
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

1-31-2013

A robust patch-based synthesis framework for
combining inconsistent images
Aliakbar Darabi

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Darabi, Aliakbar. "A robust patch-based synthesis framework for combining inconsistent images." (2013).
https://digitalrepository.unm.edu/ece_etds/62

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/62?utm_source=digitalrepository.unm.edu%2Fece_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

     Aliakbar Darabi  
       Candidate  
      
     Electrical and Computer Engineering      
     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
     Pradeep Sen   , Chairperson 
  
 
     Nasir Ghani 
 
 
     Yasamin Mostofi  
 
 
      Joe Micheal Kniss     
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  



A robust patch-based synthesis framework for
combining inconsistent images

by

Aliakbar Darabi

B.S., Sharif University of Technology, 2005
M.S., Sharif University of Technology, 2007

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

December 2012



c©2012, Aliakbar Darabi

iii



Dedication

To my dear parents for their love

iv



Acknowledgments
First of all, I would like to thank my advisor, Dr. Pradeep Sen, for supporting me and
being a good role model. It has been an honor for me to be your first Ph.D. student. From
you, I have learned a great deal about research, career, and life.

Special thanks go to Eli Shechtman and Dan Goldman for providing research mentorship
during my two internships at Adobe Systems. Thanks to the other AGL graphics lab
members, who provided useful research support, including Lei Xiao, Maziar Yaesoubi,
Vahid Noormofidi, Nima Khademi Kalantari, and Hao He.

I thank the following funding sources for sponsoring this work: National Science Foun-
dation under grant IIS-0845396, Adobe Systems Inc. Finally, I thank everyone who sup-
ported me during my graduate school. Particularly, my parents and my brother have pro-
vided me support and encouragement.

v



A robust patch-based synthesis framework for
combining inconsistent images

by

Aliakbar Darabi

B.S., Sharif University of Technology, 2005
M.S., Sharif University of Technology, 2007

Ph.D., University of New Mexico, 2012

Abstract

Current methods for combining different images produce visible artifacts when the sources

have very different textures and structures, come from far view points, or capture dynamic

scenes with motions. In this thesis, we propose a patch-based synthesis algorithm to plau-

sibly combine different images that have color, texture, structural, and geometric incon-

sistencies. For some applications such as cloning and stitching where a gradual blend is

required, we present a new method for synthesizing a transition region between two source

images, such that inconsistent properties change gradually from one source to the other.

We call this process image melding. For gradual blending, we generalized patch-based

optimization foundation with three key generalizations: First, we enrich the patch search

space with additional geometric and photometric transformations. Second, we integrate

image gradients into the patch representation and replace the usual color averaging with a

screened Poisson equation solver. Third, we propose a new energy based on mixed L2/L0

norms for colors and gradients that produces a gradual transition between sources without

sacrificing texture sharpness. Together, all three generalizations enable patch-based solu-

tions to a broad class of image melding problems involving inconsistent sources: object
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cloning, stitching challenging panoramas, hole filling from multiple photos, and image

harmonization.

We also demonstrate another application which requires us to address inconsistencies

across the images: high dynamic range (HDR) reconstruction using sequential exposures.

In this application, the results will suffer from objectionable artifacts for dynamic scenes

if the inconsistencies caused by significant scene motions are not handled properly. In

this thesis, we propose a new approach to HDR reconstruction that uses information in all

exposures while being more robust to motion than previous techniques. Our algorithm is

based on a novel patch-based energy-minimization formulation that integrates alignment

and reconstruction in a joint optimization through an equation we call the HDR image

synthesis equation. This allows us to produce an HDR result that is aligned to one of the

exposures yet contains information from all of them.

These two applications (image melding and high dynamic range reconstruction) show that

patch based methods like the one proposed in this dissertation can address inconsistent

images and could open the door to many new image editing applications in the future.
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Chapter 1

Introduction

1.1 Motivation

Recently due to popularity of digital photography, much research has been dedicated to

image editing. Consequently, the variety of applications for editing images has grown

considerably. We can divide these applications into two main categories: first, the ones

operating on a single image as their input to generate a new one based on a task; and

second, the ones that take extra images and combine their inputs to generate new ones. See

Figure 1.1 for some image editing examples. Image completion is an instance that fits into

the first category where the algorithm has to remove part of an input image and synthesize

new content to fill the missing region. For the second category, there is image cloning

where the goal is to transfer part of content of an image into another one, seamlessly. In

the rest of this thesis, many more applications will be shown for both categories.

Although several popular tools exist for many existing image editing tasks that often work

well in their target applications, they each have limitations in a general image manipu-

lation framework. These tools cannot be applied to problems other than those for which

they have been designed and they are usually fundamentally limited to consistent sources

1



Chapter 1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Image editing examples. (a-c) Image completion as an example for single
source image editing (a) an original image (the butterfly is covered by the grass)(b) mask
image (the magenta shows the “hole” regions (c) hole filled image (the algorithm used
the rest of the image to reconstruct the missing region.) (d-f) Object cloning, instance of
multi-image editing category (d) source image, (e) target image, (f) the hole from source
is seamlessly cloned into the target image and colors and structures are adjusted.

where the source have geometric and photometric similarities. In this thesis, we are trying

to solve the inconsistency problem that may exist between the input sources. By “incon-

sistent”, we mean that the image contents can have different orientations, scales, exposure,

color palettes, or textures, making the matching and combination processes difficult. This

inconsistency can happen even in a single image where the content inside that cannot be

used without any extra steps. By applying the new introduced framework on several differ-

ent applications, we will demonstrate how we can improve the quality of state-of-the-art

methods specifically designed for those problems. In this thesis, we will also demonstrate

several types of image combinations. In applications such as stitching the goal is to spa-

tially blending different sources together with a seamless and gradual spatial transition

from one source to the other(s). In applications such as morphing, a temporal blend hap-

2



Chapter 1. Introduction

Figure 1.2: Chain of patches. illustrating how constraints flow through all patches. The
circles represent pixels and the shaded ones show the ones that have constraints like the
ones located at boundaries. The patches overlapping each other share some pixels and for
the good match all the pixels have to well-present the patches consisting that pixel so the
patches are now connected with these pixels and through this, data propagates through
the chain of pathes (taken from Wexler et al. [1]).

pens between sources in a way that when the frames for synthesis get closer to each of the

sources, they have to look more similar to them and therefore the combination appears in

time. Also, for High Dynamic Range (HDR) reconstruction, we will show how we can

look at the problem as a mixture problem in the irradiance domain. We will present many

of these combinations as an unified energy optimization framework and generate state-of-

the-art quality result by optimizing that target function. See Figure 1.3 for some examples

of different types of blending.

1.2 What is patch-based image synthesis?

This thesis is based on the patch-based family of algorithms which means that instead of

looking at individual pixels we examine w×w patches where w is the width of the patch.

Unlike the blocks of pixels used in many image processing applications (e.g., graph cut

textures [2]), these patches can and do overlap because every pixel is considered to have

a w × w patch around it. The patch is a block of local pixels and has been proven to be

3



Chapter 1. Introduction

a successful tool in solving many existing problems as we will describe later. Here, we

always approach the problems by first defining an energy function for that problem and

then developing an algorithm to optimize that function in order to generate a plausible

result. As we will explain later, in all of the applications we solve the problem by going

down-hill to a local minimum by reducing the function iteratively. The convergence is

guaranteed in this method because we always enforce the algorithm not to increase the

energy function. Our energy minimization technique is built upon an existing work [3] but

we altered the strategy to adapt it to our new proposed energy function.

In Section 2.5 , we will briefly represent the history of patch-based methods and discuss

how they have evolved until they get to their current state. Figure 1.2 which was taken

from the seminal work by Wexler et al. [3] shows how the constraints flow in a chain of

patches. Intuitively speaking, the good match/synthesis happens when each patch agrees

with its neighbors on every pixel it shares with them. Because the neighbors themselves

need to be consistent to their own neighbors, the consistency constraint flows over all the

patches so in the end if the algorithm can come up with a good solution, it usually produces

a plausible result for the problem.

Most of the patch-based algorithms have two main stages: 1) nearest neighbor search, and

2) synthesis stage. In the first stage, the algorithm looks for the best suited patches for

the target regions and in the second stage it uses the found patches and combine them

to produce content for the region. In this thesis, we are mostly interested in the second

part and we rely on existing fast search algorithm that introduced in [4]. In the Ph.D.

thesis by Connelly Barnes [5], he introduced new fast randomized algorithm to search

nearest neighbor patch(es) but in that work the concentration was around the first stage

(the search) and the synthesis part was kept the same as before. Instead, in this thesis

we are mostly looking into the synthesis part as we generalize the current techniques to

broaden the applicability of this family of algorithms. We will show how we can reduce

many existing problems in computer graphics and computer vision areas into a simple
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energy minimization optimization framework and produce similar and in many cases better

results comparing to the state-of-the-art existing method that was developed to solve that

specific problem.

1.3 Overview

Here, we give a brief overview of the remainder of this thesis.

1.3.1 Previous work

In Chapter 2, we will review the most common existing editing tools for image editing

and blending. Image pyramids, gradient based techniques, graph cuts, texture synthesis,

and patch-based methods are involved in most of the advanced image editing tasks. In

this chapter, we do a short literature review for those techniques and will talk about the

strengths and shortcomings of each of them.

1.3.2 Image Melding

In Chapter 3, we will explain our new approach for novel way to combine images using

image synthesis concepts. There we will introduce the new concept of “image melding”

which is about a new texture interpolation technique that can be applied on natural images

without any assumption on homogeneity of underlying texture. Our synthesis is based

on generalizing existing methods by changing their core energy function. There are three

main differences between the proposed algorithm and its ancestors. First, we allow the

algorithm to apply many geometrical or photometrical operations in addition to simple

translation to let the algorithm cope with the large appearance and textural differences in

our examples. Second, we will show how by adding gradient channels into our features,
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we could incorporate advantages of using Poisson blending inside patch-based techniques.

Finally, we will show how we can enforce gradual textural transfer by adding a term into

our optimization function.

1.3.3 Patch-based High Dynamic Range image reconstruction

In Chapter 4, we will talk about an alternative way for blending images together. We will

introduce a novel way of looking at HDR image reconstruction. In the proposed approach,

the combination happens in irradiance domain and we will show how we can reduce HDR

reconstruction to be a patch-based image summary problem. In this way, we could produce

high quality HDR images despite the existence of motion of non-rigid objects. There, we

will compare our technique with many existing algorithms in the area and show superior

result for many challenging examples.

1.3.4 Conclusion and future work

We conclude by discussing future work that could be done using our core ideas in synthe-

sis, and potential future applications. Also, we will discus some of the problems of our

technique and suggest some of the solutions that can improve our algorithm results. We

believe our framework can solve many more existing challenging problems in the field and

we will name some of the possible applications in this chapter.

1.4 Contributions of this thesis

The contribution of this dissertation is the first demonstration that patch-based optimiza-

tion algorithms can be used to address the synthesis problem when images have incon-

sistencies. To do this, we extend traditional patch-based optimization by making it more
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flexible to allow for rotation, scale, exposure differences, and other inconsistencies. We

demonstrate two general set of applications:

1. Proposing a patch-based synthesis algorithm, to plausibly combine different im-

ages that have color, texture, structural, and geometric inconsistencies and gradually

transforming one to another.

2. To address the problem of HDR image reconstruction from a set of LDR bracketed

exposures, we introduce a novel patch-based energy-minimization formulation that

integrates alignment and reconstruction in a joint optimization through an equation

we call the HDR image synthesis equation.

7



Chapter 1. Introduction

Exposure

(c)

Time(b)

Spatial coordinate

(a)

Figure 1.3: Different examples of mixing images. (a) Stitching as an example of spatial
blending; (b) Morphing as an example of temporal blending , and (c) HDR reconstruction
as an example of blending images in the irradiance domain.
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Previous work in image editing

In this chapter we review the previous work for image editing that is related to the subject

of this dissertation, such as graph-cut, patch based, gradient, texture synthesis, and image

pyramids.

2.1 Image pyramids for blending

The seminal image stitching work by Burt and Adelson [6] introduced the process of

combining images by a pyramidal image decomposition, merging its levels and collapsing

back to obtain a fused/blended result. One known limitation of the methods in this family

is the artifacts around strong edges due to inconsistent treatment of the different levels, but

these limitations have recently been addressed [7, 8].

Currently, this family of algorithms have been used mostly for image tonal adjustment as

well as detail enhancement/reduction [7]. Also, these methods can be applied as a post pro-

cessing filter to make the details hidden in irradiance (that has high dynamic range) more

stand out when mapping it back to a regular low dynamic range format for display [7].

Recent work by Wu et al. [9], smartly used Laplacian filters both temporally and spatially
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to exaggerate temporal differences between video frames and as the result it could reveal

many hidden details such as blood flow changes due to heart beat in a regular video clip.

