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Abstract 

 

Digital video processing demands have and will continue to grow at 

unprecedented rates. Growth comes from ever increasing volume of data, demand for 

higher resolution, higher frame rates, and the need for high capacity communications. 

Moreover, economic realities force continued reductions in size, weight and power 

requirements. The ever-changing needs and complexities associated with effective video 

processing systems leads to the consideration of dynamically reconfigurable systems.  
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The goal of this dissertation research was to develop and demonstrate the viability 

of integrated parallel processing system that effectively and efficiently apply pre-

optimized hardware cores for processing video streamed data. Digital video is 

decomposed into packets which are then distributed over a group of parallel video 

processing cores. Real time processing requires an effective task scheduler that 

distributes video packets efficiently to any of the reconfigurable distributed processing 

nodes across the framework, with the nodes running on FPGA reconfigurable logic in an 

inherently “Virtual” mode.  

The developed framework, coupled with the use of hardware techniques for 

dynamic processing optimization achieves an optimal cost/power/performance realization 

for video processing applications. The system is evaluated by testing processor utilization 

relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering 

system, and a dynamic pixel processor. For these applications, the system can achieve 

performance of hundreds of 640x480 video frames per second across an eight lane Gen I 

PCIe bus. Overall, optimal performance is achieved in the sense that video data is 

processed at the maximum possible rate that can be streamed through the processing 

cores. This performance, coupled with inherent ability to dynamically add new 

algorithms to the described dynamically reconfigurable distributed processing 

framework, creates new opportunities for realizable and economic hardware 

virtualization. 
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Chapter 1  

Introduction 

This dissertation focuses on the application of dynamically reconfigurable hardware 

to develop effective and novel means to implement adaptable and high performance 

video processing methods with FPGA technology.  The primary motivation for this 

research comes from the need for flexible, reprogrammable or reconfigurable solutions 

that can be deployed before design requirements have been finalized, and can then be 

adapted to changing requirements after deployment.  

Prior research enabling exploitation of FPGA reconfiguration technology has begun 

to address some of the many complexities associated with the development of hardware 

and configurable hardware whose functionality can be changed during operation.  The 

potential of self-adaptable hardware to enable revolutionary new applications has led to a 

large and growing body of work in reconfigurable computation. The recent explosive 

growth of video datasets motivates the exploration of how dynamically reconfigurable 

methods can be used for video processing. The use of dynamically reconfigurable 

methods for video processing has received very little attention. This dissertation research 

will build on recent ivPCL research by extending the dynamic pixel processor and 

dynamically reconfigurable FIR system in a high-performance video processing system. 

1.0 Overview 

Dynamic Partial Reconfiguration (DPR) of Field Programmable Gate Array 

(FPGA) devices represents a major disruptive technology that can be used to meet vital 

needs for increased system efficiency and resiliency.  This value proposition can be 
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demonstrated for applications such as satellite-based image processing [1] [2]. For these 

systems, upgrades are typically quite complex, risky, and expensive.  Furthermore, 

available resources are constrained by Size, Weight, and Power (SWAP) requirements.  

FPGA devices incorporated into these systems represent high-value, finitely-limited 

resources.  Once deployed, the available FPGA logic is strictly finite. 

Consequently, an ability to reconfigure the logic of such devices after deployment 

enables revision of the design logic, as necessary, to correct design deficiencies or to alter 

or enhance functionality.  The logic of an FPGA device is specified (programmed) in the 

manner of uploading one or more files to the device that specifies the configuration of the 

device logic.  These files are commonly referred to as bitstream files.  When an 

electrically reprogrammable FPGA device is initially programmed following power-on or 

reset, a default bitstream is loaded to that device, often from an associated memory 

through the device programming [3]. 

It is obvious that, at a minimum, non-run-time reconfiguration enables corrections 

and upgrades.  Beyond a specified reconfiguration, DPR can be used to correct, enhance, 

or replace firmware functional blocks in the FPGA reconfigurable logic while that device 

is operating in the system without disruption of other ongoing functions.  Programming 

these devices with partial bitstreams can now be accomplished over high speed multi-

gigabit per second Serializer/Deserializer (SerDes) interfaces and devices which will be 

configured and programmed specifically to support ongoing device level needs. This 

capability provides modification flexibility analogous to software while realizing 

functional density and performance efficiency of hardware. Cost-effective, easily-

modified systems are essential to today’s complex systems and development success, 



3 

 

 

 

which can be accomplished with this approach.  However, achieving this outcome 

requires the right tools and correct techniques; but moreover it most requires a structured 

(well-posed) yet flexible architectural approach. 

For this to be a reality will require the development of the appropriate techniques 

and necessary tools which leads to a packet based parallel processing framework for 

complex infrastructures such as an FPGA Application Store for FPGA Intellectual 

Property (IP) development and horizontal deployment. 

This research builds off of recent work in the area of Dynamic Energy/Power-

Performance-Accuracy (EPA/PPA) management which provided a management 

approach for digital signal, image, and video processing architectures. In this work 

EPA/PPA was demonstrated with the use of Dynamic Partial Reconfiguration (DPR) and 

Dynamic Frequency Control (DFC) on FPGAs [4] [5] [6] [7]. 

1.1. Motivation for Dissertation Research 

The majority of FPGA hardware designs and implementations tend to be expensive, 

tedious, and static. The term static is used here to refer to the fact that the designs are 

completed according to pre-defined (fixed) requirements. Indeed, even if the initial 

architects use a well-structured architectural design, once detailed design, timing 

optimization, and final verification, there is considerable risk associated with asking a 

later design team to attempt modification. Thus, design modification rarely happens, 

especially for large and complex designs. 

Yet device geometries continue to shrink because the density difference between 

FPGA technology and standard cell Application Specific Integrated Circuit (ASIC) 

technology is roughly an order of magnitude [8].  In part, this is due to the simple fact 
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that the logical design of FPGA technology is based on ASIC technology perhaps 

supplemented with more customized design of the embedded memory structures 

themselves.  Inherently, the logic density of programmable logic will remain at least an 

order of magnitude lower than that achievable in customized directly instantiated logic.  

 The implication of this fact is that the achievable density of FPGA technology 

directly tracks that of the underlying ASIC technology and consequently continues to 

grow at that same rate.  Emerging FPGA devices can achieve or perhaps exceed the 

capabilities achievable a decade ago in a dense standard cell technology and consequently 

remain complex to design.  Moreover, physical constraints that limit the ability of a 

signal to propagate across a die become increasingly adverse at the individual logic cell 

level necessitating much more knowledge of physical placement of function than had 

been necessary in older FPGA technologies.  The end result is that the difficulties in 

designing FPGAs are driving tool requirements to provide analogous physical 

optimization required for ASIC design.  Yet the end result needs to be far cheaper and 

faster [9]. 

Fortunately, the underlying optimization technologies developed for ASIC design 

needed now to address the issues with FPGA design were available a decade ago and 

have matured since.  Unfortunately widespread adaptation has not occurred due to the 

additional costs associated with the need for those same more sophisticated tool flows 

and inertial resistance to make significant investments and change without clear 

widespread adoption. 

The engineering process for firmware can be accelerated with increased use of 

functional component reuse. Unfortunately, the present FPGA industry process does not 
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directly lead to reusable components for a number of reasons including design 

methodology.  However, once it becomes inherently advantageous to create physically 

modular IP blocks for partially reconfigurable designs, reuse through standardization can 

become a natural and pervasive result. The combination of physical and logical 

standardization in turn can lead to the natural evolutionary result of macro-scale modular 

pre-tested/pre-validated components with specific physical layout within a standard, 

regular shaped region all built on established tools, technology, expertise and conformal 

with the considered base of products and related IP. Having accomplished that, it is 

apparent that even enormous applications reasonably decomposable into structured 

components of smaller, more manageable sizes are more easily created in a manner that 

converges to an acceptably sub-optimum solution much more effectively and quickly 

than with non-partitioned single monolithic applications.  This divide-and-conquer 

method is the basis of modern systems engineering practice. This practice produces 

designs whose individual components and aggregated designs can be far more reasonably 

revised and refined than large non-structured monolithic implementations. 

Furthermore, if those same applications were to be created conformal to a 

regularized macro-scale tiling with standardized electrical and messaging 

interconnections, then the FPGA fabrics provisioning of local and global routing 

resources can be partitioned to accommodate tile-to-tile and longer pass-through routing.  

Under a suitable framework for defining interconnection, tiling, and resource 

provisioning, the placement of individual functional tiles becomes a problem in tile 

assembly. 
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A primary consideration for the specification of this framework is one of tradeoffs 

between manageable complexity of individual tiles, nominal average tile utilizations, and 

total number of unique tiles. Tile size fidelity encapsulates a number of FPGA 

(Combinational Logic Blocks) CLBs, but partitions the CLB fabric with sufficient 

granularity to provide sufficient ability to accommodate the majority of smaller re-

useable macro-functional elements.   

However, the necessity to provide this same design paradigm for systemic creation 

of standardized physical and electrical macro elements that in turn systemically leads to 

the necessity to create interoperable and swappable components then directly enables the 

feasibility of near-real-time DPR device reconfiguration. Enabling rapid and dynamic 

firmware reconfiguration also suggests that defects can be more easily corrected after the 

product is fielded and consequently it becomes possible to put the product in the field to 

begin evaluation sooner. This means that other potentially major issues normally are only 

discovered by integration, in actual use, or when exposed to real-world circumstances can 

be discovered and corrected earlier and more effectively leading to cost reduction, faster 

deployment, and better results. 

FPGA DPR firmware will provide immediate or real-time updates to fielded 

hardware.  Rapid responses can be deployed horizontally in near-real time to networks of 

systems with these capabilities. It provides rapid responses and the capability for 

immediate solutions to be horizontally deployed across numerous systems and platforms. 

Situation tailored capability becomes an important goal. System hardware 

capabilities can be modified at a given moment to adapt the current environment or 
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situation.  Moreover, dynamic functional adaptations as well as application mobility 

across networked systems becomes a realizable possibility [10]. 

1.2. Related Research 

There has been considerable research over the past decade on the subject of 

reconfigurable computation; however there remains substantial work to be accomplished 

to create technologies, techniques, and tools that enable exploitation of reconfigurable 

hardware.  A survey of recently published literature testifies to the lack of sophisticated 

capabilities and tools to use DPR technology within a broad-based mainstream design 

methodology.  Examples that clearly demonstrate limitations within the current art are 

discussed in following paragraphs and are related to results established during the course 

of this research. 

SRAM-based FPGA technologies in particular have attracted substantial attention 

due to investments made by companies including Xilinx in reconfiguration technology. 

Reconfigurable technologies occupy the performance-density /cost space between ASIC 

and custom silicon and microprocessor-based software solutions and consequently have 

attracted considerable attention.  While the ability to reprogram (reconfigure) SRAM-

based FPGAs has existed since these products were first introduced, in practice, it 

happens very infrequently.  With each generation, device complexities continue to grow 

and consequently the complexity of the potential reconfiguration trade spaces grow even 

faster.  Compounding the issue, the latest generation devices now provide the ability to 

reprogram portions of a design while the device continues to operate. 

Examination of the literature suggests that there are many open issues regarding 

how to efficiently and effectively use these capabilities.  Recent research by Fons  [11] 
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suggests that the existing run-time reconfigurable computing ecosystem is at a sufficient 

“level of maturity” for the “professional design and development of embedded electronic 

systems.”  However, at the same time he qualifies this remark noting that further 

advances are required, especially regarding automation tools. While the basic low-level 

technology capabilities exist, sophisticated capabilities to effectively and efficiently 

exploit hardware reconfiguration do not. 

The author states that “when working with reconfigurable hardware technology the 

development effort required to get any application to produce even modest performance 

is high compared with a purely software implementation, and any seemingly small detail 

can easily result in a significant performance degradation [11].” 

Fons discusses an open system architecture driven by a reconfiguration engine that 

in turn supplies inputs to a logic synthesis tool for creating applications on SRAM-based 

FPGAs.  The described framework identifies and labels recognized computational tasks 

that otherwise would commonly be synthesized into static logic.  The author investigates 

a number of specific application implementations while incorporating on-the-fly 

reconfiguration techniques into those designs. In one such example, implementation of a 

CORDIC function is examined.  Trigonometric functions are synthesized and a micro-

controller is used to reconfigure ran FPGA with the new function.  When the associated 

application software code invokes the function, the associated function is loaded into the 

FPGA. FPGA execution is performed on demanded when the application invokes one of 

the supported functions.  This then initiates an automated mechanism to affect data 

transfer with the FPGA as well as with the FPGA for partial reconfiguration download. 
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In contrast to the highly automated and highly interactive processing techniques 

investigated in the present research, Fons’ approach focused on demand-driven function 

synthesis that then is used to reconfigure a device to meet a new need.  Within this 

paradigm, reconfiguration performance is a function of the power of available FPGA 

design automation and synthesis tool performance.   The author in fact notes that the time 

“required by the CAD tools to place and route a design into a physical device can be 

extremely long” and thus this approach would benefit from on-going work high-level 

language synthesis for greater abstraction and that “the complexity of embedded systems 

increases at a rate that is not met by the development of advanced CAD tools for 

managing such a large design space” and consequently “there exists risk that this 

progress remains only in research prototypes and some products.”  

Aggaarwal et al [12]proposed the System Coordination Framework (SCF). This 

work focuses on heterogeneous computation including FPGAs, CPUs, and other 

processing elements.  Their research primarily addresses inter-processor task 

communications through message passing between different tools (and languages).  This 

occurs while executing on multiple, different processing devices ranging from embedded 

to High-Performance Computing (HPC) systems.   

Unlike their work addressing more distributed applications, the present research 

focuses on task coordination related to the direct control of information flows through a 

highly parallelized FPGA fabric, performing processing tasks on that hardware, and then 

scheduling and controlling the allocation, reconfiguration, and continual modification of 

the logic incorporated within that same FPGA hardware fabric.  The very high speed and 

continual DPR techniques described herein show how individual DPR regions within an 
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array of such regions can be independently modified in an adaptive manner quickly and 

effectively. 

The NSF Center for High-Performance Reconfigurable Computing also has done 

extensive research in the area of FPGA Design Frameworks for Dynamic Partial 

Reconfiguration [13] [14]. That research focused on the actual physical layout of FPGA 

devices and not the communication network fabric or the optimizations needed to achieve 

an efficient dynamic partial reconfiguration framework.  These topics demand better 

solutions than are currently available and the current research directly addressed both. 

Tan and DeMara [15] discuss why a sophisticated partial reconfiguration 

framework is essential to integrate and optimize existing FPGA technologies in order to 

exploit the potential of PR and DPR techniques.  Towards this end, they suggest 

standardized APIs, abstracted data structures, and structured access to heterogeneous 

logic and communication resources.  Important framework attributes were suggested to 

include (1) autonomous FPGA partial reconfiguration without manual intervention, (2) 

task-level granularity, (3) reconfiguration bitstreams generated at run-time as well as 

during design. This prior research work serves to reinforce motivations for the current 

dissertation. 

Similarly, Marconi [16] recently investigated issues associated with PR hardware 

task scheduling and placement assuming pre-designed hardware tasks.  Hardware tasks 

were defined by three parameters: area (width and height), reconfiguration time, and its 

execution time. This work explores aspects of area utilization, hardware allocation 

overhead, execution time, and resource scheduling.  The author also discussed 

reconfiguration overhead due to aspects of existing configuration infrastructures. This 
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work was limited and expanded on in this dissertation with respect to resource scheduling 

of the data flow through the reconfigurable system before during and after the 

reconfiguration. 

Other research directions related to better DPR methods and process flows include 

bitstream size compression algorithms [17]. Sudarsanam  [18] proposed modification of a 

niche DPR technique for relocation of blocks tied to a specific family of devices, 

modifying an approach developed by Carver et al. [19] adding a decompression 

algorithm for obtaining the next word in the bitstream. One reported limitation of that 

approach is that current floor planning tools do not allow static routing in the partial 

regions. This limited their number of achievable partial regions.  As will be seen in the 

results from this work, the approach we have taken towards DPR does not suffer from 

similar limitations.  Indeed, the studied application involved thirty two processing cores 

that could be individually and dynamically programmed into the device and dynamically 

reconfigured. 

Krill et al [20] proposed a DPR design flow and demonstrated implementation of an 

Intellectual Property (IP) core for Color Space Conversion (CSC) for image processing.  

They proposed a DPR environment which they used to generate a CSC IP core optimized 

in terms of the area/speed ratio, providing both static and multiple reconfigurable areas.  

One significant difference between the current work and previous published results 

concerns the number and complexity of DPR regions.  This work describes a framework 

for developing place-able DPR pre-placed macros and assigning placement of those 

macros, and additionally defines DPR interconnection and a novel reconfiguration task 

scheduling mechanism. Unlike this work the scheduling mechanism does not address the 



12 

 

 

 

actual scheduling of the data being processed during or the changes to the flow of the 

data which are a result of the reconfiguration process. 

In [21], Clemente et al. developed a reconfiguration scheduler for implementing 

task-graphs at run-time, steering execution in the reconfigurable resources while 

performing pre-fetch and replacement, avoiding most of the reconfiguration delays. In 

their proposed scheduling environment, task-graphs are analyzed at design-time to extract 

useful information.  This information requires simple computations at run-time to obtain 

optimized schedules. The authors developed a hardware implementation of the 

optimization techniques. The authors discuss efficiency for their evaluated scheduling 

protocol which manages a specified task-graph for required performance under enforced 

constraints. They schedule run-time reconfigurations only including one reconfiguration 

circuit and where reconfiguration latencies are assumed significant.  As previously 

mentioned, this work describes a novel mechanism that provides for adaptive scheduling 

of reconfiguration tasks. 

Consequently, while there remains substantial work to be done in regards to 

development of a DPR ecosystem that includes sophisticated tools to support machine 

state based process optimization as well as visualization and understanding tools for 

future highly concurrent, dynamically changing processing systems. Results from this 

work can be leveraged to grow existing techniques and tools to begin to create needed 

solutions.   

1.3. Thesis statement 

The main objective of this Ph.D. dissertation is to develop an effective framework 

for dynamically reconfigurable parallel processing. The target application for this 
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research is a video processing system. The thesis of this research is that a high-

performance video processing system can be developed for real-time video streaming 

applications. 

