
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2012

Methods for speculatively bootstrapping better
intrusion detection system performance
Sunny Fugate

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Fugate, Sunny. "Methods for speculatively bootstrapping better intrusion detection system performance." (2012).
https://digitalrepository.unm.edu/cs_etds/20

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/20?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Sunny James Fugate

Candidate

Computer Science

Department

This dissertation is approved, and it is acceptable in quality and form

for publication:

Approved by the Dissertation Committee:

, ChairpersonGeorge F. Luger

Jedidiah R. Crandall

Thomas P. Caudell

Thomas P. Hayes

LorRaine T. Duffy

Methods for Speculatively Bootstrapping Better
Intrusion Detection System Performance

by

Sunny James Fugate

B.S., Electrical Engineering, University of Nevada, 2002
M.S., Computer Science, University of New Mexico, 2011

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December 2012

c�2012, Sunny James Fugate

iii

Dedication

To my brilliant wife Truc-Ha, my sons Minh and Maxwell,

and my friends and colleagues who have supported and encouraged me.

iv

Acknowledgments
I would foremost like to thank my adviser, Professor George Luger, for supporting my

research even though it often drifted from his own interests. My time at the University of
New Mexico would not have been nearly as pleasurable without your insights, patience,
and candor (and occasional infusions of India Pale Ale at the local brew pub).

As a recipient of the Naval Postgraduate School’s Science, Mathematics, & Research
for Transformation (SMART) Scholarship, I am eternally grateful for the financial means
to obtain an advanced degree while maintaining my pursuit of Navy-directed research as a
government civilian. The financial freedom afforded by the SMART program has enabled
me to start a family and learn about human cognition and development as both a scientist
and a parent.

I would also like to thank the Defense Threat Reduction Agency for supporting my
application to the SMART program, the, Systems Center (SPAWAR) for their continued
employment throughout my degree studies, and the Office of Naval Research (ONR) for
funding my research projects throughout my studies. Many aspects of this dissertation were
partially funded through ONR.

Dr. LorRaine Duffy has been my mentor, adviser, and friend during my first decade of
government service. She has been my unequivocal advocate throughout both my academic
studies and research efforts. Under her guidance, I have had the most fun, worked with the
best teams, met the most fascinating people, and worked on the most clever ideas of my
early career. Thank you for believing in me, trusting me, and being my vocal advocate in a
forest of falling trees. Someday, the rest of the guys and I will make you famous, just you
wait.

Finally, I would like to thank Christine Lisman. Without her advocacy of my early
efforts in security-related visualization (and my having subsequently followed her out to
Washington, DC to work at the Joint Task Force for Global Network Operations) I may
have never gotten my feet wet with Network Intrusion Detection in the first place.

v

Methods for Speculatively Bootstrapping Better
Intrusion Detection System Performance

by

Sunny James Fugate

B.S., Electrical Engineering, University of Nevada, 2002
M.S., Computer Science, University of New Mexico, 2011

Ph.D., Computer Science, University of New Mexico, 2012

Abstract

During the last three decades, the designers of computer Intrusion Detection System

(IDS) have been continuously challenged with performance bottlenecks and scalability

issues. The number of threats is enormous. The performance of IDS systems depends

primarily on the quantity of input data and complexity of detected patterns. During noisy

attacks, system load tends to increase proportional to increasing data rates, making IDS

systems vulnerable to flooding and denial-of-service attacks. Unfortunately, the number,

type, and sophistication of threats is quickly increasing, outpacing our ability to detect

them. The more we try to detect, the more computing and economic resources must be

reserved solely for the task of detection, whittling away at what remains for performing

useful computations.

This dissertation describes methods for assessing the current scaling performance

of signature-based IDS and presents models for speculatively bootstrapping better IDS

performance. Using measurements of the coverage and scaling performance of a modern

signature-based IDS in the context of an anticipatory model arguments are presented that

vi

maintaining compact, low-coverage signature-sets does not provide optimal protection for

modern heterogeneous computing environments. The primary contribution is an analysis of

how mechanisms of anticipatory bias can be used to achieve performance improvements.

To support the theoretical models, two principal approaches have been implemented.

The first uses a combination of anticipation and feedback in an attempt to decrease per-

signature costs by (counter-intuitively) increasing system coverage. The approach uses

learned sequence statistics to make predictions of future events. Each prediction above a

chosen threshold is used to decrease per-stream detection cost by shunting traffic to smaller

detectors (at the risk of increased error rates). The new approach promises decreasing

per-signature costs as new detection signatures are added. The design and performance of a

prototype anticipatory IDS, “Packet Wrangler”, demonstrates the feasibility of the basic

approach.

The second approach applies primarily to improving the performance of IDS when under

stress. When overburdened, an IDS will drop input data (often arbitrarily). A probabilistic

signature activation approach is described which improves error rates by decreasing the

total amount of input data lost by probabilistically dropping signature activations based on

learned event statistics and system load. A theoretical analysis is presented which shows

that a policy which drops signatures instead of packets can outperform the default policy of

dropping packets in terms of total error rates. A rudimentary prototype based on the Snort

IDS, “Probabilistic Flowbits”, is described. Experimental results are then given which show

substantially decreased error rates while simultaneously decreasing system overhead.

In conclusion, a case is made for expanding IDS coverage and implementation fast-

feedback and anticipatory optimizations. It can be argued that these extensions are both

necessary and sufficient for long-term scalability, but oddly absent from existing systems.

vii

Contents

Abstract . vi

Figures . xii

Tables . xiv

Listings . xvi

1 Introduction 1

1.1 Summary of Results . 5

2 Background 10

2.1 Why Study Anticipatory Intrusion Detection? 10

2.1.1 Inspiration . 10

2.1.2 Software Complexity, Vulnerability, and Detection 13

2.1.3 The Problem of Performance . 15

2.1.4 Goals . 17

2.2 Intrusion Detection Systems . 21

2.2.1 Host versus Network Detection 22

2.2.2 Misuse and Anomaly Detection 24

2.2.3 Signature-Based Detection . 26

2.3 Characteristics of Signature-Based Detection 29

2.3.1 Decision Procedure . 29

2.3.2 Signature Information . 32

2.3.3 Alert & Signature Semantics . 33

2.3.4 Traffic Patterns . 36

viii

CONTENTS

2.4 Per-Signature Cost Optimization . 37

2.4.1 Flow Tracking . 38

2.4.2 Signature Chaining . 38

2.4.3 Event Filtering & Suppression 39

2.5 Related Work . 40

2.5.1 Attacker Modeling . 42

2.5.2 Prediction & Performance Adaptation 44

2.5.3 Historical Surveys . 49

3 Theory 54

3.1 An Anticipatory IDS Model . 55

3.1.1 Wasted Information . 58

3.1.2 Threat Coverage . 63

3.1.3 Packet Coverage . 64

3.1.4 Signature Equivalence Classes 66

3.1.5 An IDS Cost Function . 68

3.2 Probabilistic Signature Activation . 70

3.2.1 Signature Activation Policies . 71

3.2.2 Probabilistic Flowbits and False Negatives 75

3.3 Predictor Errors . 83

3.3.1 Signature Chaining & Flow Tracking 83

3.3.2 Systematic Errors . 84

3.3.3 Error Detection . 85

3.4 The Detection Game . 86

4 IDS Performance Characteristics 90

4.1 Generating Large Signature-Sets . 91

4.2 Snort IDS Performance Scaling . 93

4.2.1 Startup Performance . 93

ix

CONTENTS

4.2.2 Packet Coverage . 94

4.2.3 CPU-time scaling . 96

4.2.4 Packet Loss Scaling Performance 97

4.2.5 Anticipatory Gain Potential of the Snort IDS 101

5 Prototypes 105

5.1 Packet Wrangler . 105

5.1.1 Startup . 106

5.1.2 Program Logic . 108

5.1.3 Predictors . 109

5.1.4 Discussion . 111

5.2 Probabilistic Flowbits . 113

6 Experiments 117

6.1 Methods . 117

6.2 Packet Wrangler . 119

6.2.1 Naive Bayes Predictor . 120

6.2.2 Rule-Based . 125

6.2.3 Traffic Split . 129

6.2.4 Discussion . 131

6.3 Probabilistic Flowbits . 133

6.3.1 Results . 134

6.3.2 Analysis & Criticisms . 141

7 Impact, Conclusions, & Future Work 144

7.1 A “Household Survey” Analogy . 146

7.2 Biological Metaphors & Future Work 148

A Hardware & Software Configurations 156

A.1 Test System Configuration . 156

x

CONTENTS

A.2 Training and Test Data . 158

B Snort Configurations & Analysis 164

B.1 Basic Snort Configuration File . 164

B.2 Snort Signature Profiling & Tuning . 165

B.3 Custom Snort Signatures . 170

C Issues & Confounding Factors 172

C.1 Event Suppression . 172

C.2 Packet Loss . 173

D Scripts & Algorithms 176

D.1 Packet Wrangler . 176

D.2 Gain Curve Calculations . 177

References 180

xi

Figures

2.1 Software growth over a decade of Linux operating system development . . 13

2.2 Cataloged vulnerabilities per calendar year 14

2.3 Signature-set processing times for the Snort IDS release 2.9.1.2 16

2.4 Temporal logic relations over IDS events 36

2.5 Temporal logic using Next(alert) semantics 36

3.1 Predictive IDS architecture denoting conventional techniques 56

3.2 Dual decision tree representations with color-labeled equivalence classes . 57

3.3 Anticipatory IDS architecture . 58

3.4 Probabilistic signature activation function 74

3.5 Simple state transitions for Flowbit-based signature activation 75

3.6 The Detection Game payoff matrix for a zero-sum game 87

4.1 Random feature replacement algorithm 92

4.2 Polynomial fit for the startup time of the Snort IDS 94

4.3 Linear scaling of total CPU-time with signature-set size of the Snort IDS . 96

4.4 Test 18-2: Packets dropped by Snort for signature-set sizes 1K-40K . . . 98

4.5 Test 18-1: Snort scaling for signature-set sizes from 1K-40K 99

4.6 Over-estimating fit for packet processing rate 100

4.7 Packet processing rate estimate curves 100

4.8 Curves of constant gain for signature-set size of n = 4320 102

4.9 Curves of constant gain for signature-set size of n = 100000 103

xii

FIGURES

5.1 Predictive IDS architecture showing data flow 106

5.2 Flow diagram for the Packet Wrangler program 108

6.1 Test 5: Packet Wrangler forwarding using the Top 50 event sequences . . 121

6.2 Test 15: Packet Wrangler Top 50 Configuration 124

6.3 Test 36: Process Times showing experimental overhead costs 131

6.4 Test 36: Process Times with event filter 132

6.5 Test 38-1b: Total CPU-time for all processes (0min-10min window) . . . 135

6.6 Test 38-2b: Total CPU-time for all processes (10min-20min window) . . . 136

A.1 Stochastic matrix set showing Snort’s built-in preprocessors 161

A.2 Example stochastic matrix using the entire set of available signatures . . . 162

B.1 A Snort signature-set profile of top 10 signatures (Avg/Check) 166

xiii

Tables

2.1 Linear temporal logic relations . 35

2.2 Intrusion Detection Systems . 50

3.1 Equivalence class size and problem size 68

6.1 Test 29a,b: HTTP traffic split [s1 flow tracking, s1 HTTP-detection] . . . 127

6.2 Test 29c: HTTP traffic split [no s1 flow tracking, 3-tuple] 128

6.3 Tests 30-32: [small secondary signature-sets] 129

6.4 Test 35h: Dropping all detected TCP packets for a high-load scenario . . . 130

6.5 Test 36: Measuring cost of I/O for traffic detection signatures 131

6.6 Test 38-1b: packets processed and error rates (0min-10min) 135

6.7 Tests 38-1b & 2b: Cost-relevance policy relative to signature 4677 136

6.8 Test 38-2b: Packet processing and error rates (10min-20min window) . . 137

6.9 Test 38-2j: Cost-relevance policy with re-scaled probabilities 138

6.10 Test 38-2j: Packet processing and error rates after signature removal . . . 138

6.11 Calculated gains for various signature activation policies 139

6.12 Test 38-2k: Cost policy probability table 140

6.13 Test 38-2k: Packet processing and error rates using a Cost policy 141

A.1 System Hardware Configuration . 157

A.2 System Software Configuration . 157

A.3 High Occurrence Alert Sequences for the 1998 Dataset 160

B.1 Top 10 signatures in terms of total CPU-time in microseconds 168

xiv

TABLES

B.2 Top 10 signatures in terms of total CPU-time using a Cost policy 169

B.3 Cost policy performance differences in total CPU-time and checks 169

xv

Listings

2.1 Example of a Snort Signature . 34

2.2 Predicate logic representation of a Snort Signature 34

A.3 Snort configuration options used for compilation 156

A.4 Snort command using the PF RING data acquisition module 157

A.5 Snort command for experiments . 158

A.6 TCPReplay command . 158

B.7 High-cost signature 4677 reproduced from a Snort IDS signature-set . . . 166

B.8 Simple HTTP activity detection signatures 170

B.9 TCP Detection Signatures . 171

D.10 Packet Wrangler: predictEquivalenceClasses(Alert Set Ai,Connection Ci) 176

D.11 Packet Wrangler: updateAllFilters . 176

D.12 Packet Wrangler: updateFilter(Connection Ci,Equivalence classes Ei) . . 176

D.13 Setup for gain curve computation in Mathematica 178

D.14 Gain curves computation for n=4320, G in {1,10,20,...,100} 178

xvi

LISTINGS

D.15 Gain curves computation for n=100000, G in {1,10,20,...,100} 178

xvii

Chapter 1

Introduction

Each and every day, our bodies wander through a morass of other organisms, proteins,

and matter. They assault us via the front lines of skin, lungs, and gut. The total exposed

surface area of around 400m2 is truly extraordinary1. Via evolution, our bodies have learned

to process a great diversity of substances (air, water, foods, toxins, casual contacts), all

while efficiently identifying and filtering pathogenic material. The cost of not detecting a

threat is disease, possibly death. The cost of overreacting is allergy, asthma, and possibly

anaphylactic shock. Each day the body strives for the happy median in between – all

without conscious involvement.

During the last few decades we have created a rich ecology of sophisticated computing

machines. Each day these devices are more and more extensions of our bodies and our

minds. We gain great advantage through their use, but we have exposed ourselves in ways

unimaginable by any process of natural evolution. We have expanded our total surface

area by inextricably tying ourselves into the realm of information and networks. Somehow,

however, we never realized the extent of our newfound vulnerabilities. We protect our

digital surface areas using a bubble-boy approach to preventing disease. Our protection

1http://www.vendian.org/envelope/dir2/lungsout.html (Webpage - Retrieved Aug. 12, 2012)

1

http://www.vendian.org/envelope/dir2/lungsout.html

Chapter 1. Introduction

mechanisms are complex barriers, detection, and filtering mechanisms. We attempt to limit

our exposure, but any exposure is enough to destroy us. Just as for the premature child

in an intensive-care unit, regimented isolation is not a permanent solution. The costs are

debilitating. The risks do not dissipate the longer we wait.

In this thesis, we examine a particular type of defense mechanism used for detecting

computational pathogens, the Intrusion Detection System or IDS.

During the last 25 years, IDS designers have been continuously challenged with perfor-

mance bottlenecks and scalability issues. The number of threats is enormous. But the more

we try to detect, the more of our computing resources are being used solely for protection,

whittling away at what remains for performing useful computations. The performance

of many IDS systems depends primarily on the quantity of input data and complexity of

detected patterns. During noisy attacks, system load tends to increase proportional to

increasing data rates, making IDS systems vulnerable to flooding and denial-of-service

attacks. Unfortunately, the number, type, and sophistication of threats is quickly increasing,

outpacing our ability to detect them. Anyone who has run a background anti-virus program

on their computer can attest to the impact such systems have on our productivity.

The research community has met these challenges with a sophisticated arsenal of

clever algorithms for achieving low-cost pattern-matching, decreasing per-packet (and

per-signature) detection costs. However, there has been little work in assessing whether

traditional signature-based IDS approaches can achieve long-term scalability in the face of

increasingly multifarious threats.

Our desire is to cheaply detect all of the relevant threats for our computer networks. The

current problem is that these systems scale poorly. Detecting more things requires more

hardware, so much so that nobody (except maybe the US Department of Defense) attempts

to detect everything. Parallelization, often touted as the solution to all scalability problems,

is really just more hardware in a smaller space. It is part of the solution, but it does not

2

Chapter 1. Introduction

make our algorithms smarter nor does it significantly change the scaling performance of our

existing detection systems. These systems all scale proportional to the size of the detection

task. The larger the detection task, the larger the computing and storage costs. This is

unacceptable.

However, precise detection does not have to cost us so much. Instead of simply being a

thorn in our side, precise detection should be a means to an end in respect to scalability. But

systems must be designed to take advantage of it. The principle thesis of this dissertation is

that detection systems can achieve better scaling performance by using increased coverage

to anticipate future events.

Currently, detection system performance proportionally degrades as coverage is in-

creased, but if the added coverage allows some events to be easily predicted, increasing

detection system coverage can make overall detection less expensive. The compromise is

that each bit of information gain must be achieved with minimum cost, more information

must be retained over time, wasted information must be eliminated whenever possible,

and the detection system must be made more sophisticated through the use of closed-loop

feedback for online detector optimization.

Signature-based intrusion detection systems utilize large collections of fixed patterns to

detect malicious events on computers and computer networks. These systems are sometimes

associated with single computing system, as in a Host Intrusion Detection System (HIDS).

They may also sit at a router or firewall and examine traffic from a network of computing

systems, as in a Network Intrusion Detection System (NIDS).

In brief, a “signature” is a collection of features which can be used to uniquely identify

a specific malicious event (see Sect. 2.2.3 on page 26). The number of potential signatures

necessary to precisely identify all current threats is daunting. As of May 2012, MITRE

Corporation’s Common Vulnerabilities and Exposures (CVE) database has cataloged ap-

proximately 55,000 disclosed vulnerabilities dating from 1999. This only accounts for a

3

Chapter 1. Introduction

fraction of the exploits available to a well-funded adversary. Indeed the number of mali-

cious programs which might be gainfully identified using signature-based approaches while

in-transit over a network number in the millions. Clearly, modern IDS achieve only partial

coverage of known vulnerabilities, exploits, and other threat-related activities.

To improve coverage we might simply abandon signature-based approaches and use

something wildly different. Statistical anomaly detection approaches provide much better

coverage of both current and potential threats. Unfortunately, these types of system do

not provide much in terms of precision. They tell us that something bad is happening,

but not what it is or why we should do something about it. We have chosen to focus on

signature-based approaches because of their ability to precisely identify specific threats.

Anomaly detection systems are important, but nobody wants a system that only ever tells

them “something bad is happening, but I do not know what it is and I do not know why I

feel this way.” We are over-simplifying in order to make a point. We do need to be able

to detect statistical anomalies so that we can learn about new threats that we cannot yet

identify. But we need precision in order to act and respond quickly and appropriately.

Within modern IDS, most of the information which could be learned (and later used)

in the process of detecting threats is generally wasted, discarded due to the high cost of

processing and storage. IDS tend to be vulnerability focused and are designed to “forget”

anything that is not directly identified as a threat. Unfortunately, these forgotten features are

exactly what we need to improve the performance of future detection tasks. By throwing

away so much information for purposes of efficiency, we preclude an important class of

performance optimizations: anticipation. We end up with detection systems which lack

sufficient coverage of input features to perform gainful anticipation of future events. This

lack of broad-spectrum coverage (and subsequent lack of anticipatory mechanisms) is

partially to blame for our current performance bottlenecks and scalability issues.

While the algorithms and approaches of modern IDS are undeniably sophisticated,

few have made use of the efficiency tricks and shortcuts commonplace within biological

4

Chapter 1. Introduction

cognitive and neural systems. Numerous behavioral psychology concepts seem relevant:

priming, anticipation, habituation, sensitization, desensitization, associative learning, im-

printing. There are also cellular and multicellular dynamics processes that seem particularly

fitting, namely: neuronal action potential dynamics such as signal transduction, frequency

summation, afterhyperpolarization, and refractory periods; cardiac pacemaker potentials;

lateral inhibition between retina horizontal cells; and neurotransmitter-mediated signaling

and neuronal dynamics.

We do not need to be experts to be fascinated by these concepts. In particular, we

can readily note their apparent applicability (and presence) within an incredibly wide

range of phenomenon. We can use these concepts as inspiration for various optimization

approaches for intrusion detection systems. While implementations fall short of their

biological equivalents, the reader should be inspired to approach detection systems from new

perspectives. Nature cheats, takes shortcuts, and takes chances to achieve its sophistication

and efficiency. So should we in the design and construction of detection systems.

In summary, we have taken a single, widely used IDS system and applied some of these

concepts, namely habituation, desensitization, and priming. Throughout this dissertation

we explore the design and performance of IDS (Chapt. 2 and Chapt. 4), craft theoretical

models of anticipation and inhibition within detection systems (Chapt. 3), create several

prototypes (Chapt. 5), run many experiments, and generate some results (Chapt. 6). While

these explorations have not always resulted in the dramatic new insights, they do suggest

new perspectives on how detection systems should work.

1.1 Summary of Results

The long-term goal of this research is to improve the performance and coverage of signature-

based IDS in general. It is hoped that with the right architecture and mechanisms per-

5

Chapter 1. Introduction

signature cost can be decreased as new signatures are added to such a system. The resulting

system would have strong sub-linear scaling. While the prototype systems implemented

thus far fall short of this goal, it is clear that the direction for future systems is to more

intelligently leverage information gained in performing detection.

Two fundamentally different prototypes have been constructed. The first, Packet Wran-

gler, uses a predictor and traffic management mechanism which is wholly separate from

the IDS. This prototype was inspired by biological anticipation mechanisms such as prim-

ing. The goal is to guess future events and use only the relevant portion of the detection

engine. The Packet Wrangler prototype predicts future events and forwards portions of

traffic to IDS instances configured with smaller collections of signatures. The prototype

is described in Chapt. 5.1. Several experiments and results are shown in Sect. 6.2. In

brief, any performance gains were generally small due to high costs of Input/output (I/O)

overhead for signature-sets with sufficient coverage. In other words, signatures need to

produce information for large portions of the input data. However, the performance gains

achievable are appear to be proportional to the increase in I/O overhead, generally resulting

in a net loss. An analysis of the failure of this prototype to achieve acceptable gains is given

in Sect. 6.2.4.

The second prototype, Probabilistic Flowbits, performs anticipation in a simpler sense,

operates internal to the IDS, operates on individual traffic flows, and thus resolves a number

of issues with the Packet Wrangler prototype. In order to achieve appreciable gains it was

necessary to eliminate the I/O and processing overhead of the Packet Wrangler approach.

The overall approach is inspired by inhibitory feedback mechanisms in biological systems.

The prototype is a modification of the internal flow-tracking mechanism of the Snort IDS2

to set and check “flowbits” according to a table of pre-configured probabilities. In this

way the anticipatory mechanism is simply a per-flow biased sampling of high-cost or

high-occurrence signatures with an optimal threshold which depends on system load.3

2http://snort.org - Snort Home Page (Webpage - Retrieved Aug 2012)
3This follows prior work on adaptive IDS reconfiguration described in Chapt. 2 on page 44.

6

http://snort.org

Chapter 1. Introduction

In brief, we have had partial success in achieving performance gains. Using standard

signature sets the Packet Wrangler prototype generally increases system overhead between

4% and 30%. The lack of performance gains is due to a combination of factors: low

gains between signature-sets of similar sizes; significant I/O overhead for high-coverage

signature-sets; and difficulty in manually crafting high-coverage signatures. The Proba-

bilistic Flowbits prototype addresses many of the issues in the Packet Wrangler approach

and produces substantial gains between 20% and 40%. Section 6.3 describes the result

of experiments using this system. Sections 6.3.2 presents an analysis of the results and

presents potential extensions.

In summary this research has produced the following contributions:

• Presented a method and supporting theory to improve the practical coverage and

performance of signature-based IDS.

• Demonstrated improvements to the practical coverage and precision of signature-

based IDS.

• Demonstrated improvement of the scaling performance of signature-based IDS.

• Achieved lower per-packet computing cost using anticipatory mechanisms.

Secondarily, we have also explored the following:

• Demonstrated a method for generating large sets of random signatures.

• Explored the scaling performance of Snort IDS for large signature-sets.

• Provided sound justification and means for ignoring sets of signatures for using

anticipation and bias.

• Explored the resulting trade-offs between anticipation, expanded coverage, improved

performance, and error rates.

7

Chapter 1. Introduction

• Explored how this approach can be extended and utilized in more widespread appli-

cations.

A primary theoretical result is an analytical determination of the efficiency and quality

of a signature-based detection system with and without prediction under optimal conditions.

An exploration of the theory of anticipation for intrusion detection is important for several

reasons. There is currently a wide array of solutions provided by industry, but there are

no known systems (or published methods) which take the signature-based system to the

logical extreme of a single signature for each exploit and vulnerability. This dissertation

attempts to directly address the need for progressively larger signature-sets that has arisen

as the software ecosystem has evolved. Engineering solutions abound, but do not address

the extreme case where the number of signatures is essentially unbounded. The approach

described also calls for further research and application to new systems, such as bio-

detection and chemical sensing where the number of entities which should be detected

precisely far outnumber the currently tractable detection mechanisms.

In addition to analytic results, this thesis has been supported using experimental re-

sults demonstrating the performance of a system which uses anticipation mechanisms.

Although some of the results have been limited in scope, the proposed methods promise to

enable functioning IDS even in the face of incalculably large decision procedures[60] or

(equivalently) severely limited computing power.

To summarize, methods and analysis have be demonstrated which show better scaling

performance than perceptually “naked” systems. The extent of this improvement is a princi-

pal question of this research. Although we explore both experimental and analytical results

on potential performance gains, future research should be capable of greatly extending these

findings. Finally, very different types of IDS should be able to benefit using an anticipatory

approach. Where Snort is essentially a stateful string-based pattern matcher, the Bro IDS4

utilizes a number of anomaly detection methods and incorporates a stateful analysis of
4http://bro-ids.org - The Bro Network Security Monitor (Webpage - Retrieved Aug 2012)

8

http://bro-ids.org

Chapter 1. Introduction

event sequences as specified using a scripting language [72, 78]. Both of these systems,

and others should be amenable to augmentation using anticipatory mechanisms, but this is

left to future research.

9

Chapter 2

Background

2.1 Why Study Anticipatory Intrusion Detection?

2.1.1 Inspiration

A primary inspiration of this research is the observation that human beings and other

organisms are able to perceive and process a huge number of different stimuli without

relying on brute-force search or rote pattern matching. The mechanisms employed by

almost any known organism dwarfs that of our most sophisticated computing systems. It

is a premise of this research that such organisms must reason abductively about almost

everything that is perceived, that without leaping to conclusions first and checking logical

supports later, perception is nigh impossible.

Even the simplest organism utilizes multiple knowledge representations and myriad

predictive mechanisms tied to the fact-checking apparatus of logic. All organisms are

zealots of prediction and inductive bias. Without such bias, no organism (whether a single-

celled protozoan or the most intelligent of human beings) would be capable of perceiving

much at all. As far as we know, guessing is necessary for practical perception.

10

Chapter 2. Background

The detection of threats is one of every living organisms highest perceptual priorities.

This prioritization is an emergent phenomena of our evolution within an often hostile

environment. However, if we were to examine the perceptual apparatus of any organism we

would most likely find that the detection of threats is balanced carefully and cleverly with

the perception of other necessities, such as the location of food, friends, and shelter. Indeed,

at least in humans, perception of threats appears to prioritize attention, not to capture it[69].

We might also find that the organism spent an inordinate amount of time perceiving things

within its environment that were not directly helpful at all. What a waste.

It might not be obvious, but organisms perceive objects in the world because they can,

not because they should. Another way of stating this is that organisms perceive objects

because they are convenient and not because they are necessary. We are opportunistic

and lazy, although an organism well adapted to its environment will perceive what it needs to

perceive often enough to survive. The point being made is that most often what is perceived

is what is expected and what is convenient. This is not necessarily what is needed, even

when it is in right front of us.

When our expectations (not our perception!) indicate a threat or are violated, we are

able to respond immediately, without delay to reciprocate proactively to an anticipated

threat, and reactively to our violated expectations. Our proactive response is a prediction

of future precepts, whether it be the taste of a spoon full of strawberry ice-cream or the

deadly grasp of a predator. What we currently perceive immediately informs us of what we

might perceive next. This is the key to efficient, or even remotely tractable perception. We

generally do not need to search for claw wielding predators when eating ice cream, and we

certainly do not look for ice cream when escaping a predator. Our environment and prior

precepts informs our current means of perception.

Without these perceptual predictions, there are simply too many possible precepts at

any given instant. If somehow we could isolate individual objects pre-perceptually, there

are often so many in our immediate environment that we it would be difficult to even count

11

Chapter 2. Background

them. Nonetheless, when our predictions fail we use logic to determine the cause of our

failure and an adequate logical resolution. For complex organisms and sufficient time,

when our expectations do not match our perception, we perform some form of cognitive

reconciliation or behavioral adaptation. Only then do we take the time to manually refine

our perceptual predictors using any type of brute-force approach.