Image Harmonization [8] improved the combination process by smoothing the histogram

matching edits across the pyramid levels, and they finally add the noise of one sources to

the other one to make the composition more coherent. The technique shows impressive

results of transferring the reference coarse structure and blending it nicely with the sur-

rounding colors, as well as rendering similar noise patterns to the target image. However,

their ability to render textures is limited to matching statistics of the very fine textural fre-

quencies. Our method shows similar or better results in typical examples but can handle

more challenging textures and structures all the way to “pure” texture interpolation.

2.2 Gradient-based image editing

Gradient-domain compositing was introduced to the imaging community by Pérez et al. [10]

and has since become the standard for seamless compositing for image stitching [11] and

object cloning [12]. As we will show later, this family of algorithms is a strong tool for hid-

ing the color differences when compositing images with different color palettes. Relying

on gradients for synthesis constrains the algorithm to distribute the errors uniformly over

all parts of the image. Because human are more sensitive to abrupt changes comparing to

gradual variations, it is harder for us to see the errors in gradient-based technique.

Pérez et al. [10] showed different ways for blending using gradients. For instance, in the

cloning application, the composite gradients is set to be the gradients of the source image

for the parts coming from the source. Also, at boundaries the colors have to be colors

of target image. In this way, target image and cloned part will have the same color at

boundaries and the the correction of the colors we transfer form the other image will be

smoothly interpolated over the hole area. This algorithm works well when the source and

target have no high frequency details like hard edges. Color bleeding is a well-known
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artifact for this technique when the boundary happens at edges because in this case the

difference is big and this error affects big region of the image. Some researches has tried to

address this issue such as in Farbman et al.’s paper [13] where it allows user interaction and

where with some strokes he/she can tell where not to propagate the errors. Tao et al. [14]

proposed an adaptive method to hide the error at parts with more details where the users

are less sensitive on the error.

Due to the wide usage of this family of algorithms, numerous acceleration techniques

have been developed [12, 13, 15]. Agarwala et al. [12] proposed quad tree structures to

solve the Poisson linear equation. Farbman et al. [13] suggests that instead of solving

the least square problem, simple interpolation can give a similar result. They proposed to

use Mean-Value coordinates for error interpolation. They also used an adaptive triangu-

lation to accelerate the the process. Also, parallel computation using GPU was explored

by McCann and Pollard [16]. They reached real-time performance and therefore they

enabled users to draw with gradients and get real-time feedback about the result. Later,

Farbman et al. [15] also reached real-time performance with only using CPU. In their ap-

proach, instead of solving the least square problem for the whole image, they break the

solver to the recursively filtering an image with a filter that has small footprint. As we will

explain later, we approached to our problem in similar way as they did to solve our least

square equation.

Beyond blending applications, gradients have a wide range of uses for image editing area.

Many de-blurring techniques use a regularization for gradients of the output such as [17].

Usually, these regularizers put a norm lower than two-norm on the gradients to get a

sharper result.

If the linear equation for editing contains a function and its gradient at the same time,

the equation is called the screened Poisson equation. Bhat et al. [18] showed impressive

results when applying different functions on color and gradients separately and then com-

bine them together suing screened Poisson. Similar filtering effects have been shown by
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Xu et al. [19] when applying L0 term on gradients.

In addition to being a powerful synthesis tool, gradients are also commonly used for fea-

ture extraction due to their invariance to the lighting conditions [20]. Also, in texture syn-

thesis community, gradients have been commonly selected as feature mostly to find a good

warp field [21]. To our knowledge, however, gradients have not been used for synthesis

in texture synthesis algorithms. Also, gradients are efficient guidelines for segmentation

algorithms in applications that separating different regions of an image is of users interest

such the work in [2].

2.3 Graph cuts

In computer vision, graph cuts were first applied by Gerig et al. [22]. Although graph cuts

were originally designed for binary labeling problems, Boykov et al. [23] showed that it

could also be extended to more general cases. In the general case, the solution is not the

global minimum answer and it is an approximation, but it has been proven to be a strong

tool for solving computer vision problems.

Graph cuts were introduced to graphics by Kwatra et al. [2] to seamlessly combine textures

and stitch images. Kwatra et al. include a search for only a few discrete rotations, scales

and a reflection. This search helped the algorithm alleviate repetition artifacts. In contrast,

our method includes the continuous-domain transformation search as part of our global

optimization formulation.

Agarwala et al. [24] combined gradient domain blending with graph cuts to seamlessly

combine different sources together at interactive rates for a variety of compositing appli-

cations. This framework has been successfully used for stitching unrelated photos with

roughly similar overlapping regions [25]. The main limitation of these methods is their

inability to deform the inputs when combining images with large viewpoint, textural or
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structural differences. As mentioned before, misalignments can cause “color bleeding”

artifacts in the gradient blending step [14].

ShiftMap [26] is a recent graph cut based image editing method that showed some im-

pressive image completion, retargeting and reshuffling results but it can not be extended to

general transformations of the source data. This method uses graph labeling to decide how

to rearrange and image to put it in a new context and also uses gradients as an extra feature

for labeling. ShiftMap and PatchMatch can produce similar results when carefully tuned,

but ShiftMap cannot be extended to general transformations of the source data. Similar

algorithm has been proposed by Gal et al. [27] to seamlessly blend different sides of a

texture taken from different views.

2.4 Patch-based synthesis

Patch-based synthesis methods have become a popular tool for image and video synthesis

and analysis. Applications include texture synthesis, image and video completion, retar-

geting, image reshuffling, image stitching, new view synthesis, morphing, denoising and

more. We will next review some of these applications.

Efros and Leung [28] introduced a simple non-parametric texture synthesis method that

samples patches from a texture example and pasting them in the synthesized image. Later

research modified the search and sampling approaches for better structure preservation [2,

29, 30, 31]. The greedy fill-in order of these algorithms sometimes introduces inconsis-

tencies when completing large holes with complex structures, but Wexler et al. [32] (and

later Kwatra et al. [33]) formulated the completion problems as a global optimization, thus

obtaining more globally consistent fills in larger missing regions. All of the synthesis ap-

proaches in this thesis belong to this family, but addresses robustness to the presence of

slight orientation, scale, illumination or color deviations of the source patterns with re-

spect to their desired appearance inside the hole. By adding an additional objective term
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capturing local similarity of the source to the target [34, 35], additional applications are

possible, such as image and texture summarization, stitching collages and image morph-

ing [36]. These methods are effective when the sources have similar textures and colors,

but otherwise produce a visible feathering effect in the transition between different pho-

tos/frames.

Barnes et al. [4] accelerated this family of techniques using PatchMatch, a fast random-

ized patch search algorithm. This method has been extended to search over rotations and

scales for computer vision applications [37], as well as a search of the bias and gain per

color channel to find correspondence between different photos of shared content [20]. The

recent work by Mansfield et al. [38] attempted to use Generalized PatchMatch for image

completion. However expanding the transformation space alone gives too much freedom

to the algorithm, thus resulting in convergence to a bad local minimum (we will get back

to this observation later on). Their conclusion corroborates our observation by showing

poor results for natural images even when initializing the hole with the original colors.

Several works extended the patch-based energy function to improve robustness of image

completion. Kawai et al. [39] used patch contrast in their energy to compensate for the

contrast differences, and Arias et al. [40] include a gradient term in the patch similarity

and apply a L1 norm for gradients to handle regions with high details textures. Our method

shares some similar components, but as we show in and Figures 3.1 and 3.5, our method

combines several strategies such that each technique complements the rest. In addition,

our framework is much more general and allows a range of different applications with

completion being one of them. Distances between patch color histograms were used in

[41] in addition the L2 norm on pixel colors to avoid blurriness, as histograms are robust

to geometric transformations. This significantly slows down the algorithm and we found

it unnecessary in our method.
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2.5 Discussion

Small misalignments can be addressed as a postprocess [42] or using a more complex

warping [43], but these solutions are not general enough for larger misalignments and

texture differences. Other methods combine different images with simple feathering of

the boundaries or using a large dataset of web photos [44], or assume the object can be

easily segmented [45] but without solving color incompatibilities with the background.

Our method resynthesizes the transition region, and effectively warps, stitches and blends

colors in the same unified framework. It can automatically eliminate small objects and

reduce redundancy for a coherent appearance of the output panorama, and interpolate tex-

tures when needed.
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Image melding

The issue of blending or stitching image regions arises in a range of image editing prob-

lems. It is well-known as a core issue in constructing panoramas from image sequences [46],

and in cutting-and-pasting from a source image to a destination image [6]. But it can also

be relevant in many other cases, such as image completion [47], in which the image con-

tents to be replaced must blend seamlessly with their surroundings. Several classes of

computational tools have been developed to address this issue, including graph cuts [24],

gradient-domain blending [10], and patch-based synthesis approaches [32].

Although these methods often work well in their target applications, they each have limita-

tions in a general image manipulation framework. For example, graph cut/gradient domain

blending methods often work well for combining overlapping images, but cannot fill gaps

between the stitched images (see Figure 3.10). They can combine regions of different color

and intensity, but cannot change textural and structural properties in the source images (see

Figure 3.6). In contrast, patch-based based methods can complete holes and gaps, stitch

images and compensate for small mismatches in texture and structure, but produce blurry

outputs when the inputs have large color and texture discrepancies (see Figure 3.2).

We propose a general framework for image manipulation that augments patch-based syn-
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thesis algorithms, improving their flexibility and addressing many problems that previ-

ously required the use of multiple independent computational tools. Our algorithm can

complete holes with image regions that differ in scale, orientation, color, and brightness

from any other content outside the hole (see Figure 3.2), smoothly interpolate between two

different texture samples (Figure 3.4), stitch panoramas with large viewpoint and visibility

changes (Figure 3.10), and clone an image region into a destination image with substan-

tially different color and texture properties (Figure 3.6). We achieve all this through an

energy minimization framework that combines the benefits of patch-based, gradient-based

and texture interpolation approaches into a unified method.

Specifically, the proposed method addresses the problem of combining inconsistent image

sources when synthesizing a single region. By “inconsistent,” we mean that the image con-

tents can have different orientations, scales, color palettes, or textures, making the match-

ing and combination processes difficult. The field of texture interpolation (e.g., [48]), in

which two or more inconsistent input texture samples are used to synthesize a gradual

transition from one texture to another, is thus an important area of related work. However,

existing methods for texture interpolation do not work with general images, because they

typically assume inputs that are stochastically homogenous, and some methods require a

manually-constructed feature map.

The proposed approach is inspired by previous patch-based methods [4, 32, 34] that pro-

duce promising synthesis results when the images are consistent. However, for inconsis-

tent input images, these algorithms fail because their energy function minimizes appear-

ance differences between input and output, typically measured using Euclidean distance

of patch pixel colors. Yet a seamless blend between regions requires synthesizing contents

that may not be similar to either source under this metric. This leads to one of the key ob-

servations of the proposed work: we can modify the similarity metric using a transforma-

tion on the patches. We compensate for both geometric and photometric transformations

to address structure and texture alignment as well as color and intensity inconsistencies.
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An additional observation is that humans are very sensitive to gradient inconsistencies

which motivated the gradient-domain methods [49, 10, 18]. These showed impressive

image editing and cloning results by locally manipulating gradients instead of pixels, and

then integrating the color field. This local adjustment of gradients leads to a globally

smooth transition of intensity and color - a property that is lacking in patch-based methods.

This leads us to a second contribution of the proposed work, combining the capabilities of

patch-based approaches and gradient-domain methods into a single framework that solves

more challenging problems than any of these approaches alone.

To illustrate the proposed method, we present results in the following four application ar-

eas of image manipulation: image completion, image blending, morphing, and warping.

In Chapter 3.1.1 we present our results for image completion (e.g., hole filling). We also

show that our method is well suited for the multi-source image completion case, where

additional images containing parts of the missing region under different camera viewpoint

and illumination are provided. In Chapter 3.1.2, we demonstrate a new patch-based image

blending method that allows for gradual transitions from structured detail in one source

region to the other. This can be utilized when stitching panoramas with large parallax

shifts, object cloning with complex backgrounds, and even “pure” texture interpolation.

We also show that patch-based methods and Poisson cloning approaches are both special

cases of our proposed method when certain terms are inactive. So rather than simply ad-

justing the colors through Poisson blending we can also perform synthesis to match not

only the colors but also the structures and textures in the intermediate region. A related

application is image cloning, where the user composites two images and specifies a re-

gion where the algorithm will perform texture synthesis to fit the two images seamlessly

together. Our framework enables us to produce cloning results in cases where previous

approaches would fail, such as when there is textured detail around the cloned object that

had to be synthesized with the target image. In Chapter 3.1.3, we take a step further and

perform interpolation both temporally and spatially to accomplish image morphing. Our

technique enables more continuous morphs between completely different images than ex-
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isting methods.

3.1 Image melding algorithm

The proposed method belongs to the patch-based optimization family of image and video

synthesis methods [32, 33, 34, 35, 4, 36]. These methods pose the synthesis task as an

optimization problem with the objective that every small patch (typically of size 7 × 7

pixels) centered around every pixel in the output image, must be similar to some other

patch in the input, under some task-specific constraint (e.g., the boundaries of the hole in

completion [32], the output size in retargeting [34], and other high level constraints [4]).