 The effectiveness of this system is demonstrated in the high-performance 

achieved for video processing applications. In summary, the system characteristics 

include: 

– Linux based dynamically reconfigurable system (DRS) for packet-based video 

processing 

– Vendor development flow coupled with a Matlab and Simulink environment 

which facilitates DPR video processing applications 

– Demonstration of the architecture in parallel processing of digital video data 

streams across a single channel 

For reproducibility of the results, the design was implemented on a standard Xilinx 

FPGA PCIe development card that is widely available. The actual system described 

within this dissertation utilized a Xilinx Virtex 6 based ML605 development board. 

1.4. Innovations and Contributions 

The primary contributions of the dissertation include: 

1. Partial Reconfiguration System for packet-based processing: This includes the 

development and implementation of a Linux based Dynamically Reconfigurable 

System (DRS) for packet-based video processing which facilitate DPR video 

processing applications and test fixtures.  

2. Parallel processing of a digital video data stream across a channel passed into the 

FPGA fabric. 
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3. A reconfigurable packet processing bus arbitration engine used for processing 

digital video data streams. 

4. Reconfigurable multi-core processing system that can be adjusted to different 

video processing sizes (e.g., 64x64 and 32x32).  

5. Development of a custom Linux driver for packet processing and dynamic partial 

reconfiguration.  

6. Reconfigurable Packet Processor Round Robin Controller.  

7. High-performance video processing system that is demonstrated using a dynamic 

pixel processor and dynamic, separable 2-D FIR implementation. 

8. Overall, optimal performance is achieved in the sense that video data is processed 

at the maximum possible rate that can be streamed through the processing cores. 

1.5. Organization 

This dissertation is organized as follows:  

 Chapter 2 presents basic background on FPGAs, Dynamic Partial Reconfiguration 

and Packet processing frameworks. 

 Chapter 3 presents motivation for the proposed dissertation research.  

 Chapter 4 explains the hardware and software architectures of the implemented 

Dynamic Partial Reconfiguration systems. 

 Chapter 5 presents the implementation results and discussion. 

 Chapter 6 provides the conclusion for this dissertation and future work. 
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Chapter 2  

Background 

This chapter provides topologic descriptions of the custom DPR scalable systems 

that were developed and subsequently applied at the University of New Mexico for the 

purpose of exploring DPR architectures and architectural trade-offs, and a review of the 

current state of the art DPR approaches in signal, image and video processing. 

The specific DPR topology configurations that were evaluated are described.  To 

accomplish that required the development of a DPR development, evaluation, and test 

environment.  That environment is described including features, architecture, and 

furthermore an analysis of achievable output precision resulting due to limitations 

associated with various scalable architecture nuances. 

The underlying physical structure of the FPGA logic fabric leads to a natural two 

dimensional tiling problem associated with the assignment of specific logic elements to 

the actual Combinational Logic Blocks (CLB) that are designated by the specified design 

to execute that logic function.  Ultimately, all of the logic functions that are to be 

executed by the FPGA must be assigned to a specific CLB which itself would have 

specific physical coordinates associated with it.  From a bitstream programming 

viewpoint, tile location represents a specific programming address in an address space. 

The purpose of the software tools that compile abstract hardware descriptive code 

(typically developed in VHDL or Verilog) is to translate the abstract code into 

technology specific primitive logic library elements and then to map that logic to specific 

locations within the CLB fabric of the FPGA device. 
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This physical mapping is constrained by local and physical routing (wire 

interconnect) resources as well as the physical loading and signal time delays resulting 

from the length and impedance of those interconnects.  Consequently, the optimized 

placement of each of those instantiated logic elements results in multiple simultaneous 

NP-complete optimization problems [22].  As a result, placed designs are never optimum 

but instead are sub-optimum but optimal in the sense that a finite set of specific design 

constraints have been met [23]. 

Therefore the design of logic for FPGA devices involves the simultaneous 

requirement to create a logically correct design while also meeting all required physical 

and timing constraints for the assigned programmed logic.  A key difference between 

FPGA logic design and Application Specific Integrated Circuit (ASIC) design is that 

ASIC designs result in silicon mask sets which produce transistor based logic directly 

fabricated in silicon.  The logic in a FPGA device can be moved if the device is 

reprogrammed.  This section addresses the structured methodology for moving or altering 

the placement of logic in an FPGA fabric during the normal run-time operation of that 

device. 

To address the idea of redefining the logic of an FPGA device during operation, it is 

essential to first provide a structure for defining how, when, and where logic within the 

functioning device can be modified.  Consequently, it is useful to organize physical 

structuring of the DPR problem organized into high level topological arrays of resources 

interconnected through specific architectural topologies. 
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The next section details the set of specific architectural topologies that were 

explored in the course of this research and details relevant attributes and features for 

each. 

2.1. DPR Resource Interconnection 

The FPGA CLBs consist of logic implemented by lookup tables (LUTs) and which 

are immersed in an associated interconnection fabric.   The interconnection fabric itself 

contains both local as well as global routing resources (wire and driver logic).   

Hur et al [24] explored trading hardwired interconnect performance with use of 

programmable resources.  They evaluated performance against configuration costs for 

soft and hard crossbar interconnection and observed that for their application that the 

hardwired interconnection achieved significantly higher performance. Thus, it is clear 

that the reconfiguration overhead can be significant.  

An LUT with its configuration storage is clearly larger than the logic it will be 

programmed to implement. Likewise, the interconnect fabric consists of more gates than 

would be necessary with a direct connection between logic elements [25]. 

When a PR region is reconfigured, any associated functional interconnections 

likewise must be reconfigured.  Historically, PR methodology would have required bus 

macros which would be geographically spread out to provide connection resources 

available to accommodate multiple module interconnectivity.  Lacking pre-optimized 

resource allocation, use of soft programmable resources for general interconnection is not 

efficient because resulting interconnection resources are distributed over a sub-optimum 

larger surface area and consequently consume even more resources.  
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Furthermore, with specific predetermined wire delays, timing of soft networks are 

highly unpredictable with wide variance prior to placement and routing. Subsequently, it 

may be difficult to guarantee or even meet design-time timing constraints due to this 

unpredictable net delay skew.  In the case of PR circuits that are also adaptively changed, 

managing both the complexity of co-optimization of functional adaptation as well as 

interconnection synthesis is intractable without imposing structural constraint on 

allowable combinations. 

To compose complex designs in either ASIC and FPGA technologies, it is common 

to use predesigned libraries, macro functions, or IP building blocks.  As with other design 

paradigms it is common to develop building blocks for general use conformal to 

standards.  Never-the-less compatibility remains a challenge.  IP products address 

specific functional needs and corresponding interfaces are likewise functionally specific.  

As a result integration with other functions requires translational logic with alternative 

mappings for each required interface variant.  It is for this and other reasons that 

standardized chip level interconnect strategies and associated IP have emerged to provide 

structured options. 

One such chip level interconnection standard is the Advanced Microcontroller Bus 

Architecture (AMBA) from Arm [25] developed for ARM processors.  ARM Holdings, 

PLC (UK) [26] licenses silicon IP for a wide range of custom ASICs and standard 

microcontroller and microprocessor products including some later generation FPGAs.  

AMBA 4.0 defines five interfaces: 

• Advanced eXtensible Interface (AXI) 

• Advanced High-performance Bus (AHB) 
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• Advanced System Bus (ASB) 

• Advanced Peripheral Bus (APB) 

• Advanced Trace Bus (ATB) 

The Advanced eXtensible Interface (AXI) specifically targets high speed designs. 

AXI is a master/slave interface that is extensible using a switch or fabric. AXI provides 

separate address/control and data phases to support non-aligned byte-wide data transfers. 

The bus standard accommodates multi-address burst transactions for efficient bus 

utilization. The bus specification is flexible providing multiple levels of performance and 

complexity allowing one or more bus masters. 

AXI-Lite provides a lightweight version when full bus capability is not needed. 

AXI Coherency Extensions (ACE) provides memory cache coherency support. AHB was 

introduced with AMBA-2 with AHB-Lite added in AMBA-3. AHB provides a single-

edge clock protocol supporting multiple bus masters, split transactions, burst transfers, 

and single-cycle bus master handover. AHB is a non-tristate, pipelined architecture with 

bus widths up to 128 bits. AHB-Lite is a reduced subset for single master systems. 

Finally, APB connects to AHB for low bandwidth and register interfaces for peripherals 

like serial ports. It is similar to AHB but is less complex; requiring fewer resources to 

implement. 

The research associated with the current Ph.D. dissertation did not integrate a 

standardized interface such as AMBA, but given that the Xilinx Zync family incorporates 

two ARM processors, integration of this and/or another similar chip-level interconnection 

standard logically represents a next step in increasing the capability and flexibility of the 

design framework.  The general approach taken to evaluating interconnection 
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architectures is described below.  Bus or switch connected architectures are more suitable 

for adaptation to standards including AMBA but lattice structures are more suited to 

pipelined data flows architectures and structurally more closely resemble concurrent filter 

structures, the application subject of this research. 

In addition to the physical and logical issues associated with interconnection, 

equally important is the physical arrangement and associations of DDPR regions. 

Consider an FPGA design developed to support DPR where reconfiguration is performed 

on a by-physical-region basis.  To accomplish this, the FPGA fabric is partitioned into a 

finite set of mutually exclusive physical regions which we generally refer herein to as 

DPR regions. An example of a regular partitioning of the fabric from the results can be 

seen in Figure 15 as well as in Figure 16 later on in this work. 

A DPR design with multiple simultaneously running DPR regions can be split 

across a single FPGA fabric and/or across multiple FPGAs. The specific manner in which 

this would be accomplished would depend on system processing requirements 

constrained by the finite available interconnection resources between regions. 

Interconnection resource allocation could either be optimally tuned for a specific 

application class, or alternately provisioned with sufficient resources to provide 

flexibility to accommodate a broader range of applications. Once utilizing DPR 

techniques, even interconnection resource provisioning can be reconfigured such that the 

system can be conditionally optimized for a particular class of processing techniques 

depending on its utilization environment. Figure 1 as follows depicts several common 

interconnection topology schemes that could be considered. 
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Figure 1. Researched DPR Region Topologies A to C 

Topology A represents a crossbar style interconnection scheme. Each pair of DPR 

regions is connected through a central crossbar switch. This crossbar switch provides 

selectable direct interconnections and consequently allowing each individual DPR region 

to directly communicate with any other DPR region. The realization of this crossbar 

switch itself conceptually could be realized by a DPR region in a device.  Alternatively a 
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specialized crossbar switching device or yet another FPGA device dedicated for routing 

could be used to create this connection capability. 

There are various well known forms and architectures of crossbar switches and the 

properties of those are very well established.  Example crossbar realizations can be found 

in many development systems [26] [27] [28] [29] [30] [31] [32]. In Figure 2, we show an 

application of this topology that was studied within the Splash 2 [33] development 

system.  

 

Figure 2. Splash 2 Interconnection Architecture 

The Splash 2 architecture consists of sixteen (16) FPGAs individually connected to 

a common central crossbar. Switch connections between the DPRs are programmable and 

controlled by an additional seventeenth FPGA device. This architecture can be applied to 

DPR regions with either intra or external communication requirements. The advantage 

that DPR has in this type of architecture is the interconnect can remain static during 

multiple DPR configurations and by updating only the Bus Arbitration scheme to match 

the processing requirements the system can be optimized.  
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A fully connected interconnect topology can be seen in Topology B where all of the 

DPR regions connect to each other. This topology has the advantage of removing the 

crossbar latency from interconnections but the number of connections to each region 

grows as N! where N is the number of fully interconnected regions.  

Both Topologies A and B have each FPGA connected to every other so they 

represent the most flexible topologies [34] [35] [36]. However, this flexibility comes at a 

cost. The ability to scale the number of region interconnections is nominally a linear 

function of the region boundary length, L.  Hence the number of viable nodes N that can 

be interconnected in this manner is bound by a relationship of form O(N!) <   f(L) 

where  is some finite constant. Moreover, intra-region information flow and control 

complexity for each independent region would be anticipated to grow O(N!
2
) whereas the 

region area would be anticipated to be o(L
2
).  Thus this imposes an even more restrictive 

asymptotic bound of O(N!
2
) <   f(L)

2
 for some finite constant .  Conversely, as the 

number of regions increases in a system, the number of possible connections required 

grows with O(N!).  Since routing resources are finitely bound, the average number of 

available connections between any two regions consequently must be reduced. 

The inability to scale combined with necessity to develop DPR macros that are 

themselves individually dependent on N and consequently topology dependent.  This 

means that DPR region must be developed in a system-dependent manner. A fully 

interconnected topology increases system power and heat dissipation due to the total 

number of wire and drivers comprising the interconnection resources required as well as 

increasing interconnection control and flow logic. 
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2-D or 3-D mesh (or lattice) interconnection is represented by Topology C. The 

bottom of Figure 1 depicts rectangular 2-D or 3-D lattices.  Interconnect routing for 2-D 

or 3-D lattices are either direct node to node interconnected or otherwise pass-through 

routed.  These topologies allow a given DPR region to communicate directly with its 

neighbors.  However, communication non-neighboring regions must be relayed through 

an intermediate region. Currently this type of topology is not realistic in DPR systems 

because of the large and complex nature of the communication requirements between 

nodes. However, with newer stacked die devices like the Virtex 7-2000T, which 

comprises of four of the largest FPGAs in the 7 Series devices on a Stacked Interposer, a 

hybrid of this type of interconnect, may be adapted in the near future. Examples of 

systems that use 2-D meshes are [37] [38] and systems that use a 3-D mesh are [39]. 

In systems where the algorithm is designed to be ran in a pipelined manner, for 

which a series of independent algorithms are applied, such as encryption and decryption 

of data. A linear interconnection scheme between DPR regions comprising of the stages, 

can efficiently implement pipelined applications. In this type of application data is sent 

into the system from one end of the chain for each DPR region to process in order. The 

result is then output from the last FPGA. One feature of this architecture, seen in 

Figure 3. Researched DPR Region Topologies D to F 
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topology E, is (if designed to do so) for problems such as encryption/decryption, is that 

the data can be fed into the stages in one direction for encryption and in the reverse order 

for decryption.  

A hybrid topology of the cross bar and pipeline architecture is the shared access 

memory topology. This topology allows the architecture to take advantage of a wide 

variety of algorithmic optimizations and still maintain the ability to share information 

between DPR regions. An adaptation to this topology can be seen in Topology F where 

the I/O Cross Bar can directly load the independent DPR regions and directly access the 

shared access memory through the memory cross bar. One of the primary concerns with 

this type of topology is both the I/O and memory cross bar must communicate with one 

another else data corruption can occur. For this architecture to be the most efficient, the 

bus between the memory cross bar should be scaled such that data through put is 

maintained. This type of architecture has been used in multi node single instruction 

multiple data applications. One example of this can be found in [40] the Texas Memory 

Systems S4 Vector Processing system. 

The realized architecture can be best described as a layered hybrid interconnection 

architecture where the video data distribution and routing layer is represented by a 

crossbar connected network as discussed previously.  The next section details the 

numerous possible complexities and tradeoffs that are associated with packet-switched 

architectures and additionally explains a novel approach to scheduling with specific 

details provided in Section 3.3.1.2. 
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However, it additionally should be understood that underlying that layer, at the 

DPR fabric layer, Filter Processing Cores can be viewed as a 2-D lattice network.  This is 

described in 3.2.2 and depicted in Figure 15. 

2.2. Data Switching and Packet Routing 

Because this work focuses on packet-based processing and involves distributed 

queuing and routing of data packets, it is essential to understand the architecture in terms 

of its characteristics related to packet switch technologies and techniques.  A significant 

result from this research was to propose and develop a novel approach to data queue 

allocation and scheduling using a novel Adaptive Weighted Round Robin (AWRR) 

scheduling protocol that is optimized for the adaptive video FPGA DPR application 

described by this work.   The implementation of the AWRR protocol is detailed in 

Section 3.3.1.2. 

There are many possible technologies, topologies and architectural approaches to 

provide data flow mechanisms in a system.  When data flows require aggregation or de-

aggregation, those flow points become shared resources for data producers or consumers.  

Historically, the primary means for parallel accessibility to shared common resources 

involves either a common exchange media (such as a bus or other common, arbitrated 

media) or a switched network.  Bus architectures for processing applications have largely 

dominated all but the very high-end applications for the last several decades.   

System level performance is bounded by interconnectivity capabilities and 

capacities. However, there are increasingly challenging physical bounds on achievable 

speed and bandwidth of bussed technologies.  Combined with the emergence of high-
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speed serial interconnect technologies, this has resulted in increased emphasis on 

switching architectures.  

A significant attribute and potential benefit of switch based architectures is the 

concentration of connection management complexity together into the control for that 

switch fabric.  For a single, centralized switch, the majority of the complexity of system 

interconnection is concentrated in that switch.  Consequently, viable solutions must be 

compact and efficient [41]. 

When considering the general topic of switch technologies, there are a few general 

categories that are widely discussed in the literature.  These include: 

 Cell Based Switching 

 Packet Based Switching 

 Time Division Multiplexing (TDM) 

 Circuit Switching 

 Connection/Connection-less Switching 

 Dynamic path routing 

 Memory-less Crossbar Switch 

Especially when examining complex or distributed switching systems, often the 

system can be functionally decomposed into multiple layers of switching that are 

themselves constructed from one of the other categories of switches.  Thus the higher 

level represents an abstraction of a service that is provided by the lower layer of the 

switch fabric.  Consequently, to really understand switching technology, it is helpful to 

first understand the primitive constructs that are common to switch architectures. 
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Data that flows through a system must be buffered at any point associated with 

delay.  Delay occurs due to competition for use of a shared element or path through the 

switch. For a switched network, there are three general forms of buffering.  Buffering can 

occur at the input to the switch, at the center of the switch, or the output of the switch.  

This concept is illustrated in Figure 4 below. 

 

 

Figure 4. Switch Buffer Architectures [41] 

For purpose of this work, we explain some of the primary considerations involved 

with architectural aspects of designing the queuing structures for packet switching and we 

will explain the corresponding considerations and issues that contribute to the 

architectural choices made during this work. 

The problem of understanding switch data flow complexity can be discussed in 

terms of the allocation and use of the data buffering used to provide the queuing 

structures in the switch.  Understanding switch behavior (capability, capacity, and limits) 

can be discussed in terms of the queuing mechanisms.  Consequently, it is helpful to 

consider the types of queues that can be constructed.  For instance, queues can be 

allocated with fixed memory resources or can draw their memory resources from a pool 

of memory buffers.  This pool of buffers could either be made up of fixed-size blocks that 

can be linked and unlinked together to provide the memory for the queue, or a contiguous 
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block of memory could  be allocated.  Either case requires a mechanism to organize the 

pool, to allocate and de-allocate use of memory, and also to manage cleanup if irregular 

sized blocks of memory are permitted. 

