
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2012

Multivalent Random Walkers:A computational
model of superdiffusive transport at the nanoscale
Mark Joseph Olah

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Olah, Mark Joseph. "Multivalent Random Walkers:A computational model of superdiffusive transport at the nanoscale." (2012).
https://digitalrepository.unm.edu/cs_etds/24

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/24?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Mark J. Olah
Candidate

Computer Science
Department

This dissertation is approved, and it is acceptable in quality
and form for publication:

Approved by the Dissertation Committee:

, ChairpersonDarko Stefanovic

Cris Moore

Lance Williams

Milan Stojanovic

i

Multivalent Random Walkers:
A computational model of superdiffusive transport at the

nanoscale

by

Mark J. Olah

B.S., Computer Science, Carnegie Mellon University, 2004
B.S., Mathematics, Carnegie Mellon University, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2012

ii

Acknowledgments

I would like to acknowledge the help and support I have received from my committee

members over the years. Lance Williams originally gave me the idea to model the motion

of walkers at a mechanical equilibrium using a Boltzmann distribution. Cris Moore’s in-

spiring lectures on the use of randomness as a tool for computation have led me towards

my current approach in this work. I would also like to acknowledge Milan Stojanovic for

his visionary approach to chemistry, and insight into the nature of DNA nanotechnology.

Without his guidance I would never have arrived at my present understanding of the com-

plexity of behaviors possible in seemingly simple chemical systems. Finally, I’m grateful

to have had Darko Stefanovic as an advisor since the first day I arrived at UNM. Darko has

created a research environment where education and science are always the most impor-

tant considerations, and he has helped me to develop from a student into a scientist. None

of this work would have been possible without Darko’s help and the help of other students

within our Molecular Computing Group. In particular, I would like to thank my co-authors

Oleg Semenov and David Mohr, who have been instrumental in much of the work which

supports this dissertation. I would also like to thank Tom Hayes for sharing his insight

into the Metropolis-Hastings algorithm and other Markov chain Monte Carlo techniques.

This work was generously supported by the National Science Foundation under grants

0533065, 0829896, and 1028238.

iii

Multivalent Random Walkers:
A computational model of superdiffusive transport at the

nanoscale

by

Mark J. Olah

B.S., Computer Science, Carnegie Mellon University, 2004
B.S., Mathematics, Carnegie Mellon University, 2004

Ph. D., Computer Science, University of New Mexico, 2012

Abstract

We present a stochastic model and numerical simulation framework for a synthetic nano-

scale walker that can be used to transport materials and information at superdiffusive rates

in artificial molecular systems. Our multivalent random walker model describes the mo-

tion of a walker with a rigid, inert body and flexible, enzymatic legs. A leg can bind

to and irreversibly modify surface-bound chemical substrate sites arranged as nanoscale

tracks. As the legs attach to, modify, and detach from the sites, the walker moves along

these tracks. Walkers are symmetrical and the tracks they walk on are unoriented, yet we

show that under appropriate kinetic constraints the walkers can transform the chemical

free energy in the surface sites into directional motion, and can do ordered work against

an external load force. This shows that multivalent random walkers are a new type of

molecular motor, useful for directional transport in nanoscale systems.

We model the motion of multivalent random walkers as a continuous-time discrete-

state Markov process. States in the process correspond to the chemical state of the legs

iv

and surface sites, and transitions represent discrete chemical changes of legs binding to,

unbinding from, and modifying the surface sites. The Markov property holds because we

let the mechanical motion of the body and unattached legs come to equilibrium in between

successive chemical steps, thus the transitions depend only on the current chemical state of

the surface sites and attached legs. This coarse-grained model of walker motion allows us

to use both equilibrium and non-equilibrium Markov chain Monte Carlo simulation tech-

niques. The Metropolis-Hastings algorithm approximates the motion of a walker’s body

and legs at a mechanical equilibrium, while the kinetic Monte Carlo algorithm simulates

the transient chemical dynamics of the walker stepping across the surface sites. Using

these numerical techniques, we find that MVRWs move superdiffusively in the direction

of unmodified substrate sites when there is a residence time bias between modified and un-

modified sites. This superdiffusive motion persists when opposed by external load forces,

showing that multivalent random walkers are molecular motors that can transform chemi-

cal free energy into ordered mechanical work.

To produce these results we devised a distributed object-oriented framework for par-

allel simulation and analysis of the MVRW model. We use an object-relational mapping

to persistently maintain all simulation-related objects as tuples in a relational database.

We present a new object-relational mapping technique called the natural entity framework

which disambiguates the semantics of object identity and uniqueness in the relational and

object-oriented programming models. Using the natural entity framework we are able

to guarantee the uniqueness of mappings between data stored as objects in the relational

database and external data stored in non-transactionally-secured HDF5 data files.

v

Contents

Acknowledgments iii

Abstract iv

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Molecular spiders . 2

1.2 Molecular motors and nanoscale transport 4

1.3 The multivalent random walker model 5

1.4 Kinetic Monte Carlo simulations . 7

1.5 Multivalent random walkers are molecular motors 8

1.6 Simulation of MVRW systems . 10

1.7 Dissertation overview . 12

1.7.1 Part I: The multivalent random walker model 12

1.7.2 Part II: The multivalent random walker simulation framework . . 13

1.7.3 Part III: Conclusions . 14

I The Multivalent Random Walker Model: Simulation and Results 15

2 Molecular Spiders 16

2.1 Chemical kinetics and enzymatically controlled reactions 16

2.1.1 Catalysis . 19

2.2 DNA chemistry . 20

vi

Contents

2.3 Molecular spiders . 22

2.4 Spiders with DNA tile bodies . 23

2.5 Spider environments . 24

2.6 Limitations of experimental observations 26

3 The Multivalent Random Walker Model 28

3.1 Modeling chemical reaction systems . 29

3.1.1 Stochastic chemical kinetics . 31

3.2 The environment . 32

3.3 Walkers . 33

3.3.1 Walker body shapes . 33

3.3.2 Walker parameters . 34

3.3.3 Walker position is defined by a rigid body transform 35

3.3.4 Walker state in the Markov process 35

3.4 State transitions . 36

3.4.1 General leg chemistries . 36

3.4.2 Transition rates and chemical kinetics 37

3.5 Body position distribution . 38

3.5.1 The walker body position as a Boltzmann distribution 38

3.5.2 The energy of the walker body position 39

3.6 Leg–site interactions . 41

3.6.1 Modeling reaction limited leg binding 42

3.6.2 The set of feasible sites . 45

3.7 Effect of external load forces . 45

3.8 The state space of multivalent random walker systems 48

vii

Contents

4 Kinetic Monte Carlo Simulations 51

4.1 Simulation of continuous-time Markov processes 52

4.1.1 The generalized kinetic Monte Carlo method 52

4.1.2 Efficiency of KMC methods . 55

4.2 Simulation of point-bodied walkers . 56

4.2.1 State representation . 57

4.2.2 Feasible body positions . 57

4.2.3 Feasible sites . 59

4.3 Lattice surfaces . 60

4.3.1 Regular lattices . 60

4.3.2 Leg configurations . 61

4.3.3 Feasible configurations . 61

4.3.4 Transformational invariance of coordinates 62

4.3.5 Canonical configurations . 64

4.3.6 Unique canonical configurations 66

4.4 KMC simulation of point-bodied spiders 67

4.4.1 The canonical mapping determines the attachment rates 68

4.4.2 Possible transitions . 69

4.4.3 KMC step . 70

4.4.4 Precomputation of configurations and transition rates 71

5 Metropolis Sampling and the Equilibrium Body Position 73

5.1 The Metropolis-Hastings algorithm . 75

5.2 Metropolis-Hastings implementation . 75

5.2.1 Candidate distribution . 76

5.2.2 Burn-in . 77

viii

Contents

5.2.3 Thinning . 78

5.2.4 MH parameters . 78

6 Results: Multivalent Random Walkers Move Superdiffusively Along Tracks 79

6.1 Measuring the motion of multivalent random walkers 81

6.1.1 Mean squared displacement . 82

6.1.2 Number of sites cleaved . 83

6.1.3 First passage time . 83

6.2 Walkers move superdiffusively . 84

6.3 Walkers do work against a load . 87

6.3.1 Experimental setup . 88

6.4 Peak work . 92

6.5 Dissociation . 92

6.6 Effect of variation of number of legs and leg length 94

6.7 Sensitivity to kinetic parameters . 99

6.8 Effect of forces on dissociation reactions 100

7 Multivalent Random Walkers are Molecular Motors 104

7.1 Mechanism of superdiffusive motion . 106

7.1.1 The residence time bias . 107

7.1.2 Directional bias at the boundary 108

7.1.3 The boundary and diffusive metastates 110

7.2 Brownian motors and biased transport in the MVRW model 115

7.3 Natural molecular motors . 116

7.3.1 Kinesin structure and motion . 117

7.3.2 MVRWs are a fundamentally different kind of motor 117

ix

Contents

II The Multivalent Random Walker Model Simulation Architecture 121

8 Simulation Architecture 122

8.1 Large numerical data storage . 123

8.1.1 Storage options for numerical arrays 124

8.1.2 Access speeds for large data sets 126

8.2 Random number generation . 128

8.2.1 Leapfrogging for parallel random number generation 129

9 Object Relational Mapping and The Natural Entity Framework 131

9.1 Introduction . 131

9.2 Background . 135

9.2.1 Relational model . 135

9.2.2 Object model . 136

9.2.3 Object-relational mapping . 137

9.3 Object identity and uniqueness . 138

9.3.1 Identity in the natural entity framework 139

9.4 Management of persistent states and concurrency 140

9.4.1 Transactions . 141

9.4.2 Object states . 141

9.5 Object creation . 143

9.5.1 Identity map . 146

9.5.2 Initialization . 147

9.5.3 Comparison with other ORMs 148

9.6 Mapping natural entity inheritance hierarchies 148

9.6.1 Inheritance mapping strategies 149

x

Contents

9.6.2 Natural keys and inheritance . 151

9.6.3 Type as a natural key attribute 152

9.7 Conclusion . 153

III Perspective and Conclusion 155

10 Executable Biology 156

11 Conclusion 160

Glossary of Symbols 164

References 165

xi

List of Figures

1.1 A multivalent random walker . 2

1.2 Abstract molecular spider diagram . 3

1.3 Abstract molecular spider walking . 4

1.4 A multivalent random walker . 6

1.5 A MVRW simulation example . 9

2.1 Reaction energy plot . 18

2.2 A deoxyribozyme . 21

2.3 Streptavidin molecular spider . 22

2.4 Segmented molecular spider . 24

2.5 Dextran matrix molecular spider environment 24

2.6 DNA origami environments . 25

3.1 Multivalent random walker body types 33

3.2 Rigid body transforms and walker position 35

3.3 Feasible body positions . 39

3.4 The feasibility of leg–site binding . 44

3.5 Effect of forces on B . 47

3.6 Multivalent random walker state space structure 50

4.1 Graphical description of KMC algorithm 53

4.2 Feasible body positions are the intersection of discs 58

4.3 Site feasibility can be tested using the intersection of discs 60

4.4 Polyomino canonical representations 63

4.5 Canonical mapping for leg configurations 64

4.6 Canonical site enumeration . 66

xii

List of Figures

4.7 Unique canonical configuration mapping 67

4.8 Kinetic Monte Carlo transition rates for MVRW simulation 71

5.1 Metropolis-Hastings algorithm . 74

6.1 A snapshot of a MVRW simulation . 80

6.2
〈
‖p(t)‖2

〉
under zero load . 84

6.3 N(t) under zero load . 85

6.4
〈
Fpt(d)

〉
under zero load . 87

6.5
〈
‖p(t)‖2

〉
under opposing force . 90

6.6 〈∆E(t)〉 under opposing force . 91

6.7 Peak work . 93

6.8 Variation of k . 97

6.9 Variation of ` . 98

6.10 Variation of k+
S . 101

6.11 Variation of k−S . 102

6.12 Variation of k−P . 103

7.1 A residence time bias leads to a directional bias in walker motion 109

7.2 The boundary and diffusive metastates in 1D 110

7.3 The emergence of the boundary . 111

7.4 The boundary and diffusive metastates under force 112

7.5 Typical trace of a walker through B and D metastates. 113

8.1 Large data storage read/write speeds 127

9.1 Persistent object states . 143

9.2 Inheritance mapping in the natural entity framework 150

xiii

List of Tables

4.1 Point-bodied MVRW simulation parameters 68

4.2 Point-bodied MVRW simulation transition rates 69

5.1 Metropolis-Hastings parameters . 78

6.1 Model parameters used for simulations. 80

xiv

Chapter 1
Introduction

Nature at the nanoscale is different from the familiar macroscopic experience in many

ways, the most fundamental of which is the stochastic character of motion and events. At

this scale, objects have such tiny mass that continual bombardment by other molecules ef-

fectively randomizes momentum, leading to slow, uncontrolled diffusive motion. Without

a source of energy, any system will eventually come to thermodynamic equilibrium, after

which it loses all capacity to process material or information in useful ways. Motion does

not cease at equilibrium, only net motion does. The probability of any action is exactly

balanced by its opposite, a property called detailed balance.

For living systems, equilibrium is death. Cells are the most sophisticated molecular

machines known to science, and they need to transport materials and information in di-

rected, purposeful, and prescriptive ways requiring the expenditure of energy. A molecular

motor is a nanoscale device that can transform chemical free energy into directed motion

and mechanical work—it produces order from disorder. Cells use molecular motors to

control internal structure [50] and regulate internal distribution of materials and informa-

tion [62]. A class of natural cellular motors called translational molecular motors move

directionally on oriented 1D tracks [122]. These natural molecular motors have evolved to

be incredibly efficient, making them highly specialized for their particular cellular environ-

ment. Adapting these motors to move over arbitrary tracks and to use arbitrary chemical

substrates as fuel without fundamentally altering their functionality or efficiency is not

feasible, as natural molecular motors rely on complex, non-local kinetic coupling between

their walking heads to coordinate their rigid hand-over-hand walking gait [91, 120].

In this work we investigate simpler mechanisms by which a translational molecular

motor can be constructed. We show it is possible to generate directed motion and me-

chanical work from the random thermal noise without the sophisticated and specialized

conformational coupling employed by natural motors. We introduce the multivalent ran-

1

Chapter 1. Introduction

unattached leg

attached product attached substrate

walker body substrate

product
�

Figure 1.1: A multivalent random walker (MVRW) has a rigid body and k flexible legs of length
`. A leg can attach to and detach from fixed chemical sites on a surface that are within distance `
from the body. The enzymatic action of a leg irreversibly transforms a substrate site into a product,
changing the subsequent binding kinetics for that site. As the legs attach and detach from sites, the
walker moves over the surface.

dom walker (MVRW) model, which describes the motion of walkers with a rigid, inert

body and several flexible enzymatic legs (Figure 1.1). The legs walk over a surface of

immobile chemical binding sites, modifying the surface as they move. Unlike cellular

molecular motors, MVRWs do not rely on oriented tracks, rigid walking gaits, chemo-

mechanical coupling, or coordinated conformational changes. The legs are chemically

and conformationally uncoupled, other than the passive constraint imposed by the connec-

tion to a common body. Yet, under appropriate kinetic conditions, these walkers can be

made to move directionally and processively, even in opposition to a force. By modeling

and understanding these simple walker systems, we learn which chemical and mechani-

cal properties of walker-based motors are sufficient for superdiffusive motion, and which

properties are not necessary.

1.1 Molecular spiders

The MVRW model is inspired by the chemical and mechanical features of a type of syn-

thetic DNA-based molecular walker, called a molecular spider [98]. A molecular spider

2

Chapter 1. Introduction

surface

deoxyribozyme foot

substrate DNA
product DNA

streptavidin body

binding
cleavage

flexible tether Figure 1.2: A molecular spider
moves over a surface of DNA sub-
strates by binding and enzymati-
cally cleaving them, leaving be-
hind shorter product strands. Be-
cause the lower part of the leg
is complementary to the cleaved
product sites, it can still bind and
unbind those sites but at a differ-
ent rate.

has a small rigid body with several binding sites for flexible, enzymatic legs (Figure 1.2).

The legs are deoxyribozyme phosphodiesterases—enzymatic sequences of single-stranded

DNA that can bind to and cleave complementary single-stranded DNA sequences. A

molecular spider moves over a surface coated with complementary DNA substrates, cleav-

ing them and leaving behind shorter product strands (Figure 1.3). As a spider moves, it

leaves behind a path of cleaved sites that have been irreversibly modified. Subsequently,

legs can reversibly bind to product sites, but at different rates than for substrate sites. Thus,

the cleaved sites a spider leaves behind affect its future actions and the actions of other spi-

ders that encounter these tracks. The full details of the chemical design and properties of

molecular spiders and their environments are discussed in detail in Section 2.3.

Molecular spiders allow prescriptive (i.e., programmable) control over molecular mo-

tion in nanoscale systems. In recent experiments researchers observed individual molec-

ular spiders following a self-assembled track of DNA substrates from a start site to a

finish site [82]. The track in these experiments was algorithmically designed using a DNA

self-assembly procedure called DNA origami [109]. Using these methods, a mathemat-

ical description of a track can be compiled to a set of DNA sequences that will sponta-

neously self-assemble into a chemical system that allows controlled, directed transport of

information-carrying molecular cargo in an environment that is otherwise dominated by

uncontrolled Brownian motion. This algorithmic control over the motion of individual

molecules is a powerful tool that can be used for nanoscale assembly and computation,

3

Chapter 1. Introduction

bound leg substrate product (cleaved)

unbound leg

time

Figure 1.3: A molecular spider moves over a surface of fixed chemical substrate sites as the legs
bind to, modify, and unbind from the sites.

and inspires our approach to the simulation and analysis of spider-like walker systems.

1.2 Molecular motors and nanoscale transport

Potential nanoscale applications for this type of algorithmic control of molecular motion

are emerging from several directions as the design of synthetic walkers and manipula-

tion of natural walkers become more sophisticated [2]. Applications are often inspired

by observing how cellular systems utilize natural protein-based translational molecular

motors such as kinesin, dynein, and myosin [72, 122] for fundamentally important cel-

lular functions. Just as kinesin and other cellular motors are used to transport signaling

molecules in neurons [50,63], synthetic molecular motors can act as molecular cargo shut-

tles [5,32], cooperatively distributing materials over nanoscale transport networks [21]. If

the cargo deliveries are information-carrying molecules, these networks can be thought

of as controlled molecular communication systems [34], or even as molecular computa-

tional systems [89,90]. Furthermore, the ability of the molecular motors to do mechanical

work by moving in opposition to a force allows them to mechanically manipulate bun-

dles of nanowires [58], similar to the natural function of kinesin in mechanical division of

the cell during mitosis [38, 128]. When these force-generating motors are hierarchically

arranged in a cooperative manner, their collective actions can generate forces that move

large internal cellular structures [59] and, on an even larger scale, are the force-generating

mechanisms of muscle contractions [31, 65].

4

Chapter 1. Introduction

Despite the increasing understanding of the biological importance and ubiquitous na-

ture of molecular motors, there is not as yet a definitive understanding of exactly which

properties are necessary for a molecular device to function as a translational molecular

motor. While there are general thermodynamic and kinetic design principles and con-

straints [7, 69], there is no single encompassing theory or design that can definitively

enumerate necessary and sufficient conditions for designing synthetic walkers that move

directionally, processively (i.e., without detachment), and in opposition to a force. In

the absence of a general theory, progress in the theoretical design and understanding of

molecular motor systems proceeds through the analytic and numerical investigation of

models for specific motor designs. Molecular spiders are a particularly interesting type

of molecular walker, as they lack many of the properties that are essential to the func-

tionality of other classes of molecular motors. Unlike kinesin and other natural motors,

spiders move over arbitrarily arranged 2D tracks, and are able to do so without inherent

orientation, structural asymmetry, or chemomechanical coupling between the legs. The

gaits of a molecular walker are uncoordinated and acyclic, yet the irreversible modifica-

tion of surface sites causes an emergent asymmetry in local substrate concentrations that is

able to bias the motion of spiders, allowing them to move directionally along prescriptive

landscapes. One of the most useful properties of molecular spiders is this structural and

chemical simplicity, as it means that the conceptual functionality of a molecular spider is

independent of the specific chemical composition of the leg and sites. Molecular spiders

are by their nature adaptable to different chemistries, unlike the highly specialized natural

walking motors.

1.3 The multivalent random walker model

Our multivalent random walker (MVRW) model is a stochastic description of the mo-

tion of spiders and spider-like walkers, which uses abstraction to take advantage of the

structural simplicity and chemical generality of spider systems. A multivalent random

5

Chapter 1. Introduction

walker is two-dimensional (2D) with a rigid body and k flexibly tethered legs of length `.

chemical sites

body
�

feet

Figure 1.4: A multivalent random
walker (MVRW). Differently col-
ored chemical sites represent differ-
ent species.

We abstract away the specific DNA chemistry of

the spiders to arrive at a general kinetic description

whereby a leg can bind to and modify arbitrary chem-

ical species arranged as paths and tracks over a 2D

landscape. Each leg is either attached to a site or

unattached. A leg can modify an attached site and

subsequently detach, leaving behind a different chem-

ical species.

Mathematically, the MVRW takes the form of

a continuous-time, discrete-space Markov process,

where each state represents a discrete chemical state

of the chemical sites and the walker legs. Transitions

in the model correspond to chemical reactions of the

legs binding to, unbinding from, or modifying the sur-

face sites. For both biophysical and computational reasons we assume that all other non-

chemical (i.e., mechanical) processes come to an equilibrium quickly after each chemical

step. From a biophysical viewpoint, the assumption of mechanical equilibrium is plausible

because the molecular vibrations and physical bombardment that control the mechanical

state of a walker system occur on much faster timescales than the relatively slow chemical

reactions. Most molecular motors are best described as near mechanical equilibrium at all

times, even though they must operate far from chemical equilibrium to perform ordered

work [7]. From a computation viewpoint, equilibrium assumptions are desirable because

they greatly simplify the mathematical and algorithmic description of walker motion. The

unique mechanical equilibrium positions of the body and unattached legs depend only on

the discrete chemical configuration of the attached legs and local chemical sites, and not

on any previous chemical states. Thus, the body’s continuously parameterized location is

not part of the chemical state, so the process state space remains discrete, and the Markov

6

Chapter 1. Introduction

property holds. Furthermore, as we show in Section 4.3, the translational invariance of the

mechanical equilibrium can be exploited to allow precomputation of transition rates for

every possible chemical state when walkers move over surfaces with sites arranged on a

regular lattice.

1.4 Kinetic Monte Carlo simulations

Designing a model for a physical system requires the choice of a particular coarse-graining

that defines the mapping of the true physical states of the system into a smaller set of states

corresponding to the physical properties of interest for predicting the behavior of the sys-

tem. The particular coarse-graining used in the MVRW model was chosen partly for the

scientific reason that it provides the appropriate level of detail to observe the individual

chemical reactions that drive the motion of the system. But, an equally important con-

sideration in choosing a coarse-graining is the computational requirements of analyzing

the model. The advantage of the MVRW model is that it takes the form of a continuous-

time Markov process (CTMP)—a ubiquitous structure in computer science and statistical

physics.

A discrete-state, continuous-time Markov Process is defined over a countable state

space Ω. The process X = {X(t)}t∈�+ is a time-indexed collection of random variables.

Each random variable X(t) is a probability distribution over Ω at time t. The process X

must also obey the Markov property, which for continuous-time systems implies that there

is a transition rate function R : Ω × Ω → �+, such that a transition from state u to state

v occurs with constant probability R(u, v) per unit time. R is invariant in time, so we can

estimate X(t) given only X(0) and R. One way to do this is to approximate X(t) with an

ensemble average of many independent realizations of the process. Each realization x is a

function from �+ to Ω, and for each t, x(t) is a sampling from the distribution of X(t). If

we collect many independent realizations or samples x1(t), . . . , xn(t) we can estimate the

7

Chapter 1. Introduction

distribution of the random variable X(t) for any time t.

We generate a realization x(t) of the process by starting with the initial value x(0)

and iteratively using the transition probability rate function R to select a next state and a

time until that state transition occurs. We take advantage of the convenient property that

the time until the next transition will be exponentially distributed with rate equal to the

sum of the rates of all the possible transitions. By repeatedly selecting a next state and

incremented time, we can generate a sample of the process up to any desired time, tmax.

Repeating this procedure from x(0) with a new random seed allows us to generate inde-

pendent realizations which can be used to estimate various properties of interest about the

CTMP X. Collecting runs for an ensemble estimate of X is highly parallelizable, as each

run is totally independent. This simulation and sampling procedure is called the kinetic

Monte Carlo (KMC) method, and was initially developed for simulation of CTMPs in

statistical physics models such as the Ising model [87], but is now commonly used to sim-

ulate CTMPs in many other fields, including in Gillespie’s model of stochastic chemical

kinetics [49]. We use the translational invariance of the model to allow precomputation of

transition rates based on the finite number of feasible leg gaits for a given spider. Chapter 4

describes the KMC algorithm and other CTMP simulation techniques in detail, along with

considerations of the efficiency of such methods.

1.5 Multivalent random walkers are molecular motors

Chapter 6 summarizes the major results of our KMC-based numerical simulation of the

MVRW model. We use statistical measures of walker motion that are appropriate for an-

alyzing the motion of non-ergodic systems, such as MVRWs. Details of measurements

are given in Section 6.1. We investigate the motion of walkers along finite-width tracks of

substrates as shown in Figure 1.5. Our results show that MVRWs are able to move sup-

erdiffusively, directionally, and processively along molecular substrate tracks when there

8

Chapter 1. Introduction

x̂(nm)

ŷ(nm)

f = 1.0pN

0

start site

10 20
0

10

Figure 1.5: A MVRW simulation of a walker moving over a semi-infinite track. The walker starts
at the origin and must move to the right as there are no chemical sites to the left. A conservative
load force applied to the walker body opposes this motion. Walkers can move superdiffusively
against this force, using the chemical free energy in surface sites to bias their motion and generate
mechanical work.

is a residence time bias between modified and unmodified sites. If leg-product bindings

are much longer lived than leg-substrate bindings, the collective constraints imposed by

the limited leg lengths cause a directional bias towards the local substrate concentration

gradient. In Section 7.1 we explain how this bias, combined with emergent anisotropy

in substrate distribution at the boundary between visited and unvisited sites and the irre-

versibly of substrate catalysis, leads to the prolonged superdiffusive behavior observed in

the MVRW model.

Furthermore, we show that the superdiffusive motion persists even when opposed by a

conservative load force. By modeling the mechanical motion of spiders at equilibrium, we

can directly model the effect of a load force on the walker body and unattached legs. This

allows us to directly calculate the mechanical work done by the walker, demonstrating that

MVRWs are molecular motors, capable of sustained superdiffusive and directional motion

even under load.

9

Chapter 1. Introduction

1.6 Simulation of MVRW systems

We have developed an object-oriented distributed simulation and analysis framework to

take advantage of the ensemble-level parallelization opportunities of KMC simulations.

Relying on distributed resources for simulation and analysis greatly complicates the man-

agement of simulation data and program state. We rely on a relational database and the

features of its transactional system to protect against incompatible concurrent access pat-

terns to simulation data. To make the relational data easy to work with we use object-

relational mapping to map persistent objects in an object-oriented program to tuples in a

relational database. Our MVRW simulation framework is written in Python and uses the

SQLAlchemy object-relational mapping package. The simulation framework is summa-

rized in Chapter 8.

Computational efficiency. Because the MVRW model is a CTMP, we can use the KMC

algorithm as the basis for the simulation of independent realizations of MVRW traces

under many different parameter settings. The KMC algorithm and its efficiency, as well

as other techniques for analyzing CTMPs, are discussed in detail in Chapter 4. Unlike

other CTMP models of chemical reactions on the molecular scale, such as the Gillespie

model [49], our MVRW system does not possess a regular structure of state transitions

that can be exploited for efficiency. Thus, our KMC algorithm will be specialized for

the MVRW system and cannot take advantage of the many recent improvements on the

Gillespie KMC simulation algorithm (Section 4.1.2). Systems like the Ising model have

spatial extent, allowing many essentially independent transitions in a single KMC simula-

tion trace to be parallelized by blocking regions of system space [17]. However, a similar

parallelization opportunity is not present in MVRW simulations because chemical reac-

tions only occur in the region directly adjacent to the walker. In any case, the statistical

analysis of the MVRW model requires an ensemble of independent sample traces, and the

natural ensemble-level parallelization leads to efficient linear scaling, at least for moder-

10

Chapter 1. Introduction

ately sized simulations and computational resources.

The natural entity object-relational mapping framework. In object-relational mapping

(ORM), objects are stored persistently as tuples in a relational database, but manipulated

as in-memory objects in an object-oriented (OO) language. There are fundamental se-

mantic differences between OO data models and relational data models that make this

mapping difficult to implement consistently and correctly. The concepts of object identity

and uniqueness are a particular concern for MVRW simulations, but they are represented

differently in the two data models. Relational databases use a value-based concept of iden-

tity for tuples, while OO languages treat object identity as explicitly independent of value.

Our concern for the MVRW simulations is that this discrepancy can result in concurrent

processes representing the same conceptual object in more than one object or tuple, lead-

ing to duplication or loss of data. To resolve the ambiguities of persistent object identities

in ORM, we introduce the natural entity framework [92], which is described in Chapter 9.

This tool works on top of the SQLAlchemy ORM, defining a new NaturalEntity base

type for persistent objects that allows the OO environment to directly enforce value-based

object uniqueness.

Data management. In Section 8.1 we discuss storage and access times for large computa-

tional datasets. Ultimately, we found that large numerical datasets are best kept outside of

the relational database, as the overhead associated with database access is too expensive

for practical use. To meet our need for large numerical array storage, we use the HDF5

hierarchical data format to store simulation state and measurement data for MVRW sim-

ulation runs. However, the database and the object-relational mapping remain essential

for maintaining the referential consistency for these external datasets because the HDF5

library lacks any built-in concurrency protection or transactional semantics.

11

Chapter 1. Introduction

Random number generation. Monte Carlo simulations are only as good as the random

number generators they depend on [39]. In single-threaded contexts, many good pseudo-

random number generators exist that come with mathematical guarantees regarding cor-

relation and other statistical measures of randomness for the single-threaded stream of

random numbers generated [71, 84]. However, random number generation becomes more

complicated in a parallel context. In our parallel KMC and Metropolis-Hastings simula-

tions, we maintain these mathematical guarantees by using the leapfrogging method [11]

to divide a single random number generator stream into an arbitrary number of parallel

streams, giving each simulation an independent slice of random numbers from a single

master stream (Section 8.2). In this way, each individual simulation from the ensemble of

N can be executed concurrently in arbitrary order, yet the entire set of simulations remains

exactly equivalent to a single process iteratively computing a single step for each of the N

simulations in turn using a single master stream.

1.7 Dissertation overview

This dissertation comprises a comprehensive mathematical and computational analysis of

multivalent random walker motion. In the process we have made contributions from the

chemical and biophysical modeling level to the software engineering level. Each of these

contributions builds up to the overall result, but for clarity we have divided the material into

two main parts. The first part covers the modeling, simulation, and biophysical aspects of

the model; the second covers the software engineering aspects. A shorter third part collects

concluding thoughts and future work.

1.7.1 Part I: The multivalent random walker model

In our first publication [93] we addressed the MVRW model as it relates to molecular spi-

ders. This publication introduces a simplified version of MVRW model which is given

12

Chapter 1. Introduction

in expanded detail in Chapter 3, and discusses the KMC simulation of spiders and the

use of Metropolis-Hastings sampling for equilibrium estimates. We expand and elaborate

on that KMC material in Chapter 4, and the Metropolis-Hastings sampling material in

Chapter 5. Our method of using the translational invariance of the equilibrium body dis-

tribution to pre-compute transition rates for walkers moving over regular lattices is given

in Section 4.2, and is the focus of a document in preparation [95].

Our central biophysical result is that multivalent random walkers are molecular mo-

tors, capable of transforming chemical free energy into biased superdiffusive motion [94].

In support of this hypothesis we present the simulation results and numerical analysis in

Chapter 6. Chapter 7 explains how leg kinetics lead to an effective residence time bias

between unvisited substrates and visited products. An emergent anisotropy in substrate

concentrations allows this kinetic bias to break symmetry and generate an effective di-

rectional bias in the direction of unvisited sites (Section 7.1). This result has relevance

to our preliminary research into simple 1D spider models which revealed similar mech-

anisms of superdiffusive motion for both single spiders [112] and cooperative swarms of

spiders [113, 114].

1.7.2 Part II: The multivalent random walker simulation framework

In Part II, we address the complexities of distributed simulation and analysis of the MVRW

model. It is often difficult to write about simulation software because many interesting

ideas and methods are application-specific and not of general interest. Instead, we focus

on implementation concerns and design choices that are cross-cutting through all levels of

the simulation program structure and organization.

At a high level our simulation framework is an object-oriented distributed simulation

and analysis framework, which manages simulation data and objects concurrently using

object relational mapping (ORM) to store simulation objects persistently in a relational

database. Chapter 8 gives an overview of the simulation framework and the associated

13

Chapter 1. Introduction

concerns, including large data storage (Section 8.1), and parallel random number genera-

tion (Section 8.2).

In order to resolve the object identity and uniqueness ambiguities that arise in object-

relational mapping, we devised an ORM tool called the natural entity framework that is

particularly useful in managing simulation objects consistently and correctly given the

complexities of concurrent data access. Chapter 9 presents this framework based on our

previously published work [92].

1.7.3 Part III: Conclusions

To give perspective to these results, in Chapter 10 we present our outlook on the concepts

involved in computer simulation of chemical and biological systems. We make the case

that Markov process models like the MVRW model are particularly intriguing as they

represent a computational understanding of the chemical structure and mechanisms of

the system. Through the KMC simulation technique, the computational model essentially

executes an abstract stochastic experiment. In our case this means that at the same time

we are running simulations to calculate abstract statistical measurements, we are actually

step-by-step following a virtual walker along its unique random trajectory.

14

Part I

The Multivalent Random Walker Model:
Simulation and Results

15

Chapter 2
Molecular Spiders

The concept of a molecular spider introduced in Section 1.1 is inspired by a need for sim-

ple synthetic molecules that follow prescriptive tracks on nanoscale landscapes, and hence

provide a means of controlled locomotion for artificial nanoscale systems. Recent exper-

iments [82] have demonstrated that molecular spiders follow short paths, but it remains

nearly impossible to observe spiders on the space and time scales necessary to discern

the individual chemical and mechanical actions of the legs and body (Section 2.6). To

understand how these individual stochastic reactions lead to the overall motion of spiders

or other multivalent random walkers, we must rely on mathematical models and com-

puter simulations that derive from a microscopic understanding of the chemistry of the

molecular spiders and the associated kinetics. This chapter reviews the relevant biological

and chemical background necessary to understand the structural and kinetic properties of

molecular spiders and how the multivalent random walker model abstracts these details to

arrive at the appropriate coarse-graining of walker dynamics.

2.1 Chemical kinetics and enzymatically controlled reac-
tions

Chemical reactions describe the transformation of matter from one chemical species to

another, and are represented by reaction schemes, such as

A + B −→ C + D. (2.1)

In this familiar convention, reactants A and B are transformed into products C and D.

A reaction proceeds at a rate proportional to the concentrations of the reactants. Due

to conservation of mass, the rate of increase in the products is exactly equal to the rate

of decrease of the reactants. A reaction scheme is a high-level representation of a very

16

Chapter 2. Molecular Spiders

detailed molecular process, and need not correspond to the actual sequence of chemical

events that take place to produce the net reaction effect. In order to understand how the

kinetics of a reaction are related to concentrations of the product species, we need to

represent a reaction in terms of elementary reactions, which correspond directly to the

making and breaking of chemical bonds at the molecular level.

