. terminate π∗(x) = πN(x)

Model predictive control techniques include a number of design parameters are

as follows: We are considering only finite horizon in the system, thus, P = M the

controlled horizon and the predicted horizon are equal.

61

Chapter 6. Model Predictive Control and DIFT

N model horizon
∆t sampling period
P prediction horizon (number of predictions)
M control horizon (number of control moves)
Q weighting matrix for predicted errors
R weighting matrix for control moves

Table 6.1: Table listing the MPC design variables.

1 mpc1 = mpc(sysd , Ts , p ,m) ; % MPC ob j e c t

mpc1 .OV = s t ru c t (’Min ’ ,16 , ’Max ’ ,32) ; % Input s a tu ra t i on

c on s t r a i n t s

3 mpc1 . Weights .OV = [sq r t (Qy)] ; % Output weights (only on

o r i g i n a l output)

mpc1 . Weights .MV = sqr t (Qu) ; % Input weight

5 mpc1 . Weights .MVRate = 1e−5; % Very smal l weight

on command input increments

ry = 16 ; % Output s e t po int

7 mpc1 .MV. Target = ry/dcg ; % Set−po int f o r

manipulated va r i ab l e

Y = s t r u c t (’Weight ’ , [1]) ; % Weight on y (t+p)

9 U = s t ru c t (’Weight ’ , s q r t (Qu)) ; % Weight on u(t+p−1)

s e t t e rm ina l (mpc1 ,Y,U) ; % Set te rmina l weight

y ’∗ y = x ’∗P∗x

11 s e t o u t d i s t (mpc1 , ’ remove ’) ; % Remove add i t i ona l

d i s turbance i n t e g r a t o r s

mpcgain = dcgain (s s (mpc1)) ;

13 f p r i n t f (’ \n(unconstra ined) MPC: u(k)=[%8.8g]∗ x (k) ’ , mpcgain (1)) ;

f p r i n t f (’ \n LQR: u(k)=[%8.8g]∗ x (k) \n\n ’ ,−K(1)) ;

62

Chapter 6. Model Predictive Control and DIFT

The result of the above computation of finite horizon with all the constraints

including the output to be restricted between 16 and 32 (check line 2 in the code

above).

(unconstrained) MPC: u(k)=[0.74626162]*x(k)

LQR: u(k)=[6.2603555]*x(k)

The output of the system is displayed in Figure 6.2 below.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

At step M

T
he

 o
ut

pu
t t

ai
nt

 a
fte

r
M

P
C

Figure 6.2: Output of the modeled DIFT system.

After simulating the resulting model with the MPC controller computed based

on one instance in the DIFT system, in other words, the state us altered each time

the system alters its parameters.

63

Chapter 7

Conclusions

In this thesis, a computing system – Dynamic Information Flow Tracking (DIFT),

is studied in order to represent it as hybrid model. The model provided in Chapter

5, represents the taint in the PC register, the hybrid model is built as a combina-

tion between a thermostat model and a queue model. The incremental changes are

provided before finalizing the model.

The hybrid model captures the dynamics of the taint of the PC register while

guarding some rules which defines the state of the system. The guards and rules were

defined in terms of the taint in the PC register and the predictability of the branch

results. The main purpose of using the data of the branch results is to emphasize that

when the information is predictable then less amount of information has propagated

thus, the taint can be reduced. On the other hand, when the predictor is encountering

a lot of misses in predicting the correct result of the branches, then the taint should

be adjusted since the information should be altered thus, more taint is needed to

represent the flow of information.

In Chapter 6, this thesis suggests a Model Predictive Controller (MPC) in order

to limit the taint in the PC resister, the design figures and rules are set to meet the

64

Chapter 7. Conclusions

constraints of the designed DIFT system. The weights assigned to the input and

output were chosen in order to satisfy the constraints. The system is discretized and

the MPC controller is added to the system.

7.1 Future Work

The thesis has examined a side of the over-tainting problem that can be applied to

the DIFT system in which branch instructions. Another aspect that can be solved

through the same technique applied in this thesis, is the over-tainting due to memory

access. The memory instructions might over-taint while reading and writing from

the memory. The same model can be applied to the memory instructions where the

taint can’t be cleared easily. The taint was reduced in branch instruction due to

the predictor’s efficiency in predicting the next instruction, the memory instructions

need a similar predictor in order to surf as a taint reducer.

Figure 7.1: Memory address space is represented by a variable X, labeling each
section of the physical memory space.

65

Chapter 7. Conclusions

As a suggestion of a possible solution, the physical memory address space is

divided into sections where a probability is assigned to it. It can be represented

by a variable X ∈ Z+. At the beginning of the program X would be a uniform

variable with f :X→ R, where each section of the memory has equal probabil-

ity to get accessed(read or write). Assuming that the memory is divided to K

sections each of size M bytes (where K,M ∈ Z+). For instance in Figure 7.1,

K = {100000, 101000, 102000, ...} where K = 101000 represents the memory section

from 101000→ 101999 where M = 10000.