Some of the above synthesis tasks require bidirectional similarity [4, 35, 36] in which a

converse term is added to the energy function, requiring every patch in the input to be

similar to some patch in the output. By enforcing these local similarities at multiple scales

the outputs tend to look globally coherent.

These objective functions are often optimized using an alternating optimization in which

each iteration consists of two steps - nearest patch search and color voting - iterated until

convergence, and repeated across scales in a coarse-to-fine fashion. Excellent image and

video editing results were obtained using this method, and using the PatchMatch algorithm

for nearest neighbor search [4] they can often be performed at interactive rates. However

they usually work best for a single input with substantial textural redundancy, in which the

synthesis can be done by combining shifted local replicas only.

We advance the family of patch-based synthesis methods by generalizing their core ob-

jective function in two ways. First, we enrich the space of possible source patches using

geometric and photometric transformations. And second – inspired by gradient domain

editing methods [11, 10, 18, 13] – we add gradients to the patch color representation,

which necessitates replacing the color voting step with a solution to the Screened Pois-

son equation [50] in the inner optimization loop. These changes not only significantly
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(a) (b)

(c) (d)

(e)

Figure 3.1: Analysis of our completion method by eliminating components: (a) input hole
(magenta); (b) no gain and bias correction per channel; (c) using only color patches (no
gradients); (d) no rotation and scale search, and (e) full method.

improve the capabilities of these methods with existing single source tasks (e.g., image

completion), but also enable new single source tasks (e.g., texture aware warps) as well

as tasks that require multiple sources with spatially varying weights (e.g., image stitching

and cloning).

For simplicity, Section 3.1.1 introduces the new algorithm in the context of the single

source image completion task. In Section 3.1.2 we generalize this algorithm to the multi-

source variable weight case.

3.1.1 Generalized patch based synthesis

Single source image completion – In the simple image completion case we are given

a user-defined mask dividing the image into source region S and target region T (the

“hole”), and the objective is to replace the contents of region S using contents from region

T . As discussed above, this task is posed as a patch-based optimization problem with the

20



Chapter 3. Image melding

following energy function:

E(T, S) =
∑
q⊂T

Q=N (q)

min
p⊂S

P=f(N (p))

(D(Q,P ) + λD(∇Q,∇P )), (3.1)

whereQ is aw×w patch with target pixel q in its center, and P = f(N (p)) is aw×w patch

that is a result of a geometric and photometric transform f applied on a small neighborhood

N around source pixel p. All patches have five channels: three color (in L*a*b* color

space) and two gradient channels of the luminance at each pixel (L,A, b,∇xL and ∇yL).

However, to simplify our notation, we will heretofore use P (or Q) to denote only the

three color channels of the patch, and ∇P (or ∇Q) to denote the two luminance gradient

channels. The transformations f encompass translation, rotation, non-uniform scale and

reflection, as well as gain and bias in each channel. These transformations are limited

to predefined ranges that can vary depending on the task or on prior information (e.g.,

small expected geometrtic variations). D is the sum of squared distances (SSD) over all

channels, and the gradient dimensions are weighted by λ w.r.t the color dimensions. This

energy function defines that the optimal fill should look everywhere locally similar (under

some transformation) to some location within the target. This energy function resembles

the one from Wexler et al. [3] up to two main differences:

1. We search over local geometric and appearance transformations of the patches in

the source, as opposed to only shifted patches. This is important, as natural and

man-made scenes often have self-similar repeating structures that appear at differ-

ent scales, orientations and colors. These local transformations enrich the space of

possible examples, thus obtaining more plausible filled contents. It is also especially

important in the case of multiple sources, which contain much larger variations in

geometry and color. Later we will show how these transformations can improve the

quality of the results.

2. We include patch gradients in our distance metric in addition to colors. This is mo-
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tivated by the high sensitivity of the human visual system to gradients, as observed

in the perception and gradient-domain editing literature [10, 18]. It is also easier to

handle large scale illumination changes with gradients than with colors. Note that

by adding gradients to our representation we are not only boosting the high frequen-

cies of local descriptors/patches, as seen in other editing methods [24, 26], but we

are also affecting the “voting” step that updates the colors. We will show next that

color averaging is no longer sufficient as a step in our optimization, and the optimal

voting requires solving the Screened Poisson equation in each iteration.

Wexler et al. [3] proposed an iterative algorithm to optimize their objective function. They

showed that it is an Expectation Maximization (EM) algorithm that alternates in every

scale between two steps - patch search and color voting, and each step is guaranteed to

decrease the energy function. In the search step, similar (nearest neighbor) input patches

are retrieved for all overlapping patches in the output. These patches are then blended

together in the voting step by averaging the color “votes” that each such patch casts on

every output pixel, resulting in a new output image. The iterations continue until the

colors converge, and are repeated across scales in a coarse-to-fine fashion. Our algorithm

is similar to [3] and we now detail the changes required to the search and voting steps to

guarantee that each reduces our energy function (Eq. 3.5).

Search - To find the closest patch P in Eq. 3.1 we used the generalized PatchMatch algo-

rithm [37] (which extends [4]). Barnes et al. showed that it is possible to find efficiently

dense approximate nearest neighbor target patches for all source image patches, with a

search space of three degrees of freedom: translations, rotations and scales. We extend

the search space further to handle reflections and non-uniform scale, as these transfor-

mations occur often in natural images, and were crucial in some examples. In Fig. 3.1,

we show how these extensions improve the quality of our image completion algorithm.

In order to obtain invariance to small illumination, exposure and color changes, we fol-

low HaCohen et al. [20] and apply gain g and bias b adjustments in each channel of a
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source patch to best match the target patch (in the L2 sense). We limit these adjust-

ments within some reasonable predefined ranges. These are computed as follows: g(Pi) =

min {max {σ(Pi)/σ(Qi), gmin}, gmax}, b(Pi) = min {max {µ(Pi)− g(Pi)µ(Qi), bmin}, bmax},

where i ∈ L, a, b,∇x,∇y, σ() and µ() are the standard deviation and mean of the input

patch at each channel i, and [gmin, gmax] and [bmin, bmax] are the gain and bias ranges.

These gain and bias are used to adjust the colors of the patch Pi: Pi ← g(Pi)(Pi + b(Pi)).

Voting - Eq. 3.1 is quadratic in all patch terms, where every target pixel participates in

w × w terms — one for each overlapping patch. Therefore, the optimal target image

satisfies:

T = arg min
I
{D(I, S) + λD(∇I,∇S)}, (3.2)

where the values S and ∇S at pixel (i, j) correspond to:

S(i, j) =
∑
k=1...w
l=1...w

P (i− k, j − l)
w2

∇S(i, j) =
∑
k=1...w
l=1...w

∇P (i− k, j − l)
w2

(3.3)

and P (i, j) is the nearest patch in source S to the target patch Q(i, j) (assuming that

the top right of the patch is its coordinate). The gradient channel ∇S is assigned in the

same manner. For the complete proof please see Section. 3.2. Interestingly, we find that

the proposed energy function reduces to the Screened Poisson equation [50, 18] applied

to the color and gradient channels computed using the original average-per-pixel “voting”

method of Wexler et al.. For an efficient solution of Eq. 3.2, we extend the fast method of

Farbman et al. [15] to the Screened Poisson equation. Please see Chapter 3.3 for details.

We continue to alternate the search and voting steps until convergence — or, in practice,

stopping the iterations after 10-30 iterations, more at coarse scales and less at fine scales.

The process is repeated at multiple scales in a coarse-to-fine manner, using a Gaussian

pyramid and initializing with colors interpolated from the hole boundaries with inverse
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Algorithm 1 EMIterationsHoleFilling()
Input: Input image S and “hole” mask of pixels to be filled

Output: Final image T

1: Downsample S and “hole” to coarsest scale d0

2: Initialize T

3: for Scale d from d0 → 1 with step size ds do

4: If d > d0, downsample S and upsample last T to scale d

5: for EM iteration k = 1→ n do

6: T ′,∇T ′ ← ReconstructImage(S, T)

7: T ← ScreenedPoisson(T ′,∇T ′).

8: end for

9: end for

distance weighting [3]. Note that, as in [3, 34], each step in our algorithm is guaranteed to

reduce the objective (Eq. 3.1) 1. Although this coordinate descent method finds only local

minima to the overall objective, the minima we obtain are often visually plausible. We

include pseudo-code of our algorithm in Alg. 1.

Multi-source image completion – The utility of our new framework is even more evident

when it is necessary to combine pieces from different sources, such as when trying to fill

a hole in a target image using other images as sources: for example, unstructured photos

from the web, or from a personal album containing shared content. These photos often

exhibit large viewpoint, illumination, color and exposure changes relative to the target

image. Our method can handle these variations by extending Eq. 3.1 to multiple sources

{S1 . . . SN} in the following way:

1Assuming an exact nearest neighbor method is used during search. In practice the error of the
randomized algorithm we use [37] is very small.
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Algorithm 2 ReconstructImage()
Input: source image S and target image T we want to reconstruct

Output: reconstructed image I

1: Initialize I = 0 (of the size of T with 5 channels).

2: Generate full-resolution scale space pyramid Sp for image S.

3: for all pixels q ⊂ T with coordinate i, j do

4: Create target patch Q with coordinates i′ = i, . . . , i+ w, j′ = j, . . . , j + w.

5: Use PatchMatch to find the best matching source patch P in Sp under the search

range for translation, scale, rotation, reflection, non-uniform scale, gain, and bias.

6: Calculate vertical and horizontal gradients (∇x,∇y) of P .

7: for all the coordinates i′ and j′ do

8: for channel c = {r, g, b,∇x,∇y} do

9: I(i′, j′, c)← I(i′,j′,c)+P (i′−i,j′−j,c)
w2

10: end for

11: end for

12: end for

E(T, {S1 . . . SN}) = (3.4)

=
∑
Q⊂T

min
P⊂{f(S1),...,f(SN )}

(‖Q− P‖+ λ‖∇Q−∇P‖)

This implies that patches P can now come from either of the sources to match target

patches Q, within the space of admissible transformations. Fig. 3.2 shows a comparison

of our method to the naive approach of warping a single region from one of the sources

using a homography, followed by gradient blending (similar to Whyte et al. [51]). These

examples show that in the presence of a complex 3D scene with viewpoint and illumination

differences, a simple copy-paste approach cannot suffice. Our method can combine pieces

from multiple sources in a more flexible way, leading to more coherent results.

25



Chapter 3. Image melding

3.1.2 Multi-source spatial blending

Although the approach described thus far is sufficient for hole filling, we find that it is still

insufficient for applications like image stitching and object cloning, in which two sources

differing in color, texture and structure must be combined in nearly arbitrary ways. In

these applications we want to gradually transform from one source to the other within a

transition zone separating the two sources. Although previous gradient domain stitching

techniques [10, 11] focused on blending color, none of them blend both texture and struc-

ture differences also. Adding gradients to our patch based framework helps with the color

transition aspect but not with texture. Choosing the best patch from either of the sources

— as we described for hole filling — leads to an abrupt change in texture between the two

sources (see Fig. 3.6). Therefore we want our method to give us direct control over the

influence of each source at each point in the transition area. Our solution is inspired by the

Regenerative Morphing method [36] that showed how to temporally morph two different

images using a patch based approach.

The simplest way to obtain a smooth transition between two regions is by using alpha

blending: T = α1S1 + α2S2, where α1 = α, α2 = 1 − α and α changes linearly from

0 to 1. However this approach can easily produce “ghosting” and feathering artifacts due

to lack of alignment of high-frequency edges and structure between the sources. Thus,

Ruiters et al. [52] applied a non-linear warp to the patches before alpha blending them

(though using a manual external feature map) for texture interpolation.

Our method combines the benefits of gradient domain blending and texture interpolation

in one unified patch-based optimization framework, building upon the objective presented

in Chapter 3.1.1. In order to obtain a spatially gradual blending between sources S1 and

S2, the optimal result T in the transition area should minimize the following objective

function:

Eblend(T, {S1, S2}) = α1E(T, S1) + α2E(T, S2), (3.5)
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This objective requires the patches in T to be similar to both S1 and S2, where the relative

contribution of each source transitions gradually from one source to another as in alpha

blending. Again, we use an iterative method to minimize this objective, where each it-

eration consists of the following four basic steps: search for nearest neighbor patches in

both sources, vote for colors and gradients in each of the two sources independently, blend

the colors and gradients from the two sources using the given α, and finally integrate the

blended colors and gradients by solving the Screened Poisson equation, using the two

source colors at the boundaries as boundary conditions. See Algorithm 3 for more details.

This algorithm combines the benefits of alpha blending and gradient domain methods in

three ways. First, edges and structures are aligned before blending by a search across

geometric variations, and warping the patches accordingly during voting. Second, wide

photometric and appearance variations can be matched by the use of a gain and bias per

channel as well as matching of gradients. Third, integration of colors and gradients us-

ing the Screened Poisson equation allows local patch-based edits to propagate globally,

leading to smooth and gradual transition of color from one source to another, similarly to

traditional gradient domain methods.