An elementary reaction is either unimolecular, if it involves a single reactant species,

or bimolecular, if it involves two species. While reaction schemes allow forms with more

than two reactants, such reactions are in reality carried out by a sequence of elementary

uni- and bimolecular reactions [57]. Unimolecular reactions occur when a molecule spon-

taneously breaks or rearranges internal chemical bonds. A bimolecular reaction occurs

when two reactants collide with enough energy to react by breaking or forming bonds. The

difference in the free energy of the reactant species and the product species determines if

the reaction will occur spontaneously. In solution chemistry, this difference is given by the

Gibbs free energy, ∆G, which quantifies the change in free energy between reactants and

products under constant temperature and pressure, while correcting for changes in entropy

caused by the reaction. If

∆G = ∆H − T∆S = Hproducts − Hreactants − T∆S < 0, (2.2)

the reaction will proceed towards the products. In Equation 2.2, ∆H is the change in

enthalpy, which at constant pressure is the change in internal energy when the reactants

are transformed into the products; and ∆S is the change in entropy, which is a function of

the concentrations of the various species.

While ∆G determines the direction of a reaction, it does not determine how fast it will

happen. The reaction rate is determined by the energy necessary to make and break inter-

nal chemical bonds as atoms are rearranged through a series of higher-energy intermediate

states. At the atomic level a chemical reaction is a continuously parameterized transfor-

mation of the 3D atomic arrangement. Each arrangement x corresponds to a particular

energy E(x). One way to visualize a reaction is as a random walk in the high-dimensional

17

Chapter 2. Molecular Spiders

reaction coordinate

G
ib

bs
 fr

ee
 e

ne
rg

y

reactants

products

transition state

∆G < 0

E�a > 0

Ea > 0 Figure 2.1: A chemical reac-
tion is parameterized by a reaction
coordinate, which represents the
lowest energy path from reactants
to products. If ∆G < 0, the reac-
tion proceeds spontaneously from
reactants to products. The acti-
vation energy Ea controls the rate
at which the reaction proceeds, as
reactants must gain at least this
much energy to react. A catalyst
lowers the activation energy to E?

a
(shown in red), hence speeding up
both the forward and reverse reac-
tions.

space of atomic positions. Any continuous path of atomic arrangements leading from re-

actants to products is a reaction pathway. Most microscopic models of kinetics make the

transition state hypothesis [57], which assumes that the reaction pathway with the smallest

energy maximum is dominant. The position along this parameterized pathway is called the

reaction coordinate. Figure 2.1 shows a typical Gibbs free energy profile parameterized

by the reaction coordinate. The transition state is the state at the energy maximum. The

difference between the reactants’ energies and the transition state energy is called the ac-

tivation energy, Ea, because any reactants must pass over this energy barrier before they

can assume the lower-energy product conformation. The dependence of the reaction rate k

on the activation energy Ea and absolute temperature T is given by the Arrhenius equation,

k ∝ e−Ea/kBT . (2.3)

Here kB is Boltzmann’s constant, and the ratio of Ea to kBT gives the ratio of the activation

energy to the background thermal energy. The rate of the reaction becomes exponentially

small as Ea increases. This can make reactions very slow when the activation barrier is

18

Chapter 2. Molecular Spiders

much higher than kBT .

2.1.1 Catalysis

A catalyst is a chemical that increases the rate of a reaction by enabling a new reaction

pathway with a lower-energy transition state. Figure 2.1 shows the effect of a catalyst on a

reaction, lowering the activation energy from Ea to E?
a . Because of microscopic reversibil-

ity, a catalyst that lowers the activation energy of the forward reaction from reactants to

products also lowers the activation energy for the reverse reaction pathway from product to

reactants. However, if ∆G/kBT � 0, the rate of reverse reaction can be negligibly small,

making the catalyzed transformation essentially irreversible.

In a biological context a catalyst is called an enzyme; most known enzymes are pro-

teins. However, certain single-stranded DNA sequences have been shown to function as

catalysts [19,22]. Such a DNA sequence is called a deoxyribozyme to emphasize its enzy-

matic function. In typical biological settings the reactants that an enzyme helps to convert

to products are called substrates. Consider the unimolecular reaction in which a substrate

S is converted into two products P1 and P2:

E + S
k+−→←−
k−

ES
kcat−−→ E + P1 + P2. (2.4)

An enzyme E catalyzes this reaction by reversibly binding to S to form an enzyme-

substrate complex ES. The rates k+ and k− control how fast the enzyme binds to and

unbinds from the substrate. The ES complex can also undergo a catalyzed reaction to form

products P1 and P2. There are in fact several elementary reaction steps in this process: the

actual catalysis, and the subsequent unbinding of both products. For simplicity we rep-

resent these combined steps by a single step with rate kcat. While catalysis is in theory

reversible, allowing E to bind P1 and P2 and transform back into an ES complex, this reac-

tion becomes negligible when ∆G/kBT � 0, which must be the case for a molecular motor

to prevent reverse motion [23]. This kinetic description, summarized in Equation 2.4, is

19

Chapter 2. Molecular Spiders

used to model the kinetics of the legs in a molecular spider. We revisit Equation 2.4 in the

context of modeling walker leg reactions in Section 3.4.

2.2 DNA chemistry

Of all biomolecules, DNA has been the most studied molecule for the design of computa-

tional chemical reaction networks, due to its predictability in Watson-Crick base pairing,

its intrinsic information storage ability, and its long-term stability at room temperature.

DNA has been used to design logic gates [116], game-playing automata [83, 117], finite

automata [12], combinatorial search algorithms [1], and other computational media [118].

Our previous work has also shown that DNA has the ability to act as an aptamer, rec-

ognizing and signaling the presence of other small molecules [53, 97]. The existent struc-

tural and computational DNA technology can potentially be combined with the perspective

motility of molecular spiders to create programmable sensing, computing, transport, and

communication in synthetic nanoscale systems.

A single strand of DNA is a polymer of individual units called nucleotides. Each

nucleotide consists of a phosphate, a deoxyribose sugar, and one of the four bases A, T, C,

or G. Polymerization attaches the nucleotides covalently to form a backbone of alternating

phosphates and sugars. Two single strands of DNA or two parts of the same strand can

bind to form a double strand by pairing bases according to the Watson-Crick rules (A ↔
T and C ↔ G). This base pairing process is called hybridization and occurs through

the formation of low-energy hydrogen bonds, which are individually much weaker than

the covalent bonds within a strand, but the effective binding strength is increased as the

number of paired bases (also known as the hybridization length) increases. Hybridization

and dissociation reactions allow the legs of molecular spiders to attach and detach from

substrate DNA, and the weak hydrogen bonds are easily made and broken ensuring the

legs can move and rebind quickly. More elaborate hybridization reactions also allow DNA

20

Chapter 2. Molecular Spiders

phosphodiesterase
core

substrate binding
regions

binds

cleaves

C

C

T
C
T
TG

T
CC
T

G
C GG

A
C
G

A
C

AA

A
G
T
G
A

T

A
A

G

G

G

A
G
A
A

A

T

T
C
A
C

rA

T
T
TA

k+

k−

kcatE+S E+P1 +P2ES

G

G

G

A
G
A
A

A

T

T
C
A
C

rA

T
T
T

C

C

T
C
T
TG

T
CC
T

G
C GG

A
C
G

A
C

AA

A
G
T
G
A

T

A
A
A

C

C

T
C
T
TG

T
CC
T

G
C GG

A
C
G

A
C

AA

A
G
T
G
A

T

A
A
A

G

G

G

A
G
A
A

A

T

T
C
A
C

rA

T
T
T

P1

P2

Figure 2.2: The foot of a molecular spider is an 8-17 deoxyribozyme (E) that binds reversibly with
a complementary oligonucleotide substrate (S). The enzymatic core of the deoxyribozyme can cat-
alyze the cleavage of the substrate backbone at a ribose impurity directly across from the enzymatic
core. This creates two product oligonucleotides (P1 and P2), which subsequently dissociate, leav-
ing the enzyme free to react again. A free enzyme remains complementary to the products, so they
can rebind, but not as strongly since they are shorter. For molecular spider systems P1 remains
attached to the surface and is frequently rebound by spider legs, while P2 is lost to solution and the
effective concentration of free P2 is assumed to be low enough that rebinding does not occur.

to form the 2D and 3D rigid structures [101] and these are used to create the substrate-

covered surfaces the spiders move across [82, 109].

The deoxyribozyme legs of a molecular spider catalyze the cleavage of oligonucleo-

tides—other short single-stranded DNA sequences [20]. Because they break the substrate

oligonucleotide backbone at a phosphate bond they are called phosphodiesterases. The

catalytic mechanism requires that the substrate have a substitution of a ribose sugar for

a deoxyribose along the backbone, allowing the desired cleavage site to be programmed

into the substrate sequence. The 8-17 phosphodiesterase deoxyribozyme acts as the legs

of the molecular spiders. Its kinetics are given by Equation 2.4, and shown graphically in

21

Chapter 2. Molecular Spiders

streptavidin body

biotin

spacer

deoxyribozyme

Figure 2.3: A molecular spider has a streptavidin body, which accepts up to four legs. Each
leg consists of a biotin which binds to streptavidin, followed by a flexible chain-like spacer and a
deoxyribozyme foot.

Figure 2.2.

2.3 Molecular spiders

The body of a molecular spider [98] is a tetrahedral protein, called streptavidin, with four

binding sites (Figure 2.3). The body acts solely as a rigid scaffold to bind the individual

legs together and has no chemical activity of its own. At the hip end of each leg is a

biotin—a small molecule that attaches irreversibly to one of the four binding sites on the

streptavidin body. The foot end of the leg is a deoxyribozyme, and is the only chemically

active part of the spider. The length of the leg can be varied by adding inert, flexible spacer

molecules. The deoxyribozyme binding and unbinding rates (k+ and k−) can be changed

to a limited extent by altering the length and sequence of the substrate recognition regions.

When a spider is released on a surface covered with immobilized oligonucleotide sub-

strates, the deoxyribozyme legs attach to, cleave, and detach from the substrates, according

to the kinetics shown in Figure 2.2. Upon cleavage and dissociation, only the lower prod-

uct P1 remains bound to the surface. The upper product is lost to solution where bulk

22

Chapter 2. Molecular Spiders

concentration is essentially 0, and we assume it has no further effect on the kinetics of

walker motion. There are five reactions controlling the chemical kinetics of a leg (L)

reversibly binding to surface-bound substrate (S) and product (P) sites:

L + S
k+

S−→←−
k−S

LS
kcat−−→ L + P

L + P
k+

P−→←−
k−P

LP

(2.5)

As the legs attach and detach, the entire spider structure moves over the surface in a

process controlled by the chemical reactions of the attached legs and the physical process

of the constrained diffusion of the body and unattached legs. As long as at least one leg of

the spider is attached to a chemical site on the surface, the spider will remain tethered to

the surface. If all the legs detach, the spider is free to float away in solution. Thereafter, it

may diffuse over the surface and rebind to other sites, or be washed away from the surface

by a flow designed to prevent rebinding.

2.4 Spiders with DNA tile bodies

Although the streptavidin-based spiders are the most experimentally studied structural va-

riety of molecular spiders, researchers at Arizona State University, Kyle Lund and Hao

Yan, have developed a more configurable and expandable scaffold for molecular spiders

using self-assembled DNA tiles [81]. Each tile has an attachment point for the leg, and the

tiles can be programmed to self-assemble into any polyomino [51] shape. We call these

types of spiders segmented spiders. Figure 2.4a shows the detailed 3D structure of a seg-

mented spider, and Figure 2.4b is our abstract representation of the same spider. Whereas

the streptavidin spiders have all the hip locations essentially at the same point, the seg-

mented spiders have bodies with spatial extent and hip locations are arranged throughout

the body. Segmented spiders may be able to achieve more directional bias in their motion,

23

Chapter 2. Molecular Spiders

3.4 nm

10.54 nm

(a) (b)

Figure 2.4: (a) A 3D structural image of a segmented molecular spider with 4 segments (Kyle
Lund, Arizona State) (b) An abstract representation of the same spider.

go
ld

 su
rf

ac
e

dextran

100 - 200 nm

substrates

molecular
spider

Figure 2.5: Pei et al. used SPR
to measure spider cleavage rates for
systems where multiple streptavidin
spiders move through a pseudo-3D,
forest-like environment of dextran-
bound substrates [98]. Substrates
are bound to streptavidin molecules
which in turn are bound to the dextran
strands at random junctions. This ex-
periment shows that individual spiders
on average cleave more than 3800 sub-
strates without dissociating—in other
words that they are processive.

since their asymmetry prevents them from rotating freely while multiple legs are attached.

Our MVRW model (Chapter 3) and simulation framework are designed to allow the sim-

ulation of segmented and other general 2D walker bodies, but further work is needed to

make these simulations efficient enough to admit results for these more complicated walk-

ers.

2.5 Spider environments

A molecular spider can step over substrate sites laid out either at random, or as prescrip-

tive tracks and paths. In the original spider experiments (Figure 2.5), substrates were

24

Chapter 2. Molecular Spiders

10.2 nm

2.72 nm

10 substrates

24
 su

bs
tra

te
s

substrates

start site

orientation control

control capture sites

primary capture sites

(b)(a)

Figure 2.6: (a) An addressable lattice of chemical sites can be built on a DNA origami scaffold.
The substrate spacing is 10.2 nm× 2.72 nm in a hexagonal lattice pattern. Due to the technological
constraints of DNA origami, these lattices are currently limited to 10×24 sites. (b) Lund et al. used
AFM to observe streptavidin spiders moving over the track in this DNA origami environment [82].
Walkers moved from the start site to the primary capture site without moving onto the control
capture site. This shows walkers move processively (i.e., without detachment), and they can follow
prescriptive paths and tracks. (This image is adapted from material provided by Kyle Lund, Arizona
State.)

displayed on a pseudo-3D matrix of dextran strands [98]. This experiment used surface

plasmon resonance (SPR) [61] to measure the mass decrease of this matrix as a swarm

of spiders moved through it, cleaving substrates and releasing product P2. The mass was

observed to decrease linearly, corresponding to the spider swarm consuming substrate at a

constant rate. The spiders consumed close to 100% of the available substrate, eventually

slowing their rate of consumption as substrate supplies were exhausted. Significantly, this

demonstrates that spiders are processive, (i.e., they have large turnover of substrates before

detaching), as each spider on average cleaved at least 3800 substrates without dissociating.

If, however, spiders are to be used for directional transport they require environments

with prescriptive paths and tracks, guiding the walker’s motion in useful ways. Lund et

al. [82] have created addressable 2D surface environments for molecular spiders (Fig-

ure 2.6a) using the DNA origami [109] self-assembly technique, where a long single-

stranded DNA sequence is folded using algorithmically designed sequences of DNA as

25

Chapter 2. Molecular Spiders

stable strands, creating a rectangular region with regularly spaced and individually ad-

dressable binding sites. Using atomic force microscopy (AFM) [16], spiders have been ob-

served following non-linear tracks of substrates over origami surfaces [82] (Figure 2.6b).

The size of the origami surfaces limits the length and complexity of the tracks; however,

nano-lithography [100] or other more sophisticated DNA self-assembly mechanisms may

be able to produce arbitrarily large and complex networks of paths for walkers to move on

and interact with each other.

2.6 Limitations of experimental observations

The typical size of a single-stranded DNA polymer is 2.2–2.6 nm wide, with a length of

0.33 nm per base. The streptavidin molecule in the body of a DNA walker is approximately

4.5 nm × 4.5 nm × 5.0 nm, and the spacing of substrates on a DNA origami surface is

10.2 nm×2.72 nm. Observing the individual chemical actions of the molecular spider legs

binding and unbinding would require sub-nanometer measurement precision.

When viewing light-emitting objects at very high resolutions, the fundamental limits

of diffraction come into play. An object like a nanometer-scale fluorophore emitting light

will appear as a blurry disk of light, called an Airy disk, which is well approximated by a

Gaussian. The limit of resolution in microscopy is defined by the ability of a microscope

to distinguish two adjacent Airy disks. The resolution distance for light of frequency λ

viewed through a lens with numerical aperture A is given by d = λ/2A. With typical

values of fluorophore emissions in the green part of the spectrum (λ ≈ 500 nm) and an

upper bound on practical aperture numbers around 1.5, this gives an effective resolution of

167 nm [110]—much too large for effectively tracking the individual actions of molecular

spiders. Super resolution techniques can use maximum likelihood techniques to estimate

the center of a point emitter to much higher accuracy [64]. These techniques have been

used to observe individual spiders moving over a random surface of substrate sites [82].

26

Chapter 2. Molecular Spiders

However, even super-resolution fluorescence microscopy has a spatio-temporal resolution

much coarser than the level of individual chemical reactions that the MVRW model de-

scribes. The same is true for atomic force microscopy (AFM). While AFM has very high

spatial resolution, it has extremely low temporal resolution, and has at present only yielded

very coarse time series data for spiders [82].

In the future, more sensitive microscopes and more sophisticated experimental tech-

niques may provide the type of resolution needed to discern the individual chemical actions

of molecular spiders. For the present, however, constraints on spatio-temporal resolution

for direct imaging of spider systems prevent us from observing spiders at the level nec-

essary to validate individual chemical aspects of a spider model. Hence, in this work we

focus on a more abstract and general class of multivalent random walkers that focuses on

the minimal chemical and mechanical features that are necessary for spider-like systems

to behave as molecular motors. As detailed structural and kinetic information is made

available, more concrete and sophisticated molecular spider models can be individually

validated through experimental agreement, but we expect these future models to share

the same mathematical and structural underpinnings established in the MVRW model as

described in detail in Chapter 3.

27

Chapter 3
The Multivalent Random Walker Model

The molecular spider system described in Section 2.3 was the original motivation for de-

veloping computational models of nanoscale walker motion. However, by abstracting

away the detailed structural and chemical specifics of the molecular spider systems, we

arrive at a model that is simultaneously more general and more powerful. Our multiva-

lent random walker (MVRW) model describes the motion of a general class of enzymatic

walker molecules and allows us to investigate the minimal geometrical, structural, and

chemical constructs sufficient to control these walkers for directional, prescriptive trans-

port. Our central scientific contribution is to show that multivalent random walkers behave

as a new type of molecular motor. We developed our model to not only simulate the motion

of the walkers, but also to explain the molecular mechanisms through which the chemical

energy in substrate sites can be transformed into directional motion. To generate such a

detailed molecular understanding, we account for both the high-frequency mechanical vi-

bration and Brownian motion of the walker body and legs, as well as low-frequency chem-

ical reactions corresponding to stochastic transitions between discrete chemical states. To

demonstrate the walker’s characterization as a molecular motor we directly calculate the

work exerted by each walker as it moves against an external load force. Using an interme-

diate level of coarse-graining, we assume the walker comes to a mechanical equilibrium in

between chemical steps. From a biophysical perspective, this level of representation allows

us to accurately model the effect of external load on the walker’s body through its effect on

the equilibrium mechanical position of the walker, yet still maintain a discrete state space.

From a computation perspective, equilibrium estimates of leg and body distributions are

Markovian and translationally invariant, leading to opportunities for precomputation and

optimization.

The MVRW model is a continuous-time, discrete-state Markov process (CTMP) that

describes the action of a MVRW as a sequence of stochastic state transitions. From any

28

Chapter 3. The Multivalent Random Walker Model

state, the mechanical equilibrium of the body and legs determines a finite set of possible

state transitions corresponding to the feasible chemical reactions of the legs with local

sites. By assuming that the body and unattached legs are at equilibrium, the state transi-

tions occur at rates dependent only on the current chemical state of the system and not on

any previous chemical states; this gives the system the Markov property.

In order for the MVRW model to accurately represent the physical and chemical events

of a walker system, we must make several abstractions and assumptions, and we must

carefully define the state of the system to encompass all of the variables that would affect

the transition rates under these assumptions. Section 3.1 gives background on the different

levels of modeling granularity that can be used to describe chemical systems, as well

as the abstractions and assumptions we make to arrive at a discrete stochastic model for

the walkers. In Sections 3.2 and 3.3, we consider in detail the two components of the

discrete chemical states of MVRW model: the state of the environment, and the state of

the walker. The transition rates between these chemical states are derived from simple

kinetic and mechanical assumptions in Sections 3.4, 3.5, and 3.6, allowing us to model the

uni- and bimolecular reactions of any enzymatic leg/substrate chemistry. Building on these

derivations, Section 3.7 shows how the attachment rates and mechanical equilibrium state

of the body are affected by the presence of a constant load force. Finally, in Section 3.8

we consider how the irreversibility of substrate cleavage reactions serves to partition the

state space and how this affects the equilibrium system dynamics.

3.1 Modeling chemical reaction systems

The kinetics of chemical systems like molecular spiders can be modeled at many different

scales from fine- to coarse-grained, depending on the level of detail one is interested in

and the nature of the assumptions one makes about the system.

29

Chapter 3. The Multivalent Random Walker Model

Macroscale kinetics and mass action. Historically, chemical kinetics has been studied

from a macroscale viewpoint, in which chemical species are represented by their concen-

trations per unit volume. Provided the solutions are well mixed, the number of molecules

is very large, and the reactions occur slowly compared with the diffusion rate of the chem-

ical species, it is justified to assume that the concentration of any species is uniform over

the volume within the reaction chamber and can be represented by a single positive con-

centration value at each time. Under such conditions, the rate of an elementary reaction

(Section 2.1) is observed to be proportional to the product of the concentrations of the

reactants. This is known as mass action kinetics, and gives rise to a system of differen-

tial equations whose solution is the time-varying concentrations for each species. Mass

action kinetics is a deterministic model representing molecules as continuous concentra-

tion functions in time. In reality, molecules are discrete objects and reactions are discrete

events that occur stochastically. These realities have increasing importance as the size of

the reaction volume and the number of molecules become smaller, as is the case for single

walker molecules moving over a surface of chemical sites.

Molecular dynamics. At the opposite end of the size and time scales, a molecular dynam-

ics model is a detailed representation of a system that tracks the position and momentum

of every individual atom—those in the reactive species as well as those in the solvent mol-

ecules. The dynamics of the atoms is then modeled using electromagnetic forces derived

from quantum-mechanical approximations [15]. In such a model it becomes clear how

collisions between solvents and reactants are responsible for the Brownian motion of mol-

ecules and the random energy fluctuations that enable reacting molecules to pass over en-

ergy barriers. Such detailed models are necessary to understand the intra-molecular mech-

anisms by which enzymes attach to substrates and catalyze their transformation. There

is, however, a huge computational price to pay for such detail. Every collision and inter-

nal molecular vibration must be simulated and these events occur at intervals as short as

10−14 s. For these reasons, molecular dynamics simulations of DNA reactions span only

30

Chapter 3. The Multivalent Random Walker Model

tens or hundreds nanoseconds of simulated time [36, 130]. The MVRW model only needs

to describe the long-term transport properties of the system as the walkers take many steps

over the surface; there is no need to understand how electromagnetic potentials allow a

leg to bind with a substrate, only how long it is likely to take for the reaction to occur

from a given molecular state. Nor is it necessary to track the solvent species explicitly;

although the solvent interactions are truly what drives the motion of the walker and legs,

they occur orders of magnitude more frequently than actual reactive collisions and can be

approximated as at equilibrium on the timescale of chemical reactions.

3.1.1 Stochastic chemical kinetics

In between the extremes of very coarse grained mass action kinetics and very fine grained

molecular dynamics, there is an intermediate level of granularity, in which individual

chemical events are explicitly represented, but other mechanical processes are assumed

to be at equilibrium. This level of modeling is known as stochastic chemical kinetics,

and it describes a system as a continuous-time stochastic process over the individual dis-

crete chemical states of the system. For appropriate assumptions and state spaces these

processes are Markovian, making them particularly simple to simulate using KMC tech-

niques (Chapter 4).

The Gillespie model of chemical kinetics [48, 49] is one such CTMP model. It de-

scribes the stochastic kinetics of well-mixed, dilute solutions of reacting molecules in a

fixed volume, at constant temperature and pressure. Under these conditions, the reactive

species are always near physical equilibrium, and distributed uniformly over the volume.

Thus, the probability of any particular reaction occurring is simply proportional to the

number of reactant molecules for that reaction. For unimolecular reactions, this is just the

number of molecules of the reactant, and for bi-molecular reactions, this is the number of

distinct pairs of reactant molecules. The proportionality constant for each reaction can be

determined with the Arrhenius relation between reaction rate and the activation energy at

31

Chapter 3. The Multivalent Random Walker Model

a constant temperature (Equation 2.3).

However, MVRWs are by construction the opposite of well-mixed. The chemical sur-

face sites have fixed locations, and when walkers are attached to these sites they have a

bounded region of feasible sites they might attach to. Outside of this region, no reac-

tions are possible. Thus, enumerating the possible reactions is much more complicated

and model-specific than the general Gillespie stochastic model. In developing the MVRW

model, we use the position-independent unimolecular reaction kinetics from the Gillespie

model, but we develop our own theory to describe the rates of the tethered chemical kinet-

ics of leg–site binding (Section 3.6.1).

3.2 The environment

A walker moves over a 2D space of chemical sites, called the environment. The chemical

composition of the sites is modified by the actions of the walker, but the site locations are

stationary. We define the environment mathematically with the following objects.

• S ⊂ �2 — The set of fixed chemical sites can be arranged as arbitrary tracks or

paths on the surface.

• Σ — The set of chemical species is normally taken to be {S,P} for the substrate-

product chemistry in Equation 2.5.

• π : S → Σ — The species function is a mapping from a site to the species displayed

at that site.

We assume S and Σ are fixed initial conditions, while the mutable state of the environ-

ment is represented solely by the species function π. The set of all possible states of the

environment is then all the possible mappings π from sites to species:

� = {πi : i = 1, . . . , |Σ||S |} = ΣS . (3.1)

32

Chapter 3. The Multivalent Random Walker Model

(a) (b) (c)

Figure 3.1: Walker types are differentiated by the body shape and location of hips on the body. (a)
A point-bodied walker has all hip locations at the same point. (b) A segmented walker has a body
composed of segments with a hip location at the center of each segment. (c) A general walker has
arbitrary hip locations, and an arbitrary body shape.

3.3 Walkers

The body of a multivalent random walker is a rigid, inert 2D scaffold with a set of k

attachment points for legs, called hip locations. Each of the k legs has a reactive foot

that is flexibly tethered to a hip location with maximum extension length `. We avoid

any detailed structural description of the legs or their intra-molecular interactions. Instead

the legs remain independent and uncoordinated, constrained only by the limited tether

extension length.

3.3.1 Walker body shapes

Several different types of walker bodies are possible depending on the layout of the hip

locations on the body. Figure 3.1 illustrates the three main classes of multivalent walker

bodies. Point-bodied walkers are motivated by the streptavidin body of molecular spiders

(Section 2.3). The symmetry of point-bodied walkers makes them more straightforward to

model and simulate. The segmented walkers mimic the design of DNA tile spiders (Sec-

33

Chapter 3. The Multivalent Random Walker Model

tion 2.4), and allow design of non-symmetric walker body shapes. While our results in

Chapter 6 exclusively focus on point-bodied walkers, we define the model to also encom-

pass the parameters associated with segmented and general walkers. Our future work will

investigate the transportation advantages that can be gained by controlling body shape and

the interaction with substrate spacing.

3.3.2 Walker parameters

Assuming that the legs of a walker are all of the same length and chemical composition,

we can describe a particular multivalent walker with the following parameters.

• k ≥ 2 — The number of legs.

• ` > 0 — The length of each leg.

• Cb = �2 — The space of coordinates in the body’s reference frame, with which hip

locations are defined.

• Ce = �2 — The space of coordinates in the environment’s reference frame, with

which the sites S are defined.

• H = [hi ∈ Cb]k
i=1 — The vector of hip locations in the body’s coordinates. Hip

locations can be coincident as is the case for point-bodied walkers.

• A = [ai ∈ S ∪ {�}]k
i=1 — The vector of attached feet locations a foot i is either

attached to a site ai ∈ S , or it is detached, which is represented by the symbol �.

To ensure that at most one foot is attached to any site, the set of attached legs A must

obey the condition

(i , j) ∧ (ai = a j) =⇒ ai = a j = �. (3.2)

34

Chapter 3. The Multivalent Random Walker Model

T = T (v, θ)

body coordinates

h1 h2 h3 h4

h5
Cb

�
environment coordinates

T (h5)

T (h4)
T (h3)

T (h2)
T (h1)

θ

v

Ce

Figure 3.2: A 2D rigid body transform T maps the body’s reference frame Cb to the environment’s
reference frame Ce. The transform can be specified by a rotation θ and translation v.

3.3.3 Walker position is defined by a rigid body transform

The hip locations are in the space Cb of body coordinates, while the foot locations are

represented as sites in the space S , which has reference frame Ce. Therefore, we need

a mapping Cb → Ce to relate these spaces. Because the body is a rigid 2D object, this

mapping will be a 2D rigid body transform T = T (v, θ) which is a rotation about the origin

by angle θ followed by a translation by v ∈ �2. The mapping T will determine the location

and orientation of the body in the environment space, and hence the coordinates of the hip

locations in the space Ce (Figure 3.2). In the simplified case of the point-bodied walkers,

rotational symmetry implies the body location can be defined solely by the translation v.

3.3.4 Walker state in the Markov process

The Markov process state encompasses only the properties of the walker that change over

time; this is completely defined by A, the attached state of the k feet. The set of possible

states for the walker is1

� = (S ∪ {�})k . (3.3)

1The actual space of walker states is much smaller, because the legs cannot be attached to sites
that would violate the maximum length constraint. For notational simplicity we will include these
impossible states in the state space, but the transition rates to these states will always be 0.

35

Chapter 3. The Multivalent Random Walker Model

Each of the k feet can be either attached to a site in S or detached (�). The state space of

the entire walker system, Ω, is the Cartesian product of the environment’s state space �

(Equation 3.1) and the walker’s state space� (Equation 3.3):

Ω = � ×� = ΣS × (S ∪ {�})k . (3.4)

Any state ω = Ω can be represented by the current species function, π, and the attached

leg state, A,

ω = (π, A). (3.5)

3.4 State transitions

The three types of state transitions correspond to the three types of chemical reactions that

can take place: binding (association), unbinding (dissociation), and catalytic transforma-

tion.2 As discussed in Section 2.3, the interactions of a leg (L) with a substrate (S) or

product (P), are given by five reactions:

L + S
k+

S−→←−
k−S

LS
kcat−−→ L + P

L + P
k+

P−→←−
k−P

LP.

(3.6)

3.4.1 General leg chemistries

Beyond the substrate-product chemistry, we can model the reactions of a leg with any set

of chemical species Σ using the following functions:

2Some chemical systems may involve non-leg reactions at the surface sites, such as sites spon-
taneously cleaving, or a replenishment of substrates from solution. As long as these reactions are
time-independent, they can be worked into the Markov process transition rates. We do not concern
ourselves with such specialized systems, other than to note that they are possible to model without
fundamentally changing the simulation strategy.

36

Chapter 3. The Multivalent Random Walker Model

• k+ : Σ→ �+ — The rate of the leg binding reaction for each species.

• k− : Σ→ �+ — The rate of the leg dissociation reaction for each species.

• kcat : Σ→ �+ — The rate of leg catalysis for each species.

• χ : Σ→ Σ — The species transformation resulting from catalysis for each species.

These reaction rates determine which reactions are possible and how fast they occur.

A reaction rate of 0 indicates a reaction that never occurs. If kcat(σ) = 0, the leg cannot

catalyze the transformation of σ and the value of χ(σ) is not relevant. Restrictions on χ

enforce chemically plausible models; χ is a function which enforces that there is at most

one transformation a leg may induce on a particular species. To ensure that all catalytic

transformations have ∆G<0, the relation χ should be antisymmetric. The general set of

reactions for leg L can be described for each σ ∈ Σ as

L + σ
k+(σ)−−−−→←−−−−
k−(σ)

Lσ
kcat(σ)−−−−→ L + χ(σ). (3.7)

3.4.2 Transition rates and chemical kinetics

Dissociation (k−) and catalysis (kcat) are first-order reactions, so their rate is independent

of the local environment. However, the association reactions are second-order and thus

rates k+(·) are actually pre-rates that when multiplied by the local concentration-dependent

propensity for that reaction give a true rate. We assume that the second-order reaction of

the leg associating with a chemical site is dependent on the leg colliding with the chemical

site while also having enough kinetic energy to pass over the activation energy barrier

Ea (Section 2.1). Several factors affect this rate: the constrained diffusion of the body

between reactions, the diffusion of the leg in the time between reactions, and the height of

the energy barrier relative to kBT .

37

Chapter 3. The Multivalent Random Walker Model

3.5 Body position distribution

In between each chemical reaction or step in the Markov process the body is assumed to

be at mechanical equilibrium, as determined by the attached leg locations A. Let random

variable B represent the position of the walker’s body over rigid-body transform parame-

ters (v, θ).

Definition 3.5.1. We say that a body position b = (v, θ) is a feasible body position if for

each i = 1, . . . , k,

ai = � ∨ ‖ai − T (v, θ)(hi)‖ ≤ `.

Definition 3.5.2. Let F ⊂ �2 × [0, 2π) be the set of all feasible body positions. Then, for

attached leg locations A, we have

F = F(A) =

(v, θ) ∈ �2 × [0, 2π)

∣∣∣∣∣∣∣
` ≥ k

max
i=1

ai,�
{‖ai − T (v, θ)(hi)‖}

 .

Figure 3.3 shows F for a point-bodied walker and the constraints implied by the at-

tached legs. A point-bodied walker has rotational symmetry with all hi = (0, 0), so we can

describe a body position simply by a 2D vector p. Segmented walkers are more compli-

cated to illustrate as F is three-dimensional when the rotation θ must also be considered.

For simplicity of presentation, we illustrate only the point-bodied walkers (Figure 3.1),

but our model also describes the equilibrium body distribution for segmented and general

walkers.

3.5.1 The walker body position as a Boltzmann distribution

At equilibrium, B will take on a Boltzmann distribution over F according to the energy

∆U(v, θ), so that at position (v, θ),

P [B = (v, θ)] = pB(v, θ) =
e−β∆U(v,θ)

∫
F e−β∆U(v,θ)dvdθ

=
1
Z

e−β∆U(v,θ). (3.8)

38

Chapter 3. The Multivalent Random Walker Model

�

�

�

chemical sites

region of feasible sites

feasible body positions

unattached leg

F p = T (v)(�0)

Figure 3.3: The feasible
body positions F for a point-
bodied walker are indicated
in yellow. Each attached
leg imposes a circular con-
straint on the body’s location.
Free surface sites are blue for
substrates and red for prod-
ucts. The feasible sites SF are
all sites contained within the
green region. These are the
sites that can be reached by
a leg of length ` from some
body position in F . Any site
s < SF has zero probability of
attachment.

In Equation 3.8, β = 1/kBT where kB is Boltzmann’s constant and T is absolute tem-

perature, so that 1/β represents the average amount of energy available at temperature T .

We consider only isothermal systems where T is fixed at 300 K, in which case kBT =

4.14 pN nm, and the partition function,

Z =

∫

F
e−β∆U(v,θ)dvdθ, (3.9)

is a constant that serves only to normalize the probabilities in Equation 3.8. In general

the partition function is inconvenient or impossible to compute analytically. However, as

explained in Chapter 5, the Metropolis-Hastings algorithm can be used to sample from

distribution pB without the need to normalize and hence we can avoid the computation of

Z entirely.