Our software detection mechanisms are constructed to be as efficient as possible given

our knowledge of algorithms and efficient search. We’ve been fortunate so far in that

enumeration of such things in a brute force manner is not always intractable. But even now

there are simply too many things to be perceived in each instant of computing time. This

leaves us to produce a predetermined static prioritization of precepts, perhaps optimal in

the case when we lack prior knowledge, but rarely optimal in context. Similar to organism

cognition, our software defensive mechanisms should first detect what is either the most

relevant (based on priors) or the most easily perceived, using this to bias future expectations

and the search for explanations. The methods employed must be opportunistic in the same

way that our human perceptual mechanisms are opportunistic.

Counter-intuitively, there are generally too many threats to search only for threats.

Rather, perceive the immediate, and let this inform more costly and precise mechanisms of

threat detection. It is not enough that we might compute ourselves out of the problem. There

is not enough time in the microseconds between events on a computer network. The answer

of what to perceive at each instance must already be known. Of course, preoccupation by

strawberry ice-cream does not predict being eaten by a claw wielding predator, nor should it.

But gladly, just as in physical environments, these bizzare juxtapositions rarely occur and

should be easy to detect using computationally inexpensive statistical anomaly detection

techniques when they do.

12

Chapter 2. Background

2.1.2 Software Complexity, Vulnerability, and Detection

The complexity and diversity of software systems continues to evolve at a frenetic pace.

Within just the last decade we have seen a hundred-fold increase in the number of software

applications distributed with modern operating systems and similarly rapid growth of even

formerly nascent computer operating systems such as Linux. Figure 2.1 shows the number

of packages in the Debian Linux operating system release and the lines of code within the

Linux Kernel from its inception. From its origins in the mid-90’s, the Linux operating

system kernel has grown from a pet project to representing 10’s of millions of source lines

of code. Similar growth has been seen in other software applications and development

efforts. Measures as simple as the number of source lines of code have long been known to

correlate with software defects [52, 83]. Defects occasionally lead to vulnerabilities and

vulnerabilities are often exploited.

 1996 1998 2000 2002 2004 2006 2008 2010

5000

10,000

15,000

20,000

25,000

30,000

Release Date

So
ft

w
ar

e
Pa

ck
ag

es

Packages in Debian Linux

 1996 1998 2000 2002 2004 2006 2008 2010

1.4 × 107

0

2 × 106

4 × 106

6 × 106

8 × 106

1 × 107

1.2 × 107

Release Date

SL
O

C

Linux Kernel Source Lines of Code

Figure 2.1: Software growth over a decade of Linux operating system development

Source: Wikipedia articles: “Lines Of Code” & “Debian Linux”, Feb 5, 2011

The growth in software size, complexity, and the resulting number of vulnerable defects

appears to be growing at an exponential rate. Within the last decade, clever engineering

approaches to computer defense have allowed existing technologies and approaches to scale

even in the face of an increasing number and complexity of threats. However, the threats

covered by those approaches, just as those cataloged by organizations such as Carnegie

Mellon’s Computer Emergency Response Team (CERT) (within the Common Vulnerabil-

13

Chapter 2. Background

ities and Exposures database) represent a fraction of known software vulnerabilities and

just a small sample of all of the vulnerabilities within the wild (Figures 2.2). As a result

of the enormous growth of software ecologies and latent threats, current approaches to

threat detection and response will become increasingly difficult as we extrapolate even a

few years.

2008 1996 1998 2000 2002 2004 2006

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Report Date

C
at

al
og

ed
 V

ul
ne

ra
b
ili

ti
es

Cert.org Cataloged Vulnerabilities

Cumulative

Figure 2.2: Cataloged vulnerabilities per calendar year

Source: Carnegie Mellon - CERT Statistics (Historical): http://www.cert.org/stats, Feb 5, 2011

Catalogues of known and disclosed vulnerabilities, however, are not a measure of threat.

Common vulnerabilities are generally the target of numerous exploits. Blackmarket exploit

packages are likely to contain a large number of current and sophisticated attack tools, many

of which we have no way of identifying using IDS. Signature-based detection only works

when we have carefully characterized the threat. For network-based IDS we first require

enough representative network traffic to generate compact, high-confidence signatures.

Internet Protocol (IP) packets cannot be pre-labelled as “bad” or “good” even though we

often wish this were the case.1 Often, the traffic used to create and test new IDS signatures

must be manually crafted and may represent difficult to obtain exploits.

1See RFC 3514, The Security Flag in the IPv4 Header - http://www.ietf.org/rfc/rfc3514.txt

14

http://www.ietf.org/rfc/rfc3514.txt

Chapter 2. Background

As a researcher, the number of readily available exploits represents only a small fraction

of the exploits which are written and deployed by adversaries. The well-known “Metas-

ploit” framework includes approximately 800 of such exploits for common vulnerabilities2.

Penetration testing using such tools is extremely time consuming and generally reserved for

high-criticality systems and environments. This is one reason that detection is so desireable.

When we cannot prove a particular attack is possible (by attempting it ourselves and taking

steps to prevent the attack vector) detection becomes top priority. In many instances and

for many organizations, detection may be the only option.

It is clear that computing systems and networks suffer from an ever increasing demand

for comprehensive, robust, and efficient detection mechanisms. As the number of software

products, capabilities, and resulting vulnerabilities have increased, so has the number and

sophistication of attacks. Computing improvements such as faster processors, faster net-

works, parallelization, increased storage, and faster storage will increase the number and

sophistication of attacks just as they improve our ability to detect and respond. Smarter

algorithms are needed. Modern approaches represent a comprehensive arsenal of sophis-

ticated defensive tools and techniques, but we are still falling short. Some of these are

discussed in Sect. 2.2 on page 21.

2.1.3 The Problem of Performance

Whether or not existing approaches adequately address current threats is a matter of debate.

A thorough review of existing literature and familiarity with the commercial capabilities

suggests that existing network-based IDS approaches generally lack adequate coverage and

have linear cost scaling (in terms of packets or signatures). Signature-based IDS generally

lack coverage of particular exploits and polymorphic variants being generally vulnerability-

based rather than exploit-based as a matter of tractability. A more detailed discussion of

2http://downloads.metasploit.com/data/releases - The Metasploit Project (Retrieved on Aug. 12, 2012)

15

http://downloads.metasploit.com/data/releases

Chapter 2. Background

some of the issues associated with signature-based IDS are presented in Sect. 2.2.3 on

page 26.

A straightforward measurement of the Snort IDS suggests linear scaling even for

relatively small numbers of signatures. Figure 2.3 shows the total clock time required to

process an identical dataset for various sized signature-set sizes (selected randomly from

the pool of signatures distributed in release 2.9.1.2 of the widely available Snort IDS). The

outlier at approximately 4300 signatures represent the default signature-set released by the

Sourcefire team (which is highly tuned for performance). The official signature release was

used for this test vice experimental signature-sets which are readily available online.

Tuned default ruleset (~4300 rules)

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

number of signatures

Tuned default signature-set (~4300 signatures)

se
co

nd
s

Figure 2.3: Signature-set processing times for the Snort IDS release 2.9.1.2

Ignoring differences in the cost of various signatures (as they are not the focus of this

research), at the limit, current techniques require O(p n) comparisons of packets p with

16

Chapter 2. Background

signatures n. This is true even when clever algorithms are used to construct optimal decision

trees over the signature-set (see section 2.3 on page 29).

Certainly, this is linear scaling and not immediately alarming. However, the number of

relevant threats is increasing rapidly. The number of necessary signatures is growing as

some function of the number of deployed software instances, hardware instances, protocol

instances, versions, and vulnerabilities (Fig. 2.2). It seems clear that these systems are not

sufficiently scalable.

The computing cost of most NIDS is within a constant factor of O(p n). This forces

IDS designers to use small sets of broad signatures which focus on vulnerability rather than

exploit identification (resulting in poor coverage of exploits, and essentially no coverage of

other characteristics). As an example, the Snort IDS (version 2.9.1.2) ships with approxi-

mately 6 thousand signatures which are enabled by default. Another 12 thousand signatures

are readily available for use, but not enabled due to the significantly increased burden on

the system and the potential obsolescence of older signatures. For these reasons and others,

significant improvements in the ability to cheaply prioritize signature computations are

needed.

2.1.4 Goals

A scalable system grows in computing cost (measured in bit-operations) at a rate propor-

tional to the size of its input and task complexity such that the system can continue to

function within its original design parameters (e.g. linear or sublinear scaling) without

fundamental changes to its design. This research effort has focused on signature-based

detection based on our need for better performance and better coverage. An interesting

perspective on this problem is that instead of trading performance for coverage we may

be able to intelligently leverage improved coverage to directly improve IDS performance.

Rather than proportionally degrading (in the best cases), performace of an IDS might be

17

Chapter 2. Background

made to improve through the addition of appropriate signatures and the use of anticipation

and other forms of predictive bias.

More precisely, we can define the relevant aspects of a signature-based IDS as follows:

• A signature, s, is a fixed or dynamic pattern (such as a string or regular expression)

which can be used by a detector to identify threats and generate output alerts from

input data.

• A signature-set, S, is a set of signatures which are used in combination within by a

detection system.

• An alert set, A, is a union of the sets of vulnerabilities A
vuln

, exploits A
exploit

, victim

characteristics A
victim

, and attacker characteristics A
attacker

which are accurately

identified by an IDS (i.e. A = A
vuln

[A
exploit

[A
victim

[A
attacker

).

• The Threat Coverage (TC) measures the portion of possible attacks which can be

properly characterized using an alert set.

• Performance is defined using the conventional measures of precision, recall, accuracy,

and specificity.

The key claims being explored in this research are that signature-based IDS are not

currently scalable because they are:

• Imprecise with respect to exploits and tertiary characteristics (such as victim and

attacker characteristics), and therefore lack coverage of features sufficient for useful

prediction.

• Lack mechanisms which dynamically improve detection system performance based

on prior information.

18

Chapter 2. Background

Given more precise information of an ongoing attack, in many cases we should be able

to predict future attacker actions or attack characteristics and to use this information to

prioritize future detection computations. The idea is conceptually simple:

By using the prior knowledge of previous detections, resource utilization can

be optimized for each network conversation by prioritizing matches of new

packets against subsets of the detection tasks, these subsets being based upon

a set of anticipated behaviors, attacks, or characteristics.

Traditional IDS techniques perform detection blindly in respect to prior knowledge, with

the obvious exception of protocol state-machine tracking (such as Transmission Control

Protocol (TCP) state tracking). In the worst-case, a signature-set would be applied se-

quentially, giving linear Central Processing Unit (CPU)-time performance in the length of

packets, signatures, and outputs. In many existing systems optimal decision trees[53] or

clever discrete finite-state machines[33] are used in combination with fast string matching

algorithms[68, 90]. Many significant internal performance improvements are possible, but

most allow for only short-term gains in the face of dramatically expanding threats.

Ignoring differences in the costs of individual feature comparisons, existing detection

systems perform an equivalent amount of work for every packet. Using a hypothetical

predictive mechanism, signature matching might be more efficiently accomplished by

traversing (or selectively ignoring) subsets of the original decision procedure. Such an

approach is able to take advantage of recent advances in string matching and regular expres-

sion evaluation because it occurs separate from the IDS pattern matching facility. Prediction

and anticipatory techniques might be used at many levels within an IDS architecture.

If performed external to the IDS, at an event level, this represents the same semantic

level as the attacker’s actions. As such, it should be possible to use additional IDS coverage

to directly improve performance. If particularly specific signatures are used, in some cases it

might be possible to directly choose subsequent signatures without performing decision tree

19

Chapter 2. Background

traversal. This would dramatically decrease the overall computational cost for individual

connections when sufficiently accurate predictions are available.

If performed internal to the IDS, at the granularity of individual packets or signatures,

this represents a semantic level of the internal IDS logic and algorithms. A significant

amount of work has been done on implementing and improving internal detection mecha-

nisms, some improvements incorporating prediction[90]. Nonetheless, some performance

gaps still exist (primarily due to safety and performance assumptions). Probabilistic ap-

proaches (generally absent from signature-based detection systems) will likely play a central

role in future systems.

Unfortunately, the linchpin of an anticipatory aproach appears to be increasing coverage

in a way that improves the predictive power of events while limiting increasing I/O and

overhead costs. Most NIDS effectively only cover vulnerabilities A
vuln

, with little or no

coverage of exploits or attacker and victim characteristics. Including these in the coverage

set could easily expand the number of signatures into hundreds of thousands. However,

expanding either the number of signatures or the amount of output has an associated cost.

Most IDS are not designed to retain tertiary characteristics. The resulting I/O and memory

costs can be substantial. In order for an anticipatory approach to work performance gains

must be substantially larger than the increased costs associated with increased coverage.

It should be the case that detection can be performed ever more efficiently as new

knowledge is added to a detection system. These types of systems should have strong

sublinear scaling in respect to signature-set size. While this research effort has been able to

demonstrate limited performance gains for particular configurations with existing signature-

sets, the overall research goal is not simply to improve the runtime performance of current

IDS approaches. The goal is to increase the practical coverage of these types of systems. In

this light we have attempted many techniques for building more efficient detection systems,

some which directly address issues of expanded IDS coverage.

20

Chapter 2. Background

2.2 Intrusion Detection Systems

As initially described by Denning in her seminal paper “An Intrusion-Detection Model”[31]

and summarized by Bishop[19], IDS can be loosely categorized into misuse detection and

anomaly detection. The difference between these two approaches is essentially one of either

characterizing known bad patterns and detecting instances which match the patterns (misuse

detection) versus characterizing known good behaviors and detecting deviations (anomaly

detection). Denning originally described the pattern matching strategy of signature-based

IDS as utilizing both formal and informal specifications and knowledge models such as

expert systems. Patterns examined by such systems were also conceived as extending

beyond the individual entities being examined (e.g. IP packets, process execution traces,

memory accesses) and describe complex patterns of interdependent activity.

One of the most widely used IDS is the signature-based Snort IDS[78]. Others include

the event-based BroIDS[72]), statistical anomaly (behavioral) detection systems (such as

the Time-based Inductive Machine (TIM) system[87]), and hybrid systems which combine

both approaches. Of particular relevance to this research are Denning’s initial Markov

detection model[31] as well as systems which use temporal predictors as embodied by

systems such as TIM[87]. In some respects, most existing systems combine many of the

aspects of misuse and anomaly detection. Rather than delve into a discussion of the ways

in which these different approaches can be implemented, we treat systems as belonging

primarily to one or another of either misuse or anomaly detection. The particulars of

individual systems not studied in this research effort is left for the reader to explore (see

Sect. 2.5 on page 40).

The primary distinction made in this dissertation (relating to to misuse-detection in

particular) is a fundamental difference in the use of a predictor for online performance

optimization rather than as the detector itself. Our principal inquiry is whether we can

bootstrap a predictor and system performance gains by increasing the coverage of the

21

Chapter 2. Background

IDS. In most systems any expansion of the signature-set being applied necessarily degrades

system performance.

One way of understanding why the state-of-the art systems appear to have missed

this important approach is related to the way in which misuse/signature-detection systems

(and decision procedures in generally) are naturally generalized. It is easy to understand

that “exploit polymorphism” and the high cost of monitoring an expanding set of threats

immediately suggests the application of a statistical predictive approach. Signature-based

systems quickly become unwieldy to maintain and costly to compute. As a result systems

tend to either be bottom-up signature-based approaches (with low rates of false positives)

or top-down anomaly detectors (with low rates of false-negatives) [56]. Our contribution

is to show that in some cases detector performance can be incrementally improved using

statistical predictors, building the IDS “toward the middle”. The basic idea seems sound.

It also represents a natural progression towards more sophisticated and (hopefully) better

detectors. If we are lucky, we might even end up with more robust and resilient detection.

A stronger statement concerning the purpose of statistical methods might also be made.

Clearly, statistical approaches are poor at identifying the nature of particular events precisely.

It might be claimed that the fundamental purpose of statistical anomaly detection should

not be for the detection of anomalies but in the prioritization of decision procedures which

are good at precise prediction (at the expense of performance and coverage).

2.2.1 Host versus Network Detection

The particular detection model representation is not particularly important to our thesis.

Numerous representations have been used, as described in the literature (e.g. rules, scripts,

decision trees, neural networks, statistical models, Petri nets, etc.)[92]. As noted by Yu and

Tsai[92], a signature-based system is often easier to modify dynamically due to the relative

22

Chapter 2. Background

independence of individual signatures, although it is clear that performance specifics are

dependent upon the underlying implementation.

Regardless of the detection model, IDS can be loosely grouped into host and network-

based systems. Host-based systems can easily rely on limiting detection to those attacks

that might possibly affect the software which is actually resident on the host. Network-

based detections however, can only take such an approach if given access to data structures

containing the status of host configurations and software. Limits will always exist in

knowing the precise state of host machines unless a host-based sensor is used. However,

host-based sensors are not always possible or even desired due to the possibility of host-

compromises, the latency of centralized storage, and the potential for data corruption. Host-

based and combined systems are not tolerant to corruption of host state. Such approaches

also require significant resources to maintain shared state between host and network-based

sensors. Although combined systems are deployed within many operational environments,

engineering compromises and overall cost are often prohibitive, or result in unacceptable

compromises.

Network-based detections are required to detect many classes of attack (e.g. distributed

denial-of-service, some types of scans, spoofing techniques, etc.) Network-based detection

is also required in order to guarantee that hosts which may be compromised still have a

detection and reporting mechanism in place. Nonetheless, knowledge of machine state is

desired and even necessary for making IDSs both tractable and accurate. Knowledge of the

state of a potentially vulnerable host can elucidate the set of signatures that are relevant.

Knowledge of the state of an attacker’s machine can provide insight into the goals, exploits,

and knowledge of the attacker. This knowledge can significantly affect the confidence in

our knowledge of the state of an attack and guide both our detection strategies and our

responses. Unfortunately, although host-based sensors have been widely used in the context

of signature-based IDS, comprehensive victim and attacker modeling has not.

23

Chapter 2. Background

2.2.2 Misuse and Anomaly Detection

Anomaly detection system (often called “behavior-based”) utilize learned statistical distribu-

tions of normal network and user behavior in order to detect significant deviations. Systems

can be trained to perform both the detection and classification of anomalies, but do not

provide an obvious semantics to elucidate the meaning of an alert. This limits their direct

use for understanding the meaning of detected events. Such systems rely on information

provided by other threat and attack modeling techniques which is an area of particular rele-

vance in extending existing IDS capabilities using predictive techniques[31]. Nonetheless,

such systems offer generality that misuse detection does not, detecting malicious activities

which a misuse detector has no patterns for.

Anomaly detection systems are by definition predictive. By using representational

statistics to gauge the likelihood of an event, they are used to predict whether activities

are benign or may represent a threat. In the simplest instances, a detected event which is

determined to have a low likelihood in a simple Markov model and a fixed or dynamic

threshold determines whether the event is anomalous. For example, one of the first of

such systems, Time-based Inductive Machine (TIM), used a set of inductively learned

temporal event sequences which were used to detect deviations from established activities

and unrecognized event sequences as anomalies[87]. Systems such as TIM are absolutely

essential to enable the detection of new threats, but do not directly address the issues of

scalability for precise event detection.

This dissertation considers equivalent predictive models to those commonly employed

in anomaly detection, but expressly for the purposes of increasing coverage and improving

performance. For example, in the case of a Markov predictor, predicted future states in a

learned transition matrix are not used to determine anomalies, but to prioritize the detector’s

decision procedure. In essence, those events that are more anomalous are presented with a

larger decision procedure, whereas events which are expected are presented with a smaller

24

Chapter 2. Background

decision procedure representative of the expected outcome. Other anomaly detectors

generally apply these predictions directly for the purposes of detecting anomalies, not for

the improvement of the detection mechanism itself.

Signature-based IDS are precise and due to their simplicity have been employed within

many large-scale, commercially available systems. In such systems each input (e.g. header,

packet, TCP session, event, event sequence, derived feature set, etc.) is compared against

sets of thousands of signatures in a more-or-less brute-force manner. The patterns used and

the algorithms employed for pattern matching are very efficient. Significant gains have been

made in the last two decades in the area of pattern matching. Of particular relevance with

respect to performance are a predictive matching algorithm developed by Vespa, et al. and

the substantial previous work with content-addressable memory for pattern matching[90].

These classes of predictive approach are at a very fine granularity with respect to the

semantics of network events. These techniques generally improve the performance of every

pattern assessed by a system, leading to substantial performance improvements.

Commonly, signatures are written to be very precise with respect to vulnerabilities,

exploits, and other “known bad” sequences. False negatives are common and false positives

are often manually “tuned” out of signature-sets over time[35]. Such systems have the

benefit of precision, but are generally poor at detecting new exploits and are very labor

intensive to maintain in the face of large numbers of vulnerabilities and exploits. The

signature-tuning process often consumes a significant portion of the time spent managing

a signature-based system’s signature-set. A number of adaptive systems and automated

signature generation system have been proposed and constructed to alleviate some of these

issues[23, 24, 92]. In many instances adaptation occurs only in direct response to operator

feedback in identifying false positives or operator information overload.

These systems are also often limited by particular nuances of the signature language

used and the specific preprocessors which are employed. Further, there are classes of

25

Chapter 2. Background

attack, which due to dynamics in the patterns produced, are simply not detectable using

conventional signature-based approaches[16].

2.2.3 Signature-Based Detection

The most common and well-understood misuse-detection approach within modern IDS is to

utilize one or more pattern matching signatures for each identifiable attack or compromise.

This is commonly termed “signature-based detection” and is often desireable because of its

precision and simplicity.

A “signature” in IDS parlance is a set of patterns (or in some cases preconditions) which

identifies a known threat (as uniquely as is possible or practical) [23, 82]. Signatures in

many detection systems are often very precise and consequently expensive to compute.

These systems have a resultingly low false positive rate, but generally require at least a single

signature for each vulnerability, exploit, or attack vector (each signature representing a

series of potentially costly computations.) These signatures must often be kept as simplistic

and as compact as possible for purposes of performance and this results in brittleness.

Nonetheless, signature-based detection is often desirable due to its simplicity. There is a

direct and easily understood mechanism which relates the features of network traffic to

identification of malicious events.

Each signature is composed of explicit patterns, bytes, strings, field values, expressions,

and preconditions. Signatures are most often pre-filtered by matching against protocol

attributes first (both IP packet and TCP session headers and payloads) and expensive string

matches and regular expressions second. Signature-based approaches can be performed

very efficiently using pre-compiled expressions, careful management of feature ordering,

and automated binning and pre-filtering of incoming traffic such that signatures only “see”

traffic that is relevant (e.g. by static fixed signature fields of protocol, port, address, etc.).

26

Chapter 2. Background

Unfortunatley, signature-based intrusion detection system approaches seem to have

been recently neglected by the research community. Few significant gains in the tractability

of IDS have been made in the last few years while many of the scalability issues have

been hidden by modern achievements in computing performance and parallelization. Many

previously identified issues have simply been swept away by engineering slight-of-hand,

current systems making gross compromises in the name of engineering feasibility and often

requiring a highly trained staff to manage even a single deployed IDS[59].

Within existing threat detection and threat response systems, design and configuration

compromises abound. In particular,

• Computationally short-circuiting the detector to only alert on the first (or a limited

number) of detected events can allow attackers to “game” intrusion detection systems

by flooding these systems with irrelevant information.

• Denial-of-service (DOS) and flooding attacks often cripple IDS and prevent detection

of more important attacks masked by the DOS.

• Tuning an IDS to achieve better performance (by removing apparently irrelevant, old,

or noisy signatures) decreases the IDS coverage of existing threats. The resulting

poor coverage of a “tuned” IDS can also allow obscure and “obsolete” attacks to

older systems to go completely unnoticed.

• Removing signatures based on the need to eliminate spuriously large numbers of false

positives allows attackers to circumvent detection by making it appear that an alert is

a false positive. It is generally trivial to generate traffic to match a detection signature.

Using crafted packet traffic, an attacker can generate false positives in obnoxious

numbers, resulting in the alert’s subsequent removal (tuning) by administrators.

• Lack of adaptive mechanisms within IDS can allow new attacks to proceed unhindered

and undetected[59].

27

Chapter 2. Background

• Lack of industry-wide standards, incentives, and protocols for sharing information

(intellectual property in the form of IDS signatures/patterns) results in poor coverage

for all.

The sizes of signature-sets is often kept as small as possible to allow detection systems

to perform under peak network loads. Consequently, these system suffer poor recall due to

lack of sufficient coverage of exploits and variants. These limited signature-sets often even

preclude comprehensive coverage of expected vulnerabilities and exploits. The Snort IDS,

one of the most widely deployed, currently includes approximatley 18,000 signatures. This

limited signature-set covers only a small fraction of the known threats.

For similar reasons, signatures are written to cover vulnerabilities rather than exploits,

resulting in a lack of insight into the active attackers methodology and toolset. Without

these insights, defensive postures and response actions are generally performed blindly. It

is as if we can recognize that the shooter is using some form of projectile weapon through

an office window, but we have no idea whether he is using a rock, a .22, or a bazooka.

Even with severely limited signature-sets, the flood of resulting alerts is often too much

for a human analyst to reason about, requiring complex aggregation systems to cluster,

correlate, and corroborate a fire-hose of (mostly) irrelevant information. From an analyst’s

perspective the deluge of data produced by an IDS has the outward appearance of high-

coverage, scalable detection. The essential approach to the dealing with the fire-hose is to

filter, aggregate, and annotate known attacks and unknown anomalies[92]. In theory and

practice this helps, but does not address (and actually serves to hide) the underlying problem

of the poor coverage and poor performance of the detector. As a result, signature-based

systems tend to be either too brittle or too expensive. And in a complementary manner,

anomaly-based systems tend to be either to noisy but robust or acceptably quiet but useless.

The daunting scale and scope of future requirements is likely to make brute-force IDS

intractable without a huge economic cost in hardware and manpower. Arguably, such

28

Chapter 2. Background

systems currently achieve only marginal utility, representing simultaneously (and non-

intuitively) both the best precision and the poorest coverage of the actual attack vectors and

related network activity.

2.3 Characteristics of Signature-Based Detection

2.3.1 Decision Procedure

There is no single model which adequately describes the wealth of approaches found within

existing IDS products and research efforts. Nonetheless, for the purposes of discussion, we

can treat most signature-based IDS as if they were simply some type of optimal decision tree.

Indeed, the more complex nuances are often treated as special cases after a fast decision

procedure has first been applied.

Decision tree techniques have a long history as key components of detection systems[8,

53, 60, 61, 73]. In order for host or network-based IDS to be tractable the detection

scheme must be significantly more efficient than an exhaustive comparison of signatures

to packets and packet-derived features. Decision trees provide one possible mechanism

for improving IDS performance. Even systems with sophisticated pre-filtering and pre-

processing mechanisms spend a significant amount of energy processing data-irrelevant

signatures. Decision-tree approaches can improve performance both in achieving log-

scaling in respect to signature-set size and by organizing the structure of trees using

Shannon-entropy and other information theoretic methods as pioneered and elucidated by

Quinlan et al.[53, 75, 76, 77].

Although a clear improvement over any type of brute-force signature-based system,

there are a number of outstanding issues with decision-tree approaches. The construction

of such trees is both expensive and somewhat opaque. In many cases the entire decision

29

Chapter 2. Background

tree must be recalculated for each signature addition. Although this needs to be done

only once per addition to a signature-set, it does not allow fast incremental and modular

signature-set additions. Algorithms such as ID3 have a sub-exponential complexity, but is

still proportional to O(n |v| |r|), where n is the number of examples, |v| is the number of

features, and |r| is the number of internal nodes in the decision tree [77]. Since a substantial

benefit of modern signature-based IDS is the ability to “turn off” subsets of the signature-set

and to dynamically generate new signatures based on the output of anomaly detection,

rebuilding the decision tree for each signature addition appears highly undesirable. The

more dynamic the IDS (or the larger the IDS), the less appealing such a decision tree

construction method becomes.

Nonetheless, these approaches have significant performance gains over naive IDS

signature matching approaches. Naive IDS signature matching approaches do not allow for

any significant parallelism and the most common approaches often suffer from signatures

duplicating a significant amount of work when (as is often the case) many signatures share

the same or similar preconditions[53]. In ad-hoc approaches to improving parallelism, a set

of well-known common constraints are used at the top-level to partition the signatures (e.g.

ports, protocols, and IP addressing). Because a naive ad-hoc approach does not consider

Shannon-information, these approaches are generally much poorer in performance than

information theoretic approaches[53]. The naive approach hand-picks constraints such as

port and protocol to partition the signature-set. Information-theoretic approaches pick the

most discriminating features and performs parallel evaluation of every relevant feature[53].

For the purposes of later discussion, the iterative information theoretic approaches to

constructing decision tree can be considered to be “greedy” tree construction strategies.

Another consideration is that while greedy approaches do construct an optimal decision

tree given the entire signature-set, such a tree is demonstrably suboptimal for some signature

subsets[42, 53, 77]. There are both online and offline solutions to this problem. If the

signature-set were first clustered and partitioned to group sets of semantically related

30

Chapter 2. Background

signatures, a forest of decision trees can be constructed, each of which may perform better,

and never worse, than a globally constructed tree. That is, in a sufficiently diverse signature-

set, the decision with the maximal information gain for the entire set of preconditions

for the full signature-set is not the same as the optimal decision for a partitioned subset.