As discussed previously, queues can be associated with inbound traffic, outbound 

traffic, or centrally located and consequently associated with a combination of inbound or 

outbound traffic.  Queues can be used for data collection from inbound traffic. They can 

be used to buffer data as a Transmission Queues for outbound traffic.  Queues can be 

used to replicate traffic to provide multi-cast or broadcast service.  They also can be used 

to organize, prioritize, sort, or reorder traffic.   

Unless queues are assigned fixed memory resources, they must share them.   Fixed 

assignment can mean permanent or hardwired allocation or it can simply mean statically 

fixed (meaning that resources can later be re-allocated).  If resources are sharable and not 

statically allocated, then it is necessary to consider different protocols for queue 

provisioning.  Allocation and management can occur on a per-path, per flow, or per 

traffic class/sub-class basis, or even user defined. Sharing can involve demand-driven, 

dynamic allocation, or statically-based allocation.   

Shared resources consequently involve considerations including thresholds and 

limitations.  When differentiation occurs, it can be on a per-path, flow, or class basis.  

Algorithms can be applied to shape the traffic flows, or applied to encourage resource 

utilization, such as the case with “greedy flow” algorithms. 

Looking at an individual queue, a first consideration is when it is possible to simply 

put data into the queue.  The queue is intended to be the place where data delay can be 

accommodated and consequently it is assumed that data cannot wait on queue 
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availability.  However, data is not always available to place in a queue or else there 

would not be a rate matching or delay need to begin with. Queues are typically designed 

to underflow their input capacity, at least slightly.  However, because the queue 

represents a finite memory resource, only a finite amount of data can exist in the queue at 

any moment.  Hence, once the queue fills, data must either be overwritten or else input 

discarded.   There are various protocols for queue admission management including [41]: 

 Drop Tail 

 Packets are dropped from end if queue fills 

 Lost packets are an arbitrary result of resource over-allocation 

 Random Early Discard (RED) 

 Packets discarded when queue depth exceeds threshold 

 Probability of drop increases as depth grows 

 When queue fills acts like drop tail 

 Weighted Random Early Discard (WRED) 

 Drop probability is class dependent 

 Drop Head 

 Not frequently used 

 Prioritizes new packets over old 

 Class based versus flow based policies 

Queues are “serviced” when data is read (removed) from the queue.  For output 

buffered queues, switching control mechanisms must control physical path connectivity 

to the queue input port such that the port is guaranteed available whenever data arrives.  

One physical mechanism often used to provide that guarantee is to use a multiport input 
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such that there is always and available port. For output buffered switches, output buffers 

are serviced by the corresponding data consumer per the rate and service mechanism for 

that specific consumer.  In contrast, for input-buffered switches, the actual act of 

switching occurs through the process of selecting which source queue is to be serviced 

next.  Commonly used queue servicing or scheduling mechanisms include: 

 FIFO (First-In-First-Out) or FILO (First-In-Last-Out) 

 Queue service is based on packet arrival time 

 Periodic versus Aperiodic; Virtual Clock or Bounded Time   

 Weighting - selection prioritization based on queue depth (un-serviced content) 

 Per packet 

 Per word 

 Flow / Class differentiation 

 Prioritization 

 Strict Prioritization 

 Round Robin / Weighted Round Robin / Deficit Round Robin 

 Hybridization 

As will be seen in later sections, individual data flows incorporate FIFO queue 

structures.  However, there are multiple service scheduling mechanisms that occur 

concurrently.  At the highest level of task process coordination, this work describes an 

adaptive variation of a Weighted Round Robin (WRR) scheduler. 

Of course there are many possible tradeoffs involved in selection of queue 

structures, queue use policies, and queue service policies [41].  The current application 

drove selection of a set of structures and techniques.  As the DPR framework evolves, it 
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will prove necessary to provide a wider range of scheduling mechanisms in order to 

optimize resource use for other anticipated flow traffic and processing algorithm 

characteristics. 

Commonly considered tradeoffs include: 

 Algorithm Complexity.  In this research, the desired types of processing were 

mostly known a priori. 

 Memory cost, organization, and provisioning.  In the Ph.D. dissertation, 

performance is optimized to match fixed resources 

 Fairness.  Fairness is a concern when there a multiple flows with differing 

priorities and variation in traffic statistics.  Fairness allows all consumers some 

amount of resource utilization.  This is a more sophisticated need than required 

for this Ph.D. dissertation. 

 Flow isolation or protection. When processing multiple video flows, it may be 

desirable to preclude variable processing in one flow to adversely impact the 

ability of another to meet service guarantees. 

 Efficiency: 

 Temporary over-subscription.  It is desirable in some cases to permit over-

subscription of resources to occur, especially if back pressure or other 

means can be applied to provide overall elasticity 

 Permanent over-subscription.  This work is “virtually” permanently over-

subscribed and adaptively adjusts resources to maximize the overall 

efficiency, fully using available resources 
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The design of a full featured framework for packet processing DPR is very 

analogous to design of a packet routing switch fabric.  Indeed, the data distribution and 

routing of application data is a packet switching problem.  Overlaid to that is the 

hardware virtualization of logic resources.  These resources must be scheduled for FPGA 

reconfiguration at that time where they are needed for processing and then replaced with 

other functions.  Thus the total footprint of available logic functions can greatly exceed 

the instantaneous logic actually present in the device at a given time. 

One of the significant achievements of this work was achieving the DPR 

reconfiguration programming over a multi-lane high speed serial interface consequently 

leading to region reconfiguration turn-around times that are of an order similar to task 

processing times. 

2.3. Round Robin / Weighted Round Robin / Deficit 

Round Robin 

Because of the limitations of strict priority protocols an alternative approach 

commonly referred to as “Round Robin” scheduling is popular.  In a simple round robin 

protocol, queues are organized in a linear ordered manner and each queue is serviced in 

order (if data available) until all have been serviced at which point the scheduling 

mechanism goes back to the first of the list [41].  Scheduling essentially begins 

examining the service request state of the first queue in the list.  If service is requested, 

then a packet is removed from the queue, otherwise the queue pointer moves to the next 

in the list and the process repeats until all queues have been visited, in which case the 

pointer goes back to the start of the list.  Each queue serviced has exactly one packet 

removed from the queue. 
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Simple Round Robin does not provide a capability to differentiate among queues 

with high traffic rates. Since each queue essentially gets equal treatment, then data 

arrivals in low data rate queues are more likely to be immediately serviced.  Arrivals in 

relatively high data rate queues therefore experience congestion and backup with 

corresponding increase in average latency. 

To overcome this limitation of Simple Round Robin, the idea of Weighted Round 

Robin is to apply a weighting factor to the selection process.  The weight determines the 

average number of packets to service from each non-empty queue.  Therefore, the 

number of packets to service would be the weight divided by an average packet size. 

A limitation of Weighted Round Robin is that the algorithm is not well suited when 

there does not exist any a priori knowledge of packet sizes, packet sizes have widely 

varying sizes, ill-suited statistical characteristics,  packet sizes are unpredictable, or 

change over time.  Shreedhar and Varghese [42]originally proposed the idea of Deficit 

Round Robin (DRR) to overcome associated issues.  In DRR, a threshold size is used to 

hold back first-in-line packets whose length exceeds this threshold.  This threshold value 

is used as a deficit counter for the queue and is increased by a default deficit amount for 

the next schedule time.  If the size still exceeds the current count (also referred to as the 

credit), the count is again increased and this continues until the packet is serviced. 

Whenever a packet is serviced from a DRR queue, its credit is decreased by the packet 

size. 

2.3.1. Queue Service Prioritization Policies 

Among the most commonly used methods for queue selection for service are those 

policies that are priority-driven.   A strict prioritization protocol assigns a linear priority 
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to each possible selection and whenever the highest priority queue demands service, it is 

serviced prior to any other queue [41].  If that queue is empty then the service goes to the 

next highest priority queue that requires service.  Strict prioritization guarantees that the 

highest priority data is always serviced first.  The shortcoming is that if the system flows 

and priorities are not carefully considered, it is possible that lower priority traffic can 

experience extensive delays, might be discarded, or may not be guaranteed to ever be 

serviced.  

A strict priority protocol can be augmented with additional rules that either 

promote/demote data traffic priorities, or allow limited amounts of low priority data to be 

serviced. The later rule is commonly referred to as a leaky bucket protocol [41].  

2.4. State of the Art for Reconfigurable Computing 

In today's systems, reducing system size, weight, and power (SWaP) is critical for 

operational life and budgetary constraints. SWaP budgets are driven down to extend 

battery life, reduce form factor for better mobility and logistics, and expand the market. 

In platforms such as cell phones, SWaP constraints are different because there is a need 

to support fast embedded processors for the increasing image and video processing needs 

while still staying within the SWaP budget.  

Reconfigurable Computing (RC) has been identified as the solution to provide 

substantial performance benefits while maintaining the tight SWaP budgets compared to 

traditional microprocessors or GPUs [43]. The Dynamic Instruction Set Computer 

(DISC), first proposed by Wirthlin and Hutchings [44] was one method introduce to 

address this issue by using a medium grain Configurable Logic ArraY (CLAY) device 

from National semiconductors. This computer had an instruction set made up of 
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independent hardware units configured into the device as needed. The architecture’s 

performance was limited by the reconfiguration time overhead and the number and size 

of the processors was fixed. 

 Other research has been concerned with detection of bottle necks in RC. These 

include High-level synthesis tools increase FPGA productivity [45], Characterization and 

Optimization of Atomic Operations in GPUs [46] and Integrated Development Toolset 

and Implementation Methodology for Partially Reconfigurable System-on-Chips [47]. 

These systems have been primarily focused on RC development systems and not creating 

a low SWaP framework to apply general or specific algorithms. 

For RC, one of the primary areas of interest is reducing the Data Movement this 

has been looked at in both the reconfiguration time, data dependency between tasks, 

inter-task communication as well as task resource utilization [48]. However, in 

addressing these scheduling issues, the authors did not consider dynamically 

reconfigurable systems.  

A large amount of research has also been associated with the use of multiple 

chips, ranging from the use of processors, DSPs and/or FPGAs including Multi-Level 

Performance Prediction of Multi-FPGA Systems, Multilevel-PGAS Programming Model 

for Reconfigurable Supercomputing [49] and Bridging Parallel and Reconfigurable 

Computing with Multilevel PGAS and SHMEM [50] [51]. These approaches addressed 

issues associated with working with multiple devices and modeling the data flow through 

these parallel systems. However, these prior approaches fall short of looking at the issues 

of data movement and reconfiguration of multiple RC engines in a single heterogeneous 

low SWaP architecture, as done in this dissertation research. 
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2.4.1. Embedded Reconfigurable Computing 

Dynamic Partial Reconfiguration (DPR) refers to an on-going process reconfiguring 

portions of an FPGA during run time while other portions remain active. Research 

continues towards developing more useful methodologies that can realize the potential 

utility of FPGA DPR [18].  The existing literature speaks to the considerable potential for 

fundamental change in flexibility, effectiveness and efficiency. Perhaps the most 

important advantage afforded by DPR is an ability to employ smaller or few FPGAs 

reducing cost, packaging, and power [15].  Capabilities for PR have existed for several 

years, yet the design methodologies, flows, and tool capabilities capable of effectively 

using PR remain limited. Existing methodologies for PR previously have been largely ad 

hoc, cumbersome, or poorly integrated into the regular design flow [18].   

Fons [11] however, noted that the first commercial products/systems driven by PR 

technologies are beginning to enter the marketplace.  In his dissertation, the author 

provides an introduction into the history of reconfigurable computational technologies.  

The author also provides an extensive and detailed explanation of the differing FPGA 

technologies. Most relevant to this work, the author discusses the different forms of PR 

technologies (including those from Xilinx.)  The author discusses PR in terms of context 

planes for FPGA reconfiguration defined as planes of programmable resources. FPGAs 

are envisioned as reconfiguration capabilities multiplexed in a manner that only one of 

the configuration planes is active at a given time. Consequently, creating a multi-context 

FPGA requires multiple memory bits for each programming bit location. These memory 

bits would be used to define the multiple planes of configuration information.  The model 

allows for background loading of one of the contexts while another is active and 
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executing. In this model, one configuration plane is active at a given time and the device 

switches among alternate context of already programmed configurations.  The author 

provides extensive information on the body of work accomplished and his published 

work serves as a good reference to understand DPR technologies. 

With dynamically and partially reconfigurable designs, it is necessary that the speed 

of the reconfiguration be accomplished in a time that is sufficiently small such that the 

operation of reconfiguration is not the limiting factor in the process. This was 

accomplished by designing and implementing a High Speed Dynamic Partial 

Reconfiguration Controller (HSDPRC) core that maximized the bandwidth of the ICAP. 

The work used on chip temperature and voltage active feedback for Dynamic Partial 

Reconfiguration. This approach created a DPR controller that is tightly coupled with the 

FPGA silicon and the system behavior than previous work had not accomplished [4]. 

There is strong interest in the development of dynamically reconfigurable systems 

that can meet real-time constraints in energy/power-performance-accuracy (EPA/PPA). 

Recently, in his Ph.D. dissertation research, Dr. Llamocca described a research 

framework for implementing dynamically reconfigurable digital signal, image, and video 

processing systems. However, the proposed architecture was not scalable since it did not 

use a video packet based approach for dealing with system scaling issues [52] [53] [54] 

[55]. Additionally, this research was built on an embedded processing system where a 

processor running in the fabric moved the data in and out of the processing cores.  

The proposed dissertation architecture provides a scalable architecture for 

sustaining high-performance in multi-core, dynamically reconfigurable systems. 
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Moreover, the run-time adaptability of the scheduling protocol described here is uniquely 

targeted towards dynamically reconfigurable applications. 

2.4.2. FPGA Reconfiguration Methodology  

Programming the soft logic of an FPGA is significantly different than writing 

software for a processor.  Low level design is typically accomplished in Register Transfer 

Level (RTL) Verilog or VHDL and is similar to ASIC design. The primary difference is 

that RTL for FPGA design includes additional limitations on language use to guide 

proper circuit inference within the logic synthesis tools. In addition to RTL design, there 

is dramatic increase in design complexity.  

Over the previous decade, high-level FPGA and ASIC design languages have 

evolved (e.g., SystemC).  The popularity of SystemC is due to the fact that it is based on 

the C programming language. On the other hand, this advantage is not important since the 

development of highly concurrent FPGA logic is completely different than writing 

software applications for a von Neumann architecture processor. 

Xilinx’s Vivado provides direct support for AXI-based components adding required 

interconnect logic automatically [25].  Perhaps one challenge of standards based 

interconnection design is the degree of extensibility. The tool environment needs to 

provide designers with the ability to both customize to their need while also providing a 

range of automatic optimizations.  It remains very challenging to provide tool flows that 

accommodate developers who want the flexibility and power of an FPGA but whose 

focus and understanding of applications is primarily based on software application 

programming.  Reconciling these two views of computation within a single programming 

and tools environment will remain a challenging problem. 
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This research demonstrates both the need to establish even better programming 

environments as well as explaining why it is essential for DPR to establish a structured 

programming framework to guide DPR application development.  Furthermore, 

important results are explained in our result for tenants of framework definition.  This 

subject is discussed in the next section. 

2.4.3. Frameworks for FPGA Reconfigurable Computing 

Networks on a chip have been looked at for rapidly moving data efficiently across 

multiple processing nodes and various topologies for these architectures have been 

proposed [56] [57]. 

These include mesh, torus, ring, butterfly, octagon and irregular interconnection 

networks. Various researchers have used telecommunication type of interconnection 

structures for example a star-based network was used that communicated using the 

principle of CDMA (Code Division Multiple Access) [58] and others have proposed a 

tree-based implementation [59], where each node in the tree behaves as a router in a 

network. The primary issue with these approaches is that they are focused on routing 

packets across vast distances with specific hardware to move the packets from processing 

node to node.  In FPGAs, this is not an option due to the limited ability to add large 

routing tables and controllers to the reconfigurable matrix.  

The Reconfigurable Round Robin Controller (RRRC) described in this dissertation 

takes a different approach. For the RRRC, the configuration of the fabric matches the 

configuration of the fabric data flow engine. This approach optimizes both the fabric 

resources used by the routing engine and the data flow through the framework. 
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Tan and DeMara [15] evaluated methodology tradeoffs for Partial Reconfiguration 

using the Xilinx Virtex II Pro FPGA technology node.  The authors discuss significant 

challenges that existed for dynamic reconfiguration for the Virtex II node. Accordingly, 

some of their results do not directly apply to current generation devices, but general 

observations are relevant.  They observed that a considerable number of open research 

issues existed then although this work addresses some open issues, many others will 

remain.  Now as then, there are no sophisticated tools or tool flows that support a general 

partial reconfiguration strategy. This is due, in part, to the complexity and diversity of 

aspects.  They discuss methods for resource relocation using PR techniques. The authors 

discuss techniques that include bitstream manipulation, but the FPGA manufacture’s 

bitstream generation represent important intellectual property and not consequently not 

available for open research. As Tan and DeMara point out, it was possible to reverse 

engineer Virtex II bitstream file and directly manipulate them, but that is no longer a 

reasonable consideration.   

Run -time capabilities must address resource allocation and task scheduling, and 

logic flow control.  Indeed, the authors stress a need for hierarchical encapsulation such 

that layered control would be self-contained and ideally exposing a minimalist pre-

defined interface to other layers of the hierarchy. This property is essential to minimize 

potential side effects that might occur due to modifications to one layer that in turn 

influence behavior in other layers in unanticipated manners. 

Design automation tools are the enablers for efficient exploitation of reconfigurable 

capabilities for the construction of adaptive, self-adaptive and self-healing systems. In the 

recent past, developing reconfigurable systems had been “performed only through heroic 
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acts [11] ” due to the clear lack of sophisticated tools.  The quality of currently available 

tools can be “catalogued as valid to exploit” available technology.  The problem is not 

well solved. While the “latest PR tools released by Xilinx have dramatically improved 

usability.  However, it is admitted there is a gap for improvement that is still necessary to 

cover in order to boost all the potential of run-time reconfigurable hardware technology. 

The research community, aware of the fact that the lack of suitable design tools can slow 

the ramp up of this technology, is working hard on this topic [11].” 