3.5.2 The energy of the walker body position

For any particular chemical implementation of a multivalent random walker, an accurate

determination of the walker’s internal energy as a function of position, ∆U(v, θ), would

39

Chapter 3. The Multivalent Random Walker Model

require detailed structural modeling of internal degrees of freedom in the walker legs and

body. To keep our model general and simple, we do not attempt such detailed analysis.

In fact, ∆U(v, θ) can be treated as a free parameter, and there are several natural choices

that lead to a range of different body distributions, but that maintain our assumptions of

minimal internal structure and mechanical coordination between the legs.

Uniform body distribution. Assuming the legs are totally uncoupled and free from inter-

nal structure, the energy should be uniform across all feasible positions,

∆U(v, θ) =



0 (v, θ) ∈ F
∞ otherwise

. (3.10)

The uniform body distribution models the minimal mechanical coupling between legs.

Only the restriction of finite leg length constrains the motion of the legs, and the body’s

constrained diffusion moves with equal likelihood over all feasible locations. We use the

uniform body distribution for results in Chapter 6 to show that even with the weakest pos-

sible coordination constraints between legs, multivalent random walkers can still function

as molecular motors.

Elastic legs body distribution. A more restrictive model assumes that legs are elastic and

the energy of a body position is the sum of the squared leg lengths from the hip joints to

the attached feet:

∆U(v, θ) =



k∑

i=1
ai,�

µ‖ai − T (v, θ)(hi)‖2 (v, θ) ∈ F

∞ otherwise

. (3.11)

The free parameter µ in Equation 3.11 is the spring rate of the legs. When µ > 0, an energy

minimum and therefore probability maximum forms around the position that minimizes

squared leg length. At high values of µ, ∆U will be less affected by external forces than

walkers with uniform body distribution based on Equation 3.10.

40

Chapter 3. The Multivalent Random Walker Model

Deterministic body position—elastic spring model. As free parameter µ→ ∞ in Equa-

tion 3.11, the body’s distribution becomes a delta function at the minimal feasible body

position (v∗, θ∗), where

(v∗, θ∗) = min
(v,θ)∈F

k∑

i=1
ai,�

‖ai − T (v, θ)(hi)‖2. (3.12)

3.6 Leg–site interactions

The bimolecular kinetics of leg–site binding is controlled by two factors: (I) a second-

order process by which the leg and the site come into contact with each other, and (II) a

first-order process wherein the leg and the site undergo conformational changes to move

to a strongly bound state [69]. Process I is controlled by the constrained diffusion of

the body and the unattached legs, while process II is controlled by the activation energy

barrier of the reaction as described in Section 2.1. Depending on which of these processes

is rate-limiting, there are two different types of kinetics for the leg–site binding reactions.

Diffusion-limited kinetics. If the reaction energy barrier is low, process I is limiting; the

leg is likely to react with one of the first few substrates it comes in contact with. Thus, the

leg will be more likely to react with sites closer to where it had previously been attached.

Because the diffusion to new sites is the limiting factor in the reaction this situation is

called diffusion-limited.

Reaction-limited kinetics. However, if the energy barrier is high, process II is limiting;

the leg and substrate have to move through one or more weakly-bound conformational

states before they enter the low-energy conformation of the strongly-bound state. This

situation is called reaction-limited. The leg will diffuse around the local environment

41

Chapter 3. The Multivalent Random Walker Model

of sites, encountering and interacting weakly with many sites until by chance it spends

enough time at a high enough energy near a certain site to react.

For the MVRW model the reaction-limited kinetics are simultaneously more practical

from a computational viewpoint, and more realistic from a biophysical viewpoint. When

kinetics are reaction-limited, they are slow enough to allow the separation of timescales

between the much faster mechanical motion and the slower chemical reactions. The legs,

like the body, reach a mechanical equilibrium before they react, and unlike in the case

of diffusion-limited reactions, the leg’s action is Markovian—independent of the previ-

ous state of that leg. Thus, for the computationally important reasons of maintaining the

Markovian property and avoiding simulation of the constrained leg diffusion, we assume

reaction-limited kinetics in the MVRW model. Reaction-limited kinetics are also a bio-

physically plausible assumption, as deoxyribozyme binding kinetics depend on the DNA

polymer weakly binding at multiple base pairs in order to form a strong enough bond to

remain attached, which means that a deoxyribozyme leg is likely to interact with many

local substrates before it finally attaches strongly.

3.6.1 Modeling reaction limited leg binding

The reaction-limited kinetic model implies that the rate of the bimolecular reaction of

the leg binding to a site should be proportional to the number of leg–site pairs that may

potentially interact and bind [49]. Consider the case of the constrained motion of walker

leg i as it moves about hip location hi while the walker body is fixed at position b = (v, θ) ∈
F . A leg cannot reach sites farther than distance `, but any site closer than ` is a potential

candidate for attachment.

42

Chapter 3. The Multivalent Random Walker Model

Binding kinetics from a fixed body position.

A site s is feasible for leg i from body position b if it is not already occupied (s < A) and

‖s − T (b)(hi)‖ < `. (3.13)

Definition 3.6.1. The feasibility indicator function for leg i binding to site s < A from

fixed body position b, is

I i
b(s) =



1 ‖s − T (b)(hi)‖ < `
0 otherwise

.

From the reaction-limited kinetic viewpoint, the feasibility indicator I determines if

leg i with hip location hi is close enough to unoccupied site s that the leg and site may po-

tentially interact while the leg is diffusing in its constrained environment. The attachment

reaction rate for site s depends on the species π(s) ∈ Σ at the site and the associated kinetic

rate k+
π(s). From fixed body position b = (v, θ) the attachment rate is

r i
b(s) = k+

π(s)I
i
b(s). (3.14)

Equation 3.14 implies the total rate of a single leg binding to any site, from position b, is

R i
b =

∑

s∈S
r i

b(s). (3.15)

For reaction-limited kinetics, R i
b is proportional to the total number of feasible sites.

Binding kinetics at mechanical equilibrium.

Now we take into account the assumption that in between reaction steps the body is not at

a fixed position b, but in an equilibrium distribution B over positions.

Definition 3.6.2. We integrate the feasibility indicator function (Definition 3.6.1) over the

probability distribution B to define the feasibility probability of site s < A for leg i:

f i
B(s) =

∫

F
pB(v, θ)I i

(v,θ)(s) dv dθ.

43

Chapter 3. The Multivalent Random Walker Model

F

Figure 3.4: The function f i
B(s) represents the probability that a leg i is close enough to site s to

react, given the body’s position as random variable B. For simplicity, we illustrate this with point-
bodied walkers, so leg index i is not necessary to specify. Here we assume B is uniform over F ,
shown in yellow. The region of feasible sites is shown in green; the set of unattached sites within
this region is SF . The color and size of each unattached site shows fB(s) for that site. Red sites
have feasibility probability 1, cooler colors are less probable, and black sites have probability 0.

The feasibility probability f i
B(s) is a pre-rate for site s. It is bounded, 0 ≤ f i

B(s) ≤ 1,

so we interpret it as the probability that a leg is close enough to site s to feasibly bind at

mechanical equilibrium (Figure 3.4).

Definition 3.6.3. The feasibility probability combined with Equation 3.14 allows us to

define the attachment transition rate for leg i attaching to site s, given body distribution

B:

r i
B(s) = k+

π(s) f i
B(s).

44

Chapter 3. The Multivalent Random Walker Model

3.6.2 The set of feasible sites

Any site with non-zero rate of attachment is called a feasible site; the region of feasible

sites is shown in green in Figures 3.3 and 3.4. A site is feasible for leg i if it is within

distance ` of hi in some body position in b = (v, θ) ∈ F (Equation 3.13). Let the distance

of leg i from a site s under feasible body positions F be

d i(s,F) = min
b∈F
{‖s − T (b)(hi)‖}. (3.16)

Definition 3.6.4. Given the set of attached leg locations A, we define the set of feasible

sites for leg i as

S i
F = {s ∈ S \ A | d i(s,F) ≤ `}.

Knowing r i
B(s) for each site in S i

F for each unattached leg i gives the transition rates

for all association reactions.3 Together with the much simpler rates for the unimolecular

dissociation and cleavage reactions, which are independent of body and leg diffusion, this

enables us to model all of the reactions that lead to state transitions in the model.

3.7 Effect of external load forces

If the walker body is subjected to an external load force, either as the result of the viscous

drag of a cargo or as the result of a measurement apparatus, such as those used to probe

kinesin [119], the walker can do work by moving in opposition to the force. We assume

the force is applied to a cargo tether on the walker’s body at location c in body coordinates

Cb. The change in potential energy of the walker when moving from the original position

b0 = (v0, θ0) to a new position b = (v, θ) under the load of conservative force f is

∆E f (b) = ∆E(b) = − f · (T (b)(c) − T (b0)(c)). (3.17)

3In Section 4.2 we specialize these kinetic rates to the point-bodied walkers, where all k legs
are identical and body rotation θ is not necessary to consider.

45

Chapter 3. The Multivalent Random Walker Model

When ∆E > 0 the walker is doing work moving against the force; when ∆E < 0 the force

is doing work on the walker.

The MVRW model can capture the effect of a conservative load force on the walker

body through the effect on the body’s energy function ∆U. The new energy of position

b = (v, θ), under force f is

∆U f (b) = ∆U0(b) + ∆E f (b). (3.18)

In Equation 3.18, ∆U0(b) represents the energy under zero force, i.e., from Equation 3.10.

The effect of force on a point-bodied walker is shown in Figure 3.5.

46

Chapter 3. The Multivalent Random Walker Model

f=
−

0.
0

x̂
pN

f=
−

0.
1

x̂
pN

f=
−

0.
5

x̂
pN

f=
−

1.
0

x̂
pN

f=
−

2.
0

x̂
pN

f=
−

5.
0

x̂
pN

10
nm

10
nm

10
nm

10
nm

10
nm

10
nm

Fi
gu

re
3.

5:
A

co
ns

er
va

tiv
e

lo
ad

fo
rc

e
f

is
ap

pl
ie

d
in

th
e
−x̂

di
re

ct
io

n
to

a
po

in
t-

bo
di

ed
w

al
ke

rw
ith

ca
rg

o
at

ta
ch

m
en

tp
oi

nt
c

=
~ 0.

T
he

bo
dy

’s
eq

ui
lib

ri
um

di
st

ri
bu

tio
n

p B
is

di
sp

la
ye

d
as

a
2D

hi
st

og
ra

m
ov

er
F

.
W

ar
m

er
co

lo
rs

re
pr

es
en

th
ig

he
r

pr
ob

ab
ili

ty
.

T
he

re
gi

on
of

fe
as

ib
le

si
te

s
is

dr
aw

n
in

gr
ee

n,
an

d
th

e
fe

as
ib

ili
ty

of
ea

ch
si

te
,

f B
(s

),
is

sh
ow

n
by

th
e

co
lo

ra
nd

si
ze

of
th

e
si

te
.T

he
bo

dy
is

dr
aw

n
at

its
m

ea
n

eq
ui

lib
ri

um
lo

ca
tio

n,
〈B
〉.

47

Chapter 3. The Multivalent Random Walker Model

3.8 The state space of multivalent random walker systems

The MVRW model has many irreversible state transitions, specifically those that are rep-

resented by a catalyzed transformation of a chemical site from species π(s) to species

χ(π(s)). The presence of irreversible transitions has implications for the nature of the

CTMP underlying the model.

In a Markov process, a state j is accessible from state i if there is a time t such that

P
[

X(t) = j | X(0) = i
]
> 0.

We can write this i → j. Two states communicate if i → j and j → i, which we can write

as i ↔ j. Furthermore, a state i is said to be transient if there is a non-zero probability of

never returning to state i again, otherwise it is called recurrent; it is positive recurrent if

the expected time to return is finite.

We can use these definitions to examine the state space Ω = � ×�. Consider the

example of the walkers using the substrate/product chemistry (Equation 3.6) where Σ =

{S,P}. Initially all sites are substrates, but over time substrates are cleaved, resulting in a

net decrease in ∆G. If there is a finite number of sites, eventually all sites will be cleaved to

products, and the system will be at an energy minimum. No further cleavages are possible.

We can divide the states into equivalence classes based on their free energy. If the initial

energy is 0, and a cleavage of a substrate to a product decreases the energy by 1 unit

and there, are n sites in total, then the energy equivalence classes are �0,�−1, . . . ,�−n.

Each �−i contains all states of the walker and environment where exactly i sites have been

cleaved. Sites in different energy classes do not communicate since the energy-releasing

reactions are irreversible.

We can further classify the states by looking at the walker’s state space. Let �P be

all the states of the system where the sites in P ⊆ S are products, and all other sites are

substrates. The states �P correspond to the walker moving without cleaving any sites.

Thus, the states in�P all communicate. However, if site s is then cleaved, the system will

48

Chapter 3. The Multivalent Random Walker Model

make an irreversible transition from a state in�P to a state in�P∪{s}, and will never be

able to return to any state in�P. Figure 3.6 illustrates this state space structure. Each�P

contains the same number of states and they have the same connectivity amongst them-

selves; however, the rates of transitions will be different because of the different species at

the sites.

All states except for those in �−n are transient because of the irreversibility of substrate

catalysis. These considerations are important if one is interested in equilibria. A Markov

process will have a unique equilibrium distribution over the recurrent states. This will be

over all the states in �−|S | = �S , the set of all states where all sites have been cleaved

to a product. This is the same distribution as for a walker system that starts in an all-

product environment. This equilibrium corresponds to uninteresting, diffusive motion.

Therefore, we see that for any finite environment our walkers are eventually doomed to use

up their store of chemical energy and enter a diffusive type of behavior. Any interesting,

non-diffusive behavior must therefore occur as the walker moves through the high-energy

states on its way to equilibrium. After all, it is really only at the irreversible parts of the

process that any control over the system evolution can occur. This point will remind us that

while the long-term behavior of the system will become diffusive, there is still a potential

for useful, non-diffusive motion for shorter times where not much of the energy in the

chemical sites has been expended.

In Chapter 7, we revisit these concepts in the case of walkers moving over semi-infinite

1D tracks of substrates. While these infinite state spaces have unlimited substrate chemical

free energy, it is a locally-limited resource, and we argue that any such system that moves

less than ballistically is doomed to consume its local substrate reserves near the origin,

and eventually move as if it is also in a zero-free-energy, all-product environment.

49

Chapter 3. The Multivalent Random Walker Model

!G

Ω = E × W

E0

E−1

E−2

E−3

W∅

W{3}W{1} W{2}

W{1,2} W{1,3} W{2,3}

W{1,2,3}

Figure 3.6: The state space of a walker system with an environment of three sites, S = {1, 2, 3}.
Irreversible changes to sites in the environment create a partial order on equivalence classes of the
state space. Each�∗ represents the equivalence class of states with a fixed environment and the
internal transitions which correspond to legs binding and unbinding are not shown. Each equiva-
lence class �∗ is all states with the same free energy ∆G. The unique equilibrium distribution of
the walker Markov process is over the recurrent states�{1,2,3}; all other states are transient.

50

Chapter 4
Kinetic Monte Carlo Simulations

The MVRW continuous-time Markov process as developed in Chapter 3 can be directly

simulated using the kinetic Monte Carlo (KMC) method. Section 4.1 presents a generic

description of the KMC method, which uses the Markov process transition rates to it-

eratively simulate a single trace of a walker moving through a series of discrete states,

separated by exponentially distributed step times τ. Kinetic Monte Carlo is not a pre-

packaged algorithm, but rather a general numerical technique. The mechanism by which

the next step and step time are chosen is simple; the actual difficulty in simulating the

multivalent random walkers is the enumeration of all potential attachment transitions S i
F

(Definition 3.6.4) and the calculation of the transition rates r i
B(s) (Definition 3.6.3). In the

worst case, the Metropolis sampler would need to be run on every KMC step in order to

get a sample from B which is necessary for the computation of r i
B(s).

However, there are opportunities for optimization if we focus on the specialization of

the general MVRW model to the specific case of spider-like point-bodied walkers with

deoxyribozyme substrate/product kinetics. Section 4.2 shows that the rotational symmetry

of point-bodied spiders reduces the computation of the set of feasible body positions, F ,

and the set of feasible sites, SF , to the problem of finding the intersection of 2D balls (discs)

of radius `. Furthermore, in Section 4.3 we show that when a point-bodied walker moves

over surfaces on which the chemical sites are arranged as a regular rectangular lattice, the

translational symmetry leads to a restricted set of possible canonical leg configurations,

for which the computationally expensive values of SF and rB(s) can be precomputed using

a single set of samples for each unique B up to translation. In Section 4.4 we explain

how the MVRW kinetic Monte Carlo algorithm uses the precomputed values to efficiently

simulate the motion of point-bodied walkers on regular lattices of sites.

51

Chapter 4. Kinetic Monte Carlo Simulations

4.1 Simulation of continuous-time Markov processes

Models based on CTMPs are ubiquitous in statistical physics, and many physical processes

at the nanoscale are modeled well by the Markovian paradigm. Therefore, there has been

extensive work in the statistical physics community exploring efficient methods—both ex-

act and approximate—of numerically sampling trajectories of CTMPs through simulation.

The same is also the case for the newer field of stochastic chemical kinetics using the Gille-

spie approach. Our MVRW simulation algorithms build upon the methods used in these

fields.

The approach of numerically simulating Markov chains was developed by Metropolis

et al. in 1953 at Los Alamos laboratories [87]. Metropolis used a Monte Carlo approach

to numerically sample from the equilibrium distribution of CTMPs describing physical

systems. Over the following decades, physicists started using Monte Carlo approaches

to study the kinetics of non-equilibrium systems. These approaches became collectively

known as kinetic Monte Carlo (KMC) methods by the 1990’s [124].

There are two major classes of KMC algorithms: those that use rejection sampling, and

the modern rejection-free methods. The efficiency of rejection-based methods is highly

dependent on the relative ratios of transition rates, while the rejection-free methods are

independent of rate ratios. Rejection-free approaches were introduced in the physics com-

munity in 1975 by Bortz, Kalos, and Libowitz [18] as what is now known as the BKL

algorithm. They were introduced in the stochastic chemistry community in 1976 with

Gillespie’s stochastic simulation algorithm (SSA) [48]. Most modern approaches draw

from these works.

4.1.1 The generalized kinetic Monte Carlo method

The basic idea of the KMC method is to iteratively simulate a sample trajectory of the

CTMP, starting at some fixed initial state and evolving the system state and time stochas-

52

Chapter 4. Kinetic Monte Carlo Simulations

(a) (b)

r1 r2 r3 rk

zkz3z2z1

αcurrent state: sn

R0

r1 r2 r3 rk

Figure 4.1: (a) At step n of the KMC algorithm, the system is in state sn, and we must choose sn+1
from amongst the k possible next states {zi}ki=1 according to their respective transition rates {ri}ki=1.
(b) We can select the next state using a single random number α ∼ Uniform(0,R), where R =

∑
ri

is the total rate. This example shows the next state chosen to be z2.

tically with probabilities derived from the transition rates of the model. The result is a

single sample trace of a system. Many traces can be grouped as an ensemble to estimate

the state distribution of the process as it evolves in time.

Consider a CTMP {X(t)} defined over a countable state space S = {si}. Associated

with this process is a transition rate function Q : S × S → �+, where Q(si → s j) gives the

transition rate from state si to state s j. Given an initial start state, s0, the KMC algorithm

evolves the system state through time, stochastically choosing a next state and an elapsed

time. The result is a function x : �+ → S , where x(t) was the state of the simulation at

time t, which represents a realization or trace of the Markov process. More concretely, we

expect x(t) ∼ X(t) for all t ≥ 0.

The core of the KMC algorithm is a procedure for determining the next transition and

the transition time starting from a given state. The state of the system is s0 at time t0 = 0.

If the KMC algorithm is run for N steps, we produce a sequence {si}Ni=0 of states and a

sequence {ti}Ni=0 of times when the process enters those states; together these define the

realization x(t).

After the n-th step of the algorithm, the system will be in state sn at time tn. The task

of the KMC algorithm is to stochastically choose sn+1 and tn+1 according to the Markov

53

Chapter 4. Kinetic Monte Carlo Simulations

process’s transition rates. Consider the set of transitions from state sn with positive rate,

Z = {s′ ∈ S | Q(sn → s′) > 0}. (4.1)

We assume that |Z| = k is finite, and thus we can enumerate it as Z = {zi}ki=1. The transition

rates are {ri}ki=1, with ri = Q(sn → zi). Let the total rate of all transitions be R =
∑k

i=1 ri.

This situation is illustrated in Figure 4.1a.

The probability of the process moving to state zi at time n + 1 is given by the ratio ri/R.

We can choose a next state z? ∈ Z by selecting a random number α ∼ Uniform(0,R) and

choosing z? = z j, where j is the smallest integer satisfying
∑ j

i=1 ri > α. This process is

depicted in Figure 4.1b.

Finally, we must choose how much time will elapse until the transition to z?. From

our current state, all of the possible transitions in Z occur stochastically with constant rate

per unit time. Thus, the time τi until the transition to zi will be exponentially distributed:

τi ∼ Exp(ri). We are interested only in the probability distribution for the minimum of

these variables, τ? = min{τ1, . . . , τk}. The exponential distribution has the convenient

property that τ? will also be exponentially distributed:

P
[
τ? > t

]
= P [min{τ1, . . . , τk} > t]

= P


k∧

i=1

τi > t



=

k∏

i=1

P [τi > t]

=

k∏

i=1

e−tri

= e−t
∑

ri = e−tR.

(4.2)

Thus, we see that τ? ∼ Exp(R), and we only need to sample a single exponential distri-

bution to find the minimum time. The exponential distribution is also particularly easy to

54

Chapter 4. Kinetic Monte Carlo Simulations

sample from; given β ∼ Uniform(0, 1), we can find τ? as

τ? =
− ln β

R
. (4.3)

At this point the KMC algorithm records the next state sn+1 = z? and the new time tn+1 =

tn + τ?, and the process repeats until N simulation steps have been made.

4.1.2 Efficiency of KMC methods

Typically, the KMC method is used to study long-term behavior of stochastic processes, so

the number of steps, N, is quite large. Additionally, most statistical analyses will require

an ensemble average over many simulation runs. The iterative KMC algorithm requires

Ω(N) computation time as there is no general way around simulating each step of the

process individually. The computational efficiency is thus normally considered per step.

While the mathematical description of the Markov process helps to formally define

the state space and transition function, simulations can be more efficient and practical

regarding the representation of states and state transitions as long as they remain equivalent

to the mathematical description. In a computer simulation of an abstractly defined Markov

process, the state space is rarely represented using the exact same variables that are used

to describe it mathematically. The transitions and rates are computed as needed on each

iteration, which is an application-specific task and often the most expensive part of a KMC

step. This is certainly the case in the MVRW model.

Many clever optimizations of the KMC algorithm are possible for certain classes of

CTMPs. Often the number k of transitions from any state is very large and the process

of selecting a next step from amongst the k choices weighted by rates is a significant

contribution to the run time. The standard algorithm (Figure 4.1) is O(k), as it traverses

an unordered list of partial sums of the transition rates to find the selected transition, z?.

If each new state brings an entirely new list of potential reactions and rates, one could not

expect to do much better than this as the cost of inserting the transition rates into any data

55

Chapter 4. Kinetic Monte Carlo Simulations

structure will still be Ω(k). However, many CTMPs have a certain amount of symmetry

in their transition rate matrix, where neighboring states have nearly identical transitions

and rates. Simulations of these Markov processes can be more clever in their choice of

data structures. If the data structure allows fast searches and efficient updates of those few

transition rates that do change then there is a possibility for the run time of single KMC

steps to be O(ln k) [47], or even O(1) [111, 115].

The CTMP describing the MVRW model does not have this special homogeneity prop-

erty, because state transitions in the MVRW model correspond to leg attachment or detach-

ment events and each of these two types of events changes the physical restrictions on the

walker’s position. At each step, the spider has a new equilibrium position distribution

which causes nearly all the possible transitions and rates to change. This is not a ma-

jor concern as the total number of transitions from any one state in the MVRW model is

small, bounded by some function of the number of legs, leg length, and chemical site den-

sity. Therefore, even the simple unordered search of transition rates is sufficient for our

purposes. We revisit the issue of computation of transition rates in Section 4.4 in the sim-

plified context of point walkers (Section 4.2) moving over regular lattices (Section 4.3),

where translational symmetry leads to opportunities for precomputation.

4.2 Simulation of point-bodied walkers

Consider a point-bodied walker with k legs of length ` that moves over sites arranged on a

regular lattice under the substrate/product kinetics of Equation 3.6, where Σ = {S,P}. We

assume that all sites S are initially substrates, but the action of the walker modifies sites

P ⊂ S to products.

56

Chapter 4. Kinetic Monte Carlo Simulations

4.2.1 State representation

A state ω ∈ Ω of this simplified MVRW Markov process can be described as

ω = (P, A). (4.4)

Equation 4.4 represents both the state of the surface and the state of the walker, and is a

specialization of the general state ω = (π, A) as given by Equation 3.5. Since all sites

are initially substrates, the set of sites that have been transformed into products, P ⊂ S ,

completely defines the species function for site s ∈ S , with

π(s) =



P s ∈ P

S otherwise
.

The identical nature of the k legs for point-bodied walkers lets us write the vector of

attached legs A = A, where A is now the (unordered) set of attached sites. It should obey

the restrictions

A ⊂ S , (4.5)

|A| ≤ k, and (4.6)

F(A) , ∅. (4.7)

4.2.2 Feasible body positions

Instead of defining walker body position with the general 2D rigid body transform T (v, θ),

a point-bodied walker’s position can be defined solely by its coordinates in 2D space,

p ∈ �2, which is equivalent to translating the hip coordinates h = (0, 0) by p:

T (p)(h) = h + p = (0, 0) + p = p.

Definition 3.5.2 gives feasible body positions for general walkers, but we can specialize

this to point-bodied walkers, and for attached sites A define

F = F(A) =

{
p ∈ �2

∣∣∣∣∣ ` ≥ max
a∈A
{‖a − p‖}

}
. (4.8)

57

Chapter 4. Kinetic Monte Carlo Simulations

B�(a1)

B�(a2)

B�(a3)

B�(a4) B�(a5)

a5
a4

a3

a2

a1

F(A)

Figure 4.2: The feasible body positions F(A) for a point-bodied walker are indicated in yellow.
Each attached leg ai imposes a circular constraint on the body’s location, so that F = ∩a∈A�`(a).

Definition 4.2.1. The (closed) 2D ball around location s of radius ` is

�`(s) =
{
p ∈ �2

∣∣∣ ` ≥ ‖s − p‖
}
.

Thus, we have the equivalence

p ∈ �`(s)⇐⇒ ` ≥ ‖s − p‖. (4.9)

Using Equation 4.9 to simplify Equation 4.8, we find

F = F(A) =

{
p ∈ �2

∣∣∣∣∣ ` ≥ max
a∈A
{‖a − p‖}

}

=

p ∈ �2

∣∣∣∣∣∣∣
∧

a∈A

` ≥ ‖a − p‖


=

p ∈ �2

∣∣∣∣∣∣∣
∧

a∈A

p ∈ �`(a)



=

p ∈ �2

∣∣∣∣∣∣∣
p ∈

⋂

a∈A

�`(a)



=
⋂

a∈A

�`(a).

(4.10)

58

Chapter 4. Kinetic Monte Carlo Simulations

Thus, as illustrated in Figure 4.2, the problem of testing whether a set of attached sites A

is feasible is equivalent to testing whether the intersection of the balls around each site in

A is non-empty.

4.2.3 Feasible sites

The definition of feasible sites can be similarly specialized for point-bodied walkers. Con-

sider that for point-bodied walkers, the distance to a site from feasible body positions F ,

given by Equation 3.16 becomes

d(s,F) = min
p∈F
{‖s − p‖}. (4.11)

Then, using Equation 4.11, we can specialize the definition of the set of feasible sites based

on Definition 3.6.4, showing that

SF = SF (A) = {s ∈ S \ A | ` ≥ d(s,F(A))}

=

{
s ∈ S \ A

∣∣∣∣∣ ` ≥ min
p∈F (A)

{‖s − p‖}
}

=


s ∈ S \ A

∣∣∣∣∣∣∣
∨

p∈F (A)

` ≥ ‖s − p‖


=


s ∈ S \ A

∣∣∣∣∣∣∣
∨

p∈F (A)

p ∈ �`(s)



= {s ∈ S \ A | F(A) ∩�`(s) , ∅} .

(4.12)

As illustrated in Figure 4.3, we find for potential site s < A,

s ∈ SF (A) ⇐⇒ �`(s) ∩ F(A) , ∅
⇐⇒ �`(s) ∩

⋂

a∈A

�`(a) , ∅

⇐⇒
⋂

a∈A∪{s}
�`(a) , ∅

⇐⇒ F(A ∪ {s}) , ∅.

(4.13)

59

Chapter 4. Kinetic Monte Carlo Simulations

B�(a3) B�(a2)

B�(a1)

B�(s)

s

a1

a2
a3

F(A ∪ {s})

F(A)

Figure 4.3: The feasible body positions F(A) for a point-bodied walker are indicated in yellow,
as determined by the constraints of attached legs A = {ai}. A site s < A is feasible if F(A ∪ {s}) =

�`(s) ∩ F(A) , ∅.

Equation 4.13 shows that the leg attachment process is consistent: from feasible configura-

tion A, with F(A) , ∅, any site s ∈ SF leads to a feasible configuration with F(A∪{s}) , ∅,
and any site s < SF ∪ A leads to an infeasible configuration with F(A ∪ {s}) = ∅.

4.3 Lattice surfaces

When spiders move over regular lattices of sites, it is possible to take advantage of the

translational invariance to greatly simplify the computation of attachment rates.

4.3.1 Regular lattices

Definition 4.3.1. A lattice is a pair (L,L), where L ⊂ �2 is a set of valid coordinates, and

L is the lattice location transform, L = L(δ, o) : �2 → �2, with origin o = (ox, oy) ∈ �2

60

Chapter 4. Kinetic Monte Carlo Simulations

and spacing δ = (δx, δy) ∈ �2. We define for c = (cx, cy) ∈ �2,

L(δ, o)(c) = ∆c + o =


δx 0

0 δy




cx

cy

 +


ox

oy

 . (4.14)

For simplicity we maintain o = (0, 0), throughout our analysis, so that

L(δ, o) = L(δ) = ∆. (4.15)

Thus, L is linear, and there is an inverse function L−1 : �2 → �2, where c ∈ �2 implies

L−1(L(c)) = c.

4.3.2 Leg configurations

Walkers moving over sites arranged as regular lattices have S = L(L), so we can identify

sites s with corresponding lattice coordinates c ∈ L where L−1(s) = c.

Definition 4.3.2. We call the set of lattice coordinates of the attached leg sites, C, the

configuration of the walker legs. This uniquely defines the attached locations in S as

L(C) = A.

4.3.3 Feasible configurations

Generalizing Equation 4.10 we define F(·) not just for attached sites A ⊂ S , but also for

attached leg configurations C,

F(C) ≡ F(L(C)) =
⋂

c∈C
�`(L(c)). (4.16)

Also in analogy to Equation 4.13, for c ∈ L we assert

c ∈ SF (C) ⇐⇒ (c < C) ∧ (F(C) ∩�`(L(c)) , ∅) . (4.17)

Definition 4.3.3. A configuration C with F(C) , ∅ is called a feasible configuration.

61

Chapter 4. Kinetic Monte Carlo Simulations

Definition 4.3.4. Lattice coordinates c ∈ L are feasible coordinates and correspond to a

feasible site if c ∈ SF (C).

Definition 4.3.5. With respect to Definition 3.6.2, let the feasibility probability of coordi-

nates c from configuration C be

f (c) ≡ fB(C)(L(c)),

where B(C) is given by Equation 3.8 with F = F(C).

4.3.4 Transformational invariance of coordinates

All of these definitions for lattice sites now allow us to take advantage of the regularity

and translational invariance of the lattice structure.

Definition 4.3.6. A lattice coordinate translation is a mapping Φ : �2 → �2 which

translates coordinates c ∈ �2 by some translation vector ϕ ∈ �2,

Φ(c) = c + ϕ.

Now for any configuration C ⊂ L, and coordinate translation Φ, if Φ(C) ⊂ L (i.e., all

of the translated coordinates are still valid), then from Equation 4.16,

F(Φ(C)) =
⋂

z∈Φ(C)

�`(L(z))

=
⋂

c∈C
�`(L(c) + L(ϕ))

=


⋂

c∈C
�`(L(c))

 + L(ϕ)

= F(C) + L(ϕ).

(4.18)

Thus, the set of feasible sites is invariant under translation Φ, except for a translation

L(ϕ).1 Similarly from Equation 4.17, we maintain translational invariance of the concept
1For set Z ⊂ �2 and vector v ∈ �2, we write Z + v to mean the translation of the entire set:

Z′ = {z ∈ Z | v + x} = Z + v.

62

Chapter 4. Kinetic Monte Carlo Simulations

(a) fixed polyominos

(b) canonical representation

(0, 0)(0, 0)(0, 0)(0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)

Figure 4.4: (a) A set of 8 distinct fixed polyominos. (b) The canonical representation for each
polyomino, has a cell at the origin, and no cells in the crossed-out coordinates. Every fixed poly-
omino corresponds to a unique canonical representation.

of feasible sites so that for s < A,

Φ(s) ∈ SF (Φ(C)) ⇐⇒ �`(L(Φ(s))) ∩
⋂

c∈C
�`(L(Φ(c))) , ∅

⇐⇒ �`(L(s) + L(ϕ)) ∩
⋂

c∈C
�`(L(c) + L(ϕ)) , ∅

⇐⇒ �`(L(s)) ∩
⋂

c∈C
�`(L(c)) , ∅

⇐⇒ s ∈ S F (C).

(4.19)

63

Chapter 4. Kinetic Monte Carlo Simulations

(0,0)

(2,2)

(3,3)

(0,4) (1,4)

(1,1)

(−1,2)(−2,2)

cLL

�ϕ =
−c LL

(2, 0)(4, 2)

�Φ
(0,0)

Figure 4.5: Any set of attached leg configurations has a canonical representation where the left-
most of the lowermost sites (cLL) is translated to the origin. This is the canonical transformation
φ̂ = −cLL.

4.3.5 Canonical configurations

To determine the rate of attachment from configuration C, we need to compute SF (C) (the

set of all feasible sites), and the effective feasibility fB(C)(s) for each site s ∈ SF (C), which

in turn requires a Metropolis sampling (Chapter 5) of the Boltzmann distribution B(C)

over sites in F(C).

We take advantage of the translational invariance of F (Equation 4.18) and SF (Equa-

tion 4.19) to allow values computed for SF (C) and fB(C)(s) to be translated and reused for

any other C′ ⊂ L, where C′ = Φ(C) = C + ϕ. We define an equivalence class for configu-

rations C,

E(C) =
{
C′ ⊂ �2

∣∣∣ ∃ϕ ∈ �2, (C′ = C + ϕ)
}
. (4.20)

Any configuration in E(C) can use the translated values for SF (C) and fB(C), so we only

need to compute these values for a single configuration from the entire equivalence class.

Uniquely identifying a canonical configuration from the equivalence class as a repre-

sentative could conceivably be done in many ways. We take inspiration from the algo-

rithms used in counting polyominos. A fixed polyomino [51] is a connected set of lattice

64

Chapter 4. Kinetic Monte Carlo Simulations

coordinates or cells (Figure 4.4a). In direct analogy to the (unconnected) coordinate sets

for attached leg configurations, fixed polyominos are transitionally invariant and have an

equivalence relation over translationally identical fixed polyominos. In order to count ex-

actly one member from each equivalence class, enumeration algorithms [85, 104] define

the concept of a canonical representation of a fixed polyomino (Figure 4.4b). All fixed

polyominos correspond to some canonical fixed polyomino with one cell at the origin, no

cells below the x-axis and no cells to the left of the origin with y = 0. We extend these

concepts to walker leg configurations C.

