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Abstract

The wireless sensor network revolution has created theilplitysof exploring and
controlling the environment in ways not possible beforee Vision of a multi-agent net-
work cooperatively learning and adapting in harsh unknowirenments to achieve a
common goal is closer than ever. In such networks, commtiaicalays a key role in
the overall performance of the network as each mobile ageptaves its knowledge by
processing the information received from others. Thessfproper prediction of the com-
munication signal strength afdndamentally understanding the spatial predictabilityo
wireless channebased on only a few measurements, become considerablytanpdhe
first contribution of this thesiss to propose a framework for predicting the spatial varia-
tions of wireless channels and to fundamentally understaredess channel predictability.
This framework can have a significant impact on intelligesmreectivity maintenance in

mobile sensor networks.
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More specifically, in Chapter 2, we develop a probabilistamiework for predicting
the channel spatial variations, based on a small number afanements. By using this
framework, we then propose a mathematical foundation fdetstanding the impact of
different environments, in terms of their underlying paeaens, on wireless channel pre-
dictability. Furthermore, we show how sampling positioas @e optimized to improve
the prediction quality. Inspired by the recent results in4omiform sampling theory, we
then pursue a different path in Chapter 3 and show how theispaf the wireless channel
in the frequency domain can be exploited in order to estirclaéanel variations based on
a small number of measurements. The sparsity-based estimahodel-free and inde-
pendent of the underlying channel parameters. Along thes hve then demonstrate the
underlying tradeoffs between these two frameworks andge®@n integrated approach
which takes advantage of both channel compressibilityefiaquency domain and prob-
abilistic characterization in the spatial domain. All theedretical results are validated

with experimental measurements using our robotic testbed.

The second contribution of the thesgo consider different cooperative network oper-
ations with imperfect local sensing and under realistic etiod of communication links.
More specifically, we consider the group agreement problenere the cooperative net-
work is trying to reach consensus on the occurrence of art gdvgrommunicating over
fading channels. This problem has received little attenitiche literature as compared to
the estimation consensus problem. However, it can find akapplications such as net-
worked fire detection and cooperative spectrum sensinggnitiee radio networks. Thus,
another contribution of this dissertation is to fundamiytanderstand the behavior of
such a cooperative network operation under imperfect conication links. To do so, we
propose a novel consensus-seeking protocol that utilidesmation of link qualities and
noise variances to improve the performance and increaselistness of the network to
local sensing limitations. We mathematically charactetire impact of fading, noise, net-
work connectivity and time-varying topology on consensedgmance, which becomes

challenging due to all the introduced uncertainties. Wesater two different strategies,

Vil



in terms of using the available transmissions: fusion anérdity, and shed light on the
underlying tradeoffs in terms of speed of convergence andongess asymptotic behav-
ior. Motivated by our analysis, we then propose an integritmework, which keeps the
benefits of both diversity and fusion approaches. We mattieatist analyze the proposed

framework and show how it achieves accurate consensus &stycagly.
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Chapter 1

Introduction

In the past few years, the sensor network revolution hagentehe possibility of explor-
ing and controlling the environment in ways not possibleobef7—-9]. The vision of a
multi-agent robotic network cooperatively learning andgatthg in a harsh unknown en-
vironment to achieve a common goal is closer than ever. Tetmseerative networks arise
in many different applications such as target trackingjrerwnental monitoring, surveil-
lance and security, and military systems. Since each agerd imited sensing capability,
the group relies on networked sensing and decision-makiagdomplish the task. There-
fore, communication plays a key role in the overall perfoneceof such networks, as each
agent improves its sensing qualities by communicating theenetwork. Thus, maintain-

ing connectivity becomes considerably important in sudivoeks.

In the robotics and control community, considerable pregiteas been made in the area
of networked robotic and control systems [10]. Howeverald® over-simplified models
have typically been used to model the communication linkeragragents. In order to re-
alize the full potentials of these networks, an integraipproach to communication and
motion planning issues is essential, i.e., each robot shiwaue an awareness of the impact

of its motion decisions on link qualities, when planningitgectory [6]. This requires that
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each robot assesses the quality of the communication litkdrocations that it has not
yet visited. As a result, proper prediction of the commutigrasignal strength anfiin-
damentally understanding the spatial predictability of isaless channelbased on only a
few measurements, become considerably important. In themmications community,
rich literature was developed, over the past decades, éattthracterization and modeling
of wireless channels [11-14]. If all the information abobjext positions, geometry and
dielectric properties is available, ray tracing methodsld@doe used to model the spatial
variations of the received signal strength in a given ar& [However, such approaches
require knowing the environment, in terms of locations @ tijects and their dielectric
properties, which is prohibitive for real-time networkedbotic applications. Furthermore,
such approaches can not provide the needed fundamentabtart#ing of wireless chan-
nel predictability. In this dissertation we tackle this Ipiem. We utilize the probabilistic
modeling of the wireless channels as well as their sparsithé frequency domain and
propose two frameworks for the spatial prediction of wisslehannels based on sparse
channel measurements. The proposed frameworks do noteedtyei knowledge of the
environmental features and provide a fundamental undetistg of wireless channel pre-
dictability in different environments, which is currenthgissing in the literature. More
specifically, we bring a foundational theoretical underdiag of the impact of different
environments on wireless channel predictability and yewiir results with experimental
measurements. We furthermore characterize the underisadgoffs between these two
frameworks, which motivates developing our integratedbphulistic and sparsity-based

approach of Chapter 3.

To address cooperative operation with limited local sepsind imperfect communi-
cations, we then consider the following cooperative nekvagreration: binary consensus
over fading communication channel§Ve propose nonlinear binary consensus-seeking
protocols that can account for sensing and communicatioitdiions. We then mathe-
matically characterize the impact of fading, noise, neknammnectivity and time-varying

topology on the consensus performance, which becomeseolallg due to all the intro-
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duced uncertainties. To improve the performance and robastof network cooperation,
we furthermore consider two different decision-makingt&gies, in term of using the
available transmissionfusionanddiversity. We characterize the underlying tradeoffs be-
tween the two approaches and propose an integrated frakéuairis aimed at keeping

the strengths of both.

1.1 Related work and contributions

In this section, we discuss the related work and contrilmgtiof each chapter of the dis-

sertation individually.

Chapter 2: Understanding the spatial predictability of wireless chan-

nels

As we mentioned earlier, a mobile cooperative network négdsaintain its connectivity
in order to accomplish its task. In order to achieve thisheabot should consider the
impact of its motion decisions on its link qualities, whemaming its trajectory. This
requires each robot to assess the quality of the commuaiickriks in the locations that it
has not yet visited. As a result, proper prediction of the mamication signal strength in
a given area, based on only a few measurements, becomedamatdy important. As a
robot moves around, it can learn the signal strength atipasialong its motion trajectory.
However, there is simply not enough time to directly measiueechannel at every location
in the area. Therefore, the spatial variations of a charmallgl be estimated based on a

considerably incomplete data set, which is a challengisk. ta

If all the information about object positions, geometry diglectric properties is avail-

able, ray tracing methods could be used to find spatial vanisitof the received signal
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strength in the area of interest [15, 16]. Another altex@asipproach, which is the most
accurate and rigorous, is to solve Maxwell's equations fepecific environment numer-
ically [17,18]. However, such approaches require knowimgenvironment, in terms of
locations of the objects and their dielectric propertieBiclv is prohibitive for real-time

networked robotic applications. Furthermore, such apgres can not provide a funda-

mental understanding of wireless channel predictability.

In general, the spatial variations of a phenomena can beidedas a field. We next
describe some of the concurrent recent work for generainasibn of a general field.
Among different statistical models for the spatial vanas of a physical phenomenon,
Gaussian process has received considerable attentiomtlgecd Gaussian process (or
Kriging) has been widely used as a nonlinear regressiomigoh to predict the spatio-
temporal variations of physical quantities that obey the$san random field model [19].
In [20], authors introduced a statistical framework torestie the distribution of a random
field and its gradient. Under the assumptions that the fialtc®rrelated temporally with
a limited-range correlation in space, they developed aibliged kriged Kalman that en-
ables the network to compute the predictive mean functidriceorandom field and its
gradient. In [21], the authors developed a novel class dfasghnizing multi-agent sys-
tems that perform a given task by exploiting predictive post statistics from the recur-
sive estimation of a spatial Gaussian process. They ashahthe mean of the Gaussian
field can be spatially modeled as a linear combination of Gauaskernels. In [22], the
authors extended that work to spatio-temporal Gaussiatepses. There have also been
some works on the estimation of other types of spatial fidfds.instance, in [23], authors
developed a distributed interpolation scheme for detestinfield estimation. The field
is assumed to be locally Lipschitz and an iterative impletatgon of nearest neighbor and
inverse distance weighting interpolations has been pexhol [24], the authors utilized
a Gaussian process model to improve cooperation in a cegméadio network. In [25],
authors studied distributed estimation of an unknown atofisld, which is modeled de-

terministically by using a number of sparse acoustic sauarel distance-dependent de-
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cays. They showed that by using an average consensus atg@uitd compressive sensing

theory, each sensor node can estimate the field in a dedeedrahanner.

In the wireless communication literature, it is well esisifsbd that a communication
channel between two nodes can be probabilistically modated multi-scale dynami-
cal system with three major dynamics: small-scale fadinglijpath), large-scale fading
(shadowing) and path loss [11-13]. In Chapter 2 of this diatden, we utilize this well-
established probabilistic modeling and propose a framlewonspatially predict and also
understand the spatial predictability of wireless chasmetifferent environments. More
specifically, we develop a probabilistic framework in whigdch robot can spatially pre-
dict the channel, based on a small number of measurementsthalemathematically
characterize the impact of different environments, in geaftheir underlying parameters,
on channel spatial predictability. We furthermore show tsampling positions can be
optimized to improve the prediction quality. We emphasizat we are not suggesting
that a wireless channel is fully predictable, as it is nottheg our goal is to develop a
mathematical characterization of how predictable a walehannel can be and under-
stand the impact of different environments, in terms of thdarlying parameters, on its
predictability. As a result, our prediction of channel salatariations is not going to be
perfect, unless several measurements are gathered, boéwiformative for applications
such as communication-aware motion planning in robotigvagks, where a prediction
of the link qualities is needed. To the best of our knowledbis, is the first time that a
framework has been developed to mathematically charaetand understand the spatial

predictability of wireless channels based on a small nurobarpriori measurements.

Fig. 1.1 (left) shows the simple disk model, which is comnyarded in the networked
robotic and control literatures. In this model the link dtyals assumed above an accept-
able threshold in a disk around the transmitter, with no eativity outside of the disk, as
shown in Fig. 1.1 (left). Fig. 1.1 (middle) and Fig. 1.1 (rigtor instance, illustrate how

the proposed probabilistic framework of Chapter 2 enable®ee realistic characteriza-
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tion of wireless channels and their connectivity, as comgpao the commonly-used disk

model of Fig. 1.1 (left). In summary, predicting the spatiafiations of a random field,

probability of connectivity of one same probability of connectivity probability of
inside a disk and zero outside for the points at a given radius connectivity for each position

100 100 1 100 — 1
0.8 0.8
— 0.6 ’ 0.6
£ 50 £ 50
> 0.4 0.4
0.2 0.2
0 0
o 50 100 0 50 100
X (m) X (m)

Figure 1.1: Different connectivity models for the commuation channel to a fixed trans-
mitter at (0,0) coordinate: (left) simplified disk model tha commonly used in the
robotic-network literature (middle) our probabilisticthdoss model, and (right) our gen-
eral probabilistic model.

Y (m)

50
X (m)

based on sparse sampling, has recently been of interestenarieas such as meteorology,
ecological systems, acoustic field estimation, robotidfs#nsing, and cognitive radios
just to name a few [24,26—28]. However, to the best of authkoi@vliedge, no framework
has been developed to mathematically understand the Ispegdictability of a general
random field, or wireless channels in particular, in difféarenvironments. As such, the
contribution of this chapter is beyond only understandimgdpatial predictability of wire-
less channels and can possibly benefit other areas thateegtimation of a random field,
based on sparse measurements. For the implication of #nsefivork for other applica-
tions not considered in this thesis, readers are referredhier work in our group such
as [29] (for work on robotic routers) and [6, 30] (for work oatworked surveillance and

target tracking) as examples. The results of this chapéegpartially published in [31, 32].
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Chapter 3: An integrated sparsity and model-based framewok for

channel prediction

Recently, there has been significant breakthroughs in @ @ff non-uniform sampling
theory [1-3,33]. The famous Nyquist-Shannon samplingrigrad34] revolutionized sev-
eral different fields by showing that, under certain cowdis, it is indeed possible to re-
construct a uniformly-sampled signal perfectly. The neotly of compressive sampling
(also known by other terms such as compressed sensing, essiyg sensing or sparse
sensing), on the other hand, shows that under certain eonsljit is indeed possible to re-
construct a signal from a considerably incomplete set oftadions, i.e. with a number of
measurements much less than predicted by the Nyquist-8hahaorem [1, 3]. This has
opened new and fundamentally different possibilitieseimms of estimation and process-
ing, in several different fields such as communications 839;-signal processing [38—42],

and sensor/mobile networks [43—46].

We next review some of the sparsity-related work in the garemea of communica-
tions that happened concurrent to our work but for a diffepgnblem. In recent years,
researchers have worked on the sparse modeling and esiinwdtine impulse response
of wibeband channels by utilizing the sparsity of the chanaes (delay spread) in the
time domain. They have considered different signaling viawes used for sensing (e.g.,
single- or multi-carrier signaling waveforms) and the slaswhich the underlying channel
belongs (e.g., frequency- or doubly-selective channaby. ikstance, in [37,47], authors
presented a new approach, called compressed channel getwsigstimate the channel
taps of a time-invariant wideband channel. They considéredspecific classes of chan-
nels, namely, frequency- and doubly-selective singlesam channels, and nonselective
and frequency-selective multiple-antenna channels. |&ilyiin [48], authors considered
an orthogonal frequency division multiplexed (OFDM) tramssion scheme with pilot
symbol assisted modulation (PSAM). For a frequency seleaihannel with large delay

spread (but relatively few nonzero delay coefficients)y fidposed a compressive-based
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approach to estimate the channel. Along a similar line,@stin [49] applied the theory
of sparse signal recovery to the problem of estimating thébtjoselective channels for
multi-carrier communication systems. They showed that thchnique reduces the num-
ber of required pilots tones. All these work exploit the siggrof the delay taps in order
to estimate time-invariant wideband channels, a probldferdnt from the one we have

considered in this thesis.

In Chapter 3, we consider the spatial variations of a nareswlchannel to a fixed
station. We are interested in mapping the channel spatigtians over a given field of
operation, based on a small number of measurements, agvamelto the robust oper-
ation of robotic networks. Our analysis of several real clghmeasurements show that
narrowband wireless channels can be compressible in thadney domain. Therefore,
in Chapter 3, we show how to utilize the sparsity of the comication channels in the
frequency domain in order to map the channel variations wigmall number of mea-
surements. The proposed sparsity-based estimation isl#fiedeand independent of the
underlying channel parameters. We then characterize tderiying tradeoffs between
this sparsity-based framework and the probabilistic fraaor& of Chapter 2, using real
channel measurements. We show that the probabilistic fkamkegperforms well when the
channel underlying parameters are estimated with a reboqgaality. However, if these
parameters can not be estimated with a reasonable quaktysparsity-based approach
outperforms the probabilistic framework. Motivated bystanalysis, we then propose an
integrated channel prediction framework. The integrafgat@ach properly takes advan-
tage of both channel compressibility in the frequency donaaid channel probabilistic
characterization in the spatial domain. The results of ¢hegpter are partially published
in [32,50].
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Chapter 4: Binary consensus over fading channels

In recent years, there has been significant interest in catpe sensing, estimation/detection
and control. Consider the case where a group of nodes witfirggprocessing, communi-
cation and actuation capabilities are given a task to parfomtly. Each node has limited
local capabilities and can therefore only accomplish tis& ta a cooperative manner, in
order to get around local sensing errors and limitationse @frthe problems that arise in
such cooperative networks is that of group agreements. ébsns problems arise when
the agents need to reach an agreement on the value of a pararhitterest and can be

categorized into two main groupsstimation consensamddetection consensus

Estimation consensusfers to the problems where the parameter of interest éan ta
values over an infinite set or an unknown finite set. For ircdait may be of interest
that all the mobile agents that started in different di@tdimove in the same direction in
a cooperative multi-agent network [10], which required thay all eventually agree on
their headings. These problems received considerablatiatten the past few years. In
the biological sciences, for instance, there exists a iietature on generating coordinated
behaviors in a group of autonomous agents [51-55]. In thedesmde, the control and
systems community, in particular, has become interestéldeirmathematical analysis of
consensus behaviors. This interest is sparked, in pargewsral emerging applications of
networked systems such as vehicle formation [56, 57], flugkb8, 59], rendezvous [60],
autonomous vehicles [61], robot position synchronizaf&i], coupled oscillators [63],
and several other applications in distributed sensor mé&swvor distributed control of un-
manned air/ground/underwater vehicles. In particularcbntrol community has applied
tools from algebraic graph theory and advanced matrix amatyg characterize estimation
consensus problems over graphs that are not fully conn¢t@®®4—71]. Convergence
and equilibrium state of continuous-time and discretestaansensus protocols have been
studied for both time-invariant and time-varying topolkegj64—67]. Furthermore, consen-

sus protocols have been applied to formation problems B076] as well as distributed
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filtering [71]. [72] provides a comprehensive survey of therature on such consensus
problems. The impact of uncertainties introduced by comoaiion links, however, has
received less attention in the control literature (excepttie work of [73]). More re-
cently, there has been considerable interest in estimabasensus problems from the
signal processing and communication community, with monpleasis on link uncertain-
ties [74—78].

By detection consensusn the other hand, we refer to the problems in which the
parameter of interest takes values from a finite known seénThe update protocol that
each agent will utilize becomes nonlinear. We refer to a subsdetection consensus
problems where the network is trying to reach an agreemesrt @parameter that can
only have two values abinary consensu§/9]. For instance, networked detection of
fire falls into this category. While there exists a rich lgtire on estimation consensus,
detection consensus problems only recently started toveeattention. In [80], the authors
consider convergence in a detection consensus setup avectpehannels, with repeated
sensing and known probabilistic sensing models. In [8F atlthors consider a distributed
hypothesis testing problem over perfect communicatiomobbs, to which they refer to as
belief consensus. They consider the case where each nodmitaits belief (conditional
probability) to other nodes. As a result, their problem indiaéely takes the form of the
traditional average estimation consensus, for which aliterature exists. In [82—86] and
references therein, quantized consensus problems ariglematsover perfect channels, in

which every node can only send from a set of quantized values.

In [79], [87] and [88],binary consensuproblems are considered, where the nodes
start with an initial decision regarding the occurrenceroégent. Through repeated com-
munications, the goal for every node is to reach the majofithe initial votes, without
knowing anything about the sensing qualities. [88] comgdeand characterized phase
transition of such a binary consensus problem in the preseha uniformly-distributed

communication noise. Since the support of the probabikysity function of this noise

10
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is bounded, there exists a transition point beyond whiclsensus will be guaranteed in
this case. In [88], this transition point is characterizedmost applications, however, the
agents will communicate their values wirelessly and wilpesience Gaussian receiver
noise as opposed to a uniformly-distributed noise. In [7Q88], authors considered
reaching binary consensus over time-invariant networbltmgies with Additive White

Gaussian Noise (AWGN) channels and regular graphs (allsbdee the same number
of neighbors). Since the noise is not bounded in this casee tils no transition point be-
yond which consensus is guaranteed. Instead, they propopembabilistic approach to

characterize the asymptotic and transient behavior of ¢heark.

In Chapter 4, we consider binary consensus owar fully-connected and rapidly-
changing network topologiewith fading channels, where the goal of every node is to
reach the majority of the initial votes. We mathematicalaracterize the impact of fad-
ing, noise, network connectivity and time-varying topolagn consensus performance,
which becomes challenging due to all the introduced unicgiga. To improve the per-
formance and robustness of network cooperation, we proposgel consensus-seeking
protocols that utilize information of link qualities andise variances. Furthermore, we
consider two different decision-making strategies, imtef using the available transmis-
sions:fusionanddiversity. In the first approach, the given resources are used to serea
the flow of information in the network whereas the secondeffaaims to increase ro-
bustness to link error by channel coding. There exist isterg tradeoffs between these
two approaches in terms of speed of convergence and asympédtavior, as we shall
explore. Our proposed framework builds a foundation forarathnding both the asymp-
totic and transient behaviors of binary consensus in fadmgronments. While channel
uncertainty can result in an undesirable asymptotic behadepending on the utilized
decision-making strategy, we show that the network calbstiin consensus for a long pe-
riod of time (enough for practical purposes) with high proibity. In order to characterize
the transient behavior, we derive a tight approximationtfier second largest eigenvalue

of the average of the underlying linear dynamical systene dérived expressions show

11



Chapter 1. Introduction

how channel uncertainty and network topology affect birmgsensus and shed light on
the underlying tradeoffs. The results of this chapter arégly published in [90, 91].

Chapter 5: An integrated framework for binary consensus ove time-

invariant network topologies

In Chapter 5, we extend our analysis of Chapter 4 and considdzinary consensus prob-
lem over a general time-invariant network topology (notessarily fully connected) with
fading channels. More specifically, we consider the undaglyradeoffs of the fusion and
diversity strategies that we analyzed in Chapter 4. mae contributiorof this chapter is
then to propose a framework that keeps the benefits of boibrfasd diversity strategies,
in terms of network information flow and link error robustagfr binary consensus over
time-invariant network topologies with fading channelse Wathematically analyze the
proposed framework and show that it achieves accurate nsasasymptotically. As an
example, we then utilize the proposed framework over reging lattice networks. Our
theoretical and simulation results indicate that the psepladechnique improves the con-
sensus performance considerably and overcomes the mers®Bdymptotic behavior of

the original problem. The results of this chapter are pidytmesented in [92].
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Chapter 2

Understanding the spatial predictability

of wireless channels

In the wireless communication literature, it is well esisioéd that a communication chan-
nel between two nodes can be probabilistically modeled agl&-stale dynamical system
with three major dynamics: small-scale fading (multipatajge-scale fading (shadow-
ing) and path loss [11-13]. Fig. 2.1, for instance, shows¢geived signal power across
a route in the basement of the ECE building. The three mairamhyrs are marked on
the figure. The measured received signal is the small-sadied. In order to extract the
large-scale component, the received signal should be gegtdacally over a distance of
5\ to 40\ (depending on the scenario), whexés the transmission wavelength [12, 93].
In the example of Fig. 2.1, for instance, we averaged theradldacally over the length of
5\ = 62.5cm, by using a moving average (frequency of operation is BZ)GOnce we
have the large-scale component, the distance-depend#ribpa is calculated by finding

the best line fit to the log of the received measurements P, BA).

In this chapter we utilize such a probabilistic link modetldandamentally character-

ize the spatial predictability of wireless channels at sited locations, based on a few a

13



Chapter 2. Understanding the spatial predictability oekass channels

|
w
o

—small-scale fading| |
large—scale
---path loss

| 'f&h'v" WYY

.8

|
w
()]

|
A
<)

| | |
o a1 P
a o (4]

Received power (dBm)

|
(o]
[=3)]

1 11
log, ,(d) (dB)

Figure 2.1:Underlying dynamics of the received signal power acrossugerm the basement of
ECE building.

priori channel measurements. We then mathematically ctexiae the impact of different
environments, in terms of their underlying parameters, ltanoel spatial predictability.
Furthermore, we show the optimum distribution of the spaesapling positions in order

to maximize channel predictability.

This chapter is organized as follows. In Section 2.1, we riles©ur proposed proba-
bilistic channel prediction framework. In Section 2.2, wathematically characterize the
impact of different underlying channel parameters on tleeljgtion performance, assum-
ing perfectly-estimated path loss parameters. In SectiBnwe mathematically charac-
terize the impact of different environments and samplingifns on the estimation of
path loss parameters and show how to optimize the positibtisecsparse samples. In
Section 2.4, we analyze the impact of different environrmemt the estimation of shad-
owing power. Then, in Section 2.5, we extend the analysisecfi®n 2.2 to characterize
wireless channel predictability in the presence of path &stimation error. In Section 2.6,
we show the performance of the proposed framework in priedi¢and understanding the
predictability of) the spatial variations of real channeising several measurements in our

building. A summary of the results of the chapter is provide8ection 2.7.
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2.1 Probabilistic prediction of channel spatial variations

As mentioned in the previous section, a communication celalpetween two nodes can
be modeled as a multi-scale dynamical system with three magjoamics: small-scale
fading (multipath), large-scale fading (shadowing) anthpass. LetYrx(q) denote the
received signal strength (power), in the transmission feofixed transmitter a, €

to a mobile node at € K, whereX C R? denotes the workspace. Consider the case
where the channel to the fixed transmitter is narrowbandthEtmore, assume that the
workspace is not changing with time, i.e. the environmelei@ures that impact the wire-
less transmission in the workspace are time-invariant. g@oposed framework can be
extended to time-varying environments, as we briefly disdater in this section. Then,
we have the following at the output of the power detectosx (¢) = g(q) Pr + o, where
Pr andg(q) denote the transmitted power and channel gain (square afrtipditude of
the baseband equivalent channel), at posijiaespectively ang represents the power of
the receiver thermal noise [11]. Defiffq) = Trx(¢) — 0. We assume that the receiver
can estimate and remove the noise power to obfain.* Y (q) is proportional tay(¢) and
can be modeled as a multi-scale dynamical system with thegerrdynamics: multipath
fading, shadowing and path loss. We can then charact&rizeby a 2D non-stationary
random field with the following form [11]X(q) = YTpL(¢) Ysu(q) Tme(q), WhereTyp(q)

andYsy(q) are random variables representing the impact of multipadinty and shad-

owing components respectively afth (¢) = —2e_ is the distance-dependent path

llg—gplI™PL

loss? In this model, the multipath fading coefficierifp(q), has a unit average. Let

IMost related device drivers provide an estimate on the rnmseer. MadWiFi, for instance,
estimates the noise power by using the often-used formulgsgfx Teny x BW [95], whereKpgq is
the Boltzmann’s constaniyy is the environment temperature aBdV is the utilized bandwidth.
Its newer versions can even provide a better online assessheusing the measurements from
the silent mode (when no transmission) [96].

2We follow the convention of [12] and use the term “shadowing’refer to the large-scale
fading after its mean (path loss) is removed in the dB domdiore specifically,Y'sy is the large-
scale fading after its average (path loss) is removed in Bieda@main. Furthermore, we use the
term “multipath fading” to refer to the normalized smalbgefading, i.e. with unit average. Then,
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Tas(q) = 10log, (T(q)) represent the received signal strength in dB. We have

Tas(q) = }Ologm (KpL) + T|\/|P,d§—10nF>L logyo (Ilg — @) +v(g) +w(e), (2.1)

Kgp

whereTyp gz = 10 E{ logy, (TMp(q))} is the average of the multipath fading in dB,
v(q) = 10logy, (TSH(q)) is a zero-mean random variable representing the shadowing
effect in dB andw(q) = 10logy, (TMp(q)) — Twp dg IS @ zero-mean random variable,
independent of/(¢), which denotes the impact of multipath fading in dB, aftenoe-

ing its average. In the communication literature, the distions of Typ(q) and Ysu(q)

(or equivalently the distributions of(¢) andv(q)) are well established based on empirical
data [13]. For instance, Nakagami distribution is showrgalgood match for the distribu-
tion of Typ(¢) in several environments [11]. In this case, we have theviolig Nakagami
distribution, with parameter. and unit average, for the distribution®fp(q): fr,(z) =

m m—1

Lt e~"*, where Gammg@) represents the Gamma function. This then results in the

Gammam)
following distribution forw(q): f.,(x) = 200 0@+ Turae)/10 £ (10 Twe.a)/10)  Some

experimental measurements have also suggested Gausbma gwod enough yet simple
fit for the distribution ofw(q) [97]. We will take advantage of this Gaussian simplification
later in our framework. As for the shadowing variable, lagrmal is shown to be a good
match for the distribution of'sn(¢). Then, we have the following zero-mean Gaussian
pdf for the distribution ofv(q): f,(z) = —2= e *"/2*, wherea is the variance of the

V2o
shadowing variations around path loss.