 

2.4.4. Multi-Soft-Core Reconfigurable Computing 

Clemente et al [21] developed a reconfiguration scheduler for implementing task-

graphs at run-time, steering execution in the reconfigurable resources while performing 

pre-fetch and replacement, hiding most of the reconfiguration delays. In their proposed 

scheduling environment, task-graphs are analyzed at design-time to extract useful 

information.  This information requires simple computations at run-time to obtain 

optimized schedules. Authors developed a hardware implementation of the optimization 

techniques. The authors discuss efficiency for their evaluated scheduling protocol which 

manages a specified task-graph for required performance under enforced constraints. 

They schedule run-time reconfigurations only including one reconfiguration circuit and 

where reconfiguration latencies are assumed significant. 

NASA has also looked at Reconfigurable Computing Multi-soft-core frameworks 

in Space applications [60]. The goal of this research was to provide enhance the 

availability of reconfigurable radiation tolerant Field Programmable Gate Arrays 

(FPGAs) for space applications. In this research a high-level architecture for a 

reconfigurable computing system for space was outlined and a multi-processor 
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architecture using soft core processors with operating system and message passing 

support was coupled with the capability to utilize custom cores for specialized 

processing. This research also addressed the challenges of the space environment through 

fault mitigation techniques, parts selection, and physical design.  

While this research provided significant forward progress in the area of Multi-

soft-core Reconfigurable Computing it did not show how the ability to tune the frame 

work dynamically can produce a more refined method to data movement into and out of a 

system. In addition this research was pointed at a specific space application of the multi-

soft-core framework where the primary focus was to mitigate Singe Event Upsets (SEUs) 

rather that performance and power optimization. 

2.4.5. Video Processing and Reconfigurable Computing 

Due to the inherent processing attributes with video applications and their ever 

increasing need for parallel processing more data and required adaptability, video 

processing applications are ideal for further development. Recent research is now 

showing the value of dynamic partial reconfiguration of the FPGA fabric for embedded 

video processing applications [61].  

Fons [11] examined a number of different applications including filtering and pixel 

processing and previously had described a DPR technique applied to 2-D convolution for 

adaptive image processing [62].  Sudarsanam et al [18] evaluated polymorphic Systolic 

Array (SA) implementations in FPGA technology for filtering regular and synchronized 

data. Specifically they were interested in Extended Kalman Filters (EKF) and 

convolution kernel-based Discrete Wavelet Transforms (DWT).  The DWT consisted of 

one-dimensional (1-D) filters separable among horizontal and vertical directions, which 
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is then followed by sub-sampling. The image processing algorithm is typically iterated 

multiple times in a process referred to as decomposition which results in a data structure 

that can be efficiently compressed. More to the point, algorithms including EKF and 

DWT involve structured mathematic operations such as matrix addition, multiplication, 

and inversion and hence are well suited for efficient acceleration on hardware systolic 

arrays. Accordingly, their approach involved mapping algorithms into a linear systolic 

array regular array of Partial Reconfiguration (PR) regions.  A Xilinx Virtex4 SX35 

FPGA was used for their study and performance benchmark results were compared to 

software results from a PowerPC 750 system, with observed achievable speed-up of 4x to 

6x. 

As mentioned previously, Krill et al. [20] work included recommendations for a 

DPR design flow. Their flow was used to implement an image processing macro core. 

Their approach provided flexible DPR area/size placement with standardized interfaces 

and proposed a DPR environment to generate optimized IP cores in terms of the 

area/speed ratio, thus allowing for both static and reconfigurable areas. Their approach 

resulted in a custom design; however, they also proposed a framework requiring user 

provided DPR modules for FPGA implementation. 

Some of the most promising research is in the area of Dynamically 

Reconfigurable Management for energy, performance, and accuracy and where it applies 

to Digital Signal, Image, and Video Processing Applications [63]. In this research a 

framework was presented for the generation of optimal implementations from the 

Power/Energy, Performance, and Accuracy (PPA/EPA) space based on PPA/EPA 

constraints. The framework allows for dynamic PPA/EPA management for digital signal, 
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image, and video processing applications [64] [7] [53]. Implementation of this scheduling 

protocol is described in Section 4.  Accordingly, this work describes a novel and 

powerful Adaptive Weighted Round Robin (AWRR) scheduler for run-time adaptive 

optimization of FPGA DPR reconfiguration operations. 

General problems that are associated with the temporal allocation and utilization of 

resources under scheduling constraints have been widely studied within statistical 

queuing theory and also within various aspects of embedded computing and 

telecommunications.  Obviously there are a number of scheduling protocols that could be 

applied for the purpose of scheduling PR operations.  Application and system use 

constraints guide a system architect to select techniques that meet specific optimization 

needs or goals.  This topic is expanded on in greater detail in Section 4 to provide 

sufficient background to explain the rationale for our implementation of an AWRR 

scheduler, explain the novelty of the implemented mechanism, as well as to explain why 

this scheduling mechanism is particularly powerful for our application. 

2.4.6. Description of FPGA Cores 

The following is a description of the two video processing cores used to test the 

framework a (i) high performance 1-D FIR filter based on distributed arithmetic [6] [63] 

and (ii) pixel processor. The both cores were coded in VHDL, so as to achieve a level of 

portability. Logic wrappers were added to both cores so that they could be integrated into 

the frame work. A description of the logic wrappers for each core can be found in 

(Implantation and Results) Chapter 5.  
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2.4.6.1. FIR Filter Core 

The 1-D FIR filter VHDL core used as the basis of the 1-D and 2-D FIR filter 

implementations in this work was originally developed and used for ivPCL’s paper on 

Partial Reconfigurable FIR Filtering System Using Distributed Arithmetic [65], and later 

in Dr. Llamocca’s dissertation on Dynamically Reconfigurable Management of Energy, 

Performance, and Accuracy applied to Digital Signal, Image, and Video Processing 

Applications [64]. The FIR filter cores are configured to perform a Gaussian filter 

operation on the video data.  

The 1-D FIR core was developed using Distributed Arithmetic (DA) combined 

with a look-up table (LUT) reduction technique which allows the direct mapping to 

reconfigurable LUTs of Xilinx and Altera FPGAs. An FIR filters’ fundamental operation 

with N taps is the inner product of two vectors. Below is the mathematical function which 

is a sum-of-products of a FIR filters components. 

      ∑      
   
   .              (1) 

 

In this function    are typically constants and    are the time-shifted input 

samples. If each    is represented as a binary Bx bit 2s complement number, where      

denotes the bth bit of   . Expanding the equation produces gives: 
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Where  (  
 )  (             )

 
is the bitvector of length N containing the bth 

bit of each element of X.  Finally, below is the function that is precompiled in the DA 

core and stored in a LUT with N inputs. 

 (  
 )  ∑       

   
   .               (4) 

A detailed description of the core and its implementation can be found in [63] [6]. 

The Table 1 is a description of the filters I/O and VHDL parameters that are used to 

connect to the packet processing framework. 

Table 1: FIR Filter I/Os 

I/O Description 

N The number of taps 
NH The input/coefficients bit width 
L The LUT input size 

OP 

Used for controlling the output truncation scheme:  

(i) LSB Truncation then Saturation  

(ii) LSB and MSB Truncation 

(iii) No Truncation.  

NO NQ 
Are used to denote the fixed-point output format for NO bits with NQ 

fractional bits. 

For the VHDL implementation parameter variables used through this work were set to N 

= 8, NH = 16, L = 4, OP = 0, NO = 16 and NQ = 15. 

2.4.6.2. Pixel Processor Core 

The pixel processor VHDL core used in this work was originally developed and 

used for Dr. Llamocca’s paper on A Dynamically Reconfigurable Parallel Pixel 

Processing System [64], and later in his dissertation on Dynamically Reconfigurable 
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Management of Energy, Performance, and Accuracy applied to Digital Signal, Image, 

and Video Processing Applications [5]. The core is composed of reconfigurable units set 

to process several pixels in parallel. The pixel processors use a LUT-based architecture 

and directly map it into the Xilinx FPGA CLB primitives.  

Figure 5: Pixel Processor Architecture 

The pixel processor core leverages the structure of the Xilinx FPGA fabric Look-

Up Table (LUT) with L = 4 (Virtex-II Pro, Virtex-4), and L = 6 (Virtex-5, Virtex-6). The 

core consists of ‘NC’ NI-to-NO Look-Up Table (LUT) which uses NI input bits and one 

output bit.  

In this architecture LUTs with higher number of input bits are built by combining 

the basic LUT primitives with multiplexers. Figure 5 shows the implementation of a 
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LUT8-to-1.  LUTs with NI > 8 are implemented by recursively combining two ‘NI-1-to- 

1’ LUTs with a multiplexer, as in Fig. 1(b). The hardware complexity grows 

exponentially as NI increases, and thus there is a point at which a NI-to-1 LUT becomes 

unfeasible. LUT NI-to-NO: Figure 2.1(c) depicts how a LUT NI-to-NO is built based on 

‘NO’ LUTs NI-to-1. Each LUT NI-to-1 implements one column of the LUT NI-to-NO. 

When building the core into a design the following parameters must be defined: 

Table 2: Pixel Processor I/Os 

I/O Description 

NC Number of single-pixel processor cores 

NI Number of input bits of each single-pixel processor (or the number 

of bits of the input pixel) 

NO Number of output bits of each single-pixel processor (or the 

number of bits of the output pixel). 

LUT Contents These values specify a unique single-pixel function (e.g. gamma 

correction, contrast stretching, etc). 

Depending on the implementation, the LUT contents of each core can be identical 

or different. In addition, there might be applications in which NI and NO need to be 

different for each single-pixel processor core. However, for the vast majority of 

applications, NI and NO remain constant for all the cores. 

For this work the Pixel Processor configurable VHDL parameters were configured 

as follows NC = 4, NI = 8, NO = 8 and the LUT Contents were configured to perform 

video gamma correction (γ = 0.5).  
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Chapter 3   

Methodology 

 

3.0 Overview and Motivation 

The dissertation research introduced the following concepts that represent 

improvements over prior research: 

 The results for the novel Partial Reconfiguration System for packet-based processing.  

This research demonstrates the performance of a Linux based Dynamically 

Reconfigurable Systems (DRS) for packet-based video processing for DPR video 

processing applications and test fixtures.  

 New techniques were developed to demonstrate parallel processing of a digital video 

data stream across a channel passed into the FPGA fabric. 

 A reconfigurable packet processing bus arbitration engine used for processing digital 

video data streams. 

 A reconfigurable multi-core processing system was developed, demonstrating how 

such a system can be flexibly adjusted for different video processing sizes. Examples 

included 64x64 and 32x32 data block sizes.  

 This research explains the development of a custom Linux driver for packet 

processing and dynamic partial reconfiguration.  

 An Adaptive Weighted Round Robin (AWRR) queuing protocol that was applied to 

develop a Reconfigurable Packet Processor Round Robin Controller. The ability to 

accommodate variable size video frames and variable flow rates as well as 
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interspersed DPR reconfiguration message traffic in an efficient manner is 

accommodated by this adaptation of a WRR scheduling mechanism.  This result is 

particularly novel and a similar mechanism does not presently exist in the literature. 

 Results are provided for a high-performance video processing system based on the 

use of a dynamic pixel processor and dynamic, separable 2-D FIR implementation.  

These results directly build on the prior research of Llamocca [61] into the design of 

the scalable filter cores. 

3.1. Hardware Architecture 

The block diagram depicted in Figure 6 is a high level view of the hardware 

architecture developed to evaluate the Video Processing Packet Processing Engine.  

Processor

Intel Core i7

16GB - 64GB

DDR3 2200

FPGA
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1FFG1156
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Figure 6. DPR Video Packet Processing Architecture 
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It is comprised of an Intel mother board, chip set, an Intel I7 processor, on-board 

video chip set, and Xilinx Virtex 6 evaluation boards. The system is configured with 16 

GBytes of memory out of a possible 32 GBytes. The video card and two PCIe slots on the 

mother board are connected to the processor via the Intel mother chip set. 

Digital video packets are streamed from the DDR 3 memory to the FPGA PCIe 

static logic Gen 1 PCIe core (Figure 11) via the PCIe bus. After processing is complete, 

(described in the Static Packet Processor Region section) if data is to be returned to the 

host, the FPGA static logic Gen 1 PCIe core returns the digital video packets to the DDR 

3 memory via the PCIe bus. Ultimately, the performance of the FPGA system cannot 

exceed the bandwidth that is available through the PCIe bus. 

PCIe is a high performance, fully scalable, well defined interconnection standard 

for a wide variety of computing platforms. It is designed for point-to-point connections 

from chip-to-chip, inter-board, and short cabling applications.  The PCIe protocol was 

designed to provide a serial connection implementation of the PCI bus standard and 

consequently the protocol logically behaves as a bussed topology.  As a result PCIe 

connections have a master-slave relationship and separate master controlled domains are 

associated with independent address spaces. 

Utilization of PCIe provides software compatibility with existing PCIe drivers and 

operating systems. Being a packet based serial technology; PCIe greatly reduces the 

number of required pins and simplifies board routing and manufacturing. PCIe can be 

simply used as a point-to-point technology, as opposed to the multi-drop bus in PCI. Each 

PCIe device has the advantage of full duplex communication with its link partner to 

greatly increase overall system bandwidth. The basic PCIe Gen I data rate of 250 MB/s 
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for a single lane doubles that of the 32 bit / 33 MHz PCI bus. A four lane link has eight 

times the data rate in each direction of a conventional bus.  

The system was developed to have the ability to monitor the power consumed by 

each individual evaluation board or by the entire system. This is accomplished by 

monitoring the power to the PCIe boards supplied by the ATX power supply. This 

capability is valuable when characterizing both the performance and power tradeoffs of 

different DPRS states, configuration regions and data types [66] [67]. 

3.2. Software Architecture 

This section describes the Video Packet Configuration Software (VPCS) 

architecture use in the development system. It is comprised of a Linux Fedora 16 base 

open operating system, a custom Linux driver and several programs used to test the 

operation of the PPE. 

3.2.1. Linux Partial Reconfiguration Platform Driver 

When interfacing the FPGA development board it was necessary to develop a 

custom driver that would allow a user application to communicate through the Linux 

Kernel to the Dynamic Partial Reconfiguration enabled Hardware. The following is an 

overview of how the driver worked in the system. 

After the system is started, the new driver is associated with the FPGA connected to 

the PCIe bus. This is done automatically by checking the registers in the FPGA PCIe 

interface to verify the Vendor ID, Device ID and Revision ID which are programmed into 

the FPGA bitstream when it is generated. The information is then used by the Linux 

kernel to invoke the drive during PCIe bus enumeration. The driver provides the 

following services: 
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 Accesses IP hardware registers 

 Allocates physical memory for throughput transfers 

 Returns PCIe link specific info  

By using the service access points (standard file operations such as open, close, 

read, write and ioctl) the application code can access the FPGA and perform the User 

Application Instructions. 

Video Packet 

Configuration 

Software 

(VPCS)

System Call

Kernel Driver

/sysfs

FPGA

Modules

 

Figure 7.  DPR Service Composition 

Figure 7 shows the relationship between the application, the driver and the FPGA. 

The Application must use the OS system calls to gain access to the driver. The driver in 

turn uses Kernel functions to map hardware memory into kernel and user space. 

In this figure, the /sysfs represents the /sys, /dev and /proc file systems found in 

Linux that allow the driver and user space to exchange information. The driver actually 

creates entries in the /sys/class and /proc areas. This is done when the driver is installed 

and initialized. When the driver detects and initializes an FPGA, it creates an entry in the 

/sys/class. It also registers a major and minor device number with the kernel. The udev 
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service then creates a file entry in the /dev device tree. This FPGA will have the character 

device major and minor number associated with the driver and board. 

When the user opens the device, via an open ("filename"), the kernel knows which 

driver handles that file (via the major/minor) and invokes the driver's entry points. The 

driver uses the minor number to understand which board the user wants to access (if more 

than one in system). The /dev filename and the major/minor numbers are the translations 

between user space and kernel space. 

3.2.2. Video Packet Processing 

For the system to efficiently distribute the processing of the video frame data across 

the available thirty two reconfigurable video processing cores in the FPGA, the video 

frames are converted into processing packets by the VPCS (see Figure 7).  Breaking the 

packets into properly sized elements for processing is a critical step.  If the data packets 

are sized too large for a processing element, the PCIe bus or system memory the data will 

not fit in the data buffers. This will cause one of two issues.  If the system element or 

processing core is configured for back pressure, the system will stop incoming data until 

the data has been processed and more data can be received by the system, causing slow 

performance. If the processing core is not configured for back pressure, the system will 

drop data, causing pour video processing results. 

 

Figure 8.  Video Processing Chain 
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Therefore, the first operation the VPCS running on the PC does is to determine the video 

frame size of the incoming video, optimally configure the reconfigurable hardware to 

match and determine the appropriate packet sizes to send data to and from the 

reconfigurable hardware. Figure 8 shows the video processing chain. 

3.3. FPGA Packet Processing Regions 

The Packet Processor framework was developed to allow for rapid development 

and ease of a cross domain hardware and software implementation solution.  Figure 7 

provides a representational layout of the actual device used in this dissertation. 

 

Figure 9. FPGA Device Layout 
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layouts of the FPGA regions are tied to the FPGA hard IP blocks and operation of the 

FPGA. This can be seen when looking at the PCIe hard IP block (located on the far left 

side of the die) and the Static PCIe and Control State Machine logic (which must also be 

tied to the left side of the die). Other constraints include that the FPGA hard IP block 

ICAP controller is located in the center of the FPGA die and the Static Reconfiguration 

Control Core logic is tied to the center of the FPGA die. Detailed description of these 

regions and their operations are provided in following sub-sections. 

3.3.1. Static Packet Processor Region 

This section describes the layout of the static area within the FPGA logic fabric. 

The static region is connected to and must likewise connect the thirty two separately 

dynamically reconfigurable regions. Figure 10 represents a high-level depiction of how 

the static framework interacts with the individual packet processing nodes. The 20 Gbps 

data links to the Ingress FIFO and Egress FIFO come from the 8 lane Gen 1 PCIe bus. 