Definition 4.3.7. The canonical mapping for attached leg configuration C takes the left-

most of the lowermost sites, cLL, and translates it to the origin (Figure 4.5). The canonical

translation of configuration C is Φ̂C, where

Φ̂C(c) = c − ϕ̂ = c − cLL.

Definition 4.3.8. The set of feasible canonical configurations is defined as

�̂ =
{
C ⊂ �2

∣∣∣∣ [1≤|C|≤k] ∧ [F(C) , ∅] ∧
[
∀ (cx, cy) ∈ C, (cy > 0) ∨ (cy = 0 ∧ cx ≥ 0)

]}
.

The set of all possible canonical lattice coordinates can be defined as the set of all

coordinates from any canonical configuration:

S
�̂

=
⋃

C∈�̂
C. (4.21)

Figure 4.6 shows S
�̂

by noting that each canonical configuration has a walker with a leg

attached at the origin, and the furthest that another leg can be feasibly attached is distance

dmax = 2`, so

S
�̂

=
{
(cx, cy) ∈ �2

∣∣∣∣
[
(cy > 0) ∨ (cy = 0 ∧ cx ≥ 0)

]
∧

[
‖L((cx, cy)) − L((0, 0))‖ ≤ 2`

]}
.

(4.22)

65

Chapter 4. Kinetic Monte Carlo Simulations

(0,0)

�

�

Figure 4.6: The set of all possible canonical lattice coordinates is S
�̂

, shown in red. Any canonical
configuration has one attached foot at the origin and can only reach sites closer than the maximum
site distance of dmax = 2`.

4.3.6 Unique canonical configurations

The set �̂ contains a single representative from each translational equivalence class of

attached leg configurations. However, as shown in Figure 4.7, not every attached leg

actually adds a new constraint on the body location. If C ⊂ C′ and F(C) = F(C′), then

precomputed values for B(C), SF (C), and fB(C) can be used for C′, with the exception that

sites in C′ \C are feasible from C, but not from C′, so that

SF (C′) = SF (C) \C′. (4.23)

This allows us to further reduce the set of precomputed configurations, from all of �̂

to only those canonical configurations that define a unique set of leg constraints, i.e., to

canonical configurations Ĉ where F(Ĉ) , F(Ĉ′) for all Ĉ′ ⊂ Ĉ.

Definition 4.3.9. The unique canonical configuration ordering, � on �̂, is defined such

that Ĉ � Ĉ′ if Ĉ ⊆ Ĉ′, and F(Ĉ) = F(Ĉ′).

66

Chapter 4. Kinetic Monte Carlo Simulations

�
(0,0)

(1,1)

(0,3)

(3,2)

�C� = {(0, 0), (0, 3), (3, 2), (1, 1)}

(0,0)

(3,2)

(0,3)

�C = {(0, 0), (0, 3), (3, 2)}

Figure 4.7: The canonical configurations Ĉ = {(0, 0), (0, 3), (3, 2)} and Ĉ′ =

{(0, 0), (0, 3), (3, 2), (1, 1)} have the property that F(C) = F(C′) and C ⊂ C′. Thus, the two config-
urations have the same body position B, the same set of feasible sites, and the same feasibility for
those sites. We write Ĉ � Ĉ′. In the case of canonical configuration Ĉ, all of the attached locations
impose a constraint on the body, so there is no Ĉ′′ ⊂ Ĉ with F(C′′) = F(C). Thus Ĉ is a minimal
element of the relation (�̂,�), and U(Ĉ) = Ĉ. We call Ĉ ∈ �̂ a unique canonical configuration.

Using this definition, if Ĉ � Ĉ′, the precomputed body distribution and attachment

feasibility probabilities for Ĉ can be used for Ĉ′.

Definition 4.3.10. The set of unique canonical configurations �̂ ⊆ �̂ is the set of minimal

elements of the unique canonical configuration ordering � over �̂.

Definition 4.3.11. The unique canonical mapping U : �̂ → �̂ takes a canonical configu-

ration Ĉ to its equivalent unique canonical configuration Û = U(Ĉ), which is the minimal

element of the chain of Ĉ in the canonical equivalent mapping �.

4.4 KMC simulation of point-bodied spiders

For a KMC simulation in state ω = (P, A), a single KMC step involves determining the

next state ω′ = (P′, A′) and time increment τ. Our goal in this section is to show how this

67

Chapter 4. Kinetic Monte Carlo Simulations

Part Parameter Description Units
Walker k The number of legs (≥ 2)

` The leg length nm
Kinetics k+

S The attachment pre-rate for substrates s−1

k+
P The attachment pre-rate for products s−1

kcat The catalysis rate s−1

k−S The off rate for substrates s−1

k−P The off rate for products s−1

T The system temperature K
f The force exerted on walkers pN
∆U0(p) The walker body’s internal energy pN nm

Surface ~δ The lattice spacing for surface sites nm
L The set of valid lattice points

Table 4.1: The relevant parameters to define the KMC simulation of a point-bodied MVRW mov-
ing over a lattice surface under the DNA substrate/product kinetics.

step is computed for the case of point-bodied spiders moving over lattices as described in

Sections 4.3 and 4.2.

4.4.1 The canonical mapping determines the attachment rates

The MVRW kinetic Monte Carlo simulation must compute transition rates for any walker

with attached legs A corresponding to configuration C = L−1(A). This configuration has a

canonical mapping Φ̂ and canonical translation ϕ̂, so that we have canonical configuration

Ĉ = Φ̂(C) ∈ �̂. Based on Definitions 4.3.10 and 4.3.11, this canonical configuration

corresponds to a unique canonical configuration Û = U(Ĉ) ∈ �̂. Thus, to make the

computation of transition rates efficient, the MVRW kinetic Monte Carlo simulation uses

the following precomputed values for each Û ∈ �̂:

• SF (Û) — The set of feasible sites from configuration Û.

•
〈
B(Û)

〉
— The mean body location estimated as

〈
B(Û)

〉
= 1

N

∑N
i=1 bi with samples

{
bi ∼ B(Û)

}N

i=1
.

68

Chapter 4. Kinetic Monte Carlo Simulations

• fB(Û)(s) — The feasibility probability for each site in SF (Û).

4.4.2 Possible transitions

From ω = (P, A) all transitions correspond to the five reactions of Equation 3.6, and in-

clude the unimolecular dissociation and cleavage reactions of the attached legs, and the

bimolecular association reactions of the unattached legs. The rates for these reactions are

summarized in Table 4.2. The overall rate of all possible transitions is then

R = R−P + R−S + Rcat + R+
P + R+

S . (4.24)

Chemical pathway Candidate sites Overall rate Next state (ω′)
Product dissociation AP = {Ai

P}ni=1 R−P = nk−P (A \ {Ai
P}, P)

Substrate dissociation AS = {Ai
S}mi=1 R−S = mk−S (A \ {Ai

S}, P)
Substrate cleavage AS = {Ai

S}mi=1 Rcat = mkcat (A \ {Ai
S}, P ∪ {Ai

S})
Product association FP = {F i

P}ui=1 R+
P = (d)k+

P

u∑

i=1

f (F i
P) (A ∪ {F i

P}, P)

Substrate association FS = {F i
S}vi=1 R+

S = (d)k+
S

v∑

i=1

f (F i
S) (A ∪ {F i

S}, P)

Table 4.2: The rates of all possible chemical transitions determine the probability of the next
transition and the overall rate R. The association reactions are proportional to d = k − |A|, the
number of detached legs. The next state ω′ that the system moves to when attached site i is chosen
for dissociation or cleavage, or when feasible site i is chosen for attachment is shown for each of
the pathways.

Unimolecular rates. The set of attached sites A is non-empty and can be divided into the

attached products AP = P ∩ A, and attached substrates AS = A \ P. Assume |AP| = n

and |AS| = m. Then the overall rates for product dissociation, substrate dissociation, and

substrate cleavage are R−P , R−S , and Rcat, as given in Table 4.2.

69

Chapter 4. Kinetic Monte Carlo Simulations

Attachment rates. Using the definitions of the canonical mapping from Section 4.4.1, let

the current configuration be C, with unique canonical configuration Û. If |C| < k, then

there are d = k − |C| detached legs, and so we must determine the rate of each possible

association reaction for these legs. The set of feasible sites from configuration C is

SF (C) =
(
Φ̂−1

(
SF (Û)

)
∩ L

)
\C. (4.25)

In Equation 4.25, the intersection with L ensures that the feasible sites are valid lattice

coordinates, and, as in Equation 4.23, the removal of points in C ensures that those sites

corresponding to sites in Ĉ \ Û are not feasible since they are already attached. Thus, the

effect of Equation 4.25 is to shift the feasible sites for the unique canonical configuration

Û back to the locality of the current configuration C, and to eliminate those sites which

are outside the lattice or already part of C. The result is the feasible sites SF (C), which we

divide into FP = SF (C) ∩ P and FS = SF (C) \ P. Let |FP| = u and |FS| = v. Then the rates for

these attachment reactions are given by Definition 3.6.3, and are summarized in Table 4.2

4.4.3 KMC step

With all transitions and rates enumerated in Table 4.2, we can now employ the KMC

algorithm to select the next walker action and elapsed time according to the methodology

of Section 4.1.1. We use random number α ∼ Uniform(0,R) to select the next category of

chemical reaction and the specific site and leg involved, as depicted in Figure 3.6. Then

we use τ ∼ Exp(R) as the time increment.

Dissociation. The only potential problem with this scheme is that dissociation of all legs

will lead to dissociation of the entire walker from the surface, which leads to an undefined

walker state. From the standpoint of measuring diffusive properties of walker motion,

dissociation is problematic (Section 6.5). However, as long as the attachment rates are

much faster than detachment rates, the probability of simultaneous detachment of all legs

70

Chapter 4. Kinetic Monte Carlo Simulations

R−
P R−

S R+
SR+

PRcat

A1
P A2

P An
P Am

SA1
S A1

S Am
S F1

P Fu
P F1

S Fv
S

R0

α ∼ Uniform(0,R)

Figure 4.8: From a state with more than one leg attached, there are 5 categories of transitions
that can occur, corresponding to each of the chemical reactions of Equation 3.6. The KMC al-
gorithm uses a single random number uniform over [0,R) to select the next reaction type and the
corresponding site so that the overall probability of selecting a transition with rate r is r/R.

becomes exponentially small in terms of the number of legs k. In the unlikely, but still

possible, event that |A| = 1 and the next action chosen is dissociation or cleavage, we

define a hopping rule, whereby the walker maintains its previous body distribution B(A),

and associated attachment rates, while it waits for one of the k detached legs to attach to

a feasible site s ∈ SF (A). Thus, the next state will be A = {s}, and the next time will be

incremented by the τ time increment computed for dissociation, plus the time increment

σ ∼ Exp(R′), where R′ is the total attachment rate for all k legs to all feasible sites FS =

{F i
S}vi=1, and FP = {F i

P}ui=1, as well as the attachment rate for the now unoccupied site a1 ∈ A,

R′ = R′+S + R′+P = (k)k+
S

v∑

i=1

f (F i
S) + (k)k+

P

u∑

i=1

f (F i
P) + (k)k+

π(a1) f (a1). (4.26)

4.4.4 Precomputation of configurations and transition rates

The sets �̂, �̂, and S
�̂

and the mapping U depend only on the simulation variables (k, `, δ)

from Table 4.2. This means that these values need to be precomputed only for each unique

set of parameters (k, `, δ), which we call a pattern of the walker gaits on the lattice. The

71

Chapter 4. Kinetic Monte Carlo Simulations

pattern (k, `, δ) uniquely defines the variables

�̂(k, `, δ) = �̂,

�̂(k, `, δ) = �̂,

S
�̂
(k, `, δ) = S

�̂
, and

U(k, `, δ; Ĉ) = U(Ĉ).

(4.27)

The simulation framework makes use of our natural-key based uniqueness constraint man-

agement (Chapter 9) to ensure that there is at most one pattern cache for each unique value

of the tuple npat = (k, `, δ).

The body distribution B and site feasibility probabilities fB for all configurations in

�̂ are also cached by the simulation framework. These depend on the pattern parameters

npat = (k, `, δ), as well as the parameters ∆U0(p), T , and f from Table 4.2. Thus, the

parameters (npat,∆U0,T, f) define the attachment transition rates, and so define

B(npat,∆U0,T, f ; C) = B(C),

FB(C)(npat,∆U0,T, f) = FB(C), and

fB(C)(npat,∆U0,T, f ; s) = fB(C)(s).

(4.28)

Similar to the pattern cache, the simulation framework represents at most one transition

cache for each unique value of the tuple ntrans = (npat,∆U0,T, f).

72

Chapter 5
Metropolis Sampling and the Equilibrium Body
Position

The MVRW model assumes that the body and unattached legs come to mechanical equi-

librium in between the discrete chemical state transitions. In Section 3.6 we explain how

the attachment rate r i
B(s) of a leg to a feasible site s depends on the equilibrium distri-

bution, via the attachment feasibility probability f i
B(s) (Definition 3.6.2). Calculation of

f i
B(s) requires integration over the probability distribution pB,

f i
B(s) =

∫

F
pB(v, θ)I i

(v,θ)(s) dv dθ.

With a sample from B, we can approximate the value of this integral and obtain the needed

feasibility probabilities f i
B(s) for each s ∈ SF . Samples b1, . . . , bn ∼ B can be used as an

unbiased estimator for a function f of the random variable B giving the body’s equilibrium

position [68],

〈 f (B)〉 =

∫

F
f (p)pB(p)d p =

〈
1
n

n∑

i=1

f (bi)
〉
. (5.1)

Distribution pB is defined in Equation 3.8 as the Boltzmann distribution over F under

energy function ∆U f (b) from Equation 3.18. The energy at each position is simple to com-

pute; however, normalizing the probabilities of the Boltzmann distribution in Equation 3.8

requires computation of the partition function (Equation 3.9),

Z =

∫

F
e−βE(p)d p. (5.2)

Other than in the simplest cases, direct computation of Z is difficult. The Metropolis-

Hastings (MH) sampling algorithm (Section 5.1) allows B to be sampled using only ratios

of the point probabilities pB(b′)/pB(b) and thus the partition function Z cancels, eliminat-

ing the need to compute it.

In the general MVRW model as outlined in Chapter 3 we potentially need to sample

from a different equilibrium distribution B on each KMC step. However, as described in

73

Chapter 5. Metropolis Sampling and the Equilibrium Body Position

F

pB(b) = P[B = b]

b0 = b1 = b2

b3 = b4

b5 = b6 = b7 = b8

b9

b10

Figure 5.1: The Metropolis-Hastings algorithm samples from probability distribution pB, by sim-
ulating a Markov chain with an equilibrium distribution equal to pB. The algorithm iteratively
generates a sequence of points {bi}Ni=0. From position bi it chooses candidate point b?, and decides
with probability α = min

{
1, pB(b?)/pB(bi)

}
to accept the candidate point and set bi+1 B b?, or

reject the candidate point and set bi+1 B bi. In this figure a red cross represents a rejected point,
and a labeled black point represents an accepted point.

Section 4.4, the KMC simulation of point-bodied walkers over a regular lattice can take

advantage of translational invariance to precompute transition rates for all possible leg

configurations. Hence, Metropolis-Hastings is run as a preliminary step for each unique

canonical configuration for a particular set of walker parameters, and then all simulations

of that walker can rely on the single master set of transition probabilities (Section 4.4.4).

74

Chapter 5. Metropolis Sampling and the Equilibrium Body Position

5.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm [54, 87, 107] samples from pB by transforming

any candidate distribution Q(b→ b′) over the distribution domain into an ergodic Markov

process that has pB as an equilibrium distribution. The Metropolis Markov chain is defined

by transition probabilities Q̃, where

Q̃(b→ b′) = Q(b→ b′)α, (5.3)

and

α = min
{

1,
pB(b′)Q(b′ → b)
pB(b)Q(b→ b′)

}
. (5.4)

The result of the MH algorithm is a sequence of values {bi}Ni=0. At step i, the simulation

has value bi and it uses this to draw a candidate value b? ∼ q(b) = Q(b → b?). If

Equation 3.8 is written as pB(b) = f (b)/Z, and we use a symmetric candidate distribution,

Q(b→ b′) = Q(b′ → b), then from Equation 5.4, we calculate

α = min
{

1,
(f (b?)/Z)Q(b? → bi)
(f (bi)/Z)Q(bi → b?)

}
= min

{
1,

f (b?)Q(b? → bi)
f (bi)Q(bi → b?)

}
= min

{
1,

f (b?)
f (bi)

}
.

(5.5)

With probability αwe choose to accept the point and we set bi+1 B b?, otherwise we reject

this candidate value and set bi+1 B bi. We repeat this until we have generated N values.

This procedure is illustrated in Figure 5.1. Importantly, using Equation 5.5 we never have

to compute the partition function Z because it cancels in the ratio of the probabilities. This

makes the MH algorithm an efficient and effective means of sampling from pB.

5.2 Metropolis-Hastings implementation

Implementation of MH involves the setting of many algorithm parameters, including the

candidate distribution, which can drastically affect the convergence rate and the rejection

rate of the sampling procedure. The computational time and the resulting quality of the

75

Chapter 5. Metropolis Sampling and the Equilibrium Body Position

MH samples depend on these parameters. When the MH samples are being used for a par-

ticular statistical task, such as estimating tail probabilities of the equilibrium distribution,

there are some analytical methods for selecting optimal parameter values [103]. However,

for most applications, including the MVRW model, the choice of parameters must be done

by trial and error [46], where one attempts to reduce the rejection rate, while simultane-

ously increasing the mixing rate and reducing the autocorrelation of the sequence.

5.2.1 Candidate distribution

The candidate distribution Q(b → b′) can be chosen almost arbitrarily, but the choice of

distribution affects the rejection rate and therefore the mixing time of the chain. Two com-

mon approaches to the selection of candidate distribution are the random walk Metropolis

chain and the independent sample Metropolis chain [25]. A random walk Metropolis chain

has

Q(b→ b′) = q(b′ − b), (5.6)

where q(x) is a symmetric multivariate density. The candidate site is b? = bi + x, where

x ∼ q(x). Thus the candidate site is chosen by taking a random step x from the current

site.

An independent sampling chain uses

Q(b→ b′) = q(b′). (5.7)

Thus, the choice of candidate site is independent of the current site, and q(b′) should be

chosen to be as close to pB(b′) as possible. If the chosen candidate distribution is not

symmetric, then the assumptions of Equation 5.5, do not hold, and the ratio q(bi)/q(b?)

must also be computed to get α.

Either of these methods can work but the choice of the candidate distribution, as well as

the distribution parameters, affects the convergence rate and rejection rate of the Markov

76

Chapter 5. Metropolis Sampling and the Equilibrium Body Position

process. Typically the candidate distribution is thought of as a tuning parameter [125],

and the choice is dictated by trading off large variance (which leads to fast mixing but high

rejection rates) with small variance (which has slow mixing but low rejection rates).

For the MVRW application, we use the random walker Metropolis chain and choose

the variance as a function of the size of the feasible region F . We can easily compute the

maximum horizontal or vertical dimension of the bounding box around F , as

dmax = max
[{
|bx − b′x|

∣∣∣ (bx, by) ∈ F
}
∪

{
|by − b′y|

∣∣∣ (bx, by) ∈ F
}]
. (5.8)

Then we let our candidate distribution be

q(b) = Uniform(−δ, δ) , (5.9)

where δ is defined by free parameter ρ,

δ = dmax/ρ. (5.10)

As the parameter ρ is increased, the steps in our random walk Metropolis chain become

smaller. When ρ ≤ 1, the steps are large enough to cover all of F from any current position

bi, so the method becomes essentially equivalent to independent chain Metropolis. We

found that values of ρ ∈ [3, 10] give acceptable mixing times and low rejection rates. We

use ρ = 5 for the results of Chapter 6.

5.2.2 Burn-in

The sequence of MH samples {bi}Ni=0 always starts at a provided initial point b0, which

is not necessarily a sample from equilibrium distribution B. Thus the first few values

of the chain will depend on the initial point. A typical implementation strategy drops a

fixed number of initial points aMH, assuming that thereafter the chain has reached equilib-

rium [46]. Depending on the nature of the distribution and the application, a threshold can

be set so that subsequent points are independent of the starting value with high probabil-

ity [45].

77

Chapter 5. Metropolis Sampling and the Equilibrium Body Position

Symbol Description Standard Setting
Random number generator LCG64

N number of samples 100000
aMH Initial samples to skip 500
bMH Thinning 10
ρ Step size ratio 5
q(b) Random Walk Metropolis candidate distribution Uniform(−δ, δ)

Table 5.1: Metropolis-Hastings parameters

5.2.3 Thinning

While the sequence {bi}Ni=0 will eventually be samples from the equilibrium distribution,

these samples are correlated, especially when the candidate distribution has small vari-

ance. While correlated samples can be used as an unbiased estimator for B, the number of

samples needed increases with the autocorrelation of the series [45]. To reduce correlation,

and thus the number of stored samples needed, MH implementations often use a process

of thinning or sub-sampling of the sequence of points returned. The algorithm keeps only

every bMH-th sample after burn-in is complete.

5.2.4 MH parameters

We summarize the parameters used for the MVRW simulations in Table 5.1. In Section 8.2

we discuss parallel random number generation using the leapfrogging method for linear

congruential pseudo-random number generators [11]. The overall number of MH samples

needed when dropping aMH samples for burn-in and thinning by bMH, given we desire N

total samples returned, is

Ntotal = aMH + N(bMH). (5.11)

78

Chapter 6
Results: Multivalent Random Walkers Move
Superdiffusively Along Tracks

By itself a multivalent random walker is just a rather unsophisticated multivalent enzyme,

but when paired with an appropriately designed nanoscale track of substrates it becomes

a molecular transport device, able to move superdiffusively even under the influence of

an external load force. Using the KMC simulations for point-bodied walkers on regular

lattices (Section 4.4), we studied the motion of MVRWs moving over a semi-infinite track

of substrates 3-wide (Figure 6.1). The relevant simulation parameters are summarized

in Table 6.1. As shown in Figure 6.1, the walker starts with a single leg attached to the

middle leftmost site. The remaining legs quickly attach, and the walker begins to move

over the surface. From this initial position, the lack of substrates to the left means the

walker can only move in the + x̂ direction, so we apply a force in the − x̂ direction to

oppose the walker’s motion. If the force applied to the walker is f = (fx, fy), we let fy = 0,

and write f = − fx as a scalar for the magnitude of the force in the − x̂ direction. We

limit f ≤ 4.0 pN because larger forces result in insignificant motion under the parameters

of Table 6.1. The upper bound of f = 4.0 pN is near the maximum force a DNA-based

realization of a MVRW could a priori be expected to move against, as the stall force for

kinesin is approximately 5 − 8 pN [123], and the dissociation force for double-stranded

DNA is < 12 pN [35].

Under the kinetics from Table 6.1, kcat serves a special role as it represents the sole

kinetic difference between substrates and products. We have fixed k+
S = k+

P so that there

is no attachment bias between substrates and products. An unattached leg will just as

rapidly bind to a feasible substrate as to a feasible product. Once bound, a leg–product

complex unbinds at rate k−P = 1, and a leg–substrate complex unbinds at rate k−S + kcat.

We assume that substrate unbinding is much less probable than substrate catalysis so we

let k−S = 0. Then if kcat = 1, there is no residence time bias between substrates and

79

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

x̂(nm)

ŷ(nm)

f = 2.0pN

0

start site

∆E > 0∆E < 0

10 20
0

10

p(t)

Figure 6.1: A snapshot several hundred steps into a MVRW simulation. The surface track for
walkers in this set of simulations consists of a semi-infinite strip of substrate sites 3-wide. Shown
are the circular constraints imposed by the attached legs, and the probability density pB for the
body’s equilibrium position (as a heat map). The walker has one unattached leg, and the feasibility
probability (f (s)) with which it would attach to site s is shown by the size and color of the site.

products—the expected duration of a leg–product binding is the same as that for a leg–

substrate binding. While substrates are still converted into products, the kinetics of the

walker attachment and detachment are identical for both species. Hence, a walker with

kcat = 1 is equivalent to a walker moving over an all-product surface. But an all-product

Table 6.1: Model parameters used for simulations.

Parameter Description Symbol Value
Number of legs k 4
Leg length ` 12.5 nm
Substrate spacing – 5.0 nm × 5.0 nm
Track width – 3 sites
Track length – semi-infinite
Initial set of product sites P ∅
Effective substrate binding rate k+

S 1.0 × 103 s−1

Effective product binding rate k+
P 1.0 × 103 s−1

Substrate dissociation rate k−S 0.0 s−1

Product dissociation rate k−P 1.0 s−1

Catalysis rate kcat ≤ 1.0 s−1

Temperature T 300 K
Force in − x̂ direction f ≤ 4.0 pN
Largest simulated time tmax 1.0 × 106 − 1.0 × 107 s

80

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

surface provides no chemical free energy, and so an all-product walker system must move

diffusively. In reality, the walkers with kcat = 1 still release chemical energy when they

catalyze a substrate, but the kinetics prevent them from utilizing that energy, and so they

represent the no-energy baseline motion of walkers. In contrast, when kcat < 1 there

is a residence time bias, where leg–substrate bindings are longer in duration than leg–

product bindings, as the leg must wait until the slow catalysis step completes before it can

unbind. The only part of the walker kinetics which takes into account the chemical free

energy released in substrate catalysis is the assumption of irreversibility in the enzymatic

conversion from substrate to product. As described in Section 2.1, in enzyme kinetics there

is some non-zero rate for the reverse of the catalytic process. However, if the Gibbs free

energy (∆G) drop from substrate to product is large enough, the reverse rate is so small that

it is for all practical purposes zero, and is omitted from the walker kinetics in our model.

Thus, we vary the kcat parameter to control the residence time bias between visited and

unvisited sites, and at kcat = 1 the motion of the walker is equivalent to the no-free-energy

case, but we do not directly incorporate ∆G into the model, as any free energy change large

enough to make the substrate modification irreversible is sufficient to maintain the invariant

that all unattached substrate sites are unvisited and therefore maintains the residence time

bias between unvisited substrate sites and visited product sites.

6.1 Measuring the motion of multivalent random walkers

Unlike natural molecular motors, the motion of MVRWs is not ergodic, in the sense that

the motion of the walkers depends on the state of the surface sites, and as time increases

the limited local supply of substrates is depleted. The irreversibility of substrate cleavage

implies that the Markov process is not recurrent, and proceeds through a series of transient

states (Section 3.8). This implies that many statistical measures reported when analyzing

the motion of natural molecular motors and other single particle transport systems, such as

velocity [14, 69] and temporal MSD [74], are not valid in the case of the MVRW model,

81

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

and we require more general methods of analyzing the motion of walkers applicable to

non-ergodic systems.

6.1.1 Mean squared displacement

In single-particle tracking, the stochastic motion of individual molecules is frequently an-

alyzed in terms of the mean squared displacement (MSD) [129]. The MSD is the variance

in the displacement, Var (‖p(t)‖) =
〈
‖p(t)‖2

〉
. For any diffusive process (i.e., an unbiased

random walk) the MSD will scale linearly with time. Anomalous diffusion [40, 55] is

characterized by the MSD scaling as some non-linear power 0 ≤ α ≤ 2,

〈
‖p(t)‖2

〉
= (2dD)tα,



α = 0 stationary

0 < α < 1 subdiffusive

α = 1 diffusive

1 < α < 2 superdiffusive

α = 2 ballistic or linear

. (6.1)

In Equation 6.1, D is the diffusion constant, and d is the dimension of the space the walkers

move in, which for fixed-width tracks (Figure 6.1) is effectively d = 1. MSD can either

be computed as a temporal average (over different δt values for a single walker trajectory)

or an ensemble average (over absolute t for an ensemble of trajectories from identical

walker systems). Many biological systems are (or are at least assumed to be) ergodic in

the sense that the motion of a walker is independent of its absolute position on the track

and does not depend on its previous motion over a region of that track [102]. Under

the assumption of ergodicity the temporal and ensemble MSD are equivalent (assuming

sufficient measurement resolution), but when a non-ergodic system is analyzed, only the

ensemble average is meaningful for use in characterizing anomalous diffusion [67, 80].

MVRWs are a non-ergodic system because they irreversibly modify the surface as they

move over it. Thus, the motion of the walker depends on its absolute position on the track

82

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

and specifically on whether the local sites are products or substrates. Hence, only the

ensemble MSD can be used to study MVRWs.

6.1.2 Number of sites cleaved

The number of sites a walker cleaves as a function of time, N(t), is a random variable that

provides several pieces of useful information, especially for walkers moving on 1D tracks.

Under the kinetics of Table 6.1, a leg that binds a substrate always cleaves the site to leave

a product because rate k−S = 0. This implies that N(t) is equivalent to the number of sites

visited, which for unbiased random walkers in 1D is

N(t) ∝ tγ



γ = 0 stationary

0 < γ < 1/2 subdiffusive

γ = 1/2 diffusive

1/2 < γ < 1 superdiffusive

γ = 1 ballistic

. (6.2)

The only source of energy in the system is manifested in the irreversibility of substrate

cleavage (∆G < 0), thus a walker needs to constantly visit and cleave new substrate sites

to maintain a constant supply of energy. Unless γ = 1,

dN(t)
dt
∝ tγ−1 −−−→

t→∞
0. (6.3)

Thus, in 1D, a MVRW can maintain a constant supply of energy only while it is moving

ballistically.

6.1.3 First passage time

Another useful measure of random motion is the first passage time, Fpt(d), which for each

distance d > 0 is a random variable giving the time for a walker to move at least distance

83

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10−1 100 101 102 103 104 105 106 107

Time t (s)

102

103

104

105

106

107

108

109

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t�
�p

(t
)�

2 �
(n

m
2)

kcat = 1

kcat = 0.5

kcat = 0.1

kcat = 0.05

kcat = 0.01

kcat = 0.005

kcat = 0.001

kcat = 0.0005

kcat = 0.0001

diffu
sive (α = 1)

ba
lli

sti
c (

α
=

2)

Figure 6.2: Simulation estimate of
〈
‖p(t)‖2

〉
when f = 0. Walkers with kcat = 1 move diffusively,

those with kcat < 1 move superdiffusively, but eventually exhaust their local supply of substrates and
become ordinary diffusive. True transitions to diffusion will occur above simulated time tmax = 107.

d from the origin [105]. The mean first passage time,
〈
Fpt(d)

〉
, gives the average transport

time for the walker to move distance d. First passage time can also be used to characterize

diffusive motion where
〈
Fpt(d)

〉 ∝ t2 for diffusive motion and
〈
Fpt(d)

〉 ∝ t for ballistic

motion in 1D.

6.2 Walkers move superdiffusively

Figure 6.2 shows the ensemble estimates (N = 1000) for MVRWs moving in the absence

of a load force. Initially (below the characteristic timescale of 1/kcat) the walkers move

subdiffusively. As expected the kcat = 1 walkers never move faster than diffusion. How-

ever, as kcat is decreased, walkers initially move more slowly due to the the slower catalysis

kinetics, but once sufficient time has passed, they move superdiffusively with α > 1. The

84

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10−1 100 101 102 103 104 105 106 107

Time t (s)

10−1

100

101

102

103

104

105
N

um
be

ro
fs

ite
s

ca
ta

ly
ze

d
�N

(t
)�

kcat = 1

kcat = 0.5

kcat = 0.1

kcat = 0.05

kcat = 0.01

kcat = 0.005

kcat = 0.001

kcat = 0.0005

kcat = 0.0001

ball
isti

c �N
(t)
� ∝ t

diffusive �N(t)� ∝
√ t

Figure 6.3: Simulation estimate of 〈N(t)〉, the number of substrates catalyzed to products when
f = 0. Since k−S = 0, this is equivalent to the number of distinct sites visited at time t. Walkers with
kcat < 1 catalyze substrates at a nearly linear rate over many decades in time. This is necessary to
maintain a constant supply of chemical energy to sustain superdiffusive motion.

smaller the value of kcat, the more superdiffusively the walkers move, with α approaching

2 for the smallest kcat values. This superdiffusive behavior persists over several decades

in time, during which the walkers are moving with a bias away from the origin and in

the direction of unvisited sites. Because of this outward-directed bias, the walkers with

kcat < 1 eventually overtake (in MSD) the kcat = 1 walkers given sufficient time. However,

the ability to move superdiffusively depends on the local availability of the immobile sub-

strate fuel, which is consumed as the walker moves over the track. Hence if a walker moves

back over previously visited sites, it becomes starved for fuel. In these energy-devoid re-

gions the walker can only move diffusively like the kcat = 1 walkers, and so superdiffusion

must eventually give way to regular diffusion, even for the smallest values of kcat.

Figure 6.3 shows the number of sites catalyzed over time, and its rate of change repre-

85

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

sents the average availability of substrate fuel. As long as the number of sites cleaved is

linear with time, the walkers are receiving fuel at a constant rate and their motion is biased

superdiffusively in the direction of new sites, which allows their constant fuel supply to

be maintained. When N(t) becomes sub-linear the walkers begin their transition in MSD

from superdiffusion back to ordinary diffusion.

The mean first passage time,
〈
Fpt(d)

〉
, shown in Figure 6.4, gives yet another way to

analyze the motion of these same walker configurations. Especially for the application of

cargo transport, the first passage time is a practical measure of the utility of the MVRW

system, showing that the walkers with kcat < 1 will eventually make it to a goal a given

distance d from the origin faster than the no-energy kcat = 1.0 walkers, as long as the

distance d is large enough.

86

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

101 102 103

Distance d (nm)

10−3

10−2

10−1

100

101

102

103

104

105

106

�F
pt

(d
)�

(s
)

kcat = 0.0001
kcat = 0.0005
kcat = 0.001
kcat = 0.005
kcat = 0.01
kcat = 0.05
kcat = 0.1
kcat = 0.5
kcat = 1.0

ballistic: �Fpt(d)� ∝ t

diffusive: �Fpt(d)� ∝ t2

Figure 6.4: Simulation estimate of
〈
Fpt(d)

〉
, the mean first passage time to reach distance d from

the origin when f = 0. Lower times indicate faster mean time to travel distance d. We find
that for short distances, the faster kinetics of the diffusive kcat = 1.0 walkers is superior, but the
superdiffusive motion of the walkers with kcat < 1 leads to faster mean transit times for longer
distances.

6.3 Walkers do work against a load

In order to experimentally quantify the walking velocity and other motor characteristics,

natural motors have been studied using experimental techniques that allow the application

of precise sub-piconewton forces on walkers while simultaneously measuring position to

nanometer accuracy [30, 91, 119]. The force f applied to walkers in these experimental

setups is constant, but can be applied in any direction. This allows the mechanics of

the walking mechanism to be probed in controlled ways not directly possible for walkers

moving actual nanoscale cargo loads. The natural biological function of a molecular motor

does not necessarily involve motion in direct opposition to a constant force solely for the

87

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

purpose of generating mechanical work. Natural molecular motors have more practical

transportation tasks that are not as narrowly defined. However, observing the behavior of

walkers under these artificial, controlled conditions leads to a microscopic understanding

of how energy is used to bias the walking mechanism and allows probing of the sequence

of internal states the walker molecule moves through in a single step [29].