Characterizing the spatial correlationwfq) andv(q) is also considerably important
for our model-based channel prediction framework. Howeverdo not attempt to predict
the multipath componenty(¢), due to the fact that it typically decorrelates fast and tihat
form of its correlation function can change considerab&pehding on the angle of arrival
and position of the scatterers. Therefore, in our propossddwork we only predict the

path loss and shadowing components of the channel. The tropatultipath will then

Twvp is the normalized small-scale fading.
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appear in the characterization of the prediction errorarane, as we shall see. As for
the spatial correlation of shadowing, [98] characterizeex@ponentially-decaying spatial
correlation function, which is widely useﬁl{u(ql)u(@)} = aeln=al/8 forq,, ¢, € K
wherea denotes thehadowing poweand thecorrelation distances, controls the spatial

correlation of the channel [98].

Next, we describe our proposed model-based channel pdfcamework. Consider
the case where a wireless channel to a fixed transmitter rsedgasampled at positions
Q=A{q,q, - ,q}t C K, inagiven environment. These channel measurements can be
gathered by one or a number of cooperative homogenous razpigpped with identical
receivers, making measurements along their trajectokiesa region or an environment
refer to an area over which the underlying channel parasesech agy and 3, can be
considered constant. The four marked areas of Fig. 2.11xammes of such regions.
First, consider the case that all theneasurements belong to one region and that we are
predicting the channel in the same region. We show how tx ithlis assumption later
in this section. LetDg andYy = [y, -+ ,yx] € R* denote the corresponding distance
vector to the transmitter in dB and the vector of all the al@d# channel measurements
(in dB) respectively:Dgy = [1010g10(||q1 —@ll), -, 101ogyo(llax — @) ' andYy =
[y1, -+ ,yx]T € RF. We have,

Yo = [1k _DQ] 0+ 90+ Qo, 2.2)

—_—
Hg

wherel, denotes the vector of ones with the lengthkpf = [Kys an]T is the vector
of the path loss parametetty = [v4, - - ,uk}T with v; = v(g;) andQqg = [wy, - - - ,wk}T
with w; = w(g;), for: = 1,--- k. Based on the log-normal model for shadowirg,
is a zero-mean Gaussian random vector with the covariantéxnia, € R***, where
[Ro], ; = aela=ul/? forg;,q; € Q. The termQ2o denotes the impact of multipath fad-
ing in dB domain. As mentioned earlier, some empirical dateetshown Gaussian to be

a good match for the distribution af; [97]. For instance, Fig. 2.2 compares the match of
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Figure 2.2:Comparison of Nakagami and lognormal for the distributibsmall-scale fading.

both Nakagami and lognormal to the distribution of multipfiding ('yp) for a stationary
section of our collected data of Fig. 2.1. As can be seen, f@kaprovides a considerably
good match while lognormal can be acceptable, dependingeoretjuired accuracy. Thus,
in order to facilitate the mathematical derivations in orgdiction framework, we take;

to have a Gaussian distribution. In addition, multipathrigdypically decorrelates con-
siderably fast, making learning of its correlation funatiddased on sparse possibly non-
localized samples, considerably challenging if not inilelas There is also no one general
function that can properly model its correlation in all tmyieonments as its form depends
heavily on the angle of arrival and position of the scat®r&¥hile approaches based on
the estimation of the power spectrum and linear predictanetbeen utilized to predict the
immediate values of multipath, based on past observatsots, approaches require dense
sampling in order to capture correlated multipath samgtasally, even if its correlation
function is learned, it typically can not be taken advantafgen the prediction framework,
unless the location of the channel to be predicted is vergecto the position of one of
the available measurements. Thus, we taketo be an uncorrelated zero-mean Gaussian
vector with the covariance dE{QQQE} = 021}, Wherel,,, . is ak x k identity matrix
ando? = E{w(q)} = 100 [ log%(x) frye (x)dz — 100( 12210810 (%) frue (x)dx>2 is
the power of multipath fading (in dB domain). In other wordsy framework does not

18



Chapter 2. Understanding the spatial predictability oekass channels

attempt to predict the multipath component and assumes ohst wase of uncorrelated
multipath (worst from a prediction standpoint). The estiadavariance of multipath then
appears in our assessment of channel prediction erronearjas we shall see. Note, how-
ever, that this is only for the purpose of our modeling. Whensivow the performance of
this framework, we use real measurements where the muitgeahponent will have its

natural distribution and correlation function.

We then defin€€g £ 9o + Qgo, Which is a zero-mean Gaussian vector with the co-
variance matrix ofRi o 2 Ro + 021, In our model-based probabilistic framework,
we first need to estimate the parameters of the mafje| 3 ando?) and then use these
parameters to estimate the channel. kef(Yg|6, a, 8, 0°) denote the conditional pdf of
Yo, given the parameterk «, 5 ando?. Under the assumption of independent multipath

fading variables, Eq. 2.2 will result in the following:

fYQ(YQ|97 a, B, 02)
B 1 6_% (YQ—HQ@)T (aRnoer(B)+02Ik><k) o (YQ_HQG)

— 172
(27r)k/2 <det[OéRnoer(5) + U2Ik><k] )

9

(2.3)

where Rpormo = éRQ denotes the normalized version 8f,. Next, we characterize the

Maximum Likelihood (ML) estimation of the underlying chaglrparameters.

[éML ) é5'\/|L7 BMLa a-l%/lL] = argma)é,a,ﬁ,ch In (fYQ (YQ|97 a, 57 02))
= argmirb,aﬁ,og (YQ — HQQ)T(O[Rnoer(B) + O‘QIka)_l (YQ — HQ@)
+1In (det[aRnoer(ﬁ) + UZ]k:xk:})v

which results in:
. ) N -1 R N
O = (Hg(dMLRnoer(ﬁML) + o) 1HQ) HE (@ Roomo (B ) + o)~ Yo
(2.4)
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Finding a closed-form expression fa. , S andéy, , however, is challenging. For
the special case whefe, is negligible, the ML estimation of channel parameters can b

simplified to:

GML ,02=0 — (Hg noer(ﬁML o2= O)HQ> Hg noer(ﬁML o2= O)YQ7

. 1 A _ .
AML,02=0 = © (YQ - HQQML,02:0) Rnoer(BML,ﬂ:o)(YQ - HQQML,U2:O)7

B 020 = arg mﬁin [YQTPS,ML(B)Rﬁormg(ﬁ)PQ,ML(ﬁ)YQ]kdet[Rnoer(ﬁ)]7 (2.5)

where Po i (8) = Iixk — HQ<HTRgoer(ﬁ)HQ> HER omo(B). Under the as-
sumption thatg is known, it can be shown thaﬁt\AL,Uzzo is an unbiased estimator and
achieves the Cramer-Rao bound. Furthermore, for large aumibsampling points:,
we can show thaty_,2— is unbiased and achieves the Cramer-Rao bound as well. We
will provide the detailed proof in Section 2.4. The ML estiorawill therefore be our

benchmark in the estimation of the channel parameters.

As can be seen, in order to estimatend o, we first need to estimaté, which is
challenging. Furthermore, finding the ML estimation of themnel parameters for the
general case, where® # 0, is computationally complex. Therefore, we next devise a
suboptimum but simpler estimation strategy. het= o + ¢? denote the sum of the

shadowing and multipath powers. A Least Square (LS) estmaff # andy then results

in:
bus = (HGHo) ™ HEYo, (2.6)
XLs|o=iis = %YQT (Ikxk — Hg (HgHg)_lﬂg) QYQ
— %YQT (Im — Ho (HgHQ)‘ng) Yo, 2.7)

whereHy, is full rank, except for the case where the samples are ggdesfanced from

the transmitter. Since such a special case is very low ptepale assume thall, is
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full rank unless otherwise is stated. We refer to this subwgdtapproach as LS ap-
proach. We next discuss a more practical but suboptimurtegiydo estimates. LetZ, =
{(i, )|, q; € Q such thaf|gi—q;|| = l} denote the pairs of points @ which are located
at distance from each other. LeYo centis = (Ikxk — HQ(H§HQ)_1H§> Yo represent
the centered version of the measurement vector, when psglpbrameters are estimated
using the LS estimator of Eq. 2.6. Defing(l) = |Tll\ Z(m)ezl [Yo.cent 9i[Yo,centLd; 1O

be the numerical estimate of the spatial correlation famctit distancé, where|.| rep-
resents the cardinality of the argument set ahddenotes theth element of the argu-
ment vector. We havéy s, fis] = argmin, s diecg W) [ln (e /8) —In (fg(l))}z’
where Lo = {l[0 < 7o(l) < X,gp-4.} @ndw(l) can be chosen based on our as-
sessment of the accuracy of the estimationgfl). For instance, if we have very few
pairs of measurements at a specific distance, then the welightild be smaller. Let
Lo = {li,l5,--- |z, } denote an ordered set of all the possible distances amomnggthe

In(a
surement points. We have the following Least Square estinaditv andj: (ILS) =

BLs

1 -0 In (7o(lh))
(MEWeoMey) 'ME W bwhereMp, = | b = : and

L =g n (Fo(lcql)
Weo = diagw(li), -+, w(lcg))]- We then haves?s = X g4, — dus for the estimation
of the multipath power (in dB domain). Note that the estirdatalues of the shadowing
parameters should satisf§y:< a s < f(LSIe:éLS andBLs > 0. If due to the lack of enough
measurements, any of these are violated, we dakendf, s to be zero. This means that,

in this case, we can not estimate the correlated part of therah.

Once the underlying parameters of our model are estimat@tne| at positiog €
can be estimated as follows. We have the following for thebability distribution of

T4s(q), conditioned on all the gathered measurements and the lyimdeparameters:
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f(Yae(q)|Ya,0,a,8,0%) ~ N (Tag,0(q), 03s 0(q)) With

Tas.o(a) 2 B{ Teela) | Yo. 0,0, 8,0°} = W ()0 + 65 (a) Fho (Yo — Hot) and
(2.8)

oasolq) = E{ (Tos(q) — Taso(q))” ) 0.a,p, 02} = a+0° — ¢5(q) Rt 000 (a),

whereh(q) = [1 - D{q}]T, Dygy = 10logy, (llg — @||) andgg(q) denotes the cross

. . _ llay —all _ llag—adll
covariance betwee® andg, i.e. ¢o(q) = afe e }T

. Therefore, the
Minimum Mean Square Error (MMSE) estimation®fg(¢), assuming perfect estimation
of the underlying parameters, is given ESM&Q(Q). We then have the following by con-
sidering the true estimated paramete¥si o(q) = h7(q)0 + 65(q) Rt o (Yo — Hob),

N A 1T A ~
Where(bQ(q) = [@ e—”q—lhﬂ/ﬁ7 RN e—”q—%”/ﬁ] anthot,Q — @Rnormg<ﬁ) + &kaxk.

The prediction quality at positiopimproves, the more correlated the available chan-
nel measurements become with the value of the channel atqrogi In order to math-
ematically assess this, the next lemma characterizes #ragey number of the available
measurements at thieneighborhood of the point to be predicted, for the case afoamy-
distributed available channel measurements in 1D.Aheighborhood of a point, in the
workspace(, is defined agz € K|d(z, q) < 5}, whered(z, q) denotes the Euclidian dis-

tance between pointsandg.

Lemma 1. Consider the case thadt channel measurements, at positidas, ¢2, - - - , qx }
are available, for predicting the channel at point Let Ns(Q, ¢) represent the number
of points inQ = {¢}*_,, which are located in the neighborhood of;, whereq and
{q;}¥_, are i.i.d. random positions, uniformly distributed oveetWworkspaceC = [0, L.

We then haveN;(Q, q) = k;<2% — ﬁ—i) whereN;(Q, ) = EQg{NB(Q, q)} andE, ,{.}
represents the expected value w@tandq.

Proof. Defined,(r) = |z — q|, for two positions: andg. For a fixedr € K and a uniform

distribution of q over K, dq(z) is a random variable with the following Commutative
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Density Function (CDF):

2% 0 < <min(z,L —x)
prob(dg(z) < 8) = ¢ 2 4 mnelo) yin(g, [ — ) < B < max(z, L —z)  (2.9)
1 g > max(z, L — x)

We then have,

o 0<z<p
prob(dg(z) < f) ber ~ 20 B<a<L-p (2.10)
\ 1+82 L-B<z<L
and
( btr <z <L-8
prob(dq(z) < ) bt = 1 L-B<z<pB (2.11)
\1+5%"/‘ B<z<L

Let X andQ = {q;}*_, represent i.i.d. random variables, uniformly distributeer K,
andBs(X) denote an open ball with the radiusg@fcentered aX. For a fixedr, we have
the following PDF:

prob(Ns(Q, X) = i|X = z)

. ( k ) [prob(dg, (X = 2) < 5)]i 1-pob(d,,(X =)< 8)] . (212)

1

This results in the following average:

N(Q.X) = B{E{N:(Q. X)X =« } }

_ E{k x prob(dy(X = z) < ﬁ)} Fa-2102.11 (2% — i—z) (2.13)

whereN;(Q, X) indicates the average number of point€nwhich are located in the
[ neighborhood of:. O

23



Chapter 2. Understanding the spatial predictability oekass channels

(o]

o
ul
=

a
g

@indoor channel prediction performance
Boutdoor channel prediction performance

a
=

w AN
o e @

ave. of —10log(NMSE)

N N
S ga

é 1‘0 15 2‘0 2‘5 30
% of measurements

Figure 2.3:Channel prediction quality for both indoor and outdoor stelrmeasurements, as a
function of the percentage of the measurements gathered.

Special case - probabilistic path los#:the knowledge of beta is not available or is
not used in the prediction (thus beta is assumed zero), the2.B results in the same
probability distribution for all the points that are eqyadipaced from the transmitter. An
example of this case can be seenin Fig. 1.1(top-middle);evlie have the same predicted
probability of connectivity (probability that th¥4s(¢) is above a given threshold) for all
the points at a given radius from the transmitter. Our moreega case of Eq. 2.8 is then
shown in Fig. 1.1(top-right), where a probability distrilmun (and a resulting probability
of connectivity) is assigned to each point in the workspaBeth these cases result in
a more comprehensive channel prediction than the commasdyg disk model of Fig.
1.1(top-left).

Next we show the reconstruction of two real channels, usungpooposed method.
The performance metric is the Average Normalized Mean Sq&aror (ANMSE) of

the estimated channel, where the following Normalized M8gunare Error, NMSE=

[fK(T"Bf(q);ngj)’jf”QdA], is averaged over several different randomly-selectedoam
- B

positions, for a given percentage of collected samples. ZER§) shows the reconstruc-

tion performance for an outdoor channel across a streetwntbovn San Francisco [5]
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as well as for an indoor channel measurement along a routeeibdasement of the ECE
building. The indoor experiment uses an 802.11g WLAN cardeithe outdoor measure-
ment is based on measuring receptions from an AT&T cell tdderFor both cases, all
the underlying parameters are estimated using the LS agipafahis section. Consider
the outdoor case, for instance. We have the measuremerite ofédeived signal power,
every2mm along a street of lengttém in San Francisco, mounting to 8000 samples. Fig.
2.3 then shows the prediction performance where only a ptage of the total samples
were available to a node. The available measurements aterrdychosen over the street.
5% measurements, for instance, means that a robot has cdll&giesamples, randomly
over that street, based on which it will predict the chanwekohe whole street. The pre-
diction error variance is-29dB for the case 0% measurements. It can be seen that both
channels can be reconstructed with a good quality. The outitannel, however, can be
reconstructed with a considerably better quality. Thisxigeeted as the indoor channel

suffers from a more severe multipath fading, which makessi lspatially predictable.

2.1.1 Space-varying underlying parameters and adaptive @nnel pre-

diction

So far, we considered channel prediction over a small enspghbe such that the under-
lying channel parameters can be considered constant osexdrkspace. However, if
the available channel samples belong to a large enough $pacie as the entire floor),
the underlying parameters can be space-varying. In this warshow how the previous
framework can be extended to an adaptive approach, in ar@eidress the case where the
operation, and the corresponding available channel meamsnts, are over a large space.
Basically, a robot can use its localization and mappingrmfttion (which it will have
for navigation and collision avoidance) to detect when gbimg changes in the structure
of its environment. For instance, it can detect when it meugsof a room to a hallway

or when it reaches an intersection. Thus, we assume thantiherlying parameters can
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possibly change when some environmental factors changem Bnalyzing several real
measurements, this is a reasonable assumption. Whiletbale possibly be cases that
are not captured by this assumption, i.e. having a draséingd in an underlying param-
eter without any environmental change, such cases are mdréha robot can not know

about it to adapt its strategy anyways.

Let a region denote a place of operation where there is no@mnwiental changes and
the underlying parameters can be considered constant ésualroom or a hallway with
no intersection that leads to the transmitter). In ordetltmethe node to give less weight
to the available measurements that are collected in diftegions and/or are far from
the position where the channel needs to be estimated, veglinde a forgetting factor and
a distance-dependent weight. This allows the node to atlapttpact of a sample mea-
surement on its prediction framework. The forgetting facsoused to let the node give
less impact to a measurement if it belongs to a differenbregas compared to the place
where the robot needs to predict the channel. On the othel, lla@ distance-dependent
weight allows the robot to give less weight to the farther sseeaments. Consider the case
where the workspace consistsotlifferent regions, i.e X = (J!_, R;. Letr; represent
the region, where théth measurement belongs to, i.e; € R,. Define the forget-
ting matrix F', with the following characteristics: 1)’ is symmetric, 2)F' is stochastic
and 3)[F);; = fi; is proportional to the similarity between regiohand ;. The third
property implies thatmax; f;; = fi; and f;; > fi iff regionsi andj have more en-
vironmental features in common, as compared to regioasd k. Furthermore, lety
denote the functional space of all non-increasing funstionR™*. Forq € R,, C K,
we define the corresponding weight matrix &5 (q)];; = fr,.m X gn.m(ll¢ — @) and

(Wo(q)]i; = 0fori # j, whereg,, ,, € G. One candidate fog is an exponential func-

~la—g;ll

tion: g, m(ll¢ — ¢ll) = e *om . f..., andb, ,, are design parameters, which the robot

can choose. They impact how conservative the robot will kaking the measurements
~ 1 2

of different regions into account. Lé{y s(¢) = miny H\I!é(q) (Yo — Hgb) H denote the

weighted LS estimation of the path loss parameters, forigtied at position; € R,,,. We
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then havefwis(q) = (H5Wo(q)Ho)  H5Wo(q)Yo. The channel and other underlying

parameters can be similarly estimated.
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Figure 2.4:Performance of our adaptive approach, in estimating tHelpas slope, when a robot
moves along a street in San Francisco and samples the cladomgits trajectory [5]-(top) channel
received power across the street along with its best slopadi{bottom) prediction error variance
of the robot, as it moves along the street and measures thaeha

ANMSE (dBm)

Figure 2.5:Impact of different environments on channel predictiorf@@nance, using real chan-
nel measurements. (top) indoor and outdoor, (middle) mzemr(R1) and hallway (R2) of Fig.
2.11 and (bottom) hallways R2 and R3 of Fig. 2.11.

Fig. 2.4 shows the performance of our adaptive approach \@hebhot moves along

a street. The channel measurement is in reception from anTAJ& tower, in a street
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in San Francisco [5], which experiences very different da#s exponents due to the
presence of an intersection that leads to the transmither.rdbot samples the channel as
it moves along the street and estimates the path loss slapeutvany a priori information

in this environment. The figure compares the performanceehbn-adaptive case with
that of the adaptive one and shows that we can benefit coabigdrom the adaptation.
Next, Fig. 2.5 (top) shows the prediction quality when a nendif robots operate in our
basement, over a large area and cooperate for channeltmwadithe regions of operation
are R1 and R2, as indicated in Fig. 2.11. Note that the pedoom is simulated, in this
case, using real channel measurements in this environtheah be seen that the adaptive
approach can improve the performance as compared to thadeptive case. In the non-
adaptive case, all the gathered and communicated measutseane utilized by each robot
for channel prediction, without taking into account thadd measurements may belong to
different regions. It can be seen that we can benefit a codiplB®) by using the adaptive
approach. In other tests in different environments, we alsserved that the adaptation
may make a negligible difference if different regions aréthat much different, in terms
of their underlying parameters, as expected. Fig. 2.5¢botshows an example of such a
case for operation over a different area in our basemerdnibe seen that the performance

curves are very close.

Here, it is our goal to fundamentally understand the impédiféerent environments
(in terms of their underlying parameters) on the proposethihl prediction framework.
Consider the four marked regions of Fig. 2.11 for instance. Wélnt to understand how
the channel prediction quality changes (and justify theeoled behaviors) when we move
from one region to another. Therefore, in the rest of thigptdra we consider the non-
adaptive channel prediction framework, to predict the cehiover a region where the
underlying parameters can be considered constant. In #t@@etion, we characterize the
impact of different environments (in terms of the undertychannel parameters) on the

prediction framework.
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2.2 Impact of channel parameters on the prediction error

variance

In this section, we characterize the impact of the undeglyihannel parameters on the
spatial predictability of a wireless channel. We assumettiteaunderlying parameters are
estimated perfectly in this section to avoid error prop@gatrom parameter estimation
to channel prediction. In the subsequent sections, we tkieme our analysis to take the

impact of the estimation error of key underlying parameietis account.

Let Tag(q) = 10logy, (T(g)) represent the received signal strength at positient
in dB. Based on the gathered measuremengs at /C, the goal is to estimate the channel at
q € K\Q, using the channel predictdf,gs o(q) of Eq. 2.8, with the corresponding error
covariance obgs o(q). We next characterize the impact of different channel patears

on this prediction. We first introduce the following lemmas.

Lemma 2. Let U(¢) be an invertible matrix for € R. We have’" = —y—n4<22y-,

wheren is a positive integer.

Proof. Taking the derivative from both sides of equatidf(t)V—"(¢) = Ijxx, With re-
spect tat, proves the lemma. O
Lemma 3. Let J be ann-by-m matrix with the rank ofn and ¥ be ann-by- full rank
matrix. If matrix ¥ is positive definite¥ >~ 0), thenJ? U J is positive definite.

Proof. See [99] for a proof. O
Theorem 1. The estimation error variance,js o, is an increasing function of ando?

for a, 0% € [0, 00) and an invertibleRnom o-

Proof. We first show that the estimation error variance is an inéngainction of 2.

Let dnomo(q) = L¢o(g) denote the normalized cross covariance betw@eandg. We
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o -1
haveogs o(q) = a + 0% — adlomo(q) (Rnome + 2 Iiwk) Gromalq). Fora =0, we
have%agB,Q(q)‘ = 1> 0, Vo? € [0,00). Fora # 0, taking the derivative with

respect tar? (using Lemma 2) and then applying Lemma 3 resultﬁﬂf:o—gB,Q(q) =1+
norme (@) (RnoerJr%QIkxk)_2¢normg(q) > 0, Vo? € [0, 00) and for an invertible?om o,
which completes the proof. We next prove tb‘é@ ) is an increasing function af.
First assume that? =+ 0. Taking the derivative with respecttoresults in: UdB olg) =
1= 0lomo(@) | (Rroma+ S ixk) ™' +2 (Rnoma+ % Iixk) | dnomol4). Deflne fla) 2
%0359( ). [ is of classC*> on R* with the following properties: 1) (0) = 1, 2)

f( ) =1- noer(Q)RrTolerQSnoer(q) > (0 and 3)%]0(04) < 0.

First property can be easily confirmed. We next prove the regoperty. Let
Rnomoiqy represent the correlation matrix correspondin@tgl{¢}. We havelnomoj(qr =
Rnoer anorm,Q(Q)

T
noer(q) 1
sumption thatR,.m o is invertible, the second property can be easily confirmsuhgthe

, Where Rhomo g} IS @assumed invertible. Thus, under the as-

Schur complement dRnom o block [100]. Next we prove the third property. We have

d d o2 » o2 o2 2
%f(a) - ?;orm,Q(Q)d [(Rnoer + ]k:xkz) (Rnoer + ]kxk) }Cbnoer(Q)
o d
- Zorm,Q( ) o d [(Rnoer + _Ikxk) ]¢noer(Q)
—20" Eoer( )(aRnoer+‘7 Ikxk) anoer(Q)- (2.14)

Since(aRnomo + 02lkxi) > 0, we can then easily show thg f(«) < 0 using Lemma
3. By using these three properties, we hgye) > 0, which means that the estimation
error variance is an increasing functioncof [0, o). Furthermore, it-* = 0 and Rnomo

is invertible, then%agag(q)\(ﬂ:o = f(o0), which is positive as shown for property 2.

Therefore, estimation variance is an increasing functfom im this case too. O

We next characterize the impact®fon the prediction quality, using properties of the
Euclidean Distance Matrix (EDM) [101]. Given the positi@t® = {¢1, ¢, - ,qr} C
K, the EDMII = [r; ;] € R¥**is defined entry-wise a[sHL.j =m; = |lgi—q;||* fori,j =
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1,2,--- k. We have the following properties for the EDM:
1) /mij = 0fori # jand,/m; = 0 fori = j,

2) Tij = \/Tji

3) VTl + /T = \/Tijfori# j #1L.

Theorem 2. Matrix II = [m;;] € R¥** is EDM if and only if—V,7TIV}, = 0,117 =

ITandm;; = Oforl < i < k, whereV, is the full-rank skinny Schoenberg auxiliary
—1T
matrix: Vj, £ % ol € RFxk-1,
T(k—1)x (k1)
Proof. Readers are referred to [101] for the details of the proof. O

Theorem 3. LetT = [t;;] € R¥** represent the entry-wise square rootlbf= [, ;] €
1
RFxk wheret; ; = T If IT is EDM, thenT is EDM. This case is of interest because it

corresponds to the absolute distance matrix.

Proof. Readers are referred to [101-103] for the details of thefproo O

Lemma 4. The Hadamard product (Schur product) of two positive-defimatrices is
positive-definite and the Hadamard product of two positieetidefinite matrices is positive-

semidefinite.

Proof. Readers are referred to Theorem 7.5.3 of [99] for more detall O

Theorem 4. The estimation error variance is a decreasing functionso€ (0, oo) for

o? # 0 and a non-increasing function gf € (0, co) for o = 0 and an invertibleRnomo.