One caveat in the above algorithm is that a simple average of gradients tends to wash out

small details when they are not perfectly matching after alignment. Perez et al. [10] made

a similar observation about averaging gradients for combining different sources and used

a maximum-norm per pixel operator instead. Others [53] observed that since gradients

are sparse in natural images, one should use robust norms (Lp with p = 1 or lower) for

optimization terms involving image gradients. We handle this problem in a similar way by

replacing the weighted L2 norm with an L0 norm, leading to a weighted maximum instead

of weighted averaging in the blending step. See more details in Section 3.2.1. The effects

of this operator are demonstrated in Fig. 3.5.

Section 3.4 shows results of applying this method on challenging object cloning and im-

age stitching examples displaying differences in color, texture and structure. We found
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Algorithm 3 EMIterationsBlending()
1: for scale d from d0 → 1 with step size ds do

2: for for EM Iteration k = 0→ n do

3: T1 ← ReconstructImage(T, S1)

4: T2 ← ReconstructImage(T, S2)

5: T = α1T1 + α2T2

6: if α1|∇T1| > α2|∇T2| then

7: ∇T ← ∇T1
8: else

9: ∇T ← ∇T2
10: end if

11: T ← ScreenedPoisson(T,∇T )

12: end for

13: end for

the most challenging task was texture interpolation, in which the challenge is to gradu-

ally transform one texture into another, interpolating both color and structural differences.

Our method handles this case as well, showing comparable results to previous methods

([52, 48]) that were tailored solely for this application. This application also demonstrates

the necessity of each component in our method. Fig. 3.5 compares our complete method

against regular patch-based stitching synthesis ([34, 4, 37]), our method without gradi-

ents, our method without geometric deformations (rotation, scale, reflection), our method

without photometric deformations (gain+bias per channel correction), our method without

alpha-weighted blending (instead using multi-source image completion) and finally a re-

sult by the state-of-the-art patch-based texture interpolation method of Reuters et al. [52].

This comparison shows clearly the utility of each of the components of our method: gra-

dients help with preserving edges and structure, and aid in smooth long-range color in-

terpolation; geometric and photometric deformations help find matches for sources with
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Algorithm 4 EMIterationsMorphing()
1: for scale d from d0 → 1 with step size ds do

2: for for frame k = 1→ F do

3: for for EM Iteration k = 0→ n do

4: T1 ← ReconstructImageBDS(T (k), S1)

5: T2 ← ReconstructImageBDS(T (k), S2)

6: T3 ← ReconstructImageBDS(T (k), T (k − 1))

7: T4 ← ReconstructImageBDS(T (k), T (k + 1))

8: T ← α1T1 + α2T2 + αtT3 + αtT4

9: imax ← arg maxi=1...4{αi∇Ti}

10: ∇T ← ∇Timax
11: T (f)← ScreenedPoisson(T,∇T )

12: end for

13: end for

14: end for

different content and allows more flexible and less repetitive synthesis; and spatially grad-

ual blending using the weighted L0 norm forces a continuous transition both in color and

texture.

3.1.3 Multi-source temporal blending

In the previous section we showed how we could spatially interpolate the transition regions

between two different image sources. Shechtman et al. [36] used a similar patch-based

optimization method with a related source blending scheme, to temporally interpolate two

different images, showing impressive automatic morphing results on unrelated images.

Following their objective, we pose the morphing task as an optimization for all frames
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T1...K given the two sources S1 and S2:

Emorph(T1...K , {S1, S2}) =
K∑
k=1

{α1Ebds(Tk, S1)+ (3.6)

+ α2Ebds(Tk, S1) + αtEbds(Tk, Tk−1) + αtEbds(Tk, Tk+1)}

This objective is similar to the source blending objective from Eq. 3.5, with the follow-

ing differences: First, in addition to an alpha weighted similarity to the two sources, it

requires similarity of each frame to its neighboring frames Tk−1 and Tk+1; Second, it

uses Bidirectional Similarity (BDS) [34] as the basic patch-based similarity measure be-

tween images. BDS combines the patch-based term from Eq. 3.1 with another term that

sums distances for all patches in the source S to their nearest neighbor in the target T :

Ebds(S, T ) = E(S, T ) + E(T, S). The latter term helps ensure that the content from the

source will appear in the target and avoids converging towards excessively smooth and

repetitive solutions. This objective is optimized using a similar iterative algorithm to the

ones described earlier. See Alg. 4 for more details.

Our proposed energy function differs from that of Shechtman et al.in one main point:

they claimed that simple alpha blending of patches leads to blurry results, and therefore

introduced a fifth terms called α-Disjoint Coherency (not required in our method), varying

the portion of patches sampled from each source. This heuristic helps maintain sharpness

in some cases but is not as general as our use of the blending coefficient. In Chapter 3.4

we show that our method can handle images with substantially larger geometric and color

differences while preserving sharpness.
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3.2 Proofs

3.2.1 Texture Interpolation

During synthesis, we have two voted images T 1 and T 2 containing color and gradients

from the corresponding sources. We need to combine these together to get a final color

and gradient, prior to Poisson integration (see Alg. 3). The texture interpolation energy is

defined as:

E =Ecolor + Egradient

=
2∑
i=1

αi‖T − T i‖2 + αi‖∇T i‖‖∇T −∇T i‖0.
(3.7)

Here T is the unknown target pixel color, T i is the voted pixel color, αi is the interpolation

parameter, and gradients are indicated using ∇. This energy has an L0 term and makes

the optimization problem NP-complete [54]. In the Compressive Sensing community it

has been shown that in some specific conditions the L0 problem can be reduced to L1,

however common L1 solvers are too slow for large problems like ours. Moreover, many

recent greedy solvers have been shown to be able to efficiently approximate the solution.

Our solution for solving Eq. 3.7 is a greedy approximation and resembles [55]. The solver

iteratively makes a greedy choice between the source to be used for each pixel and then

according to this choice, the method uses L2 least square solver (screened Poisson solver)

to evaluate the final values. Our fast greedy solution converges to an acceptable local min-

imum and in more than 90% of the iterations it decreases the energy in Eq. 3.7 compared

to its value in previous iteration. Exploring more sophisticated solvers is left for future

research.

We specifically take a greedy downhill step in Eq. 3.7 by minimizing separately the colors

and gradient energies. Minimizing separately the target color gives a simple linear inter-

polation for color: T =
∑2

i=1 αiT i. The optimal gradient ∇T can be found by noting
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that when Egradient is at a minimum, at least one of the zero norms must be zero. So ∇T

is simply one of the gradients ∇T i, specifically the gradient ∇T i for which αi‖∇T i‖ is

maximal. That is, we choose the source gradient which has maximum magnitude after

weighting by αi. This gives rise to the conditional in lines 6-10 of Alg. 3.

3.2.2 Voting and the screened Poisson Equation

We demonstrate that minimizing the patch energy of Eq. 3.1 is equivalent to solving the

discrete screened Poisson equation [50] using the mean gradient and color of the over-

lapping patches. Recall that Eq. 3.1 is optimized by an alternating optimization, where

we first find nearest neighbor patches that decrease the energy, and then “vote” using the

proposed overlapping patches to further decrease the energy. Thus, we want to find image

T minimizing:

E(T, S) =
∑
q⊂T

Q=N (q)

D(Q,NN(Q)) + λD(∇Q,∇NN(Q)), (3.8)

whereQ are overlapping patches in the output target image T , NN(Q) is the nearest neigh-

bor source patch to Q, and D is sum-squared difference as before. Now we use an identity

of quadratic forms:

1

n

n∑
i=1

(a− bi)2 =

(
a− 1

n

n∑
i=1

bi

)2

+ C(b1, . . . , bn). (3.9)

Here C is a constant function of bi variables. This states that a sum of quadratic forms in

the unknown target color a is equivalent to a single quadratic form. The identity can be

shown directly by expanding the quadratics, and also applies if any linear operator ∇ is

applied to a and bi. Applying Eq. 3.9 to Eq. 3.8 allows us to replace the sum of quadratics

for overlapping patches with a single quadratic per target pixel color and gradient, that is,

up to constant factors, Eq. 3.8 is equivalent to:
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Ẽ =
∑

(T − T )2 + λ‖∇T −∇T‖2. (3.10)

Here T and∇T are the averaged overlapping colors and gradients (Eq. 3.1.1). This energy

is the discrete screened Poisson equation [50].

3.3 Implementation Details

Search and vote: We use a high order (Lanczos3) sampling filter and a densely sampled

scale-space (10 filtered scales with the same resolution of the original image, with no

subsampling), for higher quality filtering than previous patch-based method that searched

over rotations and scales for analysis applications [37, 20]. We pay with a higher memory

load but this allows us to use a simple nearest-neighbor sampling of the patches all the

way to the finest scale for faster performance and better quality. We use a few bilinear

interpolations at the last EM iterations of the finest scale for best quality. Also, we pre-

calculate the Gaussian weighted mean and standard deviation centered at each pixel for

the input images and adjust the gain and bias of the patches in the search and vote based

on those values [20]. We also use the gain and bias for early rejection of source patches

whose gain or bias deviates more than ×1.1 than those of the target patch, in addition to

the early rejection based on the distance [4]. Also, usually during the EM iterations the

changes happen at boundaries of coherent regions, so we limit the search to happen just at

those boundaries at finer resolutions.

Screened Poisson solver: In our method we solve the Screened Poisson equation 3.2

in each EM iteration our method. Bhat et al. [50] suggested a Fourier based solver to

the same problem. However it wasn’t fast enough when applied many times on large

images. Farbman et al. [15] introduced a new efficient way to solve linear translation-

invariant (LTI) problems with a pyramidal convolution approach. These include a family

of problems like the Poisson equation and Shepard’s interpolation, commonly used for
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gradient domain stitching and cloning. They reduced the O(n2) complexity involved with

a straight forward convolution with a large kernel associated to the Green’s function of

the problem, with iterative convolutions with small kernels at multiple scales, resulting

in an extremely fast O(n) approximation algorithm. Although not derived in their work,

this equation’s Green function is ”in between” the Poisson function and a delta function

associated with the color term, and thus belongs to the family covered by their method.

We learned the specific 5 × 5\3 × 3 kernels of our problem and use their fast pyramidal

convolutions as our solver, taking only a small portion of the overall runtime.

Parameters: In patch based methods the patch size is a crucial parameter. Large patches

capture more structure and lead to better synthesis of structures, if good matches are found.

However if such a matches are not found the result can easily converges to a blurry so-

lution. Therefore previous methods [3, 34, 4] used smaller patches (e.g., 5 × 5 or 7 × 7)

that generally lead to sharper and more flexible synthesis (linear structures can slightly

bend to better connect) and the expense structural changes. The larger geometric and ap-

pearance search space in our method allows us to use larger 10 × 10 patches while well

preserving structures, having flexibility when needed and obtaining sharp results. Unless

mentioned otherwise, set the search range to be [−π
2
, π
2
] for rotation, [0.9, 1.3] for uniform

scale, and [0.9, 1.1] for relative scale (horizontal/vertical). The range of the bias for all the

three channels is [−10, 10] and for gain is [0.9, 1.3]. The algorithm is fairly robust to varia-

tion of these ranges. Additionally, because these parameters are semantically meaningful,

e.g. rotation, scale, brightness, and contrast adjustment (gain and bias), it is easy to adjust

them in a meaningful way for a particular task. When we have no blending (hole filling,

warping) we chose the gradient weight λ to be 0.2 and otherwise we set it to be 0.5. The

reason is because effective blending between different textures is easier by blending their

gradients than colors. For blending applications, such as cloning and morphing we limited

the search range for the offset of the patches to be 0.1 to 0.2 of the image size to avoid

irrelevant patches from distant regions. We usually have 30 EM iterations at lower resolu-

tion and gradually reducing the iterations until we get to 2 iterations at the finer resolution.
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In morphing we start from 6 temporal sweeps over all frames coarser level and reduce it

to be 1 at the highest resolution.

3.4 Results

Our implementation is written using Matlab/C++, and the code was designed for versa-

tility and quality rather than performance. The experiments were done on an Intel dual

quad-core Xeon X5570 3.06GHz machine. Our method takes about 58 seconds to com-

plete a hole of 0.25 megapixels in a 1340× 2048 image. If we use only color patches and

do not use any transformations (implementation of Wexler et al. [3] using PatchMatch [4]),

the run time is 26sec, vs. 4sec using Photoshop’s Content-Aware Fill [56] that is based on

the same algorithm. This suggests that a more optimized implementation could be signifi-

cantly faster. The bottleneck of our method is the search, which is linear in the number of

pixels to be synthesized [4]. As with previous patch-based optimization methods that used

PatchMatch, intermediate results at coarse scales are obtained at interactive rates, allow-

ing the user to quickly assess the final quality, change parameters and add constraints if

needed. Our most computationally demanding application is image morphing, for which

we have to synthesize a sequence of frames. This process required a few tens of min-

utes for a sequence of size 635 × 456 × 20 frames, similar to the runtimes reported by

Shechtman et al. [36].

