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Abstract

The wireless sensor network revolution has created the possibility of exploring and

controlling the environment in ways not possible before. The vision of a multi-agent net-

work cooperatively learning and adapting in harsh unknown environments to achieve a

common goal is closer than ever. In such networks, communication plays a key role in

the overall performance of the network as each mobile agent improves its knowledge by

processing the information received from others. Therefore, proper prediction of the com-

munication signal strength andfundamentally understanding the spatial predictability of a

wireless channel, based on only a few measurements, become considerably important.The

first contribution of this thesisis to propose a framework for predicting the spatial varia-

tions of wireless channels and to fundamentally understandwireless channel predictability.

This framework can have a significant impact on intelligent connectivity maintenance in

mobile sensor networks.
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More specifically, in Chapter 2, we develop a probabilistic framework for predicting

the channel spatial variations, based on a small number of measurements. By using this

framework, we then propose a mathematical foundation for understanding the impact of

different environments, in terms of their underlying parameters, on wireless channel pre-

dictability. Furthermore, we show how sampling positions can be optimized to improve

the prediction quality. Inspired by the recent results in non-uniform sampling theory, we

then pursue a different path in Chapter 3 and show how the sparsity of the wireless channel

in the frequency domain can be exploited in order to estimatechannel variations based on

a small number of measurements. The sparsity-based estimator is model-free and inde-

pendent of the underlying channel parameters. Along this line, we then demonstrate the

underlying tradeoffs between these two frameworks and propose an integrated approach

which takes advantage of both channel compressibility in the frequency domain and prob-

abilistic characterization in the spatial domain. All the theoretical results are validated

with experimental measurements using our robotic testbed.

The second contribution of the thesisis to consider different cooperative network oper-

ations with imperfect local sensing and under realistic modeling of communication links.

More specifically, we consider the group agreement problem,where the cooperative net-

work is trying to reach consensus on the occurrence of an event, by communicating over

fading channels. This problem has received little attention in the literature as compared to

the estimation consensus problem. However, it can find several applications such as net-

worked fire detection and cooperative spectrum sensing in cognitive radio networks. Thus,

another contribution of this dissertation is to fundamentally understand the behavior of

such a cooperative network operation under imperfect communication links. To do so, we

propose a novel consensus-seeking protocol that utilizes information of link qualities and

noise variances to improve the performance and increase therobustness of the network to

local sensing limitations. We mathematically characterize the impact of fading, noise, net-

work connectivity and time-varying topology on consensus performance, which becomes

challenging due to all the introduced uncertainties. We consider two different strategies,
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in terms of using the available transmissions: fusion and diversity, and shed light on the

underlying tradeoffs in terms of speed of convergence and memoryless asymptotic behav-

ior. Motivated by our analysis, we then propose an integrated framework, which keeps the

benefits of both diversity and fusion approaches. We mathematically analyze the proposed

framework and show how it achieves accurate consensus asymptotically.
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Chapter 1

Introduction

In the past few years, the sensor network revolution has created the possibility of explor-

ing and controlling the environment in ways not possible before [7–9]. The vision of a

multi-agent robotic network cooperatively learning and adapting in a harsh unknown en-

vironment to achieve a common goal is closer than ever. Thesecooperative networks arise

in many different applications such as target tracking, environmental monitoring, surveil-

lance and security, and military systems. Since each agent has a limited sensing capability,

the group relies on networked sensing and decision-making to accomplish the task. There-

fore, communication plays a key role in the overall performance of such networks, as each

agent improves its sensing qualities by communicating overthe network. Thus, maintain-

ing connectivity becomes considerably important in such networks.

In the robotics and control community, considerable progress has been made in the area

of networked robotic and control systems [10]. However, ideal or over-simplified models

have typically been used to model the communication links among agents. In order to re-

alize the full potentials of these networks, an integrativeapproach to communication and

motion planning issues is essential, i.e., each robot should have an awareness of the impact

of its motion decisions on link qualities, when planning itstrajectory [6]. This requires that
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Chapter 1. Introduction

each robot assesses the quality of the communication link inthe locations that it has not

yet visited. As a result, proper prediction of the communication signal strength andfun-

damentally understanding the spatial predictability of a wireless channel, based on only a

few measurements, become considerably important. In the communications community,

rich literature was developed, over the past decades, for the characterization and modeling

of wireless channels [11–14]. If all the information about object positions, geometry and

dielectric properties is available, ray tracing methods could be used to model the spatial

variations of the received signal strength in a given area [15]. However, such approaches

require knowing the environment, in terms of locations of the objects and their dielectric

properties, which is prohibitive for real-time networked robotic applications. Furthermore,

such approaches can not provide the needed fundamental understanding of wireless chan-

nel predictability. In this dissertation we tackle this problem. We utilize the probabilistic

modeling of the wireless channels as well as their sparsity in the frequency domain and

propose two frameworks for the spatial prediction of wireless channels based on sparse

channel measurements. The proposed frameworks do not require the knowledge of the

environmental features and provide a fundamental understanding of wireless channel pre-

dictability in different environments, which is currentlymissing in the literature. More

specifically, we bring a foundational theoretical understanding of the impact of different

environments on wireless channel predictability and verify our results with experimental

measurements. We furthermore characterize the underlyingtradeoffs between these two

frameworks, which motivates developing our integrated probabilistic and sparsity-based

approach of Chapter 3.

To address cooperative operation with limited local sensing and imperfect communi-

cations, we then consider the following cooperative network operation: binary consensus

over fading communication channels. We propose nonlinear binary consensus-seeking

protocols that can account for sensing and communication limitations. We then mathe-

matically characterize the impact of fading, noise, network connectivity and time-varying

topology on the consensus performance, which becomes challenging due to all the intro-

2



Chapter 1. Introduction

duced uncertainties. To improve the performance and robustness of network cooperation,

we furthermore consider two different decision-making strategies, in term of using the

available transmissions:fusionanddiversity. We characterize the underlying tradeoffs be-

tween the two approaches and propose an integrated framework that is aimed at keeping

the strengths of both.

1.1 Related work and contributions

In this section, we discuss the related work and contributions of each chapter of the dis-

sertation individually.

Chapter 2: Understanding the spatial predictability of wireless chan-

nels

As we mentioned earlier, a mobile cooperative network needsto maintain its connectivity

in order to accomplish its task. In order to achieve this, each robot should consider the

impact of its motion decisions on its link qualities, when planning its trajectory. This

requires each robot to assess the quality of the communication links in the locations that it

has not yet visited. As a result, proper prediction of the communication signal strength in

a given area, based on only a few measurements, becomes considerably important. As a

robot moves around, it can learn the signal strength at positions along its motion trajectory.

However, there is simply not enough time to directly measurethe channel at every location

in the area. Therefore, the spatial variations of a channel should be estimated based on a

considerably incomplete data set, which is a challenging task.

If all the information about object positions, geometry anddielectric properties is avail-

able, ray tracing methods could be used to find spatial variations of the received signal

3



Chapter 1. Introduction

strength in the area of interest [15, 16]. Another alternative approach, which is the most

accurate and rigorous, is to solve Maxwell’s equations for aspecific environment numer-

ically [17, 18]. However, such approaches require knowing the environment, in terms of

locations of the objects and their dielectric properties, which is prohibitive for real-time

networked robotic applications. Furthermore, such approaches can not provide a funda-

mental understanding of wireless channel predictability.

In general, the spatial variations of a phenomena can be described as a field. We next

describe some of the concurrent recent work for general estimation of a general field.

Among different statistical models for the spatial variations of a physical phenomenon,

Gaussian process has received considerable attention recently. A Gaussian process (or

Kriging) has been widely used as a nonlinear regression technique to predict the spatio-

temporal variations of physical quantities that obey the Gaussian random field model [19].

In [20], authors introduced a statistical framework to estimate the distribution of a random

field and its gradient. Under the assumptions that the field isuncorrelated temporally with

a limited-range correlation in space, they developed a distributed kriged Kalman that en-

ables the network to compute the predictive mean functions of the random field and its

gradient. In [21], the authors developed a novel class of self-organizing multi-agent sys-

tems that perform a given task by exploiting predictive posterior statistics from the recur-

sive estimation of a spatial Gaussian process. They assume that the mean of the Gaussian

field can be spatially modeled as a linear combination of Gaussian kernels. In [22], the

authors extended that work to spatio-temporal Gaussian processes. There have also been

some works on the estimation of other types of spatial fields.For instance, in [23], authors

developed a distributed interpolation scheme for deterministic field estimation. The field

is assumed to be locally Lipschitz and an iterative implementation of nearest neighbor and

inverse distance weighting interpolations has been proposed. In [24], the authors utilized

a Gaussian process model to improve cooperation in a cognitive radio network. In [25],

authors studied distributed estimation of an unknown acoustic field, which is modeled de-

terministically by using a number of sparse acoustic sources and distance-dependent de-

4



Chapter 1. Introduction

cays. They showed that by using an average consensus algorithm and compressive sensing

theory, each sensor node can estimate the field in a decentralized manner.

In the wireless communication literature, it is well established that a communication

channel between two nodes can be probabilistically modeledas a multi-scale dynami-

cal system with three major dynamics: small-scale fading (multipath), large-scale fading

(shadowing) and path loss [11–13]. In Chapter 2 of this dissertation, we utilize this well-

established probabilistic modeling and propose a framework to spatially predict and also

understand the spatial predictability of wireless channels in different environments. More

specifically, we develop a probabilistic framework in whicheach robot can spatially pre-

dict the channel, based on a small number of measurements. Wethen mathematically

characterize the impact of different environments, in terms of their underlying parameters,

on channel spatial predictability. We furthermore show howsampling positions can be

optimized to improve the prediction quality. We emphasize that we are not suggesting

that a wireless channel is fully predictable, as it is not. Rather, our goal is to develop a

mathematical characterization of how predictable a wireless channel can be and under-

stand the impact of different environments, in terms of the underlying parameters, on its

predictability. As a result, our prediction of channel spatial variations is not going to be

perfect, unless several measurements are gathered, but will be informative for applications

such as communication-aware motion planning in robotic networks, where a prediction

of the link qualities is needed. To the best of our knowledge,this is the first time that a

framework has been developed to mathematically characterize and understand the spatial

predictability of wireless channels based on a small numberof a priori measurements.

Fig. 1.1 (left) shows the simple disk model, which is commonly used in the networked

robotic and control literatures. In this model the link quality is assumed above an accept-

able threshold in a disk around the transmitter, with no connectivity outside of the disk, as

shown in Fig. 1.1 (left). Fig. 1.1 (middle) and Fig. 1.1 (right), for instance, illustrate how

the proposed probabilistic framework of Chapter 2 enables amore realistic characteriza-
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tion of wireless channels and their connectivity, as compared to the commonly-used disk

model of Fig. 1.1 (left). In summary, predicting the spatialvariations of a random field,
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Figure 1.1: Different connectivity models for the communication channel to a fixed trans-
mitter at (0,0) coordinate: (left) simplified disk model that is commonly used in the
robotic-network literature (middle) our probabilistic path loss model, and (right) our gen-
eral probabilistic model.

based on sparse sampling, has recently been of interest in other areas such as meteorology,

ecological systems, acoustic field estimation, robotic field sensing, and cognitive radios

just to name a few [24,26–28]. However, to the best of authors’ knowledge, no framework

has been developed to mathematically understand the spatial predictability of a general

random field, or wireless channels in particular, in different environments. As such, the

contribution of this chapter is beyond only understanding the spatial predictability of wire-

less channels and can possibly benefit other areas that require estimation of a random field,

based on sparse measurements. For the implication of this framework for other applica-

tions not considered in this thesis, readers are referred toother work in our group such

as [29] (for work on robotic routers) and [6, 30] (for work on networked surveillance and

target tracking) as examples. The results of this chapter are partially published in [31,32].
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Chapter 3: An integrated sparsity and model-based framework for

channel prediction

Recently, there has been significant breakthroughs in the area of non-uniform sampling

theory [1–3,33]. The famous Nyquist-Shannon sampling theorem [34] revolutionized sev-

eral different fields by showing that, under certain conditions, it is indeed possible to re-

construct a uniformly-sampled signal perfectly. The new theory of compressive sampling

(also known by other terms such as compressed sensing, compressive sensing or sparse

sensing), on the other hand, shows that under certain conditions, it is indeed possible to re-

construct a signal from a considerably incomplete set of observations, i.e. with a number of

measurements much less than predicted by the Nyquist-Shannon theorem [1, 3]. This has

opened new and fundamentally different possibilities, in terms of estimation and process-

ing, in several different fields such as communications [35–37], signal processing [38–42],

and sensor/mobile networks [43–46].

We next review some of the sparsity-related work in the general area of communica-

tions that happened concurrent to our work but for a different problem. In recent years,

researchers have worked on the sparse modeling and estimation of the impulse response

of wibeband channels by utilizing the sparsity of the channel taps (delay spread) in the

time domain. They have considered different signaling waveforms used for sensing (e.g.,

single- or multi-carrier signaling waveforms) and the class to which the underlying channel

belongs (e.g., frequency- or doubly-selective channel). For instance, in [37, 47], authors

presented a new approach, called compressed channel sensing, to estimate the channel

taps of a time-invariant wideband channel. They consideredfour specific classes of chan-

nels, namely, frequency- and doubly-selective single-antenna channels, and nonselective

and frequency-selective multiple-antenna channels. Similarly, in [48], authors considered

an orthogonal frequency division multiplexed (OFDM) transmission scheme with pilot

symbol assisted modulation (PSAM). For a frequency selective channel with large delay

spread (but relatively few nonzero delay coefficients), they proposed a compressive-based

7
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approach to estimate the channel. Along a similar line, authors in [49] applied the theory

of sparse signal recovery to the problem of estimating the doubly selective channels for

multi-carrier communication systems. They showed that this technique reduces the num-

ber of required pilots tones. All these work exploit the sparsity of the delay taps in order

to estimate time-invariant wideband channels, a problem different from the one we have

considered in this thesis.

In Chapter 3, we consider the spatial variations of a narrowband channel to a fixed

station. We are interested in mapping the channel spatial variations over a given field of

operation, based on a small number of measurements, as is relevant to the robust oper-

ation of robotic networks. Our analysis of several real channel measurements show that

narrowband wireless channels can be compressible in the frequency domain. Therefore,

in Chapter 3, we show how to utilize the sparsity of the communication channels in the

frequency domain in order to map the channel variations witha small number of mea-

surements. The proposed sparsity-based estimation is model-free and independent of the

underlying channel parameters. We then characterize the underlying tradeoffs between

this sparsity-based framework and the probabilistic framework of Chapter 2, using real

channel measurements. We show that the probabilistic framework performs well when the

channel underlying parameters are estimated with a reasonable quality. However, if these

parameters can not be estimated with a reasonable quality, the sparsity-based approach

outperforms the probabilistic framework. Motivated by this analysis, we then propose an

integrated channel prediction framework. The integrated approach properly takes advan-

tage of both channel compressibility in the frequency domain and channel probabilistic

characterization in the spatial domain. The results of thischapter are partially published

in [32,50].
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Chapter 4: Binary consensus over fading channels

In recent years, there has been significant interest in cooperative sensing, estimation/detection

and control. Consider the case where a group of nodes with sensing, processing, communi-

cation and actuation capabilities are given a task to perform jointly. Each node has limited

local capabilities and can therefore only accomplish the task in a cooperative manner, in

order to get around local sensing errors and limitations. One of the problems that arise in

such cooperative networks is that of group agreements. Consensus problems arise when

the agents need to reach an agreement on the value of a parameter of interest and can be

categorized into two main groups:estimation consensusanddetection consensus.

Estimation consensusrefers to the problems where the parameter of interest can take

values over an infinite set or an unknown finite set. For instance, it may be of interest

that all the mobile agents that started in different directions move in the same direction in

a cooperative multi-agent network [10], which requires that they all eventually agree on

their headings. These problems received considerable attention in the past few years. In

the biological sciences, for instance, there exists a rich literature on generating coordinated

behaviors in a group of autonomous agents [51–55]. In the past decade, the control and

systems community, in particular, has become interested inthe mathematical analysis of

consensus behaviors. This interest is sparked, in part, by several emerging applications of

networked systems such as vehicle formation [56, 57], flocking [58, 59], rendezvous [60],

autonomous vehicles [61], robot position synchronization[62], coupled oscillators [63],

and several other applications in distributed sensor networks or distributed control of un-

manned air/ground/underwater vehicles. In particular, the control community has applied

tools from algebraic graph theory and advanced matrix analysis to characterize estimation

consensus problems over graphs that are not fully connected[10, 64–71]. Convergence

and equilibrium state of continuous-time and discrete-time consensus protocols have been

studied for both time-invariant and time-varying topologies [64–67]. Furthermore, consen-

sus protocols have been applied to formation problems [10, 68–70] as well as distributed

9
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filtering [71]. [72] provides a comprehensive survey of the literature on such consensus

problems. The impact of uncertainties introduced by communication links, however, has

received less attention in the control literature (except for the work of [73]). More re-

cently, there has been considerable interest in estimationconsensus problems from the

signal processing and communication community, with more emphasis on link uncertain-

ties [74–78].

By detection consensus, on the other hand, we refer to the problems in which the

parameter of interest takes values from a finite known set. Then the update protocol that

each agent will utilize becomes nonlinear. We refer to a subset of detection consensus

problems where the network is trying to reach an agreement over a parameter that can

only have two values asbinary consensus[79]. For instance, networked detection of

fire falls into this category. While there exists a rich literature on estimation consensus,

detection consensus problems only recently started to receive attention. In [80], the authors

consider convergence in a detection consensus setup over perfect channels, with repeated

sensing and known probabilistic sensing models. In [81], the authors consider a distributed

hypothesis testing problem over perfect communication channels, to which they refer to as

belief consensus. They consider the case where each node transmits its belief (conditional

probability) to other nodes. As a result, their problem immediately takes the form of the

traditional average estimation consensus, for which a richliterature exists. In [82–86] and

references therein, quantized consensus problems are considered over perfect channels, in

which every node can only send from a set of quantized values.

In [79], [87] and [88],binary consensusproblems are considered, where the nodes

start with an initial decision regarding the occurrence of an event. Through repeated com-

munications, the goal for every node is to reach the majorityof the initial votes, without

knowing anything about the sensing qualities. [88] considered and characterized phase

transition of such a binary consensus problem in the presence of a uniformly-distributed

communication noise. Since the support of the probability density function of this noise

10
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is bounded, there exists a transition point beyond which consensus will be guaranteed in

this case. In [88], this transition point is characterized.In most applications, however, the

agents will communicate their values wirelessly and will experience Gaussian receiver

noise as opposed to a uniformly-distributed noise. In [79, 87, 89], authors considered

reaching binary consensus over time-invariant network topologies with Additive White

Gaussian Noise (AWGN) channels and regular graphs (all nodes have the same number

of neighbors). Since the noise is not bounded in this case, there is no transition point be-

yond which consensus is guaranteed. Instead, they proposeda probabilistic approach to

characterize the asymptotic and transient behavior of the network.

In Chapter 4, we consider binary consensus overnot fully-connected and rapidly-

changing network topologieswith fading channels, where the goal of every node is to

reach the majority of the initial votes. We mathematically characterize the impact of fad-

ing, noise, network connectivity and time-varying topology on consensus performance,

which becomes challenging due to all the introduced uncertainties. To improve the per-

formance and robustness of network cooperation, we proposenovel consensus-seeking

protocols that utilize information of link qualities and noise variances. Furthermore, we

consider two different decision-making strategies, in term of using the available transmis-

sions:fusionanddiversity. In the first approach, the given resources are used to increase

the flow of information in the network whereas the second strategy aims to increase ro-

bustness to link error by channel coding. There exist interesting tradeoffs between these

two approaches in terms of speed of convergence and asymptotic behavior, as we shall

explore. Our proposed framework builds a foundation for understanding both the asymp-

totic and transient behaviors of binary consensus in fadingenvironments. While channel

uncertainty can result in an undesirable asymptotic behavior, depending on the utilized

decision-making strategy, we show that the network can still be in consensus for a long pe-

riod of time (enough for practical purposes) with high probability. In order to characterize

the transient behavior, we derive a tight approximation forthe second largest eigenvalue

of the average of the underlying linear dynamical system. The derived expressions show

11
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how channel uncertainty and network topology affect binaryconsensus and shed light on

the underlying tradeoffs. The results of this chapter are partially published in [90,91].

Chapter 5: An integrated framework for binary consensus over time-

invariant network topologies

In Chapter 5, we extend our analysis of Chapter 4 and considerthe binary consensus prob-

lem over a general time-invariant network topology (not necessarily fully connected) with

fading channels. More specifically, we consider the underlying tradeoffs of the fusion and

diversity strategies that we analyzed in Chapter 4. Themain contributionof this chapter is

then to propose a framework that keeps the benefits of both fusion and diversity strategies,

in terms of network information flow and link error robustness, for binary consensus over

time-invariant network topologies with fading channels. We mathematically analyze the

proposed framework and show that it achieves accurate consensus asymptotically. As an

example, we then utilize the proposed framework over regular ring lattice networks. Our

theoretical and simulation results indicate that the proposed technique improves the con-

sensus performance considerably and overcomes the memoryless asymptotic behavior of

the original problem. The results of this chapter are partially presented in [92].

12



Chapter 2

Understanding the spatial predictability

of wireless channels

In the wireless communication literature, it is well established that a communication chan-

nel between two nodes can be probabilistically modeled as a multi-scale dynamical system

with three major dynamics: small-scale fading (multipath), large-scale fading (shadow-

ing) and path loss [11–13]. Fig. 2.1, for instance, shows thereceived signal power across

a route in the basement of the ECE building. The three main dynamics are marked on

the figure. The measured received signal is the small-scale fading. In order to extract the

large-scale component, the received signal should be averaged locally over a distance of

5λ to 40λ (depending on the scenario), whereλ is the transmission wavelength [12, 93].

In the example of Fig. 2.1, for instance, we averaged the channel locally over the length of

5λ = 62.5cm, by using a moving average (frequency of operation is 2.4GHz). Once we

have the large-scale component, the distance-dependent path loss is calculated by finding

the best line fit to the log of the received measurements [11,12,94].

In this chapter we utilize such a probabilistic link model and fundamentally character-

ize the spatial predictability of wireless channels at unvisited locations, based on a few a
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Figure 2.1:Underlying dynamics of the received signal power across a route in the basement of
ECE building.

priori channel measurements. We then mathematically characterize the impact of different

environments, in terms of their underlying parameters, on channel spatial predictability.

Furthermore, we show the optimum distribution of the sparsesampling positions in order

to maximize channel predictability.

This chapter is organized as follows. In Section 2.1, we describe our proposed proba-

bilistic channel prediction framework. In Section 2.2, we mathematically characterize the

impact of different underlying channel parameters on the prediction performance, assum-

ing perfectly-estimated path loss parameters. In Section 2.3, we mathematically charac-

terize the impact of different environments and sampling positions on the estimation of

path loss parameters and show how to optimize the positions of the sparse samples. In

Section 2.4, we analyze the impact of different environments on the estimation of shad-

owing power. Then, in Section 2.5, we extend the analysis of Section 2.2 to characterize

wireless channel predictability in the presence of path loss estimation error. In Section 2.6,

we show the performance of the proposed framework in predicting (and understanding the

predictability of) the spatial variations of real channels, using several measurements in our

building. A summary of the results of the chapter is providedin Section 2.7.
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2.1 Probabilistic prediction of channel spatial variations

As mentioned in the previous section, a communication channel between two nodes can

be modeled as a multi-scale dynamical system with three major dynamics: small-scale

fading (multipath), large-scale fading (shadowing) and path loss. LetΥRX(q) denote the

received signal strength (power), in the transmission froma fixed transmitter atqb ∈ K
to a mobile node atq ∈ K, whereK ⊂ R

2 denotes the workspace. Consider the case

where the channel to the fixed transmitter is narrowband. Furthermore, assume that the

workspace is not changing with time, i.e. the environmentalfeatures that impact the wire-

less transmission in the workspace are time-invariant. Ourproposed framework can be

extended to time-varying environments, as we briefly discuss later in this section. Then,

we have the following at the output of the power detector:ΥRX(q) = g(q)PT + ̺, where

PT andg(q) denote the transmitted power and channel gain (square of theamplitude of

the baseband equivalent channel), at positionq, respectively and̺ represents the power of

the receiver thermal noise [11]. DefineΥ(q) , ΥRX(q) − ̺. We assume that the receiver

can estimate and remove the noise power to obtainΥ(q).1 Υ(q) is proportional tog(q) and

can be modeled as a multi-scale dynamical system with three major dynamics: multipath

fading, shadowing and path loss. We can then characterizeΥ(q) by a 2D non-stationary

random field with the following form [11]:Υ(q) = ΥPL(q)ΥSH(q)ΥMP(q), whereΥMP(q)

andΥSH(q) are random variables representing the impact of multipath fading and shad-

owing components respectively andΥPL(q) = KPL
‖q−qb‖nPL is the distance-dependent path

loss.2 In this model, the multipath fading coefficient,ΥMP(q), has a unit average. Let

1Most related device drivers provide an estimate on the noisepower. MadWiFi, for instance,
estimates the noise power by using the often-used formula ofKBol×Tenv×BW [95], whereKBol is
the Boltzmann’s constant,Tenv is the environment temperature andBW is the utilized bandwidth.
Its newer versions can even provide a better online assessment, by using the measurements from
the silent mode (when no transmission) [96].

2We follow the convention of [12] and use the term “shadowing”to refer to the large-scale
fading after its mean (path loss) is removed in the dB domain.More specifically,ΥSH is the large-
scale fading after its average (path loss) is removed in the dB domain. Furthermore, we use the
term “multipath fading” to refer to the normalized small-scale fading, i.e. with unit average. Then,
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ΥdB(q) = 10 log10
(
Υ(q)

)
represent the received signal strength in dB. We have

ΥdB(q) = 10 log10
(
KPL

)
+ΥMP, dB︸ ︷︷ ︸

KdB

−10nPL log10
(
‖q − qb‖

)
+ ν(q) + ω(q), (2.1)

whereΥMP, dB = 10 E

{
log10

(
ΥMP(q)

)}
is the average of the multipath fading in dB,

ν(q) = 10 log10
(
ΥSH(q)

)
is a zero-mean random variable representing the shadowing

effect in dB andω(q) = 10 log10
(
ΥMP(q)

)
− ΥMP, dB is a zero-mean random variable,

independent ofν(q), which denotes the impact of multipath fading in dB, after remov-

ing its average. In the communication literature, the distributions ofΥMP(q) andΥSH(q)

(or equivalently the distributions ofω(q) andν(q)) are well established based on empirical

data [13]. For instance, Nakagami distribution is shown to be a good match for the distribu-

tion ofΥMP(q) in several environments [11]. In this case, we have the following Nakagami

distribution, with parameterm and unit average, for the distribution ofΥMP(q): fΥMP(x) =

mmxm−1

Gamma(m)
e−mx, where Gamma(.) represents the Gamma function. This then results in the

following distribution forω(q): fω(x) =
ln(10)
10

10(x+ΥMP, dB)/10fΥMP

(
10(x+ΥMP, dB)/10

)
. Some

experimental measurements have also suggested Gaussian tobe a good enough yet simple

fit for the distribution ofω(q) [97]. We will take advantage of this Gaussian simplification

later in our framework. As for the shadowing variable, log-normal is shown to be a good

match for the distribution ofΥSH(q). Then, we have the following zero-mean Gaussian

pdf for the distribution ofν(q): fν(x) = 1√
2πα

e−x2/2α, whereα is the variance of the

shadowing variations around path loss.

Characterizing the spatial correlation ofω(q) andν(q) is also considerably important

for our model-based channel prediction framework. However, we do not attempt to predict

the multipath component,ω(q), due to the fact that it typically decorrelates fast and thatthe

form of its correlation function can change considerably, depending on the angle of arrival

and position of the scatterers. Therefore, in our proposed framework we only predict the

path loss and shadowing components of the channel. The impact of multipath will then

ΥMP is the normalized small-scale fading.
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appear in the characterization of the prediction error variance, as we shall see. As for

the spatial correlation of shadowing, [98] characterizes an exponentially-decaying spatial

correlation function, which is widely used:E
{
ν(q1)ν(q2)

}
= αe−‖q1−q2‖/β, for q1, q2 ∈ K

whereα denotes theshadowing powerand thecorrelation distance, β, controls the spatial

correlation of the channel [98].

Next, we describe our proposed model-based channel prediction framework. Consider

the case where a wireless channel to a fixed transmitter is sparsely sampled at positions

Q = {q1, q2, · · · , qk} ⊂ K, in a given environment. These channel measurements can be

gathered by one or a number of cooperative homogenous robots, equipped with identical

receivers, making measurements along their trajectories.Let a region or an environment

refer to an area over which the underlying channel parameters, such asα andβ, can be

considered constant. The four marked areas of Fig. 2.11 are examples of such regions.

First, consider the case that all thek measurements belong to one region and that we are

predicting the channel in the same region. We show how to relax this assumption later

in this section. LetDQ andYQ = [y1, · · · , yk]T ∈ R
k denote the corresponding distance

vector to the transmitter in dB and the vector of all the available channel measurements

(in dB) respectively:DQ =
[
10 log10(‖q1 − qb‖), · · · , 10 log10(‖qk − qb‖)

]T
andYQ =

[y1, · · · , yk]T ∈ R
k. We have,

YQ =
[
1k −DQ

]

︸ ︷︷ ︸
HQ

θ + ϑQ + ΩQ, (2.2)

where1k denotes the vector of ones with the length ofk, θ = [KdB nPL]
T is the vector

of the path loss parameters,ϑQ =
[
ν1, · · · , νk

]T
with νi = ν(qi) andΩQ =

[
ω1, · · · , ωk

]T

with ωi = ω(qi), for i = 1, · · · , k. Based on the log-normal model for shadowing,ϑQ

is a zero-mean Gaussian random vector with the covariance matrix RQ ∈ R
k×k, where

[
RQ
]
i,j

= α e−‖qi−qj‖/β , for qi, qj ∈ Q. The termΩQ denotes the impact of multipath fad-

ing in dB domain. As mentioned earlier, some empirical data have shown Gaussian to be

a good match for the distribution ofwi [97]. For instance, Fig. 2.2 compares the match of

17



Chapter 2. Understanding the spatial predictability of wireless channels

0 1 2 3 4 5 6
x 10

−4

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

Received power (mW)

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

 

 

experimental data
power distribution of 
Nakagami fading with m= 1.20
Lognormal fit

Figure 2.2:Comparison of Nakagami and lognormal for the distribution of small-scale fading.

both Nakagami and lognormal to the distribution of multipath fading (ΥMP) for a stationary

section of our collected data of Fig. 2.1. As can be seen, Nakagami provides a considerably

good match while lognormal can be acceptable, depending on the required accuracy. Thus,

in order to facilitate the mathematical derivations in our prediction framework, we takewi

to have a Gaussian distribution. In addition, multipath fading typically decorrelates con-

siderably fast, making learning of its correlation function, based on sparse possibly non-

localized samples, considerably challenging if not infeasible. There is also no one general

function that can properly model its correlation in all the environments as its form depends

heavily on the angle of arrival and position of the scatterers. While approaches based on

the estimation of the power spectrum and linear prediction have been utilized to predict the

immediate values of multipath, based on past observations,such approaches require dense

sampling in order to capture correlated multipath samples.Finally, even if its correlation

function is learned, it typically can not be taken advantageof, in the prediction framework,

unless the location of the channel to be predicted is very close to the position of one of

the available measurements. Thus, we takeΩQ to be an uncorrelated zero-mean Gaussian

vector with the covariance ofE
{
ΩQΩ

T
Q

}
= σ2Ik×k, whereIk×k is ak × k identity matrix

andσ2 = E
{
ω2(q)

}
= 100

∫∞
0

log210(x)fΥMP(x)dx − 100
( ∫∞

0
log10(x)fΥMP(x)dx

)2
is

the power of multipath fading (in dB domain). In other words,our framework does not
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attempt to predict the multipath component and assumes the worst case of uncorrelated

multipath (worst from a prediction standpoint). The estimated variance of multipath then

appears in our assessment of channel prediction error variance, as we shall see. Note, how-

ever, that this is only for the purpose of our modeling. When we show the performance of

this framework, we use real measurements where the multipath component will have its

natural distribution and correlation function.

We then defineΞQ , ϑQ + ΩQ, which is a zero-mean Gaussian vector with the co-

variance matrix ofRtot,Q , RQ + σ2Ik×k. In our model-based probabilistic framework,

we first need to estimate the parameters of the model (θ,α, β andσ2) and then use these

parameters to estimate the channel. LetfYQ
(YQ|θ, α, β, σ2) denote the conditional pdf of

YQ, given the parametersθ, α, β andσ2. Under the assumption of independent multipath

fading variables, Eq. 2.2 will result in the following:

fYQ
(YQ|θ, α, β, σ2)

=
1

(2π)k/2
(

det
[
αRnorm,Q(β) + σ2Ik×k

])1/2 e
− 1

2

(
YQ−HQθ

)T(
αRnorm,Q(β)+σ2Ik×k

)−1(
YQ−HQθ

)
,

(2.3)

whereRnorm,Q = 1
α
RQ denotes the normalized version ofRQ. Next, we characterize the

Maximum Likelihood (ML) estimation of the underlying channel parameters.