Pre-clustering and partitioning of the signature-set prior to constructing a decision-tree

should produce superior performance with an increased cost to construct the decision tree.

This, of course, is only true if we know a priori an ordering of the decision trees that we

should first traverse (a decision tree of decision trees), which is a principle tenant of this

dissertation. If we have access to the right prior information we can perform prediction

to choose relevant subsets of the global decision tree in priority order and gain significant

performance. Without such prior knowledge and prediction, the partitioned tree will perform

poorly in comparison to the globally optimal tree because each subtree will need assessed

in arbitrary order.

Another approach by Friedman et al. is to construct a decision tree in a “lazy” fashion

which constructs and caches an optimal decision tree for each test instance[42]. Their

approach works primarily due to the lazy algorithm being provided with the additional

information of the test instance (in addition to the training instances). The algorithm has

O(m n) complexity for m instances and n features but achieves better performance scaling

due to caching of commonly used paths, giving better performance at a substantial memory

overhead. The end goal of the “Lazy Decision Tree” approach is to achieve an average

tree depth with is smaller than log(n). As will be shown in Chapt. 3, a simple model of

an anticipatory approach can be understood in terms of decision trees where prediction

of equivalence classes (and smaller sets of decision trees) achieves performance gains by

the decrease in problem size. An approach such as “Lazy Decision Trees” could provide a

straightforward mechanism for generating more compact decision trees and applied to the

problem at hand.

31

Chapter 2. Background

2.3.2 Signature Information

An analysis of a recent Snort signature-set shows that a significant amount of effort must

be expended to match against literal and regular expression content matches. With respect

to string matching, over half of the 53,000 current signature content options provide a

significant 4.725 bits of information. The distribution of information per signature is also

bimodal, meaning that most signatures are either unique and not shared across multiple

signatures, or are essentially identical. There is no obvious way to infer a total ordering of

these signature comparisons in a decision tree. As a result, existing decision tree methods

will order the signatures arbitrarily.

By default, many systems accomplish efficient signature matches by binning signatures

and packets together using high-level features that are common across all signatures (e.g.

port, protocol, network segment, ...) and only then applying costly string and regular

expression pattern matching techniques. Systems may also shortcut further processing after

the first signature resulting in an alert. If we want a truly robust IDS that does not depend

upon signature ordering we must check every signature to find the most relevant or critical

alert. If we had prior knowledge of attack intent, latent vulnerabilities, attack scripts, or

other information we could use this information to order the application of signatures.

Systems such as Snort use engineering optimizations and context-dependent compar-

isons to make signature comparisons as fast as possible. However, the inability to structure

content comparisons into any type of decision tree means that there is a significant dis-

incentive to broadening the scope of IDS signatures to encompass a wider diversity of

attacks and attack signatures. It is the purpose of this research to show how matching

against an enormous set of extremely precise signatures can be made tractable by circu-

larly using this precision to predict the currently relevant signatures for each connection.

Adding additional signatures in this way adds precision and improves recall but should not

significantly increase the cost of performing pattern matches.

32

Chapter 2. Background

2.3.3 Alert & Signature Semantics

The structure of most IDS is often very opaque. Most of the semantic preconditions for a

signature firing (and causing an alert) are hidden within the architectural and engineering

design of the IDS. Although signatures often appear simple, they may represent a fairly

sophisticated grammar with additional preprocessors being capable of general computation

[79]. If we desire extract a rudimentary axiomatic semantics of a single signature we

might be able to use the signature-language, expressions, and configuration state of the IDS.

However, a complete understanding and axiomatic logic specification of IDS signatures is

problematic due to interdependencies in the interpretation of signature attributes and the

hidden assumptions in the IDS architecture. Therefore, these and and other architectural

semantics remain hidden. Because the signature semantics of existing commercial IDS

is essentially hidden, the preconditions cannot be efficiently extracted and used to create

more efficient decision procedures which isolates small sets of signatures that apply to the

particular datum in question. Temporal pre- and post-conditions are generally undefined and

guarantees on computing costs for a particular signature are unknown except in the simplest

cases of literal byte and pattern matching (related to the well-known halting problem).

The semantics of an IDS signature can be stated explicitly as a set of preconditions.

These preconditions can then be used as annotations and a hierarchical clustering algorithm

can be run to construct a dendogram of preconditions. Each node in the tree represents one

or more potential events as post conditions. Note that in such a tree, a conventional IDS is

essentially all of the leaves of this tree. A conventional IDS performs a matching of each

packet with each leaf. A more efficient approach would be to distribute the precondition

semantics throughout the tree. General-purpose preconditions would be assessed first and

thus prune the tree in a top-down manner.

Rules within most IDS are best described as a context-sensitive grammar which uses

embedded pattern matchers in a hierarchical decision-tree matching algorithm. These

33

Chapter 2. Background

grammars are context sensitive across the tested features, but do not include temporal

aspects (although many preprocessors include analysis of temporal features). The Snort

IDS has numerous signatures defined for a large number of software vulnerabilities. If

we start by looking at the simplest class of signatures (those for Internet Control Message

Protocol (ICMP) packets) we can show how these simple cases can be transcribed into

a formal logic and then extended for the purposes of precision or generalization using

temporal logic. Examining a standard signature from the “icmp.rule” file from Snort release

2.9.1.2:

alert icmp $EXTERNAL_NET any -> $HOME_NET any

(msg:"ICMP ISS Pinger";

itype:8;

content:"ISSPNGRQ"; depth:32;

reference:arachnids,158;

classtype:attempted_recon;

sid:465;

rev:4;)

Listing 2.1: Example of a Snort Signature

This signature is representative of a large number of signatures within the Snort signature

database. The port, protocol, and address features serve an important role in partitioning

the incoming network traffic into high-level bins. Packets never see signatures which reside

within bins for different IP and TCP header features, which are inexpensive to check using

integer comparisons. This signature can be written directly in a predicate logic as:

proto(P) ^ src(E) ^ dest(H) ^ icmpType(8) ^ contentMatch(“ISSPNGRQ”, 32) !

reference(arachnids, 158) ^ classtype(attempted recon) ^ sid(465) ^ rev(4)

where P := ICMP, E 2 EXTERNAL, and H 2 HOME

Listing 2.2: Predicate logic representation of a Snort Signature

This attribute-value semantics makes no consideration of multiple ICMP requests or

other attributes that are not present within the packet payload. It also makes no determination

34

Chapter 2. Background

of how the packet was constructed, contextual aspects such as timing between this alerted

packet and other traffic, where the packet originated, etc. We can add a temporal relation

to our semantic description to extend the original semantics directly. If using solely the

individual packet characteristics we can specify relations which encompass expectations

about attacker or scanner behavior. In the above example we may use:

alert(465) ^ F (alert(465.5)) ! exists(sourceAddress)

Where the eventually operator F is defined in Table 2.1. This means that if eventually

we see an alert with a Snort Identifier (SID) of 465 (indicating detection of some type of

attack) and at any future time see alert with SID 456.5 (indicating host response to the

attack) then we can assert that the host with sourceAddress exposed its existence. The

SID was contrived for this example, but represents the addition of a signature to alert on

exposure of information about hosts which are the victims of reconnaissance or attack. Of

course, exposure of a host is not particularly important except when in the context of an

active attack. Gating collection of secondary information such as host exposures may be a

reasonable method of limiting superflous event output. Figures 2.4 and 2.5 illustrate the

Next and Finally semantics over packets and alerts.

Table 2.1: Linear temporal logic relations

Symbol English Meaning
N� next � must hold at the next state
G� always � must hold on the entire subsequent path
F� eventually/finally � eventually has to hold (somewhere on the subsequent path).
 U� until has to hold at least until �, which holds at the current or a future position
 R� release � has to be true until and including the point where first becomes true; if never

becomes true, � must remain true forever.

There are also no asserted post conditions concerning the fact that this packet was

likely generated by the Internet Security Scanner (ISS) in order to gather information about

hosts. The IDS signature is designed to detect, but does not itself help identify any of the

interesting information regarding the exploit being used, the likely intent of the attacker,

or host exposure information. Use of temporal logic can assist in detecting some forms of

attack, but more importantly it helps identify other information that is potentially useful in

35

Chapter 2. Background

ρ αρα α
Next (alert)

ρ αρα α
Finally (alert/event)

ρ αρα α
Next (event)

time
sp

ar
se

ne
ss

A

B

C

Figure 2.4: Temporal logic relations over IDS events

1.130�1011 1.135�1011 1.140�1011 1.145�1011 1.150�1011

0.5

1.0

1.5

2.0

packets alerts

Figure 2.5: Temporal logic using Next(alert) semantics

modeling attacker intent and identifying attacker knowledge which directly results from

host exposure. In the case of an ICMP scan we might increase a measure of threat severity

by whether the threat is widespread or targeted.

2.3.4 Traffic Patterns

An obvious way of defining patterns within network traffic is based on the IP or TCP header.

We can define a connection as being, a 5-tuple corresponding to an active TCP connection,

as the 3-tuple consisting of only a pair of IP addresses and an IP protocol. The way that

we define a “connection” can affect the distribution of learned patterns. TCP connections

are not always long-lived, many only lasting seconds and consisting of only a handful

of packets. IP connections may learn nonsensical associations due to network address

36

Chapter 2. Background

translation (NAT) or proxy configurations. Neither short-lived TCP connections, or broadly

defined IP connections will provide a sufficient basis for anticipation in all cases.

Nonetheless, TCP connections provide a useful basis for collecting sequence statistics.

The general class of traffic for future TCP sessions is very likely to be the same as prior

sessions on the same server port. For example, a client which is retrieving a web-page

will result in multiple TCP connections being formed for accessing various data elements

of the web page, some of which may even reside on different physical machines. Future

TCP sessions for the same pair of IPs are likely to contain Hyptertext Transfer Protocol

(HTTP) data. An anomaly detection system might use this to detect and alert on deviations.

An anticipatory system can bias a signature-based detector to focus on threats relevant to

serving and retrieving web-pages.

Similarly, IP connections can usefully expose information about to whom individual

machines are likely to communicate. If two machines communicate regularly the fact they

they communicated is less interesting than two machines which communicate infrequently.

Capturing this information and statistics about the type of communication can assist in

determining which connections are interesting for purposes of sequence prediction. Alterna-

tively, connections through Network Address Translation (NAT) or a proxy would appear to

be somewhat uniformly distributed. Deviations from this distribution may be just as useful.

2.4 Per-Signature Cost Optimization

Often, a single detection signature can account for a significant portion of the processing

costs for an intrusion detection system (IDS), particularly in the cases when an ongoing

attack is present, when a signature has a high computing cost innately, or when a signature

is active for a large portion of the input data-stream. In each of these cases, there are existing

engineering optimizations which either decrease the computing cost (by eliminating or

37

Chapter 2. Background

chaining signatures) or decrease the number of events produced (by eliminating events

entirely, limiting the number of occurrences, or limiting the number of duplicates).

Suppressing output events generally has very little effect on system performance. The

approach is often used as an aggregation method or to remove event output which is

unimportant but cannot be easily disabled. Alternatively, both signature-chaining and

signature-removal can improve performance, but provide relatively narrow improvement.

Signature removal guarantees false negatives for all events associated with the removed

signatures and therefore is not appropriate in all cases. Signature chaining is only applicable

for events for which prior packets can be used to prevent signature activation. We show that

there is another important class of optimization which can further improve performance,

particularly when a system is under load and dropping input packet data.

2.4.1 Flow Tracking

One class of optimization which is commonly incorporated into modern IDS is flow tracking.

This is a mechanism for tracking the state of individual connections such as the state of a

TCP connection: whether it is established, its direction (client initiated or server initiated),

and whether the connection has been closed and by whom. A system which did not track

session state would likely require more complex signatures, be incapable of detecting

some types of events without additional false-positives, and spend significantly more time

processing signatures that would not have been processed had the session state been known.

2.4.2 Signature Chaining

Signature chaining is closely related to and often dependent on flow tracking. The mech-

anism as employed within the Snort IDS is called “Flowbits” and allows a signature to

set a bit flag which is subsequently checked by other signatures. If the status of the flag

38

Chapter 2. Background

meets the signature’s requirements (being either positively or negatively conditional on the

bit flag being set), then the signature is activated. Any number of Flowbits can be set or

checked by a set of signature resulting in fairly sophisticated signature dependencies. Of

primary interest in respect to this paper is the use of Flowbits to keep high-cost signatures

disabled until they are relevant. This decreases the costs associated with signatures which

may otherwise overwhelm resources available by being applied to the wrong packets.

One limitation of the existing signature chaining mechanism within Snort is that no

guarantees are made regarding setting or checking of flowbits for a single packet between

multiple signatures. Depending upon which order the signatures are processed in, setting

a Flowbit in one signature may or may not activate signatures which are dependent upon

the bit being set. This has implications for the thesis of this paper as we make use of the

Flowbits mechanism to probabilistically activate signatures.

Another issue with signature chaining mechanisms occurs when there are negative

conditional dependencies. If the firing of a signature that sets a Flowbit fails to occur, then

a signature which is negatively dependent on that Flowbit will be left active and may result

in an increase in false negatives. In respect to our overall approach, this is the only known

cause of additional false negatives above the control configurations.

2.4.3 Event Filtering & Suppression

Event filtering is often used as a method of decreased the total number of events which are

output. Since many detection systems operate over individual packets, some events will

occur as frequently as the incoming packet stream containing the relevant set of detected

features. Large numbers of duplicate events does not provide much additional information

(only that an attack is still ongoing) and may overwhelm an operator or an external analysis

system. Event filtering and suppression, however, do not generally save computing time

related to the costs of processing incoming packet data. Even though an event may be

39

Chapter 2. Background

configured to be output only once each second for a given IP connection, many such events

may have been computed by the IDS. Each event which is filtered represents wasted effort

by the IDS.

Fortunately, it is fairly straightforward to decrease the number of times that a signature

is used. To this end, we have defined a set of signature-activation policies to explore the

effects of various signature activation functions. In the next section we then provide a

detailed analysis of false-negatives given certain assumptions concerning packet loss. To

support our claims we describe a prototype system and experimental results. The prototype

takes direct advantage of the existing flow-tracking and signature-chaining mechanisms

within the widely available Snort IDS and provides significant gains when overburdened.

2.5 Related Work

There are many approaches to detecting network-based computer attacks and numerous

surveys of their history, development, benefits, limitations, and recent achievements.

The basic principles of computer intrusion detection were first thoroughly described

by Dorothy Denning in her paper “An Intrusion-Detection Model”[31]. Denning’s paper

provides a foundational perspective on IDS which particularly helpful in understanding

specific advancements in IDS in the last 20 years. All IDS can be understood in the context

of her model, irrespective of how an IDS is deployed, the type of detection mechanism

used, or how IDS output is used. Her model was implemented in the Intrusion Detection

Expert System (IDES) developed for SRI International in the late 1980’s[66]. Denning’s

model describes subjects, object, audit records, profiles, anomaly records, and activity

rules. Audit records describe actions between subjects and objects. Profiles characterize

the “normal” behavior of a given subject in respect to sets of objects. Anomaly records are

40

Chapter 2. Background

generated by an IDS when an activity rule’s preconditions are met. Activity rules link a set

of preconditions to an action to be taken.

Denning’s model also describes a system which potentially spans all facets of computer

software, hardware, and networks, monitoring and alerting on activities which span software

instances, computer hosts, and network segments. However, few existing systems are so

comprehensive, their innate complexity and maintenance costs being prohibitive.

While many detection systems have existed solely for the purposes of research demon-

stration, there are dozens which have had widespread use. Systems such as Snort[79],

Bro[72], and Suricata[4, 5, 28] have become readily available as open-source. This has

allowed many independent researchers to explore their function and limitations. The

Snort IDS, has substantial use within operational settings and is the de facto standard for

comparisons between approaches.

However, of particular interest are systems which attempt to achieve high coverage

of threats and relevant characteristics. My personal introduction to intrusion detection

systems began in late 2002 while working for the Defense Advanced Research Project

Agency () with a system which was inspired by Denning’s general-purpose model[43].

The system, developed by Australia’s Defense Science Technology Organization, known

as Shapes Vector, encompassed many of Denning’s concepts[9, 10, 11, 12, 13, 37]. It

utilized a collection of agent-based expert systems to learn facts about the network and

network activities. Individual agents performed protocol analysis, correlated activities

discovered from direct monitoring of the network, monitored of host and network audit

logs, monitored of the output of independent intrusion detection systems, and performed

both forward-chaining (data-driven) and backward-chaining (goal-driven) deduction.

The key characteristic of this system was that its expert system components were used

as unbiased observers, asserting facts deduced from incoming data irregardless of whether

these facts were part of an active intrusion. This system used the output of systems such as

41

Chapter 2. Background

Snort as individual agent inputs. In other words, the coverage of this system was essentially

exhaustive, covering identifiable threats (by multiple independent IDS) as well as all of

the host, network, and transmission characteristics known to the agent expert systems. As

later chapters will discuss, it is the coverage of an IDS which primarily determines whether

anticipatory approaches can be used for performance optimization.

In respect to Denning’s original model, this system is the closest which I have personally

seen in terms of its comprehensive coverage and general-purpose intent. As in many other

systems, however, detection is performed in a purely feed-forward manner and speculative

optimization of detection engine performance is sorely missing.

While the “Shapes Vector” system’s potential capabilities were powerful, the need for

hardware was directly proportional to the problem size and the amount of incoming data.

Needless to say, the high cost of the system both in hardware and administration have made

it difficult to apply to real-world environments. Hardware is almost always wanting and

domain experts who are able to modify and maintain such a system are few and far between.

It is my humble perspective that it is exactly Denning’s original vision (and exemplary

implementations of this vision such as the Shapes Vector systems and others) which would

most readily benefit from anticipatory optimization approaches.

2.5.1 Attacker Modeling

One facet from commonly missing from available IDS is any deep knowledge of attacker

intent. In respect to our research goals, knowledge of such intent would be very helpful for

the prediction of future events.

The most common method of modeling attacker intent is through the use of attack

graphs. Each path through an attack graph represents a possible set of steps that an attack

might take to achieve a given goal. Correlating events which occur at different times or at

42

Chapter 2. Background

different points on a network is generally difficult. Recent work by Roschke et al. shows

how alert correlation can be performed efficiently using attack graphs and a matching

function[80].

In 2008 Zhang et al. extended the concept of attack graphs and describe an attack

grammar[93]. Their primary goals were to provide a more compact representation which

could leverage straightforward syntax checking for the elimination of detector errors. While

equally powerful to attack graphs, an attack grammar also has the benefit of being more

easily represented (and understood) visually. Similar to attack graphs, the principal question

being asked is related to the well known graph theory problem of reachability. The new

representation can also be easily converted from various attack graph formats. Although

there is still no inexpensive way of generating the grammar itself, the intent is that once

the grammar is generated it might applied in many different scenarios before new grammar

rules are needed.

In respect to the generation of attacker models there have been several significant recent

research efforts. In particular, Zhu and Ghorbani describe a new approach to generating

knowledge of attack strategies using multilayer perceptron neural networks and support

vector machines[94]. Their “Alert Correlation Matrix” is closely related to the Naive Bayes

method described in Chapt. 5. Unfortunately, their use of the 1998 training set means that

some of their results may be peculiar to the dataset (see Sect. A.2.1 on page 160). The

attacks, attack sequences, and background traffic present within the Defense Advanced

Research Projects Agency (DARPA) dataset are not distributionally similar to real-world

data. Nonetheless, given sufficient data, automatic generation of attack graphs using their

method seems feasible.

43

Chapter 2. Background

2.5.2 Prediction & Performance Adaptation

There are a number of issues with signature based IDS as they are commonly implemented.

Of primary importance is the conflict between coverage and performance (i.e. precision,

recall, accuracy, and specificity). Some form of cost analysis (e.g. computing, latency,

hardware, training, etc.) is generally performed in order to choose the right IDS technology

for a given network. Many modern IDS also rely on labor-intensive tuning and signature-

refinement to match particular network characteristics and known host vulnerabilities. There

are many trade-offs which result in sub-optimal detection, but which decrease the IDS cost

substantially. Fan, et al. describe cost metrics in terms of operational costs, attacker induced

damage, and incident response, citing the need to consider cost within the development and

deployment of IDS[39]. Others have cleverly incorporated cost assessment into decision

support systems to propose or enact response actions [86], IDS reconfiguration, and dynamic

performance tuning [58].

A commonly cited statement in the literature is that the number of alerts generated by

modern IDS is overwhelming to human operators and essentially untenable for any type

of manual analysis [58, 92]. Any number of false positives increases the burden without

improving the abilities of the analyst. This statement is often cited as a failing of anomaly

detection schemes and a justification for the elimination of “unimportant” signatures from

misuse detection systems. It has also spurred the industry into the creation of Security

Incident Event Management Systems (SIEM) which aggregate, correlate, predict, and

display events and their impact[58]. While necessary for the sanity of the human analyst,

a SIEM system does not address the issue of improving IDS coverage and can mask

performance issues in underlying detection signatures. Due to the unresolved human-

factors and cognitive issues, the research community has been essentially unmotivated to

significantly expand the coverage of IDS. The number of signatures has remained relatively

stagnant for nearly a decade. If the aggregation and correlation issues are ever adequately

44

Chapter 2. Background

resolved, the broader research community may return to identifying a wider variety of

events using signature-based approaches.

Careful management of signature-set in order to achieve desired performance goals

may also mask performance issues and can actually decrease the usefulness of IDS by

removing contextual knowns from the stream of true-positives being displayed to an analyst.

In a perfectly “tuned” system one might expect only the most high-priority events to be

displayed and all other events to be discarded (or at least hidden). It is possible that removal

of true-positives up front in the detector is only necessary due to the fact that such systems

are not using predictive mechanisms to “bootstrap” their own performance. It is important to

note that the predictive adaptations employed in many prior research studies have generally

applied globally to the input data rather than being applied to individual signatures or to

sets of signatures grouped by equivalence classes of future events.

A 2008 study by Yu, et al. demonstrated a system which tunes the detection model

on-the-fly according to feedback from the system operator when false predictions are made.

This adaptive anomaly detection approach throttles alarm output and tunes the detection

model[92]. As such, these predictions are not directly seen by or affect the detection model.

Another way to think about tuning procedures such as those demonstrated by Yu,

et al. is that they assist the detector in eliminating false positives. But for any set of

signatures for which the false positive rate is already zero, no additional gains can be

achieved. The procedure does not improve the performance of a signature-set other than

to increase the accuracy. If false negatives are being incurred due to packet loss, the

approach as described would not directly apply. Nonetheless, these results are important

and demonstrate important methods for improving IDS performance. The general approach

could also be easily modified to adapt the detection model to decrease packet loss and thus

false negatives.

45

Chapter 2. Background

Another type of performance adaptation is one proposed and implemented by Wenke

Lee & Wei Fan, et al. They describe methods for performing cost-sensitive adaptation

of detection models[39, 56, 58]. Their primary contribution is to show that cost-based

adaptive reconfiguration is a viable approach for performance optimization. The primary

cost measures considered within their approach were: taxonomic prioritization based on

event type, damage cost, response cost, and operational cost. Fan and Lee et al. desire to

construct a general purposes cost-model and produce rough categorizations of each measure

for purposes of system evaluation. Their basic approach is to reconfigure the IDS as a

whole based on in situ measurement of performance issues. Particularly clever is Lee’s use

of injected events to determine when the IDS is dropping events. Lee proposes a set of cost

objective functions for evaluating and optimizing detection performance[56]. Our research

efforts serves to greatly expand their operational cost measure by exploring concepts such

as wasted information and anticipatory performance optimizations.

Lee’s approach is quite general and captures the fundamentals of performance adaptation

and optimization. By formalizing each of the cost factors involved, Lee has created

a relatively straightforward value optimization problem. This provides a useful global

optimization for cases where the IDS is overloaded. However, during normal running of

the IDS, in respect anticipatory and probabilistic refinements alike, the IDS is wasting work

for events which are easy to predict or which are likely to occur many times during a single

packet stream.

Similar to the probabilistic signature activation approach, Lee’s threshold-based re-

configuration is performed at the last possible time, when the system is failing. Such

an optimization can only used to improve the IDS coverage during periods of high load.

Further, the optimization problem is equivalent to the Knapsack problem, which is NP-

complete and difficult to recompute online. Depending upon the number of features being

considered, the cost of performing the optimization could be quite high and could not be

used for online optimization. Although, online optimization for the lifetime of the IDS

46

Chapter 2. Background

instantiation is not considered in his analysis, it is clear that an extension might allow for

parametric optimizations based on current event and detection engine statistics.

The anticipatory approaches outlined in this dissertation differ significantly from Lee.

Such optimizations can be performed at any time, irrespective of system load. Within

Lee’s approach the optimization is delayed until the system is beginning to lose fidelity.

It is also performed as an adaptation over the entire input set globally, which is likely

to be sub-optimal for subsets of packet data. Instead, we consider an approach in which

detections for each individual connection (or sets of related connections) are individually

considered and improved.

In order for anticipatory approaches to be useful, IDS decision procedures must be

constantly re-evaluating the most likely subsets of the decision procedure for all individual

connections. Lee’s approach adds a more comprehensive weighting regarding the relative

importance of various signatures, producing an intelligent prioritization of event output,

but this is optimal only on average. This is essentially the same problem inherent to global

optimization of decision tree-based decision procedures. Lee is attempting to guarantee

(based on numerous factors) that all events above a given threshold of importance will

always be processed. When a performance threshold is met where the IDS is losing

information, the system can be dynamically reconfigured to prioritize input data processing

features by eliminating analysis tasks.

In the context of an anticipatory approach, Lee provides useful global optimizations,

especially for the cases where the IDS is overloaded. However, during normal running of

the IDS, Lee’s approach is still wasting information gained due to processing of signatures

for particular packets for which predictors might indicate irrelevance.

In addition to useful optimization schemes, Lee et al. also provide a wealth of arguments

for the necessity of adaptive systems, but their goals are significantly different. Lee intends

to ensure that when the IDS is overloaded optimal decision are made on what to keep and

47

Chapter 2. Background

what to throw away. He assumes that the analysis tasks already represent the maximum

coverage possible.

Related to the work by Lee & Fan et al. is a 2003 paper by Balepin et al. which presents

a single host-based detection and response paradigm. Their key contribution is a more

comprehensive response cost model. The problems that they intend to solve are: a) ensuring

that responses do not cause more harm than good; and b) ensuring that responses are not

launched unnecessarily due to false-positives or contraindicating factors[17]. By taking

into consideration potential response actions, they have provided a useful generalization

from the cost models presented by earlier researchers.

When we discuss anticipation within the context of IDS what we are really after

is anticipatory response. While our primary research goals have focused on anticipatory

optimizations, the research community has been principally focused on the ability of systems

to appropriately respond to detected threats. There has long been controversy in the design

and deployment of automated response mechanisms, particularly when human decision

making is removed from the loop. Nonetheless, it has become apparent that automated

response is necessary and many systems incorporate automated response mechanisms. The

simplest and most common types are those which make minor adjustments to prevent future

attacks. These often adjust or stop network traffic flows (by dynamically changing firewall

rules or dropping connections). Other systems may dynamically adjust security policies

such as adjusting security domains within the software environment of a single host[85].

In 2009 Strasburg et al. refined the cost-sensitive detection concepts to better describe

response systems[86]. They considered three factors: response operational cost, response

goodness, and response impact on the system. While some factors used in their cost

assessment methodology were subjective, even a subjective measure of cost can inform

whether or not any response should be taken. If the cost of a response outweighs its benefits,

then alternatives must be sought or planned responses abandoned. Cost-driven optimizations

48

Chapter 2. Background

such as those by Strasburg et al. can both enable better decision making by automated

system and simultaneously allow more efficient use of limited computing resources.

More recent work by Barlet-Ros et al., while not directly related to intrusion detection, is

relevant due to their use of predictive approaches for managing limited resources of network

monitoring systems[18]. Their goal is to maintain bounds on network monitoring system

accuracy by proactively shedding excess load. Similar to the PacketWrangler approach,

they treat the monitoring software as a black box. However, their purpose is dynamic load

shedding whereas PacketWrangler was intended for performance optimization even when

systems are not overburdened. Their approach is novel, however, in that prior knowledge of

cost models is not necessary.

2.5.3 Historical Surveys

For a broader perspective on intrusion detection in general, it is useful to review the

descriptions and analysis of others who have reviewed the field. An exhaustive list of IDS

is difficult to compile. However, most notable IDS have been surveyed by others in the

field. Early surveys such as those by Snapp et al.[84] tended to focus on the basic principles

internal to each IDS. Later surveys often ignore internal nuances and focus on system

capabilities. The following lists notable IDSs seen in surveys over the last 2 decades. The

year given is the year of the earliest cited paper within the surveys which describe the

system.

In 1994 Jeremy Frank of University of California, Davis provided one of the first

comprehensive overviews of the state of IDS technology after Denning’s initial report[41].

His report is particularly interesting in that it focuses on the application of Artificial

Intelligence (AI) techniques for intrusion detection rather than engineering aspects, focusing

on Artificial Intelligence (AI) solutions to the challenges of data reduction and classification.