We will now demonstrate results of our method applied to a wide variety of image editing

application, and illustrate that it performs comparably to, and often better than the state-

of-the-art method for each.

Image completion– State-of-the-art automatic image completion methods, effectively

synthesize the content of a hole using shifted exemplars from outside the hole. Often

when the hole is large, or the available area outside the hole is small, it could be very hard

to produce a good fill by shifting the available examples, regardless of the method used.
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Fig. 3.7 shows that our method can still succeed in many of these cases using a richer

search space 2. It can exploit rotational and reflection symmetry, complete edges and tex-

tures using examples from different orientations, scales and colors. It can also gracefully

handle small lighting and perspective differences that are not captured well by the other

methods.

Our method also allows additional relevant photos to be used as source content for comple-

tion. This can often happen in a personal photo collection, or with web photos of a popular

site or event, where other photos of the same scene contain relevant content of places, ob-

jects and people. Most previous methods, could not use effectively this additional data

because the shared content appears often at different view points, scale, illumination, ex-

posure, white balance and other camera parameters. Whyte et al. [51] handled the special

case of rigid scenes, where a homography transform can bring the corresponding content

into good alignment. But in general, aligning photos under these variation is a challeng-

ing problem in itself [20]. Fig. 3.2 shows a few examples of our results vs. result of

Wexler et al.’s [3] method as well using a manual homograhy computed around the hole

to align the sources, followed by gradient domain blending. Our method uses the relevant

content in the other images in a plausible way despite the color and viewpoint changes.

Even if the correspondence around the hole can be found, a simple copy-paste of the region

can often fail as shown in Fig. 3.3.

We have also extended our hole filling framework to the task of texture-preserving warp-

ing, similar to [57]. In this task the user defines a geometric warp of an object within the

image, and we use our method with the object (or the entire image) as the region to be syn-

thesized such that the original small-scale textural properties of the object are preserved to

avoid the appearance of stretching. Instead of using the warping field to render the pixel

colors directly, we use it to define a constraint map defining for each pixel in the target

image (to be synthesized) the corresponding location and orientation in the source image

2In our comparisons, unless stated otherwise, we used Photoshop’s Content-Aware Fill [56] as
an optimized implementation of [3] using PatchMatch [4].
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(the unwarped input). To maintain the constraints, we define a small search window in

translation and orientation for each patch (where the window size increases linearly with

the distance to the object boundaries), and do not search over scale dimensions in order to

avoid stretching of the texture. Fig. 3.8 shows a comparison to [57] on one of the examples

in their paper as well a more extreme case. Our method performs well in both cases.

Texture interpolation – We found texture interpolation to be the most demanding appli-

cation of source stitching. In this case, both color and texture should gradually change

from one source to another. A few methods have been introduced to solve this specific

problem. Ruiters et al. [52] proposed a patch-based synthesis algorithm that does not use

an external dataset, but it requires a manually created feature map that marks the “cracks”

between the basic texture units. This requirement also limits the types of textures applica-

ble to this method. Our method is fully automatic. Fig. 3.4 shows results of our method

applied on a few examples from [52] and direct comparisons can be found in the supple-

mentary material. Both methods give plausible interpolation results, but as we will see

next, our method can be applied on any images, while [52] can work on certain texture

inputs only and takes a few hours to compute vs. tens of seconds for our method.

Image cloning– Object cloning methods [10, 24, 8] allow the user to define a rough selec-

tion around the object, containing some of its nearby background, and paste it seamlessly

in a new background in another image. However when the backgrounds contain large

contrast textures or structures that do not align, existing methods produce color bleeding

artifacts and obvious compositions (e.g. as can be seen in the right side of the hole touch-

ing the tree texture in the squirrel example, Fig. 3.6(c) third row). In Fig. 3.6, we compare

our method with the Photomontage method by Agrawala et al. [24] on a few cases where

the textures are inconsistent. Our system performs more seamless composites. We get a

nicer blend between the snow and sand textures in the first row. In the third row, we get a

better color compatibility between the squirrel and the tree trunk as we correct the colors

throughout the optimization process and at patch level, in contrast to [10] that is based
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on gradients at the finest scale and therefore tries to match colors based on pixel wide

boundaries.

Panorama stitching– Seamless stitching of panoramas is a hard problem that attracted

a few solutions in the past years [58, 43]. Problems arise in the presence of parallax,

occlusions and moving objects. Our method resynthesizes the overlap region with some

large margins, and can cope with very large changes as demonstrated in Fig. 3.10. Note

that our method removes objects or even columns of the building windows to better fit the

content into the image, where the space budget is tight.

Image harmonization– Image harmonization [8] cleverly combines image pyramid levels

from the sources using smooth histogram and noise matching in order to transfers some

textural properties in addition to color and intensity. This method cannot handle structured

textures, and tends to transfer the high frequency texture to the object itself rather than

only to its surrounding background.

To compare against [8] we adjusted our algorithm, because in this application we want

to extract structure from one image and detail from another. The extension was simply

to hold the structure image in our cloning process constant, and giving it a large constant

importance (α(i, j) = 0.9 in our blending formula. In this manner, the structure will

come from that image except where it is missing high frequency details. Thanks to our L0

optimization, those small-scale details will be replicated from the other image. In Fig. 3.9

we show two comparisons against this method: In the first row, a result of applying our

method on one of their failure cases, preserving coarse scale orientation properties of the

sand texture, and avoiding contamination the hydrant with the sand texture. In the second

row, both results are comparable, but we preserve the fine-scale details of the original

while replacing the gross structure.

Morphing– In Figure 3.11 we demonstrate blending between two images across time, via

three intermediate frames of our automatic morphing output. Our method produces bet-

ter transitions than Regenerative Morphing [36] on some challenging examples, primarily
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because of the large space of deformations and the use of gradient domain blending. Note

that in the second row we automatical corresponding features are found through our morph

between two images of the same scene, but from totally different viewpoint and illumina-

tion.

3.5 Sensitivity to parameters

Our algorithm relies on Generalized PatchMatch algorithm [37] to find the best match in

search stage and in this thesis we mostly contribute in synthesis part. As Barnes et al. [37]

stated, Generalized PatchMatch is fairly robust to the variation of search range. We saw

a similar effect in our algorithm where tweaking parameters does not affect the quality

of results in most cases (see Fig. 3.12). However, by making the search space wider, the

algorithm needs more search iterations to converge to the right answer so as a future work,

one could extract patch statistics in a similar way that [59] does and limits the search space

based on those statistics.

One can argue that by extending the search space, the risk of convergence to a bad lo-

cal minimum grows. This could happen as we will show in the limitation section (see

Sec. 3.6), though in multi-source examples such as cloning or stitching the risk of bad

convergence is lower. The reason is although the algorithm gets more freedom in synthe-

sis stage, at the same time however, it has more constraints as the result of now instead of

one source, it has to match to many sources. Therefore, through our generalization we get

a right balance of constraints and freedom. Overall, we get a convergence to a good local

minimum most of the times.
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3.6 Limitations

Our method is not without limitations: in some examples too many degrees of freedom

might lead to unwanted distortions (such as line bending). These are visible in Fig. 3.13

(distortions in buildings). Barnes et al. [4] demonstrated that line (and other model based)

constraints can provide an intuitive tool for the user to protect important content, and our

method can benefit from such constraints in the same way (see Fig. 3.13). A limitation

of our cloning solution can be seen in Fig. 3.6 - a large background margin around the

object may be needed for a pleasing texture interpolation between very different textures.

Of course some textures are simply too disparate to be stitched in a seamless way (e.g.,

a clear sky would not blend with any coarse texture). Finally, the additional quality ob-

tained by our modifications have sacrificed much of the interactive performance shown in

Barnes et al. [4]. However, because the bulk of the additional computation results from

filtering and interpolation, we believe our method could be well-suited to GPU implemen-

tation.
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(a) (b) (c)

Figure 3.2: Multi-image completion results. (a) a hole is marked (magenta) in a source
image, and additional source with different viewpoint, scale, appearance; (b) filling the
hole with Photoshop’s Content Aware Fill with both sources given; and (c) our method.

(a) (b) (c) (d) (e)

Figure 3.3: Multi-image completion comparisons. (a) a hole is marked (magenta); (b) ad-
ditional source; (c) filling the hole using Photoshop’s Content Aware Fill ; (d) filling by a
manual Homography alignment of the region around the hole and Poisson blending (note
the discontinuity of the fountain edge); and (e) our method.
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Figure 3.4: Texture interpolation results. Our method applied on a few examples from
Reuters et al. [51]. No manual feature map is used. Both methods obtain comparable
results where our method puts more focus on gradually changing the relative density of
each texture, whereas theirs changes more the shape thanks to the usage of feature maps.
See comparisons in the supplementary material.

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Analysis of our blending method by eliminating components. (a) using only
color patches (no gradients); (b) using L2 norm for gradients instead L0 when combining
sources (Eq. (9)); (c) no blending - use the best patch from either of the sources (Eq. (4));
(d) no gain and bias correction per channel; (e) no rotation and scale search, and (f) full
method.
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(a) (b) (c) (d) (e)

Figure 3.6: Seamless image cloning. (a) source image; (b) target image;(c) blending re-
gion marked in magenta, (d) Photomontage result ([Agarwala et al. 2004]), and (e) our
result. Texture is blended better by our method and as well as we have less color “bleed-
ing” artifacts (such as in (d) for the squirrel).

43



Chapter 3. Image melding

(a) (b) (c) (d) (e)

Figure 3.7: Image completion comparison. Left to right (a) original image; (b) a hole is
marked (magenta); (c) hole filled image using Photoshop content aware;(d) output of the
Shift-Map, and (e) ours.

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Texture preserving warping comparison. Top (left to right): source from
[Fang and Hart 2007] along with their result and ours on the right. Bottom: another
source, simple warp and our result.
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(a) (b) (c) (d) (e)

Figure 3.9: Comparison between our method and Image Harmonization. (a,b) Two exam-
ples with two sources from [Kimo et al.];(c) Poisson blending, (d) Harmonization result
taken from [Kimo et al.], and (e) our result. In the hydrant example our result preserves
better the orientation of the sand texture, and does not contaminate the hydrant. In the
Mona Lisa example, our result adopts more of the shadows from the Mona Lisa source
(can be controlled) and renders more authentic structured noise patterns.
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(a)

(b)

(c) (d)

Figure 3.10: Panorama stitching. Our method synthesizes in (c) a transition area between
the two sources (a) and (b) after roughly aligning them with a homography. (d) shows a
comparison to Photoshop’s Photomerge tool, based on a homography alignment, graph-
cut and gradient domain blending. Typical stitching artifacts are visible in (d) due to the
large view point change, whereas removes some redundancy (a column of windows in two
buildings, and small objects) to put in most of the important content in both source. As
in other patch-based methods, adding manual constraints could further protect important
content.

Figure 3.11: Morphing results. Results of applying our method to morphing different
images (another result appears in Fig. 1). Our method handles sources with larger geo-
metric and appearance differences than Regenerative Morphing [Shechtman et al. 2010].
See comparisons in supplementary material.
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(a) (b)

(c) (d)

Figure 3.12: Examples of output of algorithm with different parameters. (a) default pa-
rameters; (b) result with high gradient constraint, the algorithm avoids to put branches in
bottom area because gradient is against of using textures to fill the holes ;(c) result with
low gradient importance (λ) and low range of rotation and scale, the result gets worse
than two previous ones because it does not have enough rotation and scale search range,
and also it cannot connect rail roads because it does not have enough constraints to avoid
disconnected edges;(d) result with smaller range of rotation and scale but higher gradient
importance (λ), in this case result gets slightly better than (c) because it could connect the
rail line but worse than default because it cannot use the right rotation and scale.
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(a) (b) (c)

Figure 3.13: Example of the result with distortion. (a) synthesized image; (b) added line
constraint;(c) result with constraint
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HDR reconstruction

High-dynamic range (HDR) imaging has the potential to transform the world of photog-

raphy. Unlike traditional low-dynamic range (LDR) images that measure only a small

range of the total illumination of a scene, HDR images (HDRI) capture a much wider

range and therefore more closely resemble what photographers see with their own eyes.

However, despite their tremendous potential, existing approaches for high-quality HDR

imaging have serious limitations. For example, specialized camera hardware has been

proposed to capture HDR content directly (e.g., [60, 61]), but these devices are typically

expensive and are currently unavailable to the general public.

To make high-quality HDR imaging widespread, we must focus on approaches that use

standard digital cameras. The most common approach is to take sequential LDR images

at different exposure levels (known as bracketed exposures) and then merge them into an

HDR image (HDRI) [62, 63]. Although this technique can produce spectacular results

(see, e.g., [64]), the original approaches work only for static scenes because they typically

assume a constant radiance at each pixel over all exposures. When the scene has moving

content (or the camera is hand held), this method produces ghost-like artifacts from even

small misalignments between exposures. This is a serious limitation, since real-world

scenes often have moving objects and real-world cameras are not often mounted on tripods.
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The problem of removing motion artifacts for sequential HDR imaging has been the sub-

ject of extensive research and has led to two major kinds of approaches. The first kind

assume that the images are mostly static and that only small parts of the scene have mo-

tion. These “deghosting” algorithms use all the frames to determine whether a given pixel

is static or has motion and then apply different merging algorithms in each case. For static

pixels, the traditional HDR merge can be used. For pixels with motion, many algorithms

use only a subset of exposures (in many cases only one) to produce a deghosted HDR. The

fundamental problem with these techniques is that they cannot handle scenes with large

motion if the changing portions of the scene contain HDR content.