[θ̂ML , α̂ML , β̂ML , σ̂
2
ML ] = argmaxθ,α,β,σ2 ln

(
fYQ

(YQ|θ, α, β, σ2)
)

= argminθ,α,β,σ2

(
YQ −HQθ

)T (
αRnorm,Q(β) + σ2Ik×k

)−1(
YQ −HQθ

)

+ ln
(

det
[
αRnorm,Q(β) + σ2Ik×k

])
,

which results in:

θ̂ML =
(
HT

Q
(
α̂MLRnorm,Q(β̂ML) + σ̂2

ML

)−1
HQ
)−1

HT
Q
(
α̂MLRnorm,Q(β̂ML ) + σ̂2

ML

)−1
YQ.

(2.4)
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Finding a closed-form expression for̂αML , β̂ML andσ̂2
ML , however, is challenging. For

the special case whereΩk is negligible, the ML estimation of channel parameters can be

simplified to:

θ̂ML ,σ2=0 =
(
HT

QR
−1
norm,Q(β̂ML ,σ2=0)HQ

)−1

HT
QR

−1
norm,Q(β̂ML ,σ2=0)YQ,

α̂ML ,σ2=0 =
1

k

(
YQ −HQθ̂ML ,σ2=0

)T
R−1

norm,Q(β̂ML ,σ2=0)
(
YQ −HQθ̂ML ,σ2=0

)
,

β̂ML ,σ2=0 = argmin
β

[
Y T
QP

T
Q,ML(β)R

−1
norm,Q(β)PQ,ML(β)YQ

]k
det
[
Rnorm,Q(β)

]
, (2.5)

wherePQ,ML(β) = Ik×k − HQ
(
HT

QR
−1
norm,Q(β)HQ

)−1

HT
QR

−1
norm,Q(β). Under the as-

sumption thatβ is known, it can be shown that̂θML ,σ2=0 is an unbiased estimator and

achieves the Cramer-Rao bound. Furthermore, for large number of sampling pointsk,

we can show that̂αML ,σ2=0 is unbiased and achieves the Cramer-Rao bound as well. We

will provide the detailed proof in Section 2.4. The ML estimator will therefore be our

benchmark in the estimation of the channel parameters.

As can be seen, in order to estimateθ andα, we first need to estimateβ, which is

challenging. Furthermore, finding the ML estimation of the channel parameters for the

general case, whereσ2 6= 0, is computationally complex. Therefore, we next devise a

suboptimum but simpler estimation strategy. Letχ = α + σ2 denote the sum of the

shadowing and multipath powers. A Least Square (LS) estimation of θ andχ then results

in:

θ̂LS =
(
HT

QHQ
)−1

HT
QYQ, (2.6)

χ̂LS|θ=θ̂LS
=

1

k
Y T
Q

(
Ik×k −HQ

(
HT

QHQ
)−1

HT
Q

)2
YQ

=
1

k
Y T
Q

(
Ik×k −HQ

(
HT

QHQ
)−1

HT
Q

)
YQ, (2.7)

whereHQ is full rank, except for the case where the samples are equally-distanced from

the transmitter. Since such a special case is very low probable, we assume thatHQ is
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full rank unless otherwise is stated. We refer to this suboptimal approach as LS ap-

proach. We next discuss a more practical but suboptimum strategy to estimateβ. LetIl ={
(i, j)

∣∣qi, qj ∈ Q such that‖qi−qj‖ = l
}

denote the pairs of points inQwhich are located

at distancel from each other. LetYQ,cent,LS =
(
Ik×k − HQ

(
HT

QHQ
)−1

HT
Q

)
YQ represent

the centered version of the measurement vector, when path loss parameters are estimated

using the LS estimator of Eq. 2.6. Definer̂Q(l) , 1
|Il|
∑

(i,j)∈Il[YQ,cent,LS]i[YQ,cent,LS]j to

be the numerical estimate of the spatial correlation function at distancel, where|.| rep-

resents the cardinality of the argument set and[.]i denotes theith element of the argu-

ment vector. We have[α̂LS, β̂LS] = argminα,β

∑
l∈LQ

w(l)
[
ln
(
αe−l/β

)
− ln

(
r̂Q(l)

)]2
,

whereLQ = {l|0 < r̂Q(l) < χ̂LS|θ=θ̂LS
} andw(l) can be chosen based on our as-

sessment of the accuracy of the estimation ofr̂Q(l). For instance, if we have very few

pairs of measurements at a specific distance, then the weightshould be smaller. Let

LQ = {l1, l2, · · · , l|LQ|} denote an ordered set of all the possible distances among themea-

surement points. We have the following Least Square estimator of α andβ:


ln(α̂LS)

1

β̂LS


 =

(MT
LQ
WLQ

MLQ
)−1MT

LQ
WLQ

b whereMLQ
=




1 −l1
...

...

1 −l|LQ|


 , b =




ln
(
r̂Q(l1)

)

...

ln
(
r̂Q(l|LQ|)

)


 and

WLQ
= diag[w(l1), · · · , w(l|LQ|)]. We then have,̂σ2

LS = χ̂LS|θ=θ̂LS
− α̂LS for the estimation

of the multipath power (in dB domain). Note that the estimated values of the shadowing

parameters should satisfy:0 < α̂LS ≤ χ̂LS|θ=θ̂LS
andβ̂LS > 0. If due to the lack of enough

measurements, any of these are violated, we takeα̂LS andβ̂LS to be zero. This means that,

in this case, we can not estimate the correlated part of the channel.

Once the underlying parameters of our model are estimated, channel at positionq ∈ K
can be estimated as follows. We have the following for the probability distribution of

ΥdB(q), conditioned on all the gathered measurements and the underlying parameters:
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f(ΥdB(q)|YQ, θ, α, β, σ2) ∼ N
(
Υ̃dB,Q(q), σ2

dB,Q(q)
)

with

Υ̃dB,Q(q) , E

{
ΥdB(q)

∣∣∣ YQ, θ, α, β, σ2
}
= hT (q)θ + φT

Q(q)R
−1
tot,Q
(
YQ −HQθ

)
and

(2.8)

σ2
dB,Q(q) , E

{(
ΥdB(q)− Υ̃dB,Q(q)

)2 ∣∣∣ θ, α, β, σ2
}
= α+ σ2 − φT

Q(q)R
−1
tot,QφQ(q),

whereh(q) =
[
1 − D{q}

]T
, D{q} = 10 log10

(
‖q − qb‖

)
andφQ(q) denotes the cross

covariance betweenQ andq, i.e. φQ(q) = α
[
e−

‖q1−q‖
β , · · · , e−

‖qk−q‖

β
]T

. Therefore, the

Minimum Mean Square Error (MMSE) estimation ofΥdB(q), assuming perfect estimation

of the underlying parameters, is given byΥ̃dB,Q(q). We then have the following by con-

sidering the true estimated parameters:Υ̂dB,Q(q) = hT (q)θ̂ + φ̂T
Q(q)R̂

−1
tot,Q
(
YQ − HQθ̂

)
,

whereφ̂Q(q) =
[
α̂ e−‖q−q1‖/β̂, · · · , α̂ e−‖q−qk‖/β̂

]T
andR̂tot,Q = α̂Rnorm,Q(β̂) + σ̂2Ik×k.

The prediction quality at positionq improves, the more correlated the available chan-

nel measurements become with the value of the channel at position q. In order to math-

ematically assess this, the next lemma characterizes the average number of the available

measurements at theβ neighborhood of the point to be predicted, for the case of randomly-

distributed available channel measurements in 1D. Theβ-neighborhood of a pointq, in the

workspaceK, is defined as{z ∈ K|d(z, q) < β}, whered(z, q) denotes the Euclidian dis-

tance between pointsz andq.

Lemma 1. Consider the case thatk channel measurements, at positions{q1, q2, · · · , qk}
are available, for predicting the channel at pointq. LetNβ(Q, q) represent the number

of points inQ = {qi}ki=1, which are located in theβ neighborhood ofq, whereq and

{qi}ki=1 are i.i.d. random positions, uniformly distributed over the workspaceK = [0, L].

We then have,Nβ(Q, q) = k
(
2 β
L
− β2

L2

)
, whereNβ(Q, q) = EQ,q

{
Nβ(Q, q)

}
andEQ,q{.}

represents the expected value w.r.t.Q andq.

Proof. Definedq(x) , |x− q|, for two positionsx andq. For a fixedx ∈ K and a uniform

distribution ofq over K, dq(x) is a random variable with the following Commutative
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Density Function (CDF):

prob(dq(x) ≤ β) =





2 β
L

0 ≤ β ≤ min(x, L− x)

β
L
+ min(x,L−x)

L
min(x, L− x) ≤ β ≤ max(x, L− x)

1 β ≥ max(x, L− x)

(2.9)

We then have,

prob(dq(x) ≤ β)
∣∣∣
β≤L

2

=





β+x
L

0 ≤ x ≤ β

2 β
L

β ≤ x ≤ L− β

1 + β−x
L

L− β ≤ x ≤ L

(2.10)

and

prob(dq(x) ≤ β)
∣∣∣
β>L

2

=





β+x
L

0 ≤ x ≤ L− β

1 L− β ≤ x ≤ β

1 + β−x
L

β ≤ x ≤ L

(2.11)

Let X andQ = {qi}ki=1 represent i.i.d. random variables, uniformly distributedoverK,

andBβ(X) denote an open ball with the radius ofβ, centered atX. For a fixedx, we have

the following PDF:

prob
(
Nβ(Q,X) = i

∣∣X = x
)

=



 k

i




[
prob

(
dq1

(X = x) ≤ β
)]i[

1− prob
(
dq1

(X = x) ≤ β
)]k−i

. (2.12)

This results in the following average:

Nβ(Q,X) = E
{
E
{
Nβ(Q,X)|X = x

}}

= E
{
k × prob

(
dq(X = x) ≤ β

)} Eq. 2.10,2.11
= k

(
2
β

L
− β2

L2

)
, (2.13)

whereNβ(Q,X) indicates the average number of points inQ, which are located in the

β neighborhood ofx.
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Figure 2.3:Channel prediction quality for both indoor and outdoor channel measurements, as a
function of the percentage of the measurements gathered.

Special case - probabilistic path loss:If the knowledge of beta is not available or is

not used in the prediction (thus beta is assumed zero), then Eq. 2.8 results in the same

probability distribution for all the points that are equally-spaced from the transmitter. An

example of this case can be seen in Fig. 1.1(top-middle), where we have the same predicted

probability of connectivity (probability that theΥdB(q) is above a given threshold) for all

the points at a given radius from the transmitter. Our more general case of Eq. 2.8 is then

shown in Fig. 1.1(top-right), where a probability distribution (and a resulting probability

of connectivity) is assigned to each point in the workspace.Both these cases result in

a more comprehensive channel prediction than the commonly-used disk model of Fig.

1.1(top-left).

Next we show the reconstruction of two real channels, using our proposed method.

The performance metric is the Average Normalized Mean Square Error (ANMSE) of

the estimated channel, where the following Normalized MeanSquare Error, NMSE=[
∫
K(ΥdB(q)−Υ̂dB,Q(q))2dA∫

K Υ2
dB(q)dA

]
, is averaged over several different randomly-selected sampling

positions, for a given percentage of collected samples. Fig. 2.3 shows the reconstruc-

tion performance for an outdoor channel across a street in downtown San Francisco [5]
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as well as for an indoor channel measurement along a route in the basement of the ECE

building. The indoor experiment uses an 802.11g WLAN card while the outdoor measure-

ment is based on measuring receptions from an AT&T cell tower[5]. For both cases, all

the underlying parameters are estimated using the LS approach of this section. Consider

the outdoor case, for instance. We have the measurements of the received signal power,

every2mm along a street of length16m in San Francisco, mounting to 8000 samples. Fig.

2.3 then shows the prediction performance where only a percentage of the total samples

were available to a node. The available measurements are randomly chosen over the street.

5% measurements, for instance, means that a robot has collected 400 samples, randomly

over that street, based on which it will predict the channel over the whole street. The pre-

diction error variance is−29dB for the case of5% measurements. It can be seen that both

channels can be reconstructed with a good quality. The outdoor channel, however, can be

reconstructed with a considerably better quality. This is expected as the indoor channel

suffers from a more severe multipath fading, which makes it less spatially predictable.

2.1.1 Space-varying underlying parameters and adaptive channel pre-

diction

So far, we considered channel prediction over a small enoughspace such that the under-

lying channel parameters can be considered constant over the workspace. However, if

the available channel samples belong to a large enough space(such as the entire floor),

the underlying parameters can be space-varying. In this part, we show how the previous

framework can be extended to an adaptive approach, in order to address the case where the

operation, and the corresponding available channel measurements, are over a large space.

Basically, a robot can use its localization and mapping information (which it will have

for navigation and collision avoidance) to detect when something changes in the structure

of its environment. For instance, it can detect when it movesout of a room to a hallway

or when it reaches an intersection. Thus, we assume that the underlying parameters can
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possibly change when some environmental factors change. From analyzing several real

measurements, this is a reasonable assumption. While therecould possibly be cases that

are not captured by this assumption, i.e. having a drastic change in an underlying param-

eter without any environmental change, such cases are rare and the robot can not know

about it to adapt its strategy anyways.

Let a region denote a place of operation where there is no environmental changes and

the underlying parameters can be considered constant (suchas a room or a hallway with

no intersection that leads to the transmitter). In order to allow the node to give less weight

to the available measurements that are collected in different regions and/or are far from

the position where the channel needs to be estimated, we introduce a forgetting factor and

a distance-dependent weight. This allows the node to adapt the impact of a sample mea-

surement on its prediction framework. The forgetting factor is used to let the node give

less impact to a measurement if it belongs to a different region, as compared to the place

where the robot needs to predict the channel. On the other hand, the distance-dependent

weight allows the robot to give less weight to the farther measurements. Consider the case

where the workspace consists ofp different regions, i.e.K =
⋃p

i=1Ri. Let τi represent

the region, where theith measurement belongs to, i.e.qi ∈ Rτi . Define the forget-

ting matrixF , with the following characteristics: 1)F is symmetric, 2)F is stochastic

and 3)[F ]i,j = fi,j is proportional to the similarity between regionsi andj. The third

property implies that,maxj fj,i = fi,i andfi,j ≥ fi,k iff regions i andj have more en-

vironmental features in common, as compared to regionsi andk. Furthermore, letG
denote the functional space of all non-increasing functions onR+. For q ∈ Rm ⊂ K,

we define the corresponding weight matrix as:[ΨQ(q)]i,i = fτi,m × gτi,m(‖q − qi‖) and

[ΨQ(q)]i,j = 0 for i 6= j, wheregτi,m ∈ G. One candidate forg is an exponential func-

tion: gτi,m(‖q − qi‖) = e
− ‖q−qi‖

bτi,m . fτi,m andbτi,m are design parameters, which the robot

can choose. They impact how conservative the robot will be intaking the measurements

of different regions into account. Let̂θWLS(q) = minθ

∥∥∥Ψ
1
2
Q(q)

(
YQ −HQθ

)∥∥∥
2

denote the

weighted LS estimation of the path loss parameters, for prediction at positionq ∈ Rm. We
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then have,̂θWLS(q) =
(
HT

QΨQ(q)HQ
)−1

HT
QΨQ(q)YQ. The channel and other underlying

parameters can be similarly estimated.
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Figure 2.4:Performance of our adaptive approach, in estimating the path loss slope, when a robot
moves along a street in San Francisco and samples the channelalong its trajectory [5]–(top) channel
received power across the street along with its best slope fitand (bottom) prediction error variance
of the robot, as it moves along the street and measures the channel.
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Figure 2.5:Impact of different environments on channel prediction performance, using real chan-
nel measurements. (top) indoor and outdoor, (middle) main room (R1) and hallway (R2) of Fig.
2.11 and (bottom) hallways R2 and R3 of Fig. 2.11.

Fig. 2.4 shows the performance of our adaptive approach whena robot moves along

a street. The channel measurement is in reception from an AT&T cell tower, in a street
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in San Francisco [5], which experiences very different pathloss exponents due to the

presence of an intersection that leads to the transmitter. The robot samples the channel as

it moves along the street and estimates the path loss slope, without any a priori information

in this environment. The figure compares the performance of the non-adaptive case with

that of the adaptive one and shows that we can benefit considerably from the adaptation.

Next, Fig. 2.5 (top) shows the prediction quality when a number of robots operate in our

basement, over a large area and cooperate for channel prediction. The regions of operation

are R1 and R2, as indicated in Fig. 2.11. Note that the performance is simulated, in this

case, using real channel measurements in this environment.It can be seen that the adaptive

approach can improve the performance as compared to the non-adaptive case. In the non-

adaptive case, all the gathered and communicated measurements are utilized by each robot

for channel prediction, without taking into account that these measurements may belong to

different regions. It can be seen that we can benefit a couple of dBs, by using the adaptive

approach. In other tests in different environments, we alsoobserved that the adaptation

may make a negligible difference if different regions are not that much different, in terms

of their underlying parameters, as expected. Fig. 2.5 (bottom) shows an example of such a

case for operation over a different area in our basement. It can be seen that the performance

curves are very close.

Here, it is our goal to fundamentally understand the impact of different environments

(in terms of their underlying parameters) on the proposed channel prediction framework.

Consider the four marked regions of Fig. 2.11 for instance. We want to understand how

the channel prediction quality changes (and justify the observed behaviors) when we move

from one region to another. Therefore, in the rest of this chapter, we consider the non-

adaptive channel prediction framework, to predict the channel over a region where the

underlying parameters can be considered constant. In the next section, we characterize the

impact of different environments (in terms of the underlying channel parameters) on the

prediction framework.
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2.2 Impact of channel parameters on the prediction error

variance

In this section, we characterize the impact of the underlying channel parameters on the

spatial predictability of a wireless channel. We assume that the underlying parameters are

estimated perfectly in this section to avoid error propagation from parameter estimation

to channel prediction. In the subsequent sections, we then extend our analysis to take the

impact of the estimation error of key underlying parametersinto account.

Let ΥdB(q) = 10 log10
(
Υ(q)

)
represent the received signal strength at positionq ∈ K

in dB. Based on the gathered measurements atQ ⊂ K, the goal is to estimate the channel at

q ∈ K\Q, using the channel predictor,Υ̃dB,Q(q) of Eq. 2.8, with the corresponding error

covariance ofσ2
dB,Q(q). We next characterize the impact of different channel parameters

on this prediction. We first introduce the following lemmas.

Lemma 2. LetΨ(t) be an invertible matrix fort ∈ R. We havedΨ
−n

dt
= −Ψ−n dΨn

dt
Ψ−n,

wheren is a positive integer.

Proof. Taking the derivative from both sides of equationΨn(t)Ψ−n(t) = Ik×k, with re-

spect tot, proves the lemma.

Lemma 3. Let J be ann-by-m matrix with the rank ofm andΨ be ann-by-n full rank

matrix. If matrixΨ is positive definite (Ψ ≻ 0), thenJTΨJ is positive definite.

Proof. See [99] for a proof.

Theorem 1. The estimation error variance,σ2
dB,Q, is an increasing function ofα andσ2

for α, σ2 ∈ [0,∞) and an invertibleRnorm,Q.

Proof. We first show that the estimation error variance is an increasing function ofσ2.

Let φnorm,Q(q) = 1
α
φQ(q) denote the normalized cross covariance betweenQ andq. We
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haveσ2
dB,Q(q) = α + σ2 − αφT

norm,Q(q)
(
Rnorm,Q + σ2

α
Ik×k

)−1
φnorm,Q(q). Forα = 0, we

have d
dσ2σ

2
dB,Q(q)

∣∣∣
α=0

= 1 > 0, ∀σ2 ∈ [0,∞). For α 6= 0, taking the derivative with

respect toσ2 (using Lemma 2) and then applying Lemma 3 result in:d
dσ2σ

2
dB,Q(q) = 1 +

φT
norm,Q(q)

(
Rnorm,Q+

σ2

α
Ik×k

)−2
φnorm,Q(q) > 0, ∀σ2 ∈ [0,∞) and for an invertibleRnorm,Q,

which completes the proof. We next prove thatσ2
dB,Q(q) is an increasing function ofα.

First assume thatσ2 6= 0. Taking the derivative with respect toα results in: d
dα
σ2

dB,Q(q) =

1−φT
norm,Q(q)

[(
Rnorm,Q+

σ2

α
Ik×k

)−1
+ σ2

α

(
Rnorm,Q+

σ2

α
Ik×k

)−2
]
φnorm,Q(q).Definef(α) ,

d
dα
σ2

dB,Q(q). f is of classC∞ on R
+ with the following properties: 1)f(0) = 1, 2)

f(∞) = 1− φT
norm,Q(q)R

−1
norm,Qφnorm,Q(q) > 0 and 3) d

dα
f(α) < 0.

First property can be easily confirmed. We next prove the second property. Let

Rnorm,Q⋃{q} represent the correlation matrix corresponding toQ⋃{q}. We haveRnorm,Q⋃{q} =
 Rnorm,Q φnorm,Q(q)

φT
norm,Q(q) 1


 , whereRnorm,Q⋃{q} is assumed invertible. Thus, under the as-

sumption thatRnorm,Q is invertible, the second property can be easily confirmed, using the

Schur complement ofRnorm,Q block [100]. Next we prove the third property. We have

d

dα
f(α) = −φT

norm,Q(q)
d

dα

[(
Rnorm,Q +

σ2

α
Ik×k

)−1
+
σ2

α

(
Rnorm,Q +

σ2

α
Ik×k

)−2
]
φnorm,Q(q)

= −φT
norm,Q(q)

σ2

α

d

dα

[(
Rnorm,Q +

σ2

α
Ik×k

)−2
]
φnorm,Q(q)

= −2σ4φT
norm,Q(q)

(
αRnorm,Q + σ2Ik×k

)−3
φnorm,Q(q). (2.14)

Since
(
αRnorm,Q + σ2Ik×k

)
≻ 0, we can then easily show thatd

dα
f(α) < 0 using Lemma

3. By using these three properties, we havef(α) > 0, which means that the estimation

error variance is an increasing function ofα ∈ [0,∞). Furthermore, ifσ2 = 0 andRnorm,Q

is invertible, then d
dα
σ2

dB,Q(q)
∣∣
σ2=0

= f(∞), which is positive as shown for property 2.

Therefore, estimation variance is an increasing function of α in this case too.

We next characterize the impact ofβ on the prediction quality, using properties of the

Euclidean Distance Matrix (EDM) [101]. Given the position setQ = {q1, q2, · · · , qk} ⊂
K, the EDMΠ =

[
πi,j
]
∈ R

k×k is defined entry-wise as
[
Π
]
i,j

= πi,j = ‖qi−qj‖2 for i, j =
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1, 2, · · · , k. We have the following properties for the EDM:

1)
√
πi,j ≥ 0 for i 6= j and

√
πi,j = 0 for i = j,

2)
√
πi,j =

√
πj,i,

3)
√
πi,l +

√
πl,j ≥ √

πi,j for i 6= j 6= l.

Theorem 2. Matrix Π =
[
πi,j
]
∈ R

k×k is EDM if and only if−V T
k ΠVk � 0,ΠT =

Π andπi,i = 0 for 1 ≤ i ≤ k, whereVk is the full-rank skinny Schoenberg auxiliary

matrix: Vk , 1√
2


 −1Tk−1

I(k−1)×(k−1)


 ∈ R

k×k−1.

Proof. Readers are referred to [101] for the details of the proof.

Theorem 3. Let T =
[
ti,j
]
∈ R

k×k represent the entry-wise square root ofΠ =
[
πi,j
]
∈

R
k×k whereti,j = π

1
2
i,j. If Π is EDM, thenT is EDM. This case is of interest because it

corresponds to the absolute distance matrix.

Proof. Readers are referred to [101–103] for the details of the proof.

Lemma 4. The Hadamard product (Schur product) of two positive-definite matrices is

positive-definite and the Hadamard product of two positive-semidefinite matrices is positive-

semidefinite.

Proof. Readers are referred to Theorem 7.5.3 of [99] for more details.

Theorem 4. The estimation error variance is a decreasing function ofβ ∈ (0,∞) for

σ2 6= 0 and a non-increasing function ofβ ∈ (0,∞) for σ2 = 0 and an invertibleRnorm,Q.

Proof. Case ofα = 0 is not of interest in this theorem since we are interested in the

impact of shadowing. Therefore, in this proof we assume thatα 6= 0. Let δQ(q) =
[
‖q1 − q‖, ‖q2 − q‖, · · · , ‖qk − q‖

]T
represent the distance vector between the setQ and

positionq 6∈ Q and∆Q(q) , diag
[
δQ(q)

]
. Let

[
TQ
]
i,j

=‖ qi − qj ‖, ∀qi, qj ∈ Q, denote
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the absolute distance matrix corresponding to the setQ. First assume thatσ2 6= 0. We

have,

d

dβ
σ2

dB,Q(q) = − 1

β2
φT
Q(q)

[
∆Q(q)R

−1
tot,Q − αR−1

tot,Q
(
TQ •Rnorm,Q

)
R−1

tot,Q +R−1
tot,Q∆Q(q)

]
φQ(q)

= − 1

β2
φT
Q(q)R

−1
tot,Q

[
Rtot,Q∆Q(q)− αTQ •Rnorm,Q +∆Q(q)Rtot,Q

]
R−1

tot,QφQ(q)

= − 1

β2
φT
Q(q)R

−1
tot,Q

[
α
(
Rnorm,Q∆Q(q) + ∆Q(q)Rnorm,Q − TQ •Rnorm,Q

)
+ 2σ2∆Q(q)

]
R−1

tot,QφQ(q),

where(•) denotes the Hadamard product. Moreover, it can be confirmed thatRnorm,Q∆Q(q) =

Rnorm,Q •
(
1kδ

T
Q(q)

)
. Therefore, we have:d

dβ
σ2

dB,Q(q) = − 1
β2φ

T
Q(q)R

−1
tot,Q

[
α
(
1kδ

T
Q(q) +

δQ(q)1Tk − TQ
)
• Rnorm,Q + 2σ2∆Q(q)

]
R−1

tot,QφQ(q). From Lemma 4, we know that the

Hadamard product of two positive-semidefinite matrices is positive-semidefinite. There-

fore, to prove thatd
dβ
σ2

dB,Q(q)
∣∣
σ2 6=0

< 0, it suffices to show that1kδTQ(q) + δQ(q)1Tk − TQ

is positive-semidefinite
(
we know that∆Q(q) ≻ 0

)
. Let T{q}⋃Q =


 0 δTQ(q)

δQ(q) TQ


 ∈

R
(k+1)×(k+1) represent the distance matrix corresponding to{q}⋃Q. Let ei denote a unit

vector inRk+1, where all the entries are zero except for theith one. Therefore, the Schoen-

berg auxiliary matrix can be represented asVk+1 =
1√
2

[
e2 − e1, · · · , ek+1 − e1

]
. We have:

−
[
V T
k+1T{q}

⋃QVk+1

]
i,j

= −1

2

(
ei+1 − e1

)T
T{q}⋃Q

(
ej+1 − e1

)

= −1

2

(
ei+1T{q}⋃Qej+1 − e1T{q}⋃Qej+1 − ei+1T{q}⋃Qe1

)

=
1

2

(
‖qj − q‖+ ‖qi − q‖ − ‖qi − qj‖

)

=
1

2

[
1kδ

T
Q(q) + δQ(q)1

T
k − TQ

]

i,j
.

Then, matrixT{q}⋃Q is EDM using Theorem 3. Therefore, applying Theorem 2 for EDM

T{q}⋃Q results in: 1kδTQ(q) + δQ(q)1
T
k − TQ = −2V T

k+1T{q}
⋃QVk+1 � 0, which com-

pletes the proof. Next consider the case whereσ2 = 0. A similar derivation will result

in d
dβ
σ2

dB,Q(q)
∣∣∣
σ2=0

≤ 0, under the assumption thatRnorm,Q is invertible. Therefore, the

estimation error variance is a non-increasing function ofβ in this case.
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Note that path loss parameters,KdB andnPL, do not affect the estimation error vari-

ance in this case. In Section 2.6, we show the impact of different environments (with

different underlying parameters) on channel predictability, using several measurements in

our building. In the next section, we characterize the impact of the underlying parameters

on the estimation of path loss parameters.

2.3 Impact of channel parameters on path loss estimation

In this section, we explore the effect of the underlying channel parameters on the estima-

tion of path loss parameters. To provide a benchmark, we firstconsider the ML estimator

of Eq. 2.4, where we assume thatα, β andσ2 are perfectly known. We then consider

the Least Square estimator of Eq. 2.6 for a more realistic case, whereα, β andσ2 are not

known at the time of estimating path loss parameters. Letθ̂ML = [K̂dB,ML n̂PL,ML]
T denote

the ML estimation of path loss parameters as denoted by Eq. 2.4. We have the following

error covariance matrix:Cθ,ML = E

{(
θ − θ̂ML

)(
θ − θ̂ML

)T}
=
(
HT

QR
−1
tot,QHQ

)−1
, where

σ2
K̂dB,ML

= [Cθ,ML ]1,1 andσ2
n̂PL,ML

= [Cθ,ML ]2,2 denote the ML estimation error variance of

K̂dB,ML andn̂PL,ML respectively. We have the following Theorem.

Theorem 5. Both σ2
K̂dB,ML

and σ2
n̂PL,ML

are increasing functions ofα and σ2 for α, σ2 ∈
[0,∞) and an invertibleRnorm,Q.

Proof. We haveCθ,ML =
(
HT

Q
(
αRnorm,Q + σ2Ik×k

)−1
HQ
)−1

, whereRnorm,Q = 1
α
RQ.

Taking the derivative with respect toα results in:

dCθ,ML

dα
= −Cθ,ML

d

dα

(
HT

Q
(
αRnorm,Q + σ2Ik×k

)−1
HQ
)
Cθ,ML

= Cθ,MLH
T
Q
(
αRnorm,Q + σ2Ik×k

)−1
Rnorm,Q

(
αRnorm,Q + σ2Ik×k

)−1
HQCθ,ML .

(2.15)

By using Lemma 3 and the assumption thatRnorm,Q ≻ 0, we can easily see thatdCθ,ML

dα
≻ 0.

Let e1 = [1 0]T ande2 = [0 1]T denote unit vectors inR2. We have: d
dα
σ2
K̂dB,ML

=
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d
dα

(
eT1Cθ,MLe1

)
= eT1

dCθ,ML

dα
e1 > 0 and d

dα
σ2
n̂PL,ML

= d
dα

(
eT2Cθ,MLe2

)
= eT2

dCθ,ML

dα
e2 > 0.

To show that the estimation error of path loss parameters is an increasing function of

σ2, it suffices to show thatdCθ,ML

dσ2 ≻ 0. We have,dCθ,ML

dσ2 = −Cθ,MLH
T
Q

d
dσ2

(
αRnorm,Q +

σ2Ik×k

)−1
HQCθ,ML = Cθ,MLH

T
Q
(
αRnorm,Q + σ2Ik×k

)−2
HQCθ,ML ≻ 0, for α, σ2 ∈ [0,∞)

and an invertibleRnorm,Q.

In general, the estimation error variance of path loss parameters does not have mono-

tonic behavior as a function ofβ. To get a better understanding of the impact of correlation

distance on the estimation of path loss parameters, we consider two extreme cases ofβ = 0

andβ = ∞. More specifically, we characterize the optimum positions of the measurement

points at both extremes and find the minimum achievable estimation error variance.

A. Case ofβ = 0: In this case,Rtot,Q
(
β = 0

)
= (α+σ2)Ik×k and the error covariance

matrix of path loss parameters can be characterized as:

lim
β→0

Cθ,ML = (α+ σ2)(HT
QHQ)

−1 = (α + σ2)


 k −1TkDQ

−1TkDQ DT
QDQ



−1

=
α + σ2

DT
QAkDQ


D

T
QDQ 1TkDQ

1TkDQ k


 , (2.16)

whereAk = kIk×k−1k1
T
k . As can be seen, the estimation error variances of bothKdB and

nPL are functions of sampling positions (Q).

Lemma 5. Matrix Ak = kIk×k − 1k1
T
k has0 andk as eigenvalues with the multiplicity of

1 andk− 1 respectively. Letv1 ∈ span{1k} andv2 ∈ 1⊥k , where1⊥k =
{
v
∣∣vT1k = 0

}
. We

haveAkv1 = 0 andAkv2 = kv2.

Proof. The proof is straightforward and is omitted.