He describes prior work using expert systems, rule based induction, classifier systems,

49

Chapter 2. Background

Year System Survey

1986 Discovery [84]
1988 Haystack [84, 41]
1988 Autoclass [54]
1988 Multics Intrusion Detection and Alerting System (MIDAS) [84]
1988 Expert System for Security Auditing (AudES) [41]
1989 Wisdom&Sense [84, 41]
1989 Information Security Officer’s Assistant (ISOA) [84]
1989 Computer Security Monitor (CSM) [84]
1990 ComputerWatch [84]
1990 Network Security Monitor (NSM) [84, 41]
1990 Intrustion Detection Expert System (IDES) [84, 41, 26, 66]
1990 Time-based Inductive Learning (TIM) [41, 54]
1991 Distributed Intrusion Detection System (DIDS) [84, 41, 26]
1991 Network Anomaly Detection and Intrusion Reporter (NADIR) [41]
1991 Pattern Recognition to Anomaly Detection (PRAD) [41]
1992 ASAX [15]
1993 State Transition Analysis Tool (STAT) and USTAT (Unix STAT) [26, 54]
1994 Tripwire [26]
1994 Distributed program execution monitoring (DPEM) [15]
1995 Next-Generation Intrusion Detection Expert System (NIDES) [26, 54]
1996 Cooperating Security Managers (CSM) [26]
1996 Graph-Based Intrusion Detection System (GrIDS) [26]
1996 Janus [15]
1997 JiNao [15]
1997 EMERALD [15]
1997 Bro [15]

Table 2.2: Intrusion Detection Systems

neural networks, and decision trees. Frank also describes performance of several classifier

algorithms in common use (Beam Search, Backward Sequential Search, and Random

Search).

A dissertation by Kumar in 1995 also provides a fairly thorough overview of a hand-

ful of the systems developed within the previous decade[54]. He provides a thorough

description NIDES, TIM, and STAT, providing enough detail to understand the guiding

principles of their designs. In particular, he describes and reviews statistical approaches

(NIDES), features selection approaches, predictive pattern generation (TIM), Neural Net-

works, Bayesian Belief Networks, Bayesian classification (Autoclass), covariance matrices

(NIDES), conditional probability, keystroke monitoring, Expert Systems, state transition

analysis (STAT, USTAT), model-based detection, and general-purpose approaches such as

Denning’s original model.

50

Chapter 2. Background

In 1996 Cannady and Harrel provided an accessible look into available intrusion de-

tection approaches[26]. At the time IDS taxonomies focused on the differences between

passive (prevention, preemption, and deterrence) and active (deflection, detection, and

countermeasures) approaches.

A 1999 and revised 2000 report by Debar, Dacier, and Wespi of IBM Research Zurich

describes a number of advancements and thoughts regarding IDS taxonomies[29, 30]. Their

report focused on the efficiency of IDS in terms of measures of: accuracy, performance,

completeness, fault tolerance, and timeliness. The taxonomy described IDS in terms

of detection method, behavior on detection, audit source, detection paradigm (state vs

transition based), and usage frequency. The approaches discussed by Debar et al. primarily

focused on: expert systems, Petri Nets, statistical profiling, Neural Networks, and the

Computer Immunology (particularly the work by Forrest et al. at the University of New

Mexico[40]). Including those systems cited by Cannady, they compare over two dozen

different systems in the context of their taxonomic classifications.

In 2000, Julie Allen et al. at Carnegie Mellon provided a thorough overview of IDS

technology (under contract with Air Force Research Laboratory). Their survey identi-

fies the principal characteristics of various IDS approaches, technology gaps, market

surveys, subject matter expert surveys, policy surveys, and both organizational and techni-

cal recommendations[6]. Their survey is focused on commercial technology rather than

research tools, but provides brief overviews of dozens of different detection systems.

Independent surveys in 1999 and 2000 by Axelsson[14, 15] presented a survey and

taxonomy of IDS to date. Axelsson’s taxonomy is both thorough and accessible. He also

presents a review of several systems not mentioned in previous surveys.

During the same year, LaPadula of MITRE Corporation compiled an independent

market survey listing many of the current anomaly detection and response tools with some

minimal overlap to the Allen report[55]. Both reports are primarily descriptive rather than

51

Chapter 2. Background

exploratory. While only providing superficial detail their reports are the most comprehensive

to date. Many of the technology gaps identified in the Allen report remain outstanding

challenges today (performance issues, scalability, maintenance, growing attack diversity

and attacker sophistication, detection of new threats).

A 2002 survey by Lundin and Jonsson[65] provides a more recent overview of IDS

research, loosely describing current focus areas of: foundations, social aspects, operational

aspects, testing and evaluation, IDS security, IDS environment and architecture, response,

detection methods, and data collection. Their article provides a thorough description of

various IDS and intrusion taxonomies.

The decade old articles by Kemmerer[51] and Verwoerd[89] in 2002 provided brief

overviews of IDS approaches and problems. While many specific advances are obvious

from bibliographic comparisons to earlier survey papers, the primary approaches and basic

principals had remained the same.

Kabiri and Ghorbani presented a fairly comprehensive survey of IDS approaches in

2005[49]. They focus on network intrusion detection and some of the outstanding issues

and modern techniques. They review prior work on Bayesian approaches, Fuzzy Logic,

Data Mining, Genetic Algorithms, Rule-based expert systems, and specification-based

approaches such as network modeling. They also spend some time reviewing the use of

Honey Pots for identifying and delaying attacks in isolated environments prior to attacks on

real systems.

A 2007 review by Stakhanova et al.[85] provides an excellent overview of various

intrusion response systems and their characteristics. Their overview suggests that response

systems are most usefully characterized by: autonomy, proactive/predictive power, adapt-

ability, and cost-sensitivity. The characteristics most germane to this dissertation are those

which are proactive or which consider cost-models in response planning.

52

Chapter 2. Background

More recent surveys have either focused on application-specific techniques (such as

web-application security, or mobile ad-hoc networks) or come in the form of books. For a

more academic overview of IDS techniques and technologies see: Bishop[19]. Additionally,

many relevant publications appear in the proceedings of the Recent Advances in Intrusion

Detection (recently renamed to Research in Attacks, Intrusions, and Defenses).3

3http://www.springer.com/computer/security+and+cryptology/book/
978-3-642-33337-8 - Research in Attacks, Intrusions, and Defenses, Springer Verlag
(Website - Retrieved Sept. 22, 2012).

53

http://www.springer.com/computer/security+and+cryptology/book/978-3-642-33337-8
http://www.springer.com/computer/security+and+cryptology/book/978-3-642-33337-8

Chapter 3

Theory

In this chapter we explore a general model for anticipation within signature-based IDS.

We first define the model and then support the need for such a model by describing how

traditional IDS approaches waste information. We then define some of the relevant charac-

teristics such as: threat coverage, packet coverage, equivalence classes, and present IDS

cost function. In light of these characteristics, we explore potential performance gains

given various performance parameters. We then look at a set of alternate (and supporting

approaches) based on probabilistic signature activation. We perform an analysis of false

negatives and support the claim that this type of augmentation is necessary for efficient IDS

but is generally absent from existing systems. We balance the optimistic assessments by

describing some of the errors which an anticipatory approach can introduce and discuss the

trade-offs between IDS efficiency and error rates. We close the chapter by describing how

the models presented lend themselves to game-theoretic approaches and suggest that Game

Theory should have a prominent place in future detection systems.

The models presented are intended to stand largely on their own. Although many

aspects of anticipatory detection are described in the literature, there does not currently

exist a comprehensive model for anticipation mechanisms within detection systems. Recent

54

Chapter 3. Theory

work by Barlet-Ros et al.[18] (predictive load shedding) as well as Hellerstein et al.[46]

(predicting threshold violations) provide some basis for an anticipatory model but are

limited in scope. There are also several models for IDS adaptation and reconfiguration

based on system loads and attack prediction, but their applicability to the current discussion

is somewhat limited (see Sect. 2.5 for a description of work by Lee et al.[56, 57] and Yu

et al.[92]) . There are also many models within and used to describe biological systems,

but few are particularly relevant to the discrete event detection problem of network-based

intrusion detection systems.

3.1 An Anticipatory IDS Model

One method to describe an anticipatory approach is to treat the IDS detection engine

as a decision tree, and the predictor as a graphical model. At least for the forward IDS

model, this is a gross oversimplification of existing systems. Nonetheless, it can provide a

scaffolding for describing various aspects of an anticipatory approach.

A simplistic IDS might implement forward detection as a single optimal decision tree.

This is consistent with the literature in which decision tree techniques have a long history as

key components of detection systems [8, 53, 60, 61, 73] and allows for an easy analysis of an

anticipatory approach. In the conventional model, this tree is pre-computed and provides a

per-packet detection cost which is optimal on average. Figure 3.1 describes the architectural

differences between conventional IDS and an anticipatory approach implemented external

to the IDS (as in the Packet Wrangler prototype). In this model, a forward processing attack

detector Ti is combined with an attack predictor Gi.

A conventional signature-based IDS (figure 3.1) simply map packets and other rep-

resentations of network traffic into specific vulnerability and exploit identifications. In

our approach, the detection engine is biased by prior events. Note that this diagram is

55

Chapter 3. Theory

alerts
α

packets
ρ

Γi(β)

Φi(α)
G: (β, P(β)) → {β ∈ B}

Attack Predictor Gi

Attack Detector Ti

T: {ρ ∈ P}→ {α ∈ A}

actions
β

Conventional IDS
Predictive IDS

 n detectors

 m predictors

Figure 3.1: Predictive IDS architecture denoting conventional techniques

not intended to be all-inclusive of IDS techniques as many include sophisticated forms of

prediction in the form of scripts (e.g. Bro IDS[72]) or entail threshold-based IDS recon-

figuration based on evaluation of cost metrics and run-time performance (Lee et al.)[58].

It seems likely that each of these techniques might be improved using anticipation. An

overview of the primary differences between our approach and other related approaches

can be found in the IDS background chapter (Sect. 2.5 on page 40).

In an anticipatory approach, the global tree is paired with a forest of subtrees, T⇠i as

in Fig. 3.2. Each member of the set of partitioned trees represents a set of alerts belonging to

a particular attack equivalence class. These trees can be selected using the attack predictor

(i.e. attack graph Gi) primed by prior alerts. For the sake of discussion, T is referred to as

as the detection tree and G as the attack graph, representing potential methods for detection

and prediction respectively.

Using dual detection tree data structures requires at least twice the memory, but allows

optimal cost traversal of either the global detection tree or a set of relevant subtrees de-

56

Chapter 3. Theory

⟺

Figure 3.2: Dual decision tree representations with color-labeled equivalence classes

pending upon whether prior information is available to select a set of subtrees. A more

clever data structure would be constructed to address memory issues if they were a limiting

factor in a system’s design. The average performance gain of the anticipatory approach is

proportional to the average decrease in depth of traversal of the subtrees. This is almost

certainly data dependent with some attacks being more prevalent, attack activity shifting

over time, and each subtree potentially being of different sizes and structure.

In the model shown in Fig. 3.1, mapping functions �i(↵) and �i(�) map alerts to

predictor states and predictor states to equivalence classes respectively. For a given alert ↵,

function � maps ↵ into a set B↵ of pairs of attack graph vertices and associated likelihoods,

(�i, P (�i)) 2 B↵ (see Fig. 3.3). � maps attacker actions into alert equivalence classes ⇠

and associated probabilities P (⇠).

The set B↵ has a partial ordering based on the likelihoods generated by �. If subtrees T⇠

associated with possible future attacker actions are traversed in likelihood order, it should

be possible to achieve a performance gain while simultaneously providing a prioritization

mechanism. While signature prioritization is not always relevant, if limited computing

resources are available due to high loads, eliminating unlikely subsets is more desireable

than arbitrarily dropping packet data at the front-end of a system. Subtrees may be traversed

in likelihood order until the set is exhausted, some minimum threshold criteria is met, or

limited computing resources are consumed.

57

Chapter 3. Theory

(β1,p(β1))

(β2,p(β2))

(β2,p(β2))

(βi,p(βi))

.

.

.

Alert tree, T Mapping
function

Attack graph, G

α φ

Figure 3.3: Anticipatory IDS architecture

In conventional approaches, the ordering of signature processing is often unrelated to

previous events and truncating the pattern matching decision procedure can lead to loss of

important events (false negatives which matter). Static prioritization of signatures can only

partially resolve this problem and presumes that a given fixed signature prioritization is

appropriate in all instances. In the new approach we can more safely truncate the decision

procedure and potentially eliminate a significant portion of the processing. The amount of

effort saved in such a case is proportional to the difference in the total number of signatures

to the number of signatures in the equivalence class.

3.1.1 Wasted Information

Potential performance sinks in IDS systems can be understood in terms of wasted work.

For example, work is wasted when an IDS engine duplicates signature processing, when

it ignores correlations between outputs and future inputs, or when partial matches are

discarded instead of being used to bootstrap future detections. Wasted work occurs in

modern IDS systems. Some of these issues are solvable via simple caching mechanisms.

Others require solutions with more sophistication.

58

Chapter 3. Theory

If there is no prior knowledge to guide the computing of signatures for a new network

packet, then the entire decision procedure must be performed against the incoming data.

This exhaustive matching cannot be considered as wasted work unless there were a direct

way of improving its performance. However, if we have prior events then we can often

modify the IDS detector to perform more efficiently, often with some loss in precision.

We can measure the potential performance improvement by assessing how much effort is

wasted by performing the exhaustive matching. Although not a conventional measure for

work performed, we can think of work wasted in terms of bits of information. The work

performed in most cases is related directly to the length of packets in bits and the complexity

of signatures. If useful information is gained which is subsequently discarded, then this

information has been wasted. In an anticipatory system the gains in IDS performance

are directly proportional to the number of bits which no longer need to be processed by a

particular decision procedure or IDS signature.

Ignoring Anticipation: In respect to our anticipatory model, work is wasted when

we do not perform a prediction that we could have performed using the architecture. For

decision procedure T we can define a function ⌦T : {p 2 P} ! R, which calculates

the information (in bits) used to process a particular packet given decision procedure T .

When compared to a smaller decision procedure T 0, the information which is wasted by the

exhaustive approach for inputs p
0

to pn is simply:

�⌦ =
nX

i=0

(⌦T (pi)� ⌦T 0(pi)) . (3.1)

Note that we count information as wasted not when it is produced, but when an IDS fails to

use it. If some particularly relevant information can be applied many times to decrease the

size of a decision procedure then it we are wasting information for every instance where

the information could have been used.

Duplicate Alerts: In an IDS with no knowledge of event and alert distributions, work

is wasted whenever we produce duplicate alerts for the same connection. Computing a

59

Chapter 3. Theory

signature when we have already detected a particular event is costly and accounts for a

small additional burden to the IDS. Duplicate alerts for the same IP connection means that

the signature was computed multiple times after its initial detection. Every instance except

the first can be considered wasted effort. If signature s is expected to fire alert ↵ within the

first k packets, then the wasted information in processing all packets in the set of packets,

p 2 P , comprising the entire sequence is:

�⌦ =
|P |X

i=k

⌦s(pi) . (3.2)

That is, the signature is processed |P |� k times after it is initially detected, each instance

being wasted information proportional to the size of the processed packets. The first

k signature computations are necessary unless good statistics are known over where in

the packet sequence the event is most likely to occur. If this knowledge is available

for a particular alert, then additional optimizations would be possible and not using the

optimization represents wasted work.

The Earliest Alert: Another form of wasted information which is related to duplicate

alerts occurs due to our desire to produce an alert as early as possible within a sequence of

packets. Some types of alerts are likely to occur many times if they occur at all. Nonetheless,

an IDS generally tests every “qualified” signature against every packet within a packet

sequence even when relatively infrequent signature tests would still discover the event. If

our goal is to see the event at least once per packet sequence then we would test only 1

packet per n↵, where n↵ is the number of times per sequence that alert ↵ will occur if it

occurs at all. Assuming we are randomly activating the signature with probability 1

n↵
, the

amount of wasted information is:

�⌦ =

0

@
|P |X

i=0

⌦s(pi)

1

A� ⌦s(pavg)
|P |
n↵

, (3.3)

where pavg is a packet with “average” characteristics for those within sequences which

result in the alert. We only needed to test |P |
n↵

packets but we tested all packets in the

60

Chapter 3. Theory

sequence p 2 P . The optimization would allow many signatures to be tested with relative

infrequency, but with an added expected latency of n↵ packets. Further, if we have good

distributional statistics over when events are likely to occur within a sequence then we

may also not be giving up much in terms of latency. We can match the signature-activation

probability for each packet with the likelihood of seeing the event at that time (or packet),

optimally activating signatures to incurr the smallest additional latency possible given the

quality of our knowledge of the distributions. See Chapt. 6.3 for some experimental results

relating to this class of wasted information).

Flow Tracking: One class of optimization which is almost always incorporated into

modern IDS is flow tracking. This is a mechanism for tracking the state of individual

connections such as the state of a TCP connection: whether it is established, its direction

(client initiated or server initiated), and whether the connection has been closed and by

whom. A system which did not track session state would likely require more complex

signatures, be incapable of detecting some types of events without additional false-positives,

and spend significantly more time processing signatures that would not be processed had

the session state been known.

Alert and attacker action granularity mismatch: In an anticipatory model work can

also be wasted when the decision tree and attack graphs are mismatched. If the tree and

graph are perfectly matched then there is no aliasing of alerts to the same equivalence

classes. However, there may exist similar alerts, ↵
1

,↵
2

,↵
3

which are more precise alerts

than ↵, i.e. {↵i) ↵}, the set of alerts which each independently imply alert ↵. If each

↵i is capable of being mapped to a more precise set of graph vertices, then improving the

decision tree may have been worthwhile for the purposes of improved predictions. However,

if they all map to the same vertex, then we wasted effort in discriminating between the

different alerts, increasing the total work performed.

With these more precise alerts, the function � maps alerts into sets of attack graph

vertices Bi. If the vertices Bi are the same set as B↵ then the improved granularity of the

61

Chapter 3. Theory

decision tree was information gained, but work wasted. The cost difference between the

two represents the wasted effort which can be estimated by comparing the signature cost

for ↵ and ↵i. When � aliases any of the alerts, then each aliased alert was wasted work

performed by the decision procedure. Using again our information cost function ⌦s defined

to assess the cost of matching against a single signature s, for k alerts which alias to the

same prediction, for a single packet the information wasted is:

�⌦

kX

i=0

⌦si(p)

!
� ⌦s(p) , (3.4)

where s and si result in alerts ↵ and ↵i respectively, {↵i) ↵}, and �(↵i) = �(↵). The

number of signatures which are aliased and their respective costs could be substantial.

This is an overestimation as it is the degree to which �(↵i) and �(↵) are the same that is

important. Since these are sets, a more precise expression might be formulated.

It may not be clear, but this analysis makes a fairly bold claim concerning the purpose

of an IDS. Currently an IDS does not generally concern itself with attacker intent. If

determining current and future attacker intent were the purpose of an IDS, then any alert

which maps to the same set of attacker actions as another alert would be duplicating effort.

Prediction distribution and variance: Wasted work can also occur in the mapping of

the set of predicted actions into equivalence classes. Clearly, the fewer equivalence classes

predicted, the better the resulting performance. The optimal performance occurs when we

predict only a single equivalence class with absolute certainty. If we predict a large set of

equally likely equivalence classes then we will not gain much improvement. In fact we

may have wasted work in performing predictions which were not sufficiently helpful. The

worst case is the uniform distribution in which every equivalence class is included in the set

of predictions, each with equal likelihood. Work is wasted due to too many equivalence

classes being predicted with a more or less uniform distribution. It is the ability of the

system to differentiate between equivalence classes of signatures and alerts that enables an

improvement in performance.

62

Chapter 3. Theory

3.1.2 Threat Coverage

Many past research papers have loosely referred to the coverage of an IDS to encompass

several different concepts which are often overlapping, namely: the portion of the entire

attack space which is detectable by the IDS (attack-space coverage)[1, 25, 27, 34, 45];

the portion of network, hosts, or other objects which are processed by a detection system

(sensor coverage)[6, 40, 44, 48]; and the portion of vulnerable operations or program

paths which a given signature or other detection technique can discover (vulnerability

coverage)[24, 23]. We can define a variant of attack-space coverage, threat coverage,

to mean the portion of existing threats which can be discovered by an IDS. We might

also choose to consider a threat both in terms of attacker/vulnerability and in exposure of

information by either a victim or adversary. Exposure information is particularly relevant

for anticipatory techniques (dealing with relevant characteristics of a potential victim such

as Operating System, running services, software versions, etc.). However, host exposure

information is not part and parcel to conventional IDS techniques (even though such use

was clearly articulated by Denning in her general IDS model[31]).

As in Sect. 2.1.4 we define the threat coverage, A, of an IDS as the union of the

sets of vulnerabilities A
vuln

, exploits A
exploit

, victim characteristics A
victim

, and attacker

characteristics A
attacker

which are accurately identified (i.e. A = A
vuln

[A
exploit

[A
victim

[

A
attacker

). Threat coverage (TC) can be defined in either relative or absolute terms. An

absolute measure of coverage (Eq. 3.5) simply enumerates the expected number of properly

identified events. We use expected value as not all threats in A can be detected with 100%

confidence.

TC
absolute

= |E(A)| . (3.5)

An IDS or IDS configuration for which |E(A)| is larger indicates better threat coverage

(and/or better precision over the same threats). This is only a sample set of all possible

identifications. Without knowing the true population of possible identifiable threats (A
true

)

the total number of known vulnerabilities, kv, might be estimated from existing vulnerability

63

Chapter 3. Theory

databases. The expected number of exploits per vulnerability, kx, within our sample set can

be estimated from existing exploit databases or by examining available attack tools.

TC
true

= |A
true

| ' kv ⇤ kx . (3.6)

The relative threat coverage is simply the ratio of relative coverage to the total number of

estimated threats.

TC
relative

=
TC

absolute

TC
true

=
|A|

|A
true

| . (3.7)

Such a measure provides a rudimentary estimate of the extent to which the signature-set

has absolute coverage of exploits. Threat coverage is independent of the dataset being input

into a detector, and provides a rough estimate of the quality of the detection system.

3.1.3 Packet Coverage

In common IDS parlance, communication events which produce an alert are called quali-

fying and events which do not result in alerts non-qualifying. The number of qualifying

events is often used as a metric to determine whether an IDS configuration is producing

acceptable number of output alerts. Using this metric, however, it is quite possible to have

a larger number of qualifying events than actual packets. However, what we need to be

concerned with is the number of packets which result in any information being gained

which could be used for prediction. For this, a different definition of coverage is needed.

The Snort IDS, as many others, only produces a useful output (a true positive) when

a packet matches one of a relatively small number of patterns. As a results the packet

coverage of these systems is a small fraction of the total packet data being processed,

limiting the effects that any bias could have to a small fraction of the total traffic.

The coverage ratio of the IDS is the ratio of packets which result in identification of

an item in A to packets which produce no information. For simplicity, we can restrict

our analysis to events derived from individual packets, though there are many ways in

64

Chapter 3. Theory

which IDS produce events based on packet sequences (such as Snort’s stream5 preprocessor

which allows events to be derived from a reassembled TCP stream [70]). For packets, p

in the set of all packets processed, P , and an abstract packet feature matching function

F : p ! (↵ 2 A [;) representing the operation of the IDS (mapping packets into alerts, ↵

or into null events), the packet coverage ratio Ap can be estimated as:

Ap =

���
S

p2P (F (p) 2 A)
���

|P | , (3.8)

where the numerator is the total number of packets which produce qualified events, and

denominator is the total number of packets.

For a given configuration and signature-set of the Snort IDS, Ap can be estimated by

running the IDS against a set of packet data and determining the ratio of packets which

produce IDS events. The packet data used should cover a period of high traffic volume

to preclude overestimation due to diurnal traffic patterns (e.g. low occurrence rates of

normal traffic and relatively high occurrence of qualifying events). What we want is an

underestimate of coverage. If an abnormal amount of attack traffic is already present, then

this also may produce an overestimate.

A related measure, the predictor coverage Aq estimates the ratio of qualified events

which can produce predictions at or above a desired confidence threshold t. Given a

predictor, the probability of alert ↵j given alert ↵i is P (↵j|↵i). The predictor coverage is

the ratio of events which provide sufficient predictors to total qualified events.

Aq =

���
S

p2P (F (p) = ↵j 2 AwhereP (↵j|↵i 2 A) > t)
���

���
S

p2P (F (p) 2 A)
���

. (3.9)

Ar = ApAq . (3.10)

The combined coverage ratio, Ar, represents the proportion of packets which result in

events and for which predictions would be made within an anticipatory system (i.e. meet

desired thresholds on predictor confidence measures).

65

Chapter 3. Theory

3.1.4 Signature Equivalence Classes

We can define an “equivalence class” of signatures to be a set of signatures which is relevant

for a particular subset of packet traffic. For example, a set of signatures which relate to

Microsoft-specific software and operating system components are relevant for the portion

of packet traffic which is sent and received by computers which are running the Microsoft

Windows operating system. Equivalence classes of signatures need not be disjoint. There

are many instances where multiple taxonomic categories might be useful for defining

signature equivalence classes.

Specifically the features that might be used as a basis for equivalence classes belong to

the same set of features which are identifiable by IDS systems: vulnerability characteristics

A
vuln

, exploit characteristics A
exploit

, victim characteristics A
victim

, and attacker character-

istics A
attacker

. Without describing such features exhaustively, a broad interpretation of this

set of characteristics can be considered to be exhaustive, covering all aspects of computer

processing, storage, and computer-to-computer interactions.

Current threat taxonomies such as those by Herzog et al.[47] describe only a very

high-level view of threats (representing only about 50 distinct classes in some cases).

Although remarkably deficient in detail, these taxonomies can still be drawn upon for the

definition of equivalence classes. Without defining new taxonomic relationships, these

existing taxonomies can also be expanded by broadening the definition of equivalence class

to be a tuple consisting of multiple characteristics, such as attack category and attacker

intent: ⇠ = {(↵,↵
intent

) 2 A|(↵,↵
intent

) ⇠ ⇠}. Additional features can be added in this

way to multiplicatively increase the size of the set of equivalence classes.

This potentially expands the number of available equivalence classes to several thou-

sand. The difficulty with the inclusion of intent (or other characteristics) is knowing their

association. Further, not all characteristics are reasonably associated with every type of

attack, making the threat/intent associations sparse in practice. If there are no alerts asso-

66

Chapter 3. Theory

ciated with a particular tuple, then we gain no benefits for including the additional class.

Expanding the number of equivalence classes in this way can be performed indefinitely as

new characteristics are included (such as the host’s exposure). The added burden is learning

the associations between the expanded set of features in the tuple. Though many possible

equivalence classes can be constructed, the limit in the application will be the availability

of data and time required for learning.

For some set of equivalence classes, E and a set of signatures S, k⇠ = |E| is the total

number of equivalence classes. If there is one decision tree per equivalence class and

only the maximum likelihood tree is processed, this directly determines the number of

smaller decision trees which must be considered. If our initial signature-set size consists

of all signatures, n = |S|, and all subtrees are approximately equal size, k⇠ equivalence

classes would mean that on average n/k⇠ signatures must be considered for each predicted

equivalence class (see table 3.1).

Not considering the performance of the predictor (or variations in the individual com-

puting costs of signatures), the decrease in problem size, �n, from the original, is simply:

�n = n0 � n , (3.11)

where, the new problem size is n0 = n
k⇠

and 1 k⇠ < |S|.

The problem size (average size of resulting trees) and the number of equivalence classes

are equal when k⇠ =
p
n. It is highly desirable to have the number equivalence classes

grow slowly with the number of signatures. We see from Table 3.1 that having anything but

a constant number equivalence classes results in average problem sizes which are small.

This is not surprising, but generating large numbers of useful equivalence classes is not

trivial.

An unrealistic upper bound on our improvement would take the extreme case when

the number of equivalence classes is a constant fraction of the total number of signatures,

k⇠ = n/m, where m is a constant. Maintaining a constant ratio of signatures to equivalence

67

Chapter 3. Theory

k⇠ = |E| n0 scaling (n0) scaling (k⇠)
1 n O(n) O(1)
2 n/2 O(n) O(1)
k⇠ n/k⇠ O(n) O(1)

log n n
logn

O(n
logn

) O(log n)p
n

p
n O(

p
n) O(

p
n)

n/m m O(1) O(n)
n/2 2 O(1) O(n)
n 1 O(1) O(n)

Table 3.1: Equivalence class size and problem size

classes would result in O(1) scaling performance for individual tree traversals. However,

achieving constant-time performance would currently be challenging due to the desire to

process very large signatures sets (thus requiring a proportionally large number of equiva-

lence classes). More realistically, the total number of equivalence classes will be limited and

an anticipatory approach will rely on the packet coverage of a set of signatures. In reality,

neither the sizes of equivalence classes, the costs of individual signature computations, nor

the quantity of packet traffic which is relevant to the class are uniformly distributed. So long

as the distributions can be learned, this is generally desireable. If a disproportionate portion

of packet traffic belongs to an equivalence class containing a smaller number of signatures,

then better gains can be achieved than in cases where equivalence class characteristics are

uniformly distributed. Indeed, one straightforward mechanism for decreasing IDS costs is

to make use of signature cost and alert occurrence distributions directly (see Chapt. 3.2).