Proof. Case ofa = 0 is not of interest in this theorem since we are interestedhén t
impact of shadowing. Therefore, in this proof we assume ¢hagt 0. Let ig(q) =
lla —all, llez —all, -+ llae — q|HT represent the distance vector between thedsahd
positiong ¢ Q andAg(q) = diag[do(q)]. Let [TQLJ =\ ¢ —q; I, Vg, ¢; € Q, denote
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the absolute distance matrix corresponding to thedseFirst assume that? # 0. We

have,
d 1 _ _ _ _
%035,9(@ = —@c%(eﬂ [AQ(Q)R'totl,Q - aRtotl,Q(TQ ¢ Rnoer) Rtotl,g + R’totl,QAQ(Q)} Po(q)
1 _ _
=~ 295(0) Rlo| RovoAal) ~ aTo  Rroma + Aol0) Reva| Ralotala)

1 _ _
= _@¢5(Q)Rtotl,g [0‘ <RnoerAQ(CI) + Ao(q) Rnormo — To Rnoer) + 2U2AQ(Q)] Rtotl,QQbQ(CI)?

where(e) denotes the Hadamard product. Moreover, it can be confirh@®tomoAo(q) =
Rnormo @ (1105(q)). Therefore, we haveihogs o(q) = —ﬁ—wg(q)Rggg[a(uég(q) +

do(g)1] — TQ) ® Ruomo + 20’2AQ(C]):| Rt oo(q). From Lemma 4, we know that the
Hadamard product of two positive-semidefinite matricesasitive-semidefinite. There-

fore, to prove thatogs o(¢)| < 0, it suffices to show that,,d5(q) + do(q)1} — To

0 05(q)

do(q) To
RE+Dx(k+1) represent the distance matrix correspondingtbl J Q. Lete; denote a unit

0240

is positive-semidefinit¢we know thatAg(q) > 0). Let Ty, yo =

vector inR**!, where all the entries are zero except foriteone. Therefore, the Schoen-

berg auxiliary matrix can be representedas, = % les—e1, -+, ept1 — e1]. We have:
- [VigjrlT{q} U QVHJ iy
1 T
= —5 (e —e) Tiguelen —a)

1
T2 <ez’+1T{q}UQ€j+1 —eliguetin — €i+1T{q}UQel)

1
= 5 (llas = all + las — all — llas = 1))
1
=3 [1k55(Q) +00(q)1f — TQ]
Then, matrixI’,, o is EDM using Theorem 3. Therefore, applying Theorem 2 for EDM

Z7j

T{‘Z}UQ results in: 1]455((]) + 5@((])15 — T = —Qij_ﬂi_lT{q}UQVk_,_l = 0, which com-
pletes the proof. Next consider the case whete= 0. A similar derivation will result
in %UﬁB,Q(q) e < 0, under the assumption that,,mo is invertible. Therefore, the

estimation error variance is a non-increasing functiofi of this case. O
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Note that path loss parametefsgss andnp., do not affect the estimation error vari-
ance in this case. In Section 2.6, we show the impact of éiffeenvironments (with
different underlying parameters) on channel predictibilising several measurements in
our building. In the next section, we characterize the inhpéthe underlying parameters

on the estimation of path loss parameters.

2.3 Impact of channel parameters on path loss estimation

In this section, we explore the effect of the underlying ctemparameters on the estima-
tion of path loss parameters. To provide a benchmark, wectnssider the ML estimator
of Eq. 2.4, where we assume thats ando? are perfectly known. We then consider
the Least Square estimator of Eq. 2.6 for a more realistie,aaberer, 3 ando? are not
known at the time of estimating path loss parametersé.l,q,_et: [f(dB,ML npLmL]? denote
the ML estimation of path loss parameters as denoted by Bq.Vize have the following
error covariance matrixCy y. = E {(9 — O ) (0 — éML)T} = (HgRt;t{QHQ)_l, where
o2 = [Cym]11 ando? = [CymL]22 denote the ML estimation error variance of

KdB,ML npLML

KdB,ML andnp_ . respectively. We have the following Theorem.

Theorem 5. Both U?{d and o2 are increasing functions af and o? for o, 0? €
B,ML

npLML

[0, 00) and an invertibleR,orm o-

—1
Proof. We haveCym. = (Hg(aRno,mQ + a2lkxk)_1HQ) , where Rhomo = 1Ro.

Taking the derivative with respect toresults in:

dC d )
= Ce,MLHg (OéRnoer + Uz]kxk)_anomQ(aR”oer + UzIka)_lHQC(%ML.

(2.15)
By using Lemma 3 and the assumption tRatm o > 0, we can easily see th&fjc’uﬂ = 0.

Lete; = [1 0" ande;, = [0 1]7 denote unit vectors iR, We have: 452 =

do” Ky mL
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d (T _ 1dCemL d 2 _ d (. T _ T dComL
@(61 C'97M|_61) = e —p=e > 0and T o = %(62 CQ,ML62) = ey —pey > 0.

To show that the estimation error of path loss parameters im@easing function of

o2, it suffices to show thaf% ~ 0. We have,d(j‘;f;;”L = —Com HE 3% (aRnomo +
—1 -2
and an invertibl&?nomo. O

In general, the estimation error variance of path loss patars does not have mono-
tonic behavior as a function of. To get a better understanding of the impact of correlation
distance on the estimation of path loss parameters, wedmnisio extreme cases 6f= 0
andg = oco. More specifically, we characterize the optimum positicitte measurement
points at both extremes and find the minimum achievable astbmerror variance.

A. Case of3 = 0: In this caSERtot,g(ﬂ = 0) = (a+ 0?) I« and the error covariance
matrix of path loss parameters can be characterized as:

—1
k 17D

lim Cym. = (o + O'2><H5HQ)_1 = (a +0?) Fe
B0 ~1TDo D5Dg
o+ 0'2 DSDQ 1%DQ

_ (2.16)
DGADg | 17Dy k

whereA;, = kI« — 1;17. As can be seen, the estimation error variances of hgghand
np_ are functions of sampling positiongyj.

Lemma 5. Matrix A, = k1« — 1k1{ has0 andk as eigenvalues with the multiplicity of
1 andk — 1 respectively. Let; € spa{1;} andv, € 1;-, whereli = {v\lek = O}. We

haveA,v, = 0 and A,vy = kuvs.

Proof. The proof is straightforward and is omitted. O

Theorem 6. Leth and Dg denote the projection db, to spar{1;} and1; subspaces

respectively. The optimum positioning, which minimizeth b@ds " and o2 for the

npLML
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case ofs = 0, is

O s = = argmax |1Dgl|3, s.t.Q C KandDg = 0. (2.17)

Proof. We have the following optimum positioning in order to minamithe estimation

error variance of{yg, using Rayleigh-Ritz theorem [99]:

T
oM = arg min O‘% = arg max %
TR dm L B=0 st.Qck  HdBmLp=0 stQck DgDg

= {Q|o c kandDy = 0}.

This optimization problem can have multiple solutions, elgging on the structure of the
space, all of which achieve the minimum error variancétgf. Similarly, we have the

following to minimize the estimation error varianceaf_:

opt . 2
= arg min o = ar max DL A,.D
QU%PL,ML,B:O & st.ock "PLML.A=0 & s.t. 9C QkTR
= arg max ||Doll3. (2.18)

s.t. 9ck anlegk:

Therefore, Eq. 2.17 represents the optimum positioninglwBatisfies both objectives.
]

Next, we provide an intuitive interpretation. Similar to.2R, the measurement vector

1
v and

are normalized vectors. Then, the problem becomes sinoildret decoding

can be represented bY = (Kgg X sqrtk)us+(—npL||Dgll2)us+Zo, Whereu; =
Do

U2 = ol

problem in CDMA (Code Division Multiple Access) systems.uEhwe haveDg € 13

Moreover, maximizing: and|| Dg

2, Which can be interpreted as maximizing the SNR of

each term, results in a better estimationgg andnp, respectively.

B. Case of? = oo: Next we characterize the impact of correlation on the estona
guality of path loss parameters, whémoes toxc. To simplify the derivations, we define
two variables:p = & for o # 0, which denotes the ratio of the power of shadowing to

multipath power (in dB) and = a + o2, which represents the sum of the two powers.
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The following can be easily confirmed fof # 0:

1) limﬁ_mo Rtot,Q = (plklz + Ikxk) %p
2)limg_,o0 Rigto = (Texk — o L 17) 1;” (using Matrix Inversion Lemma),

3) llmﬁ—wo 1 R’totlQlk k 11-:_Ppk )1(

4) hmﬁ—)oo 1k R’toLQDQ = (15D ) 11:ppk):l(

5)limg 00 DS Rigt o Do = (DgDQ TR (17 Do) )T” = D§ (pAk +Ik><k) Do 1;’2;.
Using the above equations, we have:
-1
-1 TRl ol —1TRgioD
lim Gy = lim (H5RgloHo) = lim | % R‘f"f ’ j’fRf’l"Q :
frec frec free _1k Rtot,QDQ DQRtot,QDQ

1+ pk:x 1 D§ (PAk + kak) Dg 13 Dg
o T
DT D 1Tp DLD 17D
oo x Do oPo 2 rPo 2
_ x| + DLADg  DhADg | _ | + DLADo?  DLADGY
1+p 1; Do k ;Do 2 k2
DEALDg DEALDg DEALDo DL ALDo

(2.19)

Remark 1. It can be seen from Eq. 2.19 that Theorem 6 also charactetiesptimum

opt

positioning for this case. Moreover, @, denotes the solution of Eq. 2.17, then we have,

9 _a+ o? 9 _ o
Kag mi B=0 ko T Reem oo o+ Lk’
2
2 a+o’ o
2 = and = . 2.20
O hpm 3=0 HDQ‘F’,THZ Uan ML 3 oo HDQgTHZ ( )

As can be seen, the fully correlated case provides a smallienaion error variance
for np. and larger forKgs. In Section 2.5, we will show that the slope of path loss,,
has the most impact on the overall channel estimation eamgance. Thus, case Gf= oo

would be more desirable thah= 0.
Remark 2. Consider the case where multipath effect is negligible,d®= 0. We have

] a 0
lim CG,ML,02:0 = . (221)
B—roc0 0 0
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For this case, the measurement vector becofes: Hof + o1, wherep ~ N (0, o) with
N denoting a Gaussian distribution. Thus, for> 2, the slope of path loss;np, can
be perfectly estimated. However, the uncertainty mdsults in a bias in the estimation of
Kgg, as can be seen from Eq. 2.21. It can also be seen that theagistimerror covariance

is not a function of the sampling positions anymore.

We next characterize the LS estimation of path loss paramdletéLs denote the LS
estimation of path loss parameters as denoted by Eq. 2.6.awethe following error
covariance matrixCp | s = (HgHQ)_1H5Rt0t,QHQ(H5HQ)_1. The following Theorem

characterizes some properties of this estimator.

Theorem 7. Let éLS and Cy s represent the Least Square estimator of path loss param-
eters and the corresponding estimation error covariancerixaespectively. Letr?ﬂm’LS
and O’%PLYLS denote the LS error variances éde,Ls and np_ | s respectively. We have the
following properties:

1) Cyrs = Com,

2) Ui%dB,Ls ando?_  _ are increasing functions of” for a, 0* € [0, c0). Moreover,a?{dm

npL,

ando? _are increasing functions ef for o, 02 € [0, 00) and an invertibleR,om o,

npLLS

3) Both ML and LS estimators provide the same estimatiorr esgariance matrices if

£ =0or .

Proof. Let¢ € R*. Using Matrix Inversion Lemma, we have:

B —1
(Rtgﬁg + §HQH£) t= Rioto — Riot,oHo (§_lf2x2 + HgRtot,QHQ> HgRtot,Q-
(2.22)

By noting that matrix(Rg,t{Q + §HQH£)_1 is positive definite, we have,

1
Riot,o — RiotoHo <§_112x2 + HgRtot,QHQ> HgRtot,Q =0

L 3 _ -1
= Rtotl,Q — Hg <§ "oyo + HgRtOt,QHQ) Hg =0
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Next, lets go toco. We have

-1 -1
Rigto — Ho(HRaoHo) Hb = 0" HER o Ho = HEHo(HERaoHo) H5Ho

-1

1 —1
— (H3RGloHo) = (HAHS)  (HBReoHo)(HHo) = Com < Cos,
(2.23)

where for the last line, we are using the property that ¥ B - 0thenB=! = A= = 0

and we are assumindo is full-rank.

The second property can be easily confirmed by taking theatere with respect to
o? anda. We next prove the third property. F6r= 0, we haveRy o = (a + %) [x,
resulting in
o+ o2 DgDQ I{DQ

lim CgJ_S = lim Cg7|\/||_ = = =
8—0 8—0 DgAkDQ 1£DQ k

Forﬂ = 00, We haVERtoLQ = Ozlklg + U2]k><ka

Cyis = a(HgHQ) B (Hg1k1£HQ> (Hg HQ) L < Hgﬂg) -

and

1

(HgHQ> - (Hg 1k1{HQ) (HgHQ> )

o (DTDo 17D ¥ —k(1TDo)| [DEDo 17D
<D5AI€DQ> ? i 1£DQ k —k’(lgDQ) (1£DQ)2 1£DQ k
B 1 -k2(D5DQ)—k(1;{DQ)2 —k(D5Do) (17 Dg) + (15 Do)’
- 2
(D5aDo) | 0 0
DIZDo 17D 10
L . (2.24)
1"Do & 0 0

Therefore, we have

DiDo o 1IDg o

T T

lim C, a Lo + o’ DgDo 1, Do Ot 5o’ DLADSC
0,LS — T A = -

Booo D5ALD T 1TDg 5 A )
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By comparing this equation to Eq. 2.19, the third property loa verified. 0J

Remark 3. Theorem 7 (part 3) shows that the optimum positioning of ELZ gninimizes

the estimation error variance of the LS case too.

Received power (dBm)

-0.5 -
-1 -1 05

y (m)

x (m)

Figure 2.6:A 2D simulated channel at 1GHz frequency with the followimgiarlying parameters:
0 =[-22 3.0]7, /a = /8dB, 3 = Imands = /2dB. The transmitter is located @t = [0 0]

We next verify the derived theorems, using a simulated chlankig. 2.6 shows a
simulated channel, generated with our probabilistic cleasimulator [104], with the fol-
lowing parameters: frequency of operation of 1GHz= [-22 3.0]", /a = /3dB
and 5 = 1m. As for multipath fading, this channel experiences a datee Rician
fading, with Jakes power spectrum [13], which results in iindtipath fading getting
uncorrelated aftef).12m. The pdf of a unit-average Rician distribution, with pasam
ter Ky, is given by [11]: fr,e(z) = (1 4+ Kyo)e Kiem(HKic)z g (2\/9:KriC(Kric + 1)),

where [y(.) is the modified zeroth-order Bessel function. Note that = 0 results in

an exponential distribution, which experiences a conaidleramount of channel vari-
ations, while K;ic = oo results in no fading, i.e., we will have a channel with only
path loss and shadowing. Multipath power (in dB}, is related toK,. as follows:
0? = E{w*(q)} = 100 [, logiy(z) frye(z)dz — 100<f0°° loglo(:c)fTMP(x)dx>2. For the
simulated channel of Fig. 2.6,= v/2 dB, which corresponds tfic = 19.
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[ a+o?/k=8.2 (Eq. 20)

9
gL e e eeaaeaeas
7+ |—rand. pos. with ML est.
o |©rand. pos. with LS est.
g |=opt. pos. of Theorem 6

o Bl

o
a
3 (a+02)/k=1 (Eq. 20)
P
[egeeeeseeaesasaeneeet™ v J
074 2 ‘0 ‘2 4
10 10 10 10 10
B

Figure 2.7:Impact of 3 on the estimation ofyg for both optimum positioning of Theorem 6 and
random sampling.

oo, —rand. pos. with ML est.
0.1+ 5 orand. pos. with LS est.
=opt. pos. of Theorem 6

Figure 2.8:Impact of 3 on the estimation ofp for both optimum positioning of Theorem 6 and
random sampling.

Fig. 2.7 and Fig. 2.8 show the impact of the correlation distgs, on the estimation
variance of{yg andnp, respectively. In this example, the workspace is a ring witinaer
radius of0.3m and an outer radius 8f3m, superimposed on the simulated channel of Fig.
2.6, such that the centers of the rings are positioned atréimsritter. We consider the
case wheré: = 8 samples are taken from the workspace. Furthermore, we centipa
performance for the case of random uniformly-distributachgles with the case where
samples are optimally positioned based on Theorem 6. Fsnibrkspace, enforcing

Dg = 0 results inmax || Dol|5 = 100k log3, (&), which can be achieved if and only if
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half of the samples are distributed on the inner circle wihigeother half are on the outer
one. Therefore, we assume that four samples are equalbgdmen the inner circle while
the other four are equally-spaced on the outeride figures show that the optimum
positioning of Theorem 6 can reduce the error, especiatlyhi® estimation ofip,. (which

will have the most impact on the overall channel estimatioorel6]). It can also be
seen that ag approache$ or co, both estimators have the same quality as predicted by
Theorem 7. Finally, the performances of the two estimatagsat that different for other

values offs in this example.

2.4 Impact of channel parameters on the estimation of the

shadowing power

In this section we investigate the impact of different chelrparameters on the estimation
of the shadowing powery). Similar to the previous sections, we consider both ML a8d L
estimations of the shadowing power. While ML is the optimuwstireator, it requires the
knowledge of3, which may not be available. Thus, the ML analysis providesrachmark
for the estimation performance of the LS approach. We firaster the case where path
loss parameters are perfectly estimated and then exterahalysis to the case where path

loss parameters are estimated using ML or LS estimator.

As mentioned earlier in Section 2.1, finding a closed-formpregsion for the ML es-
timation of the shadowing power in the presence of multigatting is a challenging
problem. To simplify the mathematical analysis, we negleetmultipath fading effects
in this part and consider the case whékg o = aRnomo. However, the analysis for the
LS estimator can be easily extended to the general case whe#e). For this case, the

LS approach estimateswhich is the sum of the shadowing and multipath powers in the

3Note that the multipath fading components of different skmgppoints are uncorrelated with
100% probability for the case of optimum positioning and 9a¥%bability for the case of random.
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dB domain.

Let Yo cent = Yo — Hof denote the centered version of vectgy. Let dyy o anddy g
represent the Maximum Likelihood and Least Square estirsate respectively, whef

is known. As discussed in Section 2.1, we Have

YL R-L Y, YL Y.
~ Q,cent" tnormo ! Q,cent ~ Q,cent! Q,cent
aMLjg = 2 andaLS\@ = - (2.25)

For 5 = oo, matrix Rnomo IS NOt invertible and the ML estimator can not be applied 5As
goes taxo, we haveYg cent = 01 Wherep ~ N(0, ). Therefore, the optimum estimate of
the shadowing power becomesin this case, which can be attained by the LS estimator
with the estimation error variance 8 (0> — a)?} = 2a?. However, in practice, when

[ goes tooco, o will become zero, which results in no shadowing variationd hence

nothing to estimate beyond the path loss curve.

Lemma 6. AssumeX € R* ~ N(0, R) is a zero mean multivariate Gaussian vector with
the covariance matri® = [r;;] € R¥**. We haveE{ (X" X)?} = [trace(li’)}2 +2 X
15(R e R)14.

Proof. We have

k

E{ (XTX)?} = ZE{#H Y E{ala? _3Zr32+ N (riarsg +20%)

1<i,5<k 1<i,j<k
i#] i)
k
= [Zn } +2 > 7 — [tracd R)]* +2 x 17 (R e R)1;. (2.26)
=1 1<i,5<k

0

Theorem 8. Consider the case where multipath is negligible, 8. = 0 and Ry o =
aRnomo- Letamy and &gy represent the Maximum Likelihood and Least Square esti-

mators ofa respectively, whefi is known. We have the following properties:

“We assume perfect knowledge®fvhen we use this ML estimation in the rest of this section.
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1) Both estimators are unbiased,
llg; —ajll

2) 0%, , = r’andad = Ha’ Y, e 7 whereg # g;if i # j. Thus, the

error variance of both estimators is an increasing functidia,

3) o2 _is anincreasing function of while agw is independent of.

Ofl_s\

Proof. We have{awtjo} = {8 candinomoYa.cent} = £178CE R oB{ Vo cond & ent} | =
«. The LS case can be immediately verified to be unbiased. Nexprave the second

property. Defind/ £ R, 2. Yo cent ~ N(0,alyx1), Where3 # oo (note that the ML

noer
estimate is not defined fgi = o). Using Lemma 6 we have:

2 o Yg,centhTolerYQ,Cem 2 o YQT,centhTolerYQﬁent 2 2
O-dML\Q_E o — i =E - — o

= e (UT0)"} - o7 = kQ(k2+2k)—oz ~o? and

gést = E{ (a _ Yicen;YQ,cent) } — E{ <.YQT,cen]t€Yche“t)2} — o

1 2

= ﬁ < [traCthot’Qﬂ 2 -+ 21£<Rtot oe Rtot Q>1k> — az k2 (Rtot oe® Rtot Q)
2 _lai=gjll

= ﬁale(Rnoer ® Ruormo) 1 a Z e B .

1<i,j<k

Thus, they are both increasing functionsxofThe third property can be easily confirmed

from these equations. O

The next theorem characterizes the Cramer-Rao bound fastireation of the shad-
owing power and path loss parameters under the assumpabmitlitipath is negligible

and correlation distangeis known.

Theorem 9. Consider the case where multipath power is negligible .0 = aRnormo
and 3 is known. Defing 2 [07,a]”. Leté and C(€) represent an unbiased estimation

of £ and the corresponding covariance matrix respectively. Ném thave the following
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Cramer-Rao bound,
—1
T —_
C@) - Q(HQRnoerHQ> U1 7 (2.27)

202
01><2 &

where- denotes matrix inequality.

Proof. From Eg. 2.3, we have,

log fYQ(YQ|9>a,6702 = 0)

k 1 k 1 _
=3 log 2w — 5 log | Rnomo| — B log av — ﬁ(YQ — HQQ) Rnormg(ﬁ) (Yo — Hgb),
and
1 _ _
Vo log fiq (Yold. @, 8, 0% = 0) = =~ | HE Rogmo () Hotl — HE Brgm Yo
1 _
= aHanoer(ﬂ) (YQ - HQ9>'
Therefore,
1 _
E{Vlog fre(Yolt. a, 3.0 = 0)V7 log i (Yolb: o, B, 0" = 0)} = ~HE R o Ho.
(2.28)
Furthermore,
d , o1 .
o log fyv,(Yolb, o, 3, 0% = 0) = —5o + 272(1@ — Hob)" Roomo(B) (Yo — Hgb).
DefineX £ \}_Rmﬁmg )(Yo — Hof). We haveX ~ N(0, Irxx). Therefore,
d T Lemma6 k
E{(d log fy, (Yolf, a, 8,02 = 0) ) } 4@2 { (XX — k) } e (229)

For the cross terms, we have,

d
E{@ IOg fYQ(YQ‘97 Oé,ﬁ, 02 = O)VG IOg fYQ(YQ‘eu Oé,ﬁ, 02 = 0)}

1

- E{ (XTX — k) HE R o )X b = 01 (2.30)

3
2
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From Eq. 2.28, Eq. 2.29 and Eq. 2.30, we have the followingHerFisher information:

LHTR L L Hg 0
1(5): a’to tnorm o1 Q 2:1 7 (2.31)
O1x2 5oz

which proves the theorem. O

In EqQ. 2.4 of Section 2.1 we showed that the ML estimation o p@ss parameters is
an unbiased estimator, with the following error covariamegrix: Cy m. = (HgRt;t{QHQ)_l.
Therefore, the ML estimation achieves the Cramer-Rao boasdan be seen from The-
orem 9. Furthermore, it can be seen that the ML estimatioh@hadowing power of
Theorem 8 achieves the Cramer-Rao bound of Theorem 9. Wechasdcterize the ML
estimation of the shadowing power when the knowledge of #ile lpss parameters is not

available. We first summarize some properties of projeatiatrices.

Lemma 7. A square matrixP? € R*** is a projection matrix iffP? = P. If Pis a
projection matrix, ther} (P e P)1, = trace(P?) = trace(P).

Proof. Readers are referred to [99]. O

Theorem 10. Consider the case where multipath is negligible, i€. = 0, and 3 is

bounded. Lety, ,_;, represent the ML estimation of when# is estimated using an

ML estimator: § = Oy, Then,E{@MLIB:éML} = 24, which is a biased estimator.

Moreover, we have the following for the estimation errorigacec? = 202, which

ML |0 =6p k

is independent df, 5 and an increasing function af.

Proof. If § = éML, we then have the following Maximum Likelihood estimator:

YIpPL  RL PowY
A o+ QML QMLTIQ
OMLIg=0y. — anQ , (2.32)

45



Chapter 2. Understanding the spatial predictability oekass channels

-1
wherePo. = Lixi — Ho (HgR,;OlerHQ) HL Ryl o Hence,

Py RaomoPom
—1
= (Rr:olrmg - Rr:olerHQ (HgRrTolerHQ> HgRrToler)
—1
X (Ikxk - HQ (HgRrTolerHQ) HgRrToler)

—1
= Rr:oler - Rr:olerHQ <H£Rr:olerHQ> HSR_l

norm 0 (2.33)

andE{YQYg} = ngeTHg + aRnormo. Therefore, using the above equations, we have

Pd . FromoPom B{YoY( }

. 1
E{aMLw:éML} = Etrace normo

= Ztrace
ok

_k=2 . 2. (2.34)

1
Tyxr — R;olerHQ <H£R;olrm,QHQ> HS]

As can be seen, this estimator is biased but it has an unbésyaaptotic behavior. Next

we calculate the error variance of this estimator,

2 =E ( — YSPS,MLRrTolerPQ,MLYQ)2
GLjo=dy. Q .
2 k-2, 1 - . )
= — 2Ta + EE <YQ PQ7MLRI’]0I’m,QPQ,MLYQ) ) (235)

_1
2

Let us defind/ =S R 2 normQ

norm,QPQMLYQ' We hanE{U} =R

PQ’MLHQH =0and
_1 _1
Cy = E{UUT} = aRno?mQPQ,MLRnOFmQPS,MLRno?m,Q
_1 -1
= O‘RnOQer(Rnorm,Q — Hg (HgRrTolerHQ) Hg)
1 1
X (Ika - Rr:olerHQ <H£Rr:olerHQ> HS) Rn02er
_1 -1 1
= O‘Rno2er (Rnorm,Q — Hg (HgRrTolerHQ) Hg) RnOQer

1 1
- a<1,m ~R2 Ho (Han—olerHQ) Hanoﬁmg) (2.36)

1

2
norm Q
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It can be easily confirmed théCU is a projection matrix. Therefore, using Lemma 6 and

7 we have:

E{ (YQT Pan—olerPQYQ)Z} - E{ (UTU)Z} — [tracdCyy)]” + 217(Cyy @ Cyp)1y

—a?((k -2+ 215(&@ . éCUm) —a?((k =22+ 2trace(éCU)> — k(k — 2)a”.
(2.37)

Substituting this value in Eq. 2.35 resultsdglML‘ =202, O

0=0wL

Remark 4. Theorem 10 shows that the ML estimation error variance ofstiedowing
power, for both cases where the path loss parameters aregérfknown or estimated

using an ML estimator, is independent of the sampling possti

Next we characterize the estimation of the shadowing powwmithe path loss pa-

rameters are estimated using an LS estimatory e d.s.

Theorem 11. Consider the case where multipath is negligible, izé.= 0. Letd go_.¢

represent the Least Square estimationafhend = 6,s. We then have the following,

. 1
E{Oél_sw:él_s} =afl- %trace(E)}

2
2 « 2 2 2
Odrgoins — T2 [2trace(RnO,mQ) + [trace(E)]” + 2trace( E?) — 4trace(F)],

where B = (H5Ho)  HESRoomoHo and F = (HYHo) ™ HYR2moHo. Therefore,

the estimation error variance is independentafhile it is an increasing function eaf.

Proof. We have the following Least Square estimator when Os:

. Y5 P8 sPoisYo
QA 510=65 — 2

(2.38)
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-1
wherePg s = I, — Ho (HgHQ) H{ is the projection matrix. We have

A 1
E{ 154, ) = 7trace PousE{vod }|

«
= —trace

-1
[’ Rnormo — Ho (HgHQ> HE Roome

=afl- %trace{E)]. (2.39)

We next characterize the error variance of this estimator:

o2 = E{ (a _ ngg,LSPQ,LSYQ)2}

&LS\G:éLS k

1 1 2
=a*—2a%[1 -~ Etrace{E)} + EE{ (YQT ngLSPQ,LSYQ) } (2.40)

DefineU £ Pg sYo. We havel/ ~ N(0, Cyy) where
Cu = aPQ,LsRnoerPS,LS
= aRnormg — @ RnormoHo (H5H9>_1H5 —aHg (HgHQ>_1HgRﬂoer
+aHo <H5H9> T HE RoomoHo (Hé‘f@) e (2.41)
Therefore, we have trag€y,) = a[k—tracg E)]. After some lines of derivations, it can be

confirmed that{ (CyeCyy)1, = tracCZ) = o’ (tracq Ri ., o) +trace £?) —2trace F')).
Substituting Eq. 2.41 in Eq. 2.40 results in:

1
2 _ 29 2[1 _
Trsociy = O 20°[1 ktrace(E)}
2
+ % [k —trac E)] gt 2trace R2ym o) + 2trace £2) — Atrace F)

2

_ % [Qtrace{Rﬁoer) + [trace(E)}2 + 2tracd E?) — 4trace{F)} . (2.42)

0

As 3 goes to zero, we havémg_,o £ = limg_,o F' = I542. Thus, it can be verified

thatlimg_,, E{dstzéLs} = £-24, which is asymptotically unbiased. Moreover, we have
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limg_,o 02 — 22° For the case off = oo, we havelims_,. F' = klimg_,o E.