6.3.1 Experimental setup

As a parallel to the experimental measurements of the effect of load force used for mea-

suring kinesin, we study the motion of a point-bodied MVRW as it moves under the effect

of a constant conservative load force f in the − x̂ direction (Figure 6.1). Figure 6.5 shows

ensemble (N = 4000) estimates of
〈
‖p(t)‖2

〉
under a range of forces for kcat = 1 and

kcat = 0.01. Again, kcat = 1 (dashed lines) illustrates the no-energy case and, as shown

previously (Figure 6.2), these kcat = 1 walkers move diffusively without the influence of

force.

When f > 0, the random walk over products is biased in the − x̂ direction. The con-

straints imposed by the surface prevent the walker from moving to the left of the origin,

so the biased random walk will eventually reach an equilibrium position, after which the

motion is stationary (α = 0). Indeed, this is seen for the kcat = 1 walkers, which never

move faster than diffusion; their MSD increases monotonically to the equilibrium value

exactly as if they were undergoing constrained diffusion in a box [106]. In contrast, when

kcat < 1 we again see nearly ballistic motion for all walkers except those under the highest

load forces f > 2.0 pN. Thus, even though the load force attempts to pull the walker body

away from the substrate fuel, the long residence time for leg-substrate binding allows a few

substrate-bound legs to resist the force and keep the walker in proximity to the substrate

sites. Eventually, as in the f = 0 case, all walkers, regardless of kcat, will exhaust their lo-

cal supply of substrates and will find themselves moving over energy-devoid product sites,

which ultimately brings them to the same equilibrium position as the kcat = 1 walkers (for

88

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

a given f).

The change in potential energy of the walkers as they move in opposition to the load

force can be quantified by evaluating the ensemble estimate of the mean position of the

walker body, 〈p(t)〉. We choose to set ∆E = 0 when px = 0, and then ∆E = f px > 0 for

walkers to the right of the origin (Figure 6.1). Figure 6.6 shows the ensemble estimate of

〈∆E(t)〉. As the load force is increased above 0, the walkers attain progressively higher

potential energies, and their peak energies come earlier, as they need to move less distance

to do the same amount of work. However, as the forces are increased beyond f = 2 pN,

the walkers are not able to move very far without being pulled backwards away from their

substrate fuel, and they achieve only modest values of ∆E.

89

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

Ti
m

e
t(

s)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Meansquareddisplacement��p(t)�2�(nm2)

k c
at

=
1.

00
f
=

0.
00

pN

k c
at

=
1.

00
f
=

0.
05

pN

k c
at

=
1.

00
f
=

0.
10

pN

k c
at

=
1.

00
f
=

0.
25

pN

k c
at

=
1.

00
f
=

0.
50

pN

k c
at

=
1.

00
f
=

1.
00

pN

k c
at

=
1.

00
f
=

2.
00

pN

k c
at

=
1.

00
f
=

3.
00

pN

k c
at

=
1.

00
f
=

4.
00

pN

k c
at

=
0.

01
f
=

0.
00

pN

k c
at

=
0.

01
f
=

0.
05

pN

k c
at

=
0.

01
f
=

0.
10

pN

k c
at

=
0.

01
f
=

0.
25

pN

k c
at

=
0.

01
f
=

0.
50

pN

k c
at

=
0.

01
f
=

1.
00

pN

k c
at

=
0.

01
f
=

2.
00

pN

k c
at

=
0.

01
f
=

3.
00

pN

k c
at

=
0.

01
f
=

4.
00

pN

di
ff

us
iv

e
(α
=

1)

ba
llis

tic
(α
=

2)

Fi
gu

re
6.

5:
Si

m
ul

at
io

n
es

tim
at

e
of

〈 ‖
p(

t)
‖2〉 an

d
95

%
co

nfi
de

nc
e

bo
un

ds
(s

ha
di

ng
)

on
a

lo
g-

lo
g

sc
al

e.
R

ef
er

en
ce

lin
es

ar
e

sh
ow

n
fo

r
or

di
na

ry
di

ff
us

io
n

(α
=

1)
an

d
ba

lli
st

ic
m

ot
io

n
(α

=
2)

.
W

al
ke

rs
w

ith
k c

at
<

1
m

ov
e

su
pe

rd
iff

us
iv

el
y,

bu
tw

he
n

f
>

0,
th

ey
ev

en
tu

al
ly

sl
ow

do
w

n
an

d
re

tu
rn

to
th

e
sa

m
e

eq
ui

lib
ri

um
po

si
tio

n
as

th
e

k c
at

=
1

w
al

ke
rs

.

90

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

Ti
m

e
t(

s)

−
200204060

Meanenergy〈∆E(t)〉(pNnm)

k c
at

=
1.

00
f

=
0.

00
pN

k c
at

=
1.

00
f

=
0.

05
pN

k c
at

=
1.

00
f

=
0.

10
pN

k c
at

=
1.

00
f

=
0.

25
pN

k c
at

=
1.

00
f

=
0.

50
pN

k c
at

=
1.

00
f

=
1.

00
pN

k c
at

=
1.

00
f

=
2.

00
pN

k c
at

=
1.

00
f

=
3.

00
pN

k c
at

=
1.

00
f

=
4.

00
pN

k c
at

=
0.

01
f

=
0.

00
pN

k c
at

=
0.

01
f

=
0.

05
pN

k c
at

=
0.

01
f

=
0.

10
pN

k c
at

=
0.

01
f

=
0.

25
pN

k c
at

=
0.

01
f

=
0.

50
pN

k c
at

=
0.

01
f

=
1.

00
pN

k c
at

=
0.

01
f

=
2.

00
pN

k c
at

=
0.

01
f

=
3.

00
pN

k c
at

=
0.

01
f

=
4.

00
pN

Fi
gu

re
6.

6:
Si

m
ul

at
io

n
es

tim
at

e
of
〈∆

E
(t

) 〉
an

d
95

%
co

nfi
de

nc
e

bo
un

ds
(s

ha
di

ng
)

on
a

lo
g-

lin
ea

r
sc

al
e.

W
al

ke
rs

w
ith

f
=

0
al

w
ay

s
ha

ve
∆

E
=

0.
T

ho
se

w
ith

f
>

0
an

d
k c

at
<

1
do

si
gn

ifi
ca

nt
am

ou
nt

s
of

w
or

k,
re

ac
hi

ng
a

pe
ak

en
er

gy
be

fo
re

ev
en

tu
al

ly
co

m
in

g
to

an
eq

ui
lib

ri
um

w
ith

th
e

k c
at

=
1

w
al

ke
rs

.T
hi

s
eq

ui
lib

ri
um

va
lu

e
de

pe
nd

so
n

th
e

fo
rc

e,
bu

tf
or

fix
ed

f,
w

al
ke

rs
un

de
ra

ny
k c

at
w

ill
ev

en
tu

al
ly

re
ac

h
th

e
sa

m
e

eq
ui

lib
ri

um
va

lu
e.

91

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

6.4 Peak work

When f > 0 all walkers eventually move to an equilibrium position with energy ∆E∞(f).

This value is greater than the initial energy, because the walkers begin out of equilibrium

with only a single leg attached (Figure 6.1). The initial energy of the walker ∆E0(f) < 0

because we measure p as the body’s equilibrium position 〈B〉, which under any non-zero

force will have px < 0. However, the kinetics of k+
P � k−P lead to an equilibrium where

legs are almost always attached to a site, and because all sites are to the right of the origin,

the equilibrium position ∆E∞(f) will also necessarily be greater than ∆E0(f). Thus, to

characterize the amount of useful work that a walker can do we take into account the

equilibrium energy specific to each force.

Definition 6.4.1. The expected peak work for a walker moving under force f is

w?(f) = max
t∈[0,tmax]

〈∆E(t; f)〉 − ∆E∞(f).

We estimate ∆E∞(f) as 〈∆E(tmax; f)〉 for the kcat = 1 walker. Figure 6.7a shows w?

as force and kcat are varied. The kcat = 1 walkers never have w? > 0, but the walkers

with kcat < 1 can do significant work under moderate forces. We also show the values

for p?x (f) = maxt∈[0,tmax] 〈px(t; f)〉 − p∞x (f) in Figure 6.7b. Note that the walkers move

significantly farther under small loads, although they do nearly the same work.

6.5 Dissociation

There is a non-zero probability for a walker to detach from the track if k − 1 legs are

simultaneously in the detached state, and the next action chosen is for the remaining leg

to detach. A walker with k detached legs is free to diffuse in solution, and cannot be

ascribed a well-defined position with a discrete state Markov process. Hence, dissociation

poses mathematical difficulties for analyzing a non-ergodic motive process and comparing

92

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10−2 10−1 100

Force f (pN)

0

20

40

60

80

100

120

140

160
Pe

ak
w

or
k

w
�
(

f)
(p

N
nm

)

kcat = 0.1
kcat = 0.05
kcat = 0.01
kcat = 0.005
kcat = 0.001

0 10−2 10−1 100

Force f (pN)

10−1

100

101

102

103

104

105

Pe
ak

x
po

si
tio

n
p� x(

f)
(n

m
)

kcat = 0.1
kcat = 0.05
kcat = 0.01
kcat = 0.005
kcat = 0.001

(a) (b)

Figure 6.7: Simulation estimate of (a) peak work w?(f) and (b) peak x position p?x (f). Estimates
for walkers with kcat ∈ {1, 0.01} use N = 4000 samples; estimates for walkers with other kcat values
use N = 250 samples. The peak position for f = 0 is shown as well, which is limited by the
simulated time tmax = 1.0×106. In particular when f = 0, the kcat = 0.001 walkers are still moving
superdiffusively at t = 1.0 × 106, but are limited by their slower stepping kinetics. At longer times
the kcat = 0.001 walkers will achieve a peak position greater than those achieved by the larger kcat
walkers.

it with other mathematical models of anomalous diffusion. Ergodic models of kinesin

can simultaneously analyze motion and dissociation because the transport characteristics

and dissociation probabilities can be understood independently by studying a single motor

cycle [8, 79]. MVRWs, being non-ergodic, have transport and dissociation probabilities

that depend on the current state of the local chemical sites, and cannot be analyzed with

similar techniques.

One approach to dealing with dissociation in non-ergodic walker models is to have

a single absorbing dissociated state to which all walkers will eventually go and never

return. This state is then the single equilibrium state of the system, and analysis is done

93

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

on the remaining walkers. However, analyzing MSD becomes challenging because at any

t > 0 there is necessarily some non-zero proportion of walkers in the dissociated state.

Ensemble MSD is no longer well-defined, as we cannot ascribe a position to dissociated

walkers. Instead of this approach, we implement a hopping rule, whereby a walker with

k−1 legs whose next KMC chosen transition is to detach its one remaining leg is prevented

from diffusing away from its dissociation location, and is held in place while one of its

k legs attaches to a local feasible site. The detachment and subsequent attachment are

implemented as one KMC step, and both detachment and attachment times are added as

the total hopping time. Section 4.4.3 gives a concrete mathematical description of the

hopping rule in the context of the KMC simulation algorithm.

For any finite k+
S and k+

P rates, it is possible for walkers to temporarily dissociate. How-

ever, in practice when the walker has many legs, the on-rates are sufficiently fast, the

legs are long, and the substrates are densely spaced, the probability of dissociation is low.

Over the course of the simulations shown in Figs. 6.5 and 6.6, only 4/56000 walkers with

f < 3.0 pN, and 100/16000 walkers with f ≥ 3.0 pN experienced any hopping event.

6.6 Effect of variation of number of legs and leg length

As summarized in Table 6.1 our results focus on 4-legged walkers with leg length ` =

12.5 nm, which is 2.5 times the 5.0 nm substrate spacing distance. Both leg length and

number of legs can be freely varied. However, there are sensible ranges for these param-

eters, outside of which the motion of the walkers is not as processive, or is exceedingly

slow. To be efficient molecular transport devices, walkers need to simultaneously avoid

dissociation, resist the effect of forces, and remain attached to substrates near the bound-

ary.

First, consider the number of legs, which is varied in the range 2 ≤ k ≤ 5 in Figure 6.8.

For the residence time bias to lead to a directional bias, we require k ≥ 2 [112]. With few

94

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

legs (k = 2), walkers are more likely to have all of their legs detached simultaneously and

undergo a hopping step (Figure 6.8b). As the number of legs is increased this probability

drops exponentially, as each leg’s probability of detachment is approximately indepen-

dent. Walkers with more legs also tend to move more superdiffusively and processively

(Figure 6.8a), as they have a higher probability that at least one leg remains attached to

a substrate at the boundary between visited and unvisited sites. However, walkers with

many legs have a significantly smaller diffusion constant. Hence, k = 4 was chosen as

a reasonable compromise value that prevents dissociation, maintains a strong tendency to

remain on the boundary, and moves appreciably fast.

The leg length ` must be considered in relation to the substrate spacing as together

these parameters determine the number of feasible sites an unattached leg can potentially

attach to. The substrate spacing is constrained by limits on the sizes of molecules and

how closely substrates can be arrayed on a surface. We chose 5.0 nm as a reasonable

lower limit on this spacing, as it approximates the density of DNA substrates arrayed

on a DNA origami [109] surface, such as the substrate density used in molecular spider

experiments [82].

Figure 6.9 shows the effect of varying the leg length for 4-legged walkers while keeping

the substrate spacing constant. We find that if legs are too short (` ≤ 5.0 nm), the number

of feasible sites is too small to maintain a superdiffusive effect. For leg lengths ` ≥ 7.5 nm,

which is 1.5 times the substrate spacing of 5.0 nm, there is little qualitative difference

in the walker motion, although longer legs do lead to a faster diffusion constant in the

absence of force. Under load, however, leg length and substrate spacing should both be

minimized to maximize the peak work and displacement of walkers. Longer legs allow a

larger feasible region F , leading to a larger bias in B under any non-zero load. This in

turn makes it more likely for long-legged walkers to move backwards. We found that a leg

length of approximately 2.5 times the substrate spacing provides a good balance between

dissociation and processivity, although a full analysis of this relationship is reserved for

95

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

future study.

96

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00
Ti

m
e

t(
s)

10
−

3

10
−

2

10
−

1

10
0

Fractionthathaveneverdetached

k
=

2
k c

at
=

0.
01

k
=

3
k c

at
=

0.
01

k
=

4
k c

at
=

0.
01

k
=

5
k c

at
=

0.
01

k
=

2
k c

at
=

1.
00

k
=

3
k c

at
=

1.
00

k
=

4
k c

at
=

1.
00

k
=

5
k c

at
=

1.
00

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5

Ti
m

e
t(

s)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Meansquareddisplacement��p(t)�2�(nm2)

k
=

2
k c

at
=

0.
01

k
=

3
k c

at
=

0.
01

k
=

4
k c

at
=

0.
01

k
=

5
k c

at
=

0.
01

k
=

2
k c

at
=

1.
00

k
=

3
k c

at
=

1.
00

k
=

4
k c

at
=

1.
00

k
=

5
k c

at
=

1.
00 di
ff
us

ive
(α
=

1) balli
stic

(α
=

2)

(a
)

(b
)

Fi
gu

re
6.

8:
Si

m
ul

at
io

n
es

tim
at

es
(N

=
40

0)
sh

ow
in

g
th

e
eff

ec
to

f
th

e
nu

m
be

r
of

w
al

ke
r

le
gs

(k
)

on
w

al
ke

r
m

ot
io

n
w

he
n

f
=

0.
(a

)
T

he
M

SD
is

sh
ow

n
w

ith
95

%
co

nfi
de

nc
e

in
te

rv
al

s
in

sh
ad

in
g.

W
al

ke
rs

w
ith

m
or

e
le

gs
m

ov
e

w
ith

sm
al

le
r

di
ff

us
io

n
co

ns
ta

nt
w

he
n

k c
at

=
1.

0
=

k− P
an

d
th

er
e

is
no

re
si

de
nc

e
tim

e
bi

as
.

H
ow

ev
er

,
w

he
n

k c
at

=
0.

01
,

th
e

w
al

ke
rs

w
ith

m
or

e
le

gs
ex

pe
ri

en
ce

a
st

ro
ng

er
di

re
ct

io
na

lb
ia

s
to

w
ar

ds
th

e
lo

ca
ls

ub
st

ra
te

co
nc

en
tr

at
io

n
gr

ad
ie

nt
an

d
he

nc
e

m
ov

e
su

pe
rd

iff
us

iv
el

y
ov

er
lo

ng
er

tim
es

an
d

di
st

an
ce

s.
O

f
th

e
co

nfi
gu

ra
tio

ns
st

ud
ie

d,
w

al
ke

rs
w

ith
k

=
5

le
gs

an
d

k c
at

=
0.

01
ev

en
tu

al
ly

ac
hi

ev
e

th
e

gr
ea

te
st

m
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t.

T
he

bl
ac

k
lin

es
sh

ow
th

e
ca

se
w

he
re

k
=

4
w

hi
ch

co
rr

es
po

nd
s

to
w

al
ke

rs
in

Fi
gu

re
6.

2.
(b

)T
he

pr
op

or
tio

n
of

w
al

ke
rs

th
at

ne
ve

re
xp

er
ie

nc
e

a
di

ss
oc

ia
tio

n
(h

op
pi

ng
ev

en
t)

de
pe

nd
s

ex
po

ne
nt

ia
lly

on
th

e
nu

m
be

ro
fl

eg
s.

W
al

ke
rs

w
ith

k
=

2
te

nd
to

di
ss

oc
ia

te
ov

er
th

e
tim

e
sc

al
es

si
m

ul
at

ed
(t

m
ax

=
3.

0
×

10
5).

D
is

so
ci

at
io

n
is

ra
re

fo
r

w
al

ke
rs

w
ith

k
>

2,
an

d
ca

n
la

rg
el

y
be

ig
no

re
d

fo
r

th
es

e
w

al
ke

rs
w

ith
th

e
ki

ne
tic

pa
ra

m
et

er
s

su
m

m
ar

iz
ed

in
Ta

bl
e

6.
1.

97

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5

Ti
m

e
t

(s
)

10
−

2

10
−

1

10
0

10
1

10
2

10
3

�N(t)�

�
=

5.
0n

m
k c

at
=

0.
01

�
=

6.
5n

m
k c

at
=

0.
01

�
=

7.
5n

m
k c

at
=

0.
01

�
=

10
.0

nm
k c

at
=

0.
01

�
=

12
.5

nm
k c

at
=

0.
01

�
=

15
.0

nm
k c

at
=

0.
01

�
=

5.
0n

m
k c

at
=

1.
00

�
=

6.
5n

m
k c

at
=

1.
00

�
=

7.
5n

m
k c

at
=

1.
00

�
=

10
.0

nm
k c

at
=

1.
00

�
=

12
.5

nm
k c

at
=

1.
00

�
=

15
.0

nm
k c

at
=

1.
00

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5

Ti
m

e
t(

s)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Meansquareddisplacement��p(t)�2�(nm2)

�
=

5.
0n

m
k c

at
=

0.
01

�
=

6.
5n

m
k c

at
=

0.
01

�
=

7.
5n

m
k c

at
=

0.
01

�
=

10
.0

nm
k c

at
=

0.
01

�
=

12
.5

nm
k c

at
=

0.
01

�
=

15
.0

nm
k c

at
=

0.
01

�
=

5.
0n

m
k c

at
=

1.
00

�
=

6.
5n

m
k c

at
=

1.
00

�
=

7.
5n

m
k c

at
=

1.
00

�
=

10
.0

nm
k c

at
=

1.
00

�
=

12
.5

nm
k c

at
=

1.
00

�
=

15
.0

nm
k c

at
=

1.
00

(a
)

(b
)

diffu
siv

e(α
=

1) ballisti
c(α=

2)

balli
stic

:�N
(t)�
∝t

di
ff
us

iv
e:
�N

(t)
�∝
√

t

Fi
gu

re
6.

9:
Si

m
ul

at
io

n
re

su
lts

(N
=

40
0)

sh
ow

in
g

th
e

eff
ec

t(
at

f
=

0)
of

va
ry

in
g

th
e

le
g

le
ng

th
5.

0
nm
≤
`
≤

15
.0

nm
,w

hi
le

th
e

nu
m

be
ro

fl
eg

s
is

fix
ed

at
k

=
4

an
d

th
e

su
bs

tr
at

e
sp

ac
in

g
is

fix
ed

at
5.

0
nm
×5

.0
nm

.(
a)

T
he

eff
ec

to
f`

on
M

SD
is

sh
ow

n
w

ith
sh

ad
in

g
in

di
ca

tin
g

th
e

95
%

co
nfi

de
nc

e
in

te
rv

al
fo

r
th

e
m

ea
n.

T
he

eff
ec

to
f

ch
an

gi
ng

th
e

le
g

le
ng

th
is

es
se

nt
ia

lly
m

an
if

es
te

d
as

a
ch

an
ge

in
th

e
di

ff
us

io
n

co
ns

ta
nt

,b
ut

no
ti

n
th

e
qu

al
ita

tiv
e

ch
ar

ac
te

ri
st

ic
s

of
th

e
su

pe
rd

iff
us

iv
e

m
ot

io
n

fo
rt

he
k c

at
=

0.
01

w
al

ke
rs

.T
he

ex
ce

pt
io

n
is

fo
r

th
e

ve
ry

sh
or

tl
eg

le
ng

th
`

=
5.

0
nm

,w
he

re
th

e
av

er
ag

e
nu

m
be

ro
ff

ea
si

bl
e

si
te

s
be

co
m

es
so

sm
al

lt
ha

tw
al

ke
rs

lo
se

th
ei

rs
up

er
di

ff
us

iv
e

tr
an

sp
or

tb
eh

av
io

r
(b

)
Si

m
ila

rl
y,

th
e

va
lu

e
of
〈N

(t
) 〉

al
so

sh
ow

s
a

di
st

in
ct

di
ff

er
en

ce
be

tw
ee

n
th

e
be

ha
vi

or
of

th
e

ve
ry

sh
or

t`
=

5.
0

nm
le

gs
an

d
le

g
le

ng
th

s
th

at
ar

e
su

ffi
ci

en
tly

lo
ng

to
ha

ve
m

an
y

fe
as

ib
le

si
te

s
av

ai
la

bl
e.

98

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

6.7 Sensitivity to kinetic parameters

The MVRW model has too many independently variable kinetic parameters to simultane-

ously examine the effect of each of them on walker motion characteristics. We have chosen

representative kinetics summarized in Table 6.1 to act as a reference point. Clearly, any

chemical realization of the multivalent random walker model (e.g., molecular spiders) will

have potentially very different (and likely much faster) rates than those we have chosen.

However, it is not our purpose to model a specific chemical implementation. Instead, we

show that the qualitative characteristics of superdiffusive walker motion persist over a wide

range of kinetic values, as long as the residence time bias between visited and unvisited

sites leads to an effective bias in the direction of the local substrate concentration gradient.

In Figure 6.10 we show that the superdiffusive behavior as quantified by MSD is per-

sistent over an order of magnitude in variation of the k+
S rate. Indeed, even if the walker is

biased 10:1 in attachment preference to products over substrates, the residence time bias of

100:1 of substrate to product binding duration is still sufficient to achieve a superdiffusive

scaling of MSD over several decades in time. This robustness even to large changes in

attachment rates allows us to be confident that superdiffusive behavior is a pervasive fea-

ture of multivalent random walker systems and is not critically dependent on our particular

choice of attachment rates.

We show the results of varying k−S in Figure 6.11. In other results we have assumed

that k−S = 0, which is reasonable as this rate is likely to be much slower than k−P or kcat

for any practical enzymatic implementation of a multivalent random walker. Figure 6.11

shows that indeed the superdiffusive behavior is robust to changes in k−S , as long as it

remains significantly slower than k−P and kcat. However, setting k−S = k−P does eliminate

any superdiffusive effect, as there is no longer a residence time bias between substrates

and products, and the motion of the walker near the boundary is no longer biased in the

direction of the local substrate concentration gradient.

99

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

Finally, In Figure 6.12 we examine the sensitivity of the MSD to an increase in k−P , and

find that the superdiffusive effect is also robust to modest increases in product dissociation.

6.8 Effect of forces on dissociation reactions

In describing our model we show how forces affect the bimolecular association rates in

Section 3.7. However, applying a load force to walkers should also affect the kinetics of

the unimolecular dissociation events. From the high-level viewpoint of chemical kinetics

given in Section 2.1, a unimolecular reaction depends on a molecule having enough inter-

nal energy to surmount some reaction energy barrier U0, so the rate laws follow the Arrhe-

nius formula, k(T) ∝ exp (−U0/kBT). The effect of the force f applied to the molecule is

a mean change in energy of ∆U f , and the rate is modified to

k(T) = ν exp
(
(∆U f − U0)/kBT

)
. (6.4)

The value of the constant ν and the relationship of ∆U f with force f depend on the

specific internal chemistry of the leg tethers, enzymes, and substrates [37, 76, 127], the

details of which are beyond the scope of our coarse-grained walker model. We surmise

that the effect of small forces is a slight increase in k−S and k−P , although this change would

not be uniform over all legs, as those attached to sites further in the + x̂ direction will

oppose more of the load force on average than other sites. Based on Figs. 6.11 and 6.12,

small increases in k−S and k−P do not qualitatively change the motive properties of the walker

with regard to MSD, except when the forces are large enough so that k−S + kcat ≥ k−P , which

eliminates the residence time bias and all superdiffusive motion. Overall, these results

show that even though the present formulation of the MVRW model does not describe the

effect of force on dissociation rates, we expect an extension of the model including these

rates to predict similar superdiffusive behaviors, as long as the forces and corresponding

rate changes are small.

100

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5

Ti
m

e
t(

s)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Meansquareddisplacement��p(t)�2�(nm2)

k+ S
=

1.
0
×

10
1

k c
at

=
0.

01
k+ S

=
1.

0
×

10
2

k c
at

=
0.

01
k+ S

=
5.

0
×

10
2

k c
at

=
0.

01
k+ S

=
1.

0
×

10
3

k c
at

=
0.

01
k+ S

=
1.

0
×

10
4

k c
at

=
0.

01
k+ S

=
1.

0
×

10
5

k c
at

=
0.

01
k+ S

=
1.

0
×

10
1

k c
at

=
1.

00
k+ S

=
1.

0
×

10
2

k c
at

=
1.

00
k+ S

=
5.

0
×

10
2

k c
at

=
1.

00
k+ S

=
1.

0
×

10
3

k c
at

=
1.

00
k+ S

=
1.

0
×

10
4

k c
at

=
1.

00
k+ S

=
1.

0
×

10
5

k c
at

=
1.

00
di
ff

us
iv

e
(α
=

1)

ba
lli

sti
c(α
=

2)

Fi
gu

re
6.

10
:

Si
m

ul
at

io
n

re
su

lts
(N

=
10

00
)

sh
ow

in
g

th
e

eff
ec

t(
at

f
=

0)
of

va
ry

in
g

k+ S
on

th
e

M
SD

of
w

al
ke

rs
w

hi
le

k+ P
is

fix
ed

at
1.

0×
10

3
s−

1 .T
he

bl
ac

k
lin

es
re

pr
es

en
tt

he
ca

se
w

he
re

k+ P
=

k+ S
=

1.
0×

10
3 ,w

hi
ch

is
us

ed
in

al
lo

th
er

si
m

ul
at

io
ns

re
su

lts
.W

he
n

k+ P
=

k+ S
,

th
er

e
is

no
at

ta
ch

m
en

tp
re

fe
re

nc
e

fo
ra

su
bs

tr
at

e
ov

er
a

pr
od

uc
t.

A
n

un
at

ta
ch

ed
le

g
w

ill
ju

st
as

ra
pi

dl
y

bi
nd

to
a

fe
as

ib
le

su
bs

tr
at

e
as

to
a

fe
as

ib
le

pr
od

uc
t.

H
ow

ev
er

,a
s

w
e

ta
ke

k+ S
<

k+ P
,t

he
w

al
ke

rs
ha

ve
an

at
ta

ch
m

en
tb

ia
s

to
pr

od
uc

ts
,w

hi
ch

sh
ou

ld
be

ex
pe

ct
ed

to
le

ad
to

le
ss

pr
on

ou
nc

ed
su

pe
rd

iff
us

iv
e

be
ha

vi
or

.
T

he
se

re
su

lts
sh

ow
th

at
th

e
M

SD
is

ro
bu

st
to

m
od

er
at

e
ch

an
ge

s
in

th
e

on
-r

at
es

.
E

ve
n

fo
r

k+ S
=

k+ P
/1

0,
th

er
e

is
an

ap
pr

ec
ia

bl
e

su
pe

rd
iff

us
iv

e
eff

ec
tw

he
n

k c
at

=
0.

01
.H

ow
ev

er
ta

ki
ng

k+ S
=

k+ P
/1

00
ov

er
w

he
lm

s
th

e
re

si
de

nc
e

tim
e

bi
as

of
th

e
w

al
ke

rs
in

th
e

B
st

at
e

an
d

pr
ev

en
ts

an
y

su
pe

rd
iff

us
iv

e
m

ot
io

n.

101

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10−1 100 101 102 103 104 105
101

102

103

104

105

106

107

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t�
�p

(t
)�

2 �
(n

m
2)

k−P = 1 k−S = 0.001

10−1 100 101 102 103 104 105
101

102

103

104

105

106

107

k−P = 1 k−S = 0.01

10−1 100 101 102 103 104 105

Time t (s)

101

102

103

104

105

106

107

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t�
�p

(t
)�

2 �
(n

m
2)

k−P = 1 k−S = 0.1

kcat = 0.01 f = 0.00(pN)

kcat = 0.01 f = 0.05(pN)

kcat = 0.01 f = 0.10(pN)

kcat = 0.01 f = 0.25(pN)

kcat = 0.01 f = 1.00(pN)

kcat = 0.01 f = 2.00(pN)

10−1 100 101 102 103 104 105

Time t (s)

101

102

103

104

105

106

107

k−P = 1 k−S = 1

kcat = 1.00 f = 0.00(pN)

kcat = 1.00 f = 0.05(pN)

kcat = 1.00 f = 0.10(pN)

kcat = 1.00 f = 0.25(pN)

kcat = 1.00 f = 1.00(pN)

kcat = 1.00 f = 2.00(pN)

ba
lli

sti
c (α
=

2)

diffu
siv

e (α
=

1)

diffu
siv

e (α
=

1)

diffu
siv

e (α
=

1)

diffu
siv

e (α
=

1)

ba
lli

sti
c (α
=

2)

ba
lli

sti
c (α
=

2)

ba
lli

sti
c (α
=

2)

Figure 6.11: Simulation estimates (N = 400) of the mean squared displacement of the walkers as
k−S is varied. Shading shows 95% confidence intervals for the mean. Each subplot shows the same
12 walker configurations, varying only the values of k−S . Fiducial lines for diffusion and ballistic
motion are shown in the same position on each subplot for reference. These data can be compared
with Figure 6.5 which shows the case k−S = 0. The value of k−S determines the rate of detachment
without enzymatic conversion of the site to a product. As long as k−S + kcat < k−P , there remains
a residence time bias, and our results show that walkers with kcat = 0.01 move superdiffusively
for k−S < k−P = 1. This shows that the qualitative behavior of the walkers is unchanged for small
variations in k−S , and the choice of k−S = 0 in the model is appropriate as small values of k−S do
not significantly affect the walker motion. However, when k−P = k−S = 1 the superdiffusive motion
is eliminated, as there is no longer an effective residence time bias between visited and unvisited
sites.

102

Chapter 6. Results: Multivalent Random Walkers Move Superdiffusively Along Tracks

10−1 100 101 102 103 104 105
101

102

103

104

105

106

107

108

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t�
�p

(t
)�

2 �
(n

m
2)

k−P = 1 k−S = 0

10−1 100 101 102 103 104 105
101

102

103

104

105

106

107

108

k−P = 1.5 k−S = 0

10−1 100 101 102 103 104 105

Time t (s)

101

102

103

104

105

106

107

108

M
ea

n
sq

ua
re

d
di

sp
la

ce
m

en
t�
�p

(t
)�

2 �
(n

m
2)

k−P = 2 k−S = 0

kcat = 0.01 f = 0.00(pN)
kcat = 0.01 f = 0.05(pN)
kcat = 0.01 f = 0.10(pN)
kcat = 0.01 f = 0.25(pN)
kcat = 0.01 f = 1.00(pN)
kcat = 0.01 f = 2.00(pN)

10−1 100 101 102 103 104 105

Time t (s)

101

102

103

104

105

106

107

108

k−P = 5 k−S = 0

kcat = 1.00 f = 0.00(pN)
kcat = 1.00 f = 0.05(pN)
kcat = 1.00 f = 0.10(pN)
kcat = 1.00 f = 0.25(pN)
kcat = 1.00 f = 1.00(pN)
kcat = 1.00 f = 2.00(pN)

diffu
sive (α

=
1)

ba
lli

sti
c (α
=

2)

ba
lli

sti
c (α
=

2)

diffu
sive (α

=
1)

diffu
sive (α

=
1)

ba
lli

sti
c (α
=

2)

ba
lli

sti
c (α
=

2)

diffu
sive (α

=
1)

Figure 6.12: Simulation estimates (N = 400) of the mean squared displacement of the walkers as
k−P is varied. Shading shows 95% confidence intervals for the mean. Each subplot shows the same
12 walker configurations, varying only the values of k−P . Fiducial lines for diffusion and ballistic
motion are shown in the same position on each subplot for reference. The subplot with k−P = 1
corresponds to the same parameters used in Figure 6.5. Increasing k−P corresponds to faster product
dissociation, and leads to a larger MSD. In these plots we maintain the values for kcat ∈ {0.01, 1.00}.
Thus, as k−P is increased, the kcat = 1.0 walkers are no longer the “zero energy” case, and even the
kcat = 1.0 walkers also begin to move superdiffusively for significant distances when k−P = 5. We
chose the default value of k−P = 1 to serve as a reference point to compare with the other rates. In
practical implementations of a multivalent-walker system, such as the molecular spiders, the value
of k−P is likely to be much faster than 1(s−1), which will accordingly lead to faster walker motion.
However, these results show that the qualitative characteristics of walker motion depend on the
relative values of the kinetic rates, and not on their absolute values.

103

Chapter 7
Multivalent Random Walkers are Molecular
Motors

A molecular motor is a nanoscale device capable of transforming chemical free energy

into useful work and directed motion. Molecular motors can function as cargo transport

devices, enabling superdiffusive transport of materials and information in synthetic nano-

scale systems. The results described in Chapter 6 show that multivalent random walkers

are molecular motors. A walker functions as a superdiffusive transport system that trans-

forms the chemical free energy available in surface-bound substrates into directed motion

along prescriptive tracks and this motion persists even when opposed by a load force, al-

lowing a walker to transduce chemical energy into mechanical work. Hence, a MVRW

is able to extract order out of the otherwise disordered random collisions and molecular

vibrations that drive all molecular motion at the nanoscale, and it can use this energy to

direct molecular motion in ways not possible at equilibrium.

In Section 7.1, we show that the superdiffusive behavior of walkers with kcat < 1 can

be understood by observing that the substrate molecules are the sole source of Gibbs free

energy available to the walker. The ability of the walker to move in a biased, directional

way depends on its maintaining a steady supply of local substrate molecules. The sub-

strate fuel is, however, a locally limited, immobile resource, and once a region of the

walker surface has been depleted of substrates, the walker loses any ability to move di-

rectionally or superdiffusively in that locality. Thus, walker motion will be qualitatively

different in regions that have already been visited and are devoid of substrate fuel. From

this perspective, we describe a MVRW system as moving between two metastates that are

distinguished by the presence or absence of a local substrate concentration gradient. This

concentration gradient results from an emergent asymmetry in substrate concentration at

the boundary between visited product sites and unvisited substrate sites. In Section 7.1.3

we show that as long as the walker stays close to this boundary it moves ballistically away

104

Chapter 7. Multivalent Random Walkers are Molecular Motors

from the origin as it consumes the substrate fuel. However, if the walker moves away from

the boundary and over previously visited products it cannot help but to move diffusively

as it lacks any source of energy. By viewing the MVRW system as alternating between

ballistic and diffusive modes of operation, we can explain both the transient superdiffusive

motion of walkers and the asymptotic decay to ordinary diffusive motion.