The second set of approaches try to handle moving HDR content by first aligning the

sources to a reference exposure as a preprocess before merging them into an HDR image.

The most successful algorithms use optical flow to register the images together, but these

are still brittle and the “aligned” images often do not match the reference very well in cases

of large, complex motion. For this reason, alignment algorithms for HDR often introduce

special merging functions that reject aligned exposures in locations where they do not

match the reference. Therefore, as with deghosting algorithms, they do not reconstruct

HDR content in these regions.

We observe that trying to align the images to each other is a difficult problem that can

be made easier if we can use information from the HDR result. After all, the exposures

overlap in the radiance domain and information from one aligned image can be propagated

to another. This led us to the development of a new patch-based optimization that jointly

solves for both the HDR image and the aligned images simultaneously, which we present

in this paper. Our algorithm can handle large, complex motion and during alignment can

even fill in information that was occluded in an exposure, something not possible if we

were doing simple alignment as a preprocess.

Our algorithm is inspired by recent work in patch-based algorithms in the graphics and

vision communities. Researchers have been studying these algorithms because of their
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Figure 4.1: Results from direct application of standard patch-based algorithms and opti-
cal flow alignment techniques. First, we might do a single iteration of PatchMatch [Barnes
et al. 2009] (as shown in Fig. 3 of that paper) to match the low image to an exposure-
adjusted version of the reference. The reference exposure is missing information in the
over-exposed regions, so the direct use of PatchMatch simply matches these saturated re-
gions and produces a gray background, defeating the purpose. Second, we might try to use
Simakov et al.’s bidirectional similarity metric [2008] to compute a new version of the low
image using the lowered reference as a target. However, this does not work either because
the image diverges from the desired result. The lady’s hand is moved in the low source
with respect to the reference which this method cannot register, as indicated by the arrow.
We might also label the saturated regions in the lowered reference as an alpha-blended
hole and use Wexler et al.’s patch-based holefilling algorithm [2007] to complete it using
the low image. Here the boundary condition cannot compensate for the motion and so
the algorithm diverges to draw coherently from another region, in this case the face in the
low input. Finally, using the motion detail preserving optical flow (MDP OF) algorithm
of Xu et al. [2010] to register the low image to the middle has artifacts, indicated by the
arrows. Our approach, on the other hand, correctly aligns the exposures and produces a
good HDR result.

power to exploit self-similarities in images to reconstruct information for image hole-

filling [65], image summarization/editing [66], and image morphing/view interpolation

[67]. However, the direct application of standard patch-based methods to this problem

does not work, as shown in Fig. 4.1. For this reason, previous patch-based algorithms

have not addressed the problem of HDR image reconstruction.

Our patch-based algorithm, on the other hand, is based on a new HDR image synthesis

equation that codifies what we want to do: create an HDR image containing HDR infor-

mation from all the exposures but aligned to one of them, as if it was taken by an HDR

camera at the same moment in time. Specifically, this paper makes the following con-
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tributions: 1) we pose HDR reconstruction as a new energy minimization problem that

jointly solves for the HDR image and the aligned exposures; 2) we introduce a multi-

source bidirectional similarity metric for this purpose; and 3) we demonstrate high-quality

HDR results from images with complex motion and occlusion that are superior to previous

work.

4.1 Previous Work

We begin by reviewing the previous work to remove the HDR ghosting artifacts of dynamic

scenes captured with a set of bracketed exposures. A thorough review of HDR imaging is

beyond the scope of this paper, so interested readers are directed to texts on the subject [68,

69]. We categorize the two general kinds of proposed algorithms to address the ghosting

problem in the subsections that follow.

4.2 Algorithms that reject ghosting artifacts

These algorithms assume the images can be globally registered so that each pixel can be

classified as either static or “ghosted” (containing movement across the different expo-

sures). These techniques try to identify ghosted pixels and only use information from a

subset of exposures in these locations.

The key differences between these methods is how they detect the ghosting regions. Liu

and El Gamal [70] proposed a new sensor model that rejects information from ghosted

regions. Grosch [71] mapped pixels from one exposure to the other and used the difference

between these values to compute an error map that accounts for motion. Jacobs et al. [72]

proposed approaches based on variance and entropy. Jinno and Okuda [73] used Markov

Random Fields to detect occluded and saturated regions and exclude them from the HDR
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result. Sidibe et al. [74] used the fact that pixel values in static regions usually increase as

the exposure increases to identify ghosting. Gallo et al. [75] detected motion between two

exposures by measuring the deviation of their pixel values from the expected exposure

ratio. Min et al. [76] proposed to compute multilevel threshold maps from the images

and compare them to detect motion. Wu et al. [77] used criteria such as consistency in

the radiance and color across exposures. Pece et al. [78] computed the median threshold

bitmap for each exposure and labeled pixels that did not have the same value as movement.

Raman and Chaudhuri [79] used a segmentation algorithm based on superpixel grouping

to detect which regions have motion. Finally, Zhang and Cham [80, 81] detected motion

by looking for changes in the gradient between exposures.

Some algorithms do not require the explicit identification of ghosted pixels at all. Khan

et al. [82] modified the weights of the HDR merging function based on the probability

that a pixel is static. Eden et al. [83] used the distance of an exposure’s radiance to that

of a reference to select a single exposure for each pixel. Heo et al. [84] computed the

joint probability density function between exposures to map values from one exposure to

another, and then used the Gaussian-weighted distance to a reference value to weight each

exposure during merging.

However, none of these deghosting algorithms can produce accurate results when there is

moving HDR content since they all assume that a pixel’s radiance can be computed from

the same pixel (or block around it) in all exposures. Instead, a moving HDR object would

have properly-exposed pieces in different parts of the image in each frame. For this reason,

these papers all show results using only largely static scenes with small moving objects –

none are like that of Fig. 1.3 with a large moving subject. However, these techniques tend

to produce fewer artifacts than the optical-flow based alignment methods we will discuss

next, and so commercial HDR software typically uses deghosting approaches like these

(e.g., [85]).
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4.3 Algorithms that align the different exposures

These approaches try to avoid the problem of moving HDR content by aligning the dif-

ferent exposures first and then merging them into the final HDRI. Although the alignment

of images has long been studied in the image processing and vision communities (see,

e.g., [86, 87]), its application to HDR imaging has special considerations. Here, the input

images are not of equal exposure so the color constancy assumption of many algorithms

is violated. Even if we map images to the same radiance space using the camera response

curve [63, 88], they will have regions that are too dark/light and therefore invalid during

alignment. This makes standard image registration techniques unsuitable for this applica-

tion.

The simpler approaches to align the LDR sources solve for a transformation that accounts

for camera motion between exposures. Ward [89] solved for a translation factor while

Tomaszewska and Mantiuk [90] used SIFT feature points to compute a homography to

align the images. Akyüz [91] used a simple correlation kernel assuming only translation.

Yao [92] used phase cross-correlation to perform global motion estimation. These ap-

proaches all assume that the scene is rigid and on a plane, which is not the case for scenes

such as the one in Fig. 1.3.

More sophisticated alignment methods are based on optical flow (OF) algorithms [93, 94].

Bogoni [95] used local unconstrained motion estimation using optical flow to warp the

images into alignment. Kang et al. [96] significantly improved optical-flow approaches

by introducing two key steps: a hierarchical homography to constrain the flow in regions

where the reference was too light/dark to make it converge better, and an HDR merging

process that rejects the aligned image wherever it is too far from the reference, similar to

those used in deghosting approaches. Mangiat and Gibson [97] proposed a block-based

bidirectional optical flow method using color information to find a better correspondences.

The current state-of-the-art method in LDR alignment for HDR applciations is the work
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of Zimmer et al. [1]. They used an optical flow based method to minimize their proposed

energy function consisting of a gradient term and a smoothness term to ensure smooth

reconstruction of the regions where matching fails due to occlusion or saturation. Based

on the displacement map obtained from previous stage and using another energy function,

they reconstruct the HDR image, which has also been super-resolved.

In summary, however, the quality of the HDR images produced by all of these techniques

is fundamentally limited by the accuracy of the alignment. Even the state-of-the-art op-

tical flow are brittle in cases with complex motion and occlusions. For these reasons,

many OF approaches use special HDR merging steps that reject misaligned images (as in

deghosting) and cannot use standard merging techniques. Furthermore, optical flow can-

not typically synthesize new content and thus cannot handle disocclusion when trying to

align certain images (see, e.g., Fig. 4.5).

To address this problem, we were inspired by the recent success of patch-based optimiza-

tion methods in related tasks like image editing [66] and view interpolation [67]. Our main

observation is that instead of registering the LDR images as a preprocess (as is done by OF-

based methods and which is a hard problem) and then merging them into an HDR image,

we can do better if we solve for the HDR image and the aligned images simultaneously.

This way, information from the HDR merging process will propagate across the images

and help with the alignment. This will enable us to reconstruct a visually-plausible HDR

image that looks locally like one of the sources but contains information from all of them.

Therefore, our approach not only reconstructs the HDR image directly, but also computes

“aligned” exposures as a by-product that can be merged with any standard technique.

4.4 Optimization for HDR reconstruction

Given a set of N LDR sources taken with different exposures and at different times

(L1, . . . , LN), our goal is to reconstruct an HDR image H that is aligned to one of them
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(the reference, called Lref), but contains HDR information from all N exposures. To pose

the problem as an energy minimization, we begin by asking the question: what are the

desired properties of H?

If we “expose” our ideal H with function lref(H) that maps the radiance values of H to

the exposure range of the reference source (Eq. 4.8), we should get something that is very

close to Lref. This ensures that H looks like it was taken by a real camera and does not

have unrealistic artifacts. Similarly, if we expose H with the parameters of the nth input

exposure to produce an LDR image ln(H), it should be “similar” to input source Ln. It

may not be identical to Ln, since the movement between the sources means that H cannot

match both Lref and Ln exactly.

An appropriate measure of similarity might be bidirectional similarity (BDS) [66]: for

every patch of pixels in ln(H) we should be able to find a comparable patch in Ln (co-

herence), and for every patch in Ln we should find a comparable patch in ln(H) (com-

pleteness). However, in some cases there might be content that should be visible at this

exposure when aligned to reference Lref but is occluded or missing in Ln, so applying BDS

with a single source N times might not always work. Instead, we should use information

from all the other exposures as well, because the missing content might be visible in one

of these other images. This leads to a new multisource bidirectional similarity (or rather

dissimilarity) measure for our application:

MBDS(T | {S}N1 ) =
1

N

N∑
n=1

∑
P∈Sn

wn(P ) min
Q∈T

d(P,Q)+

1

|T |
∑
Q∈T

min
P∈{S}N1

d(Q,P ), (4.1)

where |T | is the number of patches in T (the target image), P and Q are patches in S and

T , respectively, and d() is an L2 distance metric. Here, the first term is the completeness,

the second is the coherence. There are two main differences between Eq. 4.1 and standard

BDS. The obvious difference is that MBDS takes multiple sources as input, so in the
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completeness term we loop over all N sources and in the coherency term we find the best

patch out of all N . A more subtle but important difference is the addition of the wk(P )

term to weight the source patches when calculating completeness. The key idea is that

not all source patches might be properly exposed (we use the term “valid” to say how

well-exposed a patch is), so we should ignore saturated or under-exposed patches when

computing completeness and give priority to well-exposed source patches when multiple

sources map to the same target location. These weights are normalized to sum to 1.

We now need to apply the similarity measure to all N source images in our input stack.

Therefore, we define an energy function such that each exposure n of the HDRI H is as

similar as possible to all input sources adjusted to that exposure:

EMBDS(H) =
N∑
n=1

MBDS
(
ln(H) | {gn(Lk)}Nk=1

)
, (4.2)

where gn(Lk) is a function that maps the kth LDR source to the nth LDR exposure. It is

computed as gn(Lk) = ln(h(Lk)) where h(Lk) is a function that maps LDR source Lk to

the appropriate range in the HDR linear radiance domain (Eq. 4.9). Note that the input

to our MBDS function is the set of all N exposure-adjusted input sources 1. Although

Eq. 4.2 will produce images that are similar to the inputs, the resulting image might not

be aligned to the reference. Therefore, we add a term that constrains H to match the HDR

projection of the reference image wherever its pixels are well exposed:

E(H)=
∑

p∈pixels

[
(1− αref(p)) · EMBDS(H) + αref(p) · (h(Lref)(p) −H(p))

2
]
. (4.3)

Here, αref(p) is a simple trapezoid function that tells us which reference image pixels are

valid. We could also have written the constraint as (Lref − ln(H))2, but as we shall see

later this form makes it more amenable for optimization.