. Tz
LS|0=0) g k

Similar to the derivations of Eq. 2.24, we can show that,

-1 k' —1I'D
lim E:(HgHQ) (Hg1k1;§HQ> — Rl (2.43)
B—o0 0 0

Therefore limg_, E{@LS‘QZéLS} = 0and as a resulimg_,o; & gg_g, = 0. Further-
more,limg_, ., tracg £?) = k? which results inlimg_, Uo%Lsm:éLs = o?. As 3 goes too,
the measurement vector becomigs= H6+ o1, wherep ~ N(0, «). Fork > 2, the path
loss slopeppi, can be perfectly estimated. Then, we have- (—np Do) = (Kgg+0)14.
In this case, the LS estimation afwill be 0, which corresponds to the error variance of
a?. It should be noted that in this case, the channel can beqgbigrferedicted fork > 2.
Similarly, in practice, a$ goes tooo, o would become zero. Thus, shadowing power of

zero will be correctly estimated in practice.

2.5 Performance analysis using unbiased estimation of path

loss parameters

In Section 2.2, we considered the impact of the underlyirrgmpaters on the spatial pre-
dictability of a wireless channel, where we assumed thautigerlying parameters are
estimated perfectly. In this section, we extend that amatgsalso consider the impact of
estimation error in path loss parameters. In [6], authoadyaed the sensitivity of channel
predication to the estimation of the underlying parameteig. 2.9 shows the impact of
parameter estimation error on the overall channel predfigierformance. For each curve,
only one parameter is perturbed while the rest are assunréecpg estimated. It can
be seen that the curves attain their minima when there is reoder estimation error,
as expected. We can furthermore observe that uncertainteiestimation of different

parameters impacts the performance differently. As carebe,sthe prediction is more
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sensitive to path loss parameters (especially path lossnexgne ). In other words, the
effect of an error in the estimation of the shadowing paranseis almost negligible, as
compared to the error in path loss estimation. As such, sigéction we extend the anal-
ysis of Section 2.2 to the case where errors in the estimafigath loss parameters are
also considered.

O Sensitivity w.r.t.a
—24r x Sensitivity w.r.t.
== Sensitivity w.r.t. npl

«Sensitivity w.r.t. KdB

o+
3
s
0
o
o
o
ot
o
o
o
o
s
iy

»,
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"o,
,
.,

"
--------

=20 0 20
% of deviation from the exact value

Figure 2.9:Average Normalized Mean Square Error (ANMSE), spatiallgraged over different
channel realization and random sampling positions, aseifumof the % of estimation error ifi,
5 andé [6].

Consider the case where path loss parameters are estinsatgchn unbiased estima-
tor.> We next characterize the error variance of channel predidtr this case, assuming
that the error in the estimation of 5 ando? is negligible. Since we are considering both
the ML and LS estimators, we assume tRat ¢ is invertible in the rest of the section (This
is naturally implied ifo2 # 0). Let Oy, = SYo denote an unbiased estimatoreof\We
have the following for the error covariance matfix ynp = S Rior 0S”, With SHg = Ti k.
Let Yyg 04, (1) = E{ng(q) ) Yo, 0 = Oun, v, B, 02} denote the estimation of channel

at positiong, when path loss parameters are estimated using the afotiemeshunbiased

5The unbiased estimator can be either ML or LS.
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estimator:

Ty (@) = W (fons + 65(0) Bt (Yo — Hoflwo
_ [(hT(q) _ ¢£(Q)Rt;t{QHQ)S + cbg(Q)RtEtl,Q] Yo

Go

We have the following characterization for the error vacmof channel estimation:

UgBygyéunb { (TdB dB ,Q, 9unb( ))2 } «, 57 02}
T T _ T
{ (h )0+ Zg) — GQYQ> (h (@)0 +Eqq) — GQYQ) }
— E{ (S — GoZo) (i — GoZo)"}
= a+0” + GoRioGo — Godalq) — ¢5(0)Go, (2.44)

whereZ¢,; = v(q) + w(q) denotes the sum of shadowing and multipath power (in dB

domain) at positior. It can be easily confirmed that

T
GQRtOt,QGg = <hT(Q) - ¢5(Q)RE)&QHQ> SRmLQST <hT(q) — (bg(q)RtB&QHQ)
ol ot + Gatolq) + d5(q)Gh. (2.45)

Therefore, we have

2 2 T p—1
UdB,Q,éunb(Q) = a+o" - QRtot,Q¢%
initial ch. est. error var. i?,path loss is perfectly known
T
+ (7 (a) = 05(a) Rt oH ) Co,un( h" (a) = 65(0) RtoHo) - (2.46)

~~

increase in error var. due to error propagation from esf. of

The initial uncertainty of channel estimationjatan be represented by-o? — gRt;&QqSQ

if path loss is perfectly removed. Then, the second term of2=6 is an increase in the
error due to error propagation in the estimatior# oAs can be seeraf,jB 06 (q) is not a
function of@ sincerB,Q,éunb(q) is an unbiased estimator of channel at position

In the previous sections, we showed thataando? increase, the estimation of path

loss parameters as well as channel prediction quality beoeorse. Thus, we expect
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to have the same trend, when considering both path loss agiimerror and channel
predictability. We next study the effect of correlationtdisce on the overall performance.
Similar to Section 2.3, we consider two casesiof 0, co and characterize the overall
channel estimation error variance. Moreover, we proposgémum positioning scheme

that minimizes the overall channel estimation error fosth&vo cases.

Theorem 12. Let 9°%

o N q),8=0,00,02£0
dB’Q’GML/LS( ) 7

mizes the overall estimation error variancegbr both 3 = 0 andoco ando? # 0, consid-
ering path loss estimation through either ML or LS. We h?l/ZéDQop; =

(9),8=0,00,02£0

6 denote the optimum positioning which mini-

o ~
dB,Q,0\L /LS

Dygy.

Proof. For 5 = oo, we havelimg_,« ¢o(q) = X1k Vq € K, wherep = 5 andy =

»

1+p

a+ o2 If o? # 0, then using properties 3 and 4 of Section 2.3-B, wdiget ... A7 (q) —

$6(0) Rigoflo = [l_ﬁXlimB—mo W Rotole =D+ x limg o 153&1,@1)@] =
. _ 2L

[ﬁ ol Do — D{q}] andlimoo 66 Rt o®e = mfirym - Moreover, from

Eqg. 2.19 and Theorem 7, we ha@® viis s—co = limp oo Come = limp oo Cyis =

DL Do 17 Do
PT DTA.Dg DLALD . )
%p T PR PetrPe | 'where Ay = kljy, — 1517, After some lines of deriva-
Lo
DT ALDo DT A,Do

tions, it can be shown that

tim (7 () ~ 65(0) Rt Ha ) Comns s—ne (W7 () ~ 65(0) Rt Hlo)

B—r00
DEDg + p(15Dg)” = 2(1 + pk)1f Do Dygy + k(1 + pk) D3,
B (1+ p)(L + pk) D5 A, Dg *
(1f Do — kDyyy)’p + D5Dg — 21T DoDyyy + kD?,
(1+ p)(1+ pk)DLALDg

Y. (2.47)

5The notationéML /Ls denotes that the estimation of path loss parameters canther ei
9ML|0¢,B,02 or 9|_s.
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Thus, we have the following for Eq. 2.46:

.9
611_{1010 7 48,0, 0uLis (Q)
2
. 0’k n (1;}FDQ_kD{q}) p+D5DQ_21{DQD{q}+kD%q}
(1+ p)(1+ pk) (1+ p)(1+ pk) D5 A Do
_ Qip + Q2 (2.48)

(1+ p)(L + pk) D5A, D™

whereQ, = (k + 1)D5A, Do + (17 Dg — kD{q})2 and@, = D§ADo + DEDo —
217 DgoDygy + k:qu}. It can be easily confirmed th&, = k(Q,. Therefore, we have

2 — Q2 _ Q2 2 .
dB,Q,éMULs<q) = iAo X = DA Moreover, we have:

limg_,o 0

Q2

— . 2.49
X DgAkDQX (2.49)

i -1
1im 0% 0 4, (0) = (1447 (0) (HEHo) (o))

Thus, the optimum positioning which minimizes channelmeation error variance for

_ ; opt _ : Q
boths = 0 andoo is Q"ig,g,éML/LS(‘1)75:0"’07”27&0 = arg ming m. We have,
T T 2 2
Q2 g DQDQ — 21k DQD{q} + /{ZD{q} 1y ngAkDQ + (lgDQ — ]{TD{q})
DgAkDQ DgAkDQ k DgAkDQ

(1f Do — kDyy))”

11
:1 — —
Tk DLAD.

It can be easily confirmed that;, is positive-semidefinite. Thus, under full rank assump-
tion of Hg (as discussed in Section 2.1), we haV§A,Dg > 0. Therefore, to mini-
mize the estimation error variance for bath= 0 andco, we needl} Do = kDy, for

Dg € R*\spar{1;}. O

Case ofc?> = 0 and = 0 can be treated the same as Eq. 2.49 with «, which
results in the same optimum positioning scheme. However: i 0 and3 = oo, for
k > 2, the channel variations can be perfectly estimated at ean:ﬂ} @heorem 12 shows
that the optimum positioning results fig — ¢,|| = (Hle llg — qi||> " This suggests that

the optimum measurement positions should be chosen sucthéhdistance of; to the
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transmitter be the geometric average of the distances om@ssurement points to the

transmitter. LetQ' = Qg‘;t (g f=000,040 denote the optimum positioning. We have,
d8,Q.0yps T T
lim o —ato?+ 2T andiim o2 22T (250
BILI(I) UdB,Q’,@MULs (Q) =atot k an Bl_g)lo UdB,Q’,éML/LS (Q) =0T ? ( ) )

(1+1/K)(a+02)=11

&—rand. pos. and ML est. for PL

orand. pos. and LS est. for PL ||
-=opt. pos. of Theorem 12

channel est. err. var.

Figure 2.10:Impact of 3 on the channel predictability, when considering path Iatsretion
error.

For 8 = 0, ask goes tooo, the estimation error of path loss parameters go@saiod
the estimation error variance beconaes o2. This value is an initial uncertainty assuming
known path loss parameters. For the case ef oo, on the other hand, the estimation error
variance becomes?® ask goes toco. Fig. 2.10 shows the impact of correlation distapice
on the estimation performance when path loss parameteestineated using an ML/LS
estimator. The impact of optimum positioning of Theorem &8 also be seen from the
figure. For this example, the workspace i€ra x 2m square withy/a = +/8dB and
o = +/2dB, wherek = 10 samples are taken from the workspace (either randomly & opt
mally). The y axis then represents the estimation perfooaafter averaging over several
runs of channel realization and sampling patterns. As casebr, ML and LS estimators
provide very similar performance in this case. Furthermopéimizing the position of the

samples, according to Theorem 12 can improve the perforenamasiderably.

54



Chapter 2. Understanding the spatial predictability oekass channels

2.6 Numerical analysis on real channel measurements

—16 dBm

—28 dBm

—41 dBm

—53 dBm

—65 dBm

—77 dBm

Figure 2.11:Blueprint of the portion of the basement of the ECE bldg. ehgtannel measure-

ments are collected. A colormap of the measured receivethlsfpwer is superimposed on the
map. R1 denotes the main room, where the transmitter isdd¢as marked on the figure). R2, R3
and R4 correspond to different hallways at the basementth@geDF file for a colored version of

the map.

In this section, we show the impact of different environnseand their underlying pa-
rameters, on channel predictability, using real channelsueements. Fig. 2.11 shows the
blueprint of a portion of the basement of the Electrical amin@uter Engineering build-
ing. We used a Pioneer-AT robot to make several measureralemtg different routes in
the basement, in order to map the received signal strengtth (@ute is a straight line).
The robot is equipped with ag02.11g wireless card, with transmission 2t GHz. It
uses the MadWiFi device driver to measure the received kgmaer [96]. The figure
also shows a color-map of our measured received signal ptnverder to see the impact
of different underlying parameters on channel predictigbihe area is divided into four
regions ofR1, - - - , R4, as can be seen from the figure. Since we are dealing with a¢al d
we can not check the accuracy of the estimation of the unideriyarameters. As such,
we use all the measurements in each region, to estimate tleglyimg parameters of that
region, which are then used to understand channel predittad§ each region. We use

the LS estimator of Section 2.1, in order to estimate chapaslmeters of each region.
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As can be seen, as the distance to the transmitter increase@he slope of path loss)
increases. This phenomena has previously been reportée iitdrature as well [105].
Another interesting phenomenon is the shadowing behadsican be seen, correlation
distance () increases as we get farther from the transmitter and mawe toallways. This
makes sense as shadowing is the result of the transmittedl| $ging possibly blocked
by a number of obstacles before reaching the receiver. lizifdat region R1 (the main
room), multipath fading is the dominant term, as can be séhis is expected since that
room is rich in scatterers and reflectors, with no major atbstaNext, we consider chan-
nel predictability of different regions and relate the atvee behaviors to the underlying
parameters of Table 2.1 .

Table 2.1: Channel Parameters for Different Regions andd?ou

Region Ky npL a B o?
R1 -20.8870 1.2272 negligible negligible 22.1238
R2 -21.4677 2.3878 10.7772 0.0979 2.8862
R3 -17.9694 2.9795 8.6385 0.3231 7.6628
R4 68.7836 9.9392 2.0157 1.4377 7.5687

Al - - 8.2164 0.0809 29721
A2 - - 11.6332 0.0860 2.9313
Bl - - 11.7535 0.2858 6.3979
B2 - - 11.6029 0.5832 6.1956
C1 - - 10.4193 0.2258 5.1696
C2 - - 10.3451 0.2396 7.2873

Fig. 2.12 compares channel prediction quality of diffeneagions (measured by Av-
erage Normalized MSE as defined in Section 2.1), given thanpeters of Table 2.1. As
can be seen, region R4 has the best performance, as compdhnedother regions. From
Table 2.1, region R4 has the smallest o> and good amount of correlation, which result
in better predictability. On the other hand, region R1 eigrares considerable multipath
fading and negligible shadowing, which results in the waretdictability. Regions R2
and R3 have similar performances, since one has a higheowiragcorrelation while the

other experiences lower+ o2. As was shown earlier, path loss parameters do not impact
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: : >¢prediction for R1| |
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Figure 2.12:Comparison of channel predictability for different reggoof Fig. 2.11.

channel predictability. We next study the impact of eachviddal channel parameter on

the estimation performance more closely.

Table 2.1 also shows channel parameters correspondingei® plirs of routes in the
basement of ECE building (pairs A, B and C). Each pair is chaaech that only one
parameter changes and the rest are almost the same. Figtdbl3hows the impact of
the shadowing power on the estimation performance. As caede, for A1/A2 pair, the
correlation distance and multipath power are almost theesdtowever, A1 has a smaller
shadowing power, which results in a better estimation perémce. Fig. 2.13 (middle)
and Fig. 2.13 (bottom) show the impact of correlation diseeand multipath power on the
estimation performance respectively. For each case, ottael parameters are almost
the same. As can be seen, B2 with its higher correlationristand C1 with its smaller

multipath power provide better predictability.

2.7 Summary

In this chapter, we developed a probabilistic channel ptexi framework for predicting

the spatial variations of a wireless channel, based on al smalber of measurements.
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Figure 2.13:Impact of (top) shadowing power, (middle) correlation aite and (bottom) mul-
tipath power on channel prediction performance, using ckahnel measurements of Fig. 2.11.

We then proposed a mathematical foundation for understgritie spatial predictability
of wireless channels. More specifically, we characteribedrnpact of different environ-
ments, in terms of their underlying parameters, on wiretdsmnel predictability. We
furthermore showed how sampling positions can be optimiagchprove the prediction
quality. Finally, we showed the performance of the propdssdework in predicting (and
justifying the predictability of) the spatial variation§ @al channels, using several mea-
surements in our building. Overall, the proposed probsisliframework of this chapter
can be integrated with motion planning algorithms in robottworks applications and

improve the connectivity of the mobile robots while accoisipihg their task.
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Chapter 3

An integrated sparsity and model-based

framework for channel prediction

In the previous chapter, we proposed a probabilistic fraamkwo predict the spatial vari-
ations of the channel and characterized the correspontngne! predictability in differ-
ent environments. In this chapter, we start by showing havsiharsity of the wireless
channels in the frequency domain can be utilized for chapresliction based on sparse
measurements. We then propose an integrated sparsity ashel-tvessed framework that
can keep the strengths of both approaches in order to dasigstianator with even a better

performance.

Consider the workspade. We assume that the workspace is discretized into an or-
dered set of point®. Let vectorz € RY represent the corresponding received signal
strength ovefP, where N = |P|. Consider the case where the received signal strength
to the base station is sparsely sampled at posit@ns {q;, ¢, - ,qx} C P over the
workspace, withk representing the total number of gathered measuremengéschidnnel
measurements can be gathered by one or a number of coopeadtots, making measure-

ments along their trajectories. Thus, the measurementbeanllected at the same time
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or at different time instants over the workspadeefiney; £ Yqg(g;) for1 < i < K. Let

Yo = [y1, -+, yx]’ € R¥ represent the vector of all the gathered channel measutsmen
(in dB). We then havé’y, = ®ox, whered, represents & x N sampling matrix that
corresponds t@. More specifically, théth row of 4 has all zero entries, except for the
entry that corresponds tg, which becomes one. In this chapter, it is our goal to predict
the received signal strendthat unvisited locations (s \ Q), i.e. estimate vectar from

Yo, WhereK < N.

The chapter is organized as follows. In Section 3.1, we pi®wa brief introduction
to the theory of compressed sensing. In Section 3.2 we shamchannel sparsity in the
frequency domain can be utilized for estimating the spa#ishtions of a wireless channel,
based on a small number of measurements. In Section 3.3 Wweariae impact of the
underlying channel parameters on the sparsity of the chamtiee frequency domain. In
Section 3.4 we show the underlying tradeoffs between thesgpdased approach and
probabilistic framework of Chapter 2. Section 3.5 then ps®s an integrated framework
that combines the strengths of both and shows its superniforpgance, using real channel

measurements. A summary of the results of the chapter isqadn Section 3.6.

3.1 An Overview of Compressive sampling theory [1-4]

The new theory of sampling is based on the fact that realdvgignals typically have a
sparse representation in a certain transformed domain. ek#gwin most of the signal
processing applications, the signal of interest is firdlyfahmpled, after which a trans-

formation is applied and only the coefficients above a certiaieshold are saved. This

1As mentioned earlier in Section 2.1, we assume that the ehdi@id is not changing with
time, in our modeling and prediction. Thus, we only need tasider the spatial variations of the
measurements.

2While we pose our framework based on the prediction of theived signal strength (or
power), we use the terms “channel prediction” and “receisigghal strength prediction” inter-
changeably in Chapter 2 and 3.
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is not efficient as it puts a heavy burden on sampling theeestgnal while only a small
percentage of the transformed coefficients were needegtesent it. The new theory of
compressive sampling, on the other hand, allows us to séesgidnal in a compressed

manner to begin with.

A sparsesignal is a signal that can be represented with a small nuofoeon-zero
coefficients. Acompressiblesignal is a signal that has a transformation where most of
its energy is in a very few coefficients, making it possibleapproximate the rest with
zero. The new theory of compressive sampling [106] showts timaler certain conditions,

a compressible signal can be reconstructed using very fegresitions. Most natural
signals are indeed compressible. The best sparse re@tisemf a signal depends on the
application and can be inferred from analyzing similar d&@ansider a scenario where we
are interested in recovering a vectoe RY. In our casey represents the received signal
strength over the field of interest. We refer to the domainm a6 the primal domain. For
2D signals, vector can represent the columns of the matrix of interest stacked form
avector. Letz ¢ R¥, whereK < N, represent the incomplete linear measurements of

vectorx obtained by the sensors. We will have
z = dx, (3.1)

where we refer tab as the observation matrix. Clearly, solving fobased on the obser-
vation setz is an ill-posed problem as the system is severely undermdeted (X < N).
However, suppose thathas a sparse representation in another domain, i.e., iteaspb
resented as a linear combination of a small set of vectoss1' X, wherel is an invertible
matrix andX is S-sparse, i.e|supg X )| = S <« N, where suppX) refers to the set of
indices of the non-zero elements@fand| - | denotes its cardinality. This means that the

number of non-zero elements ¥ is considerably smaller thal. Then we will have
z2=UX, (3.2)

where¥V = & x I'. We refer to the domain oK as the sparse domain (or transform

domain). IfS < K and we knew the positions of the non-zero coefficient& pive could
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solve this problem with traditional techniques like leagtsares. In general, however, we
do not know anything about the structurefexcept for the fact that it is sparse (which
we can validate by analyzing similar data). The new theomoofpressive sensing allows

us to solve this problem.

Theorem 1. (see [106] for details and the proof): IK' > 25 and under specific condi-

tions, the desired is the solution to the following optimization problem:
min|| X ||o, such that: = U.X| (3.3)

where|| X || = |supd X )| represents the zero norm of vectit

Theorem 1 states that we only ne&c S measurements to recovar and therefore
x fully. This theorem, however, requires solving a non-congembinatorial problem,

which is not practical.

Instead, consider the following relaxation of the aforementioney optimization
problem:
min|| X||;, subjecttoz = U X. (3.4)

Theorem 2. (see [1, 107, 108] for details) Assume thétis S-sparse. Thé relaxation
can exactly recoveX from measurement if matrix ¥ satisfies the Restricted Isometry
Condition (RIC) for(25,v2 — 1).

Restricted Isometry Condition (RIC) [109, 11(Ylatrix ¥ satisfies the RIC with pa-
rameters ¥, ¢) fore € (0, 1) if
(1 =e)lello < |[¥eflz < (1 +€)]le]2 (3.5)
for all Z-sparse vectaor.

While it is not possible to define all the classes of matrigethat satisfy RIC, it is

shown that random partial Fourier matrices [111] satisf Rlith the probabilityl —
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O(N~M)if K > ByS x log® M N, whereB,, is a constant)/ is an accuracy parameter
and Of) is Big-O notation [106]. This shows that the number of regdimeasurements
could be considerably less than. While the recovery of sparse signals is important,
in practice signals may rarely be sparse. Most signals, henvevill be compressible.
In practice, the observation vectorwill also be corrupted by noise. Thi relaxation
and the corresponding required RIC condition can be easigneed to the case of noisy

observations with compressible signals [107].

The ¢; optimization problem of Eq. 3.4 can be posed as a linear progring prob-
lem [112]. The compressive sensing algorithms that recocisthe signal based ofy
optimization are typically referred to as “Basis Pursuit].[The Restricted Isometry Con-
dition also implies that the columns of matixshould have a certain near-orthogonality
property. Matching Pursuit (MP) approaches, on the othedhare another class of algo-
rithms that use this property to iteratively reconstrue signal with less computational
complexity. Readers are referred to [110, 113] for moreitdeda this. Next, we summa-

rize sparsity-based channel estimation using a small nuofbreeasurements.

3.2 Sparsity-based prediction of the channel spatial vari-

ations

In this part, we are interested in predicting the spatialateans of the received signal
strength at unvisited locations, based on sparse measni@m@ur analysis of several
channel measurements has shown that wireless channetsapesssible in the frequency
domain for several scenarios. For instance, the solid afrieg. 3.1 (left) shows a sample
channel measurement across a street in San Franciscoqdatatesy of Mark Smith [5]).
The dashed curve shows the sparsified version of this chawhele only 3% of its or-

dered Fourier coefficients are retained (ordered decrglgiwhile the rest are zeroed.
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As can be seen, only 3% of the Fourier coefficients can caph@rapatial variations of
the channel well. Fig. 3.1 (right) measures the sparsitynefahannel in the frequency
domain, for different percentages of the retained Founeffeients. The y-axis shows
-10log(NMSE), where NMSE denotes the Normalized Mean Squarer Bf the differ-

ence between the channel and its sparsified version. Thempltih characterizes how
compressible this channel is. As can be seen, this chanfatlis compressible, i.e., a

small percentage of the Fourier coefficients suffices fotwrapy the signal.

We have also investigated the sparsity of the wireless alanuasing other basis, such
as wavelet and Legendre [114]. While the channel can pgds#lery compressible in the
wavelet domain, sampling in the spatial domain and recoasitry based on the wavelet
transformation results in a poor quality. This is due to #& that spatial point-sampling
and wavelet basis are not incoherent, resulting in the spareding¥ not satisfying the
RIC condition [41]. In [114], the authors show that reconstion based on the random
sampling and Legendre basis meets the RIC condition, stigges possible recovery
strategy if the signal can be compressible in the Legendsesb®ur analysis of several

real channel measurements, however, shows that Fouriesidgrovides a considerably
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Figure 3.1: (left) channel measurement across a streetnrF&ancisco [5], along with
its sparsified version, when only 3% of its ordered Fouriexfiicients are retained, and
(right) measuring the compressibility of the left channel.
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Figure 3.2: Comparison of channel compressibility in Feuend Legendre basis, for a
chunk of the outdoor channel of Fig. 3.1 (left). It can be st the channel is consider-
ably more compressible in Fourier basis.

more compressible representation than Legendre basis.3Eigfor instance, compares
the compressibility of the channel measurement gather8dmFrancisco, based on both
Fourier and Legndre basis. It can be seen that a wirelesslsgronsiderably more
compressible in the Fourier domain. This, accompanied thighfact that the computa-
tional complexity of Fourier transformation is also coresibly lower, makes Fourier an

appropriate domain for our sparsity-based channel reagoigin.

Consider the workspack. As introduced earlier in this chaptet, ¢ RY and Y,
represent the vector of the spatial variations of the chlaoeresponding té, and the
vector of all the available channel measurements resgdg{ivoth in dB). We havé’, =
dox, Wwhere®, represents d x N sampling matrix that corresponds € Then, in
the context of compressive sensing (Section 3.1), vectdrEq. 3.1 represents the spatial
variations of the channel and= Y, denotes the vector of the sparse available channel

measurements. Therefore, the sparsity-based estimdtibe ohannel spatial variations,
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using compressibility in the frequency domain, can be peseidllows:

Xsparse: al"g mlIl ‘ ‘X| |1 (3.6)
s.t. YQ = (I)QFX,

whereI' denotes the inverse Fourier matrix aidrepresents the Fourier transforma-
tion of . For a 1D case, we hav@'ip),.., = ﬁeﬂ'%(m‘l)("‘l) forl < m,n <
N. For a 2D scenario, consider the case where the size of teeetied workspace
is J, x J,, where J, x J, = N. Definer (M, M,) = [{}], where[.] denotes
the smallest integer greater than or equal to the argumehtgi/,, M) = M, —

Ms[r1(My, My) — 1], for arbitrary variables\/; andM, € N. We have,[FZD] —

m,n

jﬂ]u ej?,—’y’ (nl(m,Jz)—l) (Ki]_(?’L,Jz)—l) +j3—;r (H2(m,]z)—1) (Rz(n,Jz)—l) , for 1 < m,n < N.