 

Figure 10.  Notional Static Framework 
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 The static firmware core is initially configured during system power up and does 

not change thereafter. This core allows video packets and DPR packets to be sent to the 

FPGA and processed over the same channel. The block diagram of Figure 9 shows how 

the data and control are connected in the core.  
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Figure 11. Static Core Logic 

The static core depicted in Figure 11 consists of a PCIe core that is used to transfer 

data packets to and from to a Host PC. As these data packets enter the static video 

processing core via the PCIe bus, if the BAR address is set to BAR2 DPR processing 

cores are moved to the DPR engine (shown in the top of Figure 11). Otherwise, if the 

address is set to BAR1 the video packets are transferred across the framework to the 

processing cores (shown at the bottom of Figure 11) and data packets are sent to the 

video Packet Processing Engine (PPE). 
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Each of the configurable thirty two regions contain eight bit-wide read and write 

busses that are separately addressable from the static framework logic, each with separate 

read enables and write enables. This provides the ability for the video processing core to 

operate in full-duplex mode or write to one core while reading from another.  

The logic described in the (notional) static framework that provides the ability to 

operate in full-duplex mode requires individual ingress and egress asynchronous FIFOs. 

These FIFOs alternately could be configured as a dual port memory and consequently 

accessed as an addressed memory buffer. The FIFOs enable decoupling of the ingress and 

egress data flows which can be asynchronous to each other or where data flows are non-

contiguous or bursty. Moreover, FIFO queuing is advantageous for enabling rapid 

development and testing of new video processing cores, with individual clock regions 

relative to the rest of the system and for the system to operate in an efficient manner. 

3.3.1.1. BAR Address 1 – Packet Processors 

This section describes the FPGA static core region integrated into the overall PPE 

that is accessible when PCIe BAR Address 1 is selected. This address is used to read and 

write data to and from the PR algorithms in the FPGA fabric. The core only processes 

data packets after they have been separated from reconfiguration packets. If 

reconfiguration packets were to be accidently sent to the core, those packets will be 

dropped and an error is written to an error register readable by the host PC. The block 

diagram Figure 11 illustrates how the data and control are connected to the core.  

3.3.1.2. Reconfigurable Round-Robin-Controller 

This section describes the Reconfigurable Round Robin Controller (RRRC). The 

RRRC regions are the regions that store information that the static region uses to parse 
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the incoming and reconstruct the outgoing data. The top Reconfigurable Round-Robin-

Controller region in the diagram is the Ingress RRRC. A functional block diagram of the 

Ingress RRRC is given in Figure 10. 

 

Figure 12. RRRC Ingress Block Diagram 

The bottom part is the Egress RRRC. A functional block diagram of the Egress RRRC is 

given in Figure 10. 

 

Figure 13. RRRC Egress Block Diagram 
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The primary blocks which make up the Ingress and Egress RRRC are the RRRC 

Ingress Sate Machine, Processing memory, Egress State Machine and Process and Bus 

Timer. A description of each block and operating mode follows. 

3.3.1.2.1. RRRC State Machines 

The RRRC consists of two state machines which are used to control ingress data to 

each of the processing elements and egress data from each of the processing elements. 

This function is critical to ensuring the framework and processing elements operate in an 

efficient manner. This is because if a processing element is idle with or without data the 

processing effectiveness of the entire system will suffer. The following is a description of 

the two modes the state machines can be configured to operate in. 

3.3.1.2.2. Non Weighed Round Robin Mode 

In non-Weighed Round Robin mode, the RRRC Egress and Ingress State Machines 

operate in a sequential order where the current service pointer is incremented by the 

Data_Valid signal associated with each of the processing elements. First the RRRC loads 

all of the processing elements sequentially one after another. Once loaded, the state 

machine waits until the first processing element de-asserts the Process_Running signal 

and asserts the Data_Ready signal. Then the RRRC asserts the processing element’s 

Data_ACK their individual Data_Valid output signals, thus indicating that valid output 

data is transferring to the PCIe Egress FIFO. Once these transfers are complete, each 

processing element de-asserts its Data_Valid signal and then re-asserts its corresponding 

Processor_Ready signal, indicating that the processing element is again ready to receive 

the next data set to be processed. 
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Once this service event sequent completes, the RRRC Output State Machine 

determines the next processing task available for service following the service 

determination protocol and the Input State Machine loads the processing element that just 

finished moving its data to the PCIe Egress FIFO. 

3.3.1.2.3. Weighed Round Robin Mode 

The RRRC memory is used to store the adaptive core latency information for each 

of the thirty two cores or weights (or skips) for a video stream. The memory is a single 

FPGA Block RAM configured with a nine bit data path and 2K memory depth. If the 

RRRC Processing Memory is not enabled no skips are preformed and the processors are 

read and written in sequential order. When enabled, the memory is configured by the host 

VPCS on initialization with a specific skip pattern for each full processor write and read 

with each bit of data representing the skip pattern for a given full processor write. The 

high bit is used to indicate if the pattern is a write or read sequence. The second highest 

bit is used to signal a reset memory address counter this bit is used to restart the skip 

pattern. The Table 3 shows the memory bit to processor mapping and the Skip_RST and 

Read/Write bit. 

Table 3. RRRC Skip Table 

Processor bit 0 bit 1 bit 2 bit 3 bit 4 bit N 
Skip 
RST 

High 
bit 8 

Read/
Write 

0 1 0 0 0 0 0 X X 

1 0 1 0 0 0 0 X X 

2 0 0 1 0 0 0 X X 

3 0 0 0 1 0 0 X X 

4 0 0 0 0 1 0 X X 

N 0 0 0 0 0 X X X 
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3.3.1.2.4. RRRC Process Timer 

To ensure a robust operating environment, each of the processing elements in the 

framework is associated with a watchdog timer to ensure that no processing node is in an 

unknown state. The watchdog timer is configured on device initialization with the 

number of cycles expected for a given processing node. During operation the timer is 

started once all of the data for the process is moved across the framework from the PCIe 

FIFO to the processing element. Once the processing is complete the processing unit 

stops the watchdog timer by de-asserting the process running signal. If the watchdog 

timer expires before the processor de-asserts the process running signal the watchdog 

timer will reset the processing element. The data being processed by this node is then 

dropped. The VPCS will fill in the dropped data with 0bs. 

3.3.1.2.5. Framework Bus Timer 

The Framework Bus Timer is also used to ensure that the data egress process from 

each processing element does not hang up the fabric this can be caused by the process 

asserting its Data_Valid signal (which indicates the process is driving the framework 

egress bus) and hanging up hence not de-asserting the signal. The way this prevented is 

when the RRRC asserts a process Out_DATA_ACK signal the bus watchdog timer is 

started. If the process does not complete before the timer expires the watchdog timer will 

reset the processing element. The un-transferred data being processed by this node is then 

dropped. The VPCS will fill in the dropped data with 0bs. 



64 

 

 

 

3.3.1.2.6. Moving Data To and From Cores 

To load a video processing core (e.g., the FIR core) the Ingress Data PPE checks 

the data in the buffer, by reading the header, to determine if the packet is 64x64 or 32x32. 

Once the determination is made it will cycle to the next available 64x64 or 32x32 

processing engine. If a processing engine is not available the PPE will back pressure the 

PCIe core and wait until a processing core is available.  

The Egress Data PPE operates with a clock frequency of 250 MHz with a bus width 

of sixteen bits. This equates to a total bandwidth of 8.2 Gbps. The Egress Data PPE is 

used to transfer the processed data back to the PCIe core. By reading the status of each 

core the Egress Data PPE determines which core has finished processing and when data 

is available. It will then move the available data from the cores to the PCIe. The PCIe 

core will then send it back to the Host PC. 

3.3.1.3. BAR Address 2 – DPR 

This section describes the FPGA static core region integrated into the overall PPE 

that is accessible when PCIe BAR Address two is selected. This region is used to read 

and write the reconfigurable configurable fabric in the FPGA. The core only works with 

the FPGA packets after they have been filtered from the video packets. If non-

reconfiguration packets are sent to the reconfiguration core, the packets will be dropped 

and an error will be written to an error register readable by the host PC. The block 

diagram Figure 14 shows how the data and control are connected in the core.  
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Figure 14. DPR Packet FIFO 

3.3.1.3.1. DPR Core PACKET FIFO 

This module ensures that incoming packets pass error checking prior to being 

forwarded onto other modules in the core. The PACKET FIFO module (Figure 14) 

receives the packets through a FIFO interface and uses the packet information (length, 

sequence number, and CRC value) to perform error checking. 

After PR_LOAD assertion, the first received packet must contain a sequence 

number equal to 0x00h. Each subsequent packet contains a sequence number one greater 

than the prior packet. At 0xFFh, the sequence number should roll back over to 0x00h. If 

the CRC32 value or the sequence number does not match the expected value, the 

PACKET_ERROR signal is asserted and the packet is not forwarded. 

The data is stored in a FIFO until the last word of the packet is received. The last 

word is identified based on the length received in the first word. After the last word is 

received, the count for the number of packets stored in the FIFO is incremented if the 

Packet 

FIFO
Config

ICAP 

Outputs

FIFO 

32X11

FIFO CLK

FIFO DIN

FIFO WE

FIFO LOW

FIFO FULL

Packet

Data/Status

CONFIG

DATA/WE

Packet RD
FIFO 

Status

FIFO 

DATA/

STATUS

FIFO RD

ICAP CLK

ICAP DO

ICAP BUSY

ICAP DIP

ICAP DI

ICAP WEB

ICAP CEB

Error
Core

Reset
PR LOAD

Reset

Config

ERROR

Packet Error

PR Done

PR Error

PR Error Code

ICAP Clock DomainCore IO Clock Domain



66 

 

 

 

sequence number and CRC check pass. The FIFO is determined to be full if the number 

of stored words equals 1,023. The FIFO size is 4 KB which can contain up to two 

maximum-size (512 words) packets. The packet information (length, sequence number, 

and CRC value) provides error checking up to the packet FIFO. Parity calculation is used 

to maintain data integrity throughout the rest of the core. The read data from the FIFO is 

forwarded to the next module with back pressure control. 

The PACKET FIFO module asserts the error signal, PACKET_ERROR, when the 

error checking fails, data is written into a full packet FIFO (overflow), or data is read 

from an empty packet FIFO (underflow). The error signal persists until PR_LOAD is 

removed, resulting in an RC/EPRC-wide reset. Any remaining packets received after an 

error is reported will not be forwarded to other modules. Thus, it is not required to 

complete sending all remaining packets after an error [67] [66]. 

3.3.1.3.2. DPR Core CONFIG 

The CONFIG module monitors configuration data forwarded from the PACKET 

FIFO module for configuration commands. It also descrambles the IDCODE into its 

original value (refer to Figure 14 to see the relationship of the CONFIG Module to other 

components associated with the PACKET FIFO). 

The EPRC configuration logic then divides the data into bytes and sends the data to 

the ICAP interface through the ICAP FIFO. The full signal from the FIFO applies back 

pressure towards CONFIG. The empty signal is used by the ICAP OUTPUTS module to 

know when to read data from the FIFO. The CONFIG module asserts the error signal, 

CONFIG_ERROR, when the original partial bitstream contains invalid commands or 

information. The error is determined internally and the faulty data is never passed to the 
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ICAP. The ICAP output (ICAP_DO) is not used for determining error conditions. The 

CONFIG module always asserts PR_DONE, even in case of an error. It is expected to 

always wait for PR_DONE assertion before de-asserting PR_LOAD even if PR_ERROR 

is asserted first. This allows for any clean-up that needs to be done by the core (e.g. 

sending an ABORT to ICAP). PR_DONE assertion always requires EXT_PR_DONE 

input to be high (Logic 1). 

3.3.1.3.3. DPR Core ICAP OUTPUTS 

The ICAP_OUTPUTS module (see right side of Figure 14) is responsible for 

reading the ICAP FIFO and output.  It also monitors the PR_ERROR signals for status. 

The ICAP_OUTPUTS module generates an abort sequence and stops reading the ICAP 

FIFO if it detects an error condition. 

3.3.1.3.4. DPR Core RESET 

The DPR Core contains a RESET module (not shown in the block diagram for 

simplicity) which consists of a 3-bit down counter. The most significant bit (MSB) of the 

counter decrements the counter and is tied to the active-High RESET output. The counter 

is asynchronously loaded with 111b when PR_LOAD is de-asserted (logic 0). After 

PR_LOAD is asserted, the down counter counts down until the MSB is zero. At this 

point, the counter stops decrementing and them the RESET output is de-asserted. The 

final count value is 011b. 
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3.3.1.3.5. DPR Core ERROR 

The ERROR module encodes the various error signals inside the core into 

PR_ERROR and PR_ERROR_CODE signals for external usage. Table 4 shows the 

encoding of the PR_ERROR_CODE signal. 

Table 4: PR Error Code Encoding 

Inputs Outputs 
EXT_PR_ERROR RESERVED CONFIG_ERROR CONFIG_ERROR PR_ERROR_CODE 

1 X X X 
1 and 

EXT_PR_ERROR_CODE 

0 0 1 X 0010 

0 0 0 1 0001 

0 0 0 0 0000 

 

3.3.1.3.6. DPR Core Procedure after Errors 

The error signal persists until PR_LOAD is de-asserted which results in a 

PRC/EPRC-wide reset that allows for a new partial bitstream to be sent to the PRC/EPRC 

core. After the occurrence of any type of an error (PACKET/CONFIG), PR_ERROR is 

always followed by PR_DONE. Thus, it is required to wait for PR_DONE assertion 

before de-asserting PR_LOAD. This allows the core to complete any action that needs to 

be done after the error.  

A PR_ERROR from the PRC/EPRC core should result in a system-level decision of 

either retrying with the same partial bitstream or first cleaning up with a blank partial 

bitstream. In case of a packet error, it is not possible to resend the packets from where the 
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error was encountered. Reconfiguration of any reconfigurable partition is allowed after an 

error. 

3.3.1.3.7. DPR Core Interface Signals 

Table 5 provides a list of the interface signals to the DPR core. These signals are 

what other logic elements within the system interface to in order to send packets into the 

configuration circuitry of the FPGA device. 

Table 5.  DPRPP Core Interface Signals 

Signal I/O Description 

PR_LOAD Input 

This port is asserted (active High) during the entire 

partial reconfiguration. Deassertion resets the 

PRC/EPRC core 

FIFO_CLK Input 
This port is used to clock the incoming FIFO data and 

write strobe 

FIFO_DIN[31:0] Input This is the incoming configuration data 

FIFO_WE Input This is the write strobe for FIFO_DIN[31:0] 

FIFO_FULL Output 
This port indicates that the FIFO is full and cannot 

receive more data 

FIFO_LOW Output 
This port indicates that the FIFO has space for at least 

2,048 bytes 

ICAP_CLK Input This is used to clock the ICAP primitive 

ICAP_DI[31:0] Output This is the incoming data for the ICAP primitive 

ICAP_DIP Output 

This port provides odd parity on ICAP_DI [31:0] and 

does not connect to the ICAP primitive. It can be 

used by the user for additional error checking 

between the PRC/EPRC core and the ICAP primitive 

ICAP_CEB Output This is the active-Low enable for the ICAP primitive 

ICAP_WEB Output 
This is the active-Low write enable for the ICAP 

primitive 



70 

 

 

 

Signal I/O Description 

ICAP_BUSY Input This is the busy signal from the ICAP primitive 

ICAP_DO[31:0] Input 
This is the outgoing data from the ICAP primitive 

used for status 

EXT_PR_ERROR Input TBD 

EXT_PR_ERROR_CODE[2:0] Input TBD 

EXT_PR_DONE Input TBD 

PR_ERROR Output 
This port indicates that a partial reconfiguration (PR) 

error has occurred 

PR_ERROR_CODE[3:0] Output This is the error code for the PR error 

PR_DONE Output 

This port indicates that the PR operation has 

completed. It is dependent on multiple internal flags 

for a greater number of clock cycles to ensure that all 

configuration information has been given adequate 

time to be delivered to the ICAP 

 

3.4. DPR Regions 

The next section will discuss how the DPR designs were placed on the Xilinx 

Virtex 6 FPGA fabric. This step in the Partial Reconfiguration process is known as 

partitioning the design. This is true because the area of the die that will be used for the 

partial reconfiguration regions and the static area are defined. This process was done 

using the Xilinx PlanAhead tool. An image of the FPGA layout take from the PlanAhead 

tool is given in Figure 13. 
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Figure 15. Dynamic Partial Reconfiguration Regions 

The Dynamic Partial Reconfiguration Regions (DPRR) in the FPGA are placed on 

the right side of the FPGA fabric so that each of the thirty two regions contains 

approximately the same logic resources. This simplifies the development of processing 

blocks and gives a regular layout and roughing structure to minimize the need to change 

the static region when developing new functionality. An image of the thirty two regions 

after the Xilinx place and route tools finished one of the thirty two core test designs is 

shown in Figure 14.  
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Figure 16. Dynamic Partial Reconfiguration Placement 

Figure 14 shows how the Xilinx place and route tool placed each processing 

element into the area of the Virtex 6 defined in the PlanAhead tool. The image does not 

show the static region routing [68]. 
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3.5. Base System Test Application 

This section discusses the Base System Test Application which is used to perform 

low level verification that the static firmware including the RRRC and PR regions, 

software driver, and DPR process are operating as expected.  The procedure to perform 

the test can be seen in Figure 17.  To start the test first the PR controller bitstream is 

written to the FPGA development board.  This process is done when the PC is turned on 

because the FPGA must be found on the PCIe bus during system enumeration otherwise 

the system will not load the PCIe into the list of available system PCIe devices. 

Once the system is loaded, it is necessary to connect to the system using the 

custom driver and application to up load the selected partial bitstreams across the PCIe 

bus to the FPGA. After each of the partial bitstreams is loaded, the Software Test 

Application is loaded and started. 

 

Figure 17. Test Application Flow 

3.5.1. Test Application  

The ivPCL Software Test Application GUI allows the user to actively monitor and 

test the base PR system and the FPGA data path speed for various sized packets. This is 

an important baseline when verifying the maximum speed and packet size at which the 

system can operate. The Figure 18 is the GUI interface for the speed controller.  
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Figure 18. Speed Test GUI 

The GUI allows the user to read and write various test patterns to the FPGA. It also 

allows the user to adjust the Transaction Layer Packets (TLPs) discussed in the next few 

sections. 

3.5.2. Test Procedure for PCIe Performance  

In this dissertation, the means of which the performance system performance is 

measured is by counting the number of TRN clocks until a DMA transfer is complete. 

(TRN_CLK is the interface clock provided by the PCIe core and used by DPR core to the 
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Test application.) For reads, the count stops when all completions have been returned, 

and due to writes being posted (no response), the count stops when all writes have been 

successfully sent into the core [69]. 