Given the many potential nanoscale applications for molecular spiders, it is interesting

to see that the MVRW model predicts that walkers move superdiffusively over significant

times and distances, even in the presence of a force. This motion is not a product of

differing k+ rates, but is rather of a more subtle nature, emerging from the interaction of

a residence time bias, local substrate anisotropy, and constraints imposed by multiple legs

attached to a single body. In other words, multivalent random walkers are able to function

as molecular motors because they act as Brownian ratchets (Section 7.2). The physical

motion of the walker is solely the result of random, thermally-driven molecular motions,

but the asymmetrical chemical kinetics allow this motion to be rectified, resulting in a net

bias away from previously visited sites.

We can better understand the significance of the force-generating ability of multivalent

random walkers by comparing them to natural cellular molecular motors that are essen-

tial to the complex molecular tasks necessary to sustain life (Section 7.3). These natural

motors, such as kinesin, dynein, and myosin [122] walk along oriented tracks, consum-

ing chemical energy in the form of ATP and converting it to mechanical energy that can

be used to do work against external load forces [29, 119]. Natural molecular motors rely

on complicated non-local conformational changes to couple the binding of fuel with the

kinetics of track binding [120], and use this conformationally-mediated chemomechan-

ical coupling to coordinate their processive hand-over-hand walking gait [121]. These

mechanisms make natural motors efficient but also make them hard to mimic in synthetic

systems.

In contrast, the MVRW model shows that mechanisms for designing molecular motors

105

Chapter 7. Multivalent Random Walkers are Molecular Motors

exist without the need for chemomechanical coupling, conformational coordination, rigid

walking gaits, or inherent orientation of walker or track. Multivalent random walkers, like

natural molecular motors, are Brownian ratchets [44, 99] that rectify random molecular

motion into ordered work and directional transport. Both MVRWs and natural motors

achieve this rectification by utilizing the chemical free energy of a substrate fuel. How-

ever, the mechanisms by which MVRWs do this are significantly different from natural

motors. Unlike kinesin and other natural motors, MVRWs move over arbitrarily arranged

2D tracks, and are able to do so without inherent orientation or structural asymmetry. The

gaits of a molecular walker are uncoordinated and acyclic, yet the irreversible modifica-

tion of surface sites causes an emergent asymmetry in local substrate concentrations that

is able to bias the motion of walkers, allowing them to move directionally along prescrip-

tive landscapes. The structural and chemical simplicity of MVRWs is one of their most

important properties as it means that the conceptual functionality of a molecular spider is

independent of the specific enzyme/substrate system used in their implementation. Hence,

multivalent random walkers provide a different perspective for better understanding what

structures, properties, and mechanisms are minimally necessary to turn a molecular walker

into a molecular motor.

7.1 Mechanism of superdiffusive motion

The results of Chapter 6 show that MVRWs can move superdiffusively in the direction

of new sites even in opposition to a force. Over significant spans of time, the walkers

will have effectively done work against the force as their motion is biased by the chemical

energy in the sites they cleave. MVRWs operate by modifying a substrate site, leaving

behind a lower energy product—an irreversible reaction. A walker starting on a substrate-

covered surface is a system far from equilibrium, and consequently has the potential to do

useful work as it relaxes towards equilibrium.

106

Chapter 7. Multivalent Random Walkers are Molecular Motors

7.1.1 The residence time bias

Under the kinetic parameters investigated (Table 6.1), there is a residence time bias be-

tween leg–substrate and leg–product bindings for the walkers with kcat < 1.0 s−1. In other

words, leg–substrate bindings are much longer-lived than the leg–product bindings, and

legs attached to substrates constrain the motion of walkers, keeping the walker body and

other legs from moving too far away from an attached substrate, until the slow catalysis

kinetics finally allows the substrate-attached leg to modify the site and detach. According

to Equation 3.6, the rate of detachment for a leg–substrate complex is kcat + k−S , versus k−P
for a leg–product complex. For simplicity of presentation we can focus on the ratio of

these relative kinetic rates, r = (kcat + k−S)/k−P .

If r = 1, there is effectively no difference between substrate and product; although the

substrate sites are transformed to products via an energetically downhill and irreversible

reaction, the distinction between substrate and product cannot affect the walker, as the

kinetics of attachment and detachment are identical for the two species. Thus, a walker

system with r = 1 is equivalent to a walker moving over an all-product surface. But an

all-product surface is a system with no chemical free energy, and so a walker in such an

environment can only move by ordinary unbiased diffusion. Thus, we expect a walker to

move diffusively when r = 1. Indeed, in the results of Chapter 6, we consistently see the

walkers with kcat = 1.0 s−1 move diffusively with
〈
‖p(t)‖2

〉
∝ t when f = 0.

However, when 0 < r < 1, a leg–substrate bond lasts longer than a leg–product bond,

and substrates effectively act like anchors. A leg attached to a substrate restricts the move-

ment of the walker body and other legs until the substrate is cleaved, and the other legs

are constrained to attach to feasible sites close to the substrate-attached leg. During this

time, if another walker leg attaches to a product, it will quickly detach at the relatively fast

rate of k−P , and it will soon be free again to attach to another feasible site in the walker’s

local environment. If there are any other substrates in the local environment, one of the

other legs will eventually find and attach to one. Thus, the legs are in some sense attracted

107

Chapter 7. Multivalent Random Walkers are Molecular Motors

to substrates, but not because they specifically seek out the substrates or prefer them to

products. Instead, the bias is more subtle, caused by a combination of the residence time

bias manifested in the kinetics and the collective constraints on the legs imposed by the

connection to a common body. The legs eventually find the substrates simply because if

they attach to a product, they will quickly end up detaching and randomly choosing a new

attachment site again and again until they find a substrate. Note that this effect is only

present when the walker has more than one leg and has r < 1, so both of these properties

are critical for spiders to move superdiffusively.

This local attachment bias, of course, also depends on the local availability of sub-

strates. Once a leg attaches to a substrate, the site will eventually be irreversibly trans-

formed into a product. Thus, while the legs (passively) seek out the substrates, they

eventually will deplete the local substrate supply. For a small environment with a lim-

ited number of sites, substrates will all quickly be turned into products, at which point the

system will be at equilibrium and the walker will move diffusively. However, with larger

environments this march towards equilibrium takes a significant amount of time, and dur-

ing this non-equilibrium period there is potential for superdiffusive motion and for doing

physical work against a force.

7.1.2 Directional bias at the boundary

Now, consider what happens when the local environment has a non-uniform distribution

of substrates. Suppose, as in Figure 7.1, the walker has a single leg attached to a substrate

at site s with location x = 0. The local environment of feasible sites will then consist

of all sites within two leg lengths (2`) from x = 0. Suppose that all sites with position

x ≥ 0 are substrates and all sites with position x < 0 are products. Now consider what

happens when the process is started. The initially attached leg will likely remain attached

to the substrate for some time if r < 1. During this time the other k − 1 legs will be

restricted to the feasible sites. Short-lived product attachments mean that legs will end

108

Chapter 7. Multivalent Random Walkers are Molecular Motors

x = 0 2!−2!

x = 0 2!−2!

x = 0 2!−2!

t0

t1

t2

Figure 7.1: A residence time bias
combined with a non-uniform lo-
cal distribution of substrates can
lead to a directional bias. There is
a boundary at x = 0 between sub-
strates (blue) and products (red).
At time t0 a single leg is attached
to a substrate, and the other legs
can attach to any feasible sites
(shaded area). Because the leg-
product pairs are short-lived, the
legs are more likely to end up
attached to substrates at time t1.
When the first leg detaches at
time t2, the equilibrium position
and substrate boundary will move
right.

up preferentially attached to substrates by the time the first leg cleaves and detaches. At

this point if most of the legs are on substrates, and all of the substrates are to the right,

the spider’s equilibrium body position will move right. At the same time, because the

site at x = 0 is now a product, the boundary between the substrates and products also

moves right. Thus, the walker is biased towards moving right, and simultaneously shifts

the biasing-inducing substrate/product boundary rightward as well. As long as the walker

stays attached to substrates by the boundary, it will tend to move along with the boundary,

leading to ballistic motion in the direction of unvisited substrates. However, there is still

some probability that the walker detaches from all substrates and moves backwards over

previously visited sites. In this case, the walker must move diffusively.

In previous work [112] we also observed significant periods of superdiffusive motion

in the simpler one-dimensional molecular spider models of Antal and Krapivsky [6]. For

these models, we explained this superdiffusive motion by showing that the Markov process

can be viewed as consisting of two metastates (illustrated in Figure 7.2): a boundary (B)

state where the walker is on the boundary between cleaved and uncleaved sites, and a

diffusive (D) state where the walker is moving over previously visited sites. The walker

109

Chapter 7. Multivalent Random Walkers are Molecular Motors

feasible region

substrate
product sea

feasible region

boundary

substrate
product sea

boundary

(a)

(b)

Figure 7.2: (a) The walker in a
boundary state B where it is at-
tached to substrates on the bound-
ary between visited and unvisited
sites. The residence time bias and
non-uniform local distribution of
substrates gives the spider an out-
ward bias. (b) The walker in the
diffusive state D where it moves
over previously visited sites.

moves ballistically in the B state and diffusively in the D state, and the overall motion

depends on how much time the walker spends in each of the metastates. Similarly, the

initial superdiffusive motion in the MVRW model for r < 1 can be understood as the

walker moving between a B and a D state as shown in Fig 7.2. The walker initially spends

most of its time in the B state, moving ballistically away from the origin in the direction of

unvisited sites. However, the walker has a constant probability of falling off the boundary

and into the D state where it moves diffusively over previously visited sites. As the size of

the region of cleaved products (the product sea) grows, the spider takes increasingly long

to return to the B state, and eventually becomes on average diffusive in the limit of long

times as observed in Figure 6.2.

7.1.3 The boundary and diffusive metastates

The superdiffusive motion of walkers and its eventual decay to diffusion (f = 0) or sta-

tionary equilibrium (f > 0) can be understood by noting that the only source of energy

available to the walkers is present in the substrate molecules, which are a locally-limited,

immobile resource.

After the walker starts moving and catalyzing sites, a contiguous region of product

sites called the product sea begins to form (Figure 7.3). At the boundary between the

110

Chapter 7. Multivalent Random Walkers are Molecular Motors

product sea substrates

region of feasible sites

F

boundary

f

local substrate gradient
x̂

ŷ

Figure 7.3: The irreversible catalysis of substrates to products leads to a spatial asymmetry in
substrate concentration at the boundary between the contiguous product sea and the contiguous
region of unvisited substrates. A residence time bias at the boundary causes a walker with kcat < 1
to move ballistically in the direction of local concentration gradient. The boundary moves with
the walker in the + x̂ direction because the legs irreversibly catalyze the attached substrates into
products.

product sea and unvisited substrates, the local substrate concentration gradient is in the

+ x̂ direction.1 The emergence of spatial asymmetry in concentration makes it possible for

an unoriented, symmetric walker to develop a directional bias. At the boundary, a MVRW

with kcat < 1 is biased in the + x̂ direction not because the legs are more likely to attach to

substrates, but because when they do attach to a substrate, they stay bound longer—there

is an effective residence time bias.

A walker with kcat < 1 is only directionally biased when near the boundary, in which

case its legs irreversibly catalyze attached substrates to products, moving the boundary in

the + x̂ direction as well. Thus, as argued in Section 7.1.1, as long as a walker is near the

boundary, it and the substrate/product boundary move ballistically outwards, away from

the origin.

The emergence of the boundary between the product sea and the unvisited substrates

1This is due to the semi-infinite surface configuration. For more general surface shapes and
orientations, the boundary will have a different orientation.

111

Chapter 7. Multivalent Random Walkers are Molecular Motors

product sea substrates

region of feasible sites

external force f

product sea

substrates

boundary
external force f

Diffusive state (D)

Boundary state (B)

local substrate gradient

boundary

region of feasible sites

ballistic motion

biased diffusive motion

no local substrate gradient

Figure 7.4: The walker moves between boundary (B) and diffusive (D) metastates. The walker
moves ballistically in the direction of local substrate gradient when in the B state, but moves dif-
fusively over previously visited sites in the D state. The walker initially spends most of its time
in the B state, consuming substrate fuel. However, as the product sea grows the time to exit the D
state increases, leading to asymptotically diffusive motion in the absence of force, and equilibrium
stationary motion in the presence of force.

causes the walker to move superdiffusively, but eventually all walkers either move dif-

fusively (f = 0) or move to a stationary equilibrium distribution (f > 0). This can be

understood by decomposing the Markov process into two metastates: a boundary state (B)

wherein the walker is attached to substrates near the boundary of unvisited sites, and a dif-

fusive state (D) wherein the walker moves over the energy-devoid product sea (Figure 7.4).

When the walker is in the B state it moves ballistically in the + x̂ direction, but when

it is in the D state it has no directional orientation, and it moves by ordinary unbiased

112

Chapter 7. Multivalent Random Walkers are Molecular Motors

0

25000

50000

75000

100000 Typical kcat = 0.05 Mean kcat = 0.05

0

25000

50000

75000

100000

Po
si

tio
n

p x
(t

)(
nm

) Typical kcat = 0.005 Mean kcat = 0.005

0.0 0.2 0.4 0.6 0.8 1.0
Time t (s) ×107

0

25000

50000

75000

100000 Typical kcat = 0.001 Mean kcat = 0.001

Figure 7.5: Typical traces of px for a MVRW with f = 0 for three kcat values. The traces are
shaded blue when the walker is in the B metastate, and red when it is in the D metastate. Walk-
ers with smaller kcat have longer B periods, but smaller velocity. The duration of D periods is
independent of time and grows with the size of the product sea.

diffusion for f = 0, or by − x̂-biased diffusion when f > 0. Figure 7.5 shows three typical

traces of the position of individual walkers under zero force, where B and D periods have

been shaded to show the alternation between states and the distinction between the ballistic

and diffusive motion.

The probability of a walker leaving the B state by moving sufficiently far in the − x̂

direction is independent of the absolute position of the boundary. Thus, the B metastate

is Markovian since the transition rate to the D metastate is independent of how long the

113

Chapter 7. Multivalent Random Walkers are Molecular Motors

walker has been moving or the current size of the product sea. The duration of the B state

does, however, depend on kcat, with smaller values leading to longer durations of ballistic

motion, but at smaller velocities (Figure 7.5).

In contrast, the D metastate is non-Markovian. The duration of a D-period depends

on the size of the product sea, and hence this duration grows as the walker catalyzes more

sites. In the case where f = 0, the time is quadratically dependent on the size of the product

sea, but when f > 0 this dependence becomes exponential, and for sufficient forces and

sufficiently large product seas, the probability of returning to the boundary once departed a

significant distance becomes effectively 0. Hence, the duration of B-periods is constant in

time, but the duration of D-periods grows. Eventually walkers spend nearly all their time

moving over products in the D state, and so approach the same equilibrium distribution as

the kcat = 1 walkers, as seen in Figures 6.5 and 6.6.

In preliminary work investigating simple 1D spiders models without force, we have

shown analytically that the motion at the boundary is ballistic [112]. From results in

Figs. 6.2 and 6.5 the motion in 2D (at the ensemble level) is nearly ballistic even when

it opposes small forces, implying that individual walkers near the boundary must also be

moving nearly ballistically.

In summary, the ability of MVRWs to move superdiffusively when in the B metastate

depends on three fundamental conditions.

1) Multivalency — The MVRW must have k ≥ 2 legs, and these legs must be con-

strained so that an unattached leg cannot attach too far away from another attached

leg.

2) Residence time bias — There must be a residence time bias between modified and

unmodified sites, such that the leg-substrate binding is longer lasting than the leg-

product binding. This happens when k−P > kcat + k−S .

114

Chapter 7. Multivalent Random Walkers are Molecular Motors

3) Irreversibility — The irreversibility of substrate catalysis leads to the emergence

of the product sea and a substrate concentration gradient at the boundary between

visited and unvisited sites.

7.2 Brownian motors and biased transport in the MVRW
model

A Brownian motor or Brownian ratchet is a physical or chemical system that rectifies ran-

dom thermal energy into some form of useful work [99]. Thermodynamically, the function

of such a device requires an input of free energy, or must result in a net increase in the en-

tropy of the local environment. A principal property of a Brownian motor is its reliance

on random thermal (Brownian) energy either as a means for supplying the net motion of

the motor, or as a means for energetically inducing some chemical conformational change.

The purpose of the energy input is to bias or rectify this Brownian motion in some pre-

ferred direction. From a theoretical point of view, Brownian motors are interesting as they

are one of the more practical examples of systems that extract order from randomness [13].

One interpretation of the second law of thermodynamics states that the average random-

ness of a closed system must never decrease with time, and no Brownian motor is known

to violate this principle. A Brownian motor either operates in an open environment where

free energy is supplied chemically or in the form of a time-varying potential, or it operates

in an environment with ample reserves of Gibbs free energy that can be used to power the

motor for a sufficient amount of time.

Brownian motors have been described as a system where “mass motion is exclu-

sively powered by thermal fluctuations, i.e., Brownian movement, but under conditions

in which specific boundary conditions have been asymmetrically established at the ex-

pense of metabolic free energy.” [44] In the case of multivalent random walker systems,

the boundary between unvisited substrates and visited products is the asymmetry that rec-

115

Chapter 7. Multivalent Random Walkers are Molecular Motors

tifies the otherwise unbiased walker motion, resulting in biased superdiffusive motion.

The metabolic free energy expended is the result of the energetically downhill (∆G < 0)

substrate conversion to product. Without a strongly negative ∆G, products might be trans-

formed back into substrates by the actions of the legs. The irreversibility of substrate

conversion to products is critical to the emergence of a continuously expanding product

sea and the associated outward moving, bias inducing substrate concentration gradient at

the boundary between this product sea and the unvisited substrates. Thus, while ∆G is

not a primary parameter in the MVRW model, it does play a functional role in enforcing

directionality in the system. For the results of Chapter 6 to hold, we require only that ∆G

it negative enough that the substrate catalysis remains effectively irreversible.

7.3 Natural molecular motors

Cells are increasingly understood as crowded environments where diffusion of larger mol-

ecules is slow and constrained by complex internal structures [122]. Diffusion is often a

limiting factor in chemical processes needed to maintain the biological functions of the

cell. Instead of relying on random, uncontrollable diffusion to move chemicals, eukary-

otic cells have developed a taxonomy of molecular motors that transport cargo along 1D

polymeric tracks. These translational molecular motors consume chemical free energy and

transduce it into mechanical work and directed motion.

One of the most studied natural translational molecular motors is kinesin. Kinesin mol-

ecules are incredibly efficient motors, and are critical to many cellular transport processes,

including mitosis [38, 128], organelle transport [59], and signaling in neurons [50, 63].

Hence, understanding how models describe their ability to move and do work is an impor-

tant reference point for developing models for other walkers in general, and multivalent

random walkers in particular.

116

Chapter 7. Multivalent Random Walkers are Molecular Motors

7.3.1 Kinesin structure and motion

Kinesin is a two-headed protein molecular walker that moves over an oriented 1D poly-

meric track, called a microtubule. Each head of a kinesin is identical and contains two

coupled binding sites. One site binds and catalyzes the breakdown of ATP, and the sec-

ond site binds in an oriented manner to sites that occur at regular intervals on the oriented

microtubule track. Each head is connected by a neck linker to a coiled-coil central neck

which acts as the body of the walker and connects the walking heads to a cargo [120].

Increasingly complicated observational experiments have shown that kinesins move

processively along a microtubule using a hand-over-hand type of gait, where catalysis of

the energy-carrying ATP molecule into ADP and Pi leads to the rearward head unbinding

and attaching towards the + end of the track, resulting in an approximately 8 nm step [119].

In the context of kinesin, directed motion means that a walker moves preferentially in a

particular direction (the +-end of the microtubule). Processivity means that the walker

makes many steps before dissociation. It has been shown that kinesins can move proces-

sively, against a force, up to a so-called stall force of approximately 5 − 8 pN [123].

7.3.2 MVRWs are a fundamentally different kind of motor

We now note the significant differences between how spiders and other multivalent random

walkers move, and how kinesin is thought to move.

Ergodicity

The most fundamental mathematical difference from a modeling perspective between the

two walkers models is that of ergodicity. Kinesins, and other motors that move over pe-

riodic, translationally invariant tracks, without modifying the track, and so are described

by ergodic Markov processes. They operate in a steady state, where each complete step

brings the walker back to the same initial (canonical) conformational state. A step may

117

Chapter 7. Multivalent Random Walkers are Molecular Motors

change the absolute position of the walker on its track, but translational invariance means

that the chemistry at this new site is not changed. In other words the translational invari-

ance of the track means that there is no local difference in the walker’s environment or

chemical state, and so each step operates under the same chemomechanical conditions and

at the same rates. Hence, when the states of the walker are discretized and the stochastic

actions of the walker are defined by a Markov process, the process has a regular, periodic

structure [8, 77, 79]. Thus, kinesin motion can be fully understood by examining those

chemomechanical cycles that start and end at a particular conformational state.

Multivalent random walkers are, however, a non-ergodic system because the walker

modifies the tracks over which it moves. The motion of the walker is not translationally

invariant as it explicitly depends on the irreversible modification of sites by past actions

of the walker. Neither does a MVRW move with the orderly and easy-to-model rigid

walking gaits of kinesin; instead, it moves via a multitude of uncoordinated gaits that lead

to complex, highly branched state spaces, making static analysis difficult to apply directly.

It is for these reasons that kinetic Monte Carlo simulations are the primary means for

analyzing MVRW behavior.

Furthermore, the non-cyclical and non-ergodic behavior of MVRWs makes it difficult

to compare their motion with kinesin because many standard descriptive statistics for ki-

nesin and other cyclical, ergodic translational processes do not make sense for MVRWs.

For example, MVRWs do not have a well defined force-dependent velocity v(f). A kinesin

will move with the same experimentally measurable [30] and analytically predictable [9]

velocity against force f at any location on its track. However, the motion of a MVRW de-

pends on its location on the track and the location of the boundary between substrates and

products, and thus any velocity must be a function of time. Even reporting an ensemble

estimate of random variable v(f ; t) as a function of t is not very informative, because the

ensemble behavior averages together some walkers which are in the D state with some in

the B state, which means that v(f ; t) tells us little about the typical velocity (i.e., that of an

118

Chapter 7. Multivalent Random Walkers are Molecular Motors

individual walker). Hence, we employ different measurement statistics such as ensemble

MSD (Section 6.1.1) and 〈∆E〉 (Section 6.3), as they are more appropriate for understand-

ing biased motion in a non-ergodic system.

Structural differences

Multivalent random walkers accomplish processive, superdiffusive transport but they do

so through significantly different mechanisms from known natural molecular motors, such

as kinesin. Thus, a multivalent random walker presents a different perspective on biased

molecular motion and molecular motors, in that many of the chemical and structural fea-

tures that are essential to kinesin’s ability to act as a motor are not present in the multivalent

random walker model.

• Kinesins move over regular, oriented polymeric tracks, while MVRWs move over

arbitrary, unoriented 2D surfaces of substrate tracks. The MVRW tracks can be

heterogeneous or homogeneous, structured or unstructured.

• Kinesin heads are oriented, with separate binding sites for the track and the substrate

fuel, whose chemical kinetics are conformationally coupled [91]. The actions of the

two kinesin heads are mechanochemically coupled by long-range conformational

changes [120], whereby the kinetics of a single head dissociating depends on the

chemical conformational state of the other head [30]. In contrast, the legs of a

MVRW are unoriented and uncoupled. The conformational state of an individual

MVRW leg has no influence on the chemical or mechanical actions of the other

legs.

• Kinesin always moves with a rigid hand-over-hand walking gait where the leading

head alternates at each step. The chemomechanical coupling ensures that the trail-

ing head understands its orientation with respect to the track and the leading head,

making it more likely to unbind and move than the leading head [121]. A MVRW,

119

Chapter 7. Multivalent Random Walkers are Molecular Motors

however, has no preferred gait, and legs are unaware of their orientation. The leg

motion is independent and uncoordinated, restricted only by the finite length of legs,

and their connection to a common body.

In each of these areas of difference between kinesin and MVRWs, the mechanisms

employed by kinesin are more complicated to engineer from chemical building blocks,

but lead to more efficient and processive motion. However, based on the simulation results

presented in Section 6.3, we have shown that none of these properties are actually neces-

sary for a molecular walker to act as a translational molecular motor, as MVRWs can still

transform chemical energy into mechanical work without any of these complex structural

and chemical mechanisms.

120

Part II

The Multivalent Random Walker Model
Simulation Architecture

121

Chapter 8
Simulation Architecture

A large part of the complexity of numerical simulations is involved in storing, organizing,

retrieving, and analyzing data gathered from simulations. Data often need to be accessed

concurrently from multiple simulation and analysis processes, and this leads to fundamen-

tal issues in data consistency and availability.

This chapter explores the software engineering and data management issues involved

in simulation of multivalent random walker models. Our MVRW simulation framework is

a set of tools and libraries for distributed concurrent simulation and analysis of the MVRW

model. The object-oriented framework is written in Python and built arround a core set of

classes that define persistent objects allowing the manipulation of database tuples as in-

memory objects. In designing our simulation framework we set three basic requirements:

(1) Simulation data should be stored in a central relational database. Issues of data

consistency and correctness in the context of distributed, concurrent simulation and

analysis processes should be handled using the built-in transactional mechanisms

provided by the relational database.

(2) The simulation environment should use an object-oriented strategy so that we can

take advantage of inheritance to express the relationships between various simula-

tion objects and provide for code reuse.

(3) The simulation architecture must provide for management of large numerical data-

sets, providing fast access, but also maintaining data consistency under concurrent

access patterns.

Requirements (1) and (2) lead us to using object-relational mapping (ORM) techniques to

allow the mapping of class hierarchies to sets of relations in a relational database. ORM

122

Chapter 8. Simulation Architecture

allows objects to be made persistent and available to concurrent distributed access by stor-

ing object state as tuples in the relational database. There are, however, fundamental

issues when using relational databases to store objects as tuples, as the semantics of the

relational model differs significantly from the semantics of object-oriented languages. To

address these issues, we have developed an ORM system called the natural entity frame-

work, which we describe in full detail in Chapter 9. Specifically, we use the SQLAlchemy

ORM software for Python, and our natural entity ORM framework builds on top of the

access layer provided by SQLAlchemy.

In the remainder of this chapter we address the issues of the MVRW simulation ar-

chitecture that are orthogonal to the ORM topics covered in Chapter 9. In Section 8.1 we

discuss large data storage in the context of the goals of requirement (3), allowing us to

provide secure, fast, and highly structured storage for large numerical simulation datasets.

Finally, we present an overview of random number generation in the MVRW simula-

tion framework in Section 8.2. Random number generation is an issue that must be dealt

with carefully in any Monte Carlo simulation, but becomes more complex in distributed,

parallel simulations such as those we employ for the MVRW KMC simulation. We de-

signed the MVRW simulations to use parallel random number generation strategies that

allow a single master stream of random numbers from a single initial seed to be used to

generate an arbitrary number of independent random number streams, which can each be

used to generate a separate parallel KMC simulation trace.

8.1 Large numerical data storage

The MVRW simulations produce large amounts of measurement data that need to be orga-

nized and recorded. The application structure of the MVRW simulation relies on object-

relational mapping (ORM) (Chapter 9) to store persistent data as objects in a relational

database. Relational databases provide the transactional isolation and consistency guaran-

123

Chapter 8. Simulation Architecture

tees that make the distributed simulation architecture possible. They also provide sophis-

ticated indexing and querying techniques that make retrieving objects easy and fast. How-

ever, to achieve these goals the relational database model has a very rigid data model. As

explained in detail in Section 9.2.1 a relation or table in a relational database is a collection

of tuples, and each attribute or column of a table corresponds to a atomic (unstructured)

data type. Specifically, this implies that a tuple cannot contain attributes of array type, as

this violates what is known as the 0-th normal form in relational models [26, 33]. In the

case of the MVRW simulations, some generated data take the form of a large numerical ar-

ray, which must be correctly and consistently associated with the database tuple describing

the simulation object.

8.1.1 Storage options for numerical arrays

A strict adherence to relational design would dictate that each array-like attribute is trans-

lated to a relation with a foreign key constraint that references back to the associated

relation’s primary key. This array representation is not practical or efficient for large nu-

merical datasets where fast sequential access to array elements is needed. Understanding

this limitation, modern databases, such as PostgreSQL, provide a more efficient array stor-

age mechanism by extending the relational model (and violating normal form) to allow

attributes of array type. This array data representation has the advantage that the seman-

tics of the array type attributes are recorded in the database directly, so the database can

provide extra functionality for storing, querying, and modifying data within the array.

Alternatively, PostgreSQL provides types for large binary data, allowing arbitrary data

to be stored directly in tuple values. Python provides a pickle module (and the faster

cPickle version) that can serialize nearly any Python object into a binary representation

which can then be stored directly in a binary-typed relational attribute. The SQLAlchemy

ORM framework provides column types for managing the storage of object attributes of

arbitrary Python type as binary attributes in PostgreSQL via the cPickle Python module.

124

Chapter 8. Simulation Architecture

This method also has the advantage that the database holds all simulation data directly and

can manage concurrent access in a transactionally secure way. However, unlike an array-

typed relational attribute, PostgreSQL has no semantic understanding of the structure of

the data stored in a binary type attribute, and cannot provide any useful functionality to

manipulate the data within the SQL language.

Finally, we can bypass the database and store the array data in external files. In this

strategy the database tuple contains a file name or some other unambiguous external re-

source key that can be used by the simulation software to retrieve the external array data.

The array data on the file system are no longer protected from incompatible concurrent ac-

cess patterns by the database, so extra care must be taken in writing applications. However,

avoiding the database overhead can often be worth the extra data management complexity.

These external data files could contain serialized Python objects via the cPickle module,

or they could be structured in a more organized format, such as HDF5.

HDF5 data files

Hierarchical data format 5 (HDF5) [42] is a data file format developed with scientific and

numerical datasets in mind [28, 52, 108]. Like XML, HDF5 provides a structured format

rather than a flat file, but the HDF5 data layout and library access is optimized for multidi-

mensional numerical arrays. Each HDF5 file can also store relation-like tables, key/value

attribute pairs, and arbitrary binary data, all of which are arranged in an internal hierarchi-

cal file-system-like structure. The PyTables module provides fast Python access to HDF5

files, allowing their array data to be read from and written to numpy multidimensional

array objects in Python [3].

The primary drawback of the HDF5 data format is that it lacks any concurrency control.

This allows the HDF5 libraries to be small and fast, but can lead to catastrophic data loss

as there are no safety controls for files that are accessed concurrently while they are being

written to.

125

Chapter 8. Simulation Architecture

8.1.2 Access speeds for large data sets

In order to select the best data representation for the array-like data stored in the MVRW

simulation objects, we devised a simple test case. Using the SQLAlchemy ORM we create

a class of persistent objects with a numpy array-type attribute, and store an array of N 64-

bit floating point values. We measure the time to create a new object and save the array, as

well as the time to retrieve, read and sum all of the data in the array. Array elements are

read in after being invalidated, so that the ORM software is forced to reload the data from

the database, or from disk. However, we do not control for caching of data in memory by

the database or by the Linux file cache.

As shown in Figure 8.1, for each of the following representation methods we measure

and report the mean execution time for 50 trials of reading and writing array data of size

1 ≤ N ≤ 106:

1. Using SQLAlchemy and PostgreSQL

a. As a PostgreSQL column with Array(double) type

b. As a PostgreSQL LargeBinary column storing the pickled array using the bi-

nary cPickle protocol number 2, and the SQLAlchemy PickleType

c. As a PostgreSQL Text column storing the array using the text-format cPickle

protocol 0, and an SQLAlchemy extension of a TextPickleType

2. Using the cPickle module directly to read/write array data to a file

a. Using a local file

b. Using a remote file shared over NFS

3. Using PyTables to access the data in an external HDF5 file, where data is stored in

a PyTables EArray type

a. Using a local HDF5 file

126

Chapter 8. Simulation Architecture

b. Using a remote HDF5 file shared over NFS

Our results show that HDF5 files are by far the fastest representation method for arrays

larger than 104 elements, which is the majority of data stored in the MVRW simulations.

Hence, we made the decision to store all non-atomic data in an external HDF5 file associ-

ated with each individual persistent object. The ability to structure the HDF5 file internally

as a file system makes it easy to store several array-valued attributes of an object in a sin-

gle HDF5 file. The inability to allow concurrent access to the file, however, precludes the

possibility of using one file per persistent class, rather than the one file per object strategy

we employ.

The relative overhead of accessing files remotely over NFS is only a factor of 2-4 for

HDF5 files, with the penalty decreasing for larger files. This is acceptable for our MVRW

application as the convenience of uniform file availability over network-attached storage

eliminates many implementation complications.

100 101 102 103 104 105 106

Array Size

10−6

10−5

10−4

10−3

10−2

10−1

100

Ti
m

e
(s

)

Array Read

PostgreSQL Array Type
Sqlalchemy (Binary) PickleType
Sqlalchemy (Text) PickleType
cPickle Binary Local
cPickle Binary Remote
pyables HDF5 Local
pyables HDF5 Remote
Linear: f (t) ∈Θ(t)

100 101 102 103 104 105 106

Array Size

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

Array Create and Write

PostgreSQL Array Type
Sqlalchemy (Binary) PickleType
Sqlalchemy (Text) PickleType
cPickle Binary Local
cPickle Binary Remote
pyables HDF5 Local
pyables HDF5 Remote
Linear: f (t) ∈Θ(t)

Figure 8.1: The read/write speeds for accessing a single large floating point array stored as a
property of a persistent class using various data representation methods.

127

Chapter 8. Simulation Architecture

Finally, we note that for applications with even larger data set sizes than are necessary

for MVRW simulations, HDF5 files will provide further advantages. Array sizes much

beyond 108 become impractical for in-memory storage. At this size, the HDF5 library’s

B-tree index of blocks allows PyTables to quickly index into large arrays stored on disk,

eliminating the need to store an entire array in memory at once as any pickling-based

strategies must.

8.2 Random number generation

Random numbers are a fundamental resource for all Monte Carlo algorithms. While al-

most all proofs of correctness and complexity for Monte Carlo algorithms assume that

numbers can be drawn uniformly at random over some interval, such a resource of truly

random numbers is normally not available on most computers. Fortunately, there are many

efficient pseudorandom number generators available that have all the distribution and cor-

relation properties necessary for Monte Carlo techniques.

A pseudorandom number generator (PRNG) is a deterministic algorithm that produces

a sequence of seemingly random numbers. A PRNG maintains a fixed-size internal state

s which is used to generate the random numbers. At step i, the PRNG generates the

random number xi = f (si) and new state si+1 = g(si). Because the functions f and g are

deterministic, whenever si = s j all subsequent states will also be equal. One of the most

useful features of pseudo-random number generators is the deterministic nature of their

output. Determinism makes the processes of check-pointing, verifying, and debugging

Monte Carlo code much easier.

Because of determinism, a PRNG must have the state initialized to s0 = h(θ), where θ

is called a seed and is typically an integer or array of integers, and h is some method that

ensures that all possible seeds lead to well chosen starting values. The proper choice of

initialization function h is essential for Monte Carlo experiments where many independent

128

Chapter 8. Simulation Architecture

runs of the same code will be run with different starting seeds. The sequences gener-

ated with different seeds need to be uncorrelated, which means all starting states must be

different.