3.1.5 An IDS Cost Function

Although the true cost functions for performing detection using a given IDS configuration

and computing system is unlikely to be known precisely, they can be estimated using

experimental measurements. We require this cost function in order to determine the

conditions necessary for anticipatory bias to achieve an improvement to performance.

68

Chapter 3. Theory

In particular, we can represent this problem as a function representing performance gain,

Cg, incorporating cost functions C
time

(CPU time) and C
loss

(packet loss) and parameterized

by: coverage ratios Ap and Aq; signature-set size, n = |S|; and average secondary signature-

set size k = |E|. The cost functions can be multiplicatively combined to mean CPU-time

per packet, appropriately penalizing high CPU-time or high packet loss. Note that both C
loss

and C
time

are ratios. If C
loss

is the fraction of packets which are dropped, then 1� C
loss

is

the fraction which is processed. We can use CPU-time and packet loss costs as a single

cost function:

C(n) = C
time

(n)C
loss

(n) =
C

time

(n)

1� C
loss

(n)
. (3.12)

We define gain, Cg, as the ratio of the costs between a system running without a predicted

equivalence class of events and one which utilizes an anticipatory approach. The cost

of the IDS running in a non-anticipatory mode is simply C
primary

= Cn for a primary

signature-set of size n. The cost of the secondary IDS instance for an anticipatory system

is: C
secondary

= Ar · Ck, where Ar is the proportion of events which are expected to be

solely processed by the secondary IDS instance. In a complimentary fashion, after initial

bootstrapping, the cost of the primary IDS instance would be C
bootstrap

= Cn(1� Ar) as

an (Ar) fraction of the traffic is shunted to the secondary instance. The performance gain

in terms of packets per unit CPU-time is then:

Cg(Ar, n, k) =
C

primary

C
bootstrap

+ C
secondary

� 1 =
Cn

Cn (1� Ar) + Ck · Ar

� 1 . (3.13)

Any gain larger than 0 is a performance improvement. A performance difference, �C, can

also be defined which gives an absolute measure of the improvement or degradation in

terms of packets processed per unit of CPU-time:

�C(Ar, n, k) = C
primary

� (C
bootstrap

+ C
secondary

) . (3.14)

Which can be written using the cost function C as:

�C(Ar, n, k) = Cn � (Cn (1� Ar) + Ck · Ar)

69

Chapter 3. Theory

�C(Ar, n, k) = Ar(Cn � Ck) . (3.15)

For simplicity and without loss of generality, the cost function of a system with only a

single secondary IDS instance is considered. Extending the cost function definition to

describe multiple predicted equivalence classes is straightforward.

3.2 Probabilistic Signature Activation

For high-coverage signature-sets it is necessary to minimize the number of times that

any particular signature is activated (while simultaneously maintaining coverage). This

is particularly important for non-alert signatures used for gathering attacker and victim

characteristics (such as host exposures). By definition, high-coverage signatures will occur

within a high percentage of the input packets. If a signature is being computed and fires

an alert many times per stream, it is likely to be wasting information in terms of duplicate

alerts (see Sect. 3.1.1 on page 58). Indeed, results using the Packet Wrangler prototype with

high-coverage signatures show that anticipatory gains are outweighed by the additional

cost of processing alerts which fire for a large portion of the input traffic (see Chapt. 6.2 on

page 119).

If the event associated with a signature occurs frequently, then we should check for it

infrequently. Indeed, the more frequently an event is likely to occur, the fewer computing

resources we need to assign.

The goal is to limit wasted resources in order to improve detector performance. Our

current approach is to trade some number of carefully chosen false negatives for improved

performance overall. As such we only care about detecting at least one instance of every

unique event for every tracked packet stream which actually contains the event. It is intuitive

that if such an event occurs frequently, and we only care about seeing it once for a given

time-span, then we should check for it infrequently. Detecting a larger number than this is

70

Chapter 3. Theory

wasting computing resources. In this context, the more frequently an event is likely to occur,

the fewer computing resources we need to assign. The initial intuition for this approach

is based on rudimentary probability and statistics. For a given network or dataset, we can

collect statistics for each event ↵ to learn the number of times we expect to see the event

for each stream. If we expect to see ↵, n↵ times out of the np packets in the stream, we will

still have a good chance of detecting the event while minimizing signature computing costs

by activating the associated signature, s, with probability:

P (activate(s)) � n↵
np

. (3.16)

If the signature activation probability is too large, then we waste effort in making multiple

detections of the same activity. If the signature activation probability is too small, then we

will miss events. The trade-off being made is two-fold.

Firstly, we are choosing to define a false negative as having missed all of the events ↵

in the stream. This is consistent with the suppression mechanisms of existing IDS, often

suppressing all by a single event within the stream for a given time window.

Secondly, we will incur some additional latency between when the event actually

occurs and when it is detected. If we were suppressing an event at output we would still

guarantee that we see the first of such events. Although our approach does not use detailed

distributional statistics of events over streams, a more sophisticated approach could vary

signature activation probabilities based on where in the stream an event was likely to occur,

limiting (and in some cases eliminating) the effects of increased detection latency. The goal

of controlling for and limiting detection latency is left to future studies.

3.2.1 Signature Activation Policies

It is fairly straightforward to define a set of signature-activation policies to decrease the

number of times that a signature is used. Each policy results in varying performance char-

acteristics. The policies that have been studied combine measurements of: signature cost,

71

Chapter 3. Theory

alert relevance (i.e. frequency), and system load. Each policy is able to decrease amortized

per-signature processing costs by independently activating each signature with a probability

inversely proportional to the policy parameter for the signature (i.e. cost, frequency, load, or

combinations thereof). Interestingly, these policies can achieve performance gains without

incurring additional errors when the system is overloaded and dropping packet data (often

due to CPU-contention between I/O operations and detection engine processing). The

following describe possible signature activation policies, each of which can be used in a

deterministic or non-deterministic fashion (i.e. having either a discrete value threshold or a

probability as an activation criteria respectively). Deterministic rule-chaining is the only

policy currently implemented within the standard Snort distribution.

Signature Chaining Policy

A signature chaining policy guarantees signature activation according to non-probabilistic

semantics with prior signature alerts as preconditions.

fire(sa) ! Np(activate(sb)) , (3.17)

where sa is an active signature, sb is an inactive signature with the precondition fire(sa),

and Np is the Next temporal semantics operator defined over packets (see Table 2.1 on

page 35). Whether or not a signature is activated immediately for all signatures which

have yet to be tested for the current packet depends on the design of the IDS and activation

mechanism. At least within the Snort IDS, there is no guarantee that signature activation

will occur within the processing of a single packet. Signature activation is only guaranteed

for all future packets within the same stream[79].

72

Chapter 3. Theory

Cost Policy

A cost policy chooses a signature activation probabilities which are inversely proportional

to expected signature computing costs.

P (N(activate(sa))) = max

0

@1� cost(sa)

argmax
s2S

(cost(s))
, P

min

1

A , (3.18)

where cost(s) = ⌦s(pavg) is the average cost for computing signature sa and a minimum

activation probability, P
min

, is chosen.

Relevance Policy

A relevance policy chooses signature activation probabilities which are inversely propor-

tional to expected signature firing frequencies.

P (N(activate(sa))) = max

0

@1� count(sa)

argmax
s2S

(count(s))
, P

min

1

A , (3.19)

where count(s) is the average per-session alert counts for signature s.

Load Policy

A load policy chooses signature activation probabilities which are inversely proportional to

system load.

P (N(activate(sa))) = 1� load

1 + P
min

, (3.20)

where load is a proportion of total system overhead, 0 load 1. A non-linear activa-

tion policy might use any appropriately decreasing function defined over f : [0, 1] ! [0, 1]

designed to map system loads to probabilities, such as the function shown in Fig. 3.4.

P (N(activate(sa))) = 1� P
min

� (1 + P
min

)

✓
P
min

1 + P
min

� load

◆
. (3.21)

73

Chapter 3. Theory

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

Figure 3.4: Probabilistic signature activation function
Function maps system load to activation probability.

Cost-Relevance Policy

A relevance policy chooses signature activation probabilities which are inversely propor-

tional to expected signature cost divided by expected signature firing frequency.

P (activate(sa)) = max

0

@1� costFun(sa)

argmax
s2S

(costFun(sa))
, P

min

1

A , (3.22)

where costFun(sa) = cost(sa)/count(sa). This policy is the one initially considered

within experimental configurations as we felt it would provide the most generalization

between different time windows. It also maps directly to the output of Snort’s detection

engine profiler discussed in Sect. B.2.

Combined and Multiple Measure Policy

It should be obvious that these signature activation policies can be easily combined to

make a signature’s activation dependent upon combined measures or multiple independent

measures.

74

Chapter 3. Theory

3.2.2 Probabilistic Flowbits and False Negatives

Using a probabilistic signature-activation policy when a system is easily keeping up with

packet traffic will decrease system overhead, but results in increases in error rates (see

Chapt. 6.3 on page 133). However, when even a moderate loss in packets is present, each of

the studied policies performs better than a system with the default policy, decreasing both

system overhead and error rates. The reasons for performance gains is interesting and an

analysis of signature activation policies and expected error rates provides useful insights.

In the Snort IDS the default Flowbit implementation is used for two principal purposes:

a) to track state over the extent of a TCP session; and b) to prevent high-cost signatures

from being activated needlessly. The end result both expands the capabilities of the IDS

and decreases the average cost of signatures which are “hidden” behind flowbits (assuming

an alternative “non-Flowbit” implementation was possible).

Consider two signatures, sa and sb, and their respective alerts, ↵a and ↵b (as in Fig. 3.5).

If sb checks a Flowbit set by sa when an event, ↵a is emitted, then the expected cost of

sa αa sb αb

Figure 3.5: Simple state transitions for Flowbit-based signature activation

signature sb will be lower than a hypothetical setup which did not rely on a Flowbit. For

the default Flowbit setup, the expected cost difference between hiding the signature versus

allowing it to always be active is proportional to the simple probability of event ↵a:

�C = P (↵a)⌦sb � ⌦sb = (P (↵a)� 1)⌦sb , (3.23)

where ⌦sb is the expected per-packet cost of computing the signature.

75

Chapter 3. Theory

If event ↵a is rare, then very little cost will be incurred in processing signature sb.

However, any session which activates the Flowbit will do so for the duration of the session.

As a result we may end up with many activations of sb for each session and produce many

alerts when a single activation would have been sufficient. The new signature-activation

policies allow us to optimize signature processing costs based on these new considerations.

With the proposed signature activation policies we are choosing to decrease the burden

imposed by some subset of signatures which we believe are either too costly or too frequent.

If the chosen probability for signature activation of a signature sb is P (sb) then the expected

cost difference is:

�C = (P (sb)� 1)⌦sb (3.24)

Of course, the only reason for using flowbits in this manner is to hide high-cost signatures

when system loads are causing packet loss. Otherwise, while we will surely decrease

system overhead we will also incur additional errors.

For the default policy, the expected number of false-negatives in respect to a single

signature when there are n packets and packet loss rate of Closs can be stated simply as:

FN(↵i) = P (↵i)nCloss

(S) , (3.25)

where C
loss

(S) is the cost function from Sect. 3.1.5 defined to return the ratio of packets

which are dropped by the IDS when using a specific signature-set S for a given system and

configuration. As such, nC
loss

is the total number of packets which are dropped when n

packets are processed by signature-set S. If event ↵i occurs with probability P (↵i) then

Eq. 3.25 is the expected number of dropped packets which would have resulted in event ↵i.

These expressions make a simplifying assumption that each packet is equally likely to

be dropped. There are two potential issues with this.

Firstly, if packets were being dropped from a TCP handshake, then a larger number

of false negatives would occur for the connection in question. The IDS would not be able

76

Chapter 3. Theory

to track the TCP stream and would therefore be unable to process a significant number of

potentially applicable signatures for the duration of the TCP stream. This issue is described

in Papadogiannakis et al.[71] where they present a possible solution which selectively

drops packets which are not crucial for session tracking. In our case, if a signature requires

session tracking the signature will be inactive for the affected sessions. When such crucial

packets are dropped, we may as well have dropped a series of packets from the same session.

Fortunately, we can argue that the average number of packets per session is much larger

than the number of session initiation packets. For instances were this is not true (as is the

case for some types of connections), session tracking is not as important for detection. So,

while the impact of losing crucial packets is larger, the likelihood of losing these packets is

generally quite small, particularly when datasets are large.

Secondly, datasets which represent only a small number of connections may result

in biases in which packets are dropped. In such cases, packets for the same connection

may occur bundled together in the incoming queue of the IDS. If the IDS process is

busy and its incoming queue blocks, packets will be lost. This could result in drops of

substantial portions of single connections. For larger datasets (representing many thousands

of connections per minute), packets which are currently queued are unlikely to contain such

bundles. The packets dropped, while representing a set of packets which is correlated in

time, would be unlikely to be correlated spatially across the network. Just as in the case of

losing session initiation packets, the larger the dataset (meaning the larger the number of

simultaneously active connections), the more mixed the incoming queue will be.

It is important to reiterate that we are discussing IDS which capture streams of traffic

from network gateways, routers, or hubs and as such are processing data from as many

simultaneous connections as are currently being routed across the network. For an IDS

which resides at a single (or limited number of hosts) these arguments are not valid.

77

Chapter 3. Theory

Returning to our discussion of false negatives, the expected number of false negatives

for all signatures is simply the sum over all signatures:

FN
default

=
X

↵2A

P (↵)nC
loss

(S) . (3.26)

Alternatively, the number of false negatives for either of the relevance or cost policies

differs due to a subset of signatures only being active with a chosen probability of P (si)

and thus inactive with probability 1� P (si).

The new false negative rate for the new activation policies for event ↵i is summarized

by Eq. 3.27.

FN(↵i) = nP (↵i)C
0
loss

+ nP↵i(1� P (si))(1� C 0
loss

) , (3.27)

where C 0
loss

is the new packet loss rate after signature si is removed; “nP (↵i)C 0
loss

” describes

the number of packets dropped that would have resulted in event ↵i (as in Eq. 3.25); and

the term “nP (↵i)(1� P (si))(1�C 0
loss

)” describes the number of packets processed which

contain event ↵i but for which signature si is inactive. The new packet loss rate, C 0
loss

,

estimates the packet loss when a smaller signature-set is used with probability (1� P (si))

and can be estimated as:

C 0
loss

= C
loss

(S)P (si) + C
loss

(S 0)(1� P (si)) , (3.28)

where S 0 is the set of signatures excepting the signature which was removed, S 0 = {s 2

S|s 6= si}. We will not expand C 0
loss

in our current analysis but define it here for clarity.

While this term is somewhat impractical to determine analytically due to myriad factors

related to signature complexity and muddy IDS implementation specifics, it is relatively

straightforward to determine experimentally for a given signature-set and dataset (see

Sect. 4.2.4 on page 97).

We can use Eq. 3.27 to show that under certain conditions we can decrease false

negatives for the signature being held inactive. We can calculate a differences in false

negatives as �FN = FN
new

� FN
default

. If �FN < 0 then we will have decreased false

78

Chapter 3. Theory

negatives for signature si. It is important to note that Eq. 3.27 accounts for all false negatives,

even those that are duplicate events. Since we only care about whether the false negative

rate differs between the default policy and the new policies, this is not an issue. Rewriting

Eq. 3.27 and re-using Eq. 3.25:

FN
new

(↵i) = nP (↵i)
⇥
(C 0

loss

+ (1� P (si))(1� C 0
loss

)
⇤
.

Combining terms and simplifying, we get:

FN
new

(↵i) = nP (↵i)
⇥
1� P (si) + P (si)C

0
loss

⇤
. (3.29)

We can now write a simple expression for �FN(↵i):

�FN(↵i) = nP (↵i)
⇥
1� P (si) + P (si)C

0
loss

⇤
� nP (↵i)Closs

,

which simplifies to:

�FN(↵i) = nP (↵i)
⇥
1� P (si) + P (si)C

0
loss

� C
loss

⇤
. (3.30)

If [1� P (si) + P (si)C 0
loss

� C
loss

] < 0 then we would have decreased false negatives for

signature si.

1� P (si) + P (si)C
0
loss

� C
loss

< 0 .

1� C
loss

< P (si)(1� C 0
loss

) .

P (si) >
1� C

loss

1� C 0
loss

. (3.31)

The terms 1 � C
loss

and 1 � C 0
loss

are the portion of packets processed when using

signature-sets S and our probabilistic choice between S and S 0 respectively. In other words,

if the probability of signature si being activated is greater than the ratio of packets processed

in either configuration, then we will have decreased false negatives. What this means is that

as long as we have a significant decrease in packet loss there is some signature activation

probability that will decrease the false negatives for the signature in question.

79

Chapter 3. Theory

However, if the decrease in packet loss is small, then P (si) will be close to 1 and

unknown factors may result in increased false negatives. And if we choose a signature

activation probability lower than the ratio of packet losses we will incur additional false

negatives for event ↵i. While this seems undesirable, it is likely that for some signatures

we would gladly accept additional errors for a single signature as long as we can decrease

error rates for the system as a whole.

So, for the signature which is being probabilistically activated, we can affect the number

of false negatives depending on P (si) and we can decrease total packet loss as a result of

activating the signature less frequently. It is not obvious at first glance, but this represents

only a small fraction of the potential improvement in false negatives. Because we are

decreasing the number of lost packets, every signature in the entire signature-set will be

compared against a larger portion of the incoming packets and may result in substantial

improvements in false negatives as a result. Excluding ↵i, the expected number of false

negatives for the signature-set can be stated as:

FN
new

=
X

↵2A|↵ 6=↵i

P (↵)nC 0
loss

. (3.32)

The difference in false negatives for the entire signature-set excluding si and its associated

alert ↵i becomes:

�FN =
X

↵2A|↵ 6=↵i

P (↵)nC 0
loss

�
X

↵2A|↵ 6=↵i

P (↵)nC
loss

�FN = (C 0
loss

� C
loss

)
X

↵2A|↵ 6=↵i

P (↵)n . (3.33)

The summation in Eq. 3.33 is total expected number of alerts when n packets are processed

(excluding ↵i). Clearly, the absolute decrease in FN can be substantial since we have an

effect for every potential alert that will be produced by the IDS. Essentially we are trading

possible increases in false negatives of ↵i for guaranteed decreases in false negatives for

all other events. Since it is unlikely that we care so much for ↵i in particular, this is usually

a very good trade-off. If we wanted to guarantee decreases in false negatives for all alerts,

80

Chapter 3. Theory

including ↵i, we would simply limit P (si) according to 3.31. Of course, we probably do

not mind losing some of the ↵i alerts as long as we have acceptable gains for other alerts.

An Unexpected Trade-Off

Experimentally, probabilistic signature activation also has a very non-intuitive side effect.

For a system which is still dropping packets, when there are fewer packets which actually

match signature si than expected, the approach will achieve better performance gains and

fewer false negatives. We expend fewer resources by not looking for what is not there.

We have not yet discussed signature preconditions beyond their introduction in

Chapt. 2.3.3 as they have not been particularly germane. In brief, many implementa-

tions bundled signatures into groups based on shared high-level attributes related to IP and

TCP header fields such as IP address, port numbers, TCP flags, etc. These preconditions

are very inexpensive to compute and provide a top-level decision of whether a bundle

of signature-to-packet comparisons will be computed at all. If packets do not meet the

preconditions for a bundle of signatures, then none of the signatures in the particular bundle

will be computed.

When using the relevance policy, we base our decision to remove signature si based

on the expected number of occurrences of the associated alert ↵i within the current time

window. In other words, we will not look for matches for si as diligently if we expect to

see it often. Future time windows may contain a larger or smaller number of packets which

would match si. If future time window has a larger portion of packets matching signature

si, this implies that a larger portion of packets match all of the preconditions for activating

the signature.

For the new signature activation policies, each time all of the preconditions are matched,

si will be probabilistically activated. So a larger portion of matching packets will result in a

larger number of signature-to-packet comparisons. As a result, any gains we have achieved

81

Chapter 3. Theory

in prior time windows will be diminished. The IDS is performing more work because a

larger number of packets match the preconditions of signature si.

However, since we are controlling activation of a signature that is abnormally active

and as many attacks are often short-lived, there will often be fewer matching packets in

future time windows. This will result in fewer packets matching the preconditions for the

signature and will subsequently improve any gains which were achieved. In other words, if

the attacker is not attacking and we are not expending resources attempting to detect the

attack, we will improve performance (including decreases in false negatives).

This explanation can be summarized:

1. We no longer incurr as many false negatives for the signature in question as the event

occurs less frequently.

2. Fewer packets match the preconditions required for the signature to be computed, so

we do not attempt to activate the signature as often and this results in proportional

decreases in computing costs.

3. The decrease in system overheads due to 2) results in more time available for process-

ing additional packets and the false negatives decrease for the entire signature-set.

The reason that this is missing from our expression for �FN is that it is hidden within

the loss function C
loss

, which, as written is not dependent on the number of occurrences

of ↵i. The term would be more correctly defined to include the number of events, i.e.

C
loss

(S, count(↵i)). Further, for the same number of packets we can write:

C
loss

(S 0, count(↵i)) < C
loss

(S, count(↵i)) < C
loss

(S, count(↵i) + 1) . (3.34)

Fewer numbers of alert ↵i will simply widen the gap between C
loss

(S 0) and C
loss

(S). It is

possible that this effect can be leveraged for additional performance gains in some scenarios.

However, it is likely that diminishing returns would result from happenstance decreases in

82

Chapter 3. Theory

event frequency. It seems generally desired to minimize this effect by performing online

measurements and dynamically updating signature activation probabilities to optimize

system performance when under load. This effect and its implications should be more

thoroughly explored, but this is left to future research.

3.3 Predictor Errors

The previous section described how probabilistic signature activation decreases false nega-

tive error rates under certain conditions. However, most uses of anticipatory approaches

(such as when a system is not under heavy loads) will generally result in additional er-

rors. These errors can be both false positives and false negatives. In general, anticipatory

optimizations result in false negatives due to packets being processed against subsets of

the original signature-sets. However, some types of signature chaining and anticipatory

mechanisms can also result in false positives even though the signature-set is only ever

being decreased in size.

3.3.1 Signature Chaining & Flow Tracking

Signature chaining is most often used to activate a signature which depends upon prior

signatures, as in: if fire(sa) then activate(sb).

Two signatures which have a negated relationship can result in a false positive if sa is

absent from the secondary signature or if packet forwarding to secondary IDS instances

have disabled session tracking. For example, a false positive will occur within a secondary

IDS instance if sa is not part of the secondary IDS signature-set and there is a signature

with negated chaining semantics: if not fire(sa) then activate(sb).

83

Chapter 3. Theory

If flow-tracking is disabled entirely in a secondary signature-set can also result in error

related to the direction of an established connection or the firing of alerts which relate to

closing sessions which are not known to be established. To alleviate issues in signature-

chaining caused by signature-set partitioning we must both a) keep chained signatures

together when signature-sets are partitioned; and b) redirect packets to secondary sets

which require as preconditions a particular flow state. For example, if the signatures used

for prediction in the primary signature-set, si 2 S, properly characterize flow, then we

can infer that the flow is established and in which direction for any secondary signature-

set (s0i 2 S 0). It is relatively straightforward to partition secondary signature-sets into

“to server” and “to client” sets and craft predictor rules to forward to the correct secondary

instance. However, if the event that initiated packet forwarding did not track the session

state for the connection then flow state of future packets will be unknown. Similarly, if

any of the signatures in S 0 signature-sets has flow-tracking with negated preconditions,

applying packets for connections with unknown flow state can result in false positives.

3.3.2 Systematic Errors

It is also possible to introduce systematic increases in false-negatives. This is particularly

relevant when non-probabilistic or rule-based forwarding choices are made. If an attacker

were to know the rule-based forwarding choices being made then it would be an easy target

for circumventing detection. Rule-based predictors should be used only in instances where

there is high confidence that the information being used to initiate packet forwarding is

trustworthy. Alternatively, random testing of rule-based predictor assumptions (by disabling

predictive forwarding) can help determine if an attacker is circumventing detection through

misuse of predictor choices.

For the Bayesian predictor discussed in Sect. 5.1.3 a fixed confidence threshold can

also incorrectly classify traffic due to short-term biases in traffic and sequence distributions.

84

Chapter 3. Theory

Increasing the window-size over which statistics are collected can help to minimize this

issue, but would likely result in poorer performance. The problem with fixed thresholds

and short time windows is that statistics are unlikely to be correct outside of the time

window in which they were calculated. A possible solution is to perform online learning of

attack and event distributions and of appropriate decision boundaries. Unfortunately, online

learning can also lead to to systematic errors, both unintentional and attacker-directed.

Another approach may be characterizing various event distributions and using distribution

change detection methods between sets of known distributions. This may result in less

susceptibility to attacker-directed biases and represents a problem has been studied heavily

in the statistics literature[74, 50].

3.3.3 Error Detection

Error detection is a non-trivial task for detection systems. Several interesting approaches

have been proposed and implemented by others[56], though many of these are only rele-

vant when system loads are high enough for the IDS to drop incoming packets. Similar

approaches can be taken to estimate errors for IDS event predictors. Lee et al. describe

an approach which injects traffic into the system to determine the rate at which packets

are being dropped[56]. This approach could be easily extended to inject packets which

are intended to create an alert. Missed alerts can be used as a proxy to estimate IDS

misclassification rates and to adjust predictor threshold accordingly.

If a fixed threshold is used then traffic which meets the criteria will always be forwarded

and errors cannot be detected. If a probabilistic choice is made that is based on the current

threshold, then packets which would have failed the criteria can be tagged in order to

measure whether an error would have been made had they passed the criteria.

85

Chapter 3. Theory

3.4 The Detection Game

Performance tuning of signature-sets has relied on signatures being always enabled or

never enabled and removed from the detection engine entirely. High cost signatures are the

first ones to be eliminated via this heavy-handed “tuning”. This approach will cause those

attacks which were previously identified by the removed signature(s) to be undetectable. If

an IDS administrator has a guarantee that a particular activity could never occur on their

network (because of non-routable protocol, firewall configurations, removal of obsolete

software or versions, etc), then removing signatures may be a reasonable approach. The

unexpected trade-off discussed in the last section even suggests that when we know an

event will not occur, then we should always remove the associated signature. That is, we

get a better performance gain when we remove a signature for an event which is absent

than when we remove a signature for an event which still occurs with some frequency.

In other cases, where there is some possibility of the event, removing signatures for

purposes of performance tuning seems ill-advised. Further, it should be obvious that there

are many possible trade-offs which can be leveraged to achieve better performance while

maintaining better coverage of potential threats. In particular, as the previous analysis has

shown, we can always do better than the default policy when there is any amount of packet

loss.

Another valuable approach which is entirely missed by heavy-handed IDS tuning is

one in which detection (and attack) are treated as a game in which a defender can choose

whether or not to detect and an attacker can choose whether or not to launch an attack.

The simplest type of game which we might analyze is a two player zero-sum game with

perfect information. While all such games are well known in the sense of being exhaustively

characterized, we can explore such a game to give ourselves a different intuition on how

and why we would want to make choices between detecting and not detecting.

86

Chapter 3. Theory

A

!
! !−

!−

Defender

At
ta

ck
er

D

-1
1 -1

1

0
0

1
-1

p 1-p

1-q

q

Figure 3.6: The Detection Game payoff matrix for a zero-sum game

We define a two player game between an attacker and a defender in respect to a single

type attack. The attacker’s purpose is to attack without being detected and to cause the

detector to waste resources. The attacker desires a situation in which they can cause the

largest amount of work for the defender for each attack performed (or not performed) so

that unrelated attacks can go undetected due to the defender being overburdened. The

defender’s purpose is to detect an active attack, but not to waste resources in attempting to

detect activities which are not currently occurring. The defender has limited computing

resources and desires to ensure that packets (and thus events) are not dropped due to being

overburdened. Strategies and payoffs for the simplest of such games is shown in Fig. 3.6.

In this game the adversary is penalized for attacking while being detected and rewarded

for attacking while not being detected. The defender is penalized for detecting while not

being attacked and rewarded for detecting while being attacked. The logic here is that an

adversary wants to either attack undetected or cause the defender to waste resources and

the defender wants to detect attacks and not to use resources needlessly.

By inspection, this game has no pure Nash equilibrium. There is no state in which one

of the players would not choose to change their decision and get a better payoff. Because

this is a zero-sum game, there exists a mixed Nash equilibrium which is straightforward to

compute using von Neumann’s minimax theorem. If the adversary will choose to attack

with probability p, the expected utilities for the defender are ↵ : (1)p+(�1)(1�p) = 2p�1

87

Chapter 3. Theory

and ↵̄ : (�1)p+ (0)(1� p) = �p. The adversary can minimize the maximum payoff of

the defender when 2p� 1 = �p, so p = 1

3

. Similarly, if the defender chooses to detect with

probability q, the expected utilities for the adversary are ↵ : (�1)q + (1)(1� q) = 1� 2q

and ↵̄ : (1)q + (0)(1 � q) = q. The defender can minimize the maximum payoff of the

defender when 1� 2q = q, so q = 1

3

.