3.5.2.1. PCIe Performance 

Excluding PCIe protocol and traffic overhead [70] the primary elements which 

impact performance in a PCIe system are the maximum payload size, maximum read 

request size, and request type. 

The PCIe specification allows for a Maximum Payload Size (MPS) of up to 4,096 

bytes. However, every device in the PCIe hierarchy must use the same MPS setting, and 

the setting must not exceed the capability of any device within the hierarchy. Therefore, 

the device with the smallest Maximum Payload Size (MPS) in a system determines the 

system MPS.  

A system’s MPS setting is determined during the overall system enumeration and 

configuration process. Each device in the hierarchy advertises its MPS capability in its 

Device Capability register, which is located in the device’s configuration space. The 

VPCS probes every device to determine its MPS capability, determines the MPS setting, 

and programs every device by writing the MPS setting to its Device Control register. 

Therefore, in a PCIe packet based system, the VPCS must adapt the packet size 

depending on the MPS of the system. 

The MPS of a system does impact the performance of a system. However, 

increasing payload size does not increase efficiency at the same rate. This is related to all 

the payloads on the PCIe bus have a Transaction Layer Packets (TLPs) overhead to 

transfer the data. The transaction layer, Data Link Layer (DLL), and physical layer 
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(PHY) add overhead to each TLP, thereby reducing the effective data transfer rate. The 

transaction layer attaches the packet’s header and optional End-to-end Cyclic 

Redundancy Checksum (ECRC). The DLL adds the sequence number and Link Layer 

CRC (LCRC) to the packet to ensure successful transmission across the link. The PHY 

also adds information to mark the beginning and end of the packet. 

The TPL overhead varies between 20 to 28 bytes depending on the use of 32-bit or 

64-bit addressing and optional ECRC. For the purpose of this research, memory read or 

memory write TLPs are used to move data to and from the FPGA with 64-bit addressing. 

The 64-bit addressable TLP header is 16 bytes (as opposed to 12 bytes for 32-bit 

addressing) and requires an additional 4 bytes of information to be exchanged in the 

packet.  

To transfer large amounts of data across the PCIe bus requires multiple TLPs. 

Although each TLP contains a given amount of overhead, larger multiple TLP transfers 

increase link efficiency. The maximum payload size (MPS) setting, assigned to the 

communicating devices, determines the maximum TLP size. Increasing the MPS does not 

necessarily lead to a corresponding increase in link efficiency because as individual TLPs 

become larger, other factors such as traffic overhead begin to impact link performance. 

We have that: 

Payload Efficiency = MPS/(MPS+TLPs).                     (5) 

Therefore, the Theoretical Maximum Data Throughput (TMDT) in bytes is the 

packet efficiency as a percentage of the theoretical bandwidth, given by: 

TMDT = (Bus Speed * 2 * (PCIe Lane Width))/(PCIe Symbol Encoding).         (6) 

The PCIe Symbol Encoding for Gen 1 and Gen 2 is 8b-10b. Encoding is used to 

maintain a DC balance for the bus and for clock data recovery [69].  
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Chapter 4  

Implementation Results 

This chapter describes the research results developed as result of application of 

DPR FPGA processing to video frame processing.  This section also describes the 

algorithms and mechanisms developed to test the Reconfigurable Video Packet 

Processing Framework (RVPPF). We begin by characterizing each of the basic system 

functions for each of the implementations on the RVPPF. In this process, three central 

questions are raised. First, what is the best mix of video algorithms to operate on the 

video frame targeted for processing with the RVPPF?  Second, how is unprocessed video 

input distributed to the dynamic algorithms configured on the RVPPF?  Third, how are 

processed frames interleaved into a coherent output video stream? Each of these 

questions is explored in turn. Lastly, the performance of the algorithm implemented on 

the RVPPF is evaluated. 

4.0 RVPPF DPR Loopback 

This section describes the RVPPF DPR Loopback implementation. A description of 

the static region RVPPF and associated FPGA firmware can be found in Chapter 4. 

To baseline the performance of the RVPPF, test the ability for the RVPPF to 

reconfigure the FPGA fabric and provide a base to build new processing elements a 

Loopback DPR (L-DPR) core and associated host PC application was developed. The 

general approach for the Loopback core is to route packets from their originating facility 

back to the receiving end of the source without intentional processing or modification. 

This is primarily a means of testing the RVPPF transmission or transportation 
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infrastructure. The following is a description of the L-DPR base system and results from 

the implantation of thirty two asynchronous L-DPR cores implemented in the RVPPF. 

4.1.1. RVPPF DPR Loopback FPGA Core 

To test different possible functionalities, two L-DPR FPGA cores were developed. 

Both cores consisted of a state machine, configurable clock divider logic, and four Block 

RAM or Transfer Memories. The two cores are named as follows: (i) L-DPR Separate 

Transfer Memory L-DPR-STM with an Ingress FIFO (I-FIFO) and Egress FIFO (E-

FIFO), and (ii) an I-FIFO E-FIFO Combined Transfer Memory (L-DPR-CTM). 

In the L-DPR core, the Transfer Memory (Block RAM) can be configured to be in 

several different configurations. The memory stores up to 36K bits of data and can be 

configured as either two independent 18 Kb RAMs, or one 36 Kb RAM. Each 36 Kb 

block RAM can be configured as a 64K x 1 (when cascaded with an adjacent 36 Kb 

block RAM), 32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18, 1K x 36, or 512 x 72 in simple 

dual-port mode. Each 18 Kb block RAM can be configured as a 16K x 1, 8K x2 , 4K x 4, 

2K x 9, 1K x 18 or 512 x 36 in simple dual-port mode.  

In the Virtex-6 architecture, dedicated logic in the block RAM enables users to 

implement synchronous or dual-clock (asynchronous) FIFOs. This eliminates the need 

for additional CLB logic for counter, comparator, or status flag generation, and uses just 

one block RAM resource per FIFO. The FIFO can be configured as an 18 Kb or as a 36 

Kb memory. For the 18 Kb modes, the supported configurations are 4K x 4, 2K x 9, 1K x 

18, and 512 x 36. The supported configurations for the 36 Kb FIFO are: 8K x 4, 4K x 9, 

2K x 18, 1K x 36, and 512 x 72 [71]. 
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When configured in the L-DPR-STM half-duplex (HDX) mode, the system 

provides communication in both directions, but only one direction at a time (not 

simultaneously). In this configuration, once a core begins receiving a signal, the internal 

state machine must wait for the transmitter to stop transmitting, before starting to process 

the data and return the data to the host. In this configuration the processing units have 

double the amount of local memory to use for data storage compared to L-DPR-CTM. A 

functional description follows and a depiction of the L-DPR-STM core can be seen in the 

Figure 19. 
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Figure 19.  L-DPR-STM Core Block Diagram 

For the L-DPR-CTM, when data enters the FPGA static region via the PCIe bus it is 

passed to the next available DPR region through an Ingress Asynchronous FIFO (IA-

FIFO). The IA-FIFO is used to buffer the incoming data and move the data between the 

FPGAs static region clock domain and the FPGA PR regions clock domain. The ingress 

data packet is then moved to the PR regions Ingress FIFO (I-FIFO). Once finished, the 

Reconfigurable Round Robin state machine sends the data done signal to the PR region 
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the state machine which starts the loopback of the data to the HOST by moving the data 

packet to the Egress FIFO (E-FIFO). When the transfer is complete, the PR region state 

machine asserts data ready to the RRRC. For the final step in the date flow through the 

FPGA, the RRRC sends the current data into the E-FIFO and then back to the system via 

the PCIe bus. 

When configured in the L-DPR-CTM full-duplex (FDX) mode the system allows 

communication in both directions, and, unlike when in the half-duplex mode, allows this 

to happen simultaneously. In this configuration the processing units have half the amount 

of local memory to use for data storage compared to L-DPR-STM, but can send and 

receive simultaneously. A functional description follows and a depiction of the L-DPR-

CTM core can be seen in the Figure 20. 
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Figure 20.  L-DPR-CTM Core Block Diagram 

For the L-DPR-STM, when data enters the FPGA static region via the PCIe bus it is 

passed to the next available DPR region through an Ingress Asynchronous FIFO (IA-

FIFO). The IA-FIFO is used to buffer the incoming data and move the data between the 
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FPGAs static region clock domain and the FPGA PR regions clock domain. The ingress 

data packet is then moved to the PR regions local memory. Once the Reconfigurable 

Round Robin state machine sends the data done signal to the PR region, the control state 

machine starts the loopback of the data to the HOST by asserting data ready. Once the 

RRRC responds with an acknowledge, the PR control state machine must start a counter 

to walk through the memory addresses in order to send the data back to the static regions 

Egress Asynchronous FIFO (EA-FIFO). For the final step in the date flow through the 

FPGA, the RRRC sends the data currently in the E-FIFO back to the system via the PCIe 

bus. 

During the loopback operation when the packet is moved from the ingress memory 

to the egress memory the header tag (described in the software application section) 

placed on the data by the VPCS for data tracking must also be moved. The data tag 

header must always remain with the data packet or otherwise the VPCS will not know 

what to do with the data and will subsequently drop the packet. 

The L-DPR core can be configured with several different clock speeds via the 

FPGA programmable clock that is a programmable division of the primary static core 

clock. This programmable clock allows for a more accurate model of the way different 

PR cores with different clock constraints and amounts of latency behave in the system. 

The clock speed is adjusted by the user via the host application writing to control 

registers in the loopback core. 

4.1.2. RVPPF Loopback Speed Calculations 

The RVPPF which includes the FIFO interface from the PCIe and the 

Reconfigurable Weighted Round Robin Controller (RWRRC) run off a single clock. 
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Therefore, the speed at which data moves between the PCIe and the cores for processing 

is simply the data in Bytes multiplied by the clock speed. Additional latency can come 

from the processing time that each core takes to perform processing on the data (is the 

RWRRC required to wait on a process to finish) and if the RWRRC is not configured to 

process the data in an efficient manner. For the Loopback operation none of the latencies 

from the RWRRC were observed. This was because the RWRRC was configured without 

weights as all cores had the same bandwidth needs. 

4.1.3. RVPPF DPR Loopback Host Application 

The primary purpose for the host application running on the PC for the Loopback 

Application (L-App) is to verify the system comprising of the host operating system 

driver, RVPPF and PR cores. DPR-L host application can do the following verification 

processes: 

1. Generate packets of configurable size or read them from a file 

2. Send data packets to the FPGA 

3. Start the system timer to measure data speed 

4. Send packets to the FPGA 

5. Receive packets from the FPGA 

6. Stop the system timer to measure data speed 

7. Compare the data sent data to the received data 

8. Return the status of the transfer to the user 

9. Perform Dynamic Partial Reconfiguration of the FPGA Reconfigurable 

Fabric 
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In addition, to verify processor clock speed changes to the RVPPF the DPR-L can 

write to the 32 bit selectable packet delay register in the DPR-L cores. This can produce a 

slower or faster data write back from each of the cores. It also allows for verification of 

different clock speed cores and cores with different data processing capabilities running 

in the RVPPF. 

4.1.4. RVPPF DPR Loopback Implementation 

The primary purpose of the loopback Implementation is to detect dynamic system 

failures so that defects may be discovered and corrected and establish a base line for the 

way the system behaves with different configurations. Loopback testing cannot establish 

that the RVPPF functions properly under all conditions, but can only establish that it does 

not function properly under specific conditions. The scope of the testing includes 

configuring and testing with several different clock speeds to verify the ability of the 

RVPPF to perform DPR of the FPGA, operate with packets of different size, operate with 

various PR region frequencies and operate with both L-DPR-CTM and L-DPR-STM 

cores configured simultaneously in the RVPPF. 

4.1.5. RVPPF DPR Loopback Results 

This section presents performance measurements for both the L-DPR-CTM and L-

DPR-STM cores in the current RVPPF implementation. The measurements were taken by 

creating various packet sizes that included processing tasks with different per frame 

processing latencies. In each case, frames from an input stream are received, decoded, 

held for a specified amount of time, encoded, and retransmitted as a processed output 

stream. 
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Figure 21 shows the results of processing a 640x480 test video stream with 16 bits 

per pixel. The RVPPF is configured with thirty two L-DPR-CTM and L-DPR-STM 

cores. 

  

Figure 21.  Frames per Second 

Varying performance was emulated by processing latencies which were varied by 

decreasing and increasing the processors clocks from 100 MHz to 150 MHz. The graphs 

show a nearly linear increase in performance as the speed of the processing nodes is 

increased which indicates that the RVPPF implantation is highly scalable for video 

streams.  

4.2. RVPPF DPR Video 1-D and Separable 2-D FIR Filter 

The following section is a description and implantation of a video processing 

application using a 1-D FIR filter (V-FIR) core and 1-D FIR filter (V-FIR) core with a 

matrix transpose controller used to create a separable 2-D implantation on the RVPPF. 

The primary purpose of the FIR implementation is to answer the following question: 
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what is the best mix of FIR processing cores and algorithms for video processing with the 

RVPPF?. Second, how is unprocessed video input distributed to the dynamic algorithms 

configured on the RVPPF? Third, how are processed frames interleaved into a coherent 

output video stream? In answering the above questions, the RVPPF will demonstrate the 

ability to partially reconfigure the hardware, successfully deconstruct video frames into 

packets, send the packets across the PCIe bus to the RVPPF, process the packets in the 

RVPPF, and send them back to the host to be re assembled into processed video frames. 

We also present an example that demonstrates that the system can using 640x480 frames 

maintain a video packet throughput of 300 frames per second. 

4.2.1. Removing Filter Edge Effects 

When using a digital filter to process images the edge effects must be taken into 

account. This is particularly important when breaking the frame into blocks and 

processing them independently. If the edges are not taken into account the result will be 

lines on the processing boundaries of the block. 

To remove the edge effects for the 1-D and subsequent separable 2-D filter, a zero 

padding value was added to the video packets. This was achieved by increasing the row 

size M and the column size N in each direction by the number of coefficients minus 1. 

For example if a row size 64 and column size 64 block is to be processed by a filter with 

eight coefficients the resultant image to be processed will have a row size of 78 and 

column size of 78. Figure 22 depicts the resulting structure.  
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Figure 22.  Filter Memory Structure.  

The number of coefficients should be significantly less than either M or N so as to 

minimize the overhead. Thus, larger packet sizes are needed for FIR filters with larger 

numbers of coefficients. 

The data padding for this and the subsequent separable 2-D filter application was 

done by the VPCS before sending the data to the FPGA. The data pad was also removed 

from the data with the VPCS after processing just prior to reassembly of the video frame. 

For the purposes of clarity in the following sections, it should be noted that all of 

the FIR filters are using eight coefficients. Therefore, all references to 64x64 and 32x32 

filters are actually zero-padded such that the video being processed is constructed of 

78x78 and 46x46 blocks of data. 
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4.3. RVPPF DPR FIR Filter FPGA Core 

The following section provides a description of the FIR Filter FPGA core that was 

used in this application [64]. For the purpose of the RVPPF, the macro core incorporated 

with a wrapper consisting of the PR control state machine, configurable clock divider 

machine, configurable clock divider logic, PR Region Memory Controller and four Block 

RAM or Transfer Memories. Details of the FIR core implementation are from Dally and 

Towles  [57]. A block diagram and description of the FIR implantation as applied for the 

RVPPF is shown in Figure 23. 

 

Figure 23.  FIR implementation for the RVPPF 

The following sections describe the two filter modes used: 1-D FIR Mode and 2-D 

Separable Filter Mode. The mode is selected when setting the Core Configuration 

Registers. 

FIR RVPPF PR Module

Programmable Clock

Fabric

Fabric

PR Region 

Ingress

And 

Egress

Memory

1D FIR Core

PR Region 

Memory

Controler

Core 

Configuration 

Registers

Packet 

Parser



88 

 

 

 

4.3.1. 1-D FIR Filter Mode 

Once ingress data finishes transferring to the DPR-STM and the data complete 

signal is sent by the RRRC (not shown), the packet processor state machine begins to 

parse the data packet. For the first step in processing the packet the packet processor state 

machine skips the first eight bytes of data which contain the VPCS tag header (described 

in the software application section). The next eight bytes of data in the header contain the 

descriptor word which indicates whether the data in the memory is a FIR control 

sequence used to configure the configuration registers of the filter or a video frame to be 

processed by the FIR filter. Once the data is identified, the process of writing the 

configuration registers or processing the data with the FIR filter is performed. If the data 

is to be processed with the filter it is moved through the filter and the result is place back 

in the DPR-STM. When processing is complete the egress state machine indicates to the 

RRRC the data is finished processing by asserting the data ready signal. Once the AI-

Receive FIFO (not shown) is ready to receive data an acknowledge handshake is sent by 

the RRRC to the egress state machine. The data is then moved into the AI-Receive FIFO 

and subsequently to the host via the PCIe bus. 

4.3.2. 2-D Separable FIR Filter Mode 

Once ingress data finishes transferring to the DPR-STM and the data complete 

signal is sent by the RRRC (not show) the packet processor state machine begins to parse 

the data packet. For the first step in processing the packet the packet processor state 

machine skips the first eight bytes of data which contain the VPCS tag header (described 

in the software application section). The next eight bytes of data in the header is the 
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descriptor word which is used to configure the Core Configuration Registers and setup 

the transpose memory controller, see Figure 23. 

After the memory transpose is configured the data packet is read into the DPR-

STM and then the data is sent to the 1-D FIR Core. As data exits the core the data is 

written to the DPR-STM. During this write process the data is transposed by 

manipulating the memory addresses the data from the 1-D FIR Core writes to.  

Once the entire first pass data is written out to the DPR-STM (and now 

transposed) the data is sent back through the 1-D FIR Core to complete the final pass 

through the 1-D FIR Core. As data exits the core the data is once again transposed using 

address write manipulation.  

Once all of the data has been processed by the 1-D FIR Core and transposed twice 

using memory write address manipulation it is ready to be sent back to the host PC. Once 

the AI-Receive FIFO (not shown) is ready to receive data an acknowledge handshake is 

sent by the RRRC to the egress state machine. The data is then moved into the AI-

Receive FIFO and subsequently to the host via the PCIe bus. 