3.3 Impact of the channel underlying parameters on the

variations of channel frequency response

So far, we established that a wireless channel can be ceoablgecompressible in the
Fourier domain, based on examining real channel measuteniarthis section, our goal
is to mathematically characterize channel compressibilithe frequency domain as this
directly impacts the performance of our sparsity-baseiinasbr. More specifically, we
characterize the impact of the underlying channel paraisigte. parameters of path loss,
shadowing and multipath, on the variations of the frequetmyponents of a wireless
channel. This analysis shows how different parameters rgradt the compressibility
of the channel and the resulting performance of the spasitged estimator. For this
analysis, consider the case where a wireless channel isuneglaglong a route. Without
loss of generality, we assume that the channel is sampledsfaxis at equally-distanced
positions, where the distance between two consecutivelsanmositions isi and the base

station is located at the origin. L&t denote the set of all the sampled positions. We have
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T={q =dg=2d-,qv = Nd} and Dy = [10log,o(d), - - , 101og,o(Nd)]".
The measurement vectdfr;y, can then be represented by the following, for this 1D case,
based on Eqg. 2.2,

Y7 = Kegly — np D7 + 97 + Q7 (3.7)

where similar to the Section 2.#4 (impact of shadowing) is a zero-mean Gaussian ran-
dom vector with the covariance matrir € RV*Y, where [RTLJ = q e ["=914/8 for

1 < 14,j < N. Furthermore, for this analysis, we assume that(impact of multipath
fading) is a zero-mean Gaussian vector with the covariarateixw?/, v (as discussed
earlier in Section 2.1). Next, we characterize the impaditbérent channel parameters
on the variations of the frequency response of a wirelessraialetl';p ! denote the 1D
Fourier transform matrix with entriéb1p"],.., = Tlﬁe—j%(m—l)("—1> forl <m,n < N.

We have the following for the frequency response of the chnn

Yrr 2T Y7 = Kglip "Iy — npllip "Dy +Tip "7 + Tip ' Qr

-1 -1 -1
=VNKge; —npl'ip” Dr+ T 07 + T'ip Qp (3.8)
~ ~ — —_— —_—
impact of path loss impact of shadowing impact of multipath

wheree, denotes a unit vector iR", with all entries zero except for the first one. We have,
YrF e~ N(x/NKdBel —np i ' Dy, arlD_anormTrlD_H+02[N><N> . As can be seen,
Kgg only affects the dc component of the frequency domain. Mage@snp, increases,
the absolute value of each frequency coefficient correspgno the second part of the
path loss term in Eq. 3.8 increases. This implies that-asncreases, on average, channel
frequency response will become less compressibley Asd/oro? increase, the variation
of each of the Fourier components around its mean increasespected, implying lower

chance of compressibility.

In order to understand the impact 8f we next characterize the variations of each

component of 1p '+ as a function of3. Forl < k < N, we have the following for the
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normalized variance of thieth element of"1p 97,

[FlD_anormTrlD_H}
kk

]_ .o |m—n| .o ]_ .o
= Z oI Z (k=1)(m=1) , "5 G2 (k=1)(n—1) _ 5 Z ¢35 (k=1 m—n) jJm—n]
1<m,n<N 0<m,n<N-1
1 N-1 1 N—-1 p
-1 - N — —]N(k 1)i ]N(k 1)i -1 - N — i LAY A 7
+N;( i)[e +e e’ +N2~:1( z)[()\k)+(p ']
wherep = e 5 and), = i & (1),
Lemma 1. For¢ € (—1,1), we have,
N—-1
~; N¢ ¢—¢VHt
N —i)' = — . 3.9
Proof. We have,
N-1 N N N
4 S—¢ S—¢ (N — 1)
—i)s' = N ¢\ — zgl =N — —
N — 1 — N§ +¢V
=g ) 3.10

Using Lemma 1 and the fact thatZ 1 and\YY = (A—lk)N =1, we have:

[FlD_anormTrlD_H}
kk

_ t . P \i i B i
=1+ N 2 (N Z)()\k) + N 2 (N —1i)(pAe)
_ N
PR e 0 ok 670 MO U e L2 e (20
(1—%)° 1 —pAp)?

L—p v A Sz A2
= _ - Ak k 9 z 2
=1+p(1 N )[(1_ﬁ)2+(1—P)\k)2} p[(l—ﬁ)2+(1—p,\k)2]
:1+p(1_1_pN)(1+P2)Ak_4p_p2Ai—20Ak—2(1—p2)
N (14 p? = pAg)? (L4 p2 = pAg)?
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whereA, = Ay + 3= = 2cos (57 (k — 1)). Let f, : [~2,2] — R be defined as follows

1—/)N)(1+/)2)A—4/) o A2 —2pA —2(1 - p?)
N @2 —phE T (T R AP

fo(A) &1+ p(1 - for p € (0,1).

(3.11)

Then, the following theorem characterizes the variancéefRourier transformation of
the shadowing termi{p ™ 'J7).

Theorem 3. Letg, £ |T1p 'Ry T ? = af,(A;) denote the variance of theth
k.k P

Fourier transform component af-, whereg € (0, 00). We havey, > g1 for1 < k <

it

Proof. For1 < k < [&-1], it can be easily confirmed that, > A,,;. To prove the
Theorem, it suffices to show thai(A) is an increasing function of. Taking the derivative

with respect to\ results in:

A (A):p(l_1—pN)(1+p2)(1+p2—pA)+2/)(A(p2+1—pA)+p(A2—4))
dA"” N (1+p? —pA)?
22(A + p)(1+ p* — pA) +2p(A* — 4)
- (1+ % — pA)?
(140> = pA) (p(1 + p* +2pA) — p* x 2(A + p))
(14 p* = pA)?
1—pN (14 p* = pA)(1+ p* 4+ 2pA) + 2p* (A% — 4)
SN (1+ 72— pA)?

_ N
(0= p*) (1 +p* = pA) + 5= [(p + p*) (1 + p* = pA) = 2p(1 = p*)?
(1+p% = pA)? '

(3.12)

For A € [—2,2], we haveA? — 4 < 0, resulting inp> — pA +1 > 1 — p? > 0 for

all p € (0,1). Therefore, it suffices to show that the numerator is pasitiWe have,
_,N

(0= P") (14 p* = pA) + = | (p + p*) (1 + p* = pA) — 2p(1 — /)2)2] > p(1—p*)?+

10" (1 — p?)(3p% — 1). For % < p < 1, it can easily confirmed that the right side of the
N V3
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above inequality is greater than zero. Bot p < Lg we have,

1—pV
(L= p*)* + ——p(1 = ") 30" = 1) = p(1 = p*) + p(1 = p*)(3p" — 1)
= 2p%(1 — p*) >0, (3.13)
which proves the theorem. O
—B=0.05m
25 |---B=0.1m
£3=0.2m
©-3=0.5m
20+

~10log(NMSE)

10 15 20 25 30 35 40
% of the retained Fourier coeff.

Figure 3.3: Characterizing the sparsity of the shadowingmanent, for different values
of 3, for N = 1500 andd = 0.01m. The y-axis shows the inverse of the Normalized Mean
Square Error (in dB) between the shadowing component argpéssified version, as a
function of the % of the retained Fourier coefficients

For 5 = 0, it can be easily confirmed thgt = a for 1 < &k < N. Moreover, for

B = oo, we haveg; = Na andg, = 0for2 < k < N. In summary, the analysis of
this part implies the following: as and/oro? increase, the probability of having a less
compressible channel increases. #s increases, channel becomes less sparse (in the
frequency domain) on average. As for the impactpivhile our derivations are towards
establishing that a8 increases, the shadowing component becomes more contypeessi
more analysis is required to complete the proof. Thus, weptement this part with a
simulation result. Fig. 3.3 characterizes the sparsityhef shadowing component, for

different correlation distanceg'§). The y-axis measures the sparsity, i.e. the inverse of
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the Normalized Mean Square Error (in dB) between the shadpwdmponent and its
sparsified version, as a function of the percentage of tlagned Fourier coefficients. The
figure shows that as the correlation distance increaseshd@owing component becomes

more compressible.

3.4 Channel prediction and the underlying tradeoffs

In this section, we compare the performance of the propgs&dity-based framework of
this chapter with the probabilistic framework of ChapteA2.we shall see, each approach

has its own strength that can result in a better reconstruatiepending on the scenatrio.

©sparsity based
50r  |%*model based

-10log(NMSE)
i A~
S

w
e

10 15 20
gathered measurements as a % of the whole area

Figure 3.4: Comparison of the sparsity-based and modelebagproaches in estimating
the spatial variations of the channel of Fig. 3.1 (left).

Fig. 3.4 shows the performance of the sparsity-based apip@faSection 3.2 and the
model-based approach of Chapter 2 for the reconstructitimleathannel in Fig. 3.1 (left),
where the x-axis shows the percentage of the measuremehé&e (as a % of the whole
area of interest). In this case, the gathered measurenrermaalomly distributed over the

workspace. For the model-based approach, our LS estim&sabion 2.1 is used for es-

71



Chapter 3. An integrated sparsity and model-based frankefeochannel prediction

©sparsity based
45t |%*model based

received signal strength (dBm)
-10log(NMSE)
w
a

0 5 10 : ‘ : 30 35 10 15
distance along the street (m) athered measurements as a % of the whole area

Figure 3.5: (left) Another channel measurement acrosseetsin San Franmsco [5] and
(right) comparison of the sparsity-based and model-bappdoaches in estimating the
spatial variations of this channel.

timating the underlying parameters. This is then followgadiblizing Eq. 2.8 for channel
prediction. It can be seen that when the number of measutsiisesmall (less than 136

in this figure), the sparsity-based approach outperformsitbdel-based one. This makes
sense as the model-based approach needs to estimate thlyingdearameters. For a
very small number of measurements, the error in the esomafithese parameters can be
high, resulting in a performance degradation in the ovestiimation. As the number of
measurements increases, the model-based approach tipemfouhs the sparsity-based

one in this case.

The model-based approach is also sensitive to the accur#oy enderlying model. In
order to see this, Fig. 3.5 (left) shows another channel oreagent in San Francisco [5].
It can be seen that this channel can not be well charactelizely one path loss trend.
As a result, we expect that the performance of our modelebapproach degrade since
it assumes only one path loss trend in the area of interestE§e2.2). Fig. 3.5 (right)
shows the performance of channel reconstruction in this.cdscan be seen that the
sparsity-based approach outperforms the model-baseddhis icase, due to a modeling

inaccuracy of the model-based approach.

The performance of the sparsity-based approach, on the loginel, depends heavily
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& A

=] o =
~10log(NMSE)

n ~

S e

4

received power (dBm)
L =1 g
/

35 e e

. T
y (m) o 10 wm H H H H
25 5 (m) 200 20 40 60 100

% of the retained Fourier coeff.

Figure 3.6: (left) 2D channel measurements in a hallway ml:msement W|th the base
station at(0, 0), and (right) characterizing the sparsity of this channek the PDF file for
a colored version.

on the compressibility of the channel in the frequency dom&bor both Fig. 3.4 and 3.5
(right), the channel is considerably compressible in therieo domain, which is evident
from the good performance of the sparsity-based approdareicould, however, be cases
where the spatial variations of the channel are not that cessible in the area of interest.
Fig. 3.6 (left) shows a 2D channel, in a hallway in our basemegiyg. 3.6 (right) shows
the sparsity of this channel in the same way that we measheeshbiarsity for Fig. 3.1. As
can be seen, this channel is not that sparse. Fig. 3.7 shew&Dtleconstruction of this
channel. It can be seen that the performance of both appeatdyrades considerably, as
compared to the previous channels. This area experienosgdeoable multipath fading
and negligible shadowing, which reduces channel comgisgi Thus, the model-based
approach outperforms the sparsity one unless almost h#tedadrea is sampled. In sum-
mary, both approaches have their strengths and can be usefstimating a wireless
channel, based on a small number of measurements. Howepending on the scenario
and the percentage of the available measurements, one @ppineaches may outperform
the other one. Thus, in the next section, we propose an ategjapproach which takes
advantage of both sparsity in the frequency domain and pitiktec characterization in

the spatial domain.
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Figure 3.7: Performance of the model-based and sparssigebapproaches for the 2D
channel of Fig. 3.6 (left).

3.5 An integrated sparsity and model-based framework

for estimating channel spatial variations

So far, we discussed a sparsity-based and a model-basaxhapor estimating the spa-
tial variations of a wireless channel. In Section 3.4, wensttbthe underlying tradeoffs
between the two approaches and discussed the strengthseakdegses of each. In this
section, we propose a framework that integrates the stismjtooth approaches, in order

to achieve a more robust channel estimator with a betteopeence.

For the model-based approach, its performance is direffdgtad by the estimation
of the underlying model parameters, as we saw in SectionTs, in this section we
also show how the sparsity of the channel in frequency doreinfurther be utilized to

improve the estimation of the underlying model parameters.
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3.5.1 Anintegrated model and sparsity-based estimator

Define Q¢ as the set of all the positions @ where channel needs to be estimated:

QY 2 P\Q={q|, ¢, - ,qdy_x} LetYoc denote the channel values at positions corre-

sponding taQ“, which are not directly measured. Based on Eq. 2.8, we haetiowing

for the probability distribution ot’oc, conditioned on all the gathered measurements and
the underlying parameterg(Yoc|Yo, 0, a, 3, 02) ~ N(Y/Qc, Rt0t7QC|YQ797a767O_2) with

?QC é E{YQC

Yo,0,a, 8,0} = Hoof + 2§ oo Figlo (Yo — Hof)
s g T
Rtot,QC|YQ,6,a,B,02 é E{ (YQC — YQC) (YQC — YQC) ‘ 9, a, 6, 0'2}

= Riot,oc — 257QCRtB&QZQ7QC, (3.14)

lla; a5l

whereXg gc = COV(Yg, Yoe) € REXIV=K) with entries [EQ,Qc] =ae 7 for
N 2]

1<i< Kandl <j <N - K. LetYyc . denote the ML estimation dfyc. We then

have :
Y/QC,ML = arginax f(YQC|YQ7 97 a, 67 02) = argmax In(f(YQC|YQ7 97 a, 67 02))

(Yoo — Yoe). (3.15)

: 1 ¥ T np—1
= arg min §<YQC — YQC) Rtot,QC\YQ,G,a,B,OQ

Clearly, we have&Nch,ML = foc if no information on channel sparsity is utilized. Eq.
3.15 is equivalent to the following optimization problens, a function of the Fourier

coefficients of the channeK):

XL = arg min(®oel' X — Yoo ) 'R

tot, 0% |Yg,0,a, 8,02

((I)QCFX - YQC)
s.t. YQ = (I)QFX,

where®, denotes the corresponding sampling matrix, as defined iidBez.1 andl" is

the inverse Fourier matrix (see Eq. 3.6poc is then defined in a similar manner. By

)

st.Yo = Pol'X, (3.16)

integrating this estimator with the sparsity-based onegf3E6, we have,

_1
2

Xintegratea= arg min (T X1 + HRtot,Qc\YQﬂ,aﬁ,a? (PoelX — Yoo)
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wherer is a weighting coefficient. This estimator has optimalitypoth/, and Maximum
Likelihood senses. EqQ. 3.16 can also be posed as the foljowinonstrained optimization

problem to account for measurement noise:

~ 2
Xintegrated: arg 1min (T,HXHI + HAintegratedX - bintegrate4 2) (3-17)
where
_1 _1 ~
R, 2 opvel R 2 Yoo
tot, Q°[Yg,0,a,8,02 = L tot, °[Yg,0,0,8,02~
Aintegrated: oLQ% Y b,005,0 ,bintegrated: oLQ%Ye.0,0.8,0 s

Dol Yo

andr’ is a weighting coefficients’ can be assigned to give more or less emphasis to the
sparsity part{; optimization). Furthermore, in [115], the authors showt fbaa general

(, — (5 problem, i.e arg min (T’||X||1 + [J[AX — b||§>, we should have’ < 2||A7b|| .
Otherwise, the unique solution will be the zero vector. Tdiiges us a range for valid
values ofr’. In some of the optimization literature and papers that rsana and; — /5
problem, a pre-determined coefficient is found, by assumsimmge a priori information
about the signal [116]. However, we do not assume any a pnfmimation to optimize

7’. We can simply choos# to be a fraction of the maximum allowed value. Alternatively
an adaptive weight, based on the percentage of availabtmehsamples and the estimated

underlying parameters, can also be utilized.

3.5.2 Estimation of the underlying model parameters using ltannel

sparsity in the frequency domain

In the previous part, we assumed that the underlying passet the probabilistic model
are estimated, using the ML or LS approach of Section 2.1. dtechin Section 3.4, if
enough channel samples are collected, the underlying gaeasncan be estimated with a
good enough accuracy. However, at low enough sampling, taerror in the estimation

of the underlying parameters may not be negligible. Thushimpart, we show how the
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sparsity of the channel can further be used to improve theason of the underlying

parameters.

Case of negligible multipath fadings? ~ 0: Depending on the environment, mul-
tipath fading can be negligible, as compared to the shadpaia path loss terms. We
start by considering this case. Under this assumption, weapaly the ML estimator of
channel parameters, as developed in Section 2.1 (Eq. 2db)yate an expression for the

ML estimation of the channel, only as a function of the catieh distance’, as follows:

Yoe L o2—0(8) £ E{YQC Yo,0 = Ot 20, @ = Gl o2=0, 3,07 = 0}

= HQCéML,02=0 + ZZorm,Q,QC(B)RrTOII’m,Q(ﬁ) <YQ - HQéML,02=0>

= ([HQC - Z;{ormg,gc (B)RrTolrm,Q(B)HQ} (H:IQWRrToler(ﬁ)HQ)_IH:IQWR;oler(B)

+ Z;{orm,Q,QC (5)Rr:olrmg(5)> YQ:

lla; —d’ I

whereX omo.oc = 135 gc, With entries[Znoer’Qc]' —¢ 7 for1 <i<K
7’7]

andl < j < N — K. By considering the channel over the whole field, includighb

measured and estimated points, we will haig3) = <I>§YQ+®£CYQC,ML702:O(5), where

z is a vector of channel signal strengths over the whole fielktNve utilize the sparsity

of = in the frequency domain in order to estimgteWe have,

Bsparsiton:O =arg minHF_li’(ﬁ)Hl = arg min}}r_1¢£YQ + F_lq)ECyQC,MLp?:O(B)Hl'
(3.18)
No closed-form expression, however, exists for the optintum this case. Oncg is

estimated from Eq. 3.18y andf can be immediately estimated as follows (see Section
2.1):

~ ~ -1 ~
T p-1 T p—1
GML ,sparsityc2=0 — (HQ Rnormg (ﬁsparsitycr2 :O)HQ> HQ Rnorm 1) (5sparsity02:0>YQ7

A 1 - Ty .
QML sparsityo2=0 — E (YQ - HQGMLsparsityo?:O) Rnormg(ﬁsparsityﬂzo) (YQ - HQGMLsparsityo?:O)-
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Once the underlying parameters are estimated, we can dppintegrated estimator of
Eq. 3.17.

Case of non-negligible multipathif o2 # 0, there is no closed-form expression that
can express all the underlying parameters as a function @fobthem, as was done in
the previous part. Furthermore, the ML estimation of theaulyihg parameters was for
the case ofr? = 0 in Section 2.1. Thus, in this case we consider the LS estinuditihe
underlying parameters. We can write the following for thigneated channel, as a function

of a, 3, 0? and the LS estimation of the path loss parameters:

YQCJ_S((I, 5, 0'2) = E{YQC

YQ,@ - éLSvayﬂvoj}

- ([HQC - O‘EZoer,QC(ﬁ) [aRnomo(B) + U2IKxK}_1HQ] <H5HQ)_1H5

+ azZorm,Q,QC (8) [aRnoer(ﬁ) =+ Uz]KxK} _1> Yo. (3.19)

Similar to the previous part, this results in the followirg the sparsity-based estimation

of 3, assuming that: ando? are known:
Assuming an estimateé, we can then estimateands?, using an LS estimator:

au5(8), 6%5(8)] = ars min 3™ /(1) + 0%3(1) - f’Q(l)r, (3.21)

whered(.) denotes the dirac delta function afgy = {I|0 < 7o(l) < Xisjp—is}- The
weightsw’(l) can be chosen based on our assessment of the accuracy dirtegies of
7o(l). By iteratively solving the equations given by 3.20 and 3\@& can estimate the
underling channel parameters. After estimating the pararsighe integrated estimator of

Eq. 3.17 can be applied to reconstruct the channel.

Next, we compare the performance of the integrated appruattiat of the sparsity-

based and model-based ones. To solve the convex problem 8 Ef we use SpaRSA
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Figure 3.8: Two chunrks of the ¢ annel measurement o Flgv@ rh are coIIected across

a street in San Francisco [5] — (left) channel A and (righgrofel B.

[117]. SpaRSA is an efficient iterative solver for minimigian objective function that
is a weighted sum of a quadratié;) error term and a sparsity regularizéf)( In each
iteration, it solves an optimization subproblem, invotyequadratic term with a diagonal
Hessian, in combination with the original sparsity regzles. The readers are referred

to [117] for more details.

First, we show the performance of the integrated approactwio chunks of a chan-
nel across a street in San Francisco [5]. The first chunk,reak, is as shown in Fig.
3.8 (left) whereas channel B is shown in Fig. 3.8 (right). .A@® compares the sparsity
level of these two chunks. As can be seen, channel B is morsesgian channel A. Fig.
3.10 shows the performance of the integrated approach fibr dlmnnel A (left) and B
(right) and compares them with that of the original sparaitgd model-based approaches.
As for estimating the underlying parameters, if the numidegadthered measurements is
high enough such that channel spatial correlation can bgeplyoestimated, then the LS
estimator of Section 2.1 is used to estimate all the undeglparameters. If the number
of available channel measurements is very low, on the othed hthe proposed sparsity
approach of this section is utilized to estimate the undaglyparameters. For this chan-
nel, we assumed that multipath is negligible, when estimgatie underlying parameters.

Furthermore, an adaptive weight, inversely proportioadhe number of available chan-
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Figure 3.9: Characterizing the sparsity of channel A andi yi-axis shows the inverse of
the Normalized Mean Square Error (in dB) between the chaamlts sparsified version,
as a function of the % of the retained Fourier coefficients.

nel samples, is used for tlig term. As can be seen, the integrated approach outperforms
the original approaches considerably and can provide niane 10dB performance im-
provement depending on the % of available measurements.oByaring the left and
right figures, it can furthermore be seen that the sparsiset) approach provides a better
performance for channel B since it is sparser. Thus, chafirinefits more from the

integrated approach.

~+model based b
70} | ©-sparsity based
<-integrated approach|

~10log(NMSE)
~10log(NMSE)

50 50

5 10 15 20 25 30 35 40 45 5 40 15 20 25 30 35 40 45
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Figure 3.10: Performance of the proposed integrated spansd model-based approach
for (left) channel A (Fig. 3.8 (left)) and (right) channel Big. 3.8 (right)).
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Figure 3.11: Performance of the proposed integrated spansd model-based approach
for the 2D channel of Fig. 3.6 (left).

Next consider the 2D channel of Fig. 3.6 (left). Fig. 3.11whdhe performance
of our integrated approach for this channel. This is an indb@nnel that experiences
considerable multipath. Thus, we can not assumedhat 0. For low sampling rates,
where the underlying parameters can not be accurately &stihiby the LS approach of
Section 2.1, we use our proposed integrated approach, tiyngdtq. 3.20 and Eq. 3.21
iteratively. This is then followed by applying our proposestimator of Eq. 3.17. As can
be seen, the integrated approach can improve the perfoetgngroperly combining the
benefits of both approaches. For this indoor result, we usieded weight ¢’). More
performance improvements can be achieved by properly edgibte weight. In [24, 28],
approaches similar to our model-based approach are peesdddsed on the these results,
we expect that our proposed integrated approach outpesftrese approaches as well,

especially for low sampling rates.
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3.6 Summary

In this chapter, we showed how to utilize the sparsity of thamel in the frequency do-
main in order to estimate the spatial variations of a wirelgsannel, based on a small
number of measurements. We also characterized the unugtisadeoffs between the
probabilistic approach of Chapter 2 and the sparsity-baséthator of this chapter. We
showed that the probabilistic framework performs well, witee channel underlying pa-
rameters are estimated correctly. However, if the channéérying parameters can not
be estimated correctly, for instance due to the very smatibar of the available mea-
surements or a modeling mismatch, the sparsity-based agpvaill then outperforms the
probabilistic framework. Motivated by our analysis of thederlying tradeoffs between
these two approaches, we then proposed an integrated ¢haadietion framework. In
this framework, we showed how to utilize both channel spaisithe frequency domain
and probabilistic characterization in the spatial domiaioyder to build a channel estima-
tor that can keep the benefits of both approaches. We furtirermalidate the applicability

of this framework using both outdoor and indoor channel mesments.
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Chapter 4

Binary consensus over fading channels

In Chapters 2 and 3, we considered connectivity-relatetesby proposing a framework
for understanding channel predictability. Our proposeaniework will allow a network

of cooperating nodes to more intelligently and efficientlgintain connectivity.

In this chapter, we then focus on sensing-related issuesavelaeh agent has a possibly
erroneous perception of a measured parameter in its emv@on Our goal is then to
mitigate sensing errors through group cooperation andeswus. More specifically, we
consider the case where each agent starts with a binaryjaleoisa parameter of interest
it has measured. We then study thieary consensugroblem over fading channels, where
the goal of every node is to reach the majority of the initiates of all the agents (in
order to increase immunity to local detection errors). Fstance, in a cooperative fire
detection scenario, each node has an initial opinion astheft is a fire or not. However,
as a network they may act based only on the majority vote. €fbes, the goal of the
network is for each node to reach consensus over the magdrityitial votes. Another
application ofbinary consensus in the cooperative spectrum sensing in cognitive radio
networks. In this scenario, the secondary users commeng#t each other in order to

reach consensus on busy or idle status of the primary usehwa binary value.
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Chapter 4. Binary consensus over fading channels

In this chapter, we first consider the binary consensus prolaver a fixed and fully-
connected network topology, where each link experienadisidaand receiver noise. To
improve the performance and robustness of the network cabpe, we propose novel
consensus-seeking protocols that utilize informationrdf ualities and noise variances.
We show that the proposed approach can improve consengaspance drastically. We
then model the network state as a Markov chain and charaetére transient behavior
of the network probabilistically. In particular, we showathin the presence of channel
uncertainties, the network state is asymptotically meness; depending on the utilized
decision-making strategy. This is undesirable since tbegagreement is not related to
the initial state of the system and is merely a function ofncte errors. While chan-
nel uncertainty can result in undesirable asymptotic bieinadepending on the utilized
decision-making strategy, we show that the network calbstiin consensus for a long pe-
riod of time (enough for practical purposes) with high proitity. In order to characterize
the transient behavior, we derive a tight approximationtfier second largest eigenvalue
of the average of the underlying linear dynamical systene dérived expressions show
how channel uncertainty and network topology affect birmgsensus and shed light on

the underlying tradeoffs.

In realistic scenarios, however, some links may not exigt gupoor quality. Fur-
thermore, the underlying communication topology couldibeetvarying. Therefore, we
extend the binary consensus scenario to the not fully-adiedeand rapidly-changing net-
work topologies. We start by considering the case where ifla éxists, it is perfect
in order to solely focus on the impact of not fully-connectgdphs. We then consider
binary consensus over not fully-connected rapidly-chagdopologies with fading chan-
nels. Furthermore, we consider two different decisionimgktrategies, in terms of using
the available transmissions: fusion and diversity. In thet Epproach, the given resources
are used to increase the flow of information in the network reag the second strategy
aims to increase robustness to link errors by channel cotlieghen characterize the un-

derlying tradeoffs between these two approaches in terrteafpeed of convergence and
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asymptotic behavior for binary consensus over rapidlyagivag network topology. For in-
stance, we show that by fusing the received informationfubi®n strategy propagates the
information faster in the network and results in a bettergrant behavior. However, it can
lack asymptotic accurate consensus depending on the fotie édcal decision function.
On the other hand, the diversity strategy can provide atbasianptotic performance. The

main contributions of this chapter are summarized as falow

1. Proposing a novel consensus-seeking protocol thategilnformation of link qual-
ities and noise variances to improve the performance andstobss of network

cooperation.

2. Mathematical characterization of the impact of fadingisa, network connectivity
and time-varying topology on consensus performance, whédomes challenging

due to all the introduced uncertainties.

3. Characterizing the underlying tradeoffs between oupgsed diversity-based and

fusion-based approaches in terms of speed of convergedasgmptotic behavior.