To anyone familiar with basic game theory, this result is hardly surprising. However,

it suggests that we should reflect on our current strategies for performing detection. The

game described assumes very little about the differences between adversary and defender

rewards and penalties. It suggests that if we know little about the penalty for not detecting,

the cost of detection, or the rewards of the adversary (other than their sign) that we should

only enable our detector 1

3

of the time.

There are few obvious issues with this rudimentary analysis. Firstly, we have arbitrarily

set payoffs. In a real-world scenario these are unlikely to be so simple or equitable. Such

payoffs are also very difficult to know precisely, but there are some rough measures that

could be used in regards to impact, processing costs, attack difficulty, etc.

Secondly, we assume that each strategy is zero-sum. It is unlikely that any “game”

played between adversary and defenders is zero sum. Although for more complex games it

might be necessary to make this assumption for tractable analysis. The actual rewards and

penalties are clearly dependent on the type of attack, the type and purpose of the computer

system being attacked, and myriad other factors. For some attacks, the adversary could care

less whether they are detected (scans), and may not care about our processing costs because

the attack is both inexpensive to detect and inexpensive to launch. Other situations would

requires high penalties both for an adversary being detected and for a defender detecting

pointlessly (e.g. data exfiltration).

Finally, we have simplified things to deal with a single type of attack. In reality, the

adversary has many possible attacks and the defender cannot detect all of them, making

88

Chapter 3. Theory

moot any analysis of whether or not to detect. Attacks are also often coordinated and have

an affect that is mutually beneficial to the adversary.

It may be difficult to justify actual policy or IDS implementation changes based on

an analysis which makes so many gross assumptions. Nonetheless, the beauty of using a

game theoretic approach is that all of these situations can be modeled, along with situations

with many attackers, many defenders, and many different attacks. While prior research has

modeled aspects of intrusion detection in a game theoretic fashion[2, 7, 64], there is oddly

very little research which assess detection choices in the context of a game. It seems crucial

that we begin to seriously examine the potential trade-offs in detection systems. Failing

to do so will result in environment which continues to lose the battle against smart and

rational adversaries. The choice seems to be between playing the game or losing by forfeit.

89

Chapter 4

IDS Performance Characteristics

In order to determine whether the anticipatory model is applicable to improvements in the

Snort IDS, the cost functions C
time

and C
loss

, needed to be experimentally determined. In

general, the cost functions should represent conservative estimates of the actual performance

costs, underestimating C
primary

and overestimating C
secondary

. For a given signature-set, the

coverage ratio, Ap must also be learned.

It should be noted that the measurement approach obtains functional forms of the

cost functions for a particular system and IDS configuration. Many of the performance

characteristics of IDS systems are highly dependent on system and software configuration.

Even small changes in configuration or run-time options can have significant effects on

overall performance[81]. It is not our purpose to explore the entire parameter space of the

Snort IDS, but to analyze the applicability of anticipation for improving performance and

to compare performance with and without anticipatory bias. The hardware and software

used for these and other experiments is described in Appendix A.1 on page 156. Hardware

configuration, system settings, and software configurations were kept consistent between

tests except where otherwise noted.

90

Chapter 4. IDS Performance Characteristics

4.1 Generating Large Signature-Sets

An obvious issue with testing an IDS’s scaling performance in respect to signature-set size

is that there are simply not that many signatures available. Even if all of the pre-existing

and community developed signatures were included, the signature-set size would still

number under 20K signatures. An obvious solution to this (albeit one that is only useful

for testing purposes) is to generate random signatures. It is desirable that the random

signatures are statistically similar to the existing signature-set in respect to the string and

regular expression features used. For the purposes of generating a large number of random

signatures, a straightforward algorithm using non-parametric statistics was used to generate

a signature-set of approximately 800K signatures.

First, existing signature-sets were split into individual features, each feature appended

to a file by its label. These files contain as many duplicates and unique features as there are

duplicates and unique features in the actual signature-set, totaling approximately 27,000

unique features. Second, based on the number of signatures desired, each signature in an

actual Snort signature-set is used as a template which is permuted thousands of times by

replacing each feature value with a sample drawn randomly from the file for the feature

label. This was done in order to retain a similar distribution of the feature labels and total

number of features within each signature. Lastly, invalid and duplicate signatures were

removed by eliminating signatures which did not pass Snort’s signature parser. In the

resulting signature-set, each random signature has the distribution of feature values as the

global signature-set and the same set of feature labels as its parent template.

One issue with this approach is that many invalid and duplicate signatures are generated

and must be removed in order for the signature-set to be used. Of 1.2M signatures randomly

generated, only 800K were remaining after removing duplicates. This leads to the random

signatures being biased towards more complex signatures with a larger number of features.

91

Chapter 4. IDS Performance Characteristics

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25
(msg:"SMTP expn decode"
 flow:to_server,established
 content:"expn"
 nocase
 content:"decode"
 fast_pattern:only
 pcre:"/^expn\s+decode/smi"
 metadata:service smtp
 reference:arachnids,32
 reference:cve,1999-0096
 reference:nessus,10248
 classtype:attempted-recon
 sid:659
 rev:11
)

Process all signatures from default set TemplatesFeatures

Extract Sample

Figure 4.1: Random feature replacement algorithm
We can generate distributionally similar random signature-sets by randomly replacing features within existing signatures.

The average signature length in the Snort Vulnerability Research Team (VRT)1 signature-set

is 498 characters whereas the average signature length in the randomly generated signature-

set is 638 characters, a difference of about 22%. This was expected and was shown to

increase per-packet processing costs proportional to the increase in string length. This will

result in an overestimate of Snort performance cost for all signature-sets sizes. Since all

signature-set sizes incur this additional cost, the relative differences in performance will

still provide a valid estimate of potential performance gain in a hypothetical anticipatory

system.

1http://www.snort.org/vrt/ - Snort Ruleset for version 2.9.0.3 (File - Retrieved on Oct. 17, 2011)

92

http://www.snort.org/vrt/

Chapter 4. IDS Performance Characteristics

4.2 Snort IDS Performance Scaling

4.2.1 Startup Performance

One of the first issues discovered in the current version of Snort is extremely slow startup

times for large signature-set sizes. Startup performance is generally not relevant due to

small signature-set sizes and long run-times. However, it can result in experiment run-time

being dominated by startup time. As a result, experiment sizes were kept relatively small

(< 50K signatures) in respect to the signature-set available from the randomly generated

set of ⇠ 800K signatures (see Chapt. 4.1 on page 91). A functional model for startup time

was also required so that experimental measurements could be delayed until the IDS was

ready for input.

An experiment was run to determine startup time which would limit experiments. This

experiment made use of the Linux “time” program while running Snort against a small

file containing a small sample of 10 packets. The packet processing time in this case did

not have a measurable impact to the results for the sizes of signature-sets tested. 10 trials

were run at increments of 1,000 signatures for each signature-set size between 0 and 45,000

(n = 450). For the randomly generated signature-set, a 5th order polynomial provided

a best-fit (R2 = 0.9998) as shown in Fig. 4.2. A single test run of 10 trials using 100K

signatures corresponded closely to the polynomial model. As a result, the current startup

performance hinders the use of extremely large signature-sets for experiments with a large

number of signatures. The poor startup performance is likely the result of assumptions

made by Snort developers about the largest sizes of signature-sets that would ever be used.

Indeed, most performance optimizations of Snort configurations include removing as many

signatures as possible without introducing “too many” false negatives. Nonetheless, large

signature-sets can still be used, but must be split between multiple Snort instances to achieve

reasonable startup times. It is also possible that there are configuration options which may

alleviate the issue, though these are not known.

93

Chapter 4. IDS Performance Characteristics

Startup Time vs Ruleset Size

10 000 20 000 30 000 40 000
rules

20

40

60

80

100

120

140

time

Figure 4.2: Polynomial fit for the startup time of the Snort IDS
Tests with larger sized signature-sets suggests that the startup time is exponential, but the best fit with the experimental data is a

polynomial. The best-fit has units of seconds:
�0.363 + 0.0026x� 1.918⇥ 10

�8
+ x2

+ 1.652⇥ 10

�12
+ x3 � 3.109⇥ 10

�17x4.

4.2.2 Packet Coverage

The expected coverage of the Snort IDS when using a default signature-set was determined

by running the IDS against a flat file containing 117GB of Packet Capture (PCAP) data.

The data-set represents about 6 hours of traffic between the hours of 9am and 3pm from our

corporate network. One caveat of the data-set used is that although collected outside of our

corporate firewall, all HTTP and HTTP Secure (HTTPS) traffic was seen through a proxy

server. This should not significantly affected the alert output as all individual TCP sessions

can still be identified, although we did note Snort error messages regarding upper limits on

session tracking. These and other limitations will generally produce an under-estimate of

the coverage, so are not a confounding factor regarding measurements.

For coverage measurements, Snort was configured to use the entire official “VRT”

signature-set as described in Appendix A.1. All detection signatures except those marked

“DELETED” or which failed to compile were enabled in the configuration, representing

approximately 4,300 signatures. All of Snort’s built-in preprocessors which were required

for this signature-set were left enabled (i.e. stream5, ssl, rpc decode, bo, dcerpc2, ssh, smtp,

94

Chapter 4. IDS Performance Characteristics

frag3, and http inspect). Non-signature-based event generators (those with an generator

Identifier (ID) > 1) were disabled or suppressed as it is the coverage of the main signature-

based detection engine that was of interest.

Each packet or stream may produce multiple Snort alert events. To eliminate duplicates

for purposes of measuring coverage, only events with a unique tuple consisting of (proto,

sip, sport, dip, dport, timestamp) were counted. Additional events also occur when re-

assembled TCP traffic is processed by a specialized processor. This was ignored, but is not

expected to conflate event counts. Many individual packets would result in single events.

In many cases if stream-based detection were not used, no event would be detected for any

individual packet. As a result, stream-based events should result in an underestimate of Ap.

For a 117GB corporate dataset, the default Snort signature-set results in a packet

coverage of Ap = 0.04%. By our definition of coverage (Sect. 3.1.3, page 64), if every

packet were to produce at least one alert the maximum usable proportion of packets would

be 100%. The small coverage of the default signature-set represents a kind of upper bound

on any gains via anticipatory bias. This is an upper limit on the proportion of packets

which might be used to provide a bias on future detects. As most events are not useful for

prediction, the Aq term is needed which describes the ratio of events which are useful for

biasing the detector using a particular predictive engine. For some types of traffic and some

attacks, each event may result in multiple predictions, each resulting in a small performance

gain. The coverage ratio, Ar is thus an underestimate of the actual coverage (which is data

dependent).

As mentioned in Sect. 3.1.3, underestimates in coverage will result in underestimate of

performance gains. This is acceptable since we desire an estimate of the least amount of

performance gain to expect.

95

Chapter 4. IDS Performance Characteristics

0 10000 20000 30000 40000

4x109

6x109

8x109

1x1010

Rule Count

C
PU

 T
im

e
(n

s)
Signature set size vs CPU Time (n=400)

Linear fit:
y = 103634 x + 4.01621e+09
rms = 0.768 seconds
χ2 = 214.47
σ = 1.06 seconds

Figure 4.3: Linear scaling of total CPU-time with signature-set size of the Snort IDS

4.2.3 CPU-time scaling

Since we are comparing the cost of Snort instances running with various sized signature-

sets, we can gauge the computing cost by measuring the performance on a test platform

as signature-set size is increased and finding an acceptable function to model the system’s

behavior as shown in Fig. 4.3.

A linear fit results in a simple estimated cost function in terms of nanoseconds of

CPU-time:

C
time

(x) = 103634x+ 4.01621⇥ 109 . (4.1)

96

Chapter 4. IDS Performance Characteristics

It was expected that the scaling performance of the Snort IDS was linear in respect to

signature-set size as the version of Snort being assessed uses an Aho-Corasick algorithm

for string matching[33, 68]. This algorithm’s complexity is linear in the sum of the length

of patterns and string being matched, both for construction of the Deterministic Finite

Automaton (DFA) and for pattern matching[3]. For Snort, linear scaling is essentially true,

as shown in Fig. 4.3 with the glaring exceptions of packet drop rate and startup time as

described in the next section.

4.2.4 Packet Loss Scaling Performance

Unfortunately, estimating performance by simply measuring total system CPU-time is

eventually confounded by shared-resource issues when measuring performance of Snort

running with large signature-sets. Large signature-sets, while incurring only a proportional

increase in CPU-time, result in substantial packet loss on the front-end of the IDS. This

finding is the reason that packet loss is included in the cost function for the system. Without

considerations of packet loss we might only slightly overestimate performance costs for

small signature-sets but we would grossly underestimate performance costs for larger

signature-sets.

Several experiments were run to learn the packet drop rates as a function of signature-set

size. The randomly generated signature-set was used to determine a worst case scaling

rate. For these tests, the alerting and logging facilities of Snort were disabled. In this way

Snort will not block due to I/O constraints on output alerting and logging costs. This is

particularly relevant when measuring performance in respect to signature-set size as even

small sets of randomly generated signatures are likely to produce a larger number of alerts

than conventional signatures.

Figure 4.4 demonstrates that while signature-sets of size n increase the system overhead

proportionally, the larger complexity of the signature-set increases packet drop rates by up

97

Chapter 4. IDS Performance Characteristics

0 10000 20000 30000 40000

0

0.2

0.4

0.6

0.8

1

Fraction of packets dropped vs Ruleset Size

Fr
ac

tio
n

of
 p

ac
ke

ts
 d

ro
pp

ed

ruleset size

Figure 4.4: Test 18-2: Packets dropped by Snort for signature-set sizes 1K-40K

60 trials (10 per set size) were run at throughput of ⇠ 400 Mbps.

to a factor of 10. The cause for the high packet drop rate is likely that the Snort process is

starved for CPU-time due to system limitations and processor contention due to I/O IRQs,

possibly due to configuration issues such as a high new API (NAPI) budge rate as suggested

in [81]. The unfortunate side effect is that the total number and type of alerts produced is

not monotonically increasing as signature-set size increases (see Fig. 4.5). It is unknown

if the set of alerts produced in cases of high packet loss is biased in any way, though this

would be interesting to learn.

High packet-loss issues have been noted by others and various methods have been used

to limit packet loss[81]. In our case, however, as the number of signatures is increased,

contention for the CPU will eventually result in the same problem. As a result, the overall

shape of the packet loss function is unlikely to change significantly, though this has not

been thoroughly explored.

98

Chapter 4. IDS Performance Characteristics

0 10000 20000 30000 40000

0

20000

40000

60000

80000

100000

120000

Ruleset Size

Al
er

t C
ou

nt

Alert Count vs Ruleset Size

Figure 4.5: Test 18-1: Snort scaling for signature-set sizes from 1K-40K

10 trials at each of 1K through 40K signature-set sizes for a 1M packet sample on a live ethernet interface. Packets were replayed at

the maximum interface speed (⇠ 400 Mbps). The non-monotonicity is due to high packet drop rates. Coverage measurements must

therefore be based on cached PCAP data to eliminate drops from I/O blocking and CPU contention.

If we measure Snort’s packet processing rate using the built-in performance monitor we

can estimate the performance bottleneck as an exponential function. On the test system, an

acceptable functional model was found:

PacketProcessingRate 1.0392�0.008x + 0.0583 . (4.2)

As can be seen from Fig. 4.6, this fit is a gross over-estimation of experimental

measurements, but sufficient for our purposes. An over-estimation of the number of packets

successfully processed will result in an under-estimate of the effects of increasing the

number of signatures in a particular IDS instance. For the test system the packet-loss rate

is:

99

Chapter 4. IDS Performance Characteristics

Over-estimating fit
of portion of packets processed

10 000 20 000 30 000 40 000

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Over-estimating fit for packet processing rate

C
loss

(x) � 1�
�
1.0392�0.008x + 0.0583

�

C
loss

(x) � 0.9417� 1.0392�0.008x . (4.3)

Estimated Packet Processing and Drop Rates vs Ruleset Size

% Dropped

% Processed

10 000 20 000 30 000 40 000

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Packet processing rate estimate curves

100

Chapter 4. IDS Performance Characteristics

It is important to reiterate that other architectures, operating system kernels, and config-

urations will result in different scaling performance. For example, the scaling performance

on a Macbook Intel i7 running the same test resulted in only slightly differing constant terms.

Further, if multiple processors were in use by the IDS (either by splitting the signature-set

or splitting the traffic across multiple IDS instances) the scaling performance curves should

retain the same basic shape.

4.2.5 Anticipatory Gain Potential of the Snort IDS

For the experimentally derived cost functions in the previous section, we can explore

the parameter space to get an intuition on when (and why) prediction is a useful tool for

performance improvements in terms of performance gain. We can use the experimentally

derived cost functions and our anticipatory gain model to derive a set of curves which are

representative of average gains for a hypothetical anticipatory system. Deriving such curves

is straightforward so long as closed-form estimates are available for the cost functions.

Appendix D.2 gives the Mathematica script used to calculate the gain curves shown.

The packet coverage, Ap of one of Snort’s VRT signature-sets test is only a fraction of

a percent. For example (ignoring thresholding issues, only considering detection signatures,

and ignoring IPv6 traffic), a 117GB sample of corporate traffic generated 70,000 alerts

from the approximately 186 million packet events, making Ap ⇠= 0.038%. If this number

seems low, note that only the detection engine is producing events. All other preprocessors

are disabled or suppressed. A current prototype predictive system has an overhead cost of

20% (roughly estimated from experiments). This system’s coverage is so low that even a

k = 1 value and a perfect predictor for all detected events (i.e. Aq = 1) would be far from

covering overhead costs, gaining only 0.3% in CPU-time per packet costs. It is clear that

much higher coverage is necessary for appreciable performance gains.

101

Chapter 4. IDS Performance Characteristics

0 1000 2000 3000 4000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,100,200<%, n=4320

0 1000 2000 3000 4000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,10,20,...,100<%, n=4320

0 1000 2000 3000 4000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,100,200<%, n=4320

Ar

0 1000 2000 3000 4000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,100,200<%, n=4320Constant Gain Curves (n=4320)
Ar(k) for G in {1,10,20,…,100,200}%

G=
1%

G=
10
%

G=
20
%G=

30
%

G=1
00%

G=2
00%

k
Figure 4.8: Curves of constant gain for signature-set size of n = 4320

Family of curves was derived by solving the gain function for the coverage ratio, Ar , in terms of the size, k, of a single secondary

signature-set.

If we turn the problem around, for the default signature-set, with k = 50 (reasonable

given the power-law distribution of event types), a net performance gain above a 20%

overhead requires Ar � 21.7%. In order for anticipatory methods to be applicable for

performance improvement of the existing Snort IDS, predictor coverage (and thus packet

coverage) would still need to be dramatically increased. Indeed, tests where a dataset and

signature-set are artificially biased to have a high coverage of incoming data demonstrate

the potential of a prototype anticipatory system (see Chapt. 6.2 on page 119).

It is important to note that while increasing coverage does not significantly increase

basic (non-anticipatory) detection cost, it can significantly increase I/O costs. The best

102

Chapter 4. IDS Performance Characteristics

0 20000 40000 60000 80000 100000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,10,20,...,100<%, n=100,000

0 20000 40000 60000 80000 100000
k

0.2

0.4

0.6

0.8

1.0
Ar

ArHkL for G in 81,100,200,...,1000<%, n=100,000Constant Gain Curves (n=100,000)
Ar(k) for G in {1,10,20,…,100,200,…,1000}%

k

Ar

G=
1%

G=
10
%

G=
20
%

G=
30
%

G=
10
0%

G=
10
00
%

G=
20
0%

Figure 4.9: Curves of constant gain for signature-set size of n = 100000

Family of curves was derived by solving the gain function for the coverage ratio, Ar , in terms of the size, k, of a single secondary

signature-set.

performance gains can be achieved when a small number of additional signatures cover

a large portion of the traffic. In these cases the total number of output events needs to be

optimized to prevent wasted work (see Chapt. 3.1.1 on page 58). For purposes of a simple

anticipatory gain analysis we can temporarily ignore issues with I/O costs of high-coverage

signature-sets and assume that these can be alleviated using clever signature activation

policies (such as those described in Chapt.3.2 on page 70). Figures 4.8 and 4.9 demonstrate

performance scaling in respect to IDS coverage, showing constant gain curves in terms

of the secondary signature-set size, k, and the predictor coverage ratio, Ar. For large

signature-sets, the number of anticipatory signatures needs to be a small fraction of the

total signature-set size for appreciable gains in performance. Interestingly, if the number of

103

Chapter 4. IDS Performance Characteristics

anticipatory signatures is small the performance gain increases non-linearly as coverage

is increased. While this is partially an artifact of the analysis (assumes 1 � Ap packets

are wholly processed by the smaller IDS instance(s)), it is clear that there are acceptable

trade-offs to be made and significant performance gains to be achieved.

104

Chapter 5

Prototypes

5.1 Packet Wrangler

The Packet Wrangler prototype was designed to perform all prediction and packet forward-

ing external to the IDS. This was intended to allow swapping of the IDS and the predictor.

It is possible to use Packet Wrangler, without significant modification on fundamentally

different IDS engines (e.g. BroIDS, Snort, etc.). The approach is summarized in Figures 5.1.

The background of approach is discussed in Chapt 2 on page 56.

In the prototype, each Snort instance is attached to and sniffing packets from a

TUN/TAP virtual device rather than a physical interface.1 The prototype uses the open-

source “PF RING” (packet-filter ring) kernel module developed by the Luca Deri of the

Network Top (NTOP) group.2 This kernel module was experimental when this research

began, but is being considered for inclusion within mainline kernel distributions. In general,

it provides dynamic packet filtering and forwarding mechanisms with as few as possible

1A virtual device approach was chosen for simplicity of implementation although other methods were possible.
2http://http://www.ntop.org - NTOP Homepage (PF RING Source Code - Retrieved on Jan. 17, 2012)

105

http://http://www.ntop.org

Chapter 5. Prototypes

UserlandKernel

Packet
Wrangler

packets

snort 0

filter 1 snort 1

filter 0

filter 2 snort 2

filter 3 snort 3

filter 4 snort 4

alerts

. . .

tap 0

tap 1

tap 2

tap 3

tap 4

PF_RINGNIC

Predictorfilter/forwarding rules

forwarder

.

predictions

Figure 5.1: Predictive IDS architecture showing data flow

The data flow describes the interaction of software components when processing packets, alerts, and predictions.

memory copies[32]. This, in essence allows each Snort instance to read independently from

the same kernel ring-buffer with minimal duplication of data.

The prototype communicates internally via a combination of Unix Sockets (snort socket

server), Inter-process Communication (IPC) Message Queues (forwarder), standard I/O

and Application Programming Interface (API) calls (Packet Wrangler), and direct device

reads (Snort). Additional, Packet Wrangler listens on a Unix Domain Socket for command

messages for monitoring and changing internal state. All software except for Snort itself

are custom components and programs.

5.1.1 Startup

The system is started using a set of shell scripts which results in the following sequence:

1. Create and set device options for virtual devices, on per equivalence class of signatures.

106

Chapter 5. Prototypes

2. Start Snort instances snort0 through snortN (s0...sN), on per virtual device, each configured

with a different signature set.

Input: devices tap0 through tapN

Output: Snort Unix Socket

3. Start the Unix Socket server for event/alert processing.

Input: Snort Unix Socket

Output: stdout1

4. Start the Packet Wrangler program.

Input: stdout1

Output: IPC Message Queue 1

5. Start the PF RING “Forwarder”.

Input: IPC Message Queue 1

Output: pfring filter states via API calls

The system initially starts with all packets being seen only by Snort instance s0, which

in most experiments was configured with a large default signature-set. Snort is configured

to send all alert events to a Unix Socket. When there are multiple instances the alerts

read from the socket are interleaved. Each event ID is tagged by the Snort instance. The

Snort Socket Server reads events and forwards them via standard output to the Packet

wrangler program. Packet Wrangler processes each event seen on its standard input, making

predictions, and sending messages to the Forwarder to update the PF RING forwarding

rules. Each forwarding rule added to PF RING represents a single connection and new

virtual device destination. Until the rule is removed, all future packets for the connection

are forwarded to the virtual device specified by the forwarding rule. It is important to

reiterate that packets are read only once.

107

Chapter 5. Prototypes

Threshold
Met?

NO

YES

Already
Expired?

YES

NO

YES

read
event

call
predictor

Start

update
expiry

remove
rule

Already
Active?

add
rule NO

Figure 5.2: Flow diagram for the Packet Wrangler program

5.1.2 Program Logic

Packet Wrangler has a fairly simple internal logic. This is summarized by the flow diagram

in Fig. 5.2. Upon receiving an input alert event, it first determines whether a prediction can

be made. If so, it first checks whether there a previous prediction is still active. If so, it

updates the expiry time for the old prediction. If not, it checks whether the prediction meets

configured confidence thresholds. If the confidence thresholds are met and the expiry time

has not already passed, then a message is sent via IPC to the Forwarder. The Forwarder

reads each IPC message and asserts a new packet forwarding rule with the specified

connection tuple. The Forwarder reads the message queue in a blocking mode to ensure

that messages are read as soon as they arrive. Rule expiry is performed opportunistically on

every loop by checking a priority queue and sending “remove” messages to the Forwarder.

108

Chapter 5. Prototypes

5.1.3 Predictors

Any anticipatory approach must address two primary questions: a) which correlations can

be learned and leveraged; and b) what risks are acceptable in respect to additional detector

errors. While there is no right way of predicting future events in all cases, there are several

candidates which have been explored, primarily: rule-based and Naive Bayes predictors.

Although these techniques have been applied independently it should be clear that multiple

methods can be combined.

Rule-Based

A rule-based predictor applies formal logic to predicting future outcomes. In the simplest

case, an If-Then rule is constructed for which the premise is some state of a network

connection or event produced by the IDS and consequent is a likely future state or event.

Rules can be probabilistic, with assigned confidence measures being used in a Maximum-

Likelihood manner or in a non-deterministic manner. Chaining of signatures may also be

used to propose future states based on complex sets of priors.

Both rule-based and Bayesian predictors are generally easy to analyze. However, rule-

based predictors require expert knowledge on what predictions can be made and confidence

estimates either imposed arbitrarily or learned from experimental data. Provided expert

knowledge is available, rule-based predictors are also the most trivial to implement. Trivial

If-Then rules may be constructed by either applying expert-level domain knowledge or

deriving rules from observed correlations. More complex rules can also be constructed, but

require deeper insight into network and attacker activities.

A rule-based predictor implemented as a stochastic predictor is essentially just a

Bayesian predictor with a fixed set of hand-picked priors. One issue with this approach is

109

Chapter 5. Prototypes

that signature-based predictors are not readily amenable to online-learning beyond learning

simple confidence measures.

For the Packet Wrangler prototype, a set of new IDS signatures were constructed to both

expand packet coverage and to implement a rule-based predictor. The specific signatures

used are given in App. B.3 on page 170. If an event is seen by Packet Wrangler which meets

the preconditions for one or more predictor rule, the rule is applied and new forwarding

rules are added to the Forwarder.

Naive Bayes

A Naive Bayes approach is simple to construct, but requires a large amount of representative

training data. Naive Bayes also provides a simple and computationally inexpensive mecha-

nism for learning and prediction. One of the issues with the Packet Wrangler approach is

that prediction must be made very quickly. Any delay and the value of a prediction may

disappear. Most predictable event sequences occur within the first few seconds after the

initial event. As such, a fast predictor was needed. The current approach is limited by

dataset size (resulting in generalization issues), distribution assumptions, non-stationarity

issues, and issues with learning window-size.

The current Bayesian approach used within Packet Wrangler prototype uses offline

learning. After learning sequence statistics, the predictor represents the probabilities of all

event sequences for the training set. Although spatial correlations between connections

could be learned, the approach has not been applied due to the computing expense (n2

comparisons for n connections each time window).

The basic operation of Packet Wrangler is identical with either the Bayesian or the

Rule-Based predictor.

110

Chapter 5. Prototypes

5.1.4 Discussion

The intent of the prototype is to treat each each network connection distinctly in terms of

applicable signature-sets. When possible, we want to forward all packets for individual

connections to IDS instances with a smaller signature-set.

Clearly, the prototype will incur additional overhead costs. When there are many events

output from the IDS, this cost can be substantial. The approach also incurs a nominal

increase in memory requirements. Each secondary IDS instance duplicates the overhead

and a portion of the decision procedure of the primary (unbiased) IDS instance.

Costs notwithstanding, with a sufficiently large signature-set and sufficiently compact

secondary signatures sets, the Packet Wrangler approach is capable of improving perfor-

mance in terms of overhead costs. As shown in Chapt. 6, the decrease in overhead comes at

the cost of incurring additional errors.

An external anticipatory model as exemplified by the Packet Wrangler prototype may

be useful for a number of reasons:

• The approach models anticipation using any choice of predictor.

• Alternate connection tuples can be used such as an IP 3-tuple (source IP, destination

IP, protocol).

• Predictions can be dynamically calculated or learned based on current traffic.

• Predictions can be made which concern distributions of events for various subsets of

computing machines, traffic, software, etc.

• Multiple IDS implementations can be used within secondary instances which differ

in abilities and specialization (e.g. an HTTP-only IDS).