4.3.3. RVPPF DPR FIR Filter Processing Core 

Both the 64x64 and 32x32 FIR cores are comprised of several 8-bit registers, some 

SRAM buffers (used to store data in the data pipeline) forming a large pipeline and four 

Block RAMs configured as a 128 Kb dual port memory. With each clock cycle the FIR 

filter reads a new data word from the Block RAM and shifts it through the filter which 

results in a processing time for a single pixel (without considering any latency) of 

         where      is the FIR core clock frequency. This design for both filters was 

able to obtain a synthesis output clock frequency of 266 MHz using Xilinx XST Release 
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Version 14.2 [72] for synthesis and 250 MHz using Synopsys Simplify Precision G-

2012.09-SP1 [73] for synthesis in the Virtex 6 device. However, once the design was 

constrained to the PR regions the final clock speed was reduced due to local timing 

restrictions to a programmable speed of 100 and 150 MHz per FIR core. 

4.3.3.1. 1-D FIR Filter Speed Calculations 

This section describes the processing speed calculations used to calculate the speed 

of the 1-D FIR filter. These calculations are when the filter is in 1-D mode or transpose is 

OFF.  

As data enters the core, it is first moved into the DPR-STM seen in Figure 19 from 

the PCIe FIFO. Because the data path from the PCIe to the cores DPR-STM is configured 

to be 16 bits wide and the pixel data is 16 bits the number of     cycles needed to 

perform the transfer is equal to the number of pixels in the M x N image plus the data 

header of 8 bytes or 4 x16 bit writes. The number of cycles is thus given by: 

    
(   )  

    
.               (7) 

Once the data is stored in the DPR-STM the core takes six cycles (denoted by S) to 

write the configuration registers and clock divider before processing start. After setup the 

core start reading from the DPR-STM. Therefore, the latency      between the data 

written to DPR-STM and out of the core is equal to the pipe length P delay of eleven 

additional cycles with a clock speed       into the filter. The latency is thus given by: 

     
   

    
.                (8) 
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After processing the data, it must be sent back to the host across the framework to 

the PCIe FIFO. Like the receive data path this data path is 16 bits wide. Therefore the 

calculation for     and     for this step are the same as before. 

Therefore, the total processing time      (per processing core) needed to process all 

the pixels of a row M and column N packet of image data with a clock frequency of      

is given by: 

                    
   

    
.             (9) 

In Table 6, we have the size and speed calculations for the 64x64 and 32x32 video 

packet implementations. 

Table 6.  1-D FIR Size and Speed Calculations for a Single Video Packet 

Clock Speed 64x64 32x32 

     100 MHz 100 MHz 

     6425 ns 2329 ns 

 

4.3.3.2. 2-D Separable FIR Speed Calculations 

This section describes the processing speed calculations used to calculate the speed 

of the 2-D Separable FIR filter. These calculations refer to the case are when the filter is 

in 2-D mode or transpose is ON. The calculations in this mode are the same as the 1-D 

implementation with the exception of the multiple passes required to perform the 2-D 

Separable FIR filter processing. The transpose function itself does not add any cycles to 

the data processing overhead because the transpose is implemented by manipulating the 

address writes from the to the filter core to the DPR-STM. 
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As data enters the core it is first moved into the DPR-STM from the PCIe FIFO. 

Because the data path from the PCIe to the cores DPR-STM is configured to be 16 bits 

wide and the pixel data is 16 bits the number of     cycles needed to perform the transfer 

is equal to the number of pixels in the M x N image plus the data header of 8 bytes or 4 

x16 bit writes. The number of cycles is thus given by: 

    
(   )  

    
.             (10) 

Once the data is stored in the DPR-STM, the core takes six clock cycles to write the 

configuration registers and clock divider before start to process the first data pass. After 

setup, the core starts reading from the DPR-STM. Therefore, the latency      between the 

data written to DPR-STM and out of the core is equal to the pipe length P delay of eleven 

additional cycles with a clock speed       into the filter. The overall latency is thus given 

by: 

     
   

    
               (11) 

After the first pass, the data has been processed with one pass through the 1-D filter 

and transposed. The next step in this process is to resend the data to the 1-D filter. Unlike 

the first pass this process does not need six cycles, denoted previously by S, to write the 

configuration registers and clock divider before start to process data. However, the core 

does take fourteen cycles         to reset and start receiving data. After the setup the core 

starts reading from the DPR-STM. Therefore, the latency      between the transpose data 

written to DPR-STM and out of the core is equal to the pipe length P delay of eleven 

additional cycles with a clock speed       into the filter. The latency is thus given by: 

     
           

    
.             (12) 
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Once the data is processed by the 1-D filter it is written back to the DPR-STM 

using the memory address transpose function. This process does not create and additional 

cycles. 

After processing the data it must be sent back to the host across the framework to 

the PCIe FIFO. Like the receive data path this data path is 16 bits wide. Therefore the 

calculation for     and     are the same. 

Therefore, the total processing time      (per processing core) needed to process all 

the pixels of a row M and column N packet of image data with a clock frequency of      

is given by: 

                    
   

    
.           (13) 

In Table 7, we have the size and speed calculations for the 64x64 and 32x32 

implementations. 

Table 7: 2-D Separable FIR Size and Speed Calculations 

Clock Speed 64x64 32x32 

     100 MHz 100 MHz 

     19.239 us 6.951 us 

 

4.3.4. RVPPF DPR FIR Host Application 

The data used to test the system is 16 bit 480x640 grayscale video. For both the FIR 

filter application the system has two sizes of prebuilt FIR filter cores available to use as 

any of the thirty two processing elements in the reconfigurable FPGA logic. One of the 

core types which can be configured is a 64x64 and the other is a 32x32 element FIR 

Filter. 
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The VPCS is also used to remove the filter edge artifacts. This process is 

described in section 5.2.1 “Removing Filter Edge Effects”. This is important to note 

because when the VPCS breaks the image data into processing blocks and reassembles it 

into processed video frames the data is in 64x64 and 32x32 blocks, and during processing 

it is 78x78 and 46x46 data packets. 

As previously stated, in order to obtain the optimum processing performance for 

the system the VPCS must target the algorithm combination with the least number of 

transfers to and from the hardware engine.  Therefore, the objective of the VPCS is to 

create more 64x64 blocks rather than 32x32 blocks to send to the FPGA firmware for 

processing. This approach reduces the number total transfers for a given amount of data.  

 First, the VPCS needs to determine the number of 64x64 blocks R in a row of the 

input video frame. This is found by dividing the number of rows N by the filter size.  

Hence Fr is given by: 

   (
 

 
)  (

   

  
)     .            (14) 

The VPCS must then determine the number of video frame columns that will fit in the 

64x64 blocks. This is found by dividing the number of columns M by the filter size Fc. 

Here we have: 

   (
 

 
)  (

   

  
)                 (15) 

Once the Fr and Fc are determine the remainder of the rows and columns are broken into 

32x32 processing elements. The formula for the number of 32x32 elements is only 

applied to the calculations Fr and Fc which produce a remainder (or do not evenly fit into 

a 64x64 block) of 1/2 . The conditions of this calculation are as follows: 
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 If Fr or Fc produces a remainder other than ½ the VPCS will exit and inform the 

user that the video frame is not the correct size for the filters loaded into the 

framework. 

 If the calculation of Fr produces a remainder the number of 32x32 or small filters 

in a column Fsc is found by dividing the number of columns M by the 32x32 or 

small filter size Fs. Thus  

     (
 

  
)  (

   

  
)                 (16) 

 If the calculation of Fc produces a remainder the number of 32x32 or small filters 

in a column Fsr is found by dividing the number of rows N by the 32x32 or small 

filter size Fs.  

     (
 

  
)               (17) 

4.3.4.1. Host Video Buffer and RRRC Configuration 

The video buffer coupled with the Reconfigurable Round Robin Controller (RRRC) 

in the FIR application is used to keep the data pipe full and hence improve overall system 

performance and efficacy. This section describes how both are used to buffer and 

schedule the frames and packets in the system. 

As previously shown the framework in the FIR implantation is configured with 

twenty four 64x64 (or 78x78 to remove the processing edge effects) filters and eight 

32x32 (or 46x46 to remove the processing edge effects). This configuration creates per 

frame processing inefficiencies which can be removed with the combination of a video 

buffer and scheduling the time the framework spends moving data between 64x64 and 

32x32 elements with the RRRC.  
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To determine the optimal size of video buffer depth needed the VPCS runs a 

process to determine a video boundary which the processing elements can fit into evenly. 

This process starts by first finding the percentage of large filter processes needed to 

process a frame Fp across the largest processing blocks loaded into the framework Pb (In 

this application the largest processing blocks are the twenty four 64x64 filters) 

multiplying the number of large full framework loads Fl to process the frame, and divides 

the result by the number of large processing blocks needed to process a frame Lb.  Thus 

the percentage of large filter processes required is given by: 

   
     

  
 
    

  
                   (18) 

This process is then repeated incrementing only the full framework loads Fl until 

the percentage is a whole number. The state diagram in Figure 24 depicts this process. 

 

Figure 24. Buffer Depth Process 

The result of this process for the 640x480 image, results in a frame buffer depth of 

twelve frames and thirty five full frame loads Fl. 
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The next step in the process is to set up the weights in the RRRC. This process 

starts by determining the number of frames the small filter set can process Fsp in the 

number of cycles calculated in the Buffer Depth Process. This is accomplished by first 

setting the number of Fl found in the Buffer Depth Process equal to the number of Fs 

small full frame loads and multiplying by the number of small processing blocks loaded 

into the framework Ps, then dividing the output by the number of small processing blocks 

needed to process a frame Sb (the number of small processing blocks needed to process a 

frame Sb). The equation is: 

    
     

  
 
    

  
   .            (19) 

This process is then repeated decrementing the full framework loads Fl until the 

number of Fsp is equal to the number found in the Buffer Depth Process Fs. The 

difference between the small filter processing block Fs and the Fl found in the Buffer 

Depth process multiplied by the number of small filters in the frame work is the number 

of frame weights W (or small filter processing skips) that must be added to the RRRC to 

balance the processing across the framework. Thus 

     (     )    (     )    .         (20) 

The weights in the RRRC are distributed evenly across the processing cycles which 

make up the twelve frame buffer. Table 8 shows the read and write weights for the 

RWRRC as they are distributed across the twelve frames. The Skip Pattern column in the 

table depicts the number of 32x32 filter skips in a given framework load. 
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Table 8: RRRC Weight Calculations 

Proc 
Cycle 

64x64 No weight added32x32 

Skip 
Pattern 

Weight Added 32x32 

Number 
of 

Processes 
Preformed 

Percentage 
of Frame 

Processed 

Number 
of 

Processes 
Preformed 

Percentage 
of Frame 

Processed 

Number 
of 

Processes 
Preformed 

Percentage 
of Frame 

Processed 

1 24 0.342857143 8 0.4 1 7 0.35 

2 48 0.685714286 16 0.8 1 14 0.7 

3 72 1.028571429 24 1.2 1 21 1.05 

4 96 1.371428571 32 1.6 1 28 1.4 

5 120 1.714285714 40 2 1 35 1.75 

6 144 2.057142857 48 2.4 2 41 2.05 

7 168 2.4 56 2.8 1 48 2.4 

8 192 2.742857143 64 3.2 1 55 2.75 

9 216 3.085714286 72 3.6 1 62 3.1 

10 240 3.428571429 80 4 1 69 3.45 

11 264 3.771428571 88 4.4 1 76 3.8 

12 288 4.114285714 96 4.8 2 82 4.1 

13 312 4.457142857 104 5.2 1 89 4.45 

14 336 4.8 112 5.6 1 96 4.8 

15 360 5.142857143 120 6 1 103 5.15 

16 384 5.485714286 128 6.4 1 110 5.5 

17 408 5.828571429 136 6.8 1 117 5.85 

18 432 6.171428571 144 7.2 2 123 6.15 

19 456 6.514285714 152 7.6 1 130 6.5 

20 480 6.857142857 160 8 1 137 6.85 

21 504 7.2 168 8.4 1 144 7.2 

22 528 7.542857143 176 8.8 1 151 7.55 

23 552 7.885714286 184 9.2 1 158 7.9 

24 576 8.228571429 192 9.6 2 164 8.2 

25 600 8.571428571 200 10 1 171 8.55 

26 624 8.914285714 208 10.4 1 178 8.9 

27 648 9.257142857 216 10.8 1 185 9.25 

28 672 9.6 224 11.2 1 192 9.6 

29 696 9.942857143 232 11.6 1 199 9.95 

30 720 10.28571429 240 12 2 205 10.25 

31 744 10.62857143 248 12.4 1 212 10.6 

32 768 10.97142857 256 12.8 1 219 10.95 

33 792 11.31428571 264 13.2 1 226 11.3 

34 816 11.65714286 272 13.6 1 233 11.65 

35 840 12 280 14 1 240 12 
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In summary, to keep the data frames aligned the VPCS application keeps a twelve 

frame buffer of 64x64 packets and 32x32 packets. This is to keep the data frames aligned 

when sending to the hardware and it keeps the data path at 100% utilization. Even though 

the VPCS maintains the buffer there are still more 64x64 (840) calculations that 32x32 

(120) calculations on a twelve buffer. This requires loading the framework thirty five 

times to complete the 840 64x64 and thirty times for the 120 32x32 calculations. 

Therefore, the fabric would not be optimized without using the RWRRC. 

4.3.5. Construction of the Video Packets 

After the VPCS configures the FPGA firmware for processing the video data 

stream, the frame is parsed into packets and an identification header is attached to the 

packet. The packet header identification process is the same regardless of the size of the 

video frame. The following is a description of the process used to add the identification 

header to the packet and how the header is used by the system to process the data and 

reconstruct the video frame. The Packet identification process is handled per frame with 

an addressing scheme which can be seen in Figure 25.  
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Figure 25.  Packet Identification Process 

Video Packet Engine

Packets Sent to and Received from Video Processing Engine

1 – 1 – (1-10) – 80x640

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

1 – 1 – (1-20) – 48x640

1 – 1 – (1-10) – 80x640

1 – 1 – (1-10) – 80x640

Frame Number – Row Number – Column Number – Algorithm Number

1 – 1 – (1-10) – 80x640

1 – 1 – (1-10) – 80x640

1 – 1 – (1-10) – 80x640

48x48 48x48 48x48 48x48 48x48 48x48 48x48 48x48 48x48 48x48

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80

80x80080x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80 80x80
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To provide the ability to process video frames which may have frame-to-frame 

dependencies and to provide a video buffer, the hardware has a total configurable frame 

packet depth of 64 frames which can be processed at the same time. Therefore, the first 

thing the VPCS does before breaking frames up into packets is assign a frame number of 

1-64 to the frames.  

Once the frames in the buffer have been addressed the VPCS will break the video 

frames into packets. The packet sizes are directly related to the algorithms that the 

hardware is configured with. As previously discussed in the example the hardware is 

configured with twenty four 64x64 bit and eight 32x32 processing engines. To optimize 

the bus utilization the VPCS breaks the frames up starting with the largest data frame size 

moving to the smallest. In the example above the largest is algorithm available in the 

reconfigurable fabric is 64x64.  

Starting at the top left corner of the VPCS will identify the largest row address from 

the data previously selected to send and tag that data with column address 1. The VPCS 

will then loop on the row 1 address data until all the packets have been built. In the 

example, row 1 address has a total of ten 64x64 column addresses. After all the column 

addresses have been assigned to a given row the VPCS will move to the next row. If the 

row is too small to be processed with the selected algorithm the VPCS will attempt to 

assign the next smallest algorithm to the row. In the example the next smallest row is 

32x32 which has a total of a single row address and twenty column addresses. Once all 

the packet address headers are constructed in a block of video frames the VPCS sends the 

packet to the hardware via the custom hardware driver. The custom hardware driver must 

also add header logic to the packet so it can be roughed by the system. 



102 

 

 

 

When the data frames are finished processing and returned from the hardware the 

process is reversed the headers are removed and the frames are reconstructed. 

4.3.6. RVPPF 1-D DPR FIR Results 

Figure 26 shows the number of frames per second for the 1-D FIR filter 

implementation using twenty four 64x64 and eight 32x32 FIR filter processor cores 

running on the RVPPF as the latency decreases. The latency is decreased by increasing 

the clock speed across the processors from 100 to 150 MHz. 

 

Figure 26. RVPPF 1-D DPR FIR Results 

4.3.7. RVPPF 2-D Separable DPR FIR Results 

Figure 27 shows performance measured in terms of the number of frames per 

second for the 2-D Separable FIR filter implementation using twenty four 64x64 and 

eight 32x32 FIR filter processor cores running on the RVPPF as the latency decreases. 
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The latency is decreased by increasing the clock speed across the processors from 100 to 

150 MHz.  

This graph also depicts how much of a processing impact the 2-D Separable FIR filter 

algorithm places on the individual processing nodes, and how this impact is masked by 

the processing framework using parallel processing and the RRRC. 

 

Figure 27. RVPPF 2-D Separable DPR FIR Results 

4.4. RVPPF Pixel Processor 

The following section is a description and implantation of a video processing 

application using a Pixel Processor core on the RVPPF. The primary purpose of the Pixel 

Processor implementation is to answer the following question: what is the best mix of 

video algorithms to operate on the video frame when processing per pixel data targeted 

for processing with the RVPPF?. Second, how is unprocessed video input distributed to 

the dynamic algorithms configured on the RVPPF? Third, how are processed frames 

interleaved into a coherent output video stream? In answering the above questions, the 
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RVPPF will demonstrate the ability to partially reconfigure the hardware, successfully 

deconstruct video frames into packets, send the packets across the PCIe bus to the 

RVPPF, process the packets in the RVPPF, and then send them back to the host to be re 

assembled into processed video frames. We also present an example that demonstrates 

that the system can reduce the clock speed of the Pixel Processor cores running on the 

RVPPF to dynamically optimize the power of the system. 

4.4.1. RVPPF Pixel Processor FPGA Core 

The following section is a description of the Pixel Processor FPGA core used to 

perform gamma correction this application. Gamma correction, also known as gamma 

compression or encoding, is used to encode linear luminance to match the non-linear 

characteristics of display devices. The Pixel Processor Gamma Correction is 

implemented using a Look-Up Table (LUT) structure that can be applied to each color or 

channel independently, or a single gamma correction curve can be applied to all three 

color channels simultaneously. For specifics on the Pixel Processor core see [52] [5]. 