Theorem 6. LetD1k
Q andD

1⊥k
Q denote the projection ofDQ to span{1k} and1⊥k subspaces

respectively. The optimum positioning, which minimizes both σ2
K̂dB,ML

andσ2
n̂PL,ML

for the
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case ofβ = 0, is

Qopt
PL,β=0 = argmax

Q
||DQ||22, s.t.Q ⊂ K andD1k

Q = 0. (2.17)

Proof. We have the following optimum positioning in order to minimize the estimation

error variance ofKdB, using Rayleigh-Ritz theorem [99]:

Qopt
σ2
K̂dB,ML ,β=0

= arg min
s.t.Q⊂K

σ2
K̂dB,ML,β=0

= arg max
s.t.Q⊂K

DT
QAkDQ
DT

QDQ

=
{
Q
∣∣Q ⊂ K andD1k

Q = 0
}
.

This optimization problem can have multiple solutions, depending on the structure of the

space, all of which achieve the minimum error variance ofα+σ2

k
. Similarly, we have the

following to minimize the estimation error variance ofnPL:

Qopt
σ2
n̂PL,ML ,β=0

= arg min
s.t.Q⊂K

σ2
n̂PL,ML,β=0

= arg max
s.t.Q⊂K

DT
QAkDQ

= arg max
s.t.Q⊂K andD

1k
Q =0

||DQ||22. (2.18)

Therefore, Eq. 2.17 represents the optimum positioning which satisfies both objectives.

Next, we provide an intuitive interpretation. Similar to Eq. 2.2, the measurement vector

can be represented byYQ = (KdB×sqrtk)u1+(−nPL‖DQ‖2)u2+ΞQ, whereu1 =
1k√
k

and

u2 = DQ

‖DQ‖2 are normalized vectors. Then, the problem becomes similar to the decoding

problem in CDMA (Code Division Multiple Access) systems. Thus, we haveDQ ∈ 1⊥k .

Moreover, maximizingk and‖DQ‖2, which can be interpreted as maximizing the SNR of

each term, results in a better estimation ofKdB andnPL respectively.

B. Case ofβ = ∞: Next we characterize the impact of correlation on the estimation

quality of path loss parameters, whenβ goes to∞. To simplify the derivations, we define

two variables:ρ = α
σ2 for σ2 6= 0, which denotes the ratio of the power of shadowing to

multipath power (in dB) andχ = α + σ2, which represents the sum of the two powers.
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The following can be easily confirmed forσ2 6= 0:

1) limβ→∞Rtot,Q =
(
ρ1k1

T
k + Ik×k

)
χ

1+ρ
,

2) limβ→∞R−1
tot,Q =

(
Ik×k − ρ

1+ρk
1k1

T
k

)
1+ρ
χ

(using Matrix Inversion Lemma),

3) limβ→∞ 1TkR
−1
tot,Q1k = k 1+ρ

1+ρk
1
χ
,

4) limβ→∞ 1TkR
−1
tot,QDQ =

(
1TkDQ

)
1+ρ
1+ρk

1
χ
,

5) limβ→∞DT
QR

−1
tot,QDQ =

(
DT

QDQ− ρ
1+ρk

(
1TkDQ

)2)1+ρ
χ

= DT
Q

(
ρAk + Ik×k

)
DQ

1+ρ
1+ρk

1
χ
.

Using the above equations, we have:

lim
β→∞

Cθ,ML = lim
β→∞

(
HT

QR
−1
tot,QHQ

)−1

= lim
β→∞


 1TkR

−1
tot,Q1k −1TkR

−1
tot,QDQ

−1TkR
−1
tot,QDQ DT

QR
−1
tot,QDQ



−1

=
1 + ρk

1 + ρ
χ

1(
1 + ρk

)
DT

QAkDQ


D

T
Q

(
ρAk + Ik×k

)
DQ 1TkDQ

1TkDQ k




=
χ

1 + ρ



ρ+
DT

QDQ

DT
QAkDQ

1Tk DQ

DT
QAkDQ

1Tk DQ

DT
QAkDQ

k
DT

QAkDQ



 =



α +
DT

QDQ

DT
QAkDQ

σ2 1Tk DQ

DT
QAkDQ

σ2

1Tk DQ

DT
QAkDQ

σ2 k
DT

QAkDQ
σ2



 .

(2.19)

Remark 1. It can be seen from Eq. 2.19 that Theorem 6 also characterizesthe optimum

positioning for this case. Moreover, ifQopt
PL denotes the solution of Eq. 2.17, then we have,

σ2
K̂dB,ML

∣∣∣
β=0

=
α + σ2

k
, σ2

K̂dB,ML

∣∣∣
β=∞

= α+
σ2

k
,

σ2
n̂PL,ML

∣∣∣
β=0

=
α + σ2

‖DQopt
PL
‖2 andσ2

n̂PL,ML

∣∣∣
β=∞

=
σ2

‖DQopt
PL
‖2 . (2.20)

As can be seen, the fully correlated case provides a smaller estimation error variance

for nPL and larger forKdB. In Section 2.5, we will show that the slope of path loss,nPL,

has the most impact on the overall channel estimation error variance. Thus, case ofβ = ∞
would be more desirable thanβ = 0.

Remark 2. Consider the case where multipath effect is negligible, i.e., σ2 = 0. We have

lim
β→∞

Cθ,ML,σ2=0 =


α 0

0 0


 . (2.21)
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For this case, the measurement vector becomesYQ = HQθ+̺1k, where̺ ∼ N (0, α) with

N denoting a Gaussian distribution. Thus, fork ≥ 2, the slope of path loss,−nPL, can

be perfectly estimated. However, the uncertainty of̺ results in a bias in the estimation of

KdB, as can be seen from Eq. 2.21. It can also be seen that the estimation error covariance

is not a function of the sampling positions anymore.

We next characterize the LS estimation of path loss parameters. Letθ̂LS denote the LS

estimation of path loss parameters as denoted by Eq. 2.6. We have the following error

covariance matrix:Cθ,LS =
(
HT

QHQ
)−1

HT
QRtot,QHQ

(
HT

QHQ
)−1

. The following Theorem

characterizes some properties of this estimator.

Theorem 7. Let θ̂LS andCθ,LS represent the Least Square estimator of path loss param-

eters and the corresponding estimation error covariance matrix respectively. Letσ2
K̂dB,LS

andσ2
n̂PL,LS

denote the LS error variances of̂KdB,LS and n̂PL,LS respectively. We have the

following properties:

1)Cθ,LS � Cθ,ML,

2) σ2
K̂dB,LS

andσ2
n̂PL,LS

are increasing functions ofσ2 for α, σ2 ∈ [0,∞). Moreover,σ2
K̂dB,LS

andσ2
n̂PL,LS

are increasing functions ofα for α, σ2 ∈ [0,∞) and an invertibleRnorm,Q,

3) Both ML and LS estimators provide the same estimation error covariance matrices if

β = 0 or ∞.

Proof. Let ς ∈ R
+. Using Matrix Inversion Lemma, we have:

(
R−1

tot,Q + ςHQH
T
Q
)−1

= Rtot,Q −Rtot,QHQ
(
ς−1I2×2 +HT

QRtot,QHQ
)−1

HT
QRtot,Q.

(2.22)

By noting that matrix
(
R−1

tot,Q + ςHQHT
Q
)−1

is positive definite, we have,

Rtot,Q − Rtot,QHQ
(
ς−1I2×2 +HT

QRtot,QHQ
)−1

HT
QRtot,Q ≻ 0

Lemma3
=⇒ R−1

tot,Q −HQ
(
ς−1I2×2 +HT

QRtot,QHQ
)−1

HT
Q ≻ 0
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Next, letς go to∞. We have

R−1
tot,Q −HQ

(
HT

QRtot,QHQ
)−1

HT
Q � 0

Lemma3
=⇒ HT

QR
−1
tot,QHQ � HT

QHQ
(
HT

QRtot,QHQ
)−1

HT
QHQ

=⇒
(
HT

QR
−1
tot,QHQ

)−1

�
(
HT

QHQ
)−1(

HT
QRtot,QHQ

)(
HT

QHQ
)−1

=⇒ Cθ,ML � Cθ,LS,

(2.23)

where for the last line, we are using the property that ifA � B ≻ 0 thenB−1 � A−1 ≻ 0

and we are assumingHQ is full-rank.

The second property can be easily confirmed by taking the derivative with respect to

σ2 andα. We next prove the third property. Forβ = 0, we haveRtot,Q = (α + σ2)Ik×k,

resulting in

lim
β→0

Cθ,LS = lim
β→0

Cθ,ML =
α+ σ2

DT
QAkDQ



D
T
QDQ 1TkDQ

1TkDQ k



 .

Forβ = ∞, we haveRtot,Q = α1k1
T
k + σ2Ik×k,

Cθ,LS = α
(
HT

QHQ
)−1(

HT
Q1k1

T
kHQ

)(
HT

QHQ
)−1

+ σ2
(
HT

QHQ
)−1

,

and

(HT
QHQ

)−1(
HT

Q1k1
T
kHQ

)(
HT

QHQ
)−1

=
1

(
DT

QAkDQ
)2



D
T
QDQ 1TkDQ

1TkDQ k







 k2 −k
(
1TkDQ

)

−k
(
1TkDQ

) (
1TkDQ

)2







D
T
QDQ 1TkDQ

1TkDQ k





=
1

(
DT

QAkDQ
)2


k

2
(
DT

QDQ
)
− k
(
1TkDQ

)2 −k
(
DT

QDQ
)(
1TkDQ

)
+
(
1TkDQ

)3

0 0




×


D

T
QDQ 1TkDQ

1TkDQ k


 =


1 0

0 0


 . (2.24)

Therefore, we have

lim
β→∞

Cθ,LS = α


1 0

0 0


+

σ2

DT
QAkDQ


D

T
QDQ 1TkDQ

1TkDQ k


 =


α +

DT
QDQ

DT
QAkDQ

σ2 1Tk DQ

DT
QAkDQ

σ2

1Tk DQ

DT
QAkDQ

σ2 k
DT

QAkDQ
σ2


 .
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By comparing this equation to Eq. 2.19, the third property can be verified.

Remark 3. Theorem 7 (part 3) shows that the optimum positioning of Eq. 2.17 minimizes

the estimation error variance of the LS case too.
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Figure 2.6:A 2D simulated channel at 1GHz frequency with the following underlying parameters:
θ = [−22 3.0]T ,

√
α =

√
8dB,β = 1m andσ =

√
2dB. The transmitter is located atqb = [0 0]T .

We next verify the derived theorems, using a simulated channel. Fig. 2.6 shows a

simulated channel, generated with our probabilistic channel simulator [104], with the fol-

lowing parameters: frequency of operation of 1GHz,θ = [−22 3.0]T ,
√
α =

√
8dB

and β = 1m. As for multipath fading, this channel experiences a correlated Rician

fading, with Jakes power spectrum [13], which results in themultipath fading getting

uncorrelated after0.12m. The pdf of a unit-average Rician distribution, with parame-

ter Kric, is given by [11]: fΥMP(x) = (1 + Kric)e
−Kric−(1+Kric)xI0

(
2
√
xKric(Kric + 1)

)
,

whereI0(.) is the modified zeroth-order Bessel function. Note thatKric = 0 results in

an exponential distribution, which experiences a considerable amount of channel vari-

ations, whileKric = ∞ results in no fading, i.e., we will have a channel with only

path loss and shadowing. Multipath power (in dB),σ2, is related toKric as follows:

σ2 = E
{
ω2(q)

}
= 100

∫∞
0

log210(x)fΥMP(x)dx − 100
( ∫∞

0
log10(x)fΥMP(x)dx

)2
. For the

simulated channel of Fig. 2.6,σ =
√
2 dB, which corresponds toKric = 19.
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Figure 2.7:Impact ofβ on the estimation ofKdB for both optimum positioning of Theorem 6 and
random sampling.
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Figure 2.8:Impact ofβ on the estimation ofnPL for both optimum positioning of Theorem 6 and
random sampling.

Fig. 2.7 and Fig. 2.8 show the impact of the correlation distance,β, on the estimation

variance ofKdB andnPL respectively. In this example, the workspace is a ring with an inner

radius of0.3m and an outer radius of3.3m, superimposed on the simulated channel of Fig.

2.6, such that the centers of the rings are positioned at the transmitter. We consider the

case wherek = 8 samples are taken from the workspace. Furthermore, we compare the

performance for the case of random uniformly-distributed samples with the case where

samples are optimally positioned based on Theorem 6. For this workspace, enforcing

D1k
Q = 0 results inmax ‖DQ‖22 = 100k log210(

10
3
), which can be achieved if and only if
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half of the samples are distributed on the inner circle whilethe other half are on the outer

one. Therefore, we assume that four samples are equally-spaced on the inner circle while

the other four are equally-spaced on the outer one.3 The figures show that the optimum

positioning of Theorem 6 can reduce the error, especially for the estimation ofnPL (which

will have the most impact on the overall channel estimation error [6]). It can also be

seen that asβ approaches0 or ∞, both estimators have the same quality as predicted by

Theorem 7. Finally, the performances of the two estimators are not that different for other

values ofβ in this example.

2.4 Impact of channel parameters on the estimation of the

shadowing power

In this section we investigate the impact of different channel parameters on the estimation

of the shadowing power (α). Similar to the previous sections, we consider both ML and LS

estimations of the shadowing power. While ML is the optimum estimator, it requires the

knowledge ofβ, which may not be available. Thus, the ML analysis provides abenchmark

for the estimation performance of the LS approach. We first consider the case where path

loss parameters are perfectly estimated and then extend ouranalysis to the case where path

loss parameters are estimated using ML or LS estimator.

As mentioned earlier in Section 2.1, finding a closed-form expression for the ML es-

timation of the shadowing power in the presence of multipathfading is a challenging

problem. To simplify the mathematical analysis, we neglectthe multipath fading effects

in this part and consider the case whereRtot,Q = αRnorm,Q. However, the analysis for the

LS estimator can be easily extended to the general case whereσ2 6= 0. For this case, the

LS approach estimatesχ which is the sum of the shadowing and multipath powers in the

3Note that the multipath fading components of different sampling points are uncorrelated with
100% probability for the case of optimum positioning and 95%probability for the case of random.
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dB domain.

Let YQ,cent = YQ −HQθ denote the centered version of vectorYQ. Let α̂ML |θ andα̂LS|θ

represent the Maximum Likelihood and Least Square estimators ofα respectively, whenθ

is known. As discussed in Section 2.1, we have4

α̂ML |θ =
Y T
Q,centR

−1
norm,QYQ,cent

k
andα̂LS|θ =

Y T
Q,centYQ,cent

k
, (2.25)

Forβ = ∞, matrixRnorm,Q is not invertible and the ML estimator can not be applied. Asβ

goes to∞, we haveYQ,cent = ̺1k where̺ ∼ N (0, α). Therefore, the optimum estimate of

the shadowing power becomes̺2 in this case, which can be attained by the LS estimator

with the estimation error variance ofE
{
(̺2 − α)2

}
= 2α2. However, in practice, when

β goes to∞, α will become zero, which results in no shadowing variations and hence

nothing to estimate beyond the path loss curve.

Lemma 6. AssumeX ∈ R
k ∼ N (0, R) is a zero mean multivariate Gaussian vector with

the covariance matrixR = [ri,j] ∈ R
k×k. We haveE

{
(XTX)2

}
=
[
trace(R)

]2
+ 2 ×

1Tk (R •R)1k.

Proof. We have

E

{
(XTX)2

}
=

k∑

i=1

E
{
x4i
}
+
∑

1≤i,j≤k
i 6=j

E
{
x2ix

2
j

}
= 3

k∑

i=1

r2i,i +
∑

1≤i,j≤k
i 6=j

(
ri,irj,j + 2r2i,j

)

=
[ k∑

i=1

ri,i

]2
+ 2

∑

1≤i,j≤k

r2i,j =
[
trace(R)

]2
+ 2× 1Tk (R •R)1k. (2.26)

Theorem 8. Consider the case where multipath is negligible, i.e.σ2 = 0 andRtot,Q =

αRnorm,Q. Let α̂ML|θ and α̂LS|θ represent the Maximum Likelihood and Least Square esti-

mators ofα respectively, whenθ is known. We have the following properties:

4We assume perfect knowledge ofβ when we use this ML estimation in the rest of this section.
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1) Both estimators are unbiased,

2) σ2
α̂ML|θ

= 2
k
α2 andσ2

α̂LS|θ
= 2

k2
α2
∑

1≤i,j≤k e
− ‖qi−qj‖

β whereqi 6= qj if i 6= j. Thus, the

error variance of both estimators is an increasing functionof α,

3) σ2
α̂LS|θ

is an increasing function ofβ whileσ2
α̂ML|θ

is independent ofβ.

Proof. We have:E
{
α̂ML |θ

}
= 1

k
E
{
Y T
Q,centR

−1
norm,QYQ,cent

}
= 1

k
trace

[
R−1

norm,QE
{
YQ,centY

T
Q,cent

}]
=

α. The LS case can be immediately verified to be unbiased. Next, we prove the second

property. DefineU , R
− 1

2
norm,QYQ,cent ∼ N (0, αIk×k), whereβ 6= ∞ (note that the ML

estimate is not defined forβ = ∞). Using Lemma 6 we have:

σ2
α̂ML |θ

= E

{(
α−

Y T
Q,centR

−1
norm,QYQ,cent

k

)2
}

= E

{(Y T
Q,centR

−1
norm,QYQ,cent

k

)2
}

− α2

=
1

k2
E

{(
UTU

)2}− α2 =
α2

k2
(
k2 + 2k

)
− α2 =

2

k
α2 and

σ2
α̂LS|θ

= E

{(
α− Y T

Q,centYQ,cent

k

)2
}

= E

{(Y T
Q,centYQ,cent

k

)2
}

− α2

=
1

k2

([
trace(Rtot,Q)

]2
+ 21Tk (Rtot,Q •Rtot,Q)1k

)
− α2 =

2

k2
1Tk (Rtot,Q •Rtot,Q)1k

=
2

k2
α21Tk (Rnorm,Q •Rnorm,Q)1k =

2

k2
α2

∑

1≤i,j≤k

e−
‖qi−qj‖

β .

Thus, they are both increasing functions ofα. The third property can be easily confirmed

from these equations.

The next theorem characterizes the Cramer-Rao bound for theestimation of the shad-

owing power and path loss parameters under the assumption that multipath is negligible

and correlation distanceβ is known.

Theorem 9. Consider the case where multipath power is negligible, i.e.Rtot,Q = αRnorm,Q

andβ is known. Defineξ , [θT , α]T . Let ξ̂ andC(ξ̂) represent an unbiased estimation

of ξ and the corresponding covariance matrix respectively. We then have the following
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Cramer-Rao bound,

C(ξ̂) �


 α

(
HT

QR
−1
norm,QHQ

)−1

02×1

01×2
2α2

k


 , (2.27)

where� denotes matrix inequality.

Proof. From Eq. 2.3, we have,

log fYQ
(YQ|θ, α, β, σ2 = 0)

= −k
2
log 2π − 1

2
log |Rnorm,Q| −

k

2
logα− 1

2α

(
YQ −HQθ

)T
R−1

norm,Q(β)
(
YQ −HQθ

)
,

and

∇θ log fYQ
(YQ|θ, α, β, σ2 = 0) = − 1

α

[
HT

QR
−1
norm,Q(β)HQθ −HT

QR
−1
norm,QYQ

]

=
1

α
HT

QR
−1
norm,Q(β)

(
YQ −HQθ

)
.

Therefore,

E

{
∇θ log fYQ

(YQ|θ, α, β, σ2 = 0)∇T
θ log fYQ

(YQ|θ, α, β, σ2 = 0)
}
=

1

α
HT

QR
−1
norm,QHQ.

(2.28)

Furthermore,

d

dα
log fYQ

(YQ|θ, α, β, σ2 = 0) = − k

2α
+

1

2α2

(
YQ −HQθ

)T
R−1

norm,Q(β)
(
YQ −HQθ

)
.

DefineX , 1√
α
R

− 1
2

norm,Q(β)
(
YQ −HQθ

)
. We haveX ∼ N (0, Ik×k). Therefore,

E

{( d

dα
log fYQ

(YQ|θ, α, β, σ2 = 0)
)2}

=
1

4α2
E

{(
XTX − k

)2} Lemma6
=

k

2α2
. (2.29)

For the cross terms, we have,

E

{ d

dα
log fYQ

(YQ|θ, α, β, σ2 = 0)∇θ log fYQ
(YQ|θ, α, β, σ2 = 0)

}

=
1

2α
3
2

E

{(
XTX − k

)
HT

QR
− 1

2
norm,Q(β)X

}
= 02×1. (2.30)
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From Eq. 2.28, Eq. 2.29 and Eq. 2.30, we have the following forthe Fisher information:

I(ξ) =




1
α
HT

QR
−1
norm,QHQ 02×1

01×2
k

2α2


 , (2.31)

which proves the theorem.

In Eq. 2.4 of Section 2.1 we showed that the ML estimation of path loss parameters is

an unbiased estimator, with the following error covariancematrix:Cθ,ML =
(
HT

QR
−1
tot,QHQ

)−1
.

Therefore, the ML estimation achieves the Cramer-Rao bound, as can be seen from The-

orem 9. Furthermore, it can be seen that the ML estimation of the shadowing power of

Theorem 8 achieves the Cramer-Rao bound of Theorem 9. We nextcharacterize the ML

estimation of the shadowing power when the knowledge of the path loss parameters is not

available. We first summarize some properties of projectionmatrices.

Lemma 7. A square matrixP ∈ R
k×k is a projection matrix iffP 2 = P . If P is a

projection matrix, then1Tk
(
P • P

)
1k = trace(P 2) = trace(P ).

Proof. Readers are referred to [99].

Theorem 10. Consider the case where multipath is negligible, i.e.σ2 = 0, and β is

bounded. Let̂αML|θ=θ̂ML
represent the ML estimation ofα whenθ is estimated using an

ML estimator: θ = θ̂ML. Then,E
{
α̂ML|θ=θ̂ML

}
= k−2

k
α, which is a biased estimator.

Moreover, we have the following for the estimation error varianceσ2
α̂ML|θ=θ̂ML

= 2
k
α2, which

is independent ofθ, β and an increasing function ofα.

Proof. If θ = θ̂ML , we then have the following Maximum Likelihood estimator:

α̂ML |θ=θ̂ML
=
Y T
QP

T
Q,MLR

−1
norm,QPQ,MLYQ

k
, (2.32)
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wherePQ,ML = Ik×k −HQ
(
HT

QR
−1
norm,QHQ

)−1

HT
QR

−1
norm,Q. Hence,

P T
Q,MLR

−1
norm,QPQ,ML

=
(
R−1

norm,Q − R−1
norm,QHQ

(
HT

QR
−1
norm,QHQ

)−1

HT
QR

−1
norm,Q

)

×
(
Ik×k −HQ

(
HT

QR
−1
norm,QHQ

)−1

HT
QR

−1
norm,Q

)

= R−1
norm,Q − R−1

norm,QHQ
(
HT

QR
−1
norm,QHQ

)−1

HT
QR

−1
norm,Q (2.33)

andE
{
YQY

T
Q

}
= HQθθ

THT
Q + αRnorm,Q. Therefore, using the above equations, we have

E

{
α̂ML |θ=θ̂ML

}
=

1

k
trace

[
P T
Q,MLR

−1
norm,QPQ,MLE

{
YQY

T
Q

}]

=
α

k
trace

[
Ik×k −R−1

norm,QHQ
(
HT

QR
−1
norm,QHQ

)−1

HT
Q

]

=
k − 2

k
α. (2.34)

As can be seen, this estimator is biased but it has an unbiasedasymptotic behavior. Next

we calculate the error variance of this estimator,

σ2
α̂ML |θ=θ̂ML

= E

{(
α−

Y T
QP

T
Q,MLR

−1
norm,QPQ,MLYQ

k

)2
}

= α2 − 2
k − 2

k
α2 +

1

k2
E

{(
Y T
QP

T
Q,MLR

−1
norm,QPQ,MLYQ

)2
}
. (2.35)

Let us defineU , R
− 1

2
norm,QPQ,MLYQ. We haveE

{
U
}
= R

− 1
2

norm,QPQ,MLHQθ = 0 and

CU = E
{
UUT

}
= αR

− 1
2

norm,QPQ,MLRnorm,QP
T
Q,MLR

− 1
2

norm,Q

= αR
− 1

2
norm,Q

(
Rnorm,Q −HQ

(
HT

QR
−1
norm,QHQ

)−1

HT
Q

)

×
(
Ik×k −R−1

norm,QHQ
(
HT

QR
−1
norm,QHQ

)−1

HT
Q

)
R

− 1
2

norm,Q

= αR
− 1

2
norm,Q

(
Rnorm,Q −HQ

(
HT

QR
−1
norm,QHQ

)−1

HT
Q

)
R

− 1
2

norm,Q

= α
(
Ik×k − R

− 1
2

norm,QHQ
(
HT

QR
−1
norm,QHQ

)−1

HT
QR

− 1
2

norm,Q

)
. (2.36)
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It can be easily confirmed that1
α
CU is a projection matrix. Therefore, using Lemma 6 and

7 we have:

E

{(
Y T
QP

T
QR

−1
norm,QPQYQ

)2
}

= E

{(
UTU

)2}
=
[
trace(CU)

]2
+ 21Tk (CU • CU)1k

= α2
(
(k − 2)2 + 21Tk (

1

α
CU • 1

α
CU)1k

)
= α2

(
(k − 2)2 + 2trace(

1

α
CU)

)
= k(k − 2)α2.

(2.37)

Substituting this value in Eq. 2.35 results inσ2
α̂ML |θ=θ̂ML

= 2
k
α2.

Remark 4. Theorem 10 shows that the ML estimation error variance of theshadowing

power, for both cases where the path loss parameters are perfectly known or estimated

using an ML estimator, is independent of the sampling positions.

Next we characterize the estimation of the shadowing power when the path loss pa-

rameters are estimated using an LS estimator, i.e.θ = θ̂LS.

Theorem 11. Consider the case where multipath is negligible, i.e.σ2 = 0. Let α̂LS|θ=θ̂LS

represent the Least Square estimation ofα whenθ = θ̂LS. We then have the following,

E

{
α̂LS|θ=θ̂LS

}
= α

[
1− 1

k
trace(E)

]

σ2
α̂LS|θ=θ̂LS

=
α2

k2

[
2trace(R2

norm,Q) +
[
trace(E)

]2
+ 2trace(E2)− 4trace(F )

]
,

whereE =
(
HT

QHQ
)−1

HT
QRnorm,QHQ andF =

(
HT

QHQ
)−1

HT
QR

2
norm,QHQ. Therefore,

the estimation error variance is independent ofθ while it is an increasing function ofα.

Proof. We have the following Least Square estimator whenθ = θ̂LS:

α̂LS|θ=θ̂LS
=
Y T
QP

T
Q,LSPQ,LSYQ

k
(2.38)
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wherePQ,LS = Ik×k −HQ
(
HT

QHQ
)−1

HT
Q is the projection matrix. We have

E

{
α̂LS|θ=θ̂LS

}
=

1

k
trace

[
PQ,LSE

{
YQY

T
Q

}]

=
α

k
trace

[
Rnorm,Q −HQ

(
HT

QHQ
)−1

HT
QRnorm,Q

]

= α
[
1− 1

k
trace(E)

]
. (2.39)

We next characterize the error variance of this estimator:

σ2
α̂LS|θ=θ̂LS

= E

{(
α− Y T

QP
T
Q,LSPQ,LSYQ

k

)2
}

= α2 − 2α2
[
1− 1

k
trace(E)

]
+

1

k2
E

{(
Y T
QP

T
Q,LSPQ,LSYQ

)2
}
. (2.40)

DefineU , PQ,LSYQ. We haveU ∼ N (0, CU) where

CU , αPQ,LSRnorm,QP
T
Q,LS

= αRnorm,Q − αRnorm,QHQ
(
HT

QHQ
)−1

HT
Q − αHQ

(
HT

QHQ
)−1

HT
QRnorm,Q

+ αHQ
(
HT

QHQ
)−1

HT
QRnorm,QHQ

(
HT

QHQ
)−1

HT
Q. (2.41)

Therefore, we have trace(CU) = α
[
k−trace(E)

]
. After some lines of derivations, it can be

confirmed that1Tk (CU•CU)1k = trace(C2
U) = α2

(
trace(R2

norm,Q)+trace(E2)−2trace(F )
)
.

Substituting Eq. 2.41 in Eq. 2.40 results in:

σ2
α̂LS|θ=θ̂LS

= α2 − 2α2
[
1− 1

k
trace(E)

]

+
α2

k2

[
[
k − trace(E)

]2
+ 2trace(R2

norm,Q) + 2trace(E2)− 4trace(F )

]

=
α2

k2

[
2trace(R2

norm,Q) +
[
trace(E)

]2
+ 2trace(E2)− 4trace(F )

]
. (2.42)

As β goes to zero, we havelimβ→0E = limβ→0 F = I2×2. Thus, it can be verified

that limβ→0 E

{
α̂LS|θ=θ̂LS

}
= k−2

k
α, which is asymptotically unbiased. Moreover, we have
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limβ→0 σ
2
α̂LS|θ=θ̂LS

= 2α2

k2
. For the case ofβ = ∞, we havelimβ→∞ F = k limβ→∞E.

Similar to the derivations of Eq. 2.24, we can show that,

lim
β→∞

E = (HT
QHQ

)−1(
HT

Q1k1
T
kHQ

)
=


k −1TkDQ

0 0


 . (2.43)

Therefore,limβ→∞ E

{
α̂LS|θ=θ̂LS

}
= 0 and as a resultlimβ→∞ α̂LS|θ=θ̂LS

= 0. Further-

more,limβ→∞ trace(E2) = k2 which results inlimβ→∞ σ2
α̂LS|θ=θ̂LS

= α2. As β goes to∞,

the measurement vector becomesYQ = Hθ+̺1k, where̺ ∼ N (0, α). Fork > 2, the path

loss slope,nPL, can be perfectly estimated. Then, we haveYQ−(−nPLDQ) = (KdB+̺)1k.

In this case, the LS estimation ofα will be 0, which corresponds to the error variance of

α2. It should be noted that in this case, the channel can be perfectly predicted fork ≥ 2.

Similarly, in practice, asβ goes to∞, α would become zero. Thus, shadowing power of

zero will be correctly estimated in practice.

2.5 Performance analysis using unbiased estimation of path

loss parameters

In Section 2.2, we considered the impact of the underlying parameters on the spatial pre-

dictability of a wireless channel, where we assumed that theunderlying parameters are

estimated perfectly. In this section, we extend that analysis to also consider the impact of

estimation error in path loss parameters. In [6], authors analyzed the sensitivity of channel

predication to the estimation of the underlying parameters. Fig. 2.9 shows the impact of

parameter estimation error on the overall channel prediction performance. For each curve,

only one parameter is perturbed while the rest are assumed perfectly estimated. It can

be seen that the curves attain their minima when there is no parameter estimation error,

as expected. We can furthermore observe that uncertainty inthe estimation of different

parameters impacts the performance differently. As can be seen, the prediction is more
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sensitive to path loss parameters (especially path loss exponentnPL). In other words, the

effect of an error in the estimation of the shadowing parameters is almost negligible, as

compared to the error in path loss estimation. As such, in this section we extend the anal-

ysis of Section 2.2 to the case where errors in the estimationof path loss parameters are

also considered.
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Figure 2.9:Average Normalized Mean Square Error (ANMSE), spatially averaged over different
channel realization and random sampling positions, as a function of the % of estimation error in̂α,
β̂ andθ̂ [6].

Consider the case where path loss parameters are estimated using an unbiased estima-

tor.5 We next characterize the error variance of channel prediction for this case, assuming

that the error in the estimation ofα, β andσ2 is negligible. Since we are considering both

the ML and LS estimators, we assume thatRtot,Q is invertible in the rest of the section (This

is naturally implied ifσ2 6= 0). Let θ̂unb = SYQ denote an unbiased estimator ofθ. We

have the following for the error covariance matrixCθ, unb = SRtot,QS
T , with SHQ = Ik×k.

Let Υ̂dB,Q,θ̂unb
(q) = E

{
ΥdB(q)

∣∣∣ YQ, θ = θ̂unb, α, β, σ
2
}

denote the estimation of channel

at positionq, when path loss parameters are estimated using the aforementioned unbiased

5The unbiased estimator can be either ML or LS.
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estimator:

Υ̂dB,Q,θ̂unb
(q) = hT (q)θ̂unb+ φT

Q(q)R
−1
tot,Q
(
YQ −HQθ̂unb

)

=
[(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
S + φT

Q(q)R
−1
tot,Q

]

︸ ︷︷ ︸
GQ

YQ.