1Experimentally, we found that using MBDS with only one source (as in standard BDS) worked
in most of the cases we tested.
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Eq. 4.3 is the key to this paper and we call it the high-dynamic range image synthesis equa-

tion. In plain English, the EMBDS term of the HDRI synthesis equation states that for every

patch in the final HDR image H at a given exposure there should be a similar patch in one

of the LDR inputs after adjusting for exposure, which makes the final result H looks like

a consistent image resembling the inputs. Likewise, every valid exposure-adjusted patch

in all input images should be contained in H at this exposure, so that valid information

from the inputs is preserved. The second term ensures that this addition of information

happens only in the parts where the reference image Lref is over/under-exposed, otherwise

the result H should stick to Lref as closely as possible.

Optimizing Eq. 4.3 is difficult because it requires us to solve for the HDRI H directly at

all exposures. To minimize this equation, we approximate it by introducing an auxiliary

variable In for ln(H). Intuitively, In is the LDR image that would be captured from the

HDR image H if we “exposed” it with the settings of the nth exposure. This substitution

allows us to decouple one hard optimization into two easier optimizations, making the

equation for EMBDS:

EMBDS(H, {I}N1 ) =
N∑
n=1

MBDS
(
In | {gn(Lk)}Nk=1

)
+

N∑
n=1

∑
p∈pixels

Λ(In(p)
)(h(In)(p) −H(p))

2, (4.4)

where the second term has been added to keep In as close as possible to ln(H) in an L2

sense (again, we have written it using h(In) instead to clarify our optimization). We weight

the comparison with a merging function Λ() that tells us how the In’s are weighted when

combined to form H , because we want to give more/less importance to values of In(p)
that

contribute more/less to H as specified by the merging function. We see that if In = ln(H),

then h(ln(H)) = H in the support of Λ()2, and so the entire second term would be zero

2Because of the clipping process defined in Eq. 4.8, ln(H) is not invertible in general, but
because the merging function Λ() has the same clip bounds this statement is true.
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everywhere. This means that when In = ln(H), then Eq. 4.4 will have the same energy as

Eq. 4.2, validating our approximation. Plugging this in to our HDRI synthesis equation,

our energy at every pixel p becomes:

E(H, {I}N1 ) =∑
p∈pixels

[
(1− αref(p))

N∑
n=1

MBDS
(
In | {gn(Lk)}Nk=1

)
+ (1− αref(p))

N∑
n=1

Λ(In(p)
)(h(In)(p) −H(p))

2,

+ αref(p) · (h(Lref)(p) −H(p))
2
]

(4.5)

Eq. 4.5 suggests an iterative solution to solve forH and {I}N1 simultaneously, which forms

the core of our algorithm for HDR image reconstruction (see Fig. 4.2). We first minimize

for {I}N1 in the first two terms (which encourages the In’s to look like, and contain infor-

mation from, all the inputs) with a patch matching and voting process similar to Simakov

et al. [66]. We then minimize for H in the bottom two terms (which constrain In to be

part of H and that Lref match the appropriate range of H), through a merging process that

combines the reconstructed images In into an intermediate HDRI H̃ and blends in the

radiance-adjusted reference g(Lref).

We now discuss these two key stages of our algorithm. The first stage of the core algorithm

(Sec. 4.6.2) uses a matching and voting process to reconstruct intermediate LDR images

I1 . . . In that are similar to exposure-adjusted versions of the sources. We also blend in

ln(H) using theH from the previous iteration in order to encourage the solution to be close

to the exposed value fromH . This stage jointly minimizes the MBDS and the second term

of Eq. 4.5 correspondingly. The second stage will optimize for the H variable of Eq. 4.5

by merging all the In images together to form the intermediate HDR result H , as well as

ensure that H is close to h(Lref) in an L2 sense over the valid range of Lref. To handle this

last part, we always inject the input reference directly into the merging process with the
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Figure 4.2: This figure shows the inner core of the algorithm that runs at a single scale
to find a solution to the HDRI synthesis equation. We show three exposure levels here,
although our algorithm runs on all N exposures. This process is repeated at multiple
scales.

appropriate alpha blending weights from Eq. 4.5. Therefore, a pixel in our intermediate H

can be computed as follows:

H(p) ← (1− αref(p)) · H̃(p) + αref(p) · h(Lref)(p), (4.6)

where H̃ is an HDR image computed with the standard merging of all N images {I}N1 :

H̃(p) ←
∑N

n=1 Λ(In(p)
)h(In)(p)∑N

n=1 Λ(In(p)
)

. (4.7)

In our implementation, we use the triangle weighting function defined by Debevec and

Malik [63] (Eq. 4 of that paper) for Λ(). Note that the first and second terms of Eq. 4.6

minimize the second and third terms of Eq. 4.5, respectively. We perform these two stages

at every iteration, and as is common for patch-based algorithms like this (e.g., Simakov et

al. [66]), this core algorithm is then performed at multiple scales, starting with the coarsest
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Inputs Ground truth Ce Liu OF MDP OF LD OF Our result

Figure 4.3: To test the accuracy of our reconstructed images, we compare our aligned
reconstructions of the low/high images in Fig. 4.4 to the actual ground truth images taken.
On the left we have the input low/high images (one per row), followed by the corresponding
ground truth image taken at the middle position. The next three results show the output of
optical flow algorithms when matching to the lowered/raised medium image, and then we
show the output of our approach. We see that our result matches the ground truth images
more accurately.

resolution and working to the finest (Sec. 4.6.4). After the algorithm has converged, we

have solved for both the desired HDRI H and as well as the “aligned” images at each

exposure {I}N1 .

4.5 Results

To test the quality of our reconstructed images, we compare against several state-of-the-

art approaches for HDR image alignment and deghosting. We compare our results to four

optical flow (OF) algorithms: (1) the motion detail preserving optical flow (MDP OF)

algorithm of Xu et al. [98], (2) the large displacement optical flow (LD OF) of Brox and

Malik [99], (3) the optical flow implementation of Liu (Liu OF) [100] based on the work

of Brox et al. [101] and Bruhn et al. [102] to enable them to handle large motion, and

(4) the algorithm of Zimmer et al. [1], which is perhaps the state-of-the-art in preprocess

alignment methods.

For the first three OF methods, we used the hierarchical homography proposed by Kang

et al. [96] to constrain the flow in the regions where the reference image was unreliable,

61



Chapter 4. HDR reconstruction

(a) Low input (b) Middle input (c) High input

(d) Ground truth HDRi (e) Our HDRi (f) HDRi without deghosting

(g) MDP OF HDRi (h) Heo deghosting HDRi (i) Zhang deghosting HDRi

Figure 4.4: In this test, we captured (a) low, (b) medium, and (c) high exposures of a
test scene while moving the toys between frames to simulate motion. We also took pictures
of the medium pose at low/high exposure to produce the (d) ground truth result. (e) Our
tonemapped HDR matches the ground truth fairly closely. (f) HDR image produced when
merging original images without deghosting in Photomatix, which shows the amount of
motion in the scene. (g-h) HDR images produced by some competing approaches.

but it only improved the results of a few scenes. Often these methods did equally well (or

sometimes better) without it (we show the best results obtained either way). We also used

Kang et al.’s merging approach, which improved the quality of the OF results considerably

by filtering out misalignments. Therefore, we can consider the results presented here with

these OF methods to be at least comparable to that of Kang et al., although they used a

variant of the Lucas and Kanade [93] OF with a Laplacian pyramid. Note that our results

are shown as the result of a standard HDR merge without the need to handle misalignment

artifacts.
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We also compare our algorithm with current deghosting methods: Gallo et al.’s block based

deghosting [75], Pece and Kautz’s bitmap movement detection [78], Heo et al.’s weighting

method based on joing probability density functions [84], and Zhang and Cham’s gradient-

directed exposure composition [80, 81]. Finally, we also compare our results against the

commercial software packages Photomatix and Photoshop’s Merge to HDR Pro tool.

We begin with results for experimental scenes to validate our approach. The first scene is a

static scene (taken on a tripod) where the objects were moved between frames to simulate

motion. With the objects in the middle position, we captured low/high exposure frames

to have a ground-truth comparison. We compare the quality of the aligned reconstructions

in Fig. 4.3 and that of the HDR images produced by the different methods in Fig. 4.4.

We see that our algorithm produces results closer to the ground truth image. In terms of

MSE, our aligned reconstructions were one to two orders of magnitude better than the OF

approaches.

The next test scene, Fig. 4.5, demonstrates the ability of our algorithm to fill in a visibility

hole with complex information, which is difficult for OF algorithms (note the large arti-

facts, even after Kang et al.’s plausibility map rejects misalignments). Deghosting methods

also fail for this scene, since motion is in an HDR region and the algorithm has to choose

which image to draw the radiance values from. In this case, it draws from the reference

image (the high exposure), but the pixels are saturated which causes the radiance to be

clamped in this region, producing a dark halo when tonemapped. Our algorithm, on the

other hand, is able to reconstruct the detail in the occluded region using the information

from neighboring patches that are visible, since our HDRi synthesis equation produces a

final image that has content that exists somewhere in all input images.

Finally, we show the results of our algorithm on natural scenes in Figs. 4.6 – 4.8. Our al-

gorithm worked robustly in every scene we tested and outperformed previous approaches.

In particular, we point out the comparisons with Zimmer et al. [1], which is the state-of-

the-art approach for HDR image alignment in Figs. 4.13 and 4.14. For the first figure,
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Input low Input high Single image Ce Liu OF Heo deghosting Ours Our HDR

Figure 4.5: Our patch-based optimization can hole-fill information when visibility incon-
sistencies occur, which is not possible by any of the previous approaches. In this example,
we have two input images (high and low, separated by 4 stops), and we are registering
to the high exposure. However, the desired detail in the background of the low image is
occluded by the subject, so the algorithm must reconstruct this missing information when
aligning the images. Clearly optical flow methods and deghosting methods cannot handle
this situation. Our algorithm, on the other hand, uses the information surrounding the
hole to fill it in in a plausible manner.

we provided Zimmer with our images to run them with their algorithm with their optimal

parameters. We can clearly see that they are unable to align the source to the reference

when undergoing such complex motion, while ours produces a very good alignment and

therefore subsequent HDR result. In Fig. 4.14 we use the failure case in Zimmer. We refer

readers to additional images in the supplementary material uploaded with our submission.

4.6 Implementation

We implemented our HDR image alignment algorithm in MATLAB which was sufficient

for our purposes. Although we plan to release our implementation and data sets when the

paper is published, this section will provide some of the necessary implementation details

to reproduce our results.

4.6.1 Image pre-processing

If the sources are in JPEG or some other non-linear format, we first convert them into a

linear space (range 0 to 1) using the appropriate camera response curve which is assumed
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No deghosting

Ours MDP LDOF

Photomatix Single image

Figure 4.6: Optical flow methods have problems maintaining the continuity of the content
outside the window in this scene, while Photomatix’s ghost removal algorithm appears to
use only one exposure in the regions with motion, which results in a saturated halo around
the subject’s head and on the tree branches outside. Our method produces good results.

to be known [63]. We then apply a gamma curve with γ = 2.2 to the linear raw data to

get the input sources L1...N for our algorithm. We do this because we compute differences

between patches during the matching process, and doing this in a linear space does not

adequately reflect the way people see differences perceptually. We found that by perform-

ing the MBDS process in the gamma domain, the final reconstructions look better in the

dark parts of the image. All operations are in floating point and we define the range of the

reference exposure to be of unit radiance.

4.6.2 Reconstructing the intermediate images

In the reconstruction stage and through out our algorithm, we use the following functions

to map the radiance domain of H into one of the exposures and vice-versa:
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ln(H) = clip
(
(H/exposure(n))

1
γ
)
, (4.8)

h(Lk) = Lγk × exposure(k), (4.9)

where exposure(n) tells us the exposure ratio between the nth exposure and the reference

since we assume that the reference exposure has unit radiance in the HDR domain.

To begin our matching process, we need an initial guess for the In’s in the first iteration.

To do this, we simply exposure-correct the reference image to come up with the target for

the next higher exposure: Iref+1 ← gref+1(Lref). We continue to do this sequentially for the

higher exposures using In+1 ← gn+1(In) after each In has gone through one iteration, and

do something similar for the lower exposures. Note, however, that the initial target of the

optimization does not affect the final result much, since this only impacts the first iteration

at the coarsest scale. Both stages of our algorithm ensure that after the first iteration,

information from all sources is propagated to all other exposure levels.

To implement the MBDS metric in a simple way, we used the publicly-available imple-

mentation of Barnes et al. [103] for the search/voting portion of the first stage (accelerated

by the PatchMatch algorithm), with modifications to handle multiple sources for MBDS.