111

Chapter 5. Prototypes

Nonetheless, there are a number of valid criticisms of the approach. First and foremost is

the complexity of managing traffic flows external to an IDS. Many IDS have internal traffic

management and tracking mechanisms. Second, the total number of signatures available

and the threat coverage of existing signature-sets is quite small. As discussed in section

4.2.2 the average coverage of a recent default Snort signature-set is a fraction of a percent.

As such, the model is limited without careful addition of high-coverage signatures.

Flow Tracking

For someone familiar with the design of the Snort IDS, one obvious issue with the approach

is loss of session tracking information within the secondary instances. When packets are

redirected to a secondary IDS instance, in almost all cases the initial three-way handshake

will have never been seen by the secondary instance. This completely disables the flow

tracking abilities for signatures within a secondary IDS instance. Unfortunately, most

signatures rely on the state of a TCP stream. Within the current prototype, any signature

within a secondary IDS will not know whether the packets received belong to an established

connection.

While this is problematic, it can be partially dealt with by using paired sets of secondary

IDS instances. For each possible tracked session state we partition the secondary signature-

set (for Snort this is either “to server/from client” or “to client/from server”). We then

remove the flow tracking from all secondary signature-sets. Since each equivalence-class

detection signature indicates whether a connection is established and the server-to-client

direction we can infer the class to which future packets belong and forward them appropri-

ately for the duration of the TCP session. The only caveat here is that occasionally negative

conditional dependencies occur within signature options. This can result in additional

false-positives when stream state is unknown.

112

Chapter 5. Prototypes

Another possible criticism is that Snort’s flow-tracking mechanisms (i.e. “Flowbits”)

already provide a straight-forward method of hiding complex signatures and enabling them

only after some information is known about the connection. In other words, a signature-set

optimization of TCP and User Datagram Protocol (UDP) flows (defined by a connection 5-

tuple) is already implemented and utilized within the Snort IDS. A superior implementation

for strict signature-set optimization would simply use the Flowbits and add new signatures

for protocol and predictive feature identification. Indeed, this is essentially what is done

within current Snort signature-sets for Secure Sockets Layer (SSL), HTTP, and other easily

identified application protocols. One limitation of the built-in Flowbits approach is that

the signature-chaining is fixed for the lifetime of the signature-set. Further, The Flowbits

mechanism also precludes forwarding packets to an external IDS, desireable in our case as

we would like to test systems which implement various IDS with fundamentally different

capabilities.

5.2 Probabilistic Flowbits

As has been mentioned in previous chapters, the signature-chaining mechanism of Snort is

entirely non-probabilistic. As shown in Chapt. 3.2, this results in higher error rates than a

system which utilized probabilistic signature chaining. Probabilistic flow tracking allows

us to achieve better trade-offs between detection errors and IDS coverage.

A straightforward method for implementing the probabilistic signature activation meth-

ods described in Chapt. 3.2 combines flow-tracking and signature-chaining to activate a

subset of signatures according to a pre-configured set of probabilities. The end result is a

per-flow biased sampling of high-cost and high-occurrence signatures with a fixed threshold.

Future versions could easily use online learning and an adaptive threshold based on system

load and packet loss. This follows prior work on adaptive IDS reconfiguration, but differs

in that signatures are individually optimized on a per-flow basis. Prior work on adaptive

113

Chapter 5. Prototypes

reconfiguration of IDS has generally focused on heavy-handed tuning in which signatures

are entirely removed from the signature-set[35, 92].

We can justifiably call the prototype “Probabilistic Flowbits” as it directly extends the

“Flowbits” signature chaining mechanism of the Snort IDS. The modified Flowbit module

allows both setting and checking of Flowbits with a probability which is specified within

“Flowbit” option of a Snort signature. To keep the modifications to the existing source

code minimal our current implementation uses a fixed set of discrete probabilities which

can be selected by using newly added Flowbit operations. For example, to set a Flowbit

named “bit1234” with probability 0.1 we would use the Flowbit operation “isset010”. The

signature option within a Snort signature would be written as:

Flowbit:isset010,bit1234;

Similarly, using the operation “set010” would set the specified Flowbit with probability

0.1.

Probabilistic Flowbits have been implemented differently than what might be obvious

from the standard Flowbit mechanism. In both the standard mechanism and the modified

implementation, when the “set” operation is used, the Flowbit will eventually be set for the

remainder of the TCP stream. However, the “isset” operation actually ignores the internally

stored Flowbit. This operation simply returns true with the chosen probability irrespective

of how many times the bit is checked or whether an actual bit-check would have returned

true. This not only allows us to control signature activations by applying the standard

signature chaining mechanism probabilistically (e.g. ↵
1

activates ↵
2

with probability

P (↵
1

! ↵
2

)), but also allows us to probabilistically activate signatures independently of

any other signature firing an event.

Due to the simplicity of the implementation, minimal modifications were necessary to

the existing source code of the open-source Snort IDS. This minimally modified system

was sufficient to test the potential of probabilistic signature activation policies. A more

114

Chapter 5. Prototypes

sophisticated prototype is currently being constructed which uses online learning of alert

statistics and dynamic thresholds. A discussion on potential extension to our prototype is

discussed in the conclusions of this dissertation.

The modified Snort binary results in a small increase in signature calculation costs for

those signatures that use the new keywords. The additional cost is due to larger numeric

comparisons. Rather than single bit tests as are performed for standard Flowbit tests,

numeric comparisons are performed between integer sizes. These have a worst-case cost

increase of a small constant factor related to the integer precision used for comparisons.

Nonetheless, this additional cost is not incurred for all signatures (only those that are being

probabilistically activated). The gain achieved by removing signature computation costs

generally outweighs the small additional overhead.

In a analogical way, the signature-activation policies are loosely similar to habituation

(relevance policy) and desensitization (cost policy) within living organisms. In our analogy,

each packet is akin to an input stimuli, each signature and its associated computing costs is

akin to some perceived effect on the organism, and an alert is akin to a precept.

In the relevance-policy, when a signature fires frequently it is enabled rarely, noisy alerts

being easy to spot and multiple detections on the same flow being somewhat superflous.

If the probabilities are correct for the input data, we have ignored input stimuli but not

decreased false negatives. For our biological metaphor, a flood of identical input stimuli

results in ignoring a large number of them (diminished response to a stimuli). If the number

of such stimuli were to decrease substantially we would expect to incurr additional false

negatives.

For the cost-policy, we are addressing the fact that painfully expensive signatures can

account for a large portion of the overall computing cost. The IDS is sensitive to these

signatures being active for a significant portion of the input data. By enabling the signatures

with probability inversely proportional to their cost, we incurr less of a penalty in false

115

Chapter 5. Prototypes

negatives by making resources available for less expensive signatures. The system becomes

less sensitive to the high cost signatures as their activation probabilities is decreased. In an

organism, if an input stimuli cause some perceived negative effect, desensitization would

decreases the negative effect of each perceived stimuli.

116

Chapter 6

Experiments

6.1 Methods

Both the hardware and software environments were kept relatively stable throughout most

of the experimental configurations and various implementations. For detailed information

about the hardware and software used, see App. A.1 on page 156.

To control for potential confounding factors several steps were taken. Software versions

and signature-sets were kept consistent for each series of experiments. Problematic software

services were disabled for both machines during experimentation (e.g. indexing services,

backup services, etc). All experiments were also tested in both Exp-Control and Control-

Exp sequence to ensure that experiment order had no effect (e.g. residual processes, memory

leaks, etc).

For system measurements, the open-source “SystemTap” monitoring software was used

for all process monitoring on the test system.[36] A customized SystemTap script was used

to track cumulative CPU-time for all processes on the system with a sampling period of 10

seconds. This script is simply a modified version of the “schedtimes.stp” available with

117

Chapter 6. Experiments

the SystemTap software modified to periodically output cumulative statistics1. Process

monitoring was performed for the duration of the experiment with 60 seconds allowed for

startup and process completion, prior to and post transmission of network data respectively.

Within experiments both the control and experimental setups use the same definitions

for false negative and false positive errors. Although both the absolute and normalized error

rates were measured, the normalized error rates are reported. An event is considered a false

negative if we do not detect at least one of each event which is present in each stream. An

event is considered a false positive if it should not have been detected but but any number

of detections occurred.

Ground-truth event data was generated by running the IDS directly against a packet

capture file with the configured signature-set (with no probabilistic activations or antici-

pation mechanism). As such, ground-truth event and profiling results represent the IDS

running in an offline mode where it reads directly from a flat-file containing the same data

which is sent over a network connection. The offline mode of the IDS guarantees that each

packet will be processed by the IDS. However some characteristics of how traffic is sent

and received results in some events which are not detected in the ground-truth configuration

which are detected in control configurations (.e.g dropping of a portion of corrupt packets

when transmitted, lack of packet loss at network interfaces or in-kernel, etc.).

Error rates for both control and experimental setups were measured relative to the

file-based ground-truth and to each other. Increases in false positives are seen due to a

combination of dropped packets and negative conditional dependencies between signatures

as discussed in Sect. 2.4 on page 37

The datasets used within experiments are described in detail in App. A.2 on page 158.

In brief, most experiments were run from samples taken from a 117GB file containing

captured packet data from a corporate network. The sole caveat of the dataset (relevant for

1http://sourceware.org/systemtap/examples/process/schedtimes.stp - SystemTap SchedTimes.stp
(Script - Retrieved Aug 12, 2012)

118

http://sourceware.org/systemtap/examples/process/schedtimes.stp

Chapter 6. Experiments

some tests), is that having been captured from outside of a firewall and proxy server, all

port 80 traffic is tunneled through the proxy making it more difficult to discern individual

HTTP connections. This makes some experiments more difficult to perform, but is not a

confounding factor for the results given. For several tests the dataset was partitioned into

smaller segments for easier processing and for testing against adjacent time windows. The

entire dataset represents approximately 6 hours and as such precludes exploration of any

diurnal effects.

6.2 Packet Wrangler

The Packet Wrangler prototype and experiments run the IDS as an end-to-end system

across a small test network. The control configurations run a single Snort instance (labelled

the “s0” instance) consisting of all signatures for the test configuration. Experimental

configurations consist of an s0 instance as well as a collection of additional Snort instances

(s1, ..., sN), each independently processing independent and distinct sets of forwarded

packets using subsets of the available signature-sets (each representing an equivalence class

of signatures).

For each experimental run, packets were initially directed to the s0 instance which was

configured with the entire default signature-set. When an event was seen at the output of the

IDS it was looked up to determine a set of maximum likelihood sequences. If a confidence

threshold was met, then the packets for the connection tuple of the alert were then directed

to the IDS instances configured for the alert’s equivalence class (instances s1...sN).

The original concept was that alert predictors would be clustered to identify various

equivalence classes of events. However, a series of experiments were first run to determine

the maximum possible performance gains using the existing signature-set without modifi-

119

Chapter 6. Experiments

cation (ignoring error rates). Although some work was done on clustering methods, this

became secondary to demonstrating performance characteristics.

The initial goal was to determine whether sufficient data could be forwarded to suf-

ficiently small secondary signature-sets to get a decrease in total system overhead. For

each test the system was configured with a standard signature-set and several pre-defined

signature-sets, one per equivalence class. A new Snort instance was configured for each

additional equivalence class.

In most tests, a “connection” was defined as the 5-tuple over the IP address pair, port

pair, and protocol. In later tests, other connection tuples were assessed (such as the 3-

tuple of IP address pair and protocol). Unfortunatley, some difficulties arose in the packet

forwarding kernel module (PF RING) being used. In particular, the full 5-tuple uses hash-

based filtering and forwarding whereas any other set of features uses a wild-card filtering

approach. Wild-card filtering only performed well when there were a small number of rules.

This issue is probably relatively easy to address by modifying the PF RING kernel module.

Unfortunatley, offline learning using 3-tuple connections resulted in predictors that still

lacked the requisite coverage for substantial performance gains for existing signature sets.

A listing of the Snort configuration options used for the experiments are in App. B

on page 164. In brief, any preprocessor which was necessary for a detection signature

(generator ID 1) was enabled with default options. This included “stream5”, “http inspect”,

and several others. Dynamic preprocessors and binary signatures were disabled. For a full

listing of Snort command-line and configuration options see the Appendix.

6.2.1 Naive Bayes Predictor

The first experiments used a Naive Bayes predictor trained on event sequence statistics

gathered from ground-truth data and a standard Snort signature-set. The predictor in each

test was a stochastic matrix representing the probabilities of alert sequences which were

120

Chapter 6. Experiments

actually present in the test data (see App. A.2.1 on page 160 for an example stochastic

matrix based on the DARPA 1998 dataset). A fixed threshold was used for each experiment

along with a fixed timeout, allowing packets to be re-directed back to the primary Snort s0

instance after the timeout. Although larger secondary signature-sets were used, only results

for a “Top 50” configuration are shown in which the signatures for the highest occurring

alerts were used.

4500 50 100 150 200 250 300 350 400

1.1 × 107

0

1 × 106

2 × 106

3 × 106

4 × 106

5 × 106

6 × 106

7 × 106

8 × 106

9 × 106

1 × 107

Time (seconds)

C
PU

-t
im

e
(m

ic
ro

se
co

nd
s)

Experimental

Control

Figure 6.1: Test 5: Packet Wrangler forwarding using the Top 50 event sequences

The time offset seen in the chart is due to a mistake made in scripting the start times for the experiment. This is inconsequential as it is

the overhead times which we are interested in. The total duration of the experiment is dependent on the rate at which packets are

transmitted over the network and is the same in both configurations.

Figure 6.1 is representative of most of the tests performed using the Naive Bayes

predictor and any number of different configurations. In Test 5 a 17GB subset of a corporate

packet dataset was used. Out of 85 different unique events the top 50 events accounted for

92% of events produced by the IDS. Obviously, when grouped into the same equivalence

class these events also showed excellent correlation with one another. If we somehow had

knowledge of which events would account for most of the incoming data, then we could

forward these events to a smaller s1 instance containing only the 50 signatures for the

equivalence class (instead of the 4320 signatures present in the s0 instance for this test).

However, the experimental configuration generally performed worse that the control. The

performance difference was caused by a combination of nearly identical primary s0 IDS

121

Chapter 6. Experiments

costs between the experimental and control configurations and the added predictor costs

associated with processing and prediction of events.

To confirm that the negative result was not simply due to a biased dataset, a larger test

was run using the entire 100GB dataset. In these tests the dataset was streamed continuously

and the Packet Wrangler program was remotely switched between control and experimental

modes. For all of these tests run, there was either no significant difference or a decrease in

performance in the experimental mode (Tests 7 & 8 [not shown]). The lack of performance

gains even though a much smaller signature-set was being used needed explored. This led

to the first portion of the assessment of Snort’s performance scaling in respect to signature-

set size as described in Chapt. 4 on page 90. It also led to a more thorough analysis of

performance gains in respect to equivalence class sizes as shown in Sect. 4.2.5 on page 101

One potential issue with the configuration in early tests was that it was focused solely

on decreasing system overhead. Therefore the incoming data rates were performed at the

maximum speed of the outgoing network interface (⇠400Mbps). While this was identical

for both the control and experimental configurations, high throughput would have minimized

any gains which were measurable since the system would potentially be overloaded at all

times and error rates were not yet being measured. In addition to identifying potential

system load issues, the critical issue with the use of existing signature-sets was learned to

be packet coverage.

If the top 50 events, when predicted, do not account for a significant portion of the input

data, then few packets will be forwarded and no gains can be achieved. Since the stochastic

matrix mostly tends to predict that the same event will occur multiple times in sequence,

we will tend to forward packets when we see such an event. For the corporate dataset being

used, the top 50 events accounted for the largest portion of total events, but only 0.012% of

packet input. If the average number of packets in sessions containing these events were

known, we might estimate the total packets forwarded, but with such a low coverage, this

seemed pointless. Clearly, unless the packet coverage is significantly high, no gains are

122

Chapter 6. Experiments

possible. Interestingly, the training set has a packet coverage of around 20%, but only 4% is

associated with the top 50 equivalence class calculated in the same way as for the corporate

dataset.

The primary result in the first dozen experiments was simply that not enough information

was being learned from the incoming data. While each packet was running the gamut of the

detection engine, very few were producing any information. Even in the case of the dataset,

predictable events accounted for only 4% of the incoming packet data, which was generally

not enough to pay the costs of additional overhead of an external predictive optimization

approach. During experimentation, the runtime scripts, Packet Wrangler software, and

packet forwarding module were all improved after new issues were discovered in respect to

edge cases and bugs in various modules (and those of product maintainers (Tests 9-14 [not

shown]).

Test 15 was able to show a performance improvement for the dataset with the Top 50

configuration by reducing the data rate to 20Kpps (⇠29Mbps). The performance gain for

the DARPA dataset in the Top 50 configuration is shown in Figure 6.2. While this results

suggests that the basic approach can gainfully shunt load to smaller IDS instances, the

gains are only moderate and are limited to the DARPA dataset, which is not in any way

representative of real networks.

Although the result is limited, what is particularly interesting is the portion of packets

which are actually shunted to the secondary instance. While at first glance one might assume

that a 13% gain indicates that some substantial portion of the 20% of event-associated traffic

was shunted, this is not the case. Recall that at most 4% of the dataset can be gainfully

predicted in the Top 50 configuration. For Test 15, control s0 processed 13,576,440 packets

and the experimental s0 processed 13,252,939, meaning that in the experimental only

2.4% of packets were forwarded. This means that 2.4% of the packet data accounted for

significantly more than 13% of the costs in s0. The 13% gain is the result of differences in

cost of processing the forwarded packets.

123

Chapter 6. Experiments

 0 100 200 300 400 500 600 700 800 900

3 × 107

0

5 × 106

1 × 107

1.5 × 107

2 × 107

2.5 × 107

Time (seconds)

Sy
st

em
 C

PU
-T

im
e

(m
ic

ro
se

co
nd

s)

Experimental

Control

Mean: 11,383,217

Mean: 9,878,926

13.2%

Figure 6.2: Test 15: Packet Wrangler Top 50 Configuration
Test uses the 1998 Dataset at 20Kpps.

It is important to reiterate that error rates were not being considered for these tests.

Unless significant decreases in system overhead were achieved, looking at error rates did

not seem relevant. So, while the total system overhead due to the dataset can be decreased,

this is at some additional cost in false negatives. Roughly, however, the increase in error

rates should not be much larger than the portion of packets forwarded to the secondary

instance, although it is clear from later experiments that additional errors due to session

tracking issues will occur with any type of mid-stream packet forwarding.

The key insight learned here is that nothing in respect to packet data or signature costs

can be represented by a uniform distribution. Packet sizes can vary widely between different

types of activities. Although loose bounds on performance characteristics can be estimated

(see Chapt. 4 on page 90), accurate estimates are difficult to pin down. Some detectable

activities will have a higher detection cost because they are associated with larger packet

sizes. Packets sizes associated with various detected events may also vary over time. The

124

Chapter 6. Experiments

distribution of packet characteristics will vary over time, sometimes greatly over small time

windows, but also due to diurnal effects.

Many of these effects can be easily observed using any amount of captured packet

traffic. Additionally, although not part of this first set of experiments, signatures may also

have widely varying costs. These particular aspects of detection are leveraged in later

experiments, particularly within the Probabilistic Flowbits approach. It becomes clear in

later work that potential performance gains are due to non-uniform distributions. Possible

future work on optimizations associated with differing packet sizes and signature costs are

discussed in more detail in the final chapter on page 144.

6.2.2 Rule-Based

Within this second series of experiments, several different approaches were used, including

artificially biasing the dataset and predictor so that we might increase the apparent coverage

of a signature-set. These tests used the same approach and experimental methods as the

previous set, but added new signatures to the IDS in order to increase packet coverage.

Two different basic configurations were considered: a) splitting HTTP traffic to a single

secondary instance; and b) splitting several different streams to multiple secondary instances.

The signatures which were crafted were simplistic in nature, generally identifying one of

several different types of traffic or activity on the network based on expected keywords.

Not all of the custom signatures were useful for rule-based prediction but for completeness

are included in App. B.3.

HTTP Traffic Split

In order to experiment with high-coverage signature-sets a set of signatures was constructed

to detect HTTP request methods GET, POST, HEAD, HTTP responses, and URIs embedded

125

Chapter 6. Experiments

within the first 100 characters of the TCP segment. This duplicates work already done by

the “http inspect” preprocessor of Snort, but was efficacious in showing how high-coverage

signatures would affect system performance.

Just as in the last set of tests, packets were transmitted from a secondary machine

(see App. A.1) using the command-line tcpreplay application but at a fixed rate of 10000

packets-per-second2. At this packet-rate there was no significant packet loss even for the

largest signature-set used. For each test, 1 million packets were transmitted, containing

traffic to or from TCP port 80. The HTTP-biased dataset was produced by taking a set of

traffic from the corporate dataset and filtering it to contain only port 80 traffic.

The predictor was configured to shunt traffic to an HTTP-only Snort instance (s1) when

an HTTP-detection signature fired for a connection. Each prediction was configured to

timeout within 30 seconds unless new HTTP events for that connection were detected. The

experimental setup consisted of two IDS instances: s0 and s1 for which combined alert

output, error rates, and gain over the control setup is shown.

Test 29a & 29b: Test 29a is the most generic HTTP Split configuration in which all

of the HTTP detection signatures are active for both s0 and s1 configurations. Test 29b

made two changes to the s1 instance which were tested simultaneously3: 1) removed the 5

HTTP-detection signatures and 2) removed flow-tracking for the remaining signatures.

As Table 6.1 shows, removing the HTTP-detection signatures results in a substantial

decrease in relative overhead costs for the s1 instance. No HTTP-detection alerts are

produced for 29b s1 experimental instance so the predictor does not incur any additional

overhead. The small performance gain shown for 29a is not significant. Configuration 29b

was essentially equal in terms of control versus experimental overhead costs.

2http://tcpreplay.synfin.net - TCPReplay Homepage (Source Code - Retrieved Aug 2012)
3The two changes can be measured independently as HTTP-detection events and alert events occur independently under conditions

where the system is easily processing all packets

126

http://tcpreplay.synfin.net

Chapter 6. Experiments

Setup Instance Rules Packets Events HTTP/Alert FP FN Gain

29a Exp. s0 5510 493420 32278 12153 / 59
29a Exp. s1 3362 497317 50567 25014 / 263
29a Exp. totals - 990737 82845 37167 / 322 7 87 -19%
29b Exp. s0 5510 493493 33130 12791 / 66
29b Exp. s1 3357 497476 3400 0 / 288
29b Exp. totals - 990969 36530 12791 / 354 6 82 1.3%
29a,b Control s0 5510 994166 101474 37969 / 599 1 9
29c file 5,535 993,901 67,587 42,560 / 909 0 0

Table 6.1: Test 29a,b: HTTP traffic split [s1 flow tracking, s1 HTTP-detection]

Removing flow-tracking for the remaining signatures also resulted in a small difference

in error rates. This is unlikely to be significant, but is somewhat surprising. We should

expect that removing flow-tracking from s1 would significantly increase false positives.

However, for most signatures the important aspect of flow-tracking is that a connection is

known to be established. For any packet forwarded to s1 we can infer that the connection

must be established. The initial flow direction (“to server or to client”) appears to be

relatively unimportant for HTTP-related signatures.

Test 29c: Test 29c attempted to increase the coverage of the HTTP-detection signatures

by using a 3-tuple as the connection definition. There were several interesting issues raised

in this experiment.

As can be seen from Table 6.2, using a 3-tuple actually decreased the total packets

forwarded. We expected to have a larger number of packets being forwarded to s1. This

unexpected issue was due to the “wild-card” filtering mechanism of PF RING being uni-

directional. Interestingly, even though fewer packets were forwarded than 29b, we end up

with a larger diversity of individual connections being examined by s1. This results in a

decrease in false negatives (FN) over the 29a and 29b protocols by over 50%. This suggests

that 3-tuple connections provide a more generalized forwarding policy.

127

Chapter 6. Experiments

Setup Instance Rules Packets Events HTTP/Alert FN FP Gain

29c Exp. s0 5510 678375 26100 7252 / 146
29c Exp. s1 3357 239977 461 0 / 442
29c Exp. sum - 918352 26561 7252 / 588 11 38 -32%
29c-bi Exp. s0 5510 415089 19990 5610 / 67
29c-bi Exp. s1 3357 570100 5026 0 / 533
29c-bi Exp. sum - 985189 25016 5610 / 600 12 30 -39%
29c Control s0 5510 993965 101479 37974 / 599 2 9
29c file 5,535 993,901 67,587 42,560 / 909 0 0

Table 6.2: Test 29c: HTTP traffic split [no s1 flow tracking, 3-tuple]

Poor performance is due to high cost of wild-card filtering in the system kernel.

Changing the wild-card filtering options to operate bidirectionally, resulted in a small

improvement in the total packets seen by s1, but insignificant differences in error rates. The

wild-card filtering was also prohibitively expensive. Wild-card filtering increased system

overhead due to system calls by as much 60% for each experiment run. Comparatively, the

hash-based filtering of other experimental configurations had no measurable increase in

system call overhead. This issue is likely fixable within the PF RING module by using

additional hash-tables to perform faster forwarding. These changes to PF RING are being

considered as a possible future work.

Tests 30-32: Tests 30-32 explored the use of various sized secondary signature-sets.

Test 30 demonstrates the maximum gain possible for the default signature-set and the set of

HTTP-detection signatures used. The s1 signature-set for this test is empty. All packets

which are shunted to s1 are essentially dropped, resulting in correspondingly high error

rates. Each of these tests had HTTP-detection signatures enabled in s1, resulting in higher

s1 overhead costs than were strictly necessary.

The error rates shown only count a false negative if all examples of an alert for a partic-

ular connection are missed. The absolute error rates for Test 31 [not shown] corresponds

closely with the relative sizes of the signature-sets. If the distribution of events were

uniform, then the expected false-negative rate would simply be 1� |s0|
|s1| .

128

Chapter 6. Experiments

Setup Instance Rules Packets Events Alerts FP FN Gain

30 Exp. s0 5,535 493,364 27,947 10,734 / 53
30 Exp. s1 0 497,447 0
30 Exp. sum - 990,811 27,947 10,734 / 53 0 146 56.7%
31 Exp. s0 5,535 493,569 32,285 12,156 / 60
31 Exp. s1 452 497,316 49,788 25010 / 13
31 Exp. sum - 990,885 82,073 37,239 / 73 1 133 -5.0%
32 Exp. s0 5,535 493,558 32,267 12,153 / 60
32 Exp. s1 50 497,311 49,798 25,019 / 0
32 Exp. sum - 990,869 82,065 37,232 / 60 1 141 -2.5%
30-32 Control s0 5,535 994,123 101,179 38,434 / 598 2 9
30-32 file 5,535 993,901 67,587 42,560 / 909 0 0

Table 6.3: Tests 30-32: [small secondary signature-sets]

6.2.3 Traffic Split

From the biased signature-set experiments a few important characteristics were learned.

Firstly, high-coverage detection signatures are costly and should be disabled in secondary

signature-sets and potentially optimized in primary signature sets. Secondly, performance

gains are more costly than expected in terms of error rates. If there is ever a performance

penalty in terms of system overhead, then the approach should not be used. The a perfor-

mance gain is achieved, then the system could potentially process a larger portion of the

incoming data. Unused available overhead is wasted when a system is not under high loads

and dropping data.

This last insight led to a Test 35h, in which the system was run under high loads.

The data-rate was increased to 50Kpps and a single protocol detection signature was

used to detect (and then drop) any TCP packet. This is loosely similar to prior work by

Papadogiannakis et. al. in which dropped packets are biased to be non-essential to tracking

TCP sessions[71]. A fundamental difference in the 35h configuration was that any detected

TCP session was selectively discarded, both established and non-established. The result is

that in many cases all but the first TCP packet is dropped. Interestingly this test resulted in

129

Chapter 6. Experiments

decreased error rates when the event output was moderated using output filters. Table 6.4

summarizes these findings.

Setup PPS Instance Packets Event Filter FP FN Loss/Gain
35h-1
35h-1
35h-30
35h-30
35h-60
35h-60
35h-3K
35h-3K
35h-3K-slow
35h-3K-slow

50K Exp. 2,817,300 1 per sec 358 384 46.0%
50K Control 5,374,140 1 per sec 211 355
50K Exp. 5,611,437 1 per 30 sec 330 174 -3.2%
50K Control 7,384,190 1 per 30 sec 297 228
50K Exp. 5,863,625 1 per 60 sec 276 251 -1.5%
50K Control 5,955,261 1 per 60 sec 303 327
50K Exp. 5,853,907 1 per 6 min 212 299 -3.4%
50K Control 5,632,039 1 per 6 min 234 355
10K Exp. 9,424,949 1 per 6 min 99 511 9.4%
10K Control 9,992,701 1 per 6 min 92 536

Table 6.4: Test 35h: Dropping all detected TCP packets for a high-load scenario

Test 35h suggested that the output and predictor overhead costs of the detection sig-

natures were playing a large role in total system costs. The performance clearly depends

largely on Snort’s output “Event Filter” configuration. Just as in the HTTP Split tests, the

additional detection signatures were added to both the control and experimental configu-

rations. The detection signatures used were not complex. However, the large number of

alerts produced could have a significant cost depending on how the output is used.