8.2.1 Leapfrogging for parallel random number generation

A consequence of the finite size of the states si is that any PRNG must eventually revisit

some previous state. In other words, there is a finite period p > 0 such that si = si+kp

and hence xi = xi+kp for all k ≥ 0. This must be taken into account for long-running

simulations.

A Monte Carlo simulation that will be run m times, using up to n random numbers on

each run should have the property that all mn states of any run at any time will be different,

and the sequences of random numbers generated should be independently and identically

distributed and uncorrelated both within and between sequences. For most Monte Carlo

simulations, including those used in the MVRW simulation, only the first few decimal

places of the random floating point numbers are important, so distribution properties of

the small-order bits are largely irrelevant.

In the MVRW simulation, random numbers are used in two algorithms: (1) the kinetic

Monte Carlo simulation of the MVRW Markov process, and (2) The Metropolis-Hastings

sampling of the body’s equilibrium position. In order to prevent the possibility of overlap

between the random number sequence between two different random number sequences

chosen using arbitrary seeds, we use the leapfrogging strategy of parallel random number

generation as implemented in the Tina random number generator (TRNG) library [10].

The leapfrogging method allows a single seed value θ to be used to simultaneously ini-

tialize an arbitrary number, m, of parallel random number streams of indefinite length [11].

Leapfrogging works by modifying the functions f (·) and g(·), so that they leap ahead by

m iterations of the PRNG sequence, defining f̂ (si) = f m(si) and ĝ(si) = gm(si). Then from

129

Chapter 8. Simulation Architecture

the single random seed θ, which gives initial state h(θ) = s0, we simultaneously initial-

ize m random number sub-streams, each starting at si for 0 ≤ i < m, and each advanced

using the leapfrogged functions f̂ and ĝ. For arbitrary PRNGs, it may be expensive to

compute f̂ and ĝ, but for the restricted class of linear congruential generators [75], this

can be done quickly as a precomputation step, allowing leapfrogging to be nearly as fast

as the single-stream version of the PRNG [11, 86]. The use of leapfrogging guarantees

that no two PRNG streams used in the simulation overlap at any point. Then, the same

mathematical guarantees of PRNG quality for single-threaded applications [71] also apply

to the distributed, parallel simulations, preventing the types of correlation problems that

have been shown to lead to inaccuracies in other KMC simulations [39].

Our MVRW simulation framework provides a Python module with an interface into

the TRNG library, allowing access to the same PRNG leapfrogged streams in both C

and Python. Thus, for the MVRW simulations we use a single seed for all the KMC

simulations that are used for investigating a single set of model parameters, and a single

seed for all the MH simulations used to precompute transition rates for a particular surface

and spider configuration.

130

Chapter 9
Object Relational Mapping and The Natural
Entity Framework

In order to address the fundamentally important issue of object identity and uniqueness

in object relational mapping we devised a new ORM strategy we call the natural entity

framework. We use the data uniqueness and consistency guarantees provided by the nat-

ural entity framework to allow the built-in uniqueness constraints provided by relational

databases to be enforced within the OO program runtime environment. This allows us

to prevent erroneous duplication or loss of data due to violation of value-based unique-

ness constraints on the persistent objects that represent simulation constructs and store

simulation data. This material is based on joint work with David Mohr and Darko Stefan-

ovic [92].

9.1 Introduction

In an object-oriented (OO) language, data are represented as objects, but objects are

transient—they have no persistence outside a particular process or between subsequent ex-

ecutions of a program. To make the data persistent and accessible for concurrent processes

in a structured form, an object-relational mapping (ORM) can be used to store objects as

tuples in a relational database.1 An ORM is a method for translating between a data model

expressed as a class hierarchy and a data model expressed as a relational schema. ORM

software packages allow a program to create, read, update, delete, and query objects stored

persistently in a relational database using object and class methods of an OO programming

language.

1There are other possibilities such as using a persistent object store and a programming lan-
guage that supports persistence natively. Without going into the merits of different approaches, we
concentrate on ORM because of its widespread use.

131

Chapter 9. Object Relational Mapping and The Natural Entity Framework

Designing an ORM presents many challenges because the object data model and the

relational data model differ profoundly in how they represent, store, and access data. We

focus in this work on just one facet of the mapping between the models: the concept of

identity and uniqueness. Both data models are used to abstractly represent sets of physical

or conceptual entities. An entity has multiple properties; the values of these properties

may affect entity identity and entity uniqueness. However, the concepts of identity and

uniqueness have different semantics in the object model and in the relational model [66].

In relational models uniqueness is a value-based notion defined by relational keys. A

key is a minimal set of attributes (columns) of a relation that uniquely identifies a particular

tuple (row). It can be a surrogate key, an artificial value introduced solely to distinguish

tuples; or it can be a natural key, consisting of attributes that correspond to meaningful,

real-world, properties of the entities. The attributes in a natural key represent those prop-

erties of an entity that define its identity and uniqueness in the context of the application

and are well-known to the users of the entity. A natural key is a concise description that

can be used to query for the existence of a specific individual entity. Every relation must

specify a primary key, which is used as the default identifier for a tuple. For practical rea-

sons this is often a surrogate key. However, when a natural key exists, it often makes sense

to declare its existence as well by enforcing a uniqueness constraint on the natural key

attributes. This prevents the database from maintaining two copies of data that represent

the same entity. Additionally, declaring a natural key results in the database maintaining

an index on the natural key attributes, which allows queries involving the natural key to be

optimized [56].

In contrast, in object models value and identity are independent. While an OO execu-

tion environment enforces the uniqueness of object identities, this imposes no constraints

on the values of objects. Hence, when real-world entities are represented by objects, there

can be many distinct objects having the same values for a set of natural attributes and

thus representing the same entity. There are no mechanisms to prevent this error-prone

132

Chapter 9. Object Relational Mapping and The Natural Entity Framework

duplication of entity representations, and typically no universal mechanism to query for

the existence of an object based on its value.

This fundamental difference in how uniqueness and identity are defined in relational

databases and in OO programming languages leads to problems when data representing

real-world entities are made persistent with a relational database, but are operated on as

in-memory objects. If there are multiple in-memory objects all denoting the same entity,

which object represents the true current state of that entity, and which one corresponds to

the database’s current state, i.e., the tuple representing the entity? This question becomes

even more confusing when there are multiple execution contexts operating on entities con-

currently.

To properly model the concept of entity uniqueness and identity at both the object

and the relational level, we propose a new framework of constraints and semantics for

object construction and interactions that can be enforced in modern ORM systems and

strongly object-oriented languages. Our natural entity framework provides a base class

NaturalEntity with the functionality described in the remainder of this chapter. Nat-

ural entities are persistent objects in an OO execution environment that directly enforce

value-based uniqueness constraints on natural attribute values. Other ORMs allow natural

keys and uniqueness constraints to be declared on the relational model, but they do not

enforce these constraints on the object model, or in the inheritance hierarchy. Making

these constraints explicit allows persistent objects to more directly represent the semantics

of relational tuples used to store their state. This simplifies the programmer’s conceptual

model and reduces potential problems with concurrency, entity identity, and uniqueness.

In contrast to creating regular objects, there is overhead when checking for value-

based uniqueness, but this overhead is not higher than manual enforcement of uniqueness.

It should be stressed that the proposed natural entities are otherwise normal objects that

exist alongside, and interact with, other objects, and that they can be queried and used

polymorphically. Hence, the natural entity framework does not reduce the expressiveness

133

Chapter 9. Object Relational Mapping and The Natural Entity Framework

of the OO language, and a programmer is free to represent entities using persistent objects

that do not enforce uniqueness constraints, or using regular non-persistent objects. How-

ever, only through the use of the natural entity framework can the programmer maintain

the value-based uniqueness constraints for in-memory objects.

The primary contribution of the natural entity framework is that it allows the ORM

to manage and enforce value-based object identity and uniqueness on in-memory objects.

These value-based constraints match the constraints imposed by natural keys on the rela-

tions that store the persistent state of the natural entities. Thus the object model for natural

entities is modified to more closely match that of the relational model.

This framework provides several advantages: (1) natural entities have a strong concept

of value-based identity and uniqueness, accessible through object attributes and methods

that prevent multiple in-memory objects from representing the same conceptual entity

(Section 9.3); (2) the ORM can use an identity map to provide fast value-based queries for

in memory objects and a uniqueness constraint to provide fast queries for archived objects

(Section 9.4); (3) natural entities have constructor methods that automatically manage

the uniqueness constraints for in-memory objects and disambiguate object construction

from object retrieval (Section 9.5); and, (4) natural entities inheritance hierarchies can

be mapped automatically to a relational schema that uses the appropriate constraints and

relations necessary for maintaining natural key uniqueness constraints and for allowing

polymorphic queries (Section 9.6).

Given these features, the natural entity framework provides functionality that is lack-

ing in modern ORM systems and presents an often applicable abstraction that is easy to

understand and implement, allowing the programmer to spend more time on solving the

actual problems at hand.

134

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.2 Background

To be specific about how the concept of uniqueness constraints is implemented, here we

summarize the terminology used for relational models and OO programming languages.

9.2.1 Relational model

A relation is a tuple of attributes denoted R = R(A1, . . . , An). The attributes come from

some domain A, and each attribute Ai has a type τi, (written Ai : τi), where τi ∈ T for

some set T of basic types. For brevity we omit type signatures where they are not essential

to the discussion. A relation instance is a set of tuples from the domain (A1 × . . . × An)

that represents the current factual state of the relation. When it is not otherwise confusing,

the term relation is used to describe both the relation’s schema (attributes, types, and

constraints) and its time-varying instances (the tuples and their values). In the concrete

context of a relational database, a relation specifies the names and types of the columns of

a table, and an instance specifies a set of table rows and their values.

A non-empty set k ⊂ {A1, . . . An} is a key of relation R(A1, . . . An) if for any instance

of the relation, the value of the attributes in k uniquely determines a tuple and no proper

subset of k is also a key. Thus, a key is a minimal set of attributes that can be used to

define the identity of a tuple. A relation may have many keys. A key is simple if it

consists of a single attribute, otherwise it is compound. Each table must have a primary

key, which is used as the canonical set of attributes for identifying a row for the purpose

of database operations and references between tuples of relations. Primary key attributes

are underlined in the notation for a relation to highlight their role (e.g., R(A1, A2, A3) has

a primary key {A1, A2}.) Associations between relations are expressed with a foreign key

constraint that restricts a set of attributes to values that come from the relational instance

state of a separate set of attributes that form a key [26].

A relational schema is a set � = {R1, . . . ,Rm} of relations along with constraints. A

135

Chapter 9. Object Relational Mapping and The Natural Entity Framework

relational database provides a set of types and mechanisms to define relational schemas

over those types. It maintains instances for each relation that obey all the restrictions and

allows queries to create, read, update, and delete tuples.

9.2.2 Object model

An object lives in memory and has identity, type, state, and behavior. An object’s state is

given by the values of a collection of named attributes that come from a set of types T′2.

In strongly object-oriented languages, objects have a concept of identity independent of

their attribute values or addressability [70]. This allows references to objects to be tested

if they refer to the same object, and hence forms a definition for object uniqueness.

An object’s type is some class C. A class creates objects: it defines names and types

for each attribute, and the set of methods that operate on the state of an object. These

methods define the behavior of the object. An object that belongs to a class is said to be

an instance of that class.

Inheritance.A set of classes � = {C1, . . . ,Ck} is called a class schema. Classes have a

concept of inheritance. If Ci inherits from C j, we write Ci <: C j, and the class Ci inherits

all of the attributes and methods of C j. The inheritance relation is reflexive, transitive, and

antisymmetric, and so defines a partial ordering on the class schema, called the inheritance

hierarchy. This relation represents specialization as objects of class Ci now can represent

all the state and behavior of C j, but can also add or modify attributes and methods. Thus,

if Ci <: C j and o is an instance of Ci, then o is also an instance of C j. This property is

called polymorphism and allows objects to act as an instance of any class more general

than their own.

The maximal elements in the hierarchy are called the base classes. In many languages

2The set of OO types T′ may, but does not necessarily, intersect with the set of types T used in
the relational schema. They will almost certainly not be identical.

136

Chapter 9. Object Relational Mapping and The Natural Entity Framework

multiple inheritance is possible, so a class can inherit directly from more than one class.

For the purposes of ORM specifically, and OO languages in general, multiple inheritance

introduces additional complexity that is best avoided, so we focus on single inheritance.

In a single inheritance class schema, the inheritance hierarchy is not a general lattice, but

a forest of inheritance trees, each rooted at a single base class. For single inheritance

hierarchies we can uniquely define the super relation Super (Ci) = C j if Ci <: C j and

Ci <: Ck <: C j implies Ck = Ci or Ck = C j. In other words, the super relation determines

the smallest class larger than a given class, called the immediate superclass. Conversely,

Ci is said to be a subclass of C j.

A class can be abstract or concrete. There cannot be objects belonging to an abstract

class, only to concrete classes. Abstract classes are only used to be inherited from by other

classes.

9.2.3 Object-relational mapping

The object and relational models are general enough to apply to most modern OO lan-

guages and relational databases, hence they form a good basis for describing how objects

can be mapped to relations. An ORM is a mapping from a class schema � to a rela-

tional schema � that provides a correspondence between objects in � and tuples (or sets

of tuples) from relations in �.

In this mapping attributes of an object with type t1 ∈ T′ are mapped to one or more

tuple element with type(s) τi ∈ T. Since the types available in a programming language

(subtly) differ from those available in databases, this mapping of types is a necessity, and

may not be 1-to-1. However, for most uses the type differences have no practical effect,

and we leave exploring the implications for value-based identity as future work.

137

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.3 Object identity and uniqueness

The central issue addressed by the natural entity framework is consistently representing

real-world entities that possess a concept of uniqueness described succinctly by the values

of one or more well known (natural) attributes, i.e., a natural key.

Identity in OO languages.

Like objects in the natural world, objects in a programming language have concepts of

identity and uniqueness. Many OO programming languages (Python, Smalltalk, Java,

Ruby, etc.) have a strong concept of object uniqueness in that each object has an associated

immutable internal id(entifier), distinct from the references used to access it [70]. Such

an id is called a surrogate object id since it has no relation to the value or meaning of

the object. It merely serves to define the identity of the object and allows comparing the

identity to those of other objects, as there is a bijection from object ids to objects [126].

Identity in relational databases.

Identity in relational databases is a value-based property determined by a designated pri-

mary key. The primary keys should be unique, immutable, and non-null. The database

maintains a uniqueness constraint on the primary key, preventing duplicate tuples, and

uses an index to quickly select tuples by their primary key or detect violations of the

uniqueness constraint. The primary key is also used to define foreign key relationships.

Because of all these important requirements placed on the primary key, it often makes

sense to use a surrogate key as the primary key, even when there is a well-known natu-

ral key. There are many good reasons to prefer surrogate keys as primary keys, most of

which arise from the fact that using surrogate keys allows the relational schema to decou-

ple identity and value [27]. This allows more flexibility when the relational model needs

to be updated or refactored [4]. Other benefits arise due to the fact that surrogate keys are

138

Chapter 9. Object Relational Mapping and The Natural Entity Framework

simple (consist of a singleton attribute) and are typically small integral types. Natural keys

in contrast are often compound and may include strings and other types that require more

space as foreign keys. Since the primary key is always used to represent entity relation-

ships through foreign key constraints, having a small, simple primary key reduces space

usage and simplifies join operations. Simple integral keys are also often faster for use in

selects against the primary key. For these reasons, ORMs often use surrogate primary keys

by default [43].

However, natural keys are still useful and have some desirable characteristics. Declar-

ing a natural key communicates to the database that the relational model has a logical

uniqueness constraint on the natural key attributes and prevents a single conceptual entity

from being represented by more than one tuple. Additionally, the database can then main-

tain a uniqueness constraint and index on the natural key. The presence of an index allows

clients to quickly retrieve objects by their natural key-values, or determine that no such

object exists. This can lead to distinct performance advantages for natural keys in some

situations [78].

9.3.1 Identity in the natural entity framework

The natural entity framework, like other ORM tools, must reconcile the semantics of object

identity in OO languages and tuple identity in relational databases. Our goal is to enforce

the uniqueness of entity representation across both data models as determined by natural

key attributes, but we simultaneously want to support polymorphic queries, efficient entity

relationships, and flexibility for refactoring databases.

To achieve these objectives, the natural entity framework enforces the simultaneous

use of surrogate primary keys and auxiliary natural keys. This dual-key representation

achieves advantages of both surrogate and natural keys. In particular, our surrogate keys

are unique within each inheritance hierarchy rooted at the NaturalEntity class. This

uniformity of primary keys allows us to use a single top level relation to define a primary

139

Chapter 9. Object Relational Mapping and The Natural Entity Framework

key for every object belonging to the class hierarchy. This makes polymorphic queries

and associations much more efficient and uniform than they could be with natural keys.

Indeed, without a uniform key for the entire inheritance tree, representing polymorphic

associations would become problematic as there would be no single foreign key constraint

that could be used to represent an association. Hence, surrogate primary keys are nec-

essary for polymorphism and flexibility, but they do not fulfill the need for maintaining

value-based uniqueness. This is achieved by the auxiliary natural keys. To maintain these

auxiliary keys, the database must maintain a separate index, which takes up time and space;

however, this index is exactly what ensures the logical value-based uniqueness of natural

entities, and it is heavily used by constructors (Section 9.5) and other common queries

against the natural key.

9.4 Management of persistent states and concurrency

Building on the concepts of object and relational identity, an ORM must have a way to

track and manage the identity of in-memory objects. Unlike transient objects, which have

a limited scope and lifetime, persistent objects must maintain their identity permanently

and consistently across concurrent processes. To simplify the tracking of persistent objects

and their modifications, modern ORM packages provide the concept of a session manager.

The natural entity framework relies on a session manager to manage the persistent state of

in-memory persistent objects and enforce the uniqueness constraints for natural entities.

Our principal contribution is to provide additional constructor methods which make

explicit the assumptions about the state of a persistent object when it is created and prevent

the user from violating the value-based uniqueness constraints.

140

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.4.1 Transactions

The session manager has transactional semantics and manages a set of persistent objects

by implementing the unit of work concept [43]. It tracks object creation, modification, and

deletion. The session manager delegates large parts of this work to the database by using

transactions. This ensures a consistent database state, even when objects are modified

concurrently by other processes. It follows that the concurrency guarantees are largely

provided by the transaction. The session manager supplies methods to control the global

transactional state for an execution context. The begin() method starts a transaction and

is implicitly called as needed if no transaction is currently in progress. The flush()

method sends pending modifications to the database, but does not end the transaction.

The commit() method commits a transaction, and this implies a flush operation if there

are still pending changes. Finally, the rollback() method undoes all database changes

made during the transaction.

9.4.2 Object states

From the perspective of an OO execution environment, reasoning about persistent objects

is much more complicated than standard transient objects because the data representing

the object can be stored in memory, in a relation(s) in the RDBMs, and/or in the memory

of other concurrent processes. The session manager acts as the single point of persistence

management for an OO execution environment. It determines how a persistent object

relates to its external relational state in the database. Any object of a class that derives

from a persistent base class, such as NaturalEntity, will be understood by the session

manager to be in one of the following six states:

• Transient – The object is not managed as persistent by the session, while a corre-

sponding tuple with the same natural key in the database may or may not exist; there

is no operational connection with any persistent object.

141

Chapter 9. Object Relational Mapping and The Natural Entity Framework

• Pending – The object does not yet have a permanent record but has been successfully

added to the session and will be added to the database when the session state is

flushed to the database. Until the object is successfully flushed it has not yet been

assigned a primary key.

• Persistent Clean – The object has a primary key and a corresponding representation

in the database. No persistently managed attributes have changed values, so no

updates need to be sent to the database.

• Persistent Dirty – The same as a persistent clean object, except the value of one

or more of the persistently maintained attributes has been changed, so that an SQL

update operation is needed to save the state of the object. Copies of this object

in other sessions do not know about the changes and may have made conflicting

changes of their own.

• Expired – The object’s state is no longer valid because it was created in a session

that has been committed or rolled back, so its state needs to be reloaded from the

database. This reloading is done transparently by the session manager when neces-

sary.

• Archived – The object is not part of the store but is persistently stored in the database.

Strictly speaking, this is not a state of an object, since no corresponding object exists

in the session, but conceptually the tuple in database represents an object that is not

currently loaded.

It is important to remember that the identity of a persistent object is provided by the nat-

ural key, and maintained through transactions and the constraint imposed by the database

key. In case of conflicting concurrent transactions, e.g., simultaneous inserts or deletes,

one of the concurrent processes will be prevented from committing its changes by an ex-

ception. In Figure 9.1 we show the effect of various operations on the persistent state of an

object, but omit the expired state and other effects that occur at transaction boundaries. The

142

Chapter 9. Object Relational Mapping and The Natural Entity Framework

create_transient()

(default constructor)
get_or_create()

Persistent Clean

Persistent Dirty

Transient

Pending

Archived

add()

create()

get()
query()

flush()

(modify)

expunge()
delete()

delete()

expunge()

flush()

Figure 9.1: Persistent object states and effect of constructors and session commands within a
single transaction context. The effects of transaction boundaries and the expired state are omitted
for clarity.

effect of commits is to expire all pending and persistent objects and the session manager

updates any identity maps of persistent objects accordingly (Section 9.5.1).

9.5 Object creation

Maintaining a value-based uniqueness constraint for persistent objects causes difficulties

with object creation. Normally, the programming environment’s concept of object identity

is all that determines object uniqueness. When an object constructor is called, a new object

with a unique object id is always created, and an initializer method is called. However,

143

Chapter 9. Object Relational Mapping and The Natural Entity Framework

natural entity classes with value-based uniqueness constraints necessitate different seman-

tics. First, the constructor must be given the values for each of the natural key attributes

since they must not be null. Given the natural key value, the constructor is presented with

several possibilities: (1) an object with those values already exists in memory so we are

not allowed to create a new object with a new object id and the same natural key values;

(2) an object with those values exists in an archived state, so it must be loaded from the

database; or, (3) there is no persistent or in-memory object with the given natural key, so a

new object should be created and added to the database.

Such a constructor requires a natural-keyed dictionary of in-memory persistent ob-

jects, i.e., an identity map (Section 9.5.1), and a mechanism to query for the existence of

archived objects. Both of these can be provided efficiently by the session manger, but they

nevertheless impose a significant cost, especially when the round trip time for remote data-

base queries is involved. Unfortunately, such queries are necessary if we wish to maintain

the consistency constraints; allowing the constructor to make new objects without regard

to the natural key values would result in duplicate objects in memory. Furthermore, note

that the cost of frequent queries can be reduced by allowing the caching of natural keys or

prefetching of objects (particularly when the database transaction isolation prevents non-

repeatable reads). When queries are necessary they can be handled efficiently because of

the unique index maintained on the natural key attributes.

Together all of these considerations impose a significant change to the semantics of

object creation, and can lead to conceptual problems for programmers. The natural entity

framework addresses this conceptual ambiguity by providing additional constructor meth-

ods with different semantics. These constructors allow programmers to explicitly state

their intentions or assumptions when creating an object.

• get() - A constructor that takes the natural key and returns the object uniquely

identified by that key, either by returning a reference to an in-memory object repre-

senting that entity, or by loading an archived object from the database and returning

144

Chapter 9. Object Relational Mapping and The Natural Entity Framework

it in the persistent clean state. If no such object exists, an exception is raised.

• create() - A constructor that takes the natural key and returns a newly created

object in the pending state, but only if no persistent object with the same natural key

exists in memory or in the archived state. An exception is raised if the object already

exists.

• get_or_create() - A constructor with the combined semantics of the get() and

create(). It takes the natural key and either returns an existing persistent object,

or returns a newly created object in the pending state. This is the default constructor.

• create_transient() - A constructor with normal transient object semantics that

always returns a new object in the transient state. It can take arbitrary arguments

and ignores the uniqueness constraints.

The get_or_create() constructor does whatever it takes to get a reference to the

unique object that has the provided natural key. It will find that object if it is in memory

and return a reference, or it will look in the database for an archived version and return it,

and if no such persistent object exists, it will construct a new object and make it persistent

by moving it to the pending state. In practice we found that the get_or_create() gives

the expected semantics in the vast majority of situations, and is thus the default constructor,

leading to particularly succinct code (e.g., in Python var=ClassName(...)).

The create() and get() constructors are used in cases where the existence or non-

existence of a particular NaturalEntityobject represent a logical error, and the program-

mer would like an exception to be raised so that the errors are not silently ignored.

Finally the create_transient() constructor has several uses when the normal se-

mantics of the natural entity construction are too rigid. Unlike the other constructors,

create_transient() does not need to be given the natural key, and does not use any

database connections or in-memory identity maps. This is useful for testing object behav-

145

Chapter 9. Object Relational Mapping and The Natural Entity Framework

ior without using a database. Transient objects are also useful when the user does not wish

to immediately pay the cost of the database query to check for archived objects. Further-

more, they support situations where not all of the natural key attributes are immediately

available, but it makes sense to partially construct a NaturalEntity object, and then fin-

ish filling in the natural key attributes later. This is often the case in GUI or web-based

applications where objects are built up sequentially by user actions. A transient object

can be made persistent by using the add() method, which will check that all natural key

attributes are specified and will raise an exception if the object already exists.

9.5.1 Identity map

When the (non-transient) constructors are called, they are provided with the complete

natural key for the desired object. If an object with that natural key already exists in

memory in the pending, expired, persistent clean, or persistent dirty states, it would be

incorrect to construct and return a new object. Instead we must return a reference to the

in-memory object. The ORM’s session manager is able to track the persistent state of

objects, but it also needs a way to look up objects by their natural key. This is a common

requirement for ORMs, which Fowler calls the identity map pattern [43]. The purpose

of an identity map is simply to map database keys to in-memory objects. When working

with persistent objects, sometimes different parts of the code need access to the same data

object without understanding whether that object is already in memory. The solution is

to keep a global registry (or identity map) of in-memory objects keyed by their primary

key. Normally, this identity map is stored in the session manager object, and it is used

for internal ORM lookups of foreign key mappings. However, when primary keys are

surrogates, it is awkward for a user to make use of this identity map, because the surrogates

by definition are meaningless and often obscured from the user. It is much more common

for a user to query using natural key attributes, and the constructors must be able to do

this efficiently for in-memory objects. Hence, the natural entity system implements an

146

Chapter 9. Object Relational Mapping and The Natural Entity Framework

auxiliary identity map, keyed on the natural key attributes. The identity map only stores in-

memory persistent objects, i.e., transient objects are excluded. If an object is removed from

the persistent store with the delete() method, it becomes transient. Thus, a constructor

will not return a reference to a deleted object, even if that object is still in memory.

9.5.2 Initialization

Since the NaturalEntity constructors have multiple possible mechanisms for retrieving

or creating objects, the concept of initialization also needs to be refined. For natural en-

tities there are three distinct ways a new in-memory object could be created and require

initialization: (1) it could be created as a transient object; (2) it could be retrieved from

an archived state in the database; or, (3) it could be created as a new persistent object in

the pending state. (In the case where the constructor already found the object in-memory

through the identity map, no initialization is needed.) The NaturalEntity class provides

three different initializers that will be called by the constructor in each of the three cases.

• initialize() – This method is called when a new persistent object is created. The

object will be in the pending state and the object’s (immutable) natural key attributes

will have been set to the values provided to the constructor.

• reinitialize() – This method is called when an archived object is brought into

memory by a constructor. The object will be in the persistent clean state and all

persisted attributes (including the natural key attributes) will have been set by the

ORM system.

• initialize_transient() – This method is called if and only if the object is con-

structed with the create_transient()method. The object will be in the transient

state, and any supplied natural key attributes will have been set, but those omitted

by the user (which is permitted for transient objects) will have no default value.

147

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.5.3 Comparison with other ORMs

The multiple constructors of the natural entity framework represent a departure from the

normal mechanism of persistent object creation presented by modern ORMs. In many

modern ORM systems, all objects are initially created as transients, and only after a call to

an add()method are they moved to a pending (or equivalent) state [73,96]. The difficulty

with this mechanism is that it does not allow the ORM to directly manage value-based

object uniqueness. In fact, the only way that a user will know if the in-memory objects

conflict with persistent archived objects is to issue a database flush. When concurrent

transactions attempt to make potentially conflicting changes, calls to flush() can hang

indefinitely until other transactions have commit or rollback. For maximal concurrency it

is best to flush infrequently or to also issue a commit (which cannot hang but may raise

an exception). Commits, however are expensive as they require the ORM to expire the

state of all in-memory objects, which must be subsequently reloaded from the database.

Furthermore, if a persistent process avoids the expenses of flushes and commits, but does

not guarantee consistency of object uniqueness, there is a potential for the process to do

significant amounts of work (perhaps large computational simulations) only to find out

when it finally issues a flush or commit that the constraints have been violated and the

entire computation must be scrapped. Thus, while forcing the ORM to manage value-base

object identity using natural keys imposes costs initially, particularly on object creation,

these costs are often amortized by the need for less frequent flushes and commits and the

reduced chances of database consistency constraint violations.

9.6 Mapping natural entity inheritance hierarchies

All natural entity classes must inherit from the NaturalEntity class, thus we must map

all the classes in each inheritance subtree rooted at NaturalEntity into a relational

schema. The natural entity system supports flexible mapping of hierarchies to relations,

148

Chapter 9. Object Relational Mapping and The Natural Entity Framework

that allows for polymorphic queries and associations, as well as allowing different natu-

ral keys for separate subtrees of the inheritance hierarchy. The user only needs to supply

minimal information about the desired inheritance mapping strategy and the ORM can au-

tomatically construct the appropriate tables and constraints. As an example we consider

a distributed computer simulation system, with two inheritance hierarchies: an abstract

Experiment class with two concrete subclasses; and an abstract Measurement class also

with two concrete classes (Figure 9.2). An Experiment has a one-to-many relationship

with measurements, so that each Measurement has a foreign key to the Experiment hi-

erarchies primary key–a polymorphic association. We examine natural keys in the relation

further in Section 9.6.2.

9.6.1 Inheritance mapping strategies

The relational data model has no built-in concept of inheritance, but support for inheritance

and polymorphism can be enforced by appropriately structuring the relational schema and

queries. There are three standard methods for mapping inheritance hierarchies to a rela-

tional schema [43]: (1) the single table strategy maps all classes in an inheritance hierarchy

to a single table; (2) the class table strategy maps each class to its own table; and (3) the

concrete table strategy maps only concrete classes to tables.

The single and class table strategies are particularly useful for polymorphic queries

and associations as for every class in the hierarchy they store the class name (i.e., the type)

and a surrogate object id in a single top level table. Concrete table inheritance lacks these

properties and is not considered further.

Single and class table strategies are distinguished by the technique they use to represent

the differing attributes for classes in the hierarchy. Single table inheritance has a single re-

lation which includes all attributes of all classes in the hierarchy. It allows polymorphism

by permitting attributes to be null for objects that do not include them. In contrast, class

table inheritance only includes non-inherited attributes in each class table. It permits poly-

149

Chapter 9. Object Relational Mapping and The Natural Entity Framework

natural_key=("width")
width=Field(Float)

OneDimExperiment

max_time=Field(Float)
measurements=OneToMany("Measurement")
abstract=True

Experiment

natural_key=("width", "height")
width=Field(Float)
height=Field(Float)

TwoDimExperiment
inheritance="join"
time_step_size=Field(Float)
measure(max_time) = <<func>>

TimeMeasurement

natural_key=("experiment", "type")
experiment=ManyToOne("Experiment")
abstract=True

Measurement

inheritance="share"
dist_step_size=Field(Float)
measure(max_dist) = <<func>>

DistanceMeasurement

id:Int {PK}
type:Varchar {NotNull}
max_time:Float

table_experiment

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}

table_one_dim_experiment

id:Int {PK}
type:Varchar {NotNull} {NK}
experiment:Int {FK(table_experiment.id)} {NK}
dist_step_size:Float

table_measurement

(a)

(b)

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}
height:Float {NK}

table_two_dim_experiment

id:Int {PK} {FK(table_measurement.id)}
time_step_size:Float

table_time_measurement

Figure 9.2: (a) A simple example of a class schema with two inheritance hierarchies, abstract
classes, multiple natural key bases, polymorphic associations, and both shared and joined inheri-
tance mappings. The text in each class entry is close to the actual amount of code needed to specify
this hierarchy. We use syntax that is similar to our Python-based reference implementation of the
natural entity framework. (b) The relational schema generated by the natural entity framework
from the class schema in (a). The foreign key constraints are shown.

morphic queries by using joins on the primary surrogate key to retrieve attribute values

from all the relations that store an object’s state. These differences lead to quantifiable

performance and space trade-offs [60]. Modern ORMs allow the user to specify a mix-

ture of these strategies within a single inheritance hierarchy [24]. When mixing strategies,

the single table approach is called shared or horizontal mapping, while the class-table

approach is called joined or vertical mapping [88]. Shared table inheritance works best

when the cost of additional join operations needed to load rows is a limiting factor, or

when a portion of the class hierarchy shares almost all of the same persistent attributes.

Joined table inheritance works best when database space is constrained, or in portions of

150

Chapter 9. Object Relational Mapping and The Natural Entity Framework

the hierarchy where few persistent attributes are shared between classes.

In the natural entity framework each class in a hierarchy only needs to specify if it will

use the shared or joined inheritance strategy and the ORM can automatically derive the

relational schema.

9.6.2 Natural keys and inheritance

Every concrete class that derives from NaturalEntity must define or inherit a natural

key, so that the constructor can enforce the value-based uniqueness constraint. Abstract

classes need not define a natural key, and any class that has no natural key must be declared

as abstract.

Because of the option to use joined inheritance, an individual object can have its at-

tributes stored in several relations, but there is always a relation that stores the attributes

declared specifically in a class. This is the primary relation of the class.

Consider a class C that defines a natural key and that has no superclass which also

defines a natural key (i.e., it has only abstract superclasses). The natural key results in a

uniqueness constraint which is implemented by the database. A constraint can typically

only be defined on attributes in a single table and not on joined tables. It follows that

exactly one of the relations representing C must enforce this constraint. None of C’s

superclasses could have a natural key constraint, as enforcing a uniqueness constraint on

Super (C)’s primary relation would prevent other subclasses of Super (C) from defining

different natural keys. Hence, the natural key constraint for C must be enforced in C’s

primary relation. This implies that all C’s natural key attributes must be defined in C and

cannot be inherited, or they would not be present in C’s primary relation. Finally, note

that any subclass of C will inherit C’s natural key attributes, and because these attributes

have a uniqueness constraint defined on the relation that stores them, the subclass must

also inherit the natural key from C.

151

Chapter 9. Object Relational Mapping and The Natural Entity Framework

Therefore in any inheritance chain, i.e., starting at a concrete class and following the

super relation to a base class, there is exactly one class that declares a natural key. Such a

class is called a natural key base, as all classes that inherit from the natural key base share

the same natural key constraint and store their natural key attributes in the primary relation

of the natural key base.

Hence, when mapping a class hierarchy to a relational schema, the mapping will re-

quire: (1) a single table for the root class to store the primary key and object type; (2) a

table for each natural key base (unless the class is also the root); and (3) a table for each

class that uses joined inheritance (unless the class is a natural key root or the base class).

9.6.3 Type as a natural key attribute

A natural key base will pass on its natural key to all of its subclasses, and thus only one

object of any derived class may have a given natural key value. Sometimes this is too

restrictive a condition on the classes. Because the natural key distinguishes objects based

on their value, but not their type, it restricts cases where objects have identical values but

different behavior because their respective classes have different methods.