For each target exposure level n, we ran a dense search step a repeated number of times

on all adjusted source exposures gn(Lk) using the current image at that level In as the

MBDS target input. The bidirectional search produced two nearest neighbor fields (NNF)

for each k: one for coherence and one for completeness. Note that the completeness search

is masked, which means that we only search in the valid parts of each source gn(Lk). This

effectively implements the wk(P ) term in Eq. 4.1 with a hard mask. For every pixel in the

final coherence NNF, we choose the one in the stack of NNFs that results in the smallest

L2 distance. This handles the min term over all the sources in Eq. 4.1. This results in N

NNF’s for the complentess term and one NNF (with an additional component to identify

the source) for the coherence term for every exposure level n.
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For voting, we sum the patches for the coherence NNF in the standard way [66] using the

patches from the appropriate exposure at each pixel. For the completeness NNF’s, on the

other hand, we use each NNF to sum the respective patches from each adjusted exposure

and then averaged together. The final result can then be generated by summing these two

terms together and then dividing by the appropriate weight. This gives us our new In. This

process is repeated for all N sources.

4.6.3 Merging

In order to accelerate the convergence of our algorithm during the merging process, we

should avoid blending in pixels from the other sources with the reference exposure in

Eq. 4.6 if they have been clearly misaligned. To implement a simple consistency check,

we split up the calculation of H̃ in Eq. 4.7 into two parts: one that merges the images

that are lower than the reference H̃− (by computing Eq. 4.7 from n = 1 to ref − 1) and

the other that will merge the images that are higher than the reference H̃+ (by computing

Eq. 4.7 from n = ref + 1 to N ). We then approximate Eq. 4.6 as:

H(p) ← (1− αref(p))(α
+
(p)H̃

+
(p) + α−(p)H̃

−
(p)) + αref(p) · g(Lref)(p), (4.10)

In our implementation we used values of 0.1 and 0.9 for the minimum and maximum

valid values vmin and vmax. We can understand this equation better if we realize that at

the finest scale α+ and α− cannot both be 1 at the same time. The α+ term focuses

on the lower values of the reference (where the higher exposures will provide detail),

while α− focuses on the higher values (where the lower exposures will do this). Because

of the triangle functions Λ used to weight the exposures, the exposures lower than the

reference would not contribute much to the region covered by the α+ and vice-versa. So

(1− αref(p))(α
+
(p)H̃

+
(p) + α−(p)H̃

−
(p)) ≈ (1− αref(p))H̃ .

This separation of H̃ into two terms now allows us to do a simple consistency check. In

parts of the image where the reference is under-exposed (Lref(p) < vmin), we only blend
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values of H̃+ with Eq. 4.10 if lref(H̃
+) < vmin. Likewise, wherever the reference is over-

saturated (Lref(p) > vmax), we only blend values of H̃− if lref(H̃
−) > vmax.

Unlike many optical flow-based algorithms, after our algorithm has converged, the aligned

images {I}N1 do not require any consistency check and we can use any standard merge.

Furthermore, unlike deghosting algorithms where consistency checks are used in one pass

to cull information, ours is used as part of our optimization to help the convergence. Re-

moving this check produces comparable images with similar HDR content.

We conclude the second stage by merging the images to form intermediate HDR imageH .

We then apply ln(H) and extract the correct exposures to create targets for the first stage

in our next iteration. These are then used by the matching/voting step of the algorithm,

along with the NNF’s from the previous iteration as described in Sec. 4.6.2.

4.6.4 Extending our algorithm for multiple scales

Our optimization is a multiscale algorithm that performs the iterations shown in Fig. 4.2

over multiple scales (see, e.g., [66]). In other words, first we match the global structure

in the coarse scales and then match local detail in the high scales. As a preprocess, we

generate an image pyramid for each input source by downsampling them using a Lanczos

filter in order to accelerate the algorithm. After we complete the set of EM iterations for

Fig. 4.2, we move to the next scale. In our implementation, the lowest-resolution scale

has 35 pixels in the smaller dimension and we perform a total of 10 scales, so we must

upsample the images by a ratio of 9
√
x/35 in each dimension (x is the minimum dimension

of the final image) when moving up a scale. We also adjust the number of EM iterations at

each scale, starting with 50 at the lowest scale and linearly decreasing this to 5 iterations

at the finest scale.

When a scale is completely converged, we do not perform the regular merging step. Rather,

the final reconstructed low/high images is upsampled up to the next scale using a Lanczos

68



Chapter 4. HDR reconstruction

filter. These upsampled images are then merged with the reference image from the input

image pyramid using the same merging algorithm described above. This process allows to

inject the extra detail that is now available in the new, higher-resolution reference image

into our EM iteration process. We also upscale all of the NNF’s computed in the previous

iteration, and proceed with the next scale’s iterations.

4.6.5 Acceleration and other details

To accelerate our algorithm, we implemented several optimizations. First, we only per-

form our coherency search on the target where the corresponding patches of the reference

image have pixels that have αref(p) 6= 1, because these regions will be directly using val-

ues from the Lref source. We also experimented with sub-pixel search in the PatchMatch

algorithm but disabled it because it did not significantly impact the results and it was ex-

pensive. We also perform the completeness search only in the first half set of scales in our

multiscale approach. At this point, our algorithm has added the missing information from

other images so from then on we only do coherency.

We also experimented with varying the number of sources gn(Lk) available to the MBDS

algorithm instead of using all N . We found that in 90% of the cases we tested, we were

able to get good results with only using one source (the one that matched that particular

exposure, gn(Ln)). Therefore, we did this for all the results in the paper for acceleration.

However, we did find some cases where this made a difference (see Fig. 4.11).

Finally, in some of the data sets the camera was changing both the aperture and the shutter

speed to take the different exposures, which was causing visibly different defocus blur

for background objects in the different sources. If we simply used the HDRI synthesis

equation of Eq. 4.3 with all N sources at the same time, we noticed that the algorithm

would use information with different defocus blur to fill in the HDR information in differ-

ent parts of the image in a seamless way. However, this change of focus can be noticeable,

as shown in Fig. 4.9. We found that by restricting Eq. 4.3 to operate only the immediate
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images around the reference exposure, and then pairwise working outward, we would get

smoother results overall. This is due to the fact that when matching only a few sources near

the reference, the algorithm is able to match the blur pretty reasonably. In the subsequent

iterations, we then would match that blur with the next exposure and so on.

4.7 Discussion

Typically, photographers taking a bracketed set of exposures for HDR imaging only change

the shutter time between exposures to maintain the same depth-of-field in each image

and facilitate alignment/merging. Because our algorithm automatically aligns the recon-

structed images while solving for the HDR result, we can produce good results when the

aperture changes between exposures as well. Fig. 4.10 shows how our algorithm “sharp-

ens” an input image to match the depth of field of the reference.

This capability gives photographers one more dimension to adjust their apertures for

bracketed photography. For example, to take 10 stops of additional dynamic range with

bracketing of the shutter time alone, the longest exposure should be 1024× longer than

the shortest. This becomes impractical in most situations, especially if the camera is hand-

held. Our approach gives photographers the flexibility to modify the aperture as well as

the shutter time when taking bracketed exposures, thereby allowing them to capture HDR

images of scenes that could otherwise not be captured.

However, our approach to HDR imaging has limitations. Unlike specialized HDR cam-

eras that capture all exposures simultaneously, our algorithm cannot reconstruct the HDR

content if it moves too much and becomes occluded when we are capturing the correct

exposure. This causes these regions to contain only LDR when reconstructed, since our

algorithm tries to match the reference image but does not have information from the other

exposures to draw from. An example of this is shown in Fig. 4.12, where some of the

people only appear in a single frame.
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One advantage of our technique over HDR camera hardware is that we can adjust the ex-

posure separation between images based on scene content. Different scenes have different

dynamic ranges, and this flexibility ensures that we are “sampling” the dynamic range ef-

ficiently. HDR camera hardware cannot typically do this because the separation between

exposures is fixed by the hardware.

We hope that this algorithm takes a step towards making high-quality HDR imaging more

available to the general public. In the future, it is possible that camera manufacturers

provide firmware to automatically take a series of bracketed set exposures for every scene

to produce images like those we show in this paper.
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(a) Ours (b) w/o deghosting (c) MDP OF

(d) LD OF (e) Ce Liu OF (f) Single image tonemapped

Figure 4.7: This scene has a lot of movement which makes it difficult for OF algorithms.
Of all competing approaches, our algorithm matches the color quality of the ghosted HDRi
image the best, but without motion artifacts.
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(a) Ours (b) MDP OF (c) LDOF

(d) Liu OF (e) w/o deghosting (f) Photoshop

Figure 4.8: Our algorithm is able to faithfully reconstruct this complex scene. The optical
flow methods, however, have artifacts, e.g., in the reflection of the hands on the piano.
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refref-1ref-2ref-3

Using all images Nearest exposure matching

Figure 4.9: Here, we compare between using all sources simultaneously (left) and just
matching to the nearest exposures as explained in Section 4.6.5 (right). The input images
lower than the reference are shown in the top row. In each input the defocus blur of
the branches in the background is clearly different. By using all the sources at the same
time, the algorithm puts together information with different defocus blur to fill in the HDR
information in a seamless way. Although the resulting image is plausible, the approach
where we use only the nearest exposures iteratively produces a more pleasing result in
this case. We note that this only impacts images where the aperture changes considerably
between exposures.
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Original

Reconstructed

Figure 4.10: This figure shows how our algorithm can sharpen an image to match the
the depth of field of the reference. For this scene (our HDR result shown on the left), we
captured 10 stops of bracketed exposure by changing both the aperture as well as shutter
time. This was the only way to take this picture since the camera was hand-held. On the
right we show one of the original input frames, as well as our reconstruction. We see that
the out-of-focus region on the bench has been made sharper to match the reference.
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Using single source in MBDSUsing all N sources in MBDS

refref-1ref-2ref-3

Figure 4.11: For this complex scene, we compare the results using all the N sources
gn(Lk) in the MBDS function (left) and using only the source at that exposure (right). The
top row shows the input images L1 to Lref. The arrow on the reference indicates a region
that is saturated but is also occluded in the Lref−1 image. Therefore, if we only one source
in the MBDS function, we do not have access to the correct, well-exposed information and
therefore we get an incorrect result as can be seen in the image in the lower right. By
using all N sources simultaneously, we have access to the Lref−2 and Lref−3 which provide
the missing information to get a high quality HDR result.
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Figure 4.12: This scene (from Gallo et al. [2009]) has moving people that are different in
every frame. We show the results of the deghosting methods of Gallo et al. (left) and Pece
and Kautz [2010] (middle) using images provided by the authors. The former has visible
block artifacts because of the way they detect motion in a per-block basis, and the latter
leaves much of the ghosting. Our method (top and right) can remarkably reconstruct most
of the moving people, but it has artifacts as well. These appear as “washed out” regions
where our algorithm only had information from one LDR image because the people in the
reference disappeared.
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Input reference Input high Zimmer reconstruction high Our reconstruction high Zimmer HDRI Our HDRI

Figure 4.13: Here we compare the reconstruction and HDRI results of our method with
Zimmer et al. [1] method. We gave the images to the authors and they ran their code on
them. Zimmer et al. method is not able to reconstruct the moving objects (e.g. the man
and reflection of him on the piano) which appears as ghosting in the final HDR image.
Our method, however, can produce high quality results.

Our HDRI Zimmer HDRI

Figure 4.14: This image shows the comparison of our results with Zimmer et al. method
on their failure case. Our method can reconstruct the people and cars well, but Zimmer
et al. method cannot handle these regions because of the large motion. Furthermore, our
method is able to bring more HDR information which can be seen by comparing the details
on the clouds.
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Conclusions

We showed a general patch-based synthesis framework that handles inconsistencies within

and across image sources. It combines principles from patch-based synthesis with gradient

domain blending and texture interpolation into a unified powerful synthesis engine. We

also show that the different components work in harmony and complement each other.

For example, when using only translations, the use of the L2 norm on gradients might

lead to blurry results due to lack of accurate matches. However by allowing geometric

and appearance deformations this problem goes away - L2 on gradients works well and

results in a much simpler and faster optimization. We originally designed the method to

handle multiple sources with substantial inconsistencies for challenging stitching, cloning

and morphing problems, however it was found extremely useful also for single source task

such as image completion and warping.

We have also presented a novel framework for HDR reconstruction based on a new energy-

minization equation called HDR image synthesis equation that crystalizes the objective of

many HDR imaging approaches: to produce an HDR image that coherently uses all the

content in the input exposures but is properly matched to one of them. We have shown that

this approach is more robust than previous work in cases where the motion is complex,

such as when a moving object is reflected of a surface, and can handle a wide range of
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natural images succesfully.

In summary, the contributions of this thesis include:

• Introducing a general patch-based synthesis framework that can handle inconsistent

sources in color, texture, local orientations and scale.

• Combining patch-based and gradient domain techniques in a unified optimization

framework.

• A new patch-based blending method which can be used to spatially and/or tempo-

rally interpolate textures and general images.

• Introducing a novel patch-based energy-minimization formulation that integrates

alignment and reconstruction in a joint optimization through an equation we call

the HDR image synthesis equation.

• Extending the operating range of many existing image editing techniques through

our general framework: same-source hole filling, multi-source hole filling, texture

interpolation, stitching, image cloning, image warping, and automatic morphing,

HDR reconstruction.
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