We have the following characterization for the error variance of channel estimation:

σ2
dB,Q,θ̂unb

(q) , E

{(
ΥdB(q)− Υ̂dB,Q,θ̂unb

(q)
)2 ∣∣∣ α, β, σ2

}

= E
{(
hT (q)θ + Ξ{q} −GQYQ

)(
hT (q)θ + Ξ{q} −GQYQ

)T}

= E

{(
Ξ{q} −GQΞQ

)(
Ξ{q} −GQΞQ

)T}

= α + σ2 +GQRtot,QG
T
Q −GQφQ(q)− φT

Q(q)G
T
Q, (2.44)

whereΞ{q} = ν(q) + ω(q) denotes the sum of shadowing and multipath power (in dB

domain) at positionq. It can be easily confirmed that

GQRtot,QG
T
Q =

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
SRtot,QS

T
(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)T

− φT
QR

−1
tot,QφQ +GQφQ(q) + φT

Q(q)G
T
Q. (2.45)

Therefore, we have

σ2
dB,Q,θ̂unb

(q) = α + σ2 − φT
QR

−1
tot,QφQ︸ ︷︷ ︸

initial ch. est. error var. if path loss is perfectly known

+
(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
Cθ, unb

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)T

︸ ︷︷ ︸
increase in error var. due to error propagation from est. ofθ

. (2.46)

The initial uncertainty of channel estimation atq can be represented byα+σ2−φT
QR

−1
tot,QφQ

if path loss is perfectly removed. Then, the second term of Eq. 2.46 is an increase in the

error due to error propagation in the estimation ofθ. As can be seen,σ2
dB,Q,θ̂unb

(q) is not a

function ofθ sinceΥ̂dB,Q,θ̂unb
(q) is an unbiased estimator of channel at positionq.

In the previous sections, we showed that asα andσ2 increase, the estimation of path

loss parameters as well as channel prediction quality become worse. Thus, we expect
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to have the same trend, when considering both path loss estimation error and channel

predictability. We next study the effect of correlation distance on the overall performance.

Similar to Section 2.3, we consider two cases ofβ = 0,∞ and characterize the overall

channel estimation error variance. Moreover, we propose anoptimum positioning scheme

that minimizes the overall channel estimation error for these two cases.

Theorem 12. LetQopt
σ2

dB,Q,θ̂ML/LS
(q),β=0,∞,σ2 6=0

6 denote the optimum positioning which mini-

mizes the overall estimation error variance atq for bothβ = 0 and∞ andσ2 6= 0, consid-

ering path loss estimation through either ML or LS. We have1
k
1TkDQopt

σ2
dB,Q,θ̂ML/LS

(q),β=0,∞,σ2 6=0

=

D{q}.

Proof. For β = ∞, we havelimβ→∞ φQ(q) =
ρ

1+ρ
χ1k, ∀q ∈ K, whereρ = α

σ2 andχ =

α+ σ2. If σ2 6= 0, then using properties 3 and 4 of Section 2.3-B, we getlimβ→∞ hT (q)−
φT
Q(q)R

−1
tot,QHQ =

[
1− ρ

1+ρ
χ limβ→∞ 1TkR

−1
tot,Q1k −D{q}+

ρ
1+ρ

χ limβ→∞ 1TkR
−1
tot,QDQ

]
=

[
1

1+ρk
ρ

1+ρk
1TkDQ − D{q}

]
and limβ→∞ φT

QR
−1
tot,QφQ = ρ2k

(1+ρ)(1+ρk)
χ. Moreover, from

Eq. 2.19 and Theorem 7, we haveCθ,ML/LS,β=∞ , limβ→∞Cθ,ML = limβ→∞Cθ,LS =

χ
1+ρ


ρ+

DT
QDQ

DT
QAkDQ

1Tk DQ

DT
QAkDQ

1Tk DQ

DT
QAkDQ

k
DT

QAkDQ


 , whereAk = kIk×k − 1k1

T
k . After some lines of deriva-

tions, it can be shown that

lim
β→∞

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
Cθ,ML/LS,β=∞

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)T

=
DT

QDQ + ρ
(
1TkDQ

)2 − 2(1 + ρk)1TkDQD{q} + k(1 + ρk)D2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

χ

=

(
1TkDQ − kD{q}

)2
ρ+DT

QDQ − 21TkDQD{q} + kD2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

χ. (2.47)

6The notation θ̂ML/LS denotes that the estimation of path loss parameters can be either

θ̂ML |α,β,σ2 or θ̂LS.
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Thus, we have the following for Eq. 2.46:

lim
β→∞

σ2
dB,Q,θ̂ML/LS

(q)

= χ

[
1− ρ2k

(1 + ρ)(1 + ρk)
+

(
1TkDQ − kD{q}

)2
ρ+DT

QDQ − 21TkDQD{q} + kD2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

]

=
Q1ρ+Q2

(1 + ρ)(1 + ρk)DT
QAkDQ

χ, (2.48)

whereQ1 = (k + 1)DT
QAkDQ +

(
1TkDQ − kD{q}

)2
andQ2 = DT

QAkDQ + DT
QDQ −

21TkDQD{q} + kD2
{q}. It can be easily confirmed thatQ1 = kQ2. Therefore, we have

limβ→∞ σ2
dB,Q,θ̂ML/LS

(q) = Q2

(1+ρ)DT
QAkDQ

χ = Q2

DT
QAkDQ

σ2. Moreover, we have:

lim
β→0

σ2
dB,Q,θ̂ML/LS

(q) =
(
1 + hT (q)

(
HT

QHQ
)−1

h(q)
)
χ =

Q2

DT
QAkDQ

χ. (2.49)

Thus, the optimum positioning which minimizes channel estimation error variance for

bothβ = 0 and∞ isQopt
σ2

dB,Q,θ̂ML/LS
(q),β=0,∞,σ2 6=0

= argminQ
Q2

DT
QAkDQ

. We have,

Q2

DT
QAkDQ

= 1 +
DT

QDQ − 21TkDQD{q} + kD2
{q}

DT
QAkDQ

= 1 +
1

k

DT
QAkDQ +

(
1TkDQ − kD{q}

)2

DT
QAkDQ

= 1 +
1

k
+

1

k

(
1TkDQ − kD{q}

)2

DT
QAkDQ

.

It can be easily confirmed thatAk is positive-semidefinite. Thus, under full rank assump-

tion of HQ (as discussed in Section 2.1), we haveDT
QAkDQ > 0. Therefore, to mini-

mize the estimation error variance for bothβ = 0 and∞, we need1TkDQ = kD{q} for

DQ ∈ R
k\span{1k}.

Case ofσ2 = 0 andβ = 0 can be treated the same as Eq. 2.49 withχ = α, which

results in the same optimum positioning scheme. However, ifσ2 = 0 andβ = ∞, for

k ≥ 2, the channel variations can be perfectly estimated at each point. Theorem 12 shows

that the optimum positioning results in‖q − qb‖ =
(∏k

i=1 ‖q − qi‖
) 1

k
. This suggests that

the optimum measurement positions should be chosen such that the distance ofq to the
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transmitter be the geometric average of the distances of themeasurement points to the

transmitter. LetQ′ = Qopt
σ2

dB,Q,θ̂ML/LS
(q),β=0,∞,σ2 6=0

denote the optimum positioning. We have,

lim
β→0

σ2
dB,Q′,θ̂ML/LS

(q) = α + σ2 +
α + σ2

k
and lim

β→∞
σ2

dB,Q′,θ̂ML/LS
(q) = σ2 +

σ2

k
. (2.50)
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Figure 2.10: Impact ofβ on the channel predictability, when considering path loss estimation
error.

Forβ = 0, ask goes to∞, the estimation error of path loss parameters goes to0 and

the estimation error variance becomesα+σ2. This value is an initial uncertainty assuming

known path loss parameters. For the case ofβ = ∞, on the other hand, the estimation error

variance becomesσ2 ask goes to∞. Fig. 2.10 shows the impact of correlation distanceβ

on the estimation performance when path loss parameters areestimated using an ML/LS

estimator. The impact of optimum positioning of Theorem 12 can also be seen from the

figure. For this example, the workspace is a2m × 2m square with
√
α =

√
8dB and

σ =
√
2dB, wherek = 10 samples are taken from the workspace (either randomly or opti-

mally). The y axis then represents the estimation performance after averaging over several

runs of channel realization and sampling patterns. As can beseen, ML and LS estimators

provide very similar performance in this case. Furthermore, optimizing the position of the

samples, according to Theorem 12 can improve the performance considerably.
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2.6 Numerical analysis on real channel measurements
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Figure 2.11:Blueprint of the portion of the basement of the ECE bldg. where channel measure-
ments are collected. A colormap of the measured received signal power is superimposed on the
map. R1 denotes the main room, where the transmitter is located (as marked on the figure). R2, R3
and R4 correspond to different hallways at the basement. Seethe PDF file for a colored version of
the map.

In this section, we show the impact of different environments, and their underlying pa-

rameters, on channel predictability, using real channel measurements. Fig. 2.11 shows the

blueprint of a portion of the basement of the Electrical and Computer Engineering build-

ing. We used a Pioneer-AT robot to make several measurementsalong different routes in

the basement, in order to map the received signal strength (each route is a straight line).

The robot is equipped with an802.11g wireless card, with transmission at2.4 GHz. It

uses the MadWiFi device driver to measure the received signal power [96]. The figure

also shows a color-map of our measured received signal power. In order to see the impact

of different underlying parameters on channel predictability, the area is divided into four

regions ofR1, · · · , R4, as can be seen from the figure. Since we are dealing with real data,

we can not check the accuracy of the estimation of the underlying parameters. As such,

we use all the measurements in each region, to estimate the underlying parameters of that

region, which are then used to understand channel predictability of each region. We use

the LS estimator of Section 2.1, in order to estimate channelparameters of each region.
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As can be seen, as the distance to the transmitter increases,nPL (the slope of path loss)

increases. This phenomena has previously been reported in the literature as well [105].

Another interesting phenomenon is the shadowing behavior.As can be seen, correlation

distance (β) increases as we get farther from the transmitter and move tothe hallways. This

makes sense as shadowing is the result of the transmitted signal being possibly blocked

by a number of obstacles before reaching the receiver. Finally, for region R1 (the main

room), multipath fading is the dominant term, as can be seen.This is expected since that

room is rich in scatterers and reflectors, with no major obstacle. Next, we consider chan-

nel predictability of different regions and relate the observed behaviors to the underlying

parameters of Table 2.1 .

Table 2.1: Channel Parameters for Different Regions and Routes

Region KdB nPL α β σ2

R1 -20.8870 1.2272 negligible negligible 22.1238
R2 -21.4677 2.3878 10.7772 0.0979 2.8862
R3 -17.9694 2.9795 8.6385 0.3231 7.6628
R4 68.7836 9.9392 2.0157 1.4377 7.5687
A1 - - 8.2164 0.0809 2.9721
A2 - - 11.6332 0.0860 2.9313
B1 - - 11.7535 0.2858 6.3979
B2 - - 11.6029 0.5832 6.1956
C1 - - 10.4193 0.2258 5.1696
C2 - - 10.3451 0.2396 7.2873

Fig. 2.12 compares channel prediction quality of differentregions (measured by Av-

erage Normalized MSE as defined in Section 2.1), given the parameters of Table 2.1. As

can be seen, region R4 has the best performance, as compared to the other regions. From

Table 2.1, region R4 has the smallestα+ σ2 and good amount of correlation, which result

in better predictability. On the other hand, region R1 experiences considerable multipath

fading and negligible shadowing, which results in the worstpredictability. Regions R2

and R3 have similar performances, since one has a higher shadowing correlation while the

other experiences lowerα+ σ2. As was shown earlier, path loss parameters do not impact
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Figure 2.12:Comparison of channel predictability for different regions of Fig. 2.11.

channel predictability. We next study the impact of each individual channel parameter on

the estimation performance more closely.

Table 2.1 also shows channel parameters corresponding to three pairs of routes in the

basement of ECE building (pairs A, B and C). Each pair is chosen such that only one

parameter changes and the rest are almost the same. Fig. 2.13(top) shows the impact of

the shadowing power on the estimation performance. As can beseen, for A1/A2 pair, the

correlation distance and multipath power are almost the same. However, A1 has a smaller

shadowing power, which results in a better estimation performance. Fig. 2.13 (middle)

and Fig. 2.13 (bottom) show the impact of correlation distance and multipath power on the

estimation performance respectively. For each case, otherchannel parameters are almost

the same. As can be seen, B2 with its higher correlation distance and C1 with its smaller

multipath power provide better predictability.

2.7 Summary

In this chapter, we developed a probabilistic channel prediction framework for predicting

the spatial variations of a wireless channel, based on a small number of measurements.
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Figure 2.13:Impact of (top) shadowing power, (middle) correlation distance and (bottom) mul-
tipath power on channel prediction performance, using realchannel measurements of Fig. 2.11.

We then proposed a mathematical foundation for understanding the spatial predictability

of wireless channels. More specifically, we characterized the impact of different environ-

ments, in terms of their underlying parameters, on wirelesschannel predictability. We

furthermore showed how sampling positions can be optimizedto improve the prediction

quality. Finally, we showed the performance of the proposedframework in predicting (and

justifying the predictability of) the spatial variations of real channels, using several mea-

surements in our building. Overall, the proposed probabilistic framework of this chapter

can be integrated with motion planning algorithms in robotic networks applications and

improve the connectivity of the mobile robots while accomplishing their task.
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Chapter 3

An integrated sparsity and model-based

framework for channel prediction

In the previous chapter, we proposed a probabilistic framework to predict the spatial vari-

ations of the channel and characterized the corresponding channel predictability in differ-

ent environments. In this chapter, we start by showing how the sparsity of the wireless

channels in the frequency domain can be utilized for channelprediction based on sparse

measurements. We then propose an integrated sparsity and model-based framework that

can keep the strengths of both approaches in order to design an estimator with even a better

performance.

Consider the workspaceK. We assume that the workspace is discretized into an or-

dered set of pointsP. Let vectorx ∈ R
N represent the corresponding received signal

strength overP, whereN = |P|. Consider the case where the received signal strength

to the base station is sparsely sampled at positionsQ = {q1, q2, · · · , qK} ⊂ P over the

workspace, withK representing the total number of gathered measurements. The channel

measurements can be gathered by one or a number of cooperative robots, making measure-

ments along their trajectories. Thus, the measurements canbe collected at the same time
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or at different time instants over the workspace.1 Defineyi , ΥdB(qi) for 1 ≤ i ≤ K. Let

YQ = [y1, · · · , yK ]T ∈ R
K represent the vector of all the gathered channel measurements

(in dB). We then haveYQ = ΦQx, whereΦQ represents aK × N sampling matrix that

corresponds toQ. More specifically, theith row ofΦQ has all zero entries, except for the

entry that corresponds toqi, which becomes one. In this chapter, it is our goal to predict

the received signal strength2, at unvisited locations (setP \Q), i.e. estimate vectorx from

YQ, whereK ≪ N .

The chapter is organized as follows. In Section 3.1, we provide a brief introduction

to the theory of compressed sensing. In Section 3.2 we show how channel sparsity in the

frequency domain can be utilized for estimating the spatialvariations of a wireless channel,

based on a small number of measurements. In Section 3.3 we analyze the impact of the

underlying channel parameters on the sparsity of the channel in the frequency domain. In

Section 3.4 we show the underlying tradeoffs between the sparsity-based approach and

probabilistic framework of Chapter 2. Section 3.5 then proposes an integrated framework

that combines the strengths of both and shows its superior performance, using real channel

measurements. A summary of the results of the chapter is provided in Section 3.6.

3.1 An Overview of Compressive sampling theory [1–4]

The new theory of sampling is based on the fact that real-world signals typically have a

sparse representation in a certain transformed domain. However, in most of the signal

processing applications, the signal of interest is first fully sampled, after which a trans-

formation is applied and only the coefficients above a certain threshold are saved. This

1As mentioned earlier in Section 2.1, we assume that the channel field is not changing with
time, in our modeling and prediction. Thus, we only need to consider the spatial variations of the
measurements.

2While we pose our framework based on the prediction of the received signal strength (or
power), we use the terms “channel prediction” and “receivedsignal strength prediction” inter-
changeably in Chapter 2 and 3.
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is not efficient as it puts a heavy burden on sampling the entire signal while only a small

percentage of the transformed coefficients were needed to represent it. The new theory of

compressive sampling, on the other hand, allows us to sense the signal in a compressed

manner to begin with.

A sparsesignal is a signal that can be represented with a small numberof non-zero

coefficients. Acompressiblesignal is a signal that has a transformation where most of

its energy is in a very few coefficients, making it possible toapproximate the rest with

zero. The new theory of compressive sampling [106] shows that, under certain conditions,

a compressible signal can be reconstructed using very few observations. Most natural

signals are indeed compressible. The best sparse representation of a signal depends on the

application and can be inferred from analyzing similar data. Consider a scenario where we

are interested in recovering a vectorx ∈ R
N . In our case,x represents the received signal

strength over the field of interest. We refer to the domain ofx as the primal domain. For

2D signals, vectorx can represent the columns of the matrix of interest stacked up to form

a vector. Letz ∈ R
K , whereK ≪ N , represent the incomplete linear measurements of

vectorx obtained by the sensors. We will have

z = Φx, (3.1)

where we refer toΦ as the observation matrix. Clearly, solving forx based on the obser-

vation setz is an ill-posed problem as the system is severely under-determined (K ≪ N).

However, suppose thatx has a sparse representation in another domain, i.e., it can be rep-

resented as a linear combination of a small set of vectors:x = ΓX,whereΓ is an invertible

matrix andX is S-sparse, i.e.,|supp(X)| = S ≪ N , where supp(X) refers to the set of

indices of the non-zero elements ofX and| · | denotes its cardinality. This means that the

number of non-zero elements inX is considerably smaller thanN . Then we will have

z = ΨX, (3.2)

whereΨ = Φ × Γ. We refer to the domain ofX as the sparse domain (or transform

domain). IfS ≤ K and we knew the positions of the non-zero coefficients ofX, we could
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solve this problem with traditional techniques like least-squares. In general, however, we

do not know anything about the structure ofX except for the fact that it is sparse (which

we can validate by analyzing similar data). The new theory ofcompressive sensing allows

us to solve this problem.

Theorem 1. (see [106] for details and the proof): IfK ≥ 2S and under specific condi-

tions, the desiredX is the solution to the following optimization problem:

min||X||0, such thatz = ΨX, (3.3)

where||X||0 = |supp(X)| represents the zero norm of vectorX.

Theorem 1 states that we only need2 × S measurements to recoverX and therefore

x fully. This theorem, however, requires solving a non-convex combinatorial problem,

which is not practical.

Instead, consider the followingℓ1 relaxation of the aforementionedℓ0 optimization

problem:

min||X||1, subject toz = ΨX. (3.4)

Theorem 2. (see [1, 107, 108] for details) Assume thatX is S-sparse. Theℓ1 relaxation

can exactly recoverX from measurementz if matrix Ψ satisfies the Restricted Isometry

Condition (RIC) for(2S,
√
2− 1).

Restricted Isometry Condition (RIC) [109, 110]:Matrix Ψ satisfies the RIC with pa-

rameters (Z, ǫ) for ǫ ∈ (0, 1) if

(1− ǫ)||c||2 ≤ ||Ψc||2 ≤ (1 + ǫ)||c||2 (3.5)

for all Z-sparse vectorc.

While it is not possible to define all the classes of matricesΨ that satisfy RIC, it is

shown that random partial Fourier matrices [111] satisfy RIC with the probability1 −
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O(N−M) if K ≥ BMS × logO(1)N, whereBM is a constant,M is an accuracy parameter

and O(·) is Big-O notation [106]. This shows that the number of required measurements

could be considerably less thanN . While the recovery of sparse signals is important,

in practice signals may rarely be sparse. Most signals, however, will be compressible.

In practice, the observation vectorz will also be corrupted by noise. Theℓ1 relaxation

and the corresponding required RIC condition can be easily extended to the case of noisy

observations with compressible signals [107].

The ℓ1 optimization problem of Eq. 3.4 can be posed as a linear programming prob-

lem [112]. The compressive sensing algorithms that reconstruct the signal based onℓ1

optimization are typically referred to as “Basis Pursuit” [1]. The Restricted Isometry Con-

dition also implies that the columns of matrixΨ should have a certain near-orthogonality

property. Matching Pursuit (MP) approaches, on the other hand, are another class of algo-

rithms that use this property to iteratively reconstruct the signal with less computational

complexity. Readers are referred to [110, 113] for more details on this. Next, we summa-

rize sparsity-based channel estimation using a small number of measurements.

3.2 Sparsity-based prediction of the channel spatial vari-

ations

In this part, we are interested in predicting the spatial variations of the received signal

strength at unvisited locations, based on sparse measurements. Our analysis of several

channel measurements has shown that wireless channels are compressible in the frequency

domain for several scenarios. For instance, the solid curveof Fig. 3.1 (left) shows a sample

channel measurement across a street in San Francisco (data is courtesy of Mark Smith [5]).

The dashed curve shows the sparsified version of this channel, where only 3% of its or-

dered Fourier coefficients are retained (ordered decreasingly) while the rest are zeroed.
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As can be seen, only 3% of the Fourier coefficients can capturethe spatial variations of

the channel well. Fig. 3.1 (right) measures the sparsity of the channel in the frequency

domain, for different percentages of the retained Fourier coefficients. The y-axis shows

-10log(NMSE), where NMSE denotes the Normalized Mean Square Error of the differ-

ence between the channel and its sparsified version. Then, the plot characterizes how

compressible this channel is. As can be seen, this channel isfairly compressible, i.e., a

small percentage of the Fourier coefficients suffices for capturing the signal.

We have also investigated the sparsity of the wireless channels, using other basis, such

as wavelet and Legendre [114]. While the channel can possibly be very compressible in the

wavelet domain, sampling in the spatial domain and reconstructing based on the wavelet

transformation results in a poor quality. This is due to the fact that spatial point-sampling

and wavelet basis are not incoherent, resulting in the correspondingΨ not satisfying the

RIC condition [41]. In [114], the authors show that reconstruction based on the random

sampling and Legendre basis meets the RIC condition, suggesting a possible recovery

strategy if the signal can be compressible in the Legendre basis. Our analysis of several

real channel measurements, however, shows that Fourier domain provides a considerably
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Figure 3.1: (left) channel measurement across a street in San Francisco [5], along with
its sparsified version, when only 3% of its ordered Fourier coefficients are retained, and
(right) measuring the compressibility of the left channel.
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Figure 3.2: Comparison of channel compressibility in Fourier and Legendre basis, for a
chunk of the outdoor channel of Fig. 3.1 (left). It can be seenthat the channel is consider-
ably more compressible in Fourier basis.

more compressible representation than Legendre basis. Fig. 3.2, for instance, compares

the compressibility of the channel measurement gathered inSan Francisco, based on both

Fourier and Legndre basis. It can be seen that a wireless signal is considerably more

compressible in the Fourier domain. This, accompanied withthe fact that the computa-

tional complexity of Fourier transformation is also considerably lower, makes Fourier an

appropriate domain for our sparsity-based channel reconstruction.

Consider the workspaceK. As introduced earlier in this chapter,x ∈ R
N andYQ

represent the vector of the spatial variations of the channel, corresponding toP, and the

vector of all the available channel measurements respectively (both in dB). We haveYQ =

ΦQx, whereΦQ represents aK × N sampling matrix that corresponds toQ. Then, in

the context of compressive sensing (Section 3.1), vectorx of Eq. 3.1 represents the spatial

variations of the channel andz = YQ denotes the vector of the sparse available channel

measurements. Therefore, the sparsity-based estimation of the channel spatial variations,
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using compressibility in the frequency domain, can be posedas follows:

X̃sparse= argmin ||X||1 (3.6)

s.t.YQ = ΦQΓX,

whereΓ denotes the inverse Fourier matrix andX represents the Fourier transforma-

tion of x. For a 1D case, we have[Γ1D]m,n = 1√
N
ej

2π
N

(m−1)(n−1) for 1 ≤ m,n ≤
N . For a 2D scenario, consider the case where the size of the discretized workspace

is Jx × Jy, whereJx × Jy = N . Define κ1(M1,M2) , ⌈M1

M2
⌉, where⌈.⌉ denotes

the smallest integer greater than or equal to the argument and κ2(M1,M2) , M1 −
M2

[
κ1(M1,M2) − 1

]
, for arbitrary variablesM1 andM2 ∈ N. We have,

[
Γ2D

]
m,n

=

1√
JxJy

e
j 2π
Jy

(
κ1(m,Jx)−1

)(
κ1(n,Jx)−1

)
+j 2π

Jx

(
κ2(m,Jx)−1

)(
κ2(n,Jx)−1

)
, for 1 ≤ m,n ≤ N .

3.3 Impact of the channel underlying parameters on the

variations of channel frequency response

So far, we established that a wireless channel can be considerably compressible in the

Fourier domain, based on examining real channel measurements. In this section, our goal

is to mathematically characterize channel compressibility in the frequency domain as this

directly impacts the performance of our sparsity-based estimator. More specifically, we

characterize the impact of the underlying channel parameters, i.e. parameters of path loss,

shadowing and multipath, on the variations of the frequencycomponents of a wireless

channel. This analysis shows how different parameters can impact the compressibility

of the channel and the resulting performance of the sparsity-based estimator. For this

analysis, consider the case where a wireless channel is measured along a route. Without

loss of generality, we assume that the channel is sampled across x-axis at equally-distanced

positions, where the distance between two consecutive sampling positions isd and the base

station is located at the origin. LetT denote the set of all the sampled positions. We have
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T =
{
q1 = d, q2 = 2d, · · · , qN = Nd

}
andDT =

[
10 log10(d), · · · , 10 log10(Nd)

]T
.

The measurement vector,YT , can then be represented by the following, for this 1D case,

based on Eq. 2.2,

YT = KdB1N − nPLDT + ϑT + ΩT , (3.7)

where similar to the Section 2.1,ϑT (impact of shadowing) is a zero-mean Gaussian ran-

dom vector with the covariance matrixRT ∈ R
N×N , where

[
RT
]
i,j

= α e−|i−j|d/β for

1 ≤ i, j ≤ N . Furthermore, for this analysis, we assume thatΩT (impact of multipath

fading) is a zero-mean Gaussian vector with the covariance matrix σ2IN×N (as discussed

earlier in Section 2.1). Next, we characterize the impact ofdifferent channel parameters

on the variations of the frequency response of a wireless channel. LetΓ1D
−1 denote the 1D

Fourier transform matrix with entries[Γ1D
−1]m,n = 1√

N
e−j 2π

N
(m−1)(n−1) for 1 ≤ m,n ≤ N .

We have the following for the frequency response of the channel:

YT ,F , Γ1D
−1YT = KdBΓ1D

−11N − nPLΓ1D
−1DT + Γ1D

−1ϑT + Γ1D
−1ΩT

=
√
NKdBe1 − nPLΓ1D

−1DT︸ ︷︷ ︸
impact of path loss

+ Γ1D
−1ϑT︸ ︷︷ ︸

impact of shadowing

+ Γ1D
−1ΩT︸ ︷︷ ︸

impact of multipath

, (3.8)

wheree1 denotes a unit vector inRN , with all entries zero except for the first one. We have,

YT ,F ∼ N
(√

NKdBe1−nPLΓ1D
−1DT , αΓ1D

−1Rnorm,T Γ1D
−H+σ2IN×N

)
. As can be seen,

KdB only affects the dc component of the frequency domain. Moreover, asnPL increases,

the absolute value of each frequency coefficient corresponding to the second part of the

path loss term in Eq. 3.8 increases. This implies that asnPL increases, on average, channel

frequency response will become less compressible. Asα and/orσ2 increase, the variation

of each of the Fourier components around its mean increases,as expected, implying lower

chance of compressibility.

In order to understand the impact ofβ, we next characterize the variations of each

component ofΓ1D
−1ϑT as a function ofβ. For1 ≤ k ≤ N , we have the following for the
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normalized variance of thekth element ofΓ1D
−1ϑT ,

[
Γ1D

−1Rnorm,T Γ1D
−H
]
k,k

=
1

N

∑

1≤m,n≤N

e−j 2π
N

(k−1)(m−1)e−
|m−n|d

β ej
2π
N

(k−1)(n−1) =
1

N

∑

0≤m,n≤N−1

e−j 2π
N

(k−1)(m−n)ρ|m−n|

= 1 +
1

N

N−1∑

i=1

(N − i)
[
e−j 2π

N
(k−1)i + ej

2π
N

(k−1)i
]
ρi = 1 +

1

N

N−1∑

i=1

(N − i)
[
(
ρ

λk
)i + (ρλk)

i
]
,

whereρ = e−
d
β andλk = ej

2π
N

(k−1).

Lemma 1. For ς ∈ (−1, 1), we have,

N−1∑

i=1

(N − i)ς i =
Nς

1− ς
− ς − ςN+1

(1− ς)2
. (3.9)

Proof. We have,

N−1∑

i=1

(N − i)ς i = N
N−1∑

i=1

ς i −
N∑

i=1

iς i = N
ς − ςN

1− ς
−
[ ς − ςN

(1− ς)2
− (N − 1)ςN

1− ς

]

= ς
N − 1−Nς + ςN

(1− ς)2
. (3.10)

Using Lemma 1 and the fact thatρ 6= 1 andλNk = ( 1
λk
)N = 1, we have:

[
Γ1D

−1Rnorm,T Γ1D
−H
]

k,k

= 1 +
1

N

N−1∑

i=1

(N − i)(
ρ

λk
)i +

1

N

N−1∑

i=1

(N − i)(ρλk)
i

= 1 +
(1− 1−ρN

N
) ρ
λk

− ( ρ
λk
)2

(1− ρ
λk
)2

+
(1− 1−ρN

N
)ρλk − (ρλk)

2

(1− ρλk)2

= 1 + ρ(1− 1− ρN

N
)
[ 1

λk

(1− ρ
λk
)2

+
λk

(1− ρλk)2

]
− ρ2

[ 1
λ2
k

(1− ρ
λk
)2

+
λ2k

(1− ρλk)2

]

= 1 + ρ(1− 1− ρN

N
)
(1 + ρ2)Λk − 4ρ

(1 + ρ2 − ρΛk)2
− ρ2

Λ2
k − 2ρΛk − 2(1− ρ2)

(1 + ρ2 − ρΛk)2
,
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whereΛk = λk +
1
λk

= 2 cos
(
2π
N
(k − 1)

)
. Let fρ : [−2, 2] → R

+ be defined as follows

fρ(Λ) , 1 + ρ(1− 1− ρN

N
)
(1 + ρ2)Λ− 4ρ

(1 + ρ2 − ρΛ)2
− ρ2

Λ2 − 2ρΛ− 2(1− ρ2)

(1 + ρ2 − ρΛ)2
for ρ ∈ (0, 1).

(3.11)

Then, the following theorem characterizes the variance of the Fourier transformation of

the shadowing term (Γ1D
−1ϑT ).

Theorem 3. Let gk ,
[
Γ1D

−1RT Γ1D
−H
]
k,k

= αfρ(Λk) denote the variance of thekth

Fourier transform component ofϑT , whereβ ∈ (0,∞). We havegk ≥ gk+1 for 1 ≤ k ≤
⌈N−1

2
⌉.

Proof. For 1 ≤ k ≤ ⌈N−1
2

⌉, it can be easily confirmed thatΛk ≥ Λk+1. To prove the

Theorem, it suffices to show thatfρ(Λ) is an increasing function ofΛ. Taking the derivative

with respect toΛ results in:

d

dΛ
fρ(Λ) = ρ(1 − 1− ρN

N
)
(1 + ρ2)(1 + ρ2 − ρΛ) + 2ρ

(
Λ(ρ2 + 1− ρΛ) + ρ(Λ2 − 4)

)

(1 + ρ2 − ρΛ)3

− ρ2
2(Λ + ρ)(1 + ρ2 − ρΛ) + 2ρ(Λ2 − 4)

(1 + ρ2 − ρΛ)3

=
(1 + ρ2 − ρΛ)

(
ρ(1 + ρ2 + 2ρΛ)− ρ2 × 2(Λ + ρ)

)

(1 + ρ2 − ρΛ)3

− 1− ρN

N
ρ
(1 + ρ2 − ρΛ)(1 + ρ2 + 2ρΛ) + 2ρ2(Λ2 − 4)

(1 + ρ2 − ρΛ)3

=
(ρ− ρ3)(1 + ρ2 − ρΛ) + 1−ρN

N

[
(ρ+ ρ3)(1 + ρ2 − ρΛ)− 2ρ(1− ρ2)2

]

(1 + ρ2 − ρΛ)3
.