The rest of this chapter is organized as follows: Sectionrrthduces the problem and
describes our system model. In Section 4.2, we develop thedttions of binary consen-
sus over a fully connected time-invariant network topolagth fading channels, in order
to focus solely on the impact of fading. More specifically, prepose a novel consensus-
seeking protocol that utilizes information of link quati$i and noise variances. We then
mathematically analyze the performance of the proposetbgobin terms of the tran-
sient and asymptotic behavior. In Section 4.3, we extendnalysis to time-varying not
fully connected network topologies. In Section 4.3.1, wastder binary consensus over
time-varying not fully connected network topologies witleal links in order to build an
understanding of the impact of rapidly-changing topolegi#/e mathematically analyze

both fusion and diversity decision-making strategies imgeof the transient and asymp-
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totic behavior. Then, we extend that analysis to the casadififj channels in Section

4.3.2. A summary of the results of the chapter is providedeicti®n 4.4.

4.1 Problem formulation

Consider a cooperative network 6f nodes that are trying to reach consensus over the
occurrence of an event. Each agent has its own initial dacisiased on its one-time
sensing. The goal of the network is for each node to reachisidecdhat is equal to the
majority of the initial votes. For instance, in a cooperatfire detection scenario, each
node has an initial opinion as to if there is a fire or not. Hogveds a network, they may
act only based on the majority vote. Therefore, it is desgréitat every node reaches the
majority of the initial votes without a group leader. As ityrfaappen in realistic scenarios,
the nodes may not have any information on the sensing qualitiyemselves or others.

Therefore, the main goal is that each node reaches the tyapbthe initial votes.

In order to achieve this, each node will transmit its curm@etision to other nodes.
The transmissions occur over fading channels and are funtive corrupted by the re-
ceiver noise. Each node will then revise its current votedas the received information.
This process will go on for a while. We say thatcurate consenstus achieved if each
agent reaches the majority of the initial votes. The netvaank also be in a state of con-
sensus while the information of the initial state is lost. M#er to this state as memoryless
consensus. More specifically, if the probability of consen®r equivalently the probabil-
ity of being in all the states of the system) is independerthefinitial condition, we say
that any consensus, if achieved, is memoryless. This issinaiide since the group agree-
ment is not related to the initial state of the system and ieefya function of channel

errors.

IWe also use the term “agent” to refer to each node.
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Letb,(0) € {0, 1} represent the initial vote of th#¢h node, at time step = 0, where
b;(k) = 1 indicates that théth agent decides that the event occurred whebgas = 0
denotes otherwise. Each agent will send its binary votey(onk bit of information) to
the rest over fading channels. Let(k) represent the fading coefficient of the link from
node; to node:. The receiver then learns ;s and uses it in the detection process. Let
n;i(k) represent the receiver noise at thtl time step in the transmission from thith
node to theith one.n; (k) is zero-mean Gaussian with the variancerpf. We take the
receiver noise of the receptions of different nodes to beuetated. Leb; ;(k) represent
the reception of théth node from the transmission of thith one at thé:th time step. We

have the following if there exists a link from thi¢h node to theéth one?
bj,i<k) = TJ’Z(I{Z)bJU{?) + nj,i(k:) for 1 < Z,j < M, (41)

wheren, ;(k) = 0 andr; (k) = 1. We assume that each receiver can learn the fading
coefficient of each of its receptions and undo its effect. th@rmore, we consider the
case where the network experiences rapidly-changing atibsary fading channels. This
means that the nodes move fast enough suchrthatchange and become uncorrelated
from one time step to the next. However, their movementsianiéeld to a given area such

that fading channels can be considered stationary.

Let N;(k) represent the set of indices of those agents that can coroatario theth

one (excluding itself) at time step We have

M(k) = {Oll(k)v U 70?/\/2-(k:)|(k)}7 (4.2)

for (k) € {1,2,..., M} \ {i} whereo’ (k) # ol,(k) for j # j', and|N;(k)| represents
the size ofV;(k): 0 < |N;(k)| < M. Each agent will then update its vote based on its past

vote and the received information as follows:

bik 1) = F (k). gy (), by (), b i), (43)

°Note that, without loss of generality, we assumed that theutadion is on-off keying.
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for o’ (k) € N;(k)andl < j < |N;(k)| whereF(.) represents a decision-making func-
tion. We show how to optimize this function in the next seatibet D(k) = [by (k) ba(k) - - - bas (k)]
represent the state of the system atktiretime step ands(k) = S°, b;(k) denote the
corresponding sum of all the votes. L®tk) represent 2 x 1 vector that contains the
probabilities of being in different possible states. Weeh89]:

prob[D(k) =[00---0]] = S(k) =0
prob[D(k) = [00- - - 1]]

=)= prob[ D (k) = [10---0]] ' @4

prob[D(k) = [11---1]] = S(k) = M

Without loss of generality, possible states are ordereth st S(k) increases. Within
each group wheré'(k) is constant, the states are ordered increasingly. Hyg¢h) =
profD(k) = ¢™] for 0 < n < 2M — 1, where¢™ = [b7 by ---b%,] is thenth state

chosen from the ordered list. We have
=k +1) = PT(k)Z(k), (4.5)

where P(k) = [P,..(k)] represents @ x 2M state transition matrix at timé with
Py (k) = probD(k + 1) = ¢ [D(k) = ¢'™] for 0 < m,n < 2¥ — 1. Letv, (k)
represent the probability that thih agent votes one &k + 1)th time step, given that the
current state ig(™:

VLo (k) £ problb;(k + 1) = 1|D(k) = ¢™]. (4.6)
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Then, the probability of going from state to staten, at timek, will be as follows:

Pn(k) = prob[D(k + 1) = ¢ |D(k) = ¢'™]
M

= [ [ probib;(k + 1) = b2 D(k) = ¢!™]

i=1

H B0 (k) + (1= 0)(1 = 0, (k))].

4.2 Binary consensus over a fixed fully-connected network

topology with fading channels

In this section, we develop a mathematical framework foahirconsensus over a fixed
and fully-connected network topology, where each link exgrees fading and receiver
noise, as denoted by Eqg. 4.1. A network is called fully cotexbcif there exists a direct
link between any two nodes. Our goal, in this section, is telgdocus on the impact
of fading. The analysis of this section will then serve as selfar the derivations of the
subsequent sections, where we consider binary consensusaivfully-connected time-

varying topologies.

4.2.1 Design of the local decision-making function — A Best fAine

Estimation (BAE) approach

As denoted in Eq. 4.3, each node updates its vote using &mgti In general, this func-
tion should be designed based on the optimum detector of Hjerity vote. However,
the computational complexity of this receiver is exporargnd thus prohibitive. Another
possibility is to design an estimator 6f(k), the sum of all the votes. Each node can

then easily translate its estimation 8fk) to a detection of majority vote as follows. |If
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S(k) is estimated to be abow, then the majority vote is one. Otherwise, it is zero.
Therefore, we design the local decision-making functioseldeon the estimation &f(k).
We furthermore focus on the Best Affine Estimation (BAE)Xf). There are two rea-
sons for considering the Best Affine Estimator. First, it \8aswn that such a receiver
has a performance considerably close to the one that is lmastte optimum nonlinear
estimation ofS(k) [87]. Second, we can mathematically characterize theigahbehav-
ior of this receiver. In this section, we mathematically rettéerize the BAE-based local

decision-making function.

For a fully-connected graph, we hapk;| = M — 1forall1 < i < M. Leto} for
1 < j < M —1 be as defined in Eq. 4.2 for th€ node, where we dropped indéx
since;(k) is a time-invariant set in this case. Define the followingiafles: G;(k) =
ooy (k) by, (RN, B (k) = oo (k). -+ b, s(RT RiCk) = diag(rg o(R), -+ g, ()
wi(k) = [ng ;(k), - ,nOZ-AHJ-(k;)]T, where diagf) is a diagonal matrix with the elements
of vectorz on its main diagonal. Then we have the following, considgat the recep-

tions of thesth node:

Let ¢;(k) represent the sum of the votes of all the nodes except fathhsode:y; (k) =
17Gy(k) = S(k) — b;(k), wherel denotes a column vector with all elements of one.
Then theith node estimates;(k) by using the best affine unbiased function of the re-
ceived informationy); (k) = o (k)B;.(k) + 8;(k), wherey, (k) is theith node’s estimate
of ¢;(k). To ensure an unbiased estimator, we should Hakg (k)] = E[¢;(k)] =

ol (k)E[B; (k)] + B;(k) = 1T E[G;(k)]. We useE|[z], E{z} andz to denote the average

of random variable. Then we have the following optimization problem,

ai(k) = arg min B[({i(k) — ¥i(k))’],
subject tos; (k) = (T — Ri(k)au(k)) " Ai(k), (4.8)

whereA;(k) £ E[G;(k)] = prob|G;(k) = ﬂ A;(k) characterizes the voting patterns of
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different nodes. We then have,

whereC;(k) = E[(Gi(k) — Ay(k))(Gi(k) — A;(k))T] is the covariance matrix of; (k)
and(;(k) = Elw;(k)w! (k)]. By noting that Eq. 4.9 is a convex function®f(k ), we have

2

ai(k) = (Ri(k)C,(k) Ri(k) + (k) ) Ri(k)Ci(k)T and

Bi(k) = (T = Ri(k)as (k) Mi(k). (4.10)

Then, theith node can detect the majority of the votes, using the etitmaf S(k), as

follows:
bi(k + 1) = Dec(i (k) + (b)) (4.11)
M Y
1 2>0.5 :
where De¢z) = . As can be seen, to update its vote, ttitenode needs
0 2<0.5

to calculateC;(k), the covariance matrix d&;(k). This requires theéth node to calculate
the correlation between the votes of any two nodes in thear&twvhich could be com-
putationally prohibitive. Therefore, théh node assumes that the votes of different nodes
are uncorrelated when updating its decision. This meansihiée different votes can be
correlated, théth node consider§’;(k) to be diagonal. This simplification then facilitates
the mathematical characterizations of the rest of thistehmaf theith node assumes that
votes of different nodes are uncorrelated, E¢h; (k)b,(k)] = E[b;(k)|E[bi(k)] for j # 1,
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then we have

a;i(k) =
. 1/r (k
TM(k)Jg_ = - /T372(1 ) and
2R+ s wy @GR ()
M
Gk = 3 Bralh), (4.12)
J=Llj#

where CNR; (k) = T;iff(k) Bia(k) = (1 — aji(k)r;i(k))g;(k) andg;(k) = E[b;(k)].

Therefore, théth node will update its decision as follows:

bilk +1) = Dec(% [bi(k) + ()] ) = Dec % (k) + EM: (s Ry (8) + B10())
oo
(4.13)

Note that for non-zero noise variances, the probabilithefargument of the Dec(.) func-
tion of Eq. 4.13 being 0.5 is zero. Therefore, for the sakénefanalysis of this section,
the value of Deg: = 0.5) is chosen one, without loss of generality, as it does not @npa

network behavior.

It can be seen that Eq. 4.13 assumes that the knowledgg/of is available at the
receiver. If theith node does not have an estimategf:), it will assume that; (k) = 3.
We refer to this case dsasic BAE. Then,learning BAE refers to the case whetg(k)
is statistically learned in the receiver. In order to do smjey will passb; ;(k) through a
hard decision function to estimate the number of timesithbécomes one in a given time
interval. We then mathematically characterize the asytiguaod transient behavior of the
basic BAE case. The mathematical characterization of theqmeance of learning BAE
requires considering the error in the estimation,0f)s, which is a challenging problem.

Therefore, in Section 4.2.5 we show the performance of ieglBAE through simulation.
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4.2.2 Asymptotic behavior of basic BAE

For the basic BAE case, Eq. 4.13 can be simplified to the fafigw

bi(k+1) = (4.14)

Dec —[ +Zaﬂ k) + Bi(k) + 7k )] ;

J#Z

andg;(k) = S°M, . =% Fyrthermorers; (k) is a zero-

whereq; ;(k) = j=lj#Ai 2

1+CNR RO
1
mean Gaussian random variable with the variancéof) = 5> 4.

Given the current state gf™, the probability of nodé voting one will be as follows:

V0 (k) = probiby(k + 1) = 1|D(k) = ¢™)] = (4.15)
Q 05__[bm+2] lj;ézajl( )b‘;n_kﬂl(kl)]
&.(k) :
where¢™ = [b7" by -0 and Q(z) = [ =e™ 7 - du. Slnceu;’()m)(k), and subse-

quently P(k) of Eq. 4.5, are functions of CNR(k)s, then matrixP (k) is time-varying.
For such cases, the average dynamical system should irsteamhsidered where the av-
erage is taken over the fading coefficients to BetAssuming that the fading coefficients

are stationary, we haveé = [P, ,,] with

M
H[ Vi + (1 b?)(l—%)] (4.16)

i=1
andE[Z(k +1)] = FTE[E(k)]. Let o = 2M denote the number of possible states of
the system and, 5, A, 5. .., \,_, p represent ordered eigenvaluesiafwhere|\, 5| >
M5l > ... > |\, 5] The following can be easily confirmed for the case that; (k) #
0[79]:

Property 1: Matrix P is stochastic and positive (element-wise). A stochastitrima

is a matrix in which the sum of each row is one. It is thus cléat matrix P(k), for
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any k, and thereforeP is stochastic. For the positive part, note thatifs; (k) # 0, then
0< u;%(k) < 1 from Eq. 4.15 and therefor&,, ,,(k) > 0 andP > 0. This means that if
there is any noise in any of the receptions of each node, bieza ts a non-zero probability
of going from any state to any other.

Nopl <lforl <i<p-1,

Property 2: )\, 5 = 1,
Property 3:limk_>oo(?T)k — 2y” wherez = Pz, y = Py, andzTy = 1,

where 2 and 3 can be easily deduced from Property 1 usingriPan Gershgorin disk
theorems [99]. Then from Property 3, we know that the avedygemic of the network
reaches a steady state asymptotically. Furthermore, Waaviklim,, _, . % = 2yTZ(0)
wherex andy are as defined in Property 3. Consider =(0), the asymptotic value of
vector=(k). Z(0) has exactly one element equal to one and the rest zero. Hirise
stochastic from Property 1, vectgris a vector whose elements are all the same. Then,
yT=(0) loses the information of the initial state. Therefore, thgnaptotic value will be
independent of the initial state and is proportionalktahe right eigenvector oP . It
can be seen that the network loses its memory of the iniadéé stsymptotically due to the
impact of link errors, which is undesirable (see [79] for mmdetails). It should be noted
that for any amount of non-zero link noise, the asymptotitavéor will be memoryless.
The network, however, can still be in consensus for a longpdesf time (enough for
practical purposes) with high probability, which necestsi$ characterizing the transient
behavior. Since the asymptotic behavior is memoryless, dteisirable that the network
gets there with a slower rate. In genekals,. .., A, , 7 determine the transient behavior
of the network. Among these eigenvalues, the second laogesf\, ) typically has the
most impact on the transient behavior (see [118] for moraild¢t The closer the second
eigenvalue is to the unit circle, the longer the network isansensus. In the limit, it can
be easily confirmed that ifi, j # i, 0;, = 0, we will have\, 5 = 1 and ), = 0 for

2 <1< p—1[79]. In[79], we considered binary consensus over AWGN cleésrand
derived an approximated expression for the second larggstelue. We next extend that

analysis to the case of fast fading channels.
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4.2.3 Transient behavior and the second largest eigenvalder basic
BAE

In this part, we characterize the transient behavior of t&dBAE case in fast-fading
environments. In general, finding an exact expression fms#tond largest eigenvalue of
P is considerably challenging. Instead, we derive a tightaxmation for it, based on

the linearization of thé)(.) function.

Assumption 1For a small arbitrary, the linearization of th€)(.) function around the

originresults inQ(z) ~ Q(0) — —5=- We next prove the following general theorem, which

will be used throughout this chapter.

Theorem 1. LetP? = [P,,..] represent the state transition matrix for a time-invariant
average dynamical system whébg, ,, = £ [prob [D(k+ 1) = ¢ |D(k) = ¢(™] ] Let
V¢(>i<)m> £ E[prob[bi(k +1) = 1|D(k) = gb(m)ﬂ, whereD(k) denotes the state of the
network at timek and ¢(™ is as defined in Section 4.1. Let sum represent the sum of

. f S m 2S m .
the elements af for any arbitrary vector.’. If V;()m) = 2o 4 (1— 22", whereC is

a constant (not a function of or 7), ands; 4 and S; o) A€ any positive numbers such
that 327, S o = D01, S, o = Msu(@™), thenl — 2C is one of the eigenvalues of
P.

Proof. For any0 < m < 2™ —1andS(k) = S, b;(k), we have

M

B| Y- jprotis(k +1) = j[D(k) = 6| = >V,

i=1

!

5 S, 4(m) 25, (m) M M o m
If V0, = 2 4+ (1= —)C and o, S, yom = 3121 S, o = Msunm{g(m), we

can extend [89] to show that
M

Z(g - j)E[prob[S(k +1) = j|D(k) = ¢<m>]} —(1- QC)(% — sum(¢™)).

j=0

(4.17)
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Let ¢ represent @ x 1 vector, where); = & — sun(¢(?) and¢ = P¢. Then, we have
=M (4 —j)E [prob[S(kJrl) = j|D(k) = ¢ H = ¢4(1—2C). Therefore] — 2C

is an eigenvalue oP. O

By applying Assumption 1 and averaging Eq. 4.15 over fadveghave:

T 1 1 " m i0;
Vit 5~ \/%5(5——19 +ZWSb +Z % ). (4.18)

wherey;,; = Efad.ng{ } ando; = with Eraging{ - } indicating averaging over

Efadlng{ (k)}
fading. We can then Wr|te(()m) as a function of/") 50 as follows:

= S, 25
() o Pielm @) (2)
wheres, o, = 227690 Note that we dropped indexf due to th
Hm) = (S S ote that we dropped in rom u¢(m) ue to the
stationarity assumption.

Theorem 2. Assume that CNRs are i.i.d. exponential random variables wjth= CNR; ;.
Then we have;; = v andd; = 9. Let?appmx and )\@appmx represent the approximation

of matrix P and its second largest eigenvalue under Assumption 1 régpsc We have
5— M— 1(1 (S)
ALﬁappmx =1- 2Q< 21% — )

S (m
Proof If » = CNR;,;, we have the following underAssumptlonzlg()m) o Tme) (1 —
M+, 7087)
1+(M—1)~6

Z,¢(m)
M

using the approximation of Assumption 1, we hayge) ~ Q(

Vs, wheres, jum) = andv,o = u¢<0) From Eq. 4.18 and by

0.5— =L (1—44)
%) Moreover,

it can be easily confirmed thEM Si.pm) = Msum(¢™). Then, by applying Theorem

M-—1 J—
1, we havel — 2v 0 = 1 — 2Q<w) as one of the eigenvalues 6%pprox

§
As all CNR; ;s go to infinity, this eigenvalue goes to one. Consider alldigenvalues
of P except for the first one. As mentioned earlier, only the sddargest one goes to

one as CNR;s go to infinity. The same can be confirmed #gy,0x [79]. Therefore,
M—1
M g = 1 = 2Q (223020, ‘
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4.2.4 Special case: unknown; ;

As can be seen, the decision-making function of Egs. 4.124ah8 uses information
of g,,s. If such information is not available, then each receivdlr wge a zero-forcing
equalizer to undo the impact of the channel and use the egdaleceived information
assuming they are correct. We then have the following:

bi(k+1) = Dec(% (bi(k:) + bﬂ(g)) = Dec(% + ni(k:)) . (4.20)

i=1j# Tial

M

wheren; (k) = 47 311, . 240 with the variance ob2(k) = 5= X0, 1 sve

This receiver can be considered as a special case of theaensking function of Eq.
4.14 wherey; ;(k) =1 and; (k) = 0.

Theorem 3. Consider the case where knowledge of the noise variancestigail-
r2. .. . _—
able at the nodes. Take CNRk) = JUTU‘”) to be i.i.d. exponentially-distributed ran-
Jst

dom variables witlyy = CNR;; representing their average. We ha>kgﬁappmx =1-

2Q <%Efading{ \/ﬁ}) .

Proof. This case is a special case of basic BAE whergk) = 1, Bi(k) = 0 and

k) = o2 (k) = 122, 7CNR;Z_(,€). Therefore, in this casé = §;, = 7Efadmg{lg_+k)}
andy = v, = Efading{ﬁ} due to the stationarity assumption. Then using The-

orem 2 with the aforementioned parameters will resultjp; = 1 — 2Q<%> _
1 = 2Q (% Erading{ =——=—1)- D
QY fadmg{\/m})

While Theorem 3 relates the transient behavior of the ndtwmrthe link qualities,
finding a closed-form expression fﬁkading{z%} is challenging for exponentially-
Jj#i CNR; ; (k) . )
distributed CNR;s. Alternatively, we can derive another approximation fue second

largest eigenvalue as follows. From Theorem 2, we hgve

approx

= 1 — 2740 Instead
of finding an expression faz, ) using Assumption 1 as we did before, we can directly

use Eq. 4.15 as followsz, o, = Efading{Q(%)}. Then from the definition of;(k),
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we have = =2 < /0.25M2CNR,; min(k), where CNRpmin(k) =

1
20, (k) D i1t CNR; ; (k)

min({CNR;;(k)|1 < j < M,j # i}). The minimum ofM — 1 i.i.d. exponential ran-
dom variables, CNRyin(k), can be easily shown to have an exponential distributioh wit

17— representing its average. For an arbitrary exponentdififributed random variable

u, with the averagei, we haveQ(/au) = 3(1 — /122%%) for an arbitrarya > 0.
Therefore,
0.125M2p/(M — 1)
A B < . 4.21
L Papproc = \/1 +0.125M2u/(M — 1) (4.21)

4.2.5 Consensus performance

In this section, our simulation results will confirm the thetical derivations of the previ-
ous parts and show the performance of group consensus oleg fzhannels. We start by
considering the special case whetgs are unknown. We characterized the performance
of this case in Section 4.2.4 Fig. 4.1 (left) and Fig. 4.1Ktjgshow the performance of
a network of 4 nodes that is trying to reach consensus by canuating over AWGN
and fast fading channels respectively. The nodes do not iayeknowledge of noise
variances in this case. Initially 3 out of 4 nodes are voting.oThen it is desirable that
all four nodes vote one through communication. For the fgadiase, the figure shows
E[prob[S(k) = 4]], i.e. the average probability of accurate consensus (gedraver fad-
ing), for different noise variances. Both figures show thégrenance for cases with poor
link qualities. For instance, average CNR= 0dB means that average SNR per link is
-3dB if sending 0 and 1 are equiprobable. Two observationdeamade from the figure.
First, it can be seen that at the earlier iterations, theadvidity of accurate consensus in-
creases. However, after a while, communication is not beilaénymore as it results in
error propagation in the network, a decrease in the prababfl accurate consensus and
an eventual memoryless consensus. This is as expected éctini®4.2.2, where we char-

acterized the asymptotic behavior of group consensus awieshthat it is memoryless in
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Chapter 4. Binary consensus over fading channels

the presence of any amount of link uncertainty. Second,ntiEmseen that fading ruins
the performance drastically by reducing the probabilitaoturate consensus. It therefore
becomes considerably important to mathematically cheraetthe transient behavior and
propose algorithms to improve the overall performance, @s a@one in the previous sec-
tions. In order to see how well the approximation of Theorewo8ks, Fig. 4.2 shows the
2nd largest eigenvalue of the average transition makrix}, its approximation from The-
orem 3 Q\@appmx), and the upper bound of Eg. 4.21. It can be seen that the @ppation
and its upper bound are considerably close to the true eadigmv As link qualities get
worse (lower CNR), the linearization of tlig function provides a better approximation,
resulting in the derivation of Theorem 3 getting closer ®titue eigenvalue (see [118] for
more details on this). It should be noted that the upper baiirie. 4.21 is derived for

A and not for, 5.

1 7ﬁapprox

— ]

P i

-20log(a;
-20log(
(
(

—average CNR;; = 8dB, j #
0.6 =average CNR;;; = 6dB, j #i ||

+average CNR;;; = 4.4dB, j # i
05 / verage CNR;; = 0dB, j #1i |
0.4 "
0.3

b TS
8dB,j #1i
6dB,j #1i
4.4dB,j #i
0dB,j # i

[]

Ij

+

-20log
-20log(a;

9j

o
9

\i
S
S
K

)

T8 00l

o
i

probability of accurate consensus

100

10
0 10 100 time step (k) in log scale
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Figure 4.1: Comparison of the performance of binary conseonser AWGN and fading
communication channels fav/ = 4 and the case where knowledgeaf;s is not avail-
able (see Section 4.2.4) — (left) binary consensus over AWGiNmunication channels,
(right) binary consensus over fading communication chiswvéh E[sz',i] =1,Vi,j #1i
(averaging is done over several runs).

Next we consider the case where knowledge o6 is available at each node and can
be used in the decision-making process, as discussed iosdcR.1. Fig. 4.3 shows
the probability of accurate consensus for the proposed B#daaches of Section 4.2.1,

where all the channels experience the same noise varia'r}ge:( 1) and the average
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Figure 4.2: Characterization of the 2nd largest eigenviduéhe case where knowledge
of oS is not available (see Section 4.2.4) with= 4, 07, = 1 andE[r} | = 1 Vi, j # i.
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Figure 4.3: Average probability of accurate consensudfor 4, 07, = 1andE[r?] = 1
Vi, j # i.

power of fading coefficients is equal to ong| JQZ] = 1). Therefore, if sending and

1 is equiprobable, the average SNR of each link is -3dB, wischery low. The figure
shows the performance of both basic (solid line with pluskeis) and learning (dashed
line) BAE approaches. As discussed in Section 4.2.1 for #%ctBAE casegy; (k) is not
estimated and is assumed tolbg On the other hand, for the learning case, each node tries
to estimatey; (k)s, the voting patterns of other nodes. The performance &caise where
knowledge ofs;; is not available (special case) is also shown for compar{dashed

line with circle markers). It can be seen that using the keolgé of noise variances
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can improve the performance drastically, as expected! tB&lbasic-BAE case has an
undesirable memoryless asymptotic behavior as shown itoBet2.2, i.e. after a certain
time the probability of accurate consensus starts to deerela can then be seen that by
incorporating the online learning @f(k), learning BAE can improve the performance and
avoid the memoryless asymptotic behavior. However, charnamng the asymptotic and
transient behavior of the learning BAE case, is a challepgiroblem since it requires
considering the error in the online estimationg@fk). Furthermore, learning BAE is
more computationally complex, as compared to the basic B&terefore, in the rest of

this chapter, we only consider the basic BAE case.

1.004

1.002

©
©
®

©
©
o))

second largest eigenvalue
o o o o
° ¢
©O
D

0988~~~ T +2nd largest eigenvalue of D]

0.986------------ _
1 1 "')‘1,Pappmx (Theorem 2)

1 1
-20 -10 0 10 20 30

average CNR (dB)

Figure 4.4: Characterization of the 2nd largest eigenviduehe basic BAE case with
M =4,0%, =1andE[r?,] = 1Vi,j # i.