For example, consider the class structure of the distributed simulation system in in

Figure 9.2. The Measurement class defines a simple natural key as a foreign key rela-

tionship to the Experiment it measures. An experiment should be able to include both

a TimeMeasurement and DistanceMeasurement instance. However, because these ob-

jects have the same natural key this becomes impossible. The two measurement subclasses

have the same attributes, but the meaning of the attributes differs due to different method

implementations. Thus, it can make sense to have more than one measurement object

with the same natural key, provided they belong to different classes. This can be accom-

plished by adding the implicit type attribute to the natural key base’s primary relation and

thus adding the type to the uniqueness constraint. This allows multiple Measurements to

belong to a single Experiment, provided they are from different classes.

152

Chapter 9. Object Relational Mapping and The Natural Entity Framework

In the natural entity framework the type can optionally be declared to be part of the

natural key of a class to allow this distinction when it is required. The type attribute is

automatically managed by the ORM, since it is always present as an attribute of any object

in the OO programming language.

9.7 Conclusion

The natural entity framework is composed of general OO concepts and semantics that can

be implemented in any OO language that supports strong concept of object identity. Object

and class introspection, and the ability to instrument object construction and destruction

are helpful features in making the implementation easy to use. Our reference implementa-

tion in Python is built on top of the SQLAlchemy ORM, and the Elixir extension.

Any persistence library that attempts to enforce value-based uniqueness constraints

through natural keys and that allows polymorphic queries and associations will have to

share several properties: (1) the objects will have to use a dual key representation with

surrogate primary key and auxiliary natural key; (2) the ORM must maintain an identity

map using the natural keys to avoid creating duplicate objects in memory; (3) the ORM

must restrict inheritance hierarchies so that at most one class defines a natural key in each

inheritance chain; and (4) the ORM must keep all the natural key attributes for a natural

key base in a single table so that the RDBMs can enforce a uniqueness constraint on them.

The constructor methods of natural entities provide a consistent interface which distin-

guishes the different mechanisms by which a persistent class may be created and initial-

ized. These constructors prevent the ORM from representing the same conceptual entity

with different in-memory objects by ensuring that the value-based natural key constraints

are maintained for all natural entity objects in the execution environment.

Enforcing value-based object identity changes the semantics of object models in the

context of OO languages. However, these constraints only apply to objects from classes

153

Chapter 9. Object Relational Mapping and The Natural Entity Framework

that inherit from NaturalEntity. Thus natural entities can coexist with objects of other

less-strict persistent classes, as well as normal transient objects. Hence the natural entity

framework makes it easier for a programmer to reason about object uniqueness for those

entities which require it, but does not otherwise constrain the expressiveness of programs

or programming languages. Our experience tells us that a natural key is present in most

situations, and easily enforcing it has been an invaluable tool in writing correct scientific

software.

154

Part III

Perspective and Conclusion

155

Chapter 10
Executable Biology

Continuous-time Markov processes describe systems in terms of discrete states and state

transitions—concepts that are ubiquitous in models of computation. The structure of the

kinetic Monte Carlo approach is essentially a direct mapping between samples of a Markov

process and execution traces of a computer simulation. The state of the simulation process

encodes the state of the Markov process, and the execution path of the simulation emu-

lates the transitions of the Markov process from state to state. This relationship becomes

insightful for models such as the MVRW model where the states and transitions represent

an approximation of the actual physical states and dynamics of the system. A computer

simulation of a CTMP model such as the MVRW model represents a hypothetical execu-

tion of the physical or chemical system, rather than just an abstract computational solution

to a mathematical function.

Fisher and Henzinger have recently introduced the idea of executable biology [41]

as an approach to biological modeling focusing on computational models that “present a

recipe—an algorithm—for an abstract execution engine to mimic a design or natural phe-

nomenon.” For Fisher and Henzinger, a computational model is described principally by

operational semantics, and the execution of the model parallels the hypothetical physical

and chemical evolution of the system. This is in contrast to mathematical models that

describe a system as a set of equations, where the procedure for numerically estimating

the solution of the equations has no semantic connection to the physical and chemical

processes that give rise to the system dynamics. As an example of such a mathematical

model, consider the standard deterministic model of the mass action kinetics of a chemical

system (Section 3.1). This model uses differential equations derived from the law of mass

action to describe the species concentrations over time. The model is accurate for most

chemical reactions in large, well-mixed volumes of dilute solutions. Finding a solution to

the equations allows one to accurately predict the dynamics of the system. However, any

156

Chapter 10. Executable Biology

numerical estimation of the differential equations follows an execution pattern that has no

direct relation to the actual molecular events that drive the system. The goal of computa-

tion in such a model is to obtain the best approximation to the solution of the mathematical

system in the most efficient manner. This approach is functional and practical, but it does

not shed any light on how the dynamics of the system result from the elementary chemical

events.

Fisher and Henzinger’s definitions of mathematical models and computational models

are compelling, but suffer from a narrow focus on process calculi and interacting state

machine models. For them, an essential feature of a computational model is that it is de-

scribed algorithmically and is intrinsically executable with no ambiguity in the intended

implementation. However, the real advantage of the computational model is not in the lan-

guage of its description, but in the form of its assumptions. In a computational model, we

view a system in terms of its physical and chemical constituents and assume that the state

of the system is the state of its parts. Furthermore, we assume that temporal evolution of

the system is governed by interactions of the constituents through a sequence of elemen-

tary events leading to discrete changes in the system state. Any model that characterizes a

system in such a manner represents an executable understanding of the system, regardless

of the language in which it is described. The real advantage of computational models is

that their execution follows a sequence of events that correspond to an approximation of

the real physical and chemical events driving the system at relevant time scales. Develop-

ing, running, and observing simulations gives us direct insight into the way natural laws

give rise to complex effects through stochastic sequences of elementary events. Visualiz-

ing the execution of such a simulation is the virtual equivalent of watching a real physical

system evolve, and allows the user to develop an operational understanding of the system

in ways not possible with other models.

With a more fundamental description of a computational model in terms of the assump-

tions made about the system, we find that there is no longer a strict dichotomy between

157

Chapter 10. Executable Biology

mathematical and computational models. In fact, most models based on CTMPs are both

mathematical and computational. Clearly, a CTMP is a formal mathematical description

of a system and hence a mathematical model. However, through the KMC algorithm,

any such model also gives rise to an executable description of the system. Many famous

examples of this class of models exist, for example, the Ising model of magnetism [18],

Gillespie’s stochastic model of chemical kinetics [48], and the random walk model of

diffusion.

A model that is both mathematical and computational has the advantages of both

classes. A purely mathematical model with no direct description of the elementary ob-

jects and events is conceptually opaque; we can use it to predict the system dynamics,

but it provides no insight into the causes of the dynamics. On the other hand, a purely

computational model described algorithmically lacks context. Such a model is difficult to

compare with other models that do not share a common language of description in math-

ematics. Phrasing a model in terms of mathematics often helps to extract commonalities

among models and suggest relationships and connections that may not be obvious from

an executable algorithm. Also, a mathematical model will often admit some analytical re-

sults. Even if the full dynamics of the model is not analytically tractable, we can establish

results regarding asymptotic behavior or identify conservation relations. Additionally, the

formality with which mathematical models are described allows them to be derived from

physical laws and assumptions in a rigorous and logically justifiable manner.

The ability to describe a system both mathematically and computationally represents

a more fundamental understanding of the system than a model that fits in only one class

or the other. Such a model requires understanding the fundamental mathematical relation-

ships of the system, as well as how those relationships govern the execution of the system

in terms of its constituent parts. It is easy to propose ad hoc computational models with

no physical justification or to propose mathematical relationships observed empirically

through experiment, but understanding how the relationships and dynamics result from

158

Chapter 10. Executable Biology

the elementary interactions is much more enlightening. Thus we take this approach in our

MVRW model of molecular transport.

159

Chapter 11
Conclusion

In many ways the molecular spiders and the MVRW model exemplify the challenges of

understanding the detailed kinetics of molecular-scale systems. While the overall struc-

ture of the spiders is simple and they interact with their environment under a set of simple

rules, these rules are necessarily stochastic because of the natural thermal fluctuations on

these scales. The stochasticity and the multitude of simultaneous physical and chemi-

cal processes operating make it very difficult to qualitatively or quantitatively understand

how the spiders will move through analytical methods. In addition, the inadequacy of

spatial-temporal resolution of current microscopy techniques also makes experimental in-

vestigations difficult. In such situations computational models and computer simulations

are essential. Moreover, we shave shown that unanticipated effects and complex mecha-

nisms emerge from the simple physical and chemical rules that govern the dynamics of the

spiders.

Furthermore, computational thinking is required to arrive at a model that is both phys-

ically plausible and computationally feasible. The assumptions made in the MVRW are

simple and are chosen to lead to a model that is practical to simulate with modern desktop

computing resources. We take advantage of the Markovian nature of physical and chem-

ical systems on the timescales of interest, which leads to an executable understanding of

the MVRW system via the KMC algorithm.

160

Glossary of Symbols

A The attached leg sites completely define the state of
the walker. In general, A = [ai ∈ S ∪ {�}]k

i=1. In
the special case of point-bodied walkers all k legs are
identical and A can be replaced by the unordered set
of attached legs written as A.

34

B The random variable describing the body’s equilib-
rium distribution over positions (v, θ). This random
variable depends on the current value of A.

37

�̂ The set of feasible canonical configurations. 65
Cb = �2 The space of 2D coordinates in the walker body’s ref-

erence frame.
34

Ce = �2 The space of 2D coordinates in the environment’s ref-
erence frame.

34

χ : Σ→ Σ The species transformation resulting from catalysis
for each species.

37

� A detached state for a leg. 34

∆E(b) = ∆E f (b) The change in potential energy of the walker at posi-
tion b as it moves from original position b0 under the
load of conservative force f .

45

� The set of environment states. 32
Exp(λ) The exponential distribution with parameter λ. 54

F The set of feasible body positions (v, θ). 38
f i
B(s) The feasibility probability of leg i attaching to site s,

given body distribution B.
43

Fpt(d; t) The first passage time—the distribution of the time to
first reach distance d from the origin.

83

∆G The change in Gibbs free energy 17

H The hip locations H = [hi]k
i=1 in the body’s coordi-

nates Cb.
34

161

Glossary of Symbols

I i
b(s) The feasibility indicator function for leg i binding to

site s from fixed body position b. This determines the
attachment kinetics of an unattached leg from a fixed
body position.

43

k The number of legs. 34
kB Boltzmann’s constant is 1.38 × 10−23J K−1. At T =

300 K, we have kBT = 4.14 pN nm, which is the aver-
age amount of thermal energy available to a walker.

18

kcat : Σ→ �+ The rate of leg catalysis for each species. When work-
ing with Σ = {S,P}, only substrates can be catalyzed
and we let kcat = kcat(S).

37

k− : Σ→ �+ The rate of the leg dissociation reaction for each
species. When working with Σ = {S,P}, we write
k−P = k−(P), and k−S = k−(S).

36

k+ : Σ→ �+ The rate of the leg binding reaction for each species.
When working with Σ = {S,P}, we write k+

P = k+(P),
and k+

S = k+(S).

36

` The length of the legs. 34

Ω = � ×� The set of all states for the Markov process defined by
the MVRW model.

36

pB(v, θ) The probability of the body position being (v, θ) at
equilibrium.

38

Φ̂C The canonical mapping for attached leg configuration
C takes the leftmost of the lowermost sites, cLL, and
translates it to the origin. This gives the unique canon-
ical representative for an attached leg configuration C.

65

π : S → Σ The site species function: a mapping from a site to the
species displayed at that site.

32

P [E] The probability of event E. 38

r i
B(s) The attachment transition rate for leg i attaching to

site s, given body distribution B.
44

162

Glossary of Symbols

S The set of chemical sites in coordinates Ce. 32
S
�̂

The set of all possible canonical lattice coordinates,
defined as the set of all coordinates from any canonical
configuration in �̂.

65

S i
F (A) The set of feasible sites s ∈ S that are within distance

` of hi from some feasible body position in F(A).
45

Σ The set of chemical species. Typically we have Σ =

{S,P}.
32

T Absolute temperature in Kelvin. We fix T = 300 K for
the isothermal walker systems modeled by the MVRW
model.

17

T (v, θ) A 2D rigid body transform from the body’s coordi-
nates Cb to the environment’s coordinates Ce. This
defines the location of the body. For point-bodied spi-
ders T (v, θ) = T (v), as they are rotationally symmet-
ric.

34

U(v, θ) The energy associated with body position (v, θ). This
determines the equilibrium distribution via the Boltz-
mann distribution.

38

Uniform(a, b) The uniform distribution over real interval [a, b]. 54
�̂ The set of unique canonical configurations, �̂ ⊆ �̂ is

the set of minimal elements of the unique canonical
configuration ordering � over �̂.

67

U : �̂→ �̂ The unique canonical mapping takes a canonical con-
figuration Ĉ to its equivalent unique canonical config-
uration Û = U(Ĉ), which is the minimal element of
the chain of Ĉ in the canonical equivalent mapping �.

67

� The set of walker states. 35
w?(f) The mean peak work a walker does moving

against a force f . This is defined as w?(f) =

maxt∈[0,tmax] 〈∆E(t; f)〉 − ∆E∞(f), where ∆E∞(f) is the
equilibrium energy of the spider system under force f .

92

163

Glossary of Symbols

Z The partition function in the Boltzmann distribution. 39

164

References

[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266(5187):1021–1024, 1994.

[2] Ashutosh Agarwal and Henry Hess. Biomolecular motors at the intersection of
nanotechnology and polymer science. Progress in Polymer Science, 35(1–2):252–
277, 2010.

[3] Francesc Alted and Mercedes Fernández-Alonso. PyTables: Processing and ana-
lyzing extremely large amounts of data in Python. In PyCon 2003, 2003.

[4] Scott W. Ambler. Agile Database Techniques. Wiley, Indianapolis, IN, 2003.

[5] Pier Lucio Anelli. A molecular shuttle. Journal of the American Chemical Society,
113:5131–5133, 1991.

[6] Tibor Antal and Paul L. Krapivsky. Molecular spiders with memory. Physical
Review E, 76(2):021121, 2007.

[7] R. Dean Astumian. Design principles for Brownian molecular machines: how
to swim in molasses and walk in a hurricane. Physical Chemistry and Chemical
Physics, 9:5067–5083, 2007.

[8] R. Dean Astumian. Thermodynamics and kinetics of molecular motors. Biophysical
Journal, 98(11):2401–2409, 2010.

[9] R. Dean Astumian and Imre Derényi. A chemically reversible brownian motor:
application to kinesin and Ncd. Biophysical Journal, 77(2):993–1002, 1999.

[10] Heiko Bauke. Tina’s random number generator library, August 2011.

[11] Heiko Bauke and Stephan Mertens. Random number generators for large-scale
distributed Monte Carlo simulations. Physical Review E, 75(6):066701, 2007.

[12] Yaakov Benenson, Benyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro. An
autonomous molecular computer for logical control of gene expression. Nature,
429(6990):423–429, May 2004.

[13] Jorge Berger. From randomness to order. Entropy, 6(1):68–75, 2004.

[14] Veronika Bierbaum and Reinhard Lipowsky. Chemomechanical coupling and motor
cycles of myosin V. Biophysical Journal, 100(7):1747–1755, 2011.

[15] Kurt Binder, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.
Molecular dynamics simulations. Journal of Physics: Condensed Matter,
16(5):S429, 2004.

165

References

[16] Gerd Binnig, Calvin F. Quate, and Christoph Gerber. Atomic force microscope.
Physical Review Letters, 56:930–933, 1986.

[17] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-GPU accelerated multi-spin
Monte Carlo simulations of the 2D Ising model. Computer Physics Communica-
tions, 181(9):1549–1556, 2010.

[18] Alfred B. Bortz, Malvin H. Kalos, and Joel L. Lebowitz. A new algorithm for
Monte Carlo simulation of Ising spin systems. Journal of Computational Physics,
17(1):10 – 18, 1975.

[19] Ronald R. Breaker and Gerald F. Joyce. A DNA enzyme that cleaves RNA. Chem-
istry & Biology, 1(4):223–224, 1994.

[20] Ronald R. Breaker and Gerald F. Joyce. A DNA enzyme with Mg2+-dependent
RNA phosphoesterase activity. Chemistry & Biology, 2(10):655–660, 1995.

[21] Christian Brunner, Christian Wahnes, and Viola Vogel. Cargo pick-up from en-
gineered loading stations by kinesin driven molecular shuttles. Lab on a Chip,
7(10):1263–1271, 2007.

[22] Petra Burgstaller and Michael Famulok. Synthetic ribozymes and the first deoxyri-
bozyme. Angewandte Chemie Int. Ed., 34(11):1189–1192, 1995.

[23] Carlos Bustamante, Yann R. Chemla, Nancy R. Forde, and David Izhaky. Mechan-
ical processes in biochemistry. Annual Review of Biochemistry, 73:703–748, 2004.

[24] Luca Cabibbo. Managing inheritance hierarchies in object/relational mapping tools.
In CAiSE Conference on Advanced Information Systems Engineering, pages 135–
150, 2005.

[25] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings
algorithm. The American Statistician, 49(4):327–335, 1995.

[26] Edgar F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, 1970.

[27] Edger F. Codd. Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4):397–434, 1979.

[28] Shirley Cohen, Patrick Hurley, Karl W. Schulz, William L. Barth, and Brad Benton.
Scientific formats for object-relational database systems: A study of suitability and
performance. SIGMOD Record, 35(2):10–15, 2006.

166

References

[29] Chris M. Coppin, Jeffrey T. Finer, James A. Spudich, and Ronald D. Vale. Detec-
tion of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy.
Proceedings of the National Academy of Sciences, 93(5):1913–1917, 1996.

[30] Chris M. Coppin, Daniel W Pierce, Long Hsu, and Ronald D. Vale. The load
dependence on kinesin’s mechanical cycle. Proceedings of the National Academy
of Sciences, 94(16):8539–8544, 1997.

[31] Enrique M. De La Cruz, Amber L. Wells, Steven S. Rosenfeld, E. Michael Ostap,
and H. Lee Sweeney. The kinetic mechanism of myosin V. Proceedings of the
National Academy of Sciences, 96(24):13726–13731, 1999.

[32] John R. Dennis, Jonathan Howard, and Viola Vogel. Molecular shuttles: directed
motion of microtubules along nanoscale kinesin tracks. Nanotechnology, 10(3):232,
1999.

[33] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Addison Wesley, Boston, MA, 2004.

[34] Akihiro Enomoto, Michael Moore, Tadashi Nakano, Ryota Egashira, Tatsuya Suda,
Atsushi Kayasuga, Hiroaki Kojima, Hitoshi Sakakibara, and Kazuhiro Oiwa. A
molecular communication system using a network of cytoskelatal filaments. NSTI-
Nanotech, 1:725–728, 2006.

[35] Baptiste Essevaz-Roulet, Ulrich Bockelmann, and Francois Heslot. Mechanical
separation of the complementary strands of DNA. Proceedings of the National
Academy of Sciences, 94(22):11935–11940, 1997.

[36] Richard Levery et. al. A systematic molecular dynamics study of nearest-neighbor
effects on base pair and base pair step conformations and fluctuations in B-DNA.
Nucleic Acids Research, 38(1):299–313, 2010.

[37] Evan Evans and Ken Ritchie. Strength of a weak bond connecting flexible polymer
chains. Biophysical Journal, 76(5):2439–2447, 1999.

[38] Nick P. Ferenz, Alyssa Gable, and Pat Wadsworth. Mitotic functions of kinesin-5.
Seminars in Cell & Developmental Biology, 21(3):255–259, 2010.

[39] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte Carlo simulations:
Hidden errors from “good” random number generators. Physical Review Letters,
69(23):3382–3384, 1993.

[40] A Fischer, S Seeger, K H Hoffmann, C Essex, and M Davison. Modeling anomalous
superdiffusion. Journal of Physics A: Mathematical and Theoretical, 40(38):11441,
2007.

167

References

[41] Jasmin Fisher and Thomas A. Henzinger. Executable cell biology. Nature Biotech-
nology, 25(11):1239–1249, November 2007.

[42] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An
overview of the HDF5 technology suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47, 2011.

[43] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston, MA, 2003.

[44] Ronald F. Fox. Rectified Brownian movement in molecular and cell biology. Phys-
ical Review E, 57(2):2177–2203, 1998.

[45] Charles J. Geyer. Practical Markov chain Monte Carlo. Statistical Science,
7(4):473–483, 1992.

[46] Charles J. Geyer. Introduction to Markov chain Monte Carlo. In Handbook of
Markov Chain Monte Carlo, pages 3–47. CRC, 2011.

[47] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. Journal of Physical Chem-
istry A, 104(9):1876–1889, March 2000.

[48] Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403–434, 1976.

[49] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[50] Lawrence S. B. Goldstein and Alastair Valentine Philp. The road less traveled:
emerging principles of kinesin motor utilization. Annual Review of Cell and Devel-
opmental Biology, 15:141–183, 1999.

[51] Solomon W. Golomb. Polyominoes. Princeton University Press, Princeton, NJ, 2nd
edition, 1994.

[52] Jim Gray. Scientific data management in the coming decade. SIGMOD Record,
34(4):34–41, 2005.

[53] Eric Green, Mark J. Olah, Tatiana Abramova, Lance R. Williams, Darko Stefan-
ovic, Tilla Worgall, and Milan N. Stojanovic. A rational approach to minimal
high-resolution cross-reactive arrays. Journal of the American Chemical Society,
128(47):15278–15282, 2006.

168

References

[54] W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, April 1970.

[55] Shlomo Havlin and Daniel Ben-Avraham. Diffusion in disordered media. Advances
in physics, 51(1):187–292, 1987.

[56] Paul Helman. The Science of Database Management. Richard D. Irwin Inc., Burr
Ride, IL, 1994.

[57] Niels E. Henriksen and Flemming Y. Hansen. Theories of Molecular Reaction Dy-
namics. Oxford University Press, New York, NY, 2008.

[58] Henry Hess, John Clemmens, Christian Brunner, Robert Doot, Sheila Luna,
Karl-Heinz Ernst, and Viola Vogel. Molecular self-assembly of nanowires and
nanospools using active transport. Nano Letters, 5(4):629–633, 2005.

[59] Kent L. Hill, Natalie L. Catlett, and Lois S. Weisman. Actin and myosin function
in directed vacuole movement during cell division in saccharomyces cerevisiae.
Journal of Cell Biology, 135(6):1535–1549, 1996.

[60] Stefan Holder, Jim Buchan, and Stephen G. MacDonell. Towards a metrics suite for
object-relational mappings. In Model-Based Software and Data Integration, pages
43–54. Springer, 2008.

[61] Jiří Homola, Sinclair S. Yee, and Günter Gauglitz. Surface plasmon resonance
sensors: review. Sensors and Actuators B: Chemical, 54(1–2):3–15, 1999.

[62] Joe Howard. Molecular motors: structural adaptations to cellular functions. Nature,
389(6651):561–567, 1997.

[63] Jonathan Howard. Mechanical signaling in networks of motor and cytoskeletal
proteins. Annual Reviews in Biophysics, 38:217–234, 2009.

[64] Bo Huang, Mark Bates, and Xiaowei Zhuang. Super resolution fluorescence mi-
croscopy. Annual Review of Biochemistry, 78:993–1016, 2009.

[65] A. F. Huxley. Muscle structure and theories of contraction. Progress in Biophysics
and Biophysical Chemistry, 7:255–318, 1957.

[66] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A classi-
fication of object-relational impedance mismatch. In Proceedings of the 2009 First
International Conference on Advances in Databases, Knowledge, and Data Appli-
cations, pages 36–43. IEEE Computer Society, 2009.

169

References

[67] Jae-Hyung Jeon and Ralf Metzler. Inequivalence of time and ensemble averages in
ergodic systems: exponential versus power-law relaxation in confinement. Physical
Review E, 85(2):250602, 2012.

[68] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. John Wiley &
Sons, New York, NY, 1986.

[69] David Keller and Carlos Bustamante. The mechanochemistry of molecular motors.
Biophysical Journal, 78(2):541–556, 2000.

[70] Setrag Khoshafian and George P. Copeland. Object identity. In OOPSLA Object-
Oriented Programming, Systems, Languages, and Applications, pages 406–416,
1986.

[71] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, 3rd edition, 1993.

[72] Anatoly B. Kolomeisky and Michael E. Fisher. Molecular motors: a theorist’s
perspective. Annual Reviews of Physical Chemistry, 58:675–695, 2007.

[73] Thomas Kowark, Robert Hirschfeld, and Michael Haupt. Object-relational map-
ping with squeaksave. In Proceedings of the International Workshop on Smalltalk
Technologies, IWST ’09, pages 87–100, New York, NY, 2009. ACM.

[74] Akihiro Kusumi, Yasushi Sako, and Mutsuya Yamamoto. Confined lateral diffusion
of membrane receptors as studied by single particle tracking (nanovid microscopy).
effects of calcium-induced differentiation in cultured epithelial cells. Biophysical
Journal, 65(5):2021–2040, 1993.

[75] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation, 68(225):249–260, 1999.

[76] Chih-Kung Lee, Yu-Ming Wang, Long-Sun Huang, and Shiming Lin. Atomic
force microscopy: determination of unbinding force off rate and energy barrier for
protein-ligand interaction. Micron, 38(5):446–461, 2007.

[77] Steffen Liepelt and Reinhard Lipowsky. Kinesin’s network of chemomechanical
motor cycles. Physical Review Letters, 98(25):258102, 2007.

[78] Sebastian Link, Ivan Lukovic, and Pavle Mogin. Performance evaluation of natural
and surrogate key database architectures. Technical report, Victoria University of
Wellington, Wellington, NZ, 2010.

170

References

[79] Reinhard Lipowsky and Steffen Liepelt. Chemomechanical coupling of molecular
motors: Thermodynamics, network representations, and balance conditions. Jour-
nal of Statistical Physics, 130(1):39–67, 2008.

[80] Ariel Lubelski, Igor M. Sokolov, and Joseph Klafter. Nonergodicity mimics in-
homogeneity in single particle tracking. Physical Review Letters, 100(5):250602,
2008.

[81] Kyle Lund. personal communication, 2008.

[82] Kyle Lund, Anthony J. Manzo, Nadine Dabby, Nicole Michelotti, Alexander
Johnson-Buck, Jeanette Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojan-
ovic, Nils G. Walter, Erik Winfree, and Hao Yan. Molecular robots guided by
prescriptive landscapes. Nature, 465:206–210, May 2010.

[83] Joanne Macdonald, Yang Li, Marko Sutovic, Harvey Lederman, Kiran Pendri,
Wanhong Lu, Benjamin L. Andrews, Darko Stefanovic, and Milan N. Stojanovic.
Medium scale integration of molecular logic gates in an automaton. Nano Letters,
6(11):2598–2603, 2006.

[84] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30, 1998.

[85] Stephan Mertens. Lattice animals: A fast enumeration algorithm and new perimeter
polynomials. Journal of Statistical Physics, 58(5–6):1095–1108, 1990.

[86] Stephan Mertens. Random number generators: A survival guide for large scale
simulations. Otto-von-Guericke University Magdeburg, 2009.

[87] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[88] Peter Mork, Philip Bernstein, and Sergey Melnik. Teaching a schema translator to
produce O/R views. In Conceptual Modeling - ER 2007, volume 4801 of LNCS,
pages 102–119. Springer, 2007.

[89] Dan V. Nicolau, Dan V. Nicolau, Jr., Gerardin Solana, Kristi L. Hanson, Luisa
Filipponi, Lisen Wang, and Abraham P. Lee. Molecular motors-based micro- and
nano-biocomputation devices. Microelectronic Engineering, 83(4-9):1582–1588,
2006.

171

References

[90] Dan V. Nicolau, Jr., Kevin Burrage, and Dan V. Nicolau. Computing with motile
bio-agents. In Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, volume 6416, Dec. 2007.

[91] Masayoshi Nishiyama, Hideo Higuchi, and Toshio Yanagida. Chemomechanical
coupling of the forward and backward steps of single kinesin molecules. Nature
Cell Biology, 4:790–797, 2002.

[92] Mark J. Olah, David Mohr, and Darko Stefanovic. Representing uniqueness con-
straints in object-relational mapping: The natural entity framework. In Objects,
Models, Components, Patterns, volume 7304 of Lecture Notes in Computer Sci-
ence, pages 236–251. Springer Berlin / Heidelberg, 2012.

[93] Mark J. Olah and Darko Stefanovic. Multivalent random walkers: A model for
deoxyribozyme walkers. In DNA Computing and Molecular Programming, vol-
ume 6937 of Lecture Notes in Computer Science, pages 160–174. Springer Berlin /

Heidelberg, 2011.

[94] Mark J. Olah and Darko Stefanovic. Superdiffusive transport by multivalent molec-
ular walkers moving under load. in submission 2012.

[95] Mark J. Olah and Darko Stefanovic. Kinetic Monte Carlo simulation for multivalent
random walkers. in preparation.

[96] Elizabeth J. O’Neil. Object/relational mapping 2008: Hibernate and the entity data
model (EDM). In Proceedings of the 2008 ACM SIGMOD international conference
on management of data, pages 1351–1356, 2008.

[97] Renjun Pei, Aihua Shen, Mark J. Olah, Darko Stefanovic, Tilla Worgall, and Mi-
lan N. Stojanovic. High-resolution cross-reactive array for alkaloids. Chemical
Communications, pages 3193–3195, 2009.

[98] Renjun Pei, Steven K. Taylor, Darko Stefanovic, Sergei Rudchenko, Tiffany E.
Mitchell, and Milan N. Stojanovic. Behavior of polycatalytic assemblies in
a substrate-displaying matrix. Journal of the American Chemical Society,
39(128):12693–12699, 2006.

[99] Charles S. Peskin, Garry M. Odell, and George F. Oster. Cellular motions and
thermal fluctuations: the Brownian ratchet. Biophysical Journal, 65(1):316–324,
1993.

[100] Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin. “Dip-
pen” nanolithography. Science, 283(5402):661–663, 1999.

172

References

[101] Andre V. Pinheiro, Dongran Han, William M. Shih, and Hao Yan. Challenges and
opportunities for structural dna nanotechnology. Nature Nanotechnology, 6:763–
772, 2011.

[102] Hong Qian, Michael P. Sheetz, and Elliot L. Elson. Single particle tracking: analysis
of diffusion and flow in two-dimensional systems. Biophysical Journal, 60(4):910–
921, 1991.

[103] Adrian E. Raftery and Steven M. Lewis. Implementing MCMC. In Walter R. Gilks,
Sylvia S. Richardson, and J. D. Spiegelhalter, editors, Markov Chain Monte Carlo
in Practice, pages 115–130. Chapman and Hall, 1996.

[104] D. Hugh Redelmeier. Counting polyominoes: yet another attack. Discrete Mathe-
matics, 36:191–203, 1981.

[105] Sidney Redner. A Guide to First-Passage Times. Cambridge University Press,
Cambridge, UK, 2001.

[106] Ken Ritchie, Xiao-Yuan Shan, Junko Kondo, Kokoro Iwasawa, Takahiro Fujiwara,
and Akihiro Kusumi. Detection of non-brownian diffusion in the cell membrane in
single molecule tracking. Biophysical Journal, 88(3):2266–2277, 2005.

[107] Christian Robert and George Casella. A short history of MCMC: Subjective recol-
lections from incomplete data. In Handbook of Markov Chain Monte Carlo, pages
49–61. CRC, 2011.

[108] Robert Ross, Daniel Nurmi, Albert Cheng, and Michael Zingale. A case study in
application I/O on Linux clusters. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, New York, NY, USA, 2001. ACM.

[109] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440:297–302, 2006.

[110] Michael J. Saxton and Ken Jacobson. Single-particle tracking: Applications to
membrane dynamics. Annual Review of Biophysics and Biomolecular Structure,
26(1):373–399, 1997.

[111] Tim P. Schulze. Efficient kinetic Monte Carlo simulation. Journal of Computational
Physics, 227(4):2455–2462, 2008.

[112] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Mechanism of diffusive trans-
port in molecular spider models. Physical Review E, 83(2):021117, Feb 2011.

173

References

[113] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Multiple molecular spiders
with a single localized source – the one-dimensional case. In DNA Computing
and Molecular Programming, volume 6937 of Lecture Notes in Computer Science,
pages 204–216. Springer Berlin / Heidelberg, 2011.

[114] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Cooperative linear cargo trans-
port with molecular spiders. Natural Computing, 2012. In publication.

[115] Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. A constant-time ki-
netic Monte Carlo algorithm for simulation of large biochemical reaction networks.
The Journal of Chemical Physics, 128(20):205101, 2008.

[116] Milan N. Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic.
Deoxyribozyme-based logic gates. Journal of the American Chemical Society,
124(14):3555–3561, 2002.

[117] Milan N. Stojanovic and Darko Stefanovic. A deoxyribozyme-based molecular
automaton. Nature Biotechnology, 21(9):1069–1074, September 2003.

[118] Milan N. Stojanovic, Darko Stefanovic, Thomas LaBean, and Hao Yan. Computing
with Nucleic Acids, pages 427–455. Wiley, 2005.

[119] Karel Svoboda, Christoph F. Schmidt, Bruce J. Schnapp, and Steven M. Block.
Direct observation of kinesin stepping by optical trapping interferometry. Nature,
365(6448):721–727, 1993.

[120] Michio Tomishige, Nico Stuurman, and Ronald D Vale. Single-molecule observa-
tions of neck linker conformational changes in the kinesin motor protein. Nature
Structural & Molecular biology, 13(10):887–894, 2006.

[121] Erdal Toprak, Ahmet Yildiz, Melinda Tonks Hoffman, Steven S. Rosenfeld, and
Paul R. Selvin. Why kinesin is so processive. Proceedings of the National Academy
of Sciences, 106(31):12717–12722, 2009.

[122] Ronald D. Vale and Ronald A. Milligan. The way things move: looking under the
hood of molecular motor proteins. Science, 288:88–95, 2000.

[123] Koen Visscher, Mark J. Schnitzer, and Steven M. Block. Single kinesin molecules
studied with a molecular force clamp. Nature, 400(6740):184–189, 1999.

[124] Arthur Voter. Introduction to the kinetic Monte Carlo method. In Kurt Sickafus,
Eugene Kotomin, and Blas Uberuaga, editors, Radiation Effects in Solids. Springer,
2007.

174

References

[125] Brian Walsh. Markov chain Monte Carlo and Gibbs sampling. Lecture Notes for
University of Arizona class EEB 581, 2004. http://nitro.biosci.arizona.
edu/courses/EEB596/handouts/Gibbs.pdf.

[126] Roel Wieringa and Wierbren de Jonge. Object identifiers, keys, and surrogates—
object identifiers revisited. Theory and Practice of Object Systems, 1(2):101–114,
1995.

[127] Oscar H. Willemsen, Margot M. E. Snel, Alessandra Cambi, Jan Greve, Bart G. De
Grooth, and Carl G. Figdor. Biomolecular interactions measured by atomic force
microscopy. Biophysical Journal, 79(6):3267–3281, 2000.

[128] Torsten Wittmann, Anthony Hyman, and Arshad Desai. The spindle: a dynamic
assembly of microtubules and motors. Nature Cell Biology, 3(1):E28–34, 2001.

[129] Wenxia Ying, Gabriel Huerta, Stanly Steinberg, and Martha Zúñiga. Time series
analysis of particle tracking data for molecular motion on the cell membrane. Bul-
letin of Mathematical Biology, 71(8):1967–2024, 2009.

[130] Matthew A. Young, G. Ravishanker, and D. L. Beveridge. A 5-nanosecond molec-
ular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
Biophysical Journal, 73(5):2313–2336, 1997.

175