(3.12)

For Λ ∈ [−2, 2], we haveΛ2 − 4 ≤ 0, resulting inρ2 − ρΛ + 1 ≥ 1 − ρ2 > 0 for

all ρ ∈ (0, 1). Therefore, it suffices to show that the numerator is positive. We have,

(ρ − ρ3)(1 + ρ2 − ρΛ) + 1−ρN

N

[
(ρ + ρ3)(1 + ρ2 − ρΛ) − 2ρ(1 − ρ2)2

]
≥ ρ(1 − ρ2)2 +

1−ρN

N
ρ(1− ρ2)(3ρ2 − 1). For 1√

3
≤ ρ < 1, it can easily confirmed that the right side of the

69



Chapter 3. An integrated sparsity and model-based framework for channel prediction

above inequality is greater than zero. For0 < ρ < 1√
3
, we have,

ρ(1− ρ2)2 +
1− ρN

N
ρ(1− ρ2)(3ρ2 − 1) ≥ ρ(1− ρ2)2 + ρ(1− ρ2)(3ρ2 − 1)

= 2ρ3(1− ρ2) > 0, (3.13)

which proves the theorem.
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Figure 3.3: Characterizing the sparsity of the shadowing component, for different values
of β, forN = 1500 andd = 0.01m. The y-axis shows the inverse of the Normalized Mean
Square Error (in dB) between the shadowing component and itssparsified version, as a
function of the % of the retained Fourier coefficients

For β = 0, it can be easily confirmed thatgk = α for 1 ≤ k ≤ N . Moreover, for

β = ∞, we haveg1 = Nα andgk = 0 for 2 ≤ k ≤ N . In summary, the analysis of

this part implies the following: asα and/orσ2 increase, the probability of having a less

compressible channel increases. AsnPL increases, channel becomes less sparse (in the

frequency domain) on average. As for the impact ofβ, while our derivations are towards

establishing that asβ increases, the shadowing component becomes more compressible,

more analysis is required to complete the proof. Thus, we complement this part with a

simulation result. Fig. 3.3 characterizes the sparsity of the shadowing component, for

different correlation distances (βs). The y-axis measures the sparsity, i.e. the inverse of
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the Normalized Mean Square Error (in dB) between the shadowing component and its

sparsified version, as a function of the percentage of the retained Fourier coefficients. The

figure shows that as the correlation distance increases, theshadowing component becomes

more compressible.

3.4 Channel prediction and the underlying tradeoffs

In this section, we compare the performance of the proposed sparsity-based framework of

this chapter with the probabilistic framework of Chapter 2.As we shall see, each approach

has its own strength that can result in a better reconstruction, depending on the scenario.
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Figure 3.4: Comparison of the sparsity-based and model-based approaches in estimating
the spatial variations of the channel of Fig. 3.1 (left).

Fig. 3.4 shows the performance of the sparsity-based approach of Section 3.2 and the

model-based approach of Chapter 2 for the reconstruction ofthe channel in Fig. 3.1 (left),

where the x-axis shows the percentage of the measurements gathered (as a % of the whole

area of interest). In this case, the gathered measurements are randomly distributed over the

workspace. For the model-based approach, our LS estimator of Section 2.1 is used for es-
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Figure 3.5: (left) Another channel measurement across a street in San Francisco [5] and
(right) comparison of the sparsity-based and model-based approaches in estimating the
spatial variations of this channel.

timating the underlying parameters. This is then followed by utilizing Eq. 2.8 for channel

prediction. It can be seen that when the number of measurements is small (less than 13.5%

in this figure), the sparsity-based approach outperforms the model-based one. This makes

sense as the model-based approach needs to estimate the underlying parameters. For a

very small number of measurements, the error in the estimation of these parameters can be

high, resulting in a performance degradation in the overallestimation. As the number of

measurements increases, the model-based approach then outperforms the sparsity-based

one in this case.

The model-based approach is also sensitive to the accuracy of the underlying model. In

order to see this, Fig. 3.5 (left) shows another channel measurement in San Francisco [5].

It can be seen that this channel can not be well characterizedby only one path loss trend.

As a result, we expect that the performance of our model-based approach degrade since

it assumes only one path loss trend in the area of interest (See Eq. 2.2). Fig. 3.5 (right)

shows the performance of channel reconstruction in this case. It can be seen that the

sparsity-based approach outperforms the model-based one in this case, due to a modeling

inaccuracy of the model-based approach.

The performance of the sparsity-based approach, on the other hand, depends heavily
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Figure 3.6: (left) 2D channel measurements in a hallway in our basement, with the base
station at(0, 0), and (right) characterizing the sparsity of this channel. See the PDF file for
a colored version.

on the compressibility of the channel in the frequency domain. For both Fig. 3.4 and 3.5

(right), the channel is considerably compressible in the Fourier domain, which is evident

from the good performance of the sparsity-based approach. There could, however, be cases

where the spatial variations of the channel are not that compressible in the area of interest.

Fig. 3.6 (left) shows a 2D channel, in a hallway in our basement. Fig. 3.6 (right) shows

the sparsity of this channel in the same way that we measured the sparsity for Fig. 3.1. As

can be seen, this channel is not that sparse. Fig. 3.7 shows the 2D reconstruction of this

channel. It can be seen that the performance of both approaches degrades considerably, as

compared to the previous channels. This area experiences considerable multipath fading

and negligible shadowing, which reduces channel compressibility. Thus, the model-based

approach outperforms the sparsity one unless almost half ofthe area is sampled. In sum-

mary, both approaches have their strengths and can be usefulin estimating a wireless

channel, based on a small number of measurements. However, depending on the scenario

and the percentage of the available measurements, one of theapproaches may outperform

the other one. Thus, in the next section, we propose an integrated approach which takes

advantage of both sparsity in the frequency domain and probabilistic characterization in

the spatial domain.
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Figure 3.7: Performance of the model-based and sparsity-based approaches for the 2D
channel of Fig. 3.6 (left).

3.5 An integrated sparsity and model-based framework

for estimating channel spatial variations

So far, we discussed a sparsity-based and a model-based approach for estimating the spa-

tial variations of a wireless channel. In Section 3.4, we showed the underlying tradeoffs

between the two approaches and discussed the strengths and weaknesses of each. In this

section, we propose a framework that integrates the strengths of both approaches, in order

to achieve a more robust channel estimator with a better performance.

For the model-based approach, its performance is directly affected by the estimation

of the underlying model parameters, as we saw in Section 3.4.Thus, in this section we

also show how the sparsity of the channel in frequency domaincan further be utilized to

improve the estimation of the underlying model parameters.
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3.5.1 An integrated model and sparsity-based estimator

Define QC as the set of all the positions ofP where channel needs to be estimated:

QC , P \Q = {q′1, q′2, · · · , q′N−K}. LetYQC denote the channel values at positions corre-

sponding toQC , which are not directly measured. Based on Eq. 2.8, we have the following

for the probability distribution ofYQC , conditioned on all the gathered measurements and

the underlying parameters:f(YQC |YQ, θ, α, β, σ2) ∼ N
(
ỸQC , Rtot,QC |YQ,θ,α,β,σ2

)
with

ỸQC , E

{
YQC

∣∣∣ YQ, θ, α, β, σ2
}
= HQCθ + ΣT

Q,QCR
−1
tot,Q
(
YQ −HQθ

)

Rtot,QC |YQ,θ,α,β,σ2 , E

{(
YQC − ỸQC

)(
YQC − ỸQC

)T ∣∣∣ θ, α, β, σ2
}

= Rtot,QC − ΣT
Q,QCR

−1
tot,QΣQ,QC , (3.14)

whereΣQ,QC = COV(YQ, YQC) ∈ R
K×(N−K) with entries

[
ΣQ,QC

]
i,j

= αe−
‖qi−q′j‖

β for

1 ≤ i ≤ K and1 ≤ j ≤ N −K. Let ỸQC ,ML denote the ML estimation ofYQC . We then

have :

ỸQC ,ML = argmax f(YQC |YQ, θ, α, β, σ2) = argmax ln
(
f(YQC |YQ, θ, α, β, σ2)

)

= argmin
1

2
(YQC − ỸQC)TR−1

tot,QC |YQ,θ,α,β,σ2(YQC − ỸQC). (3.15)

Clearly, we havẽYQC ,ML = ỸQC if no information on channel sparsity is utilized. Eq.

3.15 is equivalent to the following optimization problem, as a function of the Fourier

coefficients of the channel (X):

X̃ML = argmin(ΦQCΓX − ỸQC)TR−1
tot,QC |YQ,θ,α,β,σ2(ΦQCΓX − ỸQC)

s.t.YQ = ΦQΓX,

whereΦQ denotes the corresponding sampling matrix, as defined in Section 2.1 andΓ is

the inverse Fourier matrix (see Eq. 3.6).ΦQC is then defined in a similar manner. By

integrating this estimator with the sparsity-based one of Eq. 3.6, we have,

X̃integrated= arg min

(
τ‖X‖1 +

∥∥∥R− 1
2

tot,QC |YQ,θ,α,β,σ2

(
ΦQCΓX − ỸQC

)∥∥∥
2

2

)

s.t.YQ = ΦQΓX, (3.16)
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whereτ is a weighting coefficient. This estimator has optimality inbothℓ1 and Maximum

Likelihood senses. Eq. 3.16 can also be posed as the following unconstrained optimization

problem to account for measurement noise:

X̃integrated= argmin

(
τ ′‖X‖1 +

∥∥∥AintegratedX − bintegrated

∥∥∥
2

2

)
(3.17)

where

Aintegrated=


R

− 1
2

tot,QC |YQ,θ,α,β,σ2ΦQCΓ

ΦQΓ


 , bintegrated=


R

− 1
2

tot,QC |YQ,θ,α,β,σ2ỸQC

YQ


 ,

andτ ′ is a weighting coefficient.τ ′ can be assigned to give more or less emphasis to the

sparsity part (ℓ1 optimization). Furthermore, in [115], the authors show that for a general

ℓ1 − ℓ2 problem, i.e.argmin
(
τ ′‖X‖1 + ‖AX − b‖22

)
, we should haveτ ′ < 2‖AT b‖∞.

Otherwise, the unique solution will be the zero vector. Thisgives us a range for valid

values ofτ ′. In some of the optimization literature and papers that havesuch anℓ1 − ℓ2

problem, a pre-determined coefficient is found, by assumingsome a priori information

about the signal [116]. However, we do not assume any a prioriinformation to optimize

τ ′. We can simply chooseτ ′ to be a fraction of the maximum allowed value. Alternatively,

an adaptive weight, based on the percentage of available channel samples and the estimated

underlying parameters, can also be utilized.

3.5.2 Estimation of the underlying model parameters using channel

sparsity in the frequency domain

In the previous part, we assumed that the underlying parameters of the probabilistic model

are estimated, using the ML or LS approach of Section 2.1. As noted in Section 3.4, if

enough channel samples are collected, the underlying parameters can be estimated with a

good enough accuracy. However, at low enough sampling rates, the error in the estimation

of the underlying parameters may not be negligible. Thus, inthis part, we show how the
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sparsity of the channel can further be used to improve the estimation of the underlying

parameters.

Case of negligible multipath fading –σ2 ≈ 0: Depending on the environment, mul-

tipath fading can be negligible, as compared to the shadowing and path loss terms. We

start by considering this case. Under this assumption, we can apply the ML estimator of

channel parameters, as developed in Section 2.1 (Eq. 2.5), and write an expression for the

ML estimation of the channel, only as a function of the correlation distanceβ, as follows:

ŶQC ,ML ,σ2=0(β) , E

{
YQC

∣∣∣YQ, θ = θ̂ML ,σ2=0, α = α̂ML ,σ2=0, β, σ
2 = 0

}

= HQC θ̂ML ,σ2=0 + ΣT
norm,Q,QC(β)R

−1
norm,Q(β)

(
YQ −HQθ̂ML ,σ2=0

)

=

([
HQC − ΣT

norm,Q,QC(β)R
−1
norm,Q(β)HQ

](
HT

QR
−1
norm,Q(β)HQ

)−1
HT

QR
−1
norm,Q(β)

+ ΣT
norm,Q,QC(β)R

−1
norm,Q(β)

)
YQ,

whereΣnorm,Q,QC = 1
α
ΣQ,QC , with entries

[
Σnorm,Q,QC

]

i,j
= e−

‖qi−q′j‖

β for 1 ≤ i ≤ K

and1 ≤ j ≤ N − K. By considering the channel over the whole field, including both

measured and estimated points, we will have:x̂(β) = ΦT
QYQ+ΦT

QC ŶQC ,ML ,σ2=0(β), where

x̂ is a vector of channel signal strengths over the whole field. Next, we utilize the sparsity

of x in the frequency domain in order to estimateβ. We have,

β̂sparsity,σ2=0 = arg min‖Γ−1x̂(β)‖1 = arg min
∥∥Γ−1ΦT

QYQ + Γ−1ΦT
QC ŶQC ,ML ,σ2=0(β)

∥∥
1
.

(3.18)

No closed-form expression, however, exists for the optimumβ in this case. Onceβ is

estimated from Eq. 3.18,α andθ can be immediately estimated as follows (see Section

2.1):

θ̂ML ,sparsity,σ2=0 =
(
HT

QR
−1
norm,Q(β̂sparsity,σ2=0)HQ

)−1

HT
QR

−1
norm,Q(β̂sparsity,σ2=0)YQ,

α̂ML ,sparsity,σ2=0 =
1

K

(
YQ −HQθ̂ML ,sparsity,σ2=0

)T
R−1

norm,Q(β̂sparsity,σ2=0)
(
YQ −HQθ̂ML ,sparsity,σ2=0

)
.
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Once the underlying parameters are estimated, we can apply the integrated estimator of

Eq. 3.17.

Case of non-negligible multipath: If σ2 6= 0, there is no closed-form expression that

can express all the underlying parameters as a function of one of them, as was done in

the previous part. Furthermore, the ML estimation of the underlying parameters was for

the case ofσ2 = 0 in Section 2.1. Thus, in this case we consider the LS estimator of the

underlying parameters. We can write the following for the estimated channel, as a function

of α, β, σ2 and the LS estimation of the path loss parameters:

ŶQC ,LS(α, β, σ
2) , E

{
YQC

∣∣∣YQ, θ = θ̂LS, α, β, σ
2
}

=

([
HQC − αΣT

norm,Q,QC(β)
[
αRnorm,Q(β) + σ2IK×K

]−1
HQ
](
HT

QHQ
)−1

HT
Q

+ αΣT
norm,Q,QC(β)

[
αRnorm,Q(β) + σ2IK×K

]−1

)
YQ. (3.19)

Similar to the previous part, this results in the following for the sparsity-based estimation

of β, assuming thatα andσ2 are known:

β̂sparsity(α, σ
2) = arg min

∥∥Γ−1ΦT
QYQ + Γ−1ΦT

QC ŶQC ,LS(α, β, σ
2)
∥∥
1
. (3.20)

Assuming an estimatedβ, we can then estimateα andσ2, using an LS estimator:

[
α̂LS(β), σ̂

2
LS(β)

]
= arg min

α,σ2>0

∑

l∈L′
Q

w′(l)
[
αe−l/β + σ2δ(l)− r̂Q(l)

]2
, (3.21)

whereδ(.) denotes the dirac delta function andL′

Q = {l|0 < r̂Q(l) ≤ χ̂LS|θ=θ̂LS
}. The

weightsw′(l) can be chosen based on our assessment of the accuracy of the estimation of

r̂Q(l). By iteratively solving the equations given by 3.20 and 3.21, we can estimate the

underling channel parameters. After estimating the parameters, the integrated estimator of

Eq. 3.17 can be applied to reconstruct the channel.

Next, we compare the performance of the integrated approachto that of the sparsity-

based and model-based ones. To solve the convex problem of Eq. 3.17, we use SpaRSA
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Figure 3.8: Two chunks of the channel measurement of Fig. 3.1, which are collected across
a street in San Francisco [5] – (left) channel A and (right) channel B.

[117]. SpaRSA is an efficient iterative solver for minimizing an objective function that

is a weighted sum of a quadratic (ℓ2) error term and a sparsity regularizer (ℓ1). In each

iteration, it solves an optimization subproblem, involving a quadratic term with a diagonal

Hessian, in combination with the original sparsity regularizer. The readers are referred

to [117] for more details.

First, we show the performance of the integrated approach for two chunks of a chan-

nel across a street in San Francisco [5]. The first chunk, channel A, is as shown in Fig.

3.8 (left) whereas channel B is shown in Fig. 3.8 (right). Fig. 3.9 compares the sparsity

level of these two chunks. As can be seen, channel B is more sparse than channel A. Fig.

3.10 shows the performance of the integrated approach for both channel A (left) and B

(right) and compares them with that of the original sparsityand model-based approaches.

As for estimating the underlying parameters, if the number of gathered measurements is

high enough such that channel spatial correlation can be properly estimated, then the LS

estimator of Section 2.1 is used to estimate all the underlying parameters. If the number

of available channel measurements is very low, on the other hand, the proposed sparsity

approach of this section is utilized to estimate the underlying parameters. For this chan-

nel, we assumed that multipath is negligible, when estimating the underlying parameters.

Furthermore, an adaptive weight, inversely proportional to the number of available chan-
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Figure 3.9: Characterizing the sparsity of channel A and B. The y-axis shows the inverse of
the Normalized Mean Square Error (in dB) between the channeland its sparsified version,
as a function of the % of the retained Fourier coefficients.

nel samples, is used for theℓ1 term. As can be seen, the integrated approach outperforms

the original approaches considerably and can provide more than 10dB performance im-

provement depending on the % of available measurements. By comparing the left and

right figures, it can furthermore be seen that the sparsity-based approach provides a better

performance for channel B since it is sparser. Thus, channelA benefits more from the

integrated approach.
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Figure 3.10: Performance of the proposed integrated sparsity and model-based approach
for (left) channel A (Fig. 3.8 (left)) and (right) channel B (Fig. 3.8 (right)).
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Figure 3.11: Performance of the proposed integrated sparsity and model-based approach
for the 2D channel of Fig. 3.6 (left).

Next consider the 2D channel of Fig. 3.6 (left). Fig. 3.11 shows the performance

of our integrated approach for this channel. This is an indoor channel that experiences

considerable multipath. Thus, we can not assume thatσ2 ≈ 0. For low sampling rates,

where the underlying parameters can not be accurately estimated by the LS approach of

Section 2.1, we use our proposed integrated approach, by solving Eq. 3.20 and Eq. 3.21

iteratively. This is then followed by applying our proposedestimator of Eq. 3.17. As can

be seen, the integrated approach can improve the performance by properly combining the

benefits of both approaches. For this indoor result, we used afixed weight (τ ′). More

performance improvements can be achieved by properly adapting the weight. In [24, 28],

approaches similar to our model-based approach are presented. Based on the these results,

we expect that our proposed integrated approach outperforms these approaches as well,

especially for low sampling rates.
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3.6 Summary

In this chapter, we showed how to utilize the sparsity of the channel in the frequency do-

main in order to estimate the spatial variations of a wireless channel, based on a small

number of measurements. We also characterized the underlying tradeoffs between the

probabilistic approach of Chapter 2 and the sparsity-basedestimator of this chapter. We

showed that the probabilistic framework performs well, when the channel underlying pa-

rameters are estimated correctly. However, if the channel underlying parameters can not

be estimated correctly, for instance due to the very small number of the available mea-

surements or a modeling mismatch, the sparsity-based approach will then outperforms the

probabilistic framework. Motivated by our analysis of the underlying tradeoffs between

these two approaches, we then proposed an integrated channel prediction framework. In

this framework, we showed how to utilize both channel sparsity in the frequency domain

and probabilistic characterization in the spatial domain,in order to build a channel estima-

tor that can keep the benefits of both approaches. We furthermore validate the applicability

of this framework using both outdoor and indoor channel measurements.
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Binary consensus over fading channels

In Chapters 2 and 3, we considered connectivity-related issues by proposing a framework

for understanding channel predictability. Our proposed framework will allow a network

of cooperating nodes to more intelligently and efficiently maintain connectivity.

In this chapter, we then focus on sensing-related issues where each agent has a possibly

erroneous perception of a measured parameter in its environment. Our goal is then to

mitigate sensing errors through group cooperation and consensus. More specifically, we

consider the case where each agent starts with a binary decision of a parameter of interest

it has measured. We then study thebinary consensusproblem over fading channels, where

the goal of every node is to reach the majority of the initial votes of all the agents (in

order to increase immunity to local detection errors). For instance, in a cooperative fire

detection scenario, each node has an initial opinion as to ifthere is a fire or not. However,

as a network they may act based only on the majority vote. Therefore, the goal of the

network is for each node to reach consensus over the majorityof initial votes. Another

application ofbinary consensusis in the cooperative spectrum sensing in cognitive radio

networks. In this scenario, the secondary users communicate with each other in order to

reach consensus on busy or idle status of the primary user, which is a binary value.
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In this chapter, we first consider the binary consensus problem over a fixed and fully-

connected network topology, where each link experiences fading and receiver noise. To

improve the performance and robustness of the network cooperation, we propose novel

consensus-seeking protocols that utilize information of link qualities and noise variances.

We show that the proposed approach can improve consensus performance drastically. We

then model the network state as a Markov chain and characterize the transient behavior

of the network probabilistically. In particular, we show that, in the presence of channel

uncertainties, the network state is asymptotically memoryless, depending on the utilized

decision-making strategy. This is undesirable since the group agreement is not related to

the initial state of the system and is merely a function of channel errors. While chan-

nel uncertainty can result in undesirable asymptotic behavior, depending on the utilized

decision-making strategy, we show that the network can still be in consensus for a long pe-

riod of time (enough for practical purposes) with high probability. In order to characterize

the transient behavior, we derive a tight approximation forthe second largest eigenvalue

of the average of the underlying linear dynamical system. The derived expressions show

how channel uncertainty and network topology affect binaryconsensus and shed light on

the underlying tradeoffs.

In realistic scenarios, however, some links may not exist due to poor quality. Fur-

thermore, the underlying communication topology could be time-varying. Therefore, we

extend the binary consensus scenario to the not fully-connected and rapidly-changing net-

work topologies. We start by considering the case where if a link exists, it is perfect

in order to solely focus on the impact of not fully-connectedgraphs. We then consider

binary consensus over not fully-connected rapidly-changing topologies with fading chan-

nels. Furthermore, we consider two different decision-making strategies, in terms of using

the available transmissions: fusion and diversity. In the first approach, the given resources

are used to increase the flow of information in the network whereas the second strategy

aims to increase robustness to link errors by channel coding. We then characterize the un-

derlying tradeoffs between these two approaches in terms ofthe speed of convergence and
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asymptotic behavior for binary consensus over rapidly-changing network topology. For in-

stance, we show that by fusing the received information, thefusion strategy propagates the

information faster in the network and results in a better transient behavior. However, it can

lack asymptotic accurate consensus depending on the form ofthe local decision function.

On the other hand, the diversity strategy can provide a better asymptotic performance. The

main contributions of this chapter are summarized as follows:

1. Proposing a novel consensus-seeking protocol that utilizes information of link qual-

ities and noise variances to improve the performance and robustness of network

cooperation.

2. Mathematical characterization of the impact of fading, noise, network connectivity

and time-varying topology on consensus performance, whichbecomes challenging

due to all the introduced uncertainties.

3. Characterizing the underlying tradeoffs between our proposed diversity-based and

fusion-based approaches in terms of speed of convergence and asymptotic behavior.

The rest of this chapter is organized as follows: Section 4.1introduces the problem and

describes our system model. In Section 4.2, we develop the foundations of binary consen-

sus over a fully connected time-invariant network topologywith fading channels, in order

to focus solely on the impact of fading. More specifically, wepropose a novel consensus-

seeking protocol that utilizes information of link qualities and noise variances. We then

mathematically analyze the performance of the proposed protocol in terms of the tran-

sient and asymptotic behavior. In Section 4.3, we extend ouranalysis to time-varying not

fully connected network topologies. In Section 4.3.1, we consider binary consensus over

time-varying not fully connected network topologies with ideal links in order to build an

understanding of the impact of rapidly-changing topologies. We mathematically analyze

both fusion and diversity decision-making strategies in terms of the transient and asymp-
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totic behavior. Then, we extend that analysis to the case of fading channels in Section

4.3.2. A summary of the results of the chapter is provided in Section 4.4.

4.1 Problem formulation

Consider a cooperative network ofM nodes1 that are trying to reach consensus over the

occurrence of an event. Each agent has its own initial decision, based on its one-time

sensing. The goal of the network is for each node to reach a decision that is equal to the

majority of the initial votes. For instance, in a cooperative fire detection scenario, each

node has an initial opinion as to if there is a fire or not. However, as a network, they may

act only based on the majority vote. Therefore, it is desirable that every node reaches the

majority of the initial votes without a group leader. As it may happen in realistic scenarios,

the nodes may not have any information on the sensing qualityof themselves or others.

Therefore, the main goal is that each node reaches the majority of the initial votes.

In order to achieve this, each node will transmit its currentdecision to other nodes.

The transmissions occur over fading channels and are furthermore corrupted by the re-

ceiver noise. Each node will then revise its current vote based on the received information.

This process will go on for a while. We say thataccurate consensusis achieved if each

agent reaches the majority of the initial votes. The networkcan also be in a state of con-

sensus while the information of the initial state is lost. Werefer to this state as memoryless

consensus. More specifically, if the probability of consensus (or equivalently the probabil-

ity of being in all the states of the system) is independent ofthe initial condition, we say

that any consensus, if achieved, is memoryless. This is undesirable since the group agree-

ment is not related to the initial state of the system and is merely a function of channel

errors.

1We also use the term “agent” to refer to each node.

86



Chapter 4. Binary consensus over fading channels

Let bi(0) ∈ {0, 1} represent the initial vote of theith node, at time stepk = 0, where

bi(k) = 1 indicates that theith agent decides that the event occurred whereasbi(k) = 0

denotes otherwise. Each agent will send its binary vote (only one bit of information) to

the rest over fading channels. Letrj,i(k) represent the fading coefficient of the link from

nodej to nodei. The receiver then learnsrj,is and uses it in the detection process. Let

nj,i(k) represent the receiver noise at thekth time step in the transmission from thejth

node to theith one.nj,i(k) is zero-mean Gaussian with the variance ofσ2
j,i. We take the

receiver noise of the receptions of different nodes to be uncorrelated. Letbj,i(k) represent

the reception of theith node from the transmission of thejth one at thekth time step. We

have the following if there exists a link from thejth node to theith one:2

bj,i(k) = rj,i(k)bj(k) + nj,i(k) for 1 ≤ i, j ≤M, (4.1)

whereni,i(k) = 0 andri,i(k) = 1. We assume that each receiver can learn the fading

coefficient of each of its receptions and undo its effect. Furthermore, we consider the

case where the network experiences rapidly-changing but stationary fading channels. This

means that the nodes move fast enough such thatrj,is change and become uncorrelated

from one time step to the next. However, their movements are limited to a given area such

that fading channels can be considered stationary.

Let Ni(k) represent the set of indices of those agents that can communicate to theith

one (excluding itself) at time stepk. We have

Ni(k) = {oi1(k), · · · , oi|Ni(k)|(k)}, (4.2)

for oij(k) ∈ {1, 2, . . . ,M} \ {i} whereoij(k) 6= oij′(k) for j 6= j′, and|Ni(k)| represents

the size ofNi(k): 0 ≤ |Ni(k)| < M . Each agent will then update its vote based on its past

vote and the received information as follows:

bi(k + 1) = F
(
bi(k), boi1(k),i(k), boi2(k),i(k), . . . , boi|Ni(k)|

(k),i(k)
)
, (4.3)

2Note that, without loss of generality, we assumed that the modulation is on-off keying.
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for oij(k) ∈ Ni(k) and1 ≤ j ≤ |Ni(k)| whereF(.) represents a decision-making func-

tion. We show how to optimize this function in the next section. LetD(k) = [b1(k) b2(k) · · · bM (k)]

represent the state of the system at thekth time step andS(k) =
∑M

i=1 bi(k) denote the

corresponding sum of all the votes. LetΞ(k) represent a2M × 1 vector that contains the

probabilities of being in different possible states. We have [89]:

Ξ(k) =




prob
[
D(k) = [00 · · · 0]

]
→ S(k) = 0

prob
[
D(k) = [00 · · ·1]

]

...

prob
[
D(k) = [10 · · ·0]

]





→ S(k) = 1

...

prob
[
D(k) = [11 · · · 1]

]
→ S(k) =M




. (4.4)

Without loss of generality, possible states are ordered such thatS(k) increases. Within

each group whereS(k) is constant, the states are ordered increasingly. ThenΞn(k) =

prob[D(k) = φ(n)] for 0 ≤ n ≤ 2M − 1, whereφ(n) = [bn1 b
n
2 · · · bnM ] is thenth state

chosen from the ordered list. We have

Ξ(k + 1) = P T (k)Ξ(k), (4.5)

whereP (k) = [Pm,n(k)] represents a2M × 2M state transition matrix at timek with

Pm,n(k) = prob[D(k + 1) = φ(n)|D(k) = φ(m)] for 0 ≤ m,n ≤ 2M − 1. Let ν(i)
φ(m)(k)

represent the probability that theith agent votes one at(k + 1)th time step, given that the

current state isφ(m):

ν
(i)

φ(m)(k) , prob
[
bi(k + 1) = 1|D(k) = φ(m)

]
. (4.6)
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Then, the probability of going from statem to staten, at timek, will be as follows:

Pm,n(k) = prob
[
D(k + 1) = φ(n)|D(k) = φ(m)

]

=
M∏

i=1

prob[bi(k + 1) = bni |D(k) = φ(m)]

=

M∏

i=1

[bni ν
(i)

φ(m)(k) + (1− bni )(1− ν
(i)

φ(m)(k))].

4.2 Binary consensus over a fixed fully-connected network

topology with fading channels

In this section, we develop a mathematical framework for binary consensus over a fixed

and fully-connected network topology, where each link experiences fading and receiver

noise, as denoted by Eq. 4.1. A network is called fully connected, if there exists a direct

link between any two nodes. Our goal, in this section, is to solely focus on the impact

of fading. The analysis of this section will then serve as a base for the derivations of the

subsequent sections, where we consider binary consensus over not fully-connected time-

varying topologies.

4.2.1 Design of the local decision-making function – A Best Affine

Estimation (BAE) approach

As denoted in Eq. 4.3, each node updates its vote using functionF . In general, this func-

tion should be designed based on the optimum detector of the majority vote. However,

the computational complexity of this receiver is exponential and thus prohibitive. Another

possibility is to design an estimator ofS(k), the sum of all the votes. Each node can

then easily translate its estimation ofS(k) to a detection of majority vote as follows. If
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S(k) is estimated to be aboveM
2

, then the majority vote is one. Otherwise, it is zero.

Therefore, we design the local decision-making function based on the estimation ofS(k).

We furthermore focus on the Best Affine Estimation (BAE) ofS(k). There are two rea-

sons for considering the Best Affine Estimator. First, it wasshown that such a receiver

has a performance considerably close to the one that is basedon the optimum nonlinear

estimation ofS(k) [87]. Second, we can mathematically characterize the transient behav-

ior of this receiver. In this section, we mathematically characterize the BAE-based local

decision-making function.

For a fully-connected graph, we have|Ni| = M − 1 for all 1 ≤ i ≤ M . Let oij for

1 ≤ j ≤ M − 1 be as defined in Eq. 4.2 for theith node, where we dropped indexk

sinceNi(k) is a time-invariant set in this case. Define the following variables:Gi(k) =

[boi1(k), · · · , boiM−1
(k)]T ,Bi,r(k) = [boi1,i(k), · · · , boiM−1,i

(k)]T ,Ri(k) = diag
(
roi1,i(k), · · · , roiM−1,i

(k)
)
,

ωi(k) = [noi1,i
(k), · · · , noiM−1,i

(k)]T , where diag(z) is a diagonal matrix with the elements

of vectorz on its main diagonal. Then we have the following, considering all the recep-

tions of theith node:

Bi,r(k) = Ri(k)Gi(k) + ωi(k). (4.7)

Let ψi(k) represent the sum of the votes of all the nodes except for theith node:ψi(k) =

~1TGi(k) = S(k) − bi(k), where~1 denotes a column vector with all elements of one.