To see how well Theorem 2 approximatgss for the basic BAE case, Fig. 4.4 shows
the second largest eigenvaluefofis well as\; p,.... Itcanbe seen thatthe approximation
of Theorem 2 works well. At higher average CNRs, as averag® @Nreases), 5
increases, as expected (similar to Fig. 4.2). Howeveryatiaverage CNR), 5 increases
as CNR decreases. This is due to the fact that the BAE appwadhs the received
information based on link qualities. Therefore, at consitly low average CNR, the
received information is almost ignored (as it should be)iciiesults in\, z approaching

one. In other words, for very low CNRs, each node keeps it&imipinion resulting in an
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identity P matrix. This makes the proposed approach more robust teettever noise.
On the other hand, if the knowledge ®f; is not available, as is the case in Section 4.2.4,

A, 7 becomes a non-decreasing function of average CNR (see.B)g. 4

4.3 Binary consensus over not fully-connected rapidly-chaging

network topologies

In Section 4.2, we considered binary consensus over fulhyrected fixed network topolo-
gies, in order to focus on the impact of fading and noise. &lisgc scenarios, however,
some links may not exist due to poor quality. Furthermore uhderlying communication
topology could be time-varying. Therefore, in this part veéax those assumptions and
consider the dynamics of binary consensus over not fullyaeated and rapidly-changing
network topologies. We model the communication network@sph, wherd1,--- , M}
represents the vertex set afigk) is the link set at timé. V;(k) then denotes the neighbor
set of node at time k (excluding itself), as introduced earlier. In a not fullgrmected
graph, there exists a link from nogeo node; at timek if CNR; ;(k) > CNRyy, i.e. the
link quality is above a minimum acceptable threshold. We GKR ;s to be i.i.d. random
variables withy = CNR;;. Letp represent the probability that a link exists from node
j to node: at a given time. In exponentially-distributed fading eoviments, we have:
p = prob{CNRj,i(k;) > CNRTh} = e‘%. The case op = 0 corresponds to the static
empty graph and is not of interest to us. In this section, @usgoal to characterize the

impact of time-varying not fully-connected graph topokegbn consensus.

We start by considering the case where if a link exists, ieidqxt, i.e. there is no error
in that transmission. Studying this case allows us to sdbelys on the impact of not fully-
connected graphs and could correspond to the case whetedisadld, CNR,, is chosen

very high. We then consider binary consensus over not ftdiyrected rapidly-changing
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topologies with fading channels. We also consider two decismaking approachedu-
sionanddiversity So far in the previous section, we considered the case vedaetenode
fuses its received information in every time step, to forsniew opinion, which it will
then send to other nodes. In this manner, each node helpsgagate the information of
other nodes in the network. This strategy is suitable, iti@#ar, when the graph connec-
tivity is low as it creates virtual links between nodes. Weerdo it asfusion strategyn
this section to differentiate it from the alternative disi¢y approach described next. Each
node can also use its transmissions to repeat its initia, weithout fusing its received
information. This strategy, to which we refer todigsersitystrategy, on the other hand can
be more robust to link errors. In our previous work, we introeld these two strategies
in the context of binary consensus over fixed AWGN networldsS3]1 In this section, we
consider both approaches in the context of time-varyingioet topologies. As we shall
see, a time-varying graph with fading channels requiresaafoemulation and approach,

which we address here.

4.3.1 Binary consensus over a not fully-connected and rapligtchanging

topology with ideal links

In this section, we consider the case where if a link exigssguality is perfect. We
also assume an undirected graph in this part, which meansfthaj) € £(k), then
(7,7) € E(k). Thenp denotes the probability that a link exists between two nades

given time.
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Fusion case

For the fusion case, the decision-making function of Eq34vill be as follows &; ;(k) =
1 andp;;(k) = 0 if there is a link from nodg to node;i at timek):
b;(k + 1) = Dec |N( + > b : (4.22)
JEN (k)
if oy (0i(k) + X enc i (k) # 0.5. Otherwiseb;(k + 1) = b;(k). The following
theorem characterizes the performance of this decisidargdunction:

Theorem 4. Consider binary consensus over a rapidly-changing graghwi > 2. Let

p represent the probability that a link exists at a given tirteps Consider the case where
if a link exists, its quality is perfect. Then the decisioaking function of Eq. 4.22 will
have the following properties:

1- The states with all votdsor all votes1 are absorbing states.

2- If less thanM — 1 nodes vote the same initially, then there is no guaranteettiea
network converges to the accurate consensus.

3- If M — 1 nodes vote the same initially, we have asymptotic accu@isensus.

4- The network asymptotically reaches consenspisAfl.

Proof. First part can be easily confirmed. We next prove the secortd pasume that
atk = 0, we haveM nodes with some initial votes, where less thedn— 1 nodes vote
the same. LefZ’(k) represent the set of indices of all those nodes that atetime
stepk. Z'(k) is defined in a similar manner for all those nodes that Ycaétime stepk.
Then,Z°(0) = {i7, i3, - -+ ,i}o(y } @NAZ'(0) = {i, i, -~ - ,i}11p } dENOte two mutually
exclusive sets of indices at timke= 0, where all the corresponding nodes vote zero and
one respectively. Without loss of generality, we assum€ fffa(0)| > [Z°(0)| . Since

less thanM — 1 nodes vote the same initially, we know th@?(0)| > 1. Consider the

3Note that if|Z*(0)| = |Z°(0)| , i.e. S(0) = &, then there will be clearly no consensus.
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case where at = 0, there is only a fully-connected graph among nodeg'ift)) U {i1 }
with no other links in the network. Such a topology would acaith the probability of
p(‘IO(g)‘H)(l —p)<w21)‘(‘10(3)‘+1). Then we have the following at the next time st&p(1) =
7°(0) U {i1} andZ'(1) = Z'(0) \ {71}. Similarly, the probability that a fully-connected
graph exists only among the nodesZit(1) U {i}} (with no other link in the network)
is p(" (1 = () Then, we have®(2) — 7°(1) U {il} and Z!(2) —
Z'(1) \ {ii}. By continuing the same procedure, we have all the nodeseimétwork
voting zero aftetZ'(0)| time steps, with a non-zero probability, whilE' (0)| > |Z°(0)|.
Since an all-zero state is an absorbing state (see Propertyeh the network will stay
in inaccurate consensus. This example shows that there geiam@antee of convergence
to an accurate consensus state. Next, we prove the third\péttout loss of generality,
assume that/ — 1 nodes vote one initially. In the next time step, either noeoldanges
its vote or all the nodes vote one, depending on the netwgélogy. The probability
that no node changes its vote can be characterizétifas 1)p(1 — p)™ =2 + (1 — p)M~1,
Therefore, the probability that asymptotic accurate cosgs is not reached goes to zero
for M > 2: limyo [(M — 1)p(1 —p)M =2 + (1 —p)M—l}k — 0. Finally, we have the

following proof for part 4. LetS(k) represent the sum of the votes at tilmeas defined

. . . 1,S(k) >4

in Section 4.1. Define(k) = and M (k) = max(S(k), M — S(k)). We
0,S(k) < &

have|Z<® (k)| > |Z'~<®)(k)|. Sincep # 1, with the non-zero probability qf(Mék)>(1 -

M—M(k)

p)( 2" ) pME(M-ME) e have a graph which is fully connected 260 (k), fully

disconnected i@ —<®) (k) and with each node ii'—<*) (k) connected to all the nodes in
7™ (k). SinceM > 2, having such a graph results in the network reaching a csosen
at timek + 1, that corresponds tg(k). Let p®"¢"s'¢k + 1) denote the probability that

the network is in consensus at tirke+ 1. We havepeonsensug 4 1) > p(*s")(1 —

p) () pMEM-M®B) S for k> 0. Then the probability that the network does
not hit the consensus state goes to zero asymptotidaty:, .. Hf:o [1 — peonsenstey)] —

0. 0
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It should be noted that j# = 1, the network will reach accurate consensus in one step
iff S(0) # 4.

Diversity case

In this part, we consider another strategy in which each ngs its transmissions to
repeat its initial vote. Consider the case where the netigogiven K + 1 time steps i

transmissions) to reach an agreement. Each node can use tadinsmissions to repeat
its initial vote and only fuses the received informatioreaftards. This strategy can, in
particular, be useful in reducing the impact of link erros, e see in the subsequent

sections. We will have the following for this case:

bi(k) = bi(k—1)forl <k <K —1, (4.23)
K-1
t=0 jeN(t)

Theorem 5. Consider binary consensus over a rapidly-changing netwapklogy where
p represents the probability that a link exists at a given tstep. Consider the case where
if a link exists, its quality is perfect. Then the decisioaking function of Eq. 4.23 results
in asymptotic accurate consensus almost surely(iff) # % Furthermore, the probabil-

M _
ity of accurate consensus at time st€an be approximated lﬂf‘i . Q( 2 50 \/E) ,

V(50 -b0) 52

for M sufficiently large andb(0) > 4L

Proof. For all1 < j < M andj # 1, define the following sequence of independent
random variables for node
b;(0) if there is a link between node
Xit) = and; at time step (4.24)

0 else
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Thenwe havgg_l’ Zfi—ol ZJ'E/\fz‘(t) b;(0) = KLP tligl Zg Lj#i Z( ) = Z] Lj#i K K IXZ( t).

The strong law of large numbers states that the sample ae@wyerges almost surely

(a.s.) to the expected value: pfobmy_,o = >, ! Xi(t) = pbj(0)> = 1, which results

in
1 K-1 M
K—pz D bi(0) as, > b(0). (4.25)
=0 jENi(1) j=Liti

Then the argument inside the decision function of Eq. 4.8®at surely converges to the
average of the initial votes. Therefore 5t0) # % the decision-making function of Eq.
4.23 results in asymptotic accurate consensus with prbtyadsi 1. Next we characterize
the probability of accurate consensus for the case that #jerity of initial votes is oné.
Let Y/(K) = b;(0) + 2 EJ i T LS " Xi(t). For large enough/, we can evoke
the Central Limit Theorem to approximate the distributidnYd(K’) with a Gaussian,

p
The probability thaty*(K) is exactly% for most values ob, K andM is negligible.

with the following average and variancgy: ) = S(0) andafﬂ(K) = M(l —p).

Therefore, we have the following approximation by exclggdinis case:

prob(b;(K) = 1) = prOb(Yi<K) g 1) ) Q(\/(S(?))Sb<(00)))p

VK),  (4.26)

M 2

resulting in the following forS(0) > 4':

. il M _ 5(0)
prob(accurate consensus at tirhg ~ H Q(

VK).  (4.27)
1/ (50) - bi(0) =2

0

Fig. 4.5 shows the performance of the diversity case for eaorit of 20 nodes. It
can be seen that the approximation of Eq. 4.27 matches taetabability of accurate

consensus considerably well.

Fig. 4.6 compares the performance of fusion and diversigitesgies forp = 0.5 and

p = 0.8. It can be seen that the fusion scheme provides a faster igamee rate through

“4similar expressions can be derived for the case that therityajd initial votes is zero.
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Zoaf

10
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Figure 4.5: Binary consensus over a rapidly-changing netwapology with ideal com-
munication links for the case of diversity withh = 20.

fusing the received information, which helps propagatimg information over the net-
work. Asp decreases, the fusion strategy outperforms the diversgynoore drastically,
as expected. However, it lacks asymptotic accurate coamesgguarantees, as was shown

in Theorem 4.

4.3.2 Binary consensus over a not fully-connected and timearying

topology with fading channels

In this section we extend our analysis to the case where érgsrience fading and noise.
We consider the case where CNR:)s can be modeled as i.i.d. random variables with
average ofu. Due to the presence of fading, the graph will be directednis tase, i.e.
there could be a link from nodgto node: with no reverse link. More specifically, there
exists a link from nodg to node, at timek, if CNR; ;(k) > CNRy,, for a given threshold
of CNRy, > 0. We only consider the case where knowledge of CNR is availabthe
receiver. Let CNFE(k) represent the set of CNRk)s wherej € N;(k). Then node has
access to this set. Similar to Section 4.2.4, the resultig&ection can be easily extended

to the case where such knowledge is not fully available.
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Figure 4.6: Binary consensus over a rapidly-changing netwapology with ideal com-
munication links forM = 10, comparison of diversity and fusion strategies.

Fusion case

For the fusion case, we will have the following decision-imgkunction by extending Eq.

4.13 to a not fully-connected time-varying topology:

_ 1 ~ abii(k)
bi(k +1) = Dec(m [bz(k) + | Z a;i(k) ) + Bz(k‘)D
JEN(K) '
1 ~ ~ ~
— Dec(m [bilk) + D @by (k) + Bilk) + w(k)|), (428)
JEN(K)
whereq; ;(k) = m andj; (k) = > ieNk) 12448 - Furthermoreq; (k) is a zero-
mean Gaussian random variable with the varian& o) = -z > e n MRy ®)
(CFINGTRIN? 2eg i) 7 )

Letiy, to, -+ , 1, beii.d. random variables. For a giver, > 0, we define the following

functions:

| t1 > i, - >Lm>/~LTh}a
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‘Ll >IU/Th7”' 7Lm>/~LTh}-

Theorem 6. Consider binary consensus over a rapidly-changing netvioplology with
i.i.d. fading channels and additive Gaussian noise, Wmefeprob{CNRj,i(k) > CNRrh}
represents the probability that a link exists at a given tisbep. Then the average dy-
namical system, based on the decision-making function of 2§, will have asymptotic
memoryless behavior jf # 0 and Vi, k that [N;(k)| # 0 — (k) # 0. Furthermore, we
have the following approximation for the second largeseri@lue of the average of the

underlying dynamical system:

(4.29)

o M—1 p1+ (M —1)p
)‘l,fapprox,TV,fading =1- 2(1 - (1 - p) )Q<2(1 _ (1 p)M—l))’

wherep; = 37071 f(m, CNRe) (Y1) pm (1—p)M =17, py = 3707 g(m, CNRen) (M 27)pm (1—
p)M~1=m and subscript TV indicates the case of time-varying netwaypklogy.

Proof. Let D(k), ¢™ andb?" be as defined for Eq. 4.6. L@§5<m)/\/(k enreery (K) =
probb;(k + 1) = 1|D(k) = ¢, N;(k) and CNR®(k)] represent the probability that
nodei votes one in the next time step, given the current state(@f) = ¢, the current

connectivity set ofV;(k) and the current fading coefficients of CRREk). We have,

ng”%/\f-(k) CNR(k) (k) =
1 S en k) 84,4 (ROPF +Z]€N @ %ﬂ
= L
" INi)] = 0

Then we have the following for the average of the state ttimmsmatrix (averaged over

different graph possibilities and fading coefficients):
M

P = T [0 () + (1= 52) (1 =00, () . (4.31)

=1

Whet’EI/(z)()m)(k) = Egraphfading{’/g()m) N (k),CNRS® (k) ( )} represents the average”éz[m) Ni( )CNR?et(k)(k)
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over graph possibilities and fading:

y;’(m) - prob{|/\/ )| = O}bm prob{|/\/ )| 0}

1— (xJ i (k)

1 by +Zj€Mi(k) aj,i (k)b +ZJEN ()

2 N (k
X Egraph,fading{@( & 51;(rl|<5) Ll >‘|M<k)| # 0}. (4.32)
If p # 0andVi, k that|N;(k)| # 0, thena; (k) # 0, it can be seen that < u¢()m)(k) <1

and thereforeP,,,, > 0. FurthermoreP is stochastic. Consider the average dynamical
system. Then similar to Section 4.2.2, it can be easily cowii that, asymptotically, the
memory of the initial state will be lost by evoking Perronisebrem. Next, we characterize
an approximation for the second largest eigenvalue in daleharacterize the transient

behavior. Under Assumption 1, we have the following appration:
b7 43 e N (k) &j,i(k)bg"+5i(k)
- LN P C,< IR ( b
ai(k) 20;(k) (1 + |N(k)])ai(k)
DN (k) &j,i(k;)b;ﬂ) NGB = en %z’(@)
(1 + |Ni(k)])ai(k) 2(1+ Ni(k))as(k) /7

wherec’ = —L-. We will then have the following equations whereandp, are as defined

N[

Q(

NN

(4.33)

in Theoremfanqbg = Yt (. CNRen) m (", 1) (1~ p>M—1—’":
e (1 i | W1 # 0} = T e
Snd [ O 70} = e
Eg,aph,fadmg{(Zlfw(a;;k)( N # 0} = 2 P>
Egraph,fadmg{(%w’g)m(() Nk 0} = _lﬁil (4.34)

Next we provide the proofs of the above equations. Assume GIRFs are i.i.d. ran-
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dom variables, we have

1
Egraph,fading{ (1 + [Ni(B)])ai(k)

[ INi)| # 0 (4.35)

pn(l_p)lvfflfn

M—-1
1—(1—p)M—-T1
:Efading{ g g =) 1 }
n=1

Ni(k) CNRy,i (k)
S.LINi(k)|=n Z E——
FEN; (k) CNR; i (k)
= — — \M—1 fading{ 1 }
n=1 n 1 (1 p) Z CNRjyi(k)
4 2
JENG(K) (1+ CNRj,i(’f))
s.t. |Ni(k)|=n
1= (1 —p¥t
and
Vi (k)]
15 | g{ _ Ni(k 0} 4.36
graph,fadin (1 + ‘M(k)‘)gz(l{;) ‘ ‘ ( )‘ 7£ ( )
ni1_\M—1—n
—E {M_l ST X }
— Lfading 1
n=1 N;

(k) CNR;,i (k)
stMBl=n | i+ = E

M—1 M —1 p"(l _p)M—l—nE { 1 }
= n .
S\ )Ty =
>
4 2
FEN; (k) (1+ CNRj,i(k))
s.t.[Ni(k)|=n

T—(1=p)"

Letb7* denote the vote of thg" node given that the current statef$?, as defined in

Section 4.1. We have™ = [b7" b - - - bT7'], we have:
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> an(kny
JEN;(k)

Egraph,fading{ (1 T |N( )D ( ) ‘ |N( )‘ 75 0}
N (k)
= (1= pM1 X Z Z b Efadmg{ 1+n)5 (k‘)}

E

n=1 Nl(k) ]EN
s.t.[Ni(k)|=n
1
M—1 I
pr(l—pMton m ow,
= 1—(1—pMt Z Z bj Efad'”g{ : T
n=1 Ni(k)  jeN;(k) Z CNR; ;(k)
s.t. [NVi(k)|=n (1 + 4. )2
1eN; (k) CNR; ; (k)
s.t. |Ni(k)|=n
M-1 M—1-—n
p"(1-p) M =2
= CNR b’
1_(1_p>M 1g(n7 Th)(n—l Zg
n=1 J#i
o P2 m
1= (1 —p)M-1 ij : (4.37)

The last equation of 4.34 can then be easily confirmed bytinges™ = [1,1---1]in

Eq. 4.37. Then we have the following by using the approxioratif Eq. 4.33
Vit = (L= )" 4 S (1= (1= p)™)

— %Cl(l - (1 —p)M_ )Egraph fadlng{ 0'21]{7) | ‘N( )| 7£ 0}

d(1—(1-p)"T)

b + > ey @i (KB
X Egraph,fading{ 0+ N (k )|) X | IN:(k)| # 0}
+ %C/(l —(1- p)M_l)

IWVi(k)|
X Egraph,fading{(1+|N( ) (k) | [Ni(k)] 7&0}
51— —p)M Y
Zje,/\/’( )a] i(k)
(L4 Ni(k)])ai(k)

X Egapn aang| [ IN(R)] # 0}, (4.38)
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which results in

Voo ~ (L= )70 4+ 5 (1= (1= p)*™)

1
/ / m / m
—50(01+P3)+Cplbi +Cp2 E -bj +§
J#i
1

- icl(M —Dpp=(1—p)" o

5= (=) = 2o+ (M = 1)
+pb" + dpy» b (4.39)
After a straightforward derivation, it] 7ci;m be confirmed that
S '

, 25, —
i, (m) i, (m) i
Vigomy R AR (1-— 0 )1/() (4.40)

M ¢(0) )

p1b*+p2 D, 4, bY m
WhereS ¢(m) - Mﬁs Si,(b(m) = (1 )JV[ le (]_ (]_ p) ) Z¢(m) and

v ~ (1= (1=p)™~ 1)(5—%%)% (1-1-p™1) < A R 1M”21) It can

be easily confirmed thaEl 1 Sigm) = EZ 1 SZ o = Msurr(gb ™)), Then by applying
Theorem 1, we have — 2(1 — (1 — p)*~ 1)@(%) as one of the eigenvalues

/
cps3

of the average underlying dynamical system.pAgoes to one andi, j # ¢« CNR;; goes

to infinity, this eigenvalue goes to one. Therefore, it isgtheond largest one. O

If Theorem 6 is deployed with CNfR = 0, i.e. for a fully-connected time-invariant
topology, we will havep; = 5z andp, = 7, whered and~ are as defined in Theorem 2.

This results in the second largest eigenvalue that is diriv&heorem 2, as expected.
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Diversity case

The diversity decision-making strategy of Eq. 4.23 can ldereded to the case of fading

channels as follows:

bhi(K) = Dec<A14 Z Z rj )

whereb;;(t) = r;:(t)b;(0) + nji(t), E{n?,(t)} = o7, andm( ) represents the fading
coefficient of the link from node to nodei for 0 < ¢t < K — 1. As expected, this strat-
egy will help when links experience poor quality due to fador noise. The asymptotic
accurate consensus behavior of this approach can be shk&bin a similar manner, as

follows:

Theorem 7. Consider binary consensus over a rapidly-changing netvioplology with
i.i.d. fading channels wherg = prob{CNij,-(k) > CNRrh} represents the probability
that a link exists. Then the decision-making function of £41 results in asymptotic

accurate consensus almost surelysiff)) # % and CNRy, > 0.

1 K-1 bji(®) _ 1 K-1 ;i (t)
Proof. We have:zs 350" 30 e 2 = 75 oo genin b0 H a5 o Ljenicn 2
The first term on the right-hand side almost surely converg@J 1.j2i 0j(0). For the

second term, which is the noise term, we have:

; 1
{ Kp Z Z ij } = Egraph{Ksz ;JWZ@ Efadmg{m‘CNRjJ(t) > CNRTh}}
graph{ CN[(R;nvzcond Z |N } - 1)}?;Rinv,cond’ (4.41)

whereCNR,cond = Efading{WMN R;i(t) > CNRp} is finite for any CNRy, > 0.
For instance, for exponentially distributed i.i.d. fadicwefficients, we hav€NRi cond =
eXp(CNRTh)E1<CNRTh> wherey = E{CNR;;(t)} and B (2m) = [ ~du for an arbi-

traryu andzr, > 0. Therefore, ag{ — oo, variance of this noise goes to zero. Hence, the
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argument of the decision function of Eq. 4.41 asymptotycalid almost surely converges
to the average of the initial votes, which results in asyriptccurate consensus with the
probability of 1 as long asS(0) # 4. O

[N

©
T

©
T

3
T

2}
T

S
T

<-fusion case (basic BAE), M=20]
- |=diversity case, M=20 *
-x-fusion case (basic BAE), M=8 ||
.o diversity case, M=8

w
T

o o o o o o o o
(4

)
T

o
-

average probability of accurate consensus

=

10 100
given number of transmissions (K) in log scale

Figure 4.7: Comparison of fusion and diversity strategmshinary consensus over a
rapidly-changing graph with fading links, CNR= —7dB andp = 0.82.

Similar to Theorem 5, we can find an approximation for the agerprobability of
accurate consensus (averaged over noise, fading and graiptig case. Fig. 4.7 shows
a comparison of the fusion and diversity strategies forrfgdiase and foENR =0dB,
CNRr, = —7dB (which results inp = 0.82) andM = 8, 20. As can be seen, the diversity
strategy reaches asymptotic accurate consensus withtpliopaf one, as expected. The
fusion strategy, on the other hand, has a better transiéwtvime. This is due to the fact
that, by fusing the received information, the fusion sggtpropagates the information
faster in the network. It is as if virtual links have been aatuced between nodes through
fusion. On the other hand, it lacks asymptotic accurateausiss and suffers from asymp-
totic memoryless behavior. A%/ increases, the overall impact of link errors is reduced,
resulting in the better performance of the fusion case. Hadyais and simulation of this
part shows the underlying tradeoffs between fusion andrsiiyestrategies. In practice,

the network may only have a limited time (for instance on traeo of 10s of iterations)

116



Chapter 4. Binary consensus over fading channels

for reaching consensus. In such a case, fusion strategy mayobbe suitable. On the
other hand, if the network can wait long enough, a divergitgtegy can provide a better
asymptotic performance. In practice, a combination of tsithtegies may provide the

best overall performance.

4.4 Summary

In this chapter we studied a cooperative network that is\gyo reach consensus on the
occurrence of an event, by communicating over fading chann#&ke first considered a
fully-connected and time-invariant network topology. Wemmosed a novel consensus-
seeking strategy based on the Best Affine Estimation (BAEedivork state and charac-
terized the asymptotic and transient behaviors of the métpi@babilistically. We showed
that the network converges to a memoryless state asymaltgtiwhich is undesirable. To
see the transient behavior, we then characterized the fat@weergence by deriving an
approximation for the second largest eigenvalue of the lyidg average dynamical sys-

tem.

We then extended the binary consensus scenario to the cas# fflly-connected
and rapidly-changing network topologies. We mathemdsicddaracterized the impact of
fading, noise, network connectivity and time-varying tlggy on consensus performance,
which becomes challenging due to all these uncertainti@sh&more, we considered two
different decision-making strategies, in term of using dlailable transmissions: fusion
and diversity. We showed that the diversity strategy res@symptotic accurate con-
sensus with probability of one. On the other hand, the fustoategy provides a better
transient behavior by propagating the information fastehe network. However, it lacks

asym ptotic accurate consensus.
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Chapter 5

An integrated framework for binary
consensus over time-invariant network

topologies

In this chapter we utilize the aforementioned fusion ane@ ity decision-making strate-
gies of Chapter 4 for binary consensus over the gerienatinvariant network topologies
(not necessarily fully connected) with fading channels. ten propose an integrated
framework that keeps the benefits of both fusion and diwessrategies, in terms of net-
work information flow and link error robustness, for binagnsensus over time-invariant

network topologies with fading channels.

The chapter is organized as follows. In Section 5.1 we stheypinary consensus over
time-invariant network topologies with ideal communioatiinks. In Section 5.2 we dis-
cuss the fusion and diversity decision-making strategi€shapter 4 over time-invariant
network topologies. We then propose an integrated diyeaisid fusion framework in Sec-
tion 5.3 and mathematically analyze the proposed framewanckshow how the network

achieves accurate consensus asymptotically. In Sectfbw® then utilize the proposed
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framework over regular ring lattice networks. We show thrawgation results in Section

5.5. A summary of the results of the chapter is provided irntiSe&.6.

5.1 Binary consensus over time-invariant topologies with

ideal communication links

In this section, we revisit the binary consensus over ndgftdnnected and time-invariant
network topologies. Furthermore, we assume ideal comnatioit links. Studying this
case allows us to focus solely on the impact of informatiow flo the network and char-
acterize a benchmark for the performance of binary consealgiorithms over non-ideal

communication links.

Consider the binary consensus scenario of Chapter 4. Is¢kisario, each node has
its own initial decision, based on its one-time sensing. @bal of the network is for
each node to reach a decision that is equal to the majoritigeofritial votes. In order
to achieve this, each node will transmit its current deciso other nodes over a time
invariant network topology. We model the underlying netivas an undirected graph
GV, &), wherey = {1,--- , M} represents the vertex set afids the link set (the set of

available communication links among the nodes).

Let ) € {0,1} represent the initial vote of thih node, wheré? = 1 indicates that
theith agent initially decides that the event occurred wheﬁéas 0 denotes otherwise.
Consider the binary consensus over ideal communicati&g.lim this scenario, each node
receives the votes of its neighbors over the ideal commtiaiténks. It then fuses all the

received information and updates its vote based on the ihyagiits neighbors’ votes.

Let b* denote theth node’s vote after, fusion steps over ideal communication links.
We haveh! = Dec( B + e, 8711 ) 1 1/(L4+ IND B + 3,00 0] #
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initial state (u=0) first level of fusion (u=1) second level of fusion (u=2)

Figure 5.1: Demonstration of different fusion levels faf = 17 nodes trying to reach
consensus over@&regular ring lattice.