For the purpose of the RVPPF, the core is used and a wrapper comprising of the PR 

control state machine, configurable clock divider logic and four Block RAM or Transfer 

Memory are added to the core. The low level details of the Pixel Processor core are given 

in Llamocca et al. [61]. A block diagram and description of the Pixel Processor 

implantation for the RVPPF is given in Figure 28. 
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Figure 28.  Pixel Processor PR Module 

The following is a description of the data flow through the Pixel Processor filter 

module. Once, ingress data finishes transferring to the DPR-CTM and the data complete 

signal is sent by the RRRC (not show) the packet processor state machine begins to parse 

the data packet. For first step in processing the packet the packet processor state machine 

skips the first thirty two bits of data which contain the VPCS tag header (described in the 

software application section). The next thirty two bits of data in the header is the 

descriptor word which indicates whether the data in the memory is a Pixel Processor 

control sequence used to configure the configuration registers of the Pixel Processor or a 

video frame to be processed by the Pixel Processor. Once the data is identified the 

process of writing the configuration registers or processing the data with the Pixel 

Processor is performed. If the data is to be processed it is moved through the Pixel 

Processor and the result is place back in the DPR-CTM. When processing is complete the 
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egress state machine indicates to the RRRC the data is finished processing by asserting 

the data ready signal. Once the AI-Receive FIFO (not shown) is ready to receive data an 

acknowledge handshake is sent by the RRRC to the egress state machine. The data is then 

moved into the AI-Receive FIFO and subsequently to the host via the PCIe bus. 

4.4.2. RVPPF Pixel Processor Host Application 

The data used to test the system is 480x640 grayscale video. For the Pixel 

Processor, the system has one prebuilt core configured to perform gamma correction. 

Configuration registers are used to change the operation of the thirty two processing 

elements in the RVPPF. In order to obtain the optimum processing performance for the 

system, the video needs to be broken up into packet sizes that minimize the number of 

I/O transactions. The approach used for this was to break the video frames up on row 

boundaries which fill the DPR-CTM in each of the Pixel Processors on every transaction.  

The equation the host uses to break the video frame up is to first find the size of the 

Block RAM for each processing element, B, subtract the per packet header, H, which the 

Block RAM will need to store during processing and resend back the host, and divided by 

the sum of the video frame columns M multiplied by the bits per pixel, b. The equation 

the host application uses to return the height Nn of a given row size is 

   
 – 

   
 
     –  

     
        .           (21) 

The output from this is rounded down so that the entire Nn x 640 frame 

packet will fit across the processing framework.  The output from the row 

calculation is then used to find the total number of blocks size Nn x M (14 x M) the 

video frame will be broken up into Pn given by 
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                   (22) 

The remaining frames Rf can be found by simply multiplying the height Nn of the 

processed row size by the total number of blocks size Nn x M (14x640) Pn and 

subtracting the total from the actual frame height N. The equation can be seen 

below: 

     (     )       (     )   .         (23) 

Therefore, the 480x640 video frame used to test the pixel processor is broken up 

into thirty four 14x640 frames with a single 4x640 bit packet making up the remainder 

for the frame. 

4.4.3. RVPPF DPR FIR Filter Block RAM 

The transfer Block RAM located in each of the Pixel Processor cores is configured 

as DPR-CTM. In addition, when reading data from the dual port memory, the Pixel 

Processor algorithm does not read or write to first four data words from the memory 

which contains the data header added to the packet by the VPCS. Once processing is 

complete the unmodified header is then read back with the processed packet and used by 

the VPCS running on the host to reassemble the processed data. 

The Block RAM usage per core can be calculated by multiplying the number of 

rows in a packet Pr times the column size of a frame M times the bits per pixel, b, then 

the header bits H must be added to the total, once this is complete the total Block RAM 

size available B is used to divide the total and give the total block ram utilization Bu. The 

algorithm RAM utilization is therefore given by: 

   
        

 
     .            (24) 

which yields in our case the result 
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             .           (25) 

Since a single block ram in a Xilinx Virtex 6 device is 36 Kb and a 14x640 image 

with 8 bit data contains 71680 bits, the size available to process in each region is limited 

to packets with14x640 images by the available Block RAM. This produces 97.3% block 

ram utilization for the thirty four packets making up the majority of the video frame and 

28% block ram utilization for the remainder. Thus the achieved composite block RAM 

utilization for the frame is 95.3%. 

4.4.4. Construction of the Video Packets for Pixel 

Processor 

After the VPCS configures the FPGA firmware for processing the video data 

stream, the frame is parsed into packets and an identification header is attached to the 

packet. The packet header identification process is the same regardless of the size of the 

video frame.  

The equation the VPCS uses to break up the video frames into packets for the Pixel 

Processor application is using the formulas above, reading the image data into a memory 

buffer on the host, adding the header which the VPCS uses to reconstruct the data and 

transferring the packet to the RVPPF. 

The following is a description of the process used to add the identification header to 

the packet and how the header is used by the system to process the data and reconstruct 

the video frame.  The packet identification process is handled per frame with an 

addressing scheme which can be seen in the Figure 29.  
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Figure 29.  Packet Identification Process 

To provide the ability to process video frames which may have frame-to-frame 

dependencies, the hardware has a total configurable frame packet depth of ten frames 

which can be processed at the same time. Therefore, the first thing the VPCS does before 

breaking frames up into packets is assign a frame number of 1-10 to the frames.  

Video Packet Engine

Packets Sent to and Received from Video Processing Engine

Frame Number – Packet Number – (NxM)

1 – 1 – ((01-14)x640)

1 – 3 – ((30-44)x640)

1 – 2 – ((15-29)x640)

1 – 4 – ((45-59)x640)

1 – 34 – ((465-479)x640)

Frame Number – Packet Number – (NxM)

1 – 35 – (480)x640
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Once the frames in the buffer have been addressed the VPCS will break the video 

frames into packets. The packet sizes are directly related to the algorithms that the 

hardware is configured with. As previously discussed in the example the hardware is 

configured with thirty two Pixel Processing engines. To optimize the bus and DPR-CTM 

seen in Figure 20 utilization the VPCS breaks the frames up starting with the largest data 

frame size moving to the smallest. In the example above the largest packet frame size that 

will fit into DPR-CTM is 14x640.  

Starting at the top left corner of the VPCS will identify the largest row address from 

the data previously selected to send and tag that data with address 1. The VPCS will then 

loop on the frame until all the packets have been built. In the example, packet 1 address 

space has a total of thirty four 14x640 addresses.  After all the frames addresses have 

been assigned to a given packet the VPCS will move to the remaining data. The remained 

data is too small to max out a packet transfer however they are used to keep all the 

packets on video frame boundaries. In the example the remained data is 4x640. Once all 

the packet address headers are constructed in a block of video frames the VPCS sends the 

packet to the hardware via the custom hardware driver. The custom hardware driver must 

also add header logic to the packet so it can be roughed by the system. 

When the data frames are finished processing and returned from the hardware the 

process is reversed the headers are removed and the frames are reconstructed. 

4.4.5. RVPPF Pixel Processor Results 

Figure 30 shows the performance of the Pixel Processor cores running on the 

RVPPF as the latency decreases. The latency is decreased by increasing the clock speed 

across the processors from 100 to 150 MHz.  
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Figure 30.  RVPPF Pixel Processor Results 

4.5. Summary 

This section described the RVPPF DPR Loopback, FIR Filter and Pixel Processor 

implementation developed to exploit the RVPPF. Three problems were addressed: It 

demonstrated how the best mix of video algorithms can be computed to operate on the 

video frame targeted for processing with the RVPPF. Second, how unprocessed video 

input can be distributed to the dynamic algorithms configured on the RVPPF. Third, how 

processed frames are interleaved into a coherent output video stream.  
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Chapter 5  

Conclusions 

This dissertation described design and implementation of a Reconfigurable Video 

Packet Processing Framework.  The framework was developed and implemented on a 

system investigating how video packet processing can be used for applications that 

operate on packet video streams. The described approach exploits parallelism and re-

programmability inherent in FPGAs to create and apply a distributed general-purpose 

computational environment applied to the video processing application. Evaluated 

instantiations of the proposed architectural approaches were developed incorporating 

several technologies including a Xilinx General Purpose Development board, FIR Filter 

and Pixel Processor IP soft macros, Fedora Linux, GLUnix libraries, and a custom host 

application. More generally, this chapter summarizes contributions of this work towards 

furthering the state of research into reconfigurable and adaptable computational 

architectures.   

Section 5.0 reviews the motivations behind the direction of the research which led 

to the development of RVPPF as well as the overall architecture of researched system 

topologies.  It additionally summarizes the rationale for selection of this approach to 

development of reconfigurable computational capabilities. Section 5.1 summarizes 

research contributions made by this dissertation during the design and development of the 

prototype system. Finally, Section 5.2 summarizes the research, general conclusions 

resulting from this research, implications towards the future of reconfigurable computer 

architectures, the role that FPGA technologies will play in development of those 

architectures, and finally discusses future research directions. 
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5.0 Review of Motivations and Design 

This work demonstrated the potential for Dynamic Partial Reconfiguration (DPR) 

of Field Programmable Gate Array (FPGA) technology to provide a major disruptive 

solution to address high performance and real time processing requirements. This 

addresses known limitations of more traditional approaches to providing immediate and 

vital capabilities to increase system efficiency and resiliency.  The motivation for 

initiating this research was to address unresolved questions regarding the degree to which 

DPR of FPGA technology can address known needs to improve effective computational 

density as well as creating new means for providing adaptive processing.  To demonstrate 

the feasibility and utility of this new approach, the studied techniques are applied to study 

video processing applications which were selected as representative of high performance 

processing needs that can be addressed.  The associated value proposition can be 

demonstrated for applications such as satellite-based image processing. 

System hardware upgrades are typically quite complex, risky, and expensive.  

Current complex FPGA design flows often result in designs which are difficult, time 

consuming and expensive to change once they have been successfully deployed.  Once 

these designs are operational with acceptable defects or deficiencies, there is great 

reluctance to consider change because change can result in nearly a complete redesign. 

Furthermore, available resource provisioning is commonly critically bound by 

Size, Weight, and Power (SWAP).  FPGA devices incorporated into these systems 

represent high-value, finitely-limited and hence scarce resources.  Once deployed, the 

available FPGA logic is strictly finite. Yet even though the technology is 
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reprogrammable, there exist significant barriers to modification or adaptation of systems 

that are already are already critically bound by Size, Weight, and Power (SWAP).   

The importance of this research in invested in creating realizable abilities to 

reconfigure the logic of such devices after deployment.  This capability once developed 

enables revision of design logic, as necessary, to correct design deficiencies or to alter or 

enhance functionality.  Dynamic reconfiguration enables adaptation of that same 

hardware to address changes to requirements or to balance or redistribute functions to 

different situational as needed. 

Creating the means for development of cost-effective, easily-modified systems 

clearly are increasingly essential to address increasingly complex systems and distributed 

systems of systems.  It is possible to address those needs but requires appropriate tools 

and techniques for DPR but moreover must be provided within a structured (well-posed) 

yet flexible architectural approach. A crucial underlying need addressed by this research 

was to evaluate suitable topologic architectural aspects of a deployment framework. 

Successful realization will additionally require development of appropriate 

techniques and tools which together represent a development framework to create for 

complex infrastructures for FPGA Intellectual Property (IP) development and horizontal 

deployment. 

Finally, development of the RVPPF was motivated by the increasing demand for 

real-time video processing with optimized Power Performance and Efficiency (PPE) 

which is characterized by packets of video with varying frame rates, image sizes, and 

jitter.  The target environment for RVPPF is a general-purpose computer with an array of 

FPGA based processing boards and provided the basic infrastructure for enabling 
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effective exploration of the many open issues associated with reconfigurable 

computation. 

5.1. Research Contributions 

This section reviews the research contributions made by this dissertation. The major 

contributions are: 

 A framework was developed to explore and implement packet based video processing 

and Dynamic Partial Reconfiguration. The software architecture of RVPPF provides 

an environment for exploring high-level issues such processor saturation and system 

bottle neck issues. 

 Mechanisms developed to exploit inherent FPGA parallelism. Results demonstrated 

that to fully utilize FPGA parallelism, an algorithm must be sufficiently complex with 

associated processing latencies such that the algorithm speed does not exceed that 

which the device I/O can support. 

 New results for utility and efficiency for a Partial Reconfiguration System (PRS) 

were demonstrated for packet-based processing. Specific performance results were 

developed demonstrating architectural advantages associated with a PRS 

implemented in the form of a Linux based Dynamically Reconfigurable System 

(DRS) for packet-based video processing. These results were demonstrated within a  

Matlab and Simulink development environment which facilitated DPR techniques to 

be leveraged for video processing applications and also facilitated straightforward 

creation of the associated test capabilities as well as efficient creation of software 

utilities required to measure and validate EPA system performance measures. Based 
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on the summary results that were developed, recommendations for further study were 

detailed. 

 DPR techniques were used to demonstrate new advances in the state of the art in the 

parallel processing of multiple, digital video data streams across a single channel. 

This work demonstrated actual implementation of digital videos streamed passed into 

a FPGA fabric with a reconfigurable bus arbitration engine used to processes the 

digital video data streams meeting real time performance constraints necessary to 

sustain the stream data rates. 

5.2. Future Research Directions  

Creating reconfigurable highly parallelizable hardware applied to address high 

performance processing applications represents a significant advance in the state of art 

for reconfigurable computational architectures.  In addition to exploring architectural 

topology tradeoffs, this research demonstrated the viability and utility of applying FPGA 

technologies in development of dynamically partial reconfiguration of computational 

capabilities. 
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Acronyms and Abbreviations 

1-D One dimensional 

2-D Two dimensional 

8b-10b Eight-bit / ten bit encoding 

 

ACE AXI Coherency Extensions 

AHB Advanced High-performance Bus 

AHB-Lite Lightweight version of AHB 

AMBA Advanced Microcontroller Bus Architecture 

AMBA-2 Release 2 of the AMBA specification 

AMBA-3 Release 3 of the AMBA specification 

APB Advanced Peripheral Bus 

API Application Programming Interface 

ARM Advanced RISC Machine 

ASB Advanced System Bus 

ASIC Application Specific Integrated Circuit 

ATB Advanced Trace Bus 

ATM Asynchronous Transfer Mode 

AWRR Adaptive Weighted Round Robin 

AXI Advanced eXtensible Interface 

AXI-Lite Lightweight version of AXI 

 

BAR  

 

C The C programming language 

CDMA Code Division Multiple Access 

CLB Combinational Logic Blocks 

CLAY Configurable Logic ArraY 

CONFIG Configuration 

CRC Cyclic Redundancy Checksum 

CSC Color Space Conversion 

 

DC Direct Current 

DFC Dynamic Frequency Control 

DISC Dynamic Instruction Set Computer 

DLL Data link layer 

DPR Dynamic Partial Reconfiguration 

DPRR Dynamic Partial Reconfiguration Regions 

DRR Deficit Round Robin 

DSP Digital Signal Processor 

DWT Discrete Wavelet Transforms 

 

EA-FIFO Egress Asynchronous FIFO 

ECRC End-to-end Cyclic Redundancy Checksum 
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E-FIFO Egress FIFO 

EKF Extended Kalman Filters 

EPA Energy-Performance-Accuracy 

EPRC 

EXT_PR_DONE External PR (load) done signal 

 

Fedora 16 Version of the Linux operating system 

FDX Full-duplex 

FIFO First In – First Out 

FILO First In – Last Out 

FIR 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

 

GBytes One billion bytes 

Gen I Generation 1 

Gigabit One billion bits 

GPU Graphics Processing Unit 

Gbps Giga-bits per second (billion bits per second) 

GUI Graphic User Interface 

 

HDL Hardware Description Language 

HDX Half-duplex 

HSDPRC High Speed Dynamic Partial Reconfiguration Controller 

 

I/O Input/Output 

I-FIFO Ingress FIFO 

IA-FIFO Ingress Asynchronous FIFO 

ICAP Internal Configuration Access Port 

ICAP_DO ICAP Data Out 

ID Identification 

Ioctl I/O control 

ivPCL 

IP Intellectual Property 

 

L-App Loopback Application 

L-DPR Loopback DPR core 

L-DPR-CTM L-DPR Combined Transfer Memory 

L-DPR-STM L-DPR Separate Transfer Memory 

Linux The Linux operating system 

LSB Least Significant Byte 

LUT Look Up Table  

LUT8-to-1 Look Up Table 8-to-1 Multiplexer 

 

MB Mega-Byte (million bytes) 

MHz Mega-Hertz (million Hertz) 
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MIMD Multiple Instruction Multiple Data 

MPS Maximum Payload Size 

MSB Most Significant Byte 

Matlab The Matlab simulation tool by MathWorks 

 

NASA North American Space Adminstration 

NP-complete Non-deterministic Polynomial Complete (complexity) 

 

OS Operating System 

 

PC Personal Computer 

PCI Peripheral Component Interface  

PCIe PCI Express 

PGAS Programming Model for Reconfigurable Supercomputing 

PHY Physical layer 

PlanAhead Xilinx floor planning tool 

PowerPC The PowerPC processor 

PowerPC 750 Member of the PowerPC processor family 

PPA Power-Performance-Accuracy 

PPE  

PR Partial Reconfiguration 

PRC 

 

RAM Random Access Memory 

RC Reconfigurable Computing 

RED Random Early Discard 

RRRC Reconfigurable Round Robin Controller 

RTL Register Transfer Level 

RVPPF Reconfigurable Video Packet Processing Framework 

RWRRC Reconfigurable Weighted Round Robin Controller 

 

s seconds 

SA Systolic Array 

SerDes Serializer/Deserializer 

SHMEM 

SIMD Single Instruction Multiple Data 

Simulink Simulation Link interface tool for Matlab by MathWorks 

SRAM Static Random Access Memory 

SWAP Size, Weight, and Power 

SystemC The SystemC system description language 

 

TDM Time Division Multiplexing 

TLP Transaction Layer Packets 

TMDT Theoretical Maximum Data Throughput 

 

V-FIR Video FIR Fliter 



120 

 

 

 

Verilog The Verilog hardware description language 

Vivado Xilinx FPGA tools environment 

VHDL VHSIC Hardware Description Language 

Virtex II 2
nd

 generation Xilinx FPGA product family 

Virtex II Pro Higher performance 2
nd

 generation Xilinx FPGA product family 

Virtex-4 4
th

 generation Xilinx FPGA product family 

Virtex-4 SX35 Member of the Xilinx Virtex 4 product family 

Virtex-5 5
th

 generation Xilinx FPGA product family 

Virtex-6 6
th

 generation Xilinx FPGA product family 

Virtex 7 7
th

 generation Xilinx FPGA product family 

Virtex 7-2000T Member of the Xilinx Virtex 7 product family 

VPCS Video Packet Configuration Software 

 

WRED Weighted Random Early Discard 

WRR Weighted Round Robin 
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