Then theith node estimatesψi(k) by using the best affine unbiased function of the re-

ceived information:ψ̂i(k) = αT
i (k)Bi,r(k) + βi(k), whereψ̂i(k) is theith node’s estimate

of ψi(k). To ensure an unbiased estimator, we should haveE[ψ̂i(k)] = E[ψi(k)] ⇒
αT
i (k)E[Bi,r(k)] + βi(k) = ~1TE[Gi(k)]. We useE[z], E{z} andz̄ to denote the average

of random variablez. Then we have the following optimization problem,

αi(k) = arg min E[
(
ψ̂i(k)− ψi(k)

)2
],

subject toβi(k) =
(
~1− Ri(k)αi(k)

)T
Λi(k), (4.8)

whereΛi(k) , E[Gi(k)] = prob
[
Gi(k) = ~1

]
. Λi(k) characterizes the voting patterns of
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different nodes. We then have,

E[
(
ψ̂i(k)− ψi(k)

)2
]

= E
[(
αT
i (k)

(
Ri(k)Gi(k) + ωi(k)

)
+
(
~1− Ri(k)αi(k)

)T
Λi(k)−~1TGi(k)

)2]

= αT
i (k)

(
Ri(k)Ci(k)Ri(k) + Ωi(k)

)
αi(k)− 2αT

i (k)Ri(k)Ci(k)~1 +~1
TCi(k)~1, (4.9)

whereCi(k) = E
[
(Gi(k) − Λi(k))(Gi(k) − Λi(k))

T
]

is the covariance matrix ofGi(k)

andΩi(k) = E[ωi(k)ω
T
i (k)]. By noting that Eq. 4.9 is a convex function ofαi(k), we have

αi(k) =
(
Ri(k)Ci(k)Ri(k) + Ωi(k)

)−1

Ri(k)Ci(k)~1 and

βi(k) =
(
~1− Ri(k)αi(k)

)T
Λi(k). (4.10)

Then, theith node can detect the majority of the votes, using the estimation of S(k), as

follows:

bi(k + 1) = Dec
( 1

M

[
bi(k) + ψ̂i(k)

])
, (4.11)

where Dec(z) =





1 z ≥ 0.5

0 z < 0.5
. As can be seen, to update its vote, theith node needs

to calculateCi(k), the covariance matrix ofGi(k). This requires theith node to calculate

the correlation between the votes of any two nodes in the network, which could be com-

putationally prohibitive. Therefore, theith node assumes that the votes of different nodes

are uncorrelated when updating its decision. This means that while different votes can be

correlated, theith node considersCi(k) to be diagonal. This simplification then facilitates

the mathematical characterizations of the rest of this chapter. If theith node assumes that

votes of different nodes are uncorrelated, i.e.E[bj(k)bl(k)] = E[bj(k)]E[bl(k)] for j 6= l,
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then we have

αj,i(k) =

rj,i(k)

r2j,i(k) +
σ2
j,i

qj(k)(1−qj(k))

=
1/rj,i(k)

1 + 1
qj(k)(1−qj(k))CNRj,i(k)

and

βi(k) =
M∑

j=1,j 6=i

βj,i(k), (4.12)

where CNRj,i(k) =
r2j,i(k)

σ2
j,i

, βj,i(k) =
(
1 − αj,i(k)rj,i(k)

)
qj(k) and qj(k) = E[bj(k)].

Therefore, theith node will update its decision as follows:

bi(k + 1) = Dec
( 1

M

[
bi(k) + ψ̂i(k)

])
= Dec




1

M

[
bi(k) +

M∑

j=1
j 6=i

(
αj,i(k)bj,i(k) + βj,i(k)

)]

 .

(4.13)

Note that for non-zero noise variances, the probability of the argument of the Dec(.) func-

tion of Eq. 4.13 being 0.5 is zero. Therefore, for the sake of the analysis of this section,

the value of Dec(z = 0.5) is chosen one, without loss of generality, as it does not impact

network behavior.

It can be seen that Eq. 4.13 assumes that the knowledge ofqj(k) is available at the

receiver. If theith node does not have an estimate ofqj(k), it will assume thatqj(k) = 1
2
.

We refer to this case asbasic BAE. Then,learning BAE refers to the case whereqj(k)

is statistically learned in the receiver. In order to do so, nodei will passbj,i(k) through a

hard decision function to estimate the number of times thatbj becomes one in a given time

interval. We then mathematically characterize the asymptotic and transient behavior of the

basic BAE case. The mathematical characterization of the performance of learning BAE

requires considering the error in the estimation ofqj(k)s, which is a challenging problem.

Therefore, in Section 4.2.5 we show the performance of learning BAE through simulation.
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4.2.2 Asymptotic behavior of basic BAE

For the basic BAE case, Eq. 4.13 can be simplified to the following:

bi(k + 1) = (4.14)

Dec




1

M

[
bi(k) +

M∑

j=1
j 6=i

α̃j,i(k)bj(k) + β̃i(k) + ñi(k)
]

 ,

whereα̃j,i(k) =
1

1+ 4
CNRj,i(k)

andβ̃i(k) =
∑M

j=1,j 6=i
1−α̃j,i(k)

2
. Furthermore,̃ni(k) is a zero-

mean Gaussian random variable with the variance ofσ̃2
i (k) = 1

M2

∑
j 6=i

1
CNRj,i(k)

(1+ 4
CNRj,i(k)

)2
.

Given the current state ofφ(m), the probability of nodei voting one will be as follows:

ν
(i)

φ(m)(k) = prob[bi(k + 1) = 1|D(k) = φ(m)] = (4.15)

Q

(
0.5− 1

M
[bmi +

∑M
j=1,j 6=i α̃j,i(k)b

m
j + β̃i(k)]

σ̃i(k)

)
,

whereφ(m) = [bm1 bm2 · · · bmM ] andQ(z) =
∫∞
z

1√
2π
e−

u2

2 du. Sinceν(i)
φ(m)(k), and subse-

quentlyP (k) of Eq. 4.5, are functions of CNRj,i(k)s, then matrixP (k) is time-varying.

For such cases, the average dynamical system should insteadbe considered where the av-

erage is taken over the fading coefficients to getP . Assuming that the fading coefficients

are stationary, we haveP = [Pm,n] with

Pm,n =

M∏

i=1

[
bni ν

i
φ(m) + (1− bni )(1− νi

φ(m))
]

(4.16)

andE
[
Ξ(k + 1)

]
= P

T
E
[
Ξ(k)

]
. Let ̺ = 2M denote the number of possible states of

the system andλ0,P , λ1,P . . . , λ̺−1,P represent ordered eigenvalues ofP , where|λ0,P | ≥
|λ1,P | ≥ . . . ≥ |λ̺−1,P |. The following can be easily confirmed for the case that∀i σ̃i(k) 6=
0 [79]:

Property 1: Matrix P is stochastic and positive (element-wise). A stochastic matrix

is a matrix in which the sum of each row is one. It is thus clear that matrixP (k), for
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anyk, and thereforeP is stochastic. For the positive part, note that if∀i σ̃i(k) 6= 0, then

0 < ν
(i)

φ(m)(k) < 1 from Eq. 4.15 and thereforePm,n(k) > 0 andP > 0. This means that if

there is any noise in any of the receptions of each node, then there is a non-zero probability

of going from any state to any other.

Property 2:λ0,P = 1, |λi,P | < 1 for 1 ≤ i ≤ ̺− 1,

Property 3: limk→∞(P
T
)k → xyT wherex = P

T
x, y = Py, andxT y = 1,

where 2 and 3 can be easily deduced from Property 1 using Perron and Gershgorin disk

theorems [99]. Then from Property 3, we know that the averagedynamic of the network

reaches a steady state asymptotically. Furthermore, we will havelimk→∞Ξ(k) = xyTΞ(0)

wherex andy are as defined in Property 3. ConsiderxyTΞ(0), the asymptotic value of

vectorΞ(k). Ξ(0) has exactly one element equal to one and the rest zero. SinceP is

stochastic from Property 1, vectory is a vector whose elements are all the same. Then,

yTΞ(0) loses the information of the initial state. Therefore, the asymptotic value will be

independent of the initial state and is proportional tox, the right eigenvector ofP
T
. It

can be seen that the network loses its memory of the initial state asymptotically due to the

impact of link errors, which is undesirable (see [79] for more details). It should be noted

that for any amount of non-zero link noise, the asymptotic behavior will be memoryless.

The network, however, can still be in consensus for a long period of time (enough for

practical purposes) with high probability, which necessitates characterizing the transient

behavior. Since the asymptotic behavior is memoryless, it is desirable that the network

gets there with a slower rate. In generalλ1,P ,. . . , λ̺−1,P determine the transient behavior

of the network. Among these eigenvalues, the second largestone (λ1,P ) typically has the

most impact on the transient behavior (see [118] for more details). The closer the second

eigenvalue is to the unit circle, the longer the network is inconsensus. In the limit, it can

be easily confirmed that if∀i, j 6= i, σj,i = 0, we will haveλ1,P = 1 andλi,P = 0 for

2 ≤ i ≤ ̺ − 1 [79]. In [79], we considered binary consensus over AWGN channels and

derived an approximated expression for the second largest eigenvalue. We next extend that

analysis to the case of fast fading channels.
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4.2.3 Transient behavior and the second largest eigenvaluefor basic

BAE

In this part, we characterize the transient behavior of the basic BAE case in fast-fading

environments. In general, finding an exact expression for the second largest eigenvalue of

P is considerably challenging. Instead, we derive a tight approximation for it, based on

the linearization of theQ(.) function.

Assumption 1:For a small arbitraryz, the linearization of theQ(.) function around the

origin results inQ(z) ≈ Q(0)− z√
2π

. We next prove the following general theorem, which

will be used throughout this chapter.

Theorem 1. Let P = [Pm,n] represent the state transition matrix for a time-invariant

average dynamical system wherePm,n = E
[
prob

[
D(k + 1) = φ(n)|D(k) = φ(m)

] ]
. Let

V(i)

φ(m) , E
[
prob

[
bi(k + 1) = 1|D(k) = φ(m)

]]
, whereD(k) denotes the state of the

network at timek andφ(m) is as defined in Section 4.1. Let sum(z′) represent the sum of

the elements ofz′ for any arbitrary vectorz′. If V(i)

φ(m) =
S
i,φ(m)

M
+(1−

2S
′

i,φ(m)

M
)C, whereC is

a constant (not a function ofm or i), andSi,φ(m) andS
′

i,φ(m) are any positive numbers such

that
∑M

i=1 Si,φ(m) =
∑M

i=1 S
′

i,φ(m) =Msum(φ(m)), then1− 2C is one of the eigenvalues of

P.

Proof. For any0 ≤ m ≤ 2M − 1 andS(k) =
∑M

i=1 bi(k), we have

E
[ M∑

j=0

jprob[S(k + 1) = j|D(k) = φ(m)]
]
=

M∑

i=1

V(i)

φ(m) .

If V(i)

φ(m) =
S
i,φ(m)

M
+ (1 −

2S
′

i,φ(m)

M
)C and

∑M
i=1 Si,φ(m) =

∑M
i=1 S

′

i,φ(m) = Msum(φ(m)), we

can extend [89] to show that
M∑

j=0

(
M

2
− j)E

[
prob

[
S(k + 1) = j|D(k) = φ(m)

]]
= (1− 2C)

(M
2

− sum(φ(m))
)
.

(4.17)
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Let ζ represent a2M × 1 vector, whereζd = M
2
− sum(φ(d)) andξ = Pζ . Then, we have

ξd =
∑M

j=0(
M
2
− j)E

[
prob

[
S(k+1) = j|D(k) = φ(d)

]]
= ζd(1−2C). Therefore,1−2C

is an eigenvalue ofP.

By applying Assumption 1 and averaging Eq. 4.15 over fading,we have:

ν
(i)

φ(m) ≈
1

2
− 1√

2πδi

(
.5− 1

M

(
bmi +

∑

j 6=i

γj,iδib
m
j +

∑

j 6=i

1− γj,iδi
2

))
, (4.18)

whereγj,i = Efading{ α̃j,i(k)

σ̃i(k)
} andδi = 1

Efading{ 1
σ̃i(k)

} with Efading{.} indicating averaging over

fading. We can then writeν(i)
φ(m) as a function ofν(i)

φ(0) as follows:

ν
(i)

φ(m) ≈
Si,φ(m)

M
+ (1− 2Si,φ(m)

M
)ν

(i)

φ(0), (4.19)

whereSi,φ(m) =
M(bmi +

∑
j 6=i γj,iδib

m
j )

1+
∑

j 6=i γj,iδi
. Note that we dropped indexk from ν

(i)

φ(m) due to the

stationarity assumption.

Theorem 2. Assume that CNRj,is are i.i.d. exponential random variables withµ = CNRj,i.

Then we haveγj,i = γ andδi = δ. LetP approx andλ1,P approx
represent the approximation

of matrixP and its second largest eigenvalue under Assumption 1 respectively. We have

λ1,P approx
= 1− 2Q

(
0.5−M−1

2M
(1−γδ)

δ

)
.

Proof. If µ = CNRj,i, we have the following under Assumption 1:ν(i)
φ(m) ≈

S
i,φ(m)

M
+ (1−

2S
i,φ(m)

M
)νφ(0) , whereSi,φ(m) =

M(bmi +
∑

j 6=i γδb
m
j )

1+(M−1)γδ
andνφ(0) = ν

(i)

φ(0) . From Eq. 4.18 and by

using the approximation of Assumption 1, we haveνφ(0) ≈ Q
(

0.5−M−1
2M

(1−γδ)

δ

)
. Moreover,

it can be easily confirmed that
∑M

i=1 Si,φ(m) = Msum(φ(m)). Then, by applying Theorem

1, we have1 − 2νφ(0) = 1 − 2Q
(

0.5−M−1
2M

(1−γδ)

δ

)
as one of the eigenvalues ofP approx.

As all CNRj,is go to infinity, this eigenvalue goes to one. Consider all theeigenvalues

of P except for the first one. As mentioned earlier, only the second largest one goes to

one as CNRj,is go to infinity. The same can be confirmed forP approx [79]. Therefore,

λ1,P approx
= 1− 2Q

(
0.5−M−1

2M
(1−γδ)

δ

)
.
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4.2.4 Special case: unknownσj,i

As can be seen, the decision-making function of Eqs. 4.12 and4.13 uses information

of σj,is. If such information is not available, then each receiver will use a zero-forcing

equalizer to undo the impact of the channel and use the equalized received information

assuming they are correct. We then have the following:

bi(k + 1) = Dec

(
1

M

(
bi(k) +

M∑

j=1,j 6=i

bj,i(k)

rj,i(k)

))
= Dec

(
S(k)

M
+ ni(k)

)
, (4.20)

whereni(k) = 1
M

∑M
j=1,j 6=i

nj,i(k)

rj,i(k)
with the variance ofσ2

i (k) = 1
M2

∑M
j=1,j 6=i

1
CNRj,i(k)

.

This receiver can be considered as a special case of the decision-making function of Eq.

4.14 wherẽαj,i(k) = 1 andβ̃i(k) = 0.

Theorem 3. Consider the case where knowledge of the noise variances is not avail-

able at the nodes. Take CNRj,i(k) =
r2j,i(k)

σ2
j,i

to be i.i.d. exponentially-distributed ran-

dom variables withµ = CNRj,i representing their average. We haveλ1,P approx
= 1 −

2Q
(

M
2
Efading{ 1√∑

j 6=i
1

CNRj,i(k)

}
)

.

Proof. This case is a special case of basic BAE whereα̃j,i(k) = 1, β̃i(k) = 0 and

σ̃2
i (k) = σ2

i (k) = 1
M2

∑
j 6=i

1
CNRj,i(k)

. Therefore, in this caseδ = δi = 1
Efading{ 1

σi(k)
}

and γ = γj,i = Efading{ 1
σi(k)

} due to the stationarity assumption. Then using The-

orem 2 with the aforementioned parameters will result inλ1,P approx
= 1 − 2Q

(
1
2δ

)
=

1− 2Q
(
M
2
Efading{ 1√∑

j 6=i
1

CNRj,i(k)

}
)
.

While Theorem 3 relates the transient behavior of the network to the link qualities,

finding a closed-form expression forEfading{ 1√∑
j 6=i

1
CNRj,i(k)

} is challenging for exponentially-

distributed CNRj,is. Alternatively, we can derive another approximation for the second

largest eigenvalue as follows. From Theorem 2, we haveλ1,P approx
= 1 − 2νφ(0) . Instead

of finding an expression forνφ(0) using Assumption 1 as we did before, we can directly

use Eq. 4.15 as follows:νφ(0) = Efading

{
Q
(

0.5
σi(k)

)}
. Then from the definition ofσi(k),
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we have 1
2σi(k)

=
√

.25M2
∑M

j=1,j 6=i
1

CNRj,i(k)

≤
√

0.25M2CNRi,min(k), where CNRi,min(k) =

min({CNRj,i(k)|1 ≤ j ≤ M, j 6= i}). The minimum ofM − 1 i.i.d. exponential ran-

dom variables, CNRi,min(k), can be easily shown to have an exponential distribution with
µ

M−1
representing its average. For an arbitrary exponentially-distributed random variable

u, with the averageu, we haveQ(
√
au) = 1

2
(1 −

√
0.5au

1+0.5au
) for an arbitrarya > 0.

Therefore,

λ1,P approx
≤
√

0.125M2µ/(M − 1)

1 + 0.125M2µ/(M − 1)
. (4.21)

4.2.5 Consensus performance

In this section, our simulation results will confirm the theoretical derivations of the previ-

ous parts and show the performance of group consensus over fading channels. We start by

considering the special case whereσj,is are unknown. We characterized the performance

of this case in Section 4.2.4 Fig. 4.1 (left) and Fig. 4.1 (right) show the performance of

a network of 4 nodes that is trying to reach consensus by communicating over AWGN

and fast fading channels respectively. The nodes do not haveany knowledge of noise

variances in this case. Initially 3 out of 4 nodes are voting one. Then it is desirable that

all four nodes vote one through communication. For the fading case, the figure shows

E
[
prob[S(k) = 4]

]
, i.e. the average probability of accurate consensus (averaged over fad-

ing), for different noise variances. Both figures show the performance for cases with poor

link qualities. For instance, average CNRj,i = 0dB means that average SNR per link is

-3dB if sending 0 and 1 are equiprobable. Two observations can be made from the figure.

First, it can be seen that at the earlier iterations, the probability of accurate consensus in-

creases. However, after a while, communication is not beneficial anymore as it results in

error propagation in the network, a decrease in the probability of accurate consensus and

an eventual memoryless consensus. This is as expected from Section 4.2.2, where we char-

acterized the asymptotic behavior of group consensus and showed that it is memoryless in
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the presence of any amount of link uncertainty. Second, it can be seen that fading ruins

the performance drastically by reducing the probability ofaccurate consensus. It therefore

becomes considerably important to mathematically characterize the transient behavior and

propose algorithms to improve the overall performance, as was done in the previous sec-

tions. In order to see how well the approximation of Theorem 3works, Fig. 4.2 shows the

2nd largest eigenvalue of the average transition matrix (λ1,P ), its approximation from The-

orem 3 (λ1,P approx
), and the upper bound of Eq. 4.21. It can be seen that the approximation

and its upper bound are considerably close to the true eigenvalue. As link qualities get

worse (lower CNR), the linearization of theQ function provides a better approximation,

resulting in the derivation of Theorem 3 getting closer to the true eigenvalue (see [118] for

more details on this). It should be noted that the upper boundof Eq. 4.21 is derived for

λ1,P approx
and not forλ1,P .
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Figure 4.1: Comparison of the performance of binary consensus over AWGN and fading
communication channels forM = 4 and the case where knowledge ofσj,is is not avail-
able (see Section 4.2.4) – (left) binary consensus over AWGNcommunication channels,
(right) binary consensus over fading communication channels with E[r2j,i] = 1, ∀i, j 6= i
(averaging is done over several runs).

Next we consider the case where knowledge ofσj,is is available at each node and can

be used in the decision-making process, as discussed in Section 4.2.1. Fig. 4.3 shows

the probability of accurate consensus for the proposed BAE approaches of Section 4.2.1,

where all the channels experience the same noise variance (σ2
j,i = 1) and the average
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upper bound of Eq. 29

Figure 4.2: Characterization of the 2nd largest eigenvaluefor the case where knowledge
of σj,is is not available (see Section 4.2.4) withM = 4, σ2

j,i = 1 andE[r2j,i] = 1 ∀i, j 6= i.
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σj,i unknown

Figure 4.3: Average probability of accurate consensus forM = 4, σ2
j,i = 1 andE[r2j,i] = 1

∀i, j 6= i.

power of fading coefficients is equal to one (E[r2j,i] = 1). Therefore, if sending0 and

1 is equiprobable, the average SNR of each link is -3dB, which is very low. The figure

shows the performance of both basic (solid line with plus markers) and learning (dashed

line) BAE approaches. As discussed in Section 4.2.1 for the basic BAE case,qj(k) is not

estimated and is assumed to be0.5. On the other hand, for the learning case, each node tries

to estimateqj(k)s, the voting patterns of other nodes. The performance for the case where

knowledge ofσj,i is not available (special case) is also shown for comparison(dashed

line with circle markers). It can be seen that using the knowledge of noise variances
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can improve the performance drastically, as expected. Still the basic-BAE case has an

undesirable memoryless asymptotic behavior as shown in Section 4.2.2, i.e. after a certain

time the probability of accurate consensus starts to decrease. It can then be seen that by

incorporating the online learning ofqj(k), learning BAE can improve the performance and

avoid the memoryless asymptotic behavior. However, characterizing the asymptotic and

transient behavior of the learning BAE case, is a challenging problem since it requires

considering the error in the online estimation ofqj(k). Furthermore, learning BAE is

more computationally complex, as compared to the basic BAE.Therefore, in the rest of

this chapter, we only consider the basic BAE case.
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Figure 4.4: Characterization of the 2nd largest eigenvaluefor the basic BAE case with
M = 4, σ2

j,i = 1 andE[r2j,i] = 1 ∀i, j 6= i.

To see how well Theorem 2 approximatesλ1,P for the basic BAE case, Fig. 4.4 shows

the second largest eigenvalue ofP as well asλ1,P approx
. It can be seen that the approximation

of Theorem 2 works well. At higher average CNRs, as average CNR increases,λ1,P

increases, as expected (similar to Fig. 4.2). However, at lower average CNR,λ1,P increases

as CNR decreases. This is due to the fact that the BAE approachweighs the received

information based on link qualities. Therefore, at considerably low average CNR, the

received information is almost ignored (as it should be), which results inλ1,P approaching

one. In other words, for very low CNRs, each node keeps its initial opinion resulting in an
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identityP matrix. This makes the proposed approach more robust to the receiver noise.

On the other hand, if the knowledge ofσj,i is not available, as is the case in Section 4.2.4,

λ1,P becomes a non-decreasing function of average CNR (see Fig. 4.2).

4.3 Binary consensus over not fully-connected rapidly-changing

network topologies

In Section 4.2, we considered binary consensus over fully-connected fixed network topolo-

gies, in order to focus on the impact of fading and noise. In realistic scenarios, however,

some links may not exist due to poor quality. Furthermore, the underlying communication

topology could be time-varying. Therefore, in this part we relax those assumptions and

consider the dynamics of binary consensus over not fully-connected and rapidly-changing

network topologies. We model the communication network as agraph, where{1, · · · ,M}
represents the vertex set andE(k) is the link set at timek. Ni(k) then denotes the neighbor

set of nodei at timek (excluding itself), as introduced earlier. In a not fully-connected

graph, there exists a link from nodej to nodei at timek if CNRj,i(k) > CNRTh, i.e. the

link quality is above a minimum acceptable threshold. We take CNRj,is to be i.i.d. random

variables withµ = CNRj,i. Let p represent the probability that a link exists from node

j to nodei at a given time. In exponentially-distributed fading environments, we have:

p = prob
{

CNRj,i(k) > CNRTh

}
= e−

CNRTh
µ . The case ofp = 0 corresponds to the static

empty graph and is not of interest to us. In this section, it isour goal to characterize the

impact of time-varying not fully-connected graph topologies on consensus.

We start by considering the case where if a link exists, it is perfect, i.e. there is no error

in that transmission. Studying this case allows us to solelyfocus on the impact of not fully-

connected graphs and could correspond to the case where the threshold, CNRTh, is chosen

very high. We then consider binary consensus over not fully-connected rapidly-changing
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topologies with fading channels. We also consider two decision-making approaches:fu-

sionanddiversity. So far in the previous section, we considered the case whereeach node

fuses its received information in every time step, to form its new opinion, which it will

then send to other nodes. In this manner, each node helps to propagate the information of

other nodes in the network. This strategy is suitable, in particular, when the graph connec-

tivity is low as it creates virtual links between nodes. We refer to it asfusion strategyin

this section to differentiate it from the alternative diversity approach described next. Each

node can also use its transmissions to repeat its initial vote, without fusing its received

information. This strategy, to which we refer to asdiversitystrategy, on the other hand can

be more robust to link errors. In our previous work, we introduced these two strategies

in the context of binary consensus over fixed AWGN networks [118]. In this section, we

consider both approaches in the context of time-varying network topologies. As we shall

see, a time-varying graph with fading channels requires a new formulation and approach,

which we address here.

4.3.1 Binary consensus over a not fully-connected and rapidly-changing

topology with ideal links

In this section, we consider the case where if a link exists, its quality is perfect. We

also assume an undirected graph in this part, which means that if (i, j) ∈ E(k), then

(j, i) ∈ E(k). Thenp denotes the probability that a link exists between two nodesat a

given time.
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Fusion case

For the fusion case, the decision-making function of Eq. 4.13 will be as follows (αj,i(k) =

1 andβj,i(k) = 0 if there is a link from nodej to nodei at timek):

bi(k + 1) = Dec


 1

1 + |Ni(k)|
(
bi(k) +

∑

j∈Ni(k)

bj(k)
)

 , (4.22)

if 1
1+|Ni(k)|

(
bi(k) +

∑
j∈Ni(t)

bj(k)
)
6= 0.5. Otherwisebi(k + 1) = bi(k). The following

theorem characterizes the performance of this decision-making function:

Theorem 4. Consider binary consensus over a rapidly-changing graph withM > 2. Let

p represent the probability that a link exists at a given time step. Consider the case where

if a link exists, its quality is perfect. Then the decision-making function of Eq. 4.22 will

have the following properties:

1- The states with all votes0 or all votes1 are absorbing states.

2- If less thanM − 1 nodes vote the same initially, then there is no guarantee that the

network converges to the accurate consensus.

3- If M − 1 nodes vote the same initially, we have asymptotic accurate consensus.

4- The network asymptotically reaches consensus ifp 6= 1.

Proof. First part can be easily confirmed. We next prove the second part. Assume that

at k = 0, we haveM nodes with some initial votes, where less thanM − 1 nodes vote

the same. LetI0(k) represent the set of indices of all those nodes that vote0 at time

stepk. I1(k) is defined in a similar manner for all those nodes that vote1 at time stepk.

Then,I0(0) = {i01, i02, · · · , i0|I0(0)|} andI1(0) = {i11, i12, · · · , i1|I1(0)|} denote two mutually

exclusive sets of indices at timek = 0, where all the corresponding nodes vote zero and

one respectively. Without loss of generality, we assume that3 |I1(0)| > |I0(0)| . Since

less thanM − 1 nodes vote the same initially, we know that|I0(0)| > 1. Consider the

3Note that if|I1(0)| = |I0(0)| , i.e.S(0) = M
2 , then there will be clearly no consensus.
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case where atk = 0, there is only a fully-connected graph among nodes inI0(0) ∪ {i11}
with no other links in the network. Such a topology would occur with the probability of

p(
|I0(0)|+1

2 )(1−p)(M2 )−(|I
0(0)|+1

2 ). Then we have the following at the next time step:I0(1) =

I0(0) ∪ {i11} andI1(1) = I1(0) \ {i11}. Similarly, the probability that a fully-connected

graph exists only among the nodes inI0(1) ∪ {i12} (with no other link in the network)

is p(
|I0(1)|+1

2 )(1 − p)(
M
2 )−(

|I0(1)|+1
2 ). Then, we haveI0(2) = I0(1) ∪ {i12} andI1(2) =

I1(1) \ {i12}. By continuing the same procedure, we have all the nodes in the network

voting zero after|I1(0)| time steps, with a non-zero probability, while|I1(0)| > |I0(0)|.
Since an all-zero state is an absorbing state (see Property 1), then the network will stay

in inaccurate consensus. This example shows that there is noguarantee of convergence

to an accurate consensus state. Next, we prove the third part. Without loss of generality,

assume thatM − 1 nodes vote one initially. In the next time step, either no node changes

its vote or all the nodes vote one, depending on the network topology. The probability

that no node changes its vote can be characterized as(M − 1)p(1− p)M−2 + (1− p)M−1.

Therefore, the probability that asymptotic accurate consensus is not reached goes to zero

for M > 2: limk→∞
[
(M − 1)p(1− p)M−2 + (1− p)M−1

]k → 0. Finally, we have the

following proof for part 4. LetS(k) represent the sum of the votes at timek, as defined

in Section 4.1. Defineς(k) =





1, S(k) ≥ M
2

0, S(k) < M
2

andM(k) = max(S(k),M − S(k)). We

have|Iς(k)(k)| ≥ |I1−ς(k)(k)|. Sincep 6= 1, with the non-zero probability ofp(
M(k)

2 )(1 −
p)(

M−M(k)
2 )pM(k)(M−M(k)), we have a graph which is fully connected inIς(k)(k), fully

disconnected inI1−ς(k)(k) and with each node inI1−ς(k)(k) connected to all the nodes in

Iς(k)(k). SinceM > 2, having such a graph results in the network reaching a consensus,

at timek + 1, that corresponds toς(k). Let pconsensus(k + 1) denote the probability that

the network is in consensus at timek + 1. We havepconsensus(k + 1) ≥ p(
M(k)

2 )(1 −
p)(

M−M(k)
2 )pM(k)(M−M(k)) > 0 for k ≥ 0. Then the probability that the network does

not hit the consensus state goes to zero asymptotically:limk→∞
∏k

t=0 [1− pconsensus(t)] →
0.
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It should be noted that ifp = 1, the network will reach accurate consensus in one step

iff S(0) 6= M
2

.

Diversity case

In this part, we consider another strategy in which each nodeuses its transmissions to

repeat its initial vote. Consider the case where the networkis givenK + 1 time steps (K

transmissions) to reach an agreement. Each node can use all its transmissions to repeat

its initial vote and only fuses the received information afterwards. This strategy can, in

particular, be useful in reducing the impact of link error, as we see in the subsequent

sections. We will have the following for this case:

bi(k) = bi(k − 1) for 1 ≤ k ≤ K − 1, (4.23)

bi(K) = Dec
( 1

M

(
bi(0) +

1

Kp

K−1∑

t=0

∑

j∈Ni(t)

bj(t)
))
.

Theorem 5. Consider binary consensus over a rapidly-changing networktopology where

p represents the probability that a link exists at a given timestep. Consider the case where

if a link exists, its quality is perfect. Then the decision-making function of Eq. 4.23 results

in asymptotic accurate consensus almost surely iffS(0) 6= M
2

. Furthermore, the probabil-

ity of accurate consensus at time stepK can be approximated by
∏M

i=1Q
( M

2
−S(0)√(

S(0)−bi(0)
)

1−p
p

√
K
)
,

for M sufficiently large andS(0) > M
2

.

Proof. For all 1 ≤ j ≤ M and j 6= i, define the following sequence of independent

random variables for nodei:

X i
j(t) =






bj(0) if there is a link between nodei

andj at time stept

0 else

(4.24)
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Then we have1
Kp

∑K−1
t=0

∑
j∈Ni(t)

bj(0) =
1
Kp

∑K−1
t=0

∑M
j=1,j 6=iX

i
j(t) =

1
p

∑M
j=1,j 6=i

1
K

∑K−1
t=0 X i

j(t).

The strong law of large numbers states that the sample average converges almost surely

(a.s.) to the expected value: prob
(
limK→∞

1
K

∑K−1
t=0 X i

j(t) = pbj(0)
)
= 1, which results

in

1

Kp

K−1∑

t=0

∑

j∈Ni(t)

bj(0) a.s.−→
M∑

j=1,j 6=i

bj(0). (4.25)

Then the argument inside the decision function of Eq. 4.23 almost surely converges to the

average of the initial votes. Therefore, ifS(0) 6= M
2

, the decision-making function of Eq.

4.23 results in asymptotic accurate consensus with probability of 1. Next we characterize

the probability of accurate consensus for the case that the majority of initial votes is one.4

Let Y i(K) = bi(0) +
1
p

∑M
j=1,j 6=i

1
K

∑K−1
t=0 X i

j(t). For large enoughM , we can evoke

the Central Limit Theorem to approximate the distribution of Y i(K) with a Gaussian,

with the following average and variance:µY i(K) = S(0) andσ2
Y i(K) =

S(0)−bi(0)
Kp

(1 − p).

The probability thatY i(K) is exactly M
2

for most values ofp,K andM is negligible.

Therefore, we have the following approximation by excluding this case:

prob(bi(K) = 1) = prob
(Y i(K)

M
>

1

2

)
≈ Q

( M
2
− S(0)√(

S(0)− bi(0)
)
1−p
p

√
K
)
, (4.26)

resulting in the following forS(0) > M
2

:

prob(accurate consensus at timeK) ≈
M∏

i=1

Q
( M

2
− S(0)√(

S(0)− bi(0)
)
1−p
p

√
K
)
. (4.27)

Fig. 4.5 shows the performance of the diversity case for a network of 20 nodes. It

can be seen that the approximation of Eq. 4.27 matches the true probability of accurate

consensus considerably well.