P (X = x) = (1/K) where x ∈ K (7.1)

The probability in 7.1, will be modified when memory is accessed. When a section

is accessed it is more likely to be accessed again later. Therefore, when a section of

the memory is accessed the taint is adjusted based on the probability assigned to the

section. If the probability is high then the taint should be reduced.

The taint is ensured to be in between the bounds set by the DIFT system by

using one of the previous controllers applied to the PC taint vector.

66

Appendices

A Graph Model MATLAB Code 4

67

Appendix A

Graph Model MATLAB Code

c l o s e a l l ;

2 c l e a r a l l ;

% Generate a random code depending on 2 types o f i n s t r u c t i o n

4 dependenc ies :

% con t r o l and ar i themat i c

6 n = 100 ;

code = [] ;

8 f o r i = 1 : n

var = rand ;

10 numbe r o f r e g i s t e r s = 8 ;

reg1 = num2str (round (rand (1) ∗ numbe r o f r e g i s t e r s)) ;

12 reg2 = num2str (round (rand (1) ∗ numbe r o f r e g i s t e r s)) ;

i f (rand>0.8)

14 %branch i n s t r u c t i o n

new in s t ruc t i on = [’ branc ’ , ’PC ’ , ’ r ’ reg2 , ’ ad ’] ;

16 e l s e

%ar i themat i c i n s t r u c t i o n

18 new in s t ruc t i on = [’ a r i t h ’ , ’ r ’ reg1 , ’ r ’ reg1 , ’ r ’ , reg2] ;

68

Appendix A. Graph Model MATLAB Code

end

20 code = [code ; new in s t ruc t i on] ;

end

22 node name = [] ;

A graph = ze ro s (n , n) ;

24 l i n k = 0 ;

var=rand (1 ,100) ∗100 ;

26 p lo t (var , ’ o ’)

hold on ;

28 count = 0 ;

f o r i = 1 : n

30 f o r j = i : n

i f (code (i , 1 : 5)==’ a r i t h ’)

32 %check o f the output i s connected to something e l s e and not

%updated

34 ou tpu t t o l i n k = code (i , 6 : 7) ;

i f ((ou tpu t t o l i n k == code (j , 8 : 9)))

36 % | | (ou tpu t t o l i n k == code (j , 1 0 : 1 1))

A graph (i , j) = rand ; %e s t a b l i s h l i n k

38 i f (code (j , 1 : 5)==’ branc ’)

p l o t ([i j] , [var (i) var (j)] , ’−r ’) ;

40 e l s e

p l o t ([i j] , [var (i) var (j)] , ’−b ’) ;

42 end

%A graph (i , j , 2) = l i n k + 1 ;

44 i f (j == i)

e l s e

46 i f (o u tpu t t o l i n k == code (j , 6 : 7)) % the r e g i s t e r has

been updated : no more dependency

48 %l i nk = l i n k + 1 ;

69

Appendix A. Graph Model MATLAB Code

j = n ;

50 end

end

52 end

end

54 end

10

56 end

t i t l e (’Random Program dependency graph : b lue edges f o r a r i thmet i c

58 dependenc ies and red f o r branch dependenc ies . Edges are

r epr e s ent ed in

c i r c l e s . ’)

60 % Plot the graph

nodes = [] ;

62 f o r i = 1 : n

f o r j = 1 : n

64 i f (A graph (i , j , 1) ˜= 0)

i f (code (j , 1 : 5)==’ a r i t h ’)

66 nodes= [nodes ; 1 , i , −j] ;

e l s e

68 i f (code (j , 1 : 5)==’ branc ’)

nodes= [nodes ; 0 , i , −j] ;

70 end

end

72 end

end

74 end

70

References

[1] M. I. Al-Saleh, Fine-Grained Reasoning About the Security and Usability Trade-off in

Modern Security Tools, Doctoral Dissertation, Albuquerque, NM, USA, 2011.

[2] M. I. Al-Saleh and J. R. Crandall, On Information Flow for Intrusion Detection: What

if Accurate Full-System Dynamic Information Flow Tracking was Possible? Proceed-

ings of the Workshop on New Security Paradigms, 2010, pp. 17–32.

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Springer-

Verlag New York, Inc. 2006.

[4] D. J. Cooper, Proven Methods and Best Practices for Automatic PID Control, 2006.

http://www.controlguru.com/pages/table.html, Accessed: June 23, 2013.

[5] J. R. Crandall and F. T. Chong, MINOS: Control Data Attack Prevention Orthogonal

to Memory Model, Proceedings of the 37th International Symposium on Microarchi-

tecture (MICRO). December, 2004.

[6] C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control A Computer Control Al-

gorithm (1980). Proceedings of Joint Automatic Control Conference. San Francisco,

USA, January, 1980,

[7] B. C. Dean, A Simple Expected Running Time Analysis for Randomized “Divide and

Conquer” Algorithms, Discrete Applied Mathematics Journal, 2006, 154, no. 1, 1 –5.