1 2>05

0 z<05
Otherwisef);‘ = EZ.“‘l. Fig. 5.1 shows a network dff = 17 nodes trying to reach consen-

0.5, whereN; denotes the neighbor set of tith node and Dga) =

sus over &-regular ring latticé- In this topology each node receives information from its
neighbors over ideal communication links. As can be seéthehodes reach the majority

of initial votes at the second level of fusion. LBt = {b*,b%, --- ,b%,} denote the net-
work state after fusion steps. Defines(D°) = min{u|D" is an accurate consensus sjate
For instance for the example of Fig. 5.1, we have= {1,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,1}
andug(D°) = 2. We then defin®¢ £ {D°| ug(D°) < oo} andug = maxpocp,, uc(DO).

ug 1s only a function of graph connectivity and represents tleximum number of re-
quired fusion levels in order to achieve accurate conseifgi$ € D.. For instance, for
the fully connected graph, i.e., each node is connected tbeahodes in the network, we
haveus = 1. In the next section we consider the binary consensus averitivariant

network topologies with non-ideal communication links.

1An L-regular ring lattice is at-regular graph with\/ vertices in a ring in which each vertex
is connected to ité, neighbors g on each side for an even value .
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5.2 The underlying tradeoffs between information flow

and robustness

Let b; ;(k) represent the reception of thih node from the transmission of thth one at
the kth time step. We have the following if there exists a link frtme jth node to theth
one:b; (k) = r;,(k)b;(k) + n;:(k), whereb;(k) denotes thgth node vote at timé and
r;:(k) andn;;(k) are the fading coefficient and channel noise of the link fridmnode to
theith one at time: respectively. Each agent will then update its assessmeegtlazn the

received information.

We next discuss the fusion and diversity decision-makingiagies of Chapter 4 for
binary consensus oveot fully connectedndtime-invariantnetwork topologies before
we propose our integrated approach. By not fully-conneatetitime-invariant network
typologies with fading links, we mean networks where somkdimay not be connected.
We assume that the set of connected links is fixed and thertferunderlying topology is
time invariant. Similar to Chapter 4, we also assume thahtites move fast enough such
that the fading coefficients of the established links chaargeébecome uncorrelated from
one time step to the next. However, their movements aredurtid a small enough area

such that the underlying network topology is not changihggta time-invariant network

topology).

Fusion caseln Chapter 4, we proposed a fusion-based approach thaestihforma-
tion of link qualities and noise variance. Eq. 4.13 of Chagtavill be as follows for the

case of time-invariant graphs:

bi(k+1):Dec< |N|[ +Z<aﬂ +5ﬂ())]>7 (5.1)

whereb;(0) = ¥ for 1 < i < M. Similarly, the corresponding coefficients can be
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represented as:

ay,i(k) = Tj’i(k)ojzi and (k) = (1 — ayi(k)ryi(k))q;(k), (5.2)

2 s
r5i(k) + S )
whereg; (k) = E[b;(k)].

Diversity caseln Section 4.3.2, we proposed a diversity-based approelcére each
node uses all of its transmissions to repeat its initial \aote only fuses the received in-
formation afterward. This strategy can, in particular, Iseful in reducing the impact
of link errors. LetX;,;(K) = [b;:(0),---,b;:(K)]" denote the receptions ¢th node
from the jth node inK + 1 transmissions. Defing;;(K) = [r;;(0),---,r;:(K)]"
and N;;(K) = [n;;(0),---,n;;(K)]". For the diversity case, all the nodes use their
transmissions to repeat their initial votes, i&(k) = 139 for0 < k < K. Then we
have the following, considering all the receptions of tkle node from thejth node:
X;i(K) = YR (K) + N;;(K). Theith node can then estimabé by using the best
affine unbiased function of the received informatié?(j{) = phi(K) X (K) + n;4(K).
To ensure an unbiased estimator, we should hE{é?(K)] = E[IY] = n(K) =
@(1 = pT(K)R;4(K)), whereq? = B[i¢]. Let ¢ (K) = B[(I(K) — i)°] denote
the corresponding estimation error variance. We then haeddllowing optimization

problem:
pji(K) = arg min (;;(K),
subject ton; (K) = ¢ (1 — pj;(K) R;(K)). (5.3)
We have
GalK) = BI((K) — 1)
= E[(@? — @) (K Rya(K) — (b;(0) — ¢5) + PiiNj,i(K))z]
= 0 () (@1 = Q) R,u(K)REE) + 0%l ) 1o )

— 24} (1 — @) pj(K)R;(K) + g5 (1 — 7). (5.4)
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By noting that 5.4 is a convex function pf;(X’), we have

50 50 50 ~0
¢ (1= q) (3;(1 = qj) !
pii(K) = =5~ (] oo Rj,i(K)RjT,i(K)JFIKxK) Rji(K)
7t Vg
B0-3)
~0 ~0 J J
¢;(1=4qj) 2
= (o — —— Ry (K)RY(K) ) Ry (K)
75 1+ 25| Ry (K2
1

2
T5si . 2
qﬁ)(lj_q?) + HRJﬂ(K)H

andn; ;(K) = ¢?(1-p],(K)R;(K)). We then have the following for the estimation error

0'2. .
Jyi 1
1 K )
CNR; ; (k
+ Ry (K)12 qgu,q?ﬁzk:o 5.4 (K)

variance afters + 1 transmissionsg; ;(K) = —
Fieer
r2, : , :
where CNR;(k) = JUTU‘”) denotes the channel to noise ratio for the link, from ngde
VX

node: at timek. We then have the following decision making function:
_ 1 70
bi(K + 1) = Dec (TW\ (bz(O) + Z bj<K>)>

1 T
= Dec (m (bz-(O) + Z ;i (K)X;i(K) + nm-(K))) , (5.5)

whereb; (k) = ) for 0 < k < K.

Lemma 1. Consider binary consensus over a not fully connected néttepology. Under

the assumption of i.i.d. Rayleigh fading channels, GNR are i.i.d. exponential random
variables withCNR= E{CNR (k) }. Then the dynamical system, based on the decision-
making function of Eq. 5.5, will asymptotically reaéh = {b!,b} --- b}, }, where D!

represents the network state after one level of fusion aealicommunication links.
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Proof. We have,

71 O 70 1
prob(bi(K +1) bi) < prob( )+ BE) - Y | | > 5)

JEN; JEN; U{i}
~ 1
— prob Z b0 -] > =

(I3 J\ )
<43 B[ - 1) =43 Gak),
JEN; JEN;
where in the last line we are using Chebyshev’s inequalitytiermore, we have,
1
Ga(K) = <7;i (K) (5.6)

M + 1 CNRyi(k)
wherey;;(K) £ Zf:o CNR;;(k). Since CNR,(k)s are i.i.d. exponential random vari-
ables with the mean &NR, v, ;(K') has Gamma distribution with the following parame-

ters:v;(K) ~ Gammak + 1,CNR). As a result,vjfil(K) is an Inverse Gamma random

variable. We then havéim .. E{yﬂ )} = limg o0 m = 0. Since~;; '(K)
is a non-negative random variable, we have
1
lim = 0. (5.7)
K—o0 7;(K)
Thereforelimg _, (;:(K) = 0, which results ilimx_, prob( (K +1) = ) =1 for
1 <3< M. O

In Fig. 4.7 of Chapter 4, we compared the performance of begioh and diver-
sity strategies for binary consensus over rapidly-chapgetwork topologies with fading
links. We next confirm that similar tradeoffs exist for theseaf not fully-connected but
time-invariant network topologies. Similar behaviors abserved. For instance, Fig. 5.2
shows the comparison forl@-regular ring topology, i.e. a fully connected graph, where
the transmissions occur over Rayleigh channels @R = —6dB. Since the main bot-
tleneck is the link quality, the diversity approach outpenis the fusion approach and
reaches accurate consensus asymptotically, as expectgd5.% compares the perfor-
mance of both approaches férregular ring topology an€NR = 6dB. Similar to the

results of Chapter 4, since the main bottleneck is the nétwonnectivity, the fusion
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Figure 5.2: Performance comparison of fusion and diveegigroaches for binary con-
sensus over 16-regular ring lattice topologyMf = 17 nodes with fading channels of
CNR = —6dB(averaging is done over several runs).

approach outperforms the diversity one drastically. Inrie&t section we propose an
integrated framework that keeps the benefits of both fushohdiversity approaches.
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Figure 5.3: Performance comparison of fusion and diveegigroaches for binary con-
sensus over 6-regular ring lattice topology /af = 17 nodes with fading channels of
NR = 6dB(averaging is done over several runs).

125



Chapter 5. Anintegrated framework for binary consensustawe-invariant network topologies

5.3 An integrated diversity-fusion framework for binary

consensus over fading channels

In this section we propose our integrated diversity-fusiamework for binary consensus
over fading channels. In this strategy, each agent sendstarue its neighbors. This
vector consists of the estimations of the votes correspgrtdi the different fusion levels.
Throughout the repeated communications (diversity), eexdte tries to refine its assess-

ments of different fusion levels in order to reach consensus

blG(k)(k)]T represent the vector that nodevill send

(e}

Let B;(k) = [B0(k), b}(k), -
to all its neighbors over fading channels at tifiewhereb! (k) represents théh node
estimate ob” at timek andl (k) = min{k, ug—1}. Table 5.1 shows the time progression
of the transmitted vector by nodeo all its neighbors. As can be seen, at tilme- 0,
node: only transmits its initial vote to its neighbors. It also eaes its neighbors’ initial
votes over fading channels. Next, in time step- 1, nodei fuses all its receptions in
order to come up with an estimate Ejf. It then transmits its initial vote together with
the estimate 05} to all its neighbors. This process will go on for a while andreagent
sends its estimate of different fusion levels to it neigisb@s can be seen, thith node’s
estimate ofb* will not be available tillk = u. Therefore, fork < ug — 1, Bi(k) =
[2(k), bt (K), -+, bF(k)]T andlg(k) = k, however, fort > ug — 1 the length of the
transmitted vector becomes fixed and equal 4o

Table 5.1: Time progression of transmitted vector by node

t=0]t=1]--| t=ug—1 |---| t=F
B0) | f(L) |- | Bug—1) |-+ | BY(K)
bi(1) bi(ug—1) |-+ | bi(k)

b (ug = 1) | -+ | BTN (R)

Letry,(k) andn}, (k) represent the fading coefficient and the receiver noisesdfitk,
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which transmit9 (k) from node; to node: respectively.n, (k) is zero-mean Gaussian

with the variance o, ,. We take the fading coefficient and the receiver noise of all

the receptions to be uncorrelated. Lgf(k) represent the reception of thir node from

the transmission ob} (k) at time k. We have the followingpy (k) = r},(k)b% (k) +
n(k)for 1 <i < Mandj € N;. Let X!;(k) = [bY%;(u),--- ,bY%,(k)]" represent all the

receptlons of nodéfrom nodej corresponding to theth level of fusion till timek. Node

i will then update its estimate of ** at timek + 1 based orb? (k) and all theuth level

votes of its neighbors until time.

Bk + 1) = F (b (K), XJ,(K) V) € NG), (5.8)
whereF represents a decision-making function. The redundancgdtov.X; (k) tries to
improve the link qualities. We next show how to design thisction. Define the follow-
ing variablesB;%(k) = [0%(u), -, b4(k)]", RY (k) = [rii(u),- - r(k)]T, Hy (k) =

T
diag(RY(k)), N, (k) = [n%(u), - ,n%,(k)]", whereN(k) ~ N (0,02, . J(—us1)x(k—ut1))
and diag.) is a diagonal matrix with the elements of the argument on asmmdiagonal.
Therefore, we have'?; (k) = H;fi(k)Bj“(k)qLN;fi(k) for k > u. Theith node will then try
to estimaté);%, based on all receptions frofth node, i.e X7, (k). In order to characterize
the best affine estimation 6}‘, the second-order statistic éj%(k:) Is required. However,
finding a closed-form expression for the second-ordersttegiof this variable is challeng-
ing. The vecto@;‘(k) contains different temporal assessments ofith@ode aboJﬁ;. To
simplify the mathematical derivation, we consider the cagere the:th level of fusion is

in its steady state, i.63%(k) = 01,41 Vj. Under this assumption the BAE estimation
can be derived similar to Eq. 5.3 as folloml%.‘:(k) = pt. (k)X (k) + n¥;(k), where

/);Lz<k) = +1HR i )H2R§L,z(k), W;Lz(k) = 675*(1 - P;LZTU{?)R;LZ(K)) and(j; = E[I;;L]
L”(1 qu)

SinceB;L( ) # b] 1k_u+1, the estimator is suboptimal. However, in Theorem 1 we will

show thaflimy, . b} (k) = Bj“. for 1 < j < M. Therefore, the proposed suboptimal esti-

mator is asymptotically optimal. Thi¢h node will then update it&: + 1)th level decision
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as:

b (1) = Deol T [ (k) + 3 33—‘(%)])
KA . N

. Dec( |M|1+ [ )+ Z P )+ nﬂ(k)]) (5.9)

fork > u, 0 < u < ug — 1 andb? (k) = b VZ, k. Next we show that the decision-making

function of Eg. 5.9 achieves accurate consensus asynmgitgtic

Theorem 1. Consider binary consensus over a time-invariant netwoplotogy with i.i.d.
Rayleigh fading channels. Assuiné| is even forl < i < M. Then, the decision-making
function of Eq. 5.9 asymptotically converges (in probaypjlto accurate consensus iff
D € Dg.

Proof. We prove the theorem by induction. Defing(k) = prob(by(k) # B}‘). For

u = 0, we havel?(k) = 1 Vk,i. From Lemma 1, it can be easily confirmed that
limy 00 wll(]{?) =0 Vi. Assumdimy,_, w?(k) = 0. We next prove thdtmk—mo CUZL—H(]{Z—F
1) = 0. We have,

Witk +1) = prob(bg‘“(k +1) # Bg“)

1
< prob([t2(k) + 37 ot T XL k) — 0 B> )
JEN; JEN Ui}
1
= pr b( k)= b+ > —
ieN; grizamy + 1= (R
. u u szzu [;u u T 1
X(Zm()(b()—b) 1_q<1 )+ R, <k>N],i<k>)\z§)
t=u J J
< oo 1109 1 + 3= e (Zr o — 5
]Z
0-]2'71'7“ ;L uT 1
b2l 2 | wnm|) > 5)

where in the last inequality, we are using the property thisahy random variablées;,
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we have prolé\ >SS > e) < prob(z. 1= > (—:). Furthermore, we havi{ |b!(k) —
b“}} = wi(k). Applying Markov’s inequality results in:

wf“(k +1)

k 2 ~u
a'i,u u u
]Z t=u ]
=92 w : u 2 U O-jz,i,u Uj i,u |
- +Z|| e (2 0 )+1—~ - T
JEN; JZ t=u q] J
‘ 2 1]
—2[ut+ X g o0+ 3 ‘ [ >~
JEN; 5 (R 5 JEN; qJ %’(k) T jen \/73a(k)-

(5.10)

where~}';(k) = 3., CNRY () = M

exists a numbeTr’(¢) such thato? (k) < e forall k > T (¢). Therefore,

k T} (e)

Lete > 0. Sincelimy, ., wj (k) = 0, there

1 2 1 204 1R (k)12 = 1R} (T3 ()12
TG 2" 0450 < e 2 i 050+ = e
' T’-*(e)
< H k )||2 Z r;-ff(t)w}‘(t) + €. (5.11)
Sincer},(t)'s are i.i.d. random varlables, we have
: DALY RO Ti(e) —ut+l _
,}E&E{W} e (5:12)

Since ‘Ru TR (T Z ri2(t) is a non-negative random variable, it goedtask — oo.
Therefore, we havel;mk_m TR (k |2 Zt LT (Hwi(t) = 0. Furthermore, similar to

Eq. 5.7, we can show théitn, .., —— = 0. By substituting these values in Eq. 5.10,

v (k
it can be easily confirmed théntmk%o w!t(k 4+ 1) = 0. Using induction, we have
limy 00 w;“ (k) = 0 and as a resulimy_, prob(b?G(k) = B”;‘G> =1forl1 <i:< M.
Therefore, ifD° € Dg, thenlimy,_,. [0 (k),- - -, b3 (k)] is an accurate consensus state

with the probability of one, which proves the theorem. O

Remark 1. The decision-making function of Eq. 5.9 uses informatioa;@f,s. If such
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information is not available, then th#h node can estimat?léj‘ using Best Linear Unbi-
ased Estimation (BLUE)B;L(k;) NGl T (k)X (k), assuming that thath level

of fusion is in its steady state. Each node will then updatéuit+ 1)th level decision as

HR"

follows:
bg+1(k+1)=Dec<W| +Zbu )
_ Dec( T [ ) + Z T H2RjZT(k:)X;fi(k)]), (5.13)

fork > u,0 <u < ug—1andb)(k) = bQ Vi, k. This receiver can be considered as
a special case of the decision-making function of Eq. 5.%revh, ; , = 0. Therefore,

it achieves accurate consensus asymptotically. Furthezmee haveim, ., p%;(k) ~
HR“ TR oo L (k) andlimy_, nj,;(k) ~ 0. Therefore, the decision-making function of Eq.
5.9 will be boiled down to the decision-making function of £4.3 for enough largé.

In the subsequent sections, we utilize the integrated fnariefor a special class of

undirected graphs and show the performance of the propcse@iork.

5.4 Integrated framework over regular ring lattice topolo-

gies

In Section 5.3, we introduced our proposed framework, whasymptotically achieves ac-
curate consensus. In this approach, nod#l send a vecto3; (k) to all its neighbors over
fading channels. The length of this vectotisfor t > ug—1, which is a function of graph
connectivity. Intuitively, networks with higher connedaty require smaller values af.
For instance, for fully connected networks, we have= 1. In generalu is a function
of network topology and independent of communication dqualihis parameter needs to
be determined before running the algorithm. In this sectia@mainly focus orL-regular

ring lattice topologies with ideal communication links inder to characterize. Let
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V ={1,2,---, M} denote the vertex set. Without loss of generality, we assiatethe
vertices are ordered clockwise on the ring (see Fig. 5.1%thEtmore, we assume that

is odd. Under the above assumptions, the adjacency matax éfregular ring lattice,
i.e., Az, can be represented by a circulant matrix with the first rof@of%, 07, , |, 1%].
Therefore, the dynamic of the network state at differenioiugevels cari be expressQed as
follows: D% = Dec(ﬁl(AL + Inrxar) X D“‘l), whereA;, denotes the adjacency matrix
and Dec acts entry-wise on its argument vector. For thisaagraphs/ is a notion of
connectivity. Therefore, we try to show haw: changes as a function &f We then have

the following lemma, which will be used in Theorem 2.

Lemma 2. For an L-regular ring lattice, if L = M — 1, then} N4, {N; U {i}}‘ = M.
Moreover, if . < M — 3, then) N {N;, U {’in}}) < L+2—p. The equality is achieved

if and only if {i,,--- ,i,} C V denotes a set of consecutive nodes on the corresponding
ring.
Proof. The proof is straightforward and we skip it. O

Let m" = min<Z§Vi1 b, M — 3 5;%) represent the number of nodes, with the

minority of the votes atth level of fusion. We then have the following theorem.

Theorem 2. Consider binary consensus over arregular ring lattice, we then have the

following properties:

1- Assum& = J;_, V;, such tha®; represents a set of consecutive nodes on the ring
that vote the same antf;| > £-+1. Then the corresponding network state is an absorbing

state.
2- Form? < g the accurate consensus is achievable after one level wifus

3-Form? = g + 1and D" € Dg, accurate consensus is achievable at most after two

fusion steps.
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Proof. LetV; = {0, , 0}, } denote theth partition, wherev; represents the index of
jth node in theith partition. Therefore, we hav%e{/\foé U {o§
1 < j < |Vi|. Since all the nodes iW; vote the same, we ha\igjl = Bg?-_ fort<i<ec
andl < j < V. J J

> L 41 for all

We next prove the second part. Consider the case where tletyaj the initial votes

. b+
is 1. If m® < £, we then have' %ff" 7> L+L1+1m( > 1 v, which results irb} = 1. For
the case, where the majority of the initial vote$) jsve have% <2 L—+1 < 3 v 7,

which results irb} = 0. Therefore, forn® < £ 5 accurate consensus is achlevable in one

iteration.

Next, we show the third statement. First we show thatfr= £ + 1 andD° € Dy,

we havem! < L. Let {4{,i3,---,i%,} denote an ordered set of the nodes, which vote
to the minority of the initial votes. Lemma 2 says that at mbst 2 — m° = 5 +1
nodes can havéif, - , i} in their neighbor set if and only ifi?, 43, - ,i0,} is a set

of consecutive vertices. Therefore! = é + 1 is achievable if and only if the initial state
is an absorbing state (see Theorem 2-1). ThereforB? i D¢, thenm! < L, which

reaches accurate consensus ia 2 (see Theorem 2-2). O

In Theorem 2, we showed that the number of fusion levels,iredto achieve accurate
consensus is a function of graph connectivity &nd initial state D°). For instance, for a
fixed connectivity, ifm° g 2, accurate consensus is achievable after one level of fusion
However, ifm° increases t(ﬂ% + 1, then the network may require two fusion steps to reach
consensus. In order to understand the impact of the conrgatin the required fusion
steps, Fig. 5.4 characterizeg as a function ofL. over a regular ring lattice topology
of M = 17 nodes. As can be seen, asincreasesyu decreases. For instance, for
L = 16, i.e., fully connected graph, the network requires only lewel of fusion to reach
accurate consensus. It can also be seenih# only a function of the graph topology. In
practical applications, this parameter needs to be detexdrbefore running the integrated

algorithm.
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2 4 6 8 10 12 14 16

L

Figure 5.4:u¢ as a function of_ for the regular ring lattice o/ = 17 nodes

5.5 Simulation and comparison

Fig. 5.5 shows the performance of the proposed framework awegular ring lattice
topology of M = 17 nodes. In order to show the impact of network connectivityttoa
performance of the proposed algorithm, we consider a reguégh topology with differ-

ent values ofL.. For eachl, the number of required fusion levels, i.eg, can be found
from Fig. 5.4. Each node will then send a binary vector of tang; to all its neighbors
over communication channels. Moreover, we assume all eiaraxperience the same
noise varianced;;, = 1.5) and the average power of fading coefficients is equal to one
(K [r;{f(k)} = 1). In order to make a fair comparison, we keep the number abtret-

ted bits fixed. Therefore, in Fig. 5.5, we show the probabdit accurate consensus as a

function of number of transmitted bits per node.
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Figure 5.5: average probability of accurate consensusregetfar ring lattice of 7 nodes,
whereCNR = —3.5dB

Fig. 5.5 shows the performance of the proposed framework fer8, 10 and14. For
these simulations, we assume that nodees not have the knowledge gf for j € N,
so it simply assumeg' = 0.5 in the decision making function of Eg. 5.9. As can be seen,
the integrated approach, independent of network connggtehieves accurate consensus
asymptotically. Furthermore, networks with higher conivty, i.e., larger values of_,
reach their steady state in fewer transmissions. For the @bs = 8, the performance
of both fusion and diversity approaches of Section 5.2 ae stiown for comparison. As
can be seen, the proposed approach keeps the benefits ofibiotth&nd diversity in terms
of the transient and asymptotic behaviors respectivelythEumore, the performance of
the integrated approach for the case where 8 and knowledge of; ; ,, is not available

(Remark 1) is also shown in Fig. 5.5. As can be seen, the @ttegapproach with known
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link quality slightly outperforms the case of unknown linkadity. However, as mentioned

earlier in Remark 1, as time goes by, both cases provideasipdrformance.

5.6 Summary

In this section we considered a cooperative network thayisg to reach consensus over
not fully-connected and time-invariant network topolagveith fading channels. We uti-
lized the aforementioned fusion and diversity decisiorkimgstrategies of Chapter 4 for
binary consensus over the general time-invariant netwap&lbgies (not necessarily fully
connected) with fading channels. We then proposed an mtiegjframework that keeps
the benefits of both fusion and diversity strategies, in teaithe network information
flow and link error robustness, for binary consensus ovee-dimariant network topolo-
gies with fading channels. Our results indicate that th@psed technique can improve

the consensus performance considerably.
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Chapter 6

Conclusions and further extensions

In cooperative network applications, communication pkaey role in the overall perfor-
mance of the network as each mobile agent improves its kalgeley processing the in-
formation received from others. In order to realize the flaftentials of these networks, an
integrative approach to communication and motion planimseges is essential, i.e., each
robot should have an awareness of the impact of its motiorsidas on link qualities,
when planning its trajectory. This requires each robot sess the quality of the commu-
nication link in the locations that it has not yet visited. &gesult, proper prediction of the
communication signal strength and fundamentally undedstg the spatial predictability
of a wireless channel, based on only a few measurementanesoansiderably important.

We addressed this problem in this dissertation.

More specifically, in Chapter 2 we proposed a probabilistiarmel prediction frame-
work for predicting the spatial variations of a wirelessmheal, based on a small number
of measurements. By using this framework, we then develapedthematical foundation
for understanding the spatial predictability of wirele$smnels. More specifically, we
characterized the impact of different environments, imof their underlying parame-

ters, on wireless channel predictability. We furthermdreveed how sampling positions
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can be optimized to improve the prediction quality. Finalie showed the performance
of the proposed framework in predicting (and justifying firedictability of) the spatial
variations of real channels, using several measuremendsritbuilding. In Chapter 3,
we showed how to utilize the sparsity of the channel in thguiescy domain in order to
estimate the spatial variations of a wireless channel,dbase& small number of measure-
ments. We also characterized the underlying tradeoffsdxtvthe probabilistic approach
of Chapter 2 and our sparsity-based estimator, which metivdeveloping an integrated
framework. We then proposed an integrated sparsity and lrb@ded channel predic-
tion framework. Our approach properly takes advantage tf bleannel compressibility
in the frequency domain and channel probabilistic charaetigon in the spatial domain.
We tested our framework using outdoor and indoor channekareaents. The results

confirmed the superior performance of the proposed intediagbproach.

In Chapters 4 and 5, we studied different cooperative nétwperations with limited
local sensing and realistic modeling of communicationdink Chapter 4, we considered
the group agreement problem over fading channels. Morefgjadly, a cooperative net-
work is trying to reach consensus on the occurrence of antgdvgrmommunicating over
time-varying network topologiesith fading channels. We characterized the impact of
fading and rapidly-changing topologies on both the asytipémd transient behaviors of
the network. We showed that the network can converge to a mgess state asymptot-
ically, depending on the utilized decision-making funotido see the transient behavior,
we then characterized the rate of convergence by derivirgpanoximation for the sec-
ond largest eigenvalue of the underlying average dynaraysaem for different decision-
making strategies. We then showed how to significantly im@itmoth the asymptotic and
transient consensus performance by incorporating semsidgcommunication trust fac-
tors in the local decision functions. We furthermore coasd two cases of diversity and
fusion for local decision making. We mathematically chégazed the performance of our
proposed framework. Our derivations, for instance, sholea noise, fading and con-

nectivity impact the performance. They furthermore highted the underlying tradeoffs
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between diversity and fusion approaches in terms of spesaiwergence and memoryless
asymptotic value. In Chapter 5, we then proposed a frametihatikeeps the benefits of
both fusion and diversity strategies. We mathematicalplyaed the proposed algorithm
and showed how it can achieve accurate consensus asyrapiyot@ur results indicated

that the proposed technique improves the consensus perficenconsiderably.

There are several possible extensions of the results afigssrtation. In the proposed
probabilistic framework of Chapter 2, we assumed that tretijom of the transmitter is
fixed. A possible interesting extension is to understanchicbbpredictability when both
the transmitter and receiver are moving. Also, we assumegdwhand channels. Consid-
ering the impact of wideband channels is also another plessittension. In Chapter 4, we
mentioned that binary consensus has several potentiatapphs in cooperative network
operations. One potential application is cooperative tspeTsensing in cognitive radio
networks. In cooperative spectrum sensing, the secondamng (junlicensed users) sense
the spectrum power of the primary user (licensed user) ahgeuthe spectrum when the
primary user is in an idle mode. The secondary users will t@nmunicate with each
other to improve their detection performance by exploitingir spatial diversity. Then,
since the goal of the network is to reach an agreement on anmreoce of a binary event,
i.e. the presence or absence of the primary user, this protiectly falls into the binary
consensus category. Therefore, the binary consensusviiainef this dissertation can be

extended to address spectrum sensing in cognitive radigonies.
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