Fig. 4.6 compares the performance of fusion and diversity strategies forp = 0.5 and

p = 0.8. It can be seen that the fusion scheme provides a faster convergence rate through

4similar expressions can be derived for the case that the majority of initial votes is zero.
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Figure 4.5: Binary consensus over a rapidly-changing network topology with ideal com-
munication links for the case of diversity withM = 20.

fusing the received information, which helps propagating the information over the net-

work. Asp decreases, the fusion strategy outperforms the diversity one more drastically,

as expected. However, it lacks asymptotic accurate convergence guarantees, as was shown

in Theorem 4.

4.3.2 Binary consensus over a not fully-connected and time-varying

topology with fading channels

In this section we extend our analysis to the case where linksexperience fading and noise.

We consider the case where CNRj,i(k)s can be modeled as i.i.d. random variables with

average ofµ. Due to the presence of fading, the graph will be directed in this case, i.e.

there could be a link from nodej to nodei with no reverse link. More specifically, there

exists a link from nodej to nodei, at timek, if CNRj,i(k) > CNRTh, for a given threshold

of CNRTh ≥ 0. We only consider the case where knowledge of CNR is available in the

receiver. Let CNRset
i (k) represent the set of CNRj,i(k)s wherej ∈ Ni(k). Then nodei has

access to this set. Similar to Section 4.2.4, the results of this section can be easily extended

to the case where such knowledge is not fully available.
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Figure 4.6: Binary consensus over a rapidly-changing network topology with ideal com-
munication links forM = 10, comparison of diversity and fusion strategies.

Fusion case

For the fusion case, we will have the following decision-making function by extending Eq.

4.13 to a not fully-connected time-varying topology:

bi(k + 1) = Dec
( 1

1 + |Ni(k)|
[
bi(k) +

∑

j∈Ni(k)

α̃j,i(k)
bj,i(k)

rj,i(k)
+ β̃i(k)

])

= Dec
( 1

1 + |Ni(k)|
[
bi(k) +

∑

j∈Ni(k)

α̃j,i(k)bj(k) + β̃i(k) + ñi(k)
])
, (4.28)

whereα̃j,i(k) =
1

1+ 4
CNRj,i(k)

andβ̃i(k) =
∑

j∈Ni(k)
1−α̃j,i(k)

2
. Furthermore,̃ni(k) is a zero-

mean Gaussian random variable with the variance ofσ̃2
i (k) =

1
(1+|Ni(k)|)2

∑
j∈Ni(k)

1
CNRj,i(k)(

1+ 4
CNRj,i(k)

)2 .

Let ι1, ι2, · · · , ιm be i.i.d. random variables. For a givenµTh ≥ 0, we define the following

functions:

f(m,µTh) = E
{ 1√∑m

i=1

1
ιi

(1+ 4
ιi
)2

| ι1 > µTh, · · · , ιm > µTh

}
,
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g(m,µTh) = E
{ 1

1+ 4
ι1√∑m

i=1

1
ιi

(1+ 4
ιi
)2

| ι1 > µTh, · · · , ιm > µTh

}
.

Theorem 6. Consider binary consensus over a rapidly-changing networktopology with

i.i.d. fading channels and additive Gaussian noise, wherep = prob
{

CNRj,i(k) > CNRTh

}

represents the probability that a link exists at a given timestep. Then the average dy-

namical system, based on the decision-making function of Eq. 4.28, will have asymptotic

memoryless behavior ifp 6= 0 and∀i, k that |Ni(k)| 6= 0 → σ̃i(k) 6= 0. Furthermore, we

have the following approximation for the second largest eigenvalue of the average of the

underlying dynamical system:

λ1,P approx,TV,fading = 1− 2
(
1− (1− p)M−1

)
Q
( ρ1 + (M − 1)ρ2
2(1− (1− p)M−1)

)
, (4.29)

whereρ1 =
∑M−1

m=1 f(m,CNRTh)
(
M−1
m

)
pm(1−p)M−1−m, ρ2 =

∑M−1
m=1 g(m,CNRTh)

(
M−2
m−1

)
pm(1−

p)M−1−m and subscript TV indicates the case of time-varying networktopology.

Proof. Let D(k), φ(m) and bmj be as defined for Eq. 4.6. Letν(i)
φ(m),Ni(k),CNRset

i (k)
(k) =

prob[bi(k + 1) = 1|D(k) = φ(m), Ni(k) and CNRset
i (k)] represent the probability that

nodei votes one in the next time step, given the current state ofD(k) = φ(m), the current

connectivity set ofNi(k) and the current fading coefficients of CNRset
i (k). We have,

ν
(i)

φ(m),Ni(k),CNRset
i (k)

(k) =




Q
( 1

2
−

bmi +
∑

j∈Ni(k)
α̃j,i(k)b

m
j +

∑
j∈Ni(k)

1−α̃j,i(k)

2
1+|Ni(k)|

σ̃i(k)

)
|Ni(k)| 6= 0

bmi |Ni(k)| = 0

(4.30)

Then we have the following for the average of the state transition matrix (averaged over

different graph possibilities and fading coefficients):

Pm,n =
M∏

i=1

[
bni ν

(i)

φ(m)(k) + (1− bni )
(
1− ν

(i)

φ(m)(k)
)]
, (4.31)

whereν(i)
φ(m)(k) = Egraph,fading{ν(i)φ(m),Ni(k),CNRset

i (k)
(k)} represents the average ofν

(i)

φ(m),Ni(k),CNRset
i (k)

(k)

110



Chapter 4. Binary consensus over fading channels

over graph possibilities and fading:

ν
(i)

φ(m)(k) = prob
{
|Ni(k)| = 0

}
bmi + prob

{
|Ni(k)| 6= 0

}

× Egraph,fading

{
Q
( 1

2
− bmi +

∑
j∈Ni(k)

α̃j,i(k)bmj +
∑

j∈Ni(k)

1−α̃j,i(k)

2

1+|Ni(k)|
σ̃i(k)

)∣∣∣|Ni(k)| 6= 0
}
. (4.32)

If p 6= 0 and∀i, k that |Ni(k)| 6= 0, thenσ̃i(k) 6= 0, it can be seen that0 < ν
(i)

φ(m)(k) < 1

and thereforePm,n > 0. FurthermoreP is stochastic. Consider the average dynamical

system. Then similar to Section 4.2.2, it can be easily confirmed that, asymptotically, the

memory of the initial state will be lost by evoking Perron’s Theorem. Next, we characterize

an approximation for the second largest eigenvalue in orderto characterize the transient

behavior. Under Assumption 1, we have the following approximation:

Q(

1
2
− bmi +

∑
j∈Ni(k)

α̃j,i(k)bmj +β̃i(k)

1+|Ni(k)|
σ̃i(k)

) ≈ 1

2
− c′

( 1

2σ̃i(k)
−
( bmi
(1 + |Ni(k)|)σ̃i(k)

+

∑
j∈Ni(k)

α̃j,i(k)b
m
j

(1 + |Ni(k)|)σ̃i(k)
)
−

|Ni(k)| −
∑

j∈Ni(k)
α̃j,i(k)

2(1 + |Ni(k)|)σ̃i(k)
)
, (4.33)

wherec′ = 1√
2π

. We will then have the following equations whereρ1 andρ2 are as defined

in Theorem 6 andρ3 =
∑M−1

m=1 f(m,CNRTh) m
(
M−1
m

)
pm(1− p)M−1−m:

Egraph,fading

{ 1

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}
=

ρ1
1− (1− p)M−1

,

Egraph,fading

{ |Ni(k)|
(1 + |Ni(k)|)σ̃i(k)

| |Ni(k)| 6= 0
}
=

ρ3
1− (1− p)M−1

,

Egraph,fading

{∑
j∈Ni(k)

α̃j,i(k)b
m
j

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}
=

ρ2
1− (1− p)M−1

∑

j 6=i

bmj ,

Egraph,fading

{ ∑
j∈Ni(k)

α̃j,i(k)

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}
=

(M − 1)ρ2
1− (1− p)M−1

. (4.34)

Next we provide the proofs of the above equations. Assume CNRj,i(k)s are i.i.d. ran-
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dom variables, we have

Egraph,fading

{ 1

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}
(4.35)

= Efading

{M−1∑

n=1

∑

Ni(k)
s.t. |Ni(k)|=n

pn(1−p)M−1−n

1−(1−p)M−1√√√√
∑

j∈Ni(k)

1
CNRj,i(k)

(1 + 4
CNRj,i(k)

)2

}

=
M−1∑

n=1

(
M − 1

n

)
pn(1− p)M−1−n

1− (1− p)M−1
× Efading

{ 1√√√√√
∑

j∈Ni(k)
s.t. |Ni(k)|=n

1
CNRj,i(k)

(1 + 4
CNRj,i(k)

)2

}

=
ρ1

1− (1− p)M−1

and

Egraph,fading

{ |Ni(k)|
(1 + |Ni(k)|)σ̃i(k)

| |Ni(k)| 6= 0
}

(4.36)

= Efading

{M−1∑

n=1

∑

Ni(k)
s.t. |Ni(k)|=n

pn(1−p)M−1−n

1−(1−p)M−1 × n
√√√√

∑

j∈Ni(k)

1
CNRj,i(k)

(1 + 4
CNRj,i(k)

)2

}

=

M−1∑

n=1

n

(
M − 1

n

)
pn(1− p)M−1−n

1− (1− p)M−1
Efading

{ 1√√√√√
∑

j∈Ni(k)
s.t. |Ni(k)|=n

1
CNRj,i(k)

(1 + 4
CNRj,i(k)

)2

}

=
ρ3

1− (1− p)M−1
.

Let bmj denote the vote of thej th node given that the current state isφ(m), as defined in

Section 4.1. We haveφ(m) = [bm1 bm2 · · · bmM ], we have:
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Egraph,fading

{
∑

j∈Ni(k)

α̃j,i(k)b
m
j

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}

=
M−1∑

n=1

pn(1− p)M−1−n

1− (1− p)M−1
×

∑

Ni(k)
s.t. |Ni(k)|=n

∑

j∈Ni(k)

bmj Efading

{ α̃j,i(k)

(1 + n)σ̃i(k)

}

=

M−1∑

n=1

pn(1− p)M−1−n

1− (1− p)M−1
×

∑

Ni(k)
s.t. |Ni(k)|=n

∑

j∈Ni(k)

bmj Efading

{ 1
1+ 4

CNRj,i(k)√√√√√
∑

l∈Ni(k)
s.t. |Ni(k)|=n

1
CNRl,i(k)

(1 + 4
CNRl,i(k)

)2

}

=
M−1∑

n=1

pn(1− p)M−1−n

1− (1− p)M−1
g(n,CNRTh)

(
M − 2

n− 1

)∑

j 6=i

bmj

=
ρ2

1− (1− p)M−1

∑

j 6=i

bmj . (4.37)

The last equation of 4.34 can then be easily confirmed by inserting φ(m) = [1, 1 · · ·1] in

Eq. 4.37. Then we have the following by using the approximation of Eq. 4.33

ν
(i)

φ(m) ≈ (1− p)M−1bmi +
1

2
(1− (1− p)M−1)

− 1

2
c′(1− (1− p)M−1)Egraph,fading

{ 1

σ̃i(k)
| |Ni(k)| 6= 0

}

+ c′(1− (1− p)M−1)

× Egraph,fading

{bmi +
∑

j∈Ni(k)
α̃j,i(k)b

m
j

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}

+
1

2
c′(1− (1− p)M−1)

× Egraph,fading

{ |Ni(k)|
(1 + |Ni(k)|)σ̃i(k)

| |Ni(k)| 6= 0
}

− 1

2
c′(1− (1− p)M−1)

× Egraph,fading

{ ∑
j∈Ni(k)

α̃j,i(k)

(1 + |Ni(k)|)σ̃i(k)
| |Ni(k)| 6= 0

}
, (4.38)
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which results in

ν
(i)

φ(m) ≈ (1− p)M−1bmi +
1

2
(1− (1− p)M−1)

− 1

2
c′(ρ1 + ρ3) + c′ρ1b

m
i + c′ρ2

∑

j 6=i

bmj +
1

2
c′ρ3

− 1

2
c′(M − 1)ρ2 = (1− p)M−1bmi

+
1

2
(1− (1− p)M−1)− 1

2
c′(ρ1 + (M − 1)ρ2)

+ c′ρ1b
m
i + c′ρ2

∑

j 6=i

bmj . (4.39)

After a straightforward derivation, it can be confirmed that:

ν
(i)

φ(m) ≈
Si,φ(m)

M
+ (1−

2S
′

i,φ(m)

M
)ν

(i)

φ(0), (4.40)

whereS
′

i,φ(m) =M
ρ1bmi +ρ2

∑
j 6=i b

m
j

ρ1+(M−1)ρ2
, Si,φ(m) = (1−p)M−1Mbmi +(1−(1−p)M−1)S

′

i,φ(m) and

ν
(i)

φ(0) ≈ (1−(1−p)M−1)(1
2
− c′

2
ρ1+(M−1)ρ2
(1−(1−p)M−1)

) ≈ (1−(1−p)M−1)Q
(

ρ1+(M−1)ρ2
2(1−(1−p)M−1)

)
. It can

be easily confirmed that
∑M

i=1 Si,φ(m) =
∑M

i=1 S
′

i,φ(m) = Msum(φ(m)). Then by applying

Theorem 1, we have1 − 2
(
1 − (1 − p)M−1

)
Q
(

ρ1+(M−1)ρ2
2(1−(1−p)M−1)

)
as one of the eigenvalues

of the average underlying dynamical system. Asp goes to one and∀i, j 6= i CNRj,i goes

to infinity, this eigenvalue goes to one. Therefore, it is thesecond largest one.

If Theorem 6 is deployed with CNRTh = 0, i.e. for a fully-connected time-invariant

topology, we will haveρ1 = 1
Mδ

andρ2 =
γ
M

, whereδ andγ are as defined in Theorem 2.

This results in the second largest eigenvalue that is derived in Theorem 2, as expected.
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Diversity case

The diversity decision-making strategy of Eq. 4.23 can be extended to the case of fading

channels as follows:

bi(k) = bi(k − 1) for 1 ≤ k ≤ K − 1,

bi(K) = Dec
( 1

M

(
bi(0) +

1

Kp

K−1∑

t=0

∑

j∈Ni(t)

bj,i(t)

rj,i(t)

))
,

wherebj,i(t) = rj,i(t)bj(0) + nj,i(t), E{n2
j,i(t)} = σ2

j,i andrj,i(t) represents the fading

coefficient of the link from nodej to nodei for 0 ≤ t ≤ K − 1. As expected, this strat-

egy will help when links experience poor quality due to fading or noise. The asymptotic

accurate consensus behavior of this approach can be established in a similar manner, as

follows:

Theorem 7. Consider binary consensus over a rapidly-changing networktopology with

i.i.d. fading channels wherep = prob
{

CNRj,i(k) > CNRTh

}
represents the probability

that a link exists. Then the decision-making function of Eq.4.41 results in asymptotic

accurate consensus almost surely iffS(0) 6= M
2

and CNRTh > 0.

Proof. We have: 1
Kp

∑K−1
t=0

∑
j∈Ni(t)

bj,i(t)

rj,i(t)
= 1

Kp

∑K−1
t=0

∑
j∈Ni(t)

bj(0)+
1
Kp

∑K−1
t=0

∑
j∈Ni(t)

nj,i(t)

rj,i(t)
.

The first term on the right-hand side almost surely convergesto
∑M

j=1,j 6=i bj(0). For the

second term, which is the noise term, we have:

E
{( 1

Kp

K−1∑

t=0

∑

j∈Ni(t)

nj,i(t)

rj,i(t)

)2}
= Egraph

{ 1

K2p2

K−1∑

t=0

∑

j∈Ni(t)

Efading

{ 1

CNRj,i(t)
|CNRj,i(t) > CNRTh

}}

= Egraph

{CNRinv,cond

K2p2

K−1∑

t=0

|Ni(t)|
}
=

(M − 1)CNRinv,cond

Kp
, (4.41)

whereCNRinv,cond = Efading

{
1

CNRj,i(t)
|CNRj,i(t) > CNRTh

}
is finite for any CNRTh > 0.

For instance, for exponentially distributed i.i.d. fadingcoefficients, we haveCNRinv,cond=

1
µ
exp(CNRTh

µ
)E1(

CNRTh
µ

), whereµ = E{CNRj,i(t)} and E1(zTh) =
∫∞
zTh

e−u

u
du for an arbi-

traryu andzTh > 0. Therefore, asK → ∞, variance of this noise goes to zero. Hence, the
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Chapter 4. Binary consensus over fading channels

argument of the decision function of Eq. 4.41 asymptotically and almost surely converges

to the average of the initial votes, which results in asymptotic accurate consensus with the

probability of1 as long asS(0) 6= M
2

.
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Figure 4.7: Comparison of fusion and diversity strategies for binary consensus over a
rapidly-changing graph with fading links, CNRTh = −7dB andp = 0.82.

Similar to Theorem 5, we can find an approximation for the average probability of

accurate consensus (averaged over noise, fading and graph)in this case. Fig. 4.7 shows

a comparison of the fusion and diversity strategies for fading case and forCNR =0dB,

CNRTh = −7dB (which results inp = 0.82) andM = 8, 20. As can be seen, the diversity

strategy reaches asymptotic accurate consensus with probability of one, as expected. The

fusion strategy, on the other hand, has a better transient behavior. This is due to the fact

that, by fusing the received information, the fusion strategy propagates the information

faster in the network. It is as if virtual links have been introduced between nodes through

fusion. On the other hand, it lacks asymptotic accurate consensus and suffers from asymp-

totic memoryless behavior. AsM increases, the overall impact of link errors is reduced,

resulting in the better performance of the fusion case. The analysis and simulation of this

part shows the underlying tradeoffs between fusion and diversity strategies. In practice,

the network may only have a limited time (for instance on the order of 10s of iterations)
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for reaching consensus. In such a case, fusion strategy may be more suitable. On the

other hand, if the network can wait long enough, a diversity strategy can provide a better

asymptotic performance. In practice, a combination of bothstrategies may provide the

best overall performance.

4.4 Summary

In this chapter we studied a cooperative network that is trying to reach consensus on the

occurrence of an event, by communicating over fading channels. We first considered a

fully-connected and time-invariant network topology. We proposed a novel consensus-

seeking strategy based on the Best Affine Estimation (BAE) ofnetwork state and charac-

terized the asymptotic and transient behaviors of the network probabilistically. We showed

that the network converges to a memoryless state asymptotically, which is undesirable. To

see the transient behavior, we then characterized the rate of convergence by deriving an

approximation for the second largest eigenvalue of the underlying average dynamical sys-

tem.

We then extended the binary consensus scenario to the case ofnot fully-connected

and rapidly-changing network topologies. We mathematically characterized the impact of

fading, noise, network connectivity and time-varying topology on consensus performance,

which becomes challenging due to all these uncertainties. Furthermore, we considered two

different decision-making strategies, in term of using theavailable transmissions: fusion

and diversity. We showed that the diversity strategy reaches asymptotic accurate con-

sensus with probability of one. On the other hand, the fusionstrategy provides a better

transient behavior by propagating the information faster in the network. However, it lacks

asymptotic accurate consensus.
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Chapter 5

An integrated framework for binary

consensus over time-invariant network

topologies

In this chapter we utilize the aforementioned fusion and diversity decision-making strate-

gies of Chapter 4 for binary consensus over the generaltime-invariant network topologies

(not necessarily fully connected) with fading channels. Wethen propose an integrated

framework that keeps the benefits of both fusion and diversity strategies, in terms of net-

work information flow and link error robustness, for binary consensus over time-invariant

network topologies with fading channels.

The chapter is organized as follows. In Section 5.1 we study the binary consensus over

time-invariant network topologies with ideal communication links. In Section 5.2 we dis-

cuss the fusion and diversity decision-making strategies of Chapter 4 over time-invariant

network topologies. We then propose an integrated diversity and fusion framework in Sec-

tion 5.3 and mathematically analyze the proposed frameworkand show how the network

achieves accurate consensus asymptotically. In Section 5.4 we then utilize the proposed

118



Chapter 5. An integrated framework for binary consensus over time-invariant network topologies

framework over regular ring lattice networks. We show the simulation results in Section

5.5. A summary of the results of the chapter is provided in Section 5.6.

5.1 Binary consensus over time-invariant topologies with

ideal communication links

In this section, we revisit the binary consensus over not fully-connected and time-invariant

network topologies. Furthermore, we assume ideal communication links. Studying this

case allows us to focus solely on the impact of information flow in the network and char-

acterize a benchmark for the performance of binary consensus algorithms over non-ideal

communication links.

Consider the binary consensus scenario of Chapter 4. In thisscenario, each node has

its own initial decision, based on its one-time sensing. Thegoal of the network is for

each node to reach a decision that is equal to the majority of the initial votes. In order

to achieve this, each node will transmit its current decision to other nodes over a time

invariant network topology. We model the underlying network as an undirected graph

G(V, E), whereV = {1, · · · ,M} represents the vertex set andE is the link set (the set of

available communication links among the nodes).

Let b̃0i ∈ {0, 1} represent the initial vote of theith node, wherẽb0i = 1 indicates that

the ith agent initially decides that the event occurred whereasb̃0i = 0 denotes otherwise.

Consider the binary consensus over ideal communication links. In this scenario, each node

receives the votes of its neighbors over the ideal communication links. It then fuses all the

received information and updates its vote based on the majority of its neighbors’ votes.

Let b̃ui denote theith node’s vote afteru fusion steps over ideal communication links.

We havẽbui = Dec
(

1
1+|Ni|

[
b̃u−1
i +

∑
j∈Ni

b̃u−1
j

])
if 1/(1 + |Ni|)

[
b̃u−1
i +

∑
j∈Ni

b̃u−1
j

]
6=
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Figure 5.1: Demonstration of different fusion levels forM = 17 nodes trying to reach
consensus over a6-regular ring lattice.

0.5, whereNi denotes the neighbor set of theith node and Dec(x) =





1 x > 0.5

0 x < 0.5
.

Otherwisẽbui = b̃u−1
i . Fig. 5.1 shows a network ofM = 17 nodes trying to reach consen-

sus over a6-regular ring lattice.1 In this topology each node receives information from its

neighbors over ideal communication links. As can be seen, all the nodes reach the majority

of initial votes at the second level of fusion. LetDu = {b̃u1 , b̃u2 , · · · , b̃uM} denote the net-

work state afteru fusion steps. DefineuG(D0) , min{u|Du is an accurate consensus state}.

For instance for the example of Fig. 5.1, we haveD0 = {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1}
anduG(D0) = 2. We then defineDG , {D0| uG(D0) <∞} anduG = maxD0∈DG

uG(D
0).

uG is only a function of graph connectivity and represents the maximum number of re-

quired fusion levels in order to achieve accurate consensusif D0 ∈ DG. For instance, for

the fully connected graph, i.e., each node is connected to all the nodes in the network, we

haveuG = 1. In the next section we consider the binary consensus over time-invariant

network topologies with non-ideal communication links.

1An L-regular ring lattice is anL-regular graph withM vertices in a ring in which each vertex
is connected to itsL neighbors (L2 on each side for an even value ofL).
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5.2 The underlying tradeoffs between information flow

and robustness

Let bj,i(k) represent the reception of theith node from the transmission of thejth one at

thekth time step. We have the following if there exists a link fromthejth node to theith

one:bj,i(k) = rj,i(k)bj(k) + nj,i(k), wherebj(k) denotes thejth node vote at timek and

rj,i(k) andnj,i(k) are the fading coefficient and channel noise of the link fromjth node to

theith one at timek respectively. Each agent will then update its assessment based on the

received information.

We next discuss the fusion and diversity decision-making strategies of Chapter 4 for

binary consensus overnot fully connectedand time-invariantnetwork topologies before

we propose our integrated approach. By not fully-connectedand time-invariant network

typologies with fading links, we mean networks where some links may not be connected.

We assume that the set of connected links is fixed and therefore the underlying topology is

time invariant. Similar to Chapter 4, we also assume that thenodes move fast enough such

that the fading coefficients of the established links changeand become uncorrelated from

one time step to the next. However, their movements are limited to a small enough area

such that the underlying network topology is not changing (thus a time-invariant network

topology).

Fusion case: In Chapter 4, we proposed a fusion-based approach that utilizes informa-

tion of link qualities and noise variance. Eq. 4.13 of Chapter 4 will be as follows for the

case of time-invariant graphs:

bi(k + 1) = Dec

(
1

1 + |Ni|
[
bi(k) +

∑

j∈Ni

(
αj,i(k)bj,i(k) + βj,i(k)

)])
, (5.1)

wherebi(0) = b̃0i for 1 ≤ i ≤ M . Similarly, the corresponding coefficients can be
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represented as:

αj,i(k) =
rj,i(k)

r2j,i(k) +
σ2
j,i

qj(k)(1−qj(k))

andβj,i(k) =
(
1− αj,i(k)rj,i(k)

)
qj(k), (5.2)

whereqj(k) = E[bj(k)].

Diversity case: In Section 4.3.2, we proposed a diversity-based approach,where each

node uses all of its transmissions to repeat its initial voteand only fuses the received in-

formation afterward. This strategy can, in particular, be useful in reducing the impact

of link errors. LetXj,i(K) = [bj,i(0), · · · , bj,i(K)]T denote the receptions ofith node

from the jth node inK + 1 transmissions. DefineRj,i(K) = [rj,i(0), · · · , rj,i(K)]T

andNj,i(K) = [nj,i(0), · · · , nj,i(K)]T . For the diversity case, all the nodes use their

transmissions to repeat their initial votes, i.e.,bj(k) = b̃0j for 0 ≤ k ≤ K. Then we

have the following, considering all the receptions of theith node from thejth node:

Xj,i(K) = b̃0jRj,i(K) + Nj,i(K). The ith node can then estimatẽb0j by using the best

affine unbiased function of the received information:ˆ̃b0j (K) = ρTj,i(K)Xj,i(K) + ηj,i(K).

To ensure an unbiased estimator, we should have,E
[ˆ̃
b0j (K)] = E

[
b̃0j
]
⇒ ηj,i(K) =

q̃0j
(
1 − ρTj,i(K)Rj,i(K)

)
, whereq̃0j = E

[
b̃0i
]
. Let ζj,i(K) = E[

(ˆ̃
b0j (K) − b̃0j

)2
] denote

the corresponding estimation error variance. We then have the following optimization

problem:

ρj,i(K) = arg min ζj,i(K),

subject toηj,i(K) = q̃0j
(
1− ρTj,i(K)Rj,i(K)

)
. (5.3)

We have

ζj,i(K) = E[(
ˆ̃
b0j (K)− b̃0j

)2
]

= E
[((

b̃0j − q̃0j
)
ρTj,i(K)Rj,i(K)−

(
bj(0)− q̃0j

)
+ ρTj,iNj,i(K)

)2]

= ρTj,i(K)
(
q̃0j (1− q̃0j )Rj,i(K)RT

j,i(K) + σ2
j,iIK×K

)
ρj,i(K)

− 2q̃0j (1− q̃0j )ρ
T
j,i(K)Rj,i(K) + q̃0j (1− q̃0j ). (5.4)
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By noting that 5.4 is a convex function ofρj,i(K), we have

ρj,i(K) =
q̃0j (1− q̃0j )

σ2
j,i

( q̃0j (1− q̃0j )

σ2
j,i

Rj,i(K)RT
j,i(K) + IK×K

)−1

Rj,i(K)

=
q̃0j (1− q̃0j )

σ2
j,i

(
IK×K −

q̃0j (1−q̃0j )

σ2
j,i

1 +
q̃0j (1−q̃0j )

σ2
j,i

‖Rj,i(K)‖2
Rj,i(K)RT

j,i(K)
)
Rj,i(K)

=
1

σ2
j,i

q̃0j (1−q̃0j )
+ ‖Rj,i(K)‖2

Rj,i(K),

andηj,i(K) = q̃0j
(
1−ρTj,i(K)Rj,i(K)

)
. We then have the following for the estimation error

variance afterK + 1 transmissions:ζj,i(K) =
σ2
j,i

σ2
j,i

q̃0
j
(1−q̃0

j
)
+‖Rj,i(K)‖2

= 1
1

q̃0
j
(1−q̃0

j
)
+
∑K

k=0 CNRj,i(k)
,

where CNRj,i(k) =
r2j,i(k)

σ2
j,i

denotes the channel to noise ratio for the link, from nodej to

nodei at timek. We then have the following decision making function:

bi(K + 1) = Dec

(
1

1 + |Ni|
(
bi(0) +

∑

j∈Ni

ˆ̃b0j (K)
))

= Dec

(
1

1 + |Ni|
(
bi(0) +

∑

j∈Ni

ρTj,i(K)Xj,i(K) + ηj,i(K)
))

, (5.5)

wherebi(k) = b̃0i for 0 ≤ k ≤ K.

Lemma 1. Consider binary consensus over a not fully connected network topology. Under

the assumption of i.i.d. Rayleigh fading channels, CNRj,i(k) are i.i.d. exponential random

variables withCNR= E
{

CNRj,i(k)
}

. Then the dynamical system, based on the decision-

making function of Eq. 5.5, will asymptotically reachD1 = {b̃11, b̃12, · · · , b̃1M}, whereD1

represents the network state after one level of fusion over ideal communication links.
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Proof. We have,

prob

(
bi(K + 1) 6= b̃1i

)
≤ prob

(∣∣∣bi(0) +
∑

j∈Ni

ˆ̃b0j(K)−
∑

j∈Ni
⋃{i}

b̃0j

∣∣∣ ≥ 1

2

)

= prob
(∣∣∣
∑

j∈Ni

[ˆ̃
b0j (K)− b̃0j

]∣∣∣ ≥ 1

2

)

≤ 4
∑

j∈Ni

E
[(ˆ̃
b0j (K)− b̃0j

)2]
= 4

∑

j∈Ni

ζj,i(K),

where in the last line we are using Chebyshev’s inequality. Furthermore, we have,

ζj,i(K) =
1

1
q̃0j (1−q̃0j )

+
∑K

k=0 CNRj,i(k)
< γ−1

j,i (K) (5.6)

whereγj,i(K) ,
∑K

k=0 CNRj,i(k). Since CNRj,i(k)s are i.i.d. exponential random vari-

ables with the mean ofCNR,γj,i(K) has Gamma distribution with the following parame-

ters:γj,i(K) ∼ Gamma(K + 1,CNR). As a result,γ−1
j,i (K) is an Inverse Gamma random

variable. We then have,limK→∞E
{
γ−1
j,i (K)

}
= limK→∞

1
(K+1)×CNR

= 0. Sinceγ−1
j,i (K)

is a non-negative random variable, we have

lim
K→∞

1

γj,i(K)
= 0. (5.7)

Therefore,limK→∞ ζj,i(K) = 0, which results inlimK→∞ prob
(
bi(K + 1) = b̃1i

)
= 1 for

1 ≤ i ≤ M .

In Fig. 4.7 of Chapter 4, we compared the performance of both fusion and diver-

sity strategies for binary consensus over rapidly-changing network topologies with fading

links. We next confirm that similar tradeoffs exist for the case of not fully-connected but

time-invariant network topologies. Similar behaviors areobserved. For instance, Fig. 5.2

shows the comparison for a16-regular ring topology, i.e. a fully connected graph, where

the transmissions occur over Rayleigh channels withCNR = −6dB. Since the main bot-

tleneck is the link quality, the diversity approach outperforms the fusion approach and

reaches accurate consensus asymptotically, as expected. Fig. 5.3 compares the perfor-

mance of both approaches for6-regular ring topology andCNR = 6dB. Similar to the

results of Chapter 4, since the main bottleneck is the network connectivity, the fusion
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diversity, L=16, average CNR
j,i

=−6dB

fusion, L=16, average CNR
j,i

=−6dB

Figure 5.2: Performance comparison of fusion and diversityapproaches for binary con-
sensus over 16-regular ring lattice topology ofM = 17 nodes with fading channels of
CNR= −6dB(averaging is done over several runs).

approach outperforms the diversity one drastically. In thenext section we propose an

integrated framework that keeps the benefits of both fusion and diversity approaches.
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Figure 5.3: Performance comparison of fusion and diversityapproaches for binary con-
sensus over 6-regular ring lattice topology ofM = 17 nodes with fading channels of
CNR= 6dB(averaging is done over several runs).
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5.3 An integrated diversity-fusion framework for binary

consensus over fading channels

In this section we propose our integrated diversity-fusionframework for binary consensus

over fading channels. In this strategy, each agent sends a vector to its neighbors. This

vector consists of the estimations of the votes corresponding to the different fusion levels.

Throughout the repeated communications (diversity), eachnode tries to refine its assess-

ments of different fusion levels in order to reach consensus.