71

REFERENCES

[8] J. Ding, J. Gillula, H. Huang, M. P. Vitus, W. Zhang, and C. J. Tomlin, Hybrid

Systems in Robotics: Toward Reachability-Based Controller Design, IEEE Robotics &

Automation Magazine, September, 2011, 18, no. 3, 33 –43.

[9] J.P. Hayes, A Graph Model for Fault-Tolerant Computing Systems, IEEE Transactions

on Computers, 1976, C-25, no. 9, 875–884.

[10] J. He, Q. Wang, and T. Lee, PI/PID Controller Tuning via LQR Approach, Proceed-

ings of the 37th IEEE Conference on Decision and Control, 1998, pp. 1177–1182.

[11] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of Com-

puting Systems, John Wiley and Sons, New York, 2004.

[12] R.E. Kalman, Contributions to the Theory of Optimal Control, Vol. 5, Boletin De La

Sociedad Matematica Mexicana, 1960.

[13] J.O. Kephart and S.R. White, Directed-graph Epidemiological Models of Computer

Viruses, Proceedings of research in Security and Privacy, Symposium on IEEE Com-

puter Society, 1991, pp. 343–359.

[14] Donald E. Knuth, The Art of Computer Programming, Sorting and Searching, 2nd ed.

Vol. 3, Addison Wesley Longman Publishing Co., Inc. Redwood City, CA, USA, 1998.

[15] J. Lee, S. Bohacek, J. P. Hespanha, and K. Obraczka, Modeling Communication Net-

works With Hybrid Systems, IEEE/ACM Transactions on Networking, 2007, pp. 630

–643.

[16] J. H. Lee, A Lecture on Model Predictive Control, Georgia Institute of Technology,

2000. http://cepac.cheme.cmu.edu/pasilectures/lee/LecturenoteonMPC-JHL.

pdf.

[17] C. Lu, T.F. Abdelzaber, J.A. Stankovic, and S.H. Son, A Feedback Control Approach

for Guaranteeing Relative Delays in Web Servers, Proceedings of the Symposium of

on Real-Time Technology and Applications, 2001, pp. 51–62.

72

REFERENCES

[18] I. Lu, T. F. Abdelzaher, and G. Tao, Direct Adaptive Control of a Web Cache System,

Proceedings of the American Control Conference, 2003, pp. 1625 –1630.

[19] J. Newsome and D. Song, Dynamic Taint Analysis for Aautomatic Detection, Analysis

and Signature Generation of Exploits on Commodity Software, Proceedings of the 12th

Annual Network and Distributed System Security Symposium (NDSS ’05), 2005.

[20] P.E. Orukpe, Basics of Model Predictive Control, Imperial College London, 2005.

http://citeseer.uark.edu:8080/citeseerx.

[21] D. A. Patterson, Computer Organization and Design, Fourth Edition: The Hardware/-

Software Interface, 4th ed. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA,

2008.

[22] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach,

Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1990.

[23] S. Qin and T. Badgwell, A Survey of Industrial Model Predictive Control Technology,

Control Engineering Practice, July, 2003 11, no. 7, 733–764.

[24] J. Richalet, A. Rault, J.L. Testud, and J. Papon, Model Predictive Heuristic Control:

Applications to Industrial Processes, Automatica, 1978, 14, no. 5, 413 –428.

[25] A. J. Schaft and J. M. Schumacher, Introduction to Hybrid Dynamical Systems,

Springer-Verlag, London, UK, 1999.

[26] P. O. Scokaert and J.B. Rawlings, Constrained Linear Quadratic Regulation, IEEE

Transactions on Automatic Control, 1998 43, no. 8, 1163–1169.

[27] V. Sharma, A. Thomas, T.F. Abdelzaher, and K. Skadron, Power-aware QOS Man-

agement in Web Servers, In Proceedings of the 24 th IEEE Real-Time Systems Sym-

posium (RTSS’03), Cancun, 2003, pp. 63–72.

[28] G. E. Suh, J. Lee, and S. Devadas, Secure Program Execution via Dynamic Information

Flow Tracking, Proceedings of ASPLOS-XI, 2004.

73

REFERENCES

[29] A. Turevskiy, System identification toolbox, 2013. http://www.mathworks.com/

products/sysid/index.html, Accessed: June 23, 2013.

[30] N. Xi, T. Tarn, and A.K. Bejczy, Intelligent Planning and Control for Multirobot Coor-

dination: An Event-based Approach, IEEE Transactions on Robotics and Automation,

1996 12, no. 3, 439–452.

74

	University of New Mexico
	UNM Digital Repository
	9-3-2013

	Modeling and control of a dynamic information flow tracking system
	Maria Khater
	Recommended Citation

	tmp.1472502609.pdf.OE4l8