Let Bi(k) = [b0i (k), b
1
i (k), · · · , blG(k)

i (k)]T represent the vector that nodei will send

to all its neighbors over fading channels at timek, wherebui (k) represents theith node

estimate of̃bui at timek andlG(k) = min{k, uG−1}. Table 5.1 shows the time progression

of the transmitted vector by nodei to all its neighbors. As can be seen, at timet = 0,

nodei only transmits its initial vote to its neighbors. It also receives its neighbors’ initial

votes over fading channels. Next, in time stept = 1, nodei fuses all its receptions in

order to come up with an estimate ofb̃1i . It then transmits its initial vote together with

the estimate of̃b1i to all its neighbors. This process will go on for a while and each agent

sends its estimate of different fusion levels to it neighbors. As can be seen, theith node’s

estimate of̃bui will not be available tillk = u. Therefore, fork < uG − 1, Bi(k) =

[b0i (k), b
1
i (k), · · · , bki (k)]T and lG(k) = k, however, fort ≥ uG − 1 the length of the

transmitted vector becomes fixed and equal touG.

Table 5.1: Time progression of transmitted vector by nodei

t = 0 t = 1 · · · t = uG − 1 · · · t = k

b0i (0) b0i (1) · · · b0i (uG − 1) · · · b0i (k)

b1i (1) · · · b1i (uG − 1) · · · b1i (k)

· · · ... · · · ...

· · · buG−1
i (uG − 1) · · · buG−1

i (k)

Let ruj,i(k) andnu
j,i(k) represent the fading coefficient and the receiver noise of the link,
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which transmitsbuj (k) from nodej to nodei respectively.nu
j,i(k) is zero-mean Gaussian

with the variance ofσ2
j,i,u. We take the fading coefficient and the receiver noise of all

the receptions to be uncorrelated. Letbuj,i(k) represent the reception of theith node from

the transmission ofbuj (k) at time k. We have the following,buj,i(k) = ruj,i(k)b
u
j (k) +

nu
j,i(k) for 1 ≤ i ≤ M andj ∈ Ni. LetXu

j,i(k) = [buj,i(u), · · · , buj,i(k)]T represent all the

receptions of nodei from nodej corresponding to theuth level of fusion till timek. Node

i will then update its estimate ofbu+1
i at timek + 1 based onbui (k) and all theuth level

votes of its neighbors until timek.

bu+1
i (k + 1) = F

(
bui (k), X

u
j,i(k) ∀j ∈ Ni

)
, (5.8)

whereF represents a decision-making function. The redundancy in vectorXu
j,i(k) tries to

improve the link qualities. We next show how to design this function. Define the follow-

ing variables,B̃u
j (k) = [buj (u), · · · , buj (k)]T , Ru

j,i(k) = [ruj,i(u), · · · , ruj,i(k)]T , Hu
j,i(k) =

diag
(
Ru

j,i(k)
)
,Nu

j,i(k) = [nu
j,i(u), · · · , nu

j,i(k)]
T , whereNu

j,i(k) ∼ N
(
0, σ2

j,i,uI(k−u+1)×(k−u+1)

)

and diag(.) is a diagonal matrix with the elements of the argument on its main diagonal.

Therefore, we haveXu
j,i(k) = Hu

j,i(k)B̃
u
j (k)+N

u
j,i(k) for k ≥ u. Theith node will then try

to estimatẽbuj , based on all receptions fromjth node, i.e.Xu
j,i(k). In order to characterize

the best affine estimation ofb̃uj , the second-order statistic of̃Bu
j (k) is required. However,

finding a closed-form expression for the second-order statistics of this variable is challeng-

ing. The vector̃Bu
j (k) contains different temporal assessments of thejth node about̃buj . To

simplify the mathematical derivation, we consider the case, where theuth level of fusion is

in its steady state, i.e.̃Bu
j (k) = b̃uj~1k−u+1 ∀j. Under this assumption the BAE estimation

can be derived similar to Eq. 5.3 as follows:ˆ̃buj (k) = ρuj,i
T (k)Xu

j,i(k) + ηuj,i(k), where

ρuj,i(k) = 1
σ2
j,i,u

q̃u
j
(1−q̃u

j
)
+‖Ru

j,i(k)‖2
Ru

j,i(k), η
u
j,i(k) = q̃uj

(
1 − ρuj,i

T (k)Ru
j,i(K)

)
and q̃uj = E[b̃uj ].

SinceB̃u
j (k) 6= b̃uj~1k−u+1, the estimator is suboptimal. However, in Theorem 1 we will

show thatlimk→∞ buj (k) = b̃uj for 1 ≤ j ≤ M . Therefore, the proposed suboptimal esti-

mator is asymptotically optimal. Theith node will then update its(u+1)th level decision
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as:

bu+1
i (k + 1) = Dec

( 1

|Ni|+ 1

[
bui (k) +

∑

j∈Ni

ˆ̃buj (k)
])

= Dec
( 1

|Ni|+ 1

[
bui (k) +

∑

j∈Ni

ρuj,i
T (k)Xu

j,i(k) + ηuj,i(k)
])
, (5.9)

for k ≥ u, 0 ≤ u ≤ uG − 1 andb0i (k) = b̃0i ∀i, k. Next we show that the decision-making

function of Eq. 5.9 achieves accurate consensus asymptotically.

Theorem 1. Consider binary consensus over a time-invariant network topology with i.i.d.

Rayleigh fading channels. Assume|Ni| is even for1 ≤ i ≤M . Then, the decision-making

function of Eq. 5.9 asymptotically converges (in probability) to accurate consensus iff

D0 ∈ DG.

Proof. We prove the theorem by induction. Defineωu
i (k) , prob

(
bui (k) 6= b̃ui

)
. For

u = 0, we haveb0i (k) = b̃0i ∀k, i. From Lemma 1, it can be easily confirmed that

limk→∞ ω1
i (k) = 0 ∀i. Assumelimk→∞ ωu

i (k) = 0. We next prove thatlimk→∞ ωu+1
i (k+

1) = 0. We have,

ωu+1
i (k + 1) = prob

(
bu+1
i (k + 1) 6= b̃u+1

i

)

≤ prob
(∣∣∣bui (k) +

∑

j∈Ni

ρuj,i
T (k)Xu

j,i(k) + ηuj,i(k)−
∑

j∈Ni
⋃{i}

b̃uj

∣∣∣ ≥ 1

2

)

= prob

(∣∣∣∣b
u
i (k)− b̃ui +

∑

j∈Ni

1
σ2
j,i,u

q̃uj (1−q̃uj )
+ ‖Ru

j,i(k)‖2

×
( k∑

t=u

ruj,i
2(t)
(
buj (t)− b̃uj

)
+

σ2
j,i,u

1− q̃uj
(1− b̃uj

q̃uj
) +Ru

j,i
T (k)Nu

j,i(k)

)∣∣∣∣ ≥
1

2

)

≤ prob

(∣∣bui (k)− b̃ui
∣∣+

∑

j∈Ni

1

‖Ru
j,i(k)‖2

×
( k∑

t=u

ruj,i
2(t)
∣∣buj (t)− b̃uj

∣∣

+
σ2
j,i,u

1− q̃uj

∣∣∣1−
b̃uj
q̃uj

∣∣∣+
∣∣∣Ru

j,i
T (k)Nu

j,i(k)

∣∣∣∣
)

≥ 1

2

)
,

where in the last inequality, we are using the property that for any random variablesΞi,
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we have prob
(∣∣∑

i Ξi

∣∣ ≥ ǫ
)
≤ prob

(∑
i |Ξi| ≥ ǫ

)
. Furthermore, we haveE

{∣∣bui (k) −
b̃ui
∣∣} = ωu

i (k). Applying Markov’s inequality results in:

ωu+1
i (k + 1)

≤ 2

[
ωu
i (k) +

∑

j∈Ni

1

‖Ru
j,i(k)‖2

×
(

k∑

t=u

ruj,i
2(t)ωu

j (k) +
σ2
j,i,u

1− q̃uj

∣∣∣1−
b̃uj
q̃uj

∣∣∣+ E
{∣∣∣Ru

j,i
T (k)Nu

j,i(k)
∣∣∣
})]

= 2

[
ωu
i (k) +

∑

j∈Ni

1

‖Ru
j,i(k)‖2

(
k∑

t=u

ruj,i
2(t)ωu

j (k) +
σ2
j,i,u

1− q̃uj

∣∣∣1−
b̃uj
q̃uj

∣∣∣
)

+

√
2

π

∑

j∈Ni

σj,i,u
‖Ru

j,i(k)‖

]

= 2

[
ωu
i (k) +

∑

j∈Ni

1

‖Ru
j,i(k)‖2

k∑

t=u

ruj,i
2(t)ωu

j (k) +
∑

j∈Ni

∣∣∣1− b̃uj
q̃uj

∣∣∣
1− q̃uj

1

γuj,i(k)
+

√
2

π

∑

j∈Ni

1√
γuj,i(k)

]
,

(5.10)

whereγuj,i(k) =
∑k

t=u CNRu
j,i(t) =

‖Ru
j,i(k)‖2
σ2
j,i,u

. Let ǫ > 0. Sincelimk→∞ ωu
j (k) = 0, there

exists a numberT u
j (ǫ) such thatωu

j (k) < ǫ for all k ≥ T u
j (ǫ). Therefore,

1

‖Ru
j,i(k)‖2

k∑

t=u

ruj,i
2(t)ωu

j (t) ≤
1

‖Ru
j,i(k)‖2

Tu
j (ǫ)∑

t=u

ruj,i
2(t)ωu

j (t) +
‖Ru

j,i(k)‖2 − ‖Ru
j,i(T

u
j (ǫ))‖2

‖Ru
j,i(k)‖2

ǫ

≤ 1

‖Ru
j,i(k)‖2

Tu
j (ǫ)∑

t=u

ruj,i
2(t)ωu

j (t) + ǫ. (5.11)

Sinceruj,i(t)’s are i.i.d. random variables, we have

lim
k→∞

E

{∑Tu
j (ǫ)

t=u ruj,i
2(t)

‖Ru
j,i(k)‖2

}
= lim

k→∞

T u
j (ǫ)− u+ 1

k − u+ 1
= 0. (5.12)

Since 1
‖Ru

j,i(k)‖2
∑Tu

j (ǫ)

t=u ruj,i
2(t) is a non-negative random variable, it goes to0 ask → ∞.

Therefore, we have,limk→∞
1

‖Ru
j,i(k)‖2

∑k
t=u r

u
j,i

2(t)ωu
j (t) = 0. Furthermore, similar to

Eq. 5.7, we can show thatlimk→∞
1

γu
j,i(k)

= 0. By substituting these values in Eq. 5.10,

it can be easily confirmed thatlimk→∞ ωu+1
i (k + 1) = 0. Using induction, we have

limk→∞ ωuG
i (k) = 0 and as a resultlimk→∞ prob

(
buG
i (k) = b̃uG

i

)
= 1 for 1 ≤ i ≤ M .

Therefore, ifD0 ∈ DG, thenlimk→∞[buG
1 (k), · · · , buG

M (k)] is an accurate consensus state

with the probability of one, which proves the theorem.

Remark 1. The decision-making function of Eq. 5.9 uses information ofσj,i,us. If such
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information is not available, then theith node can estimatẽbuj using Best Linear Unbi-

ased Estimation (BLUE):ˆ̃buj (k) = 1
‖Ru

j,i(k)‖2
Ru

j,i
T (k)Xu

j,i(k), assuming that theuth level

of fusion is in its steady state. Each node will then update its (u + 1)th level decision as

follows:

bu+1
i (k + 1) = Dec

( 1

|Ni|+ 1

[
bui (k) +

∑

j∈Ni

ˆ̃
buj (k)

])

= Dec
( 1

|Ni|+ 1

[
bui (k) +

∑

j∈Ni

1

‖Ru
j,i(k)‖2

Ru
j,i

T (k)Xu
j,i(k)

])
, (5.13)

for k ≥ u, 0 ≤ u ≤ uG − 1 and b0i (k) = b̃0i ∀i, k. This receiver can be considered as

a special case of the decision-making function of Eq. 5.9, where σj,i,u = 0. Therefore,

it achieves accurate consensus asymptotically. Furthermore, we havelimk→∞ ρuj,i(k) ≈
1

‖Ru
j,i(k)‖2

Ru
j,i(k) and limk→∞ ηuj,i(k) ≈ 0. Therefore, the decision-making function of Eq.

5.9 will be boiled down to the decision-making function of Eq. 5.13 for enough largek.

In the subsequent sections, we utilize the integrated framework for a special class of

undirected graphs and show the performance of the proposed framework.

5.4 Integrated framework over regular ring lattice topolo-

gies

In Section 5.3, we introduced our proposed framework, whichasymptotically achieves ac-

curate consensus. In this approach, nodei will send a vectorBi(k) to all its neighbors over

fading channels. The length of this vector isuG for t ≥ uG−1, which is a function of graph

connectivity. Intuitively, networks with higher connectivity require smaller values ofuG.

For instance, for fully connected networks, we haveuG = 1. In general,uG is a function

of network topology and independent of communication quality. This parameter needs to

be determined before running the algorithm. In this section, we mainly focus onL-regular

ring lattice topologies with ideal communication links in order to characterizeuG. Let
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V = {1, 2, · · · ,M} denote the vertex set. Without loss of generality, we assumethat the

vertices are ordered clockwise on the ring (see Fig. 5.1). Furthermore, we assume thatM

is odd. Under the above assumptions, the adjacency matrix ofanL-regular ring lattice,

i.e.,AL, can be represented by a circulant matrix with the first row of[0,~1TL
2

,~0TM−L−1,~1
T
L
2

].

Therefore, the dynamic of the network state at different fusion levels can be expressed as

follows:Du = Dec
(

1
L+1

(AL + IM×M)×Du−1
)

, whereAL denotes the adjacency matrix

and Dec acts entry-wise on its argument vector. For this class of graphs,L is a notion of

connectivity. Therefore, we try to show howuG changes as a function ofL. We then have

the following lemma, which will be used in Theorem 2.

Lemma 2. For anL-regular ring lattice, ifL = M − 1, then
∣∣∣ ∩M

i=1

{
Ni ∪ {i}

}∣∣∣ = M .

Moreover, ifL ≤ M −3, then
∣∣∣∩p

n=1

{
Nin ∪{in}

}∣∣∣ ≤ L+2−p. The equality is achieved

if and only if{i1, · · · , ip} ⊂ V denotes a set of consecutive nodes on the corresponding

ring.

Proof. The proof is straightforward and we skip it.

Let mu = min
(∑M

j=1 b̃
u
j ,M − ∑M

j=1 b̃
u
j

)
represent the number of nodes, with the

minority of the votes atuth level of fusion. We then have the following theorem.

Theorem 2. Consider binary consensus over anL-regular ring lattice, we then have the

following properties:

1- AssumeV =
⋃c

i=1 Vi, such thatVi represents a set of consecutive nodes on the ring

that vote the same and|Vi| ≥ L
2
+1. Then the corresponding network state is an absorbing

state.

2- Form0 ≤ L
2
, the accurate consensus is achievable after one level of fusion.

3- Form0 = L
2
+ 1 andD0 ∈ DG, accurate consensus is achievable at most after two

fusion steps.
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Proof. Let Vi = {oi1, · · · , oi|Vi|} denote theith partition, whereoij represents the index of

jth node in theith partition. Therefore, we have,
∣∣∣
{
Noij

∪ {oij}
}⋂Vi

∣∣∣ ≥ L
2
+ 1 for all

1 ≤ j ≤ |Vi|. Since all the nodes inVi vote the same, we havẽbu+1
oij

= b̃u
oij

for 1 ≤ i ≤ c

and1 ≤ j ≤ |Vi|.

We next prove the second part. Consider the case where the majority of the initial votes

is 1. If m0 ≤ L
2
, we then have

b̃0i+
∑

j∈Ni
b̃0j

L+1
≥ L+1−m0

L+1
> 1

2
∀ i, which results iñb1i = 1. For

the case, where the majority of the initial votes is0, we have
b̃0i+

∑
j∈Ni

b̃0j
L+1

≤ m0

L+1
< 1

2
∀ i,

which results iñb1i = 0. Therefore, form0 ≤ L
2

accurate consensus is achievable in one

iteration.

Next, we show the third statement. First we show that form0 = L
2
+ 1 andD0 ∈ DG,

we havem1 ≤ L
2
. Let

{
i01, i

0
2, · · · , i0m0

}
denote an ordered set of the nodes, which vote

to the minority of the initial votes. Lemma 2 says that at mostL + 2 − m0 = L
2
+ 1

nodes can have{i01, · · · , i0m0} in their neighbor set if and only if
{
i01, i

0
2, · · · , i0m0

}
is a set

of consecutive vertices. Therefore,m1 = L
2
+1 is achievable if and only if the initial state

is an absorbing state (see Theorem 2-1). Therefore, ifD0 ∈ DG, thenm1 ≤ L
2
, which

reaches accurate consensus inu = 2 (see Theorem 2-2).

In Theorem 2, we showed that the number of fusion levels, required to achieve accurate

consensus is a function of graph connectivity (L) and initial state (D0). For instance, for a

fixed connectivity, ifm0 ≤ L
2
, accurate consensus is achievable after one level of fusion.

However, ifm0 increases toL
2
+1, then the network may require two fusion steps to reach

consensus. In order to understand the impact of the connectivity on the required fusion

steps, Fig. 5.4 characterizesuG as a function ofL over a regular ring lattice topology

of M = 17 nodes. As can be seen, asL increases,uG decreases. For instance, for

L = 16, i.e., fully connected graph, the network requires only onelevel of fusion to reach

accurate consensus. It can also be seen thatuG is only a function of the graph topology. In

practical applications, this parameter needs to be determined before running the integrated

algorithm.
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Figure 5.4:uG as a function ofL for the regular ring lattice ofM = 17 nodes

5.5 Simulation and comparison

Fig. 5.5 shows the performance of the proposed framework over a regular ring lattice

topology ofM = 17 nodes. In order to show the impact of network connectivity onthe

performance of the proposed algorithm, we consider a regular graph topology with differ-

ent values ofL. For eachL, the number of required fusion levels, i.e.,uG, can be found

from Fig. 5.4. Each node will then send a binary vector of length uG to all its neighbors

over communication channels. Moreover, we assume all channels experience the same

noise variance (σj,i,u = 1.5) and the average power of fading coefficients is equal to one

(E
[
ruj,i

2(k)
]
= 1). In order to make a fair comparison, we keep the number of transmit-

ted bits fixed. Therefore, in Fig. 5.5, we show the probability of accurate consensus as a

function of number of transmitted bits per node.
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Figure 5.5: average probability of accurate consensus overregular ring lattice of17 nodes,
whereCNR= −3.5dB

Fig. 5.5 shows the performance of the proposed framework forL = 8, 10 and14. For

these simulations, we assume that nodei does not have the knowledge ofquj for j ∈ Ni,

so it simply assumesquj = 0.5 in the decision making function of Eq. 5.9. As can be seen,

the integrated approach, independent of network connectivity, achieves accurate consensus

asymptotically. Furthermore, networks with higher connectivity, i.e., larger values ofL,

reach their steady state in fewer transmissions. For the case of L = 8, the performance

of both fusion and diversity approaches of Section 5.2 are also shown for comparison. As

can be seen, the proposed approach keeps the benefits of both fusion and diversity in terms

of the transient and asymptotic behaviors respectively. Furthermore, the performance of

the integrated approach for the case whereL = 8 and knowledge ofσj,i,u is not available

(Remark 1) is also shown in Fig. 5.5. As can be seen, the integrated approach with known
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link quality slightly outperforms the case of unknown link quality. However, as mentioned

earlier in Remark 1, as time goes by, both cases provide similar performance.

5.6 Summary

In this section we considered a cooperative network that is trying to reach consensus over

not fully-connected and time-invariant network topologies with fading channels. We uti-

lized the aforementioned fusion and diversity decision-making strategies of Chapter 4 for

binary consensus over the general time-invariant network topologies (not necessarily fully

connected) with fading channels. We then proposed an integrated framework that keeps

the benefits of both fusion and diversity strategies, in terms of the network information

flow and link error robustness, for binary consensus over time-invariant network topolo-

gies with fading channels. Our results indicate that the proposed technique can improve

the consensus performance considerably.
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Conclusions and further extensions

In cooperative network applications, communication playsa key role in the overall perfor-

mance of the network as each mobile agent improves its knowledge by processing the in-

formation received from others. In order to realize the fullpotentials of these networks, an

integrative approach to communication and motion planningissues is essential, i.e., each

robot should have an awareness of the impact of its motion decisions on link qualities,

when planning its trajectory. This requires each robot to assess the quality of the commu-

nication link in the locations that it has not yet visited. Asa result, proper prediction of the

communication signal strength and fundamentally understanding the spatial predictability

of a wireless channel, based on only a few measurements, become considerably important.

We addressed this problem in this dissertation.

More specifically, in Chapter 2 we proposed a probabilistic channel prediction frame-

work for predicting the spatial variations of a wireless channel, based on a small number

of measurements. By using this framework, we then developeda mathematical foundation

for understanding the spatial predictability of wireless channels. More specifically, we

characterized the impact of different environments, in terms of their underlying parame-

ters, on wireless channel predictability. We furthermore showed how sampling positions
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can be optimized to improve the prediction quality. Finally, we showed the performance

of the proposed framework in predicting (and justifying thepredictability of) the spatial

variations of real channels, using several measurements inour building. In Chapter 3,

we showed how to utilize the sparsity of the channel in the frequency domain in order to

estimate the spatial variations of a wireless channel, based on a small number of measure-

ments. We also characterized the underlying tradeoffs between the probabilistic approach

of Chapter 2 and our sparsity-based estimator, which motivated developing an integrated

framework. We then proposed an integrated sparsity and model-based channel predic-

tion framework. Our approach properly takes advantage of both channel compressibility

in the frequency domain and channel probabilistic characterization in the spatial domain.

We tested our framework using outdoor and indoor channel measurements. The results

confirmed the superior performance of the proposed integrated approach.

In Chapters 4 and 5, we studied different cooperative network operations with limited

local sensing and realistic modeling of communication links. In Chapter 4, we considered

the group agreement problem over fading channels. More specifically, a cooperative net-

work is trying to reach consensus on the occurrence of an event, by communicating over

time-varying network topologieswith fading channels. We characterized the impact of

fading and rapidly-changing topologies on both the asymptotic and transient behaviors of

the network. We showed that the network can converge to a memoryless state asymptot-

ically, depending on the utilized decision-making function. To see the transient behavior,

we then characterized the rate of convergence by deriving anapproximation for the sec-

ond largest eigenvalue of the underlying average dynamicalsystem for different decision-

making strategies. We then showed how to significantly improve both the asymptotic and

transient consensus performance by incorporating sensingand communication trust fac-

tors in the local decision functions. We furthermore considered two cases of diversity and

fusion for local decision making. We mathematically characterized the performance of our

proposed framework. Our derivations, for instance, showedhow noise, fading and con-

nectivity impact the performance. They furthermore highlighted the underlying tradeoffs
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between diversity and fusion approaches in terms of speed ofconvergence and memoryless

asymptotic value. In Chapter 5, we then proposed a frameworkthat keeps the benefits of

both fusion and diversity strategies. We mathematically analyzed the proposed algorithm

and showed how it can achieve accurate consensus asymptotically. Our results indicated

that the proposed technique improves the consensus performance considerably.

There are several possible extensions of the results of thisdissertation. In the proposed

probabilistic framework of Chapter 2, we assumed that the position of the transmitter is

fixed. A possible interesting extension is to understand channel predictability when both

the transmitter and receiver are moving. Also, we assumed narrowband channels. Consid-

ering the impact of wideband channels is also another possible extension. In Chapter 4, we

mentioned that binary consensus has several potential applications in cooperative network

operations. One potential application is cooperative spectrum sensing in cognitive radio

networks. In cooperative spectrum sensing, the secondary users (unlicensed users) sense

the spectrum power of the primary user (licensed user) and utilize the spectrum when the

primary user is in an idle mode. The secondary users will thencommunicate with each

other to improve their detection performance by exploitingtheir spatial diversity. Then,

since the goal of the network is to reach an agreement on an occurrence of a binary event,

i.e. the presence or absence of the primary user, this problem directly falls into the binary

consensus category. Therefore, the binary consensus framework of this dissertation can be

extended to address spectrum sensing in cognitive radio networks.

138



References

[1] D. L. Donoho, “Compressed sensing,”IEEE Transactions on Information Theory,
vol. 52, pp. 1289–1306, April 2006.

[2] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,”
IEEE Transactions on Information Theory, vol. 47, pp. 2845–2862, November
2001.

[3] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,”Comm. Pure Appl. Math, vol. 59, no. 8, pp. 1207–1223,
2005.

[4] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of lin-
ear matrix equations via nuclear norm minimization,” tech.rep., 2007.

[5] W. M. Smith,Urban propagation modeling for wireless systems. PhD thesis, Stan-
ford University, 2004.

[6] A. Ghaffarkhah and Y. Mostofi, “Communication-aware motion planning in mobile
networks,”IEEE Transactions on Automatic Control, vol. 56, pp. 2478 –2485, oct.
2011.

[7] W. Wang, V. Srinivasan, B. Wang, and K. Chua, “Coverage for target localization
in wireless sensor networks,”IEEE Trans. on Wireless Communications, vol. 7,
pp. 667 –676, feb. 2008.

[8] J. Lu and T. Suda, “Differentiated surveillance for static and random mobile sensor
networks,”IEEE Trans. on Wireless Communications, vol. 7, pp. 4411 –4423, nov.
2008.

[9] K. Hung and K. Lui, “On perimeter coverage in wireless sensor networks,”IEEE
Trans. on Wireless Communications, vol. 9, pp. 2156 –2164, jul. 2010.

139



References

[10] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,”IEEE Transactions on Automatic
Control, vol. 48, pp. 988–1001, 2003.

[11] A. Goldsmith,Wireless Communications. Cambridge University Press, 2005.

[12] T. S. Rappaport,Wireless Communications: Principles and Practice. Upper Saddle
River, NJ, USA: Prentice-Hall, 2001.

[13] W. C. Jakes,Microwave Mobile Communications. New York: Wiley-IEEE Press,
1994.

[14] H. Hashemi, “The indoor radio propagation channel,”Proceedings of the IEEE,
vol. 81, pp. 943–968, Jul 1993.

[15] K. Remley, H. Anderson, and A. Weisshar, “Improving theaccuracy of ray-tracing
techniques for indoor propagation modeling,”IEEE Transactions on Vehicular
Technology, vol. 49, pp. 2350–2358, Nov 2000.

[16] C. F. Yang, B. C. Wu, and C. J. Ko, “A ray-tracing method for modeling indoor wave
propagation and penetration,”IEEE Transactions on Antennas and Propagation,
vol. 46, pp. 907–919, Jun 1998.

[17] A. Schwab and P. Fischer, “Maxwell, hertz, and german radio-wave history,”Proc.
of the IEEE, vol. 86, jul. 1998.

[18] P. Zakharov, R. Dudov, E. Mikhailov, A. Korolev, and A. Sukhorukov, “Finite in-
tegration technique capabilities for indoor propagation prediction,” pp. 369 –372,
nov. 2009.

[19] C. E. Rasmussen and C. K. I. Williams,Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, Massachusetts, London, England,2006.

[20] J. Cortes, “Distributed kriged kalman filter for spatial estimation,” inIEEE Trans.
on Automatic Control, pp. 2816 – 2827, 2009.

[21] J. Choi, J. Lee, , and S. Oh., “Biologically-inspired navigation strategies for swarm
intelligence using spatial gaussian processes,” in17th International Federation of
Automatic Control (IFAC), July 2008.

[22] J. Choi, J. Lee, , and S. Oh., “Swarm intelligence for achieving the global maximum
using spatio-temporal gaussian processes,” inAmerican Control Conference, June
2008.

140



References

[23] S. Martı́nez, “Distributed interpolation schemes forfield estimation by mobile sen-
sor networks,”IEEE Transactions on Control Systems Technology. In press, 2009.

[24] S.-J. Kim, E. Dall’Anese, and G. Giannakis, “Cooperative spectrum sensing for
cognitive radios using kriged kalman filtering,”Selected Topics in Signal Process-
ing, IEEE Journal of, vol. 5, pp. 24 –36, feb. 2011.

[25] A. Schmidt and J. M. F. Moura, “Field inversion by consensus and compressed
sensing,” inIEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), p. 24172420, April 2009.

[26] N. Cressie, “Kriging nonstationary data,”Journal of the American Statistical Asso-
ciation, vol. 81, no. 395, pp. 625–634, 1986.

[27] N. Cressie,Statistics for Spatial Data. Wiley-Interscience, January 1993.

[28] A. Stein and L. C. A. Corsten, “Universal kriging and cokriging as a regression
procedure,”Biometrics, vol. 47, no. 2, pp. 575–587.

[29] Y. Yan and Y. Mostofi, “Robotic router formation in realistic communication envi-
ronments,”IEEE Transactions on Robotics, vol. 28, pp. 810 – 827, August 2012.

[30] A. Ghaffarkhah and Y. Mostofi, “Path planning for networked robotic surveillance,”
IEEE Transactions on Signal Processing, vol. 60, pp. 3560 –3575, july 2012.

[31] M. Malmirchegini and Y. Mostofi, “On the spatial predictability of communication
channels,”IEEE Transactions on Wireless Communications, vol. 11, pp. 964–978,
March 2012.

[32] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of communication
signal strength in robotic networks,” inProceedings of IEEE International Confer-
ence on Robotics and Automation, pp. 1946 –1951, May 2010.

[33] Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,”Signal Processing,
Elsevier, vol. 86, pp. 549–571, March 2006.

[34] C. E. Shannon, “Communication in the presence of noise,” Proc. Institute of Radio
Engineers, vol. 37, pp. 10–21, January 1949.

[35] S. Cotter and B. Rao, “Sparse channel estimation via matching pursuit with appli-
cation to equalization,”IEEE Transactions on Communications, vol. 50, pp. 374
–377, mar 2002.

141



References

[36] J. Meng, W. Yin, H. Li, E. Houssain, and Z. Han, “Collaborative spectrum sensing
from sparse observations using matrix completion for cognitive radio networks,”
in IEEE International Conference on Acoustics Speech and Signal Processing
(ICASSP), pp. 3114 –3117, march 2010.

[37] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressedchannel sensing: A
new approach to estimating sparse multipath channels,”Proceedings of the IEEE,
vol. 98, pp. 1058 –1076, june 2010.

[38] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing via
belief propagation,”IEEE Transactions on Signal Processing, vol. 58, pp. 269 –280,
jan. 2010.

[39] V. K. Goyal, A. K. Fletcher, and S. Rangan, “Compressivesampling and lossy
compression,”IEEE Signal Processing Magazine, vol. 25, pp. 48 –56, march 2008.

[40] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: Thesparse RLS algorithm,”
IEEE Transactions on Signal Processing, vol. 58, pp. 4013 –4025, aug. 2010.

[41] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and
R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Pro-
cessing Magazine, vol. 25, pp. 83 –91, march 2008.

[42] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-
structured compressed sensing matrices,” inIEEE/SP 14th Workshop on Statistical
Signal Processing, pp. 294 –298, aug. 2007.

[43] W. U. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Joint source channel com-
munication for distributed estimation in sensor networks,” IEEE Transactions on
Information Theory, vol. 53, pp. 3629 –3653, oct. 2007.

[44] W. U. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless sens-
ing,” in The Fifth International Conference on Information Processing in Sensor
Networks (IPSN), pp. 134 –142, 2006.

[45] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, “Decentralized compression and
predistribution via randomized gossiping,” inThe Fifth International Conference
on Information Processing in Sensor Networks (IPSN), pp. 51 –59, 2006.

[46] M. R. Duarte, M. Wakin, D. Baron, and R. Baraniuk, “Universal distributed sens-
ing via random projections,” inThe Fifth International Conference on Information
Processing in Sensor Networks (IPSN), pp. 177 –185, 2006.

142



References

[47] W. U. Bajwa, A. M. Sayeed, and R. Nowak, “Learning sparsedoubly-selective
channels,” in46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 575 –582, 2008.

[48] M. Sharp and A. Scaglione, “Application of sparse signal recovery to pilot-assisted
channel estimation,” inIEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3469 –3472, april 2008.

[49] G. Taubock and F. Hlawatsch, “A compressed sensing technique for OFDM chan-
nel estimation in mobile environments: Exploiting channelsparsity for reducing
pilots,” in IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 31 2008-april 4 2008.

[50] M. Malmirchegini and Y. Mostofi, “An integrated sparsity and model-based proba-
bilistic framework for estimating the spatial variations of communication channels,”
special issue of Elsevier Physical Communication Journal on Compressive Sensing
in Communications, pp. 1658–1663, June 2012.

[51] D. Grunbaum, A. Okubo, and S. A. Levin, “Modelling social animal aggregations,”
in Frontiers in theoretical Biology: Lecture notes in biomathematics, Springer-
Verlag, 1994.

[52] C. M. Breder, “Equations descriptive of fish schools andother animal aggregations,”
Ecology, vol. 35, pp. 361–370, 1954.

[53] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds.,”Adv Biophys, vol. 22, pp. 1–94, 1986.
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