An additional test was run to determine the extent of the overhead issues. Test 36

examined all of the detection signatures considered for traffic forwarding. Table 6.5 shows

the difference in total alerts and traffic detection alerts for a system with no predictive for-

warding. The total events produced by the experimental configuration are highly dependent

on the high-coverage traffic detection signatures.

Figures 6.3 and 6.4 show the top 10 process times for different output event filtering con-

ditions. The additional output results in significant increases in predictor-related overhead.

For the unlimited filter setup, approximately 10% of this overhead was due to signature

processing costs. The remaining 30-35% was due to overhead of the predictor reading and

processing events.

130

Chapter 6. Experiments

Result Summary
Test pps Filter Setup Rules Packets Detects Alerts Loss/Gain
36
36
36
36
36
36

10K 1 per 30 Exp. 5,544 9,995,597 21,389 2,617 -7.4%
10K 1 per 30 Control 5,505 9,993,677 0 2,658
10K 10 per sec Exp. 5,544 9,994,046 440,878 2,631 -32.5%
10K 10 per sec Control 5,505 10,000,340 0 2,649
10K unlimited Exp. 5,544 9,993,617 937,529 2,604 -46.0%
10K unlimited Control 5,505 9,996,366 0 2,646

Table 6.5: Test 36: Measuring cost of I/O for traffic detection signatures

 0 1 2 3 4 5 6 7 8 9 10

107

108

109

1010

Process

C
PU

-T
im

e

Control

Exp.

Snort

PW
unsock

tee

Figure 6.3: Test 36: Process Times showing experimental overhead costs
Event output is unfiltered, thus incurring all I/O costs associated with high detector coverage of input packets.

6.2.4 Discussion

As shown in Chapt. 3, an end-to-end anticipatory approach should be capable of significant

performance gains. These gains are only limited by the ability to predict future events and

any inherent overhead costs. Unfortunately, such gains are difficult to achieve with existing

signature-sets.

For the Snort IDS, coverage of input packet data by standard signature-sets is abysmally

low. Increasing packet coverage is the first priority if an anticipatory approach is to work.

Artificially increasing coverage by adding new detection signatures can result in moderate

131

Chapter 6. Experiments

 0 1 2 3 4 5 6 7 8 9 10

106

107

108

109

1010

Process

C
PU

-T
im

e
Control

Exp.

Snort

PW
unsock

tee

Figure 6.4: Test 36: Process Times with event filter
Event output is filtered at a rate of 1 event per 30 seconds by source IP address.

gains, but at a proportional cost in predictor overhead costs if events are not filtered. In

essence, these systems are not designed to have good coverage of input data. Such systems

are currently designed to minimize the amount of output. Indeed, the current design of

Packet Wrangler falls into the same trap. Its performance is directly dependent on the

amount of input.

These characteristics are common within IDS design. Emphasis is placed on assessment

of incoming packet data. Since few packets are actually a threat, few events need to be

produced. Storing event data for a large portion of incoming packets is not a common

design assumption.

The high overhead of the predictor is an outstanding challenge. This might be dealt with

using event filtering. Also, many events are not useful for prediction. Careful optimizations

could limit to output to events which are actually helpful. Irrelevant events would never be

seen by the predictor.

There are a number of other solutions that are worth consideration. Since the cost of

producing alerts is relatively high, any event which is not a threat should be dealt with via a

132

Chapter 6. Experiments

separate I/O interface than the standard alert logging interface. This would allow different

subsets of the alert events to be sent to different listening interfaces. In essence we need an

IDS which can partition event output to multiple output devices or shared memory regions.

In-memory operations would provide better performance overall, and potentially elimi-

nate most if not all of the predictor overhead costs. As will be shown in the next section,

the built-in Flowbits mechanism provides a straightforward mechanism for implementing

rule-chaining-based optimizations. These are somewhat similar to the rule-based Packet

Wrangler approach, but performed at the granularity of single signatures and implemented

using in-memory bit operations.

Sending events via Snort’s Unsock interface may also have not been the best design

choice. The original datagram is included in the alert events sent over this interface.

While this data is never read by the Snort socket server, it might result in later systems with

performance issues when this additional data is read for purposes of prediction. Modification

of this alert interface to send only alert messages without the associated data might improve

performance but would preclude future capabilities based on internal packet features.

6.3 Probabilistic Flowbits

The experiments described in this section were run without any of the Packet Wrangler

or related components. The basic setup for transmitting and sniffing network traffic is

identical to previous test, as are the measurement methods. The control and experimental

configurations generally differ only in the use of Probabilistic Flowbits. For all tests a

single Snort instance is used. Each experiment tests either a different signature-set, Snort

configuration option, or traffic transmission parameter.

133

Chapter 6. Experiments

6.3.1 Results

Test 38-1b (0min - 10min)

Test 38-1b tested whether a Cost-Relevance Policy with a minimum probability of 0.1

was sufficient for performance gains for a signature set containing an abnormally costly

signature. This test considered a packet transmission rate of 10M packets per second.

On the test hardware and with the configured signature-set this was sufficient to cause a

20-30% packet loss rate. The control setup had no probabilistic signature activation and all

signatures were active. It is important to note that the Cost-Relevance policy probabilities

were based on “Qualified Events” for each signature and not the total number of output alerts.

This metric was produced by running the Snort’s built-in profiler against the configured

signature-set and test data as described in Sect. B.2. Refer to Fig. B.1 on page 166 for a list

of the profiler output used for tests 1 and 2.

Figure 6.7 shows the probabilities used for signatures with the “Snort IDs” (SIDS)

shown in the left column. The chosen probabilities were based on the first 10 minutes of a

network capture. The test data represents the same time window from 0-10 minutes of the

same network capture.

Figure 6.5 shows a mean decrease in total CPU-time of 27%. The spike within the first

50 seconds represents startup costs, which are nearly identical between control and experi-

mental setups. As can be seen from Fig. 6.6, decreased overhead results in substantially

decreased packet loss (from 25.6% to 0.5%, an improvement of 98%).

Since very few packets are lost we are able to decrease false negatives from 480 to

90 (an 81% improvement) and false positives from 38 to 17 (a 55% improvement). The

decreased error rates are all primarily due to lower packet loss. In this case the experimental

setup resulted in approximately the lowest packet loss achievable. Clearly, if a default policy

were applied (in which the probabilistically activated signatures were removed entirely),

134

Chapter 6. Experiments

0 200 400 600 800 1000 1200
0

2x106

4x106

6x106

8x106

1x107

1b Exp: 0min-10min
1b Control: 0min-10min

Configuration: 10Kpps, ~10M packets, cost-relevance

To
ta

l C
PU

-ti
m

e
(n

s)

Time (seconds)

Figure 6.5: Test 38-1b: Total CPU-time for all processes (0min-10min window)

we would expect to incur additional errors due to missing all instances of events associated

with the removed signatures.
Alert Counts

Test Setup Rules Packets %Dropped Events AlertEvents FP FN
1b
1b
1b

Exp. 9831 9947243 0.47% 132941 18107 17 90
Control 9832 7434899 25.61% 77907 13003 38 480
File 9832 9994651 0.00% 135222 18163 0 0

Table 6.6: Test 38-1b: packets processed and error rates (0min-10min)

The discrepancy in the number of signatures is due to a scripting error in signature-set partitioning for the test. Signature 17980 was

not present in the experimental configuration for either Test 38-1b or 38-2b, but was not relevant to the results (not a high-cost

signature).

Test 38-2b (10min - 20min)

Test 38-2b applied the same parameters as 38-1b to the time window from 10min-20min. It

was expected that the adjacent time window would result in poorer performance relative to

the first test. The results were somewhat surprising. The total overhead costs in this time

135

Chapter 6. Experiments

window were significantly better, but suffered substantially worse error rates. Figure 6.6

shows a significant decrease in total CPU-time for the duration of the experiment. The

mean decrease in total CPU-time was approximately 36%.
Alert Flowbit
Probabilities

SID Probability
4677
9631
13216
7980
11324
11620
16067
16301
16300
17166

0.1
0.6
0.7
0.8
0.8
0.8
0.9
0.9
0.9
0.9

Table 6.7: Tests 38-1b & 2b: Cost-relevance policy relative to signature 4677

0 200 400 600 800 1000 1200

2x106

4x106

6x106

8x106

1x107

2b Exp: 10min-20min
2b Control: 10min-20minTo

ta
l C

PU
-ti

m
e

(n
s)

Time (seconds)

Configuration: 10Kpps, ~10M packets, cost-relevance

Figure 6.6: Test 38-2b: Total CPU-time for all processes (10min-20min window)

136

Chapter 6. Experiments

Figure 6.8 shows the packet loss and error rates for Test 38-2b. The performance

improvement is still substantial, decreasing false negatives by 63% and false positives

by 73%. The experimental setup decreases packet loss over the control setup by about

80%, a smaller gain that test 1b, thus resulting in high error rates. This is a sensible result,

significantly decreasing packet loss results in a smaller but still substantial decrease in error

rates. However, the large decrease in system overhead likely means that some number

of false negatives of the inactive signatures could be regained by using higher signature

activation probabilities. Event better error rates might be achieved if the signature activation

probabilities were optimal for the characteristics of the packet data in the current time

window.

Alert Counts
Test Setup Rules Packets %Dropped Events AlertEvents FP FN
2b
2b
2b

Exp. 9831 9934762 5.66 127950 15285 13 174
Control 9832 7490043 28.87 74755 10919 49 467
File 9832 10530316 0.00 139426 16667 0 0

Table 6.8: Test 38-2b: Packet processing and error rates (10min-20min window)

It should be clear that if a given signature is of no use to an analyst or when a signature

is not relevant for a particular environment, that it should be removed irrespective of its

performance. The trade-off being shown is that when a signature is necessary, but when

performance is degraded due to high signature costs or high traffic rates that good trade-offs

can be made in terms of greatly improved performance at the potential cost of a small

number of carefully selected increases in error rates.

It is important to note that within both tests 38-1b and 38-2b, some instances of event

4677 were seen for some trials. The high frequency of the signature guarantees that some of

these events will be output, even when using a moderately small activation probability. In

other words, we decreased the cost of performing detection using the signature but retained

the ability to detect it.

137

Chapter 6. Experiments

Test 38-2j (10min - 20min) - removed signature 4677

This test is intended to show that the probabilistic signature activation provides a middle-

ground in terms of performance. Test 38-2j is identical to 38-2b except that signature 4677

is removed from the control and experimental signature-sets and the activation probabilities

are re-scaled based on the Avg/Check cost for signature 9631. This has the obvious

effect of greatly reducing the total overhead on the system. As a result, at the configured

packet rate of 10Kpps, no packet loss is incurred and no performance gains are achieved

by the experimental setup. Additional tests at high packet rates were performed and no

performance gain was seen for any tests using the Cost-Relevance activation probabilities.Unnamed
Table

SID Probability
4677
9631

13216
7980

11324
11620
16067
16301
16300
17166

0.0
0.1
0.3
0.5
0.6
0.7
0.7
0.8
0.8
0.9

Table 6.9: Test 38-2j: Cost-relevance policy with re-scaled probabilities
Probabilities were re-scaled after removal of signature 4677.

Alert Counts
Test Setup Rules Packets %Dropped Events AlertEvents FP FN
2j
2j
2j

Exp. 9831 10487270 0.3917% 135341 16303 12 111
Control 9831 10485319 0.4103% 135348 16142 13 116
File 9831 10528515 0% 139329 16661 0 0

Table 6.10: Test 38-2j: Packet processing and error rates after signature removal
Showing results within the 10min-20min time window after removal of signature 4677.

An astute reader may suspect that removing the obnoxiously costly signature would

result in a set of activation probabilities which would have little effect on overall perfor-

mance. Figure 6.11 shows potential gains for each of three policies considered. For the

138

Chapter 6. Experiments

Cost-Relevance policy the gain for the training set is always less than 4%, which, for our

purposes results in no detectable performance gain for the test data.

In theory, the Cost-Relevance policy should provide good generalizability. However,

it does not adequately leverage the actual expected costs of each signature within a small

time windows. From the figure it is clear that performance gains are still achievable

using the other activation policies. For the signature-set being examined and a minimum

probability of 0.1, the gains for the training set for the Relevance and Cost policies would

be approximately 10% and 30% respectively. Interestingly, due to the Cost-Relevance
Unnamed Table

Minimum Prob 0.5 0.4 0.3 0.2 0.1
Cost-Relevance

(Avg/Check)
Relative decreaseCost-Relevance

(Avg/Check) Absolute decrease
Relevance
(Checks)

Relative decreaseRelevance
(Checks) Absolute decrease

Cost
(Microseconds)

Relative decreaseCost
(Microseconds) Absolute decrease

2.19% 2.77% 3.15% 3.40% 3.79%
1738714 2199116 2499255 2700492 3005179

5.14% 5.78% 7.00% 8.13% 9.42%
4075633 4585497 5551775 6452848 7472265
16.43% 19.86% 23.57% 26.54% 30.51%

13038600 15759808 18698795 21054724 24207709

Table 6.11: Calculated gains for various signature activation policies
Calculations are based on Snort profiler output when using the 0min-10min training set.

Policy, other than signature 4677, the set of probabilistically activated signatures within

Tests 38-1b and 38-2b actually had nothing to do with the achieved performance gains. For

the training set, the remaining signatures accounted for only 0.6% of the total CPU-time

incurred in processing the dataset. However, by using a different policy, we can still achieve

good performance gains. In particular, the Cost policy seemed the most obvious candidate.

Test 38-2k (10min - 20min) - 40Kpps - Cost Policy

Test 38-2k modified the setup for Test 38-2j by applying the Cost policy and increasing the

packet transmission rate sufficient to cause significant packet loss. The probability table for

the Cost policy signature activations of Test 38-2k are shown in Fig. 6.12

This experiment was intended to show that even in the case where no obvious candidate

for signature removal can be made, performance gains can be achieved by employing

139

Chapter 6. Experiments

probabilistic flowbits. However, it appears that when a system is completely saturated

that probabilistically activating signatures has little effect even though there should be a

decreased cost. The incoming packet rate is large enough that relatively few packets are

being processed. This is consistent with early tests performed using high-cost signatures

such as 4677. When packet losses were over 50% gains were diminished or eliminated with

only a minor difference in error rates. Error rates for Test 38-2k are shown in Fig. 6.13

Table 10
SID Probability

8701
17512
14990
2707

16014
17513
13216
12183
17166

630
623

11324
624

3550
621
622

2580
14989
5712

12591
4136
2442
7047

16521
2570
619

11272
2705

11273
4135

16743
11196

0.1
0.3
0.4
0.5
0.6
0.6
0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

Table 6.12: Test 38-2k: Cost policy probability table

140

Chapter 6. Experiments

Alert Counts
Test Setup Rules Packets %Dropped Events AlertEvents FP FN
2k
2k
2k

Exp. 9831 6656867 36.784% 57299 10663 179 578
Control 9831 6371688 39.492% 50918 10030 180 619
File 9831 10530292 0.000% 139366 16663 0 0

Table 6.13: Test 38-2k: Packet processing and error rates using a Cost policy
Showing results for the 10min-20min time window.

6.3.2 Analysis & Criticisms

Benefits notwithstanding, there are a number of potential criticisms of the signature acti-

vation approach. We might argue that irrespective of whether the highest-cost signatures

are removed, that there is usually a set of activation probabilities and a data rate at which

performance gains can be seen using our approach. However, if the policy metric were

uniformly distributed, it would be difficult to make acceptable trade-offs between signa-

tures. Additional information would be needed (such as the use of a weighting function

to prioritize signatures based on importance). Although it is unlikely for signature cost or

frequency to be uniformly distributed, this is exactly the situation desired by IDS designers.

It is also the situation which occurs after some number of signatures are probabilistically

“flattened”. In brief, we can only really apply this technique for the high-frequency and

high-cost signatures. As soon as we have lopped off the head of the curve, we are left with

the long tail of the distribution and no more gains will be possible.

Another criticism is that we have yet to show how the approach can improve performance

when there is no packet loss. The initial arguments made suggest that for frequent events

we might gain performance by checking infrequently. The issue with this argument is that

events which occur frequently are often very cheap to detect. If the approach is only relevant

for systems which are losing data, then the benefits would only be seen during infrequent

high-load events. As a counter to this criticism, we can use probabilistic signature activation

to add new signatures that otherwise would have been prohibitively expensive.

141

Chapter 6. Experiments

Our long-term goal is to improve performance irrespective of system load. This is more

difficult to achieve than one would expect from a cursory analysis. Retrospectively, this is

not surprising as the performance of an IDS is dependent upon the signatures used, tuning

of myriad parameters, and highly dependent upon the incoming data. Since our model

ignores most of this complexity, we can expect significant gaps in our ability to predict

performance characteristics of an activation policy.

The results thus far suggest that exploring new ways of applying the current set of

activation policies will be worthwhile. The approach is likely to be important for a number

of scenarios which have not yet been addressed experimentally, such as cases where flooding

or other denial of service attacks actively disable IDS systems to mask more nefarious

activity, or where the cost of detection precludes complete coverage of known attacks. The

demonstrated approaches might easily overcome such limitations without significant system

modifications. For example, a flooding attack would cause cost and relevance of a set of

signatures to change, resulting in decreased sampling rates for the offending signatures and

minimizing the impact of the attack. Any relevant events would still be seen but would

maintain a more or less constant overhead cost.

A final criticism deals with dataset characteristics. It seems intuitive that signature

costs and frequencies be non-uniformly distributed for large networks and large datasets.

In all signature-sets examined, the signature costs and frequencies appear to be power-law

distributed. However, whittle away long enough at a signature-set and we will be left with a

more or less uniform distribution which will be difficult to optimize in the ways described.

In the end, the signature-based optimizations are limited by distributional characteristics

and often only apply in high load scenarios. Nonetheless, that these optimizations may

be precisely what are needed to achieve the broader goals of increasing coverage and

decreasing costs.

In counterpoint to the above criticisms, there are also other potential benefits of the

approach. The Probabilistic Flowbits approach presents a possible solution to Flowbit

142

Chapter 6. Experiments

evasion issues identified in 2012. In their work, Tran et al. demonstrated shown that

the current “Flowbits” mechanism is vulnerable to evasion attacks[88]. Within most IDS

the state of TCP and UDP streams are tracked for the duration of each connection. Flow

tracking enables signatures to be made active based on the state of the stream and prior

signature activations. Tran et al. provide both an approach to automatically generate evasion

attacks and to generate signature-set patches which guard against the generated evasion

attacks.

While the current Probabilistic Flowbits approach probabilistically disables signatures,

evasion attacks could be thwarted by probabilistically activating signatures even though

their flow state preconditions have not been met. The evasion attack becomes far more

difficult as the attacker now must deal with their evasion failing with some potentially

unknown probability.

There are also an array of more complex examples related to threat detection within

application-level protocols. In many cases, accurate tracking of application state is pro-

hibitively costly and protocol state cannot be known explicitly. Extending the Probabilistic

Flowbits approach, Probabilistic flow tracking would enable application-level signatures

to be activated based on the probability of a particular application state. Exploration and

experimentation of this and other possible uses of the approach is left to future research.

143

Chapter 7

Impact, Conclusions, & Future Work

The Packet Wrangler approach has been far less fruitful in terms of producing a useful

technology than we had initially hoped. The basic model is elegantly simple-minded.

Online prediction of attack sequences is not that difficult. But online refinement of an

active IDS is fraught with engineering obstacles. Existing systems do not expect their

data-streams to be manhandled. Indeed, the simple-minded approach suffers some of the

same challenges as the IDS which we are attempting to optimize.

Gladly, there appear to be many ways of using learned statistics to improve performance.

The Probabilistic Signature Activation approach presents only a single type of optimization.

However, the maximum performance gains using these approaches are likely to be bounded

by the cost of the signatures which are being optimized. Practical maximum gains can

be explored by simply removing highest-cost signatures and examining behavior under

different network loads. As such, the Probabilistic Flowbits approach represents a middle-

ground between arbitrary packet drops and complete removal of high-cost signatures.

The theoretical performance gains of the Packet Wrangler approach are not bounded in

the same way, but depend directly on the characteristics of the signature-sets used and the

data being assessed. The practical limiting factors are predictor performance and overhead

144

Chapter 7. Impact, Conclusions, & Future Work

costs. Some of these costs might be eliminated by modifying the IDS architecture so

that superflous operations are not performed. Although the Packet Wrangler prototype

has shown promise, the total coverage of existing signature-sets is quite small. In the

experiments conducted the overhead costs generally swamp any performance gains.

We are actively pursuing a number of additional ideas to address the flaws in the

Packet Wrangler approach. In particular, Probabilistic Flowbits partially addresses the

high overhead costs of high-coverage signature-sets. Packet Wrangler currently computes

signatures and fires alerts for a large number of incoming packets (the definition of high

coverage). In respect to our thesis, this is exactly opposite to the problem in which too

little information is retained by the IDS. A large number of superflous events which do

not gainfully assist the predictor still consume system resources. We expect, but have not

yet shown, that combining these two approaches will improve performance by optimally

increasing coverage.

Our attempts at end-to-end anticipatory performance optimization have also led to a now

obvious fact. We cannot use anticipatory optimization directly coupled with unmodified

detection system. The design assumptions conflict with our goals. Not enough information

is gained for each data input. Our systems do not know how to perceive the ebb and flow

of network traffic beyond simple state-machine emulation. Our systems only perceive

pin-pricks of threat in the dark, each one violating our assumptions of bubble-boy sterility.

Before we can achieve gainful anticipatory optimizations, we need to maximize the amount

of information gain and minimize the amount of work needed to do so.

As discussed in the Related Work section on page 40 there are systems and models

which maximize the information gained for each available input. Such approaches attempt

to expose the meaning of network attacks in the context of network topology, machine

characteristics, and learned prior knowledge. The basic tenant is to provide relevant context

for understanding network threats. While powerful, simply conveying context is not enough.

Such systems are incredibly expensive to maintain. Their costs generally greatly outstrip

145

Chapter 7. Impact, Conclusions, & Future Work

their benefits. Just as is the case with modern IDS, these types of computer defense systems

do not anticipate future knowledge. There is no anticipation, just a direct application of

deductive reasoning. It would seem to me that anticipatory optimizations is almost stupidly

relevant.

In summary, this dissertation describes and demonstrates both a rudimentary anticipation

model and a probabilistic middle-ground between removal of high-cost signatures and

partial inclusion via probabilistic activation. The signature activation approach provides a

means of dealing with moderate packet loss by holding high-cost signatures accountable.

Both approaches have a straightforward theoretical basis which suggests that future system

will all eventually include such optimizations. Clearly, the probabilistic signature activation

approach is straightforward enough that it should be a fundamental aspect of any modern

signature-based IDS.

7.1 A “Household Survey” Analogy

If we were giving surveys by walking door-to-door we might be confronted by some of

the same problems as occur in signature-based intrusion detection. Assume that we have a

single exhaustive survey of yes/no questions (our signature-set). For our survey, when a

household answers “no” to all questions, then we make a check-mark and move to the next

home. However, when a household answers “yes”, then we take the time to write down

their demographic information (an IDS alert).

Our plan is to visit every house in sequence from our starting location (a packet se-

quence). Our goal is to visit every house and to ask every survey question, but we have a

limited amount of time. When we have a short survey or few houses to visit, this is easy.

But when we have a long survey or many houses, we have a problem. We will not be

able to finish before we will have to give up and start skipping houses. We might miss

146

Chapter 7. Impact, Conclusions, & Future Work

entire neighborhoods and demographics. Our survey results will not be representative of

the population in these neighborhoods.

If we know that we will not have enough time, we can choose subsets of signatures to

skip based on their cost. If we have a large number of houses, then we will ask high-cost

questions infrequently. We will sometimes miss out on opportunities to learn about the

attitudes of some households on complex questions, but this is an acceptable trade-off. This

is the basic idea behind Probabilistic Signature Activation.

What would be even better, however, is if we had some prior knowledge over which

questions might be relevant for a subset of households. As an example, perhaps there

are two different clubs to which people on our survey route subscribe: the Environment

Club and the Gun Club. The first few surveys given in our neighborhood give mostly tree-

loving-hippie answers. It would probably be OK to eliminate Gun Club questions and focus

on Environment Club questions for next few houses. We might miss a few opportunities,

but we have saved a lot of time. This is essentially the idea behind the Packet Wrangler

approach.

In the Probabilistic Signature Activation optimization, it is straightforward to figure out

which questions to skip based on cost. The longer a question is, the longer it takes me to

ask. This optimization works regardless of whether the house answers a question. If we ask

the question at all it costs me time. If we skip some questions, we gain some time.

It is also straightforward to predict simple sequences for the Packet Wrangler optimiza-

tion. In most cases, if we get a positive response for one household, the next one will

likely give a positive response. However, within our analogy, most households (packets)

do not give any “Yes” responses for any question. For most households, we ask all of our

questions, but never record any demographic information.

In our analogy, the survey (signature-set) is composed of very specific questions. We are

asking questions that are analogous to whether a household participates in some nefarious

147

Chapter 7. Impact, Conclusions, & Future Work

activity (like dumping toxic waste in the sewer). Even if all households always answered

truthfully, most households would truthfully answer “no” to every question. We are never

asking a general question like “Are you an environmental advocate?”, of which perhaps a

significant portion of households might answer “yes”. This is not the specific information

we are after so we do not ask it. But this is exactly the sort of information we would need

to anticipate which questions the next household might answer affirmatively.

The is the basic problem with anticipatory optimization approaches with the signature-

sets and design assumptions of many detection systems. For most inputs we do not gain any

information. When we force the issue by adding general questions (i.e. expanding packet

coverage), the information we gain costs us too much.

This leads us to an insight regarding current detection approaches. We can get perfor-

mance gains using anticipation, but first we need to make anticipation cheap. These systems

are designed to learn the minimum amount of information necessary for detection for the

minimum cost. What we need are systems which maximize the amount of information

gained while minimizing the cost per bit learned. We can still constrain the information

gained to be those things that are useful, but we need more than just an identification of

threat. We need to be able to cheaply, even optimally identify features which are useful for

prediction.

7.2 Biological Metaphors & Future Work

First and foremost, the coverage of future systems must be greatly expanded. Existing

systems provide a myopic view of threats with most of the context and most of the detection

still living in the minds of network threat analysts. Many of us have worked closely

with systems which gather general information concerning network traffic and networked

machines. This gathered knowledge is exactly the type of expanded coverage that is needed

148

Chapter 7. Impact, Conclusions, & Future Work

to perform prediction and anticipatory optimization. But such systems are not yet cheap. We

will need to bootstrap their performance and anticipatory optimization presents a possible

solution.

In addition to those explored in this dissertation, there are a number of other biologically

inspired optimization approaches that are tantalizingly accessible. A couple of concepts

in particular are simple enough to be easily implemented as extensions to the Snort IDS.

One concept applies intracellular dynamics ideas to the task of limiting individual signature

activation rates. The insight it simply that once an event occurs (or even once a signature

is checked) the signature should be held in a “recovery” or “refractory” period for some

amount of time. This is similar to the way that neurons will fire and then slowly recover

as ions are pumped across the cell membrane. The refractory period prevents the neuron

from firing too frequently. For detection systems, this would provide a useful optimization

across all signatures. The challenge is in having good distributional statistics to ensure that

the refractory period for each signature is optimal.

Another biologically-inspired approach uses inter-cellular communication and network

concepts to either inhibit or stimulate “adjacent” signatures. This is somewhat similar to

the Packet Wrangler prototype, but much simpler and focusing on small deviations from

the default signature activation policy. Adjacency in such an approach might be decided in

a number of different (and possibly overlapping) ways. Taxonomic relationships between

signatures provides one method, although the sparsity of current taxonomies may result

in too few degrees of separation between signatures. Other adjacency approaches might

directly make use of a trained Bayes net or neural network which reflects correlations

between events. Being able to slightly bias the way that a signature is used was sorely

missing from the Packet Wrangler aproach, which requires a high-confidence decision on

future states. Allowing for small deviations from default behavior allows a wider array of

behaviors and simple optimization strategies.

149

Chapter 7. Impact, Conclusions, & Future Work

Simpler forms of anticipation such as priming are also relevant. If we had recently

activated a signature we might cache some portion of the packet and store it based on a

cheaply computed hash or checksum. For future packets we would have a hint that there was

a potential match. Alternatively, future packets which match the hash would not necessarily

need to be assessed at all. We might dumbly fire the signature even though the hash may

be incorrect. The probability of a possible false positive would be directly related to the

computing cost and uniqueness of the hash. But in some cases, incurring a false positive

may provide superior results than being safe and always computing the signature.

There are also possibilities which more closely related to the “bubble-boy” analogy

discussed in the introduction. In a conventional IDS approach, some efficiency is achieved

by gaining “just enough” information to identify a minimal set of events. Existing systems

have a checklist of items which are guaranteed to be examined. Outside of this short list,

the IDS knows nothing. This differs fundamentally from biological immune systems in

which an incredibly large number of patterns (both malicious and benign) are detected

precisely[40]. Many interesting parallels between biological and computer immunology

have been explored in great detail within the last two decades. Although these topics have

not been a focus within this dissertation, a couple of concepts are particularly germane.

One characteristic which seems particularly relevant is that of a continually changing

and adapting immune response. It is not just that new antibodies are continually being

created, but that a vast reservoir of potential immune responses are always readily available

depending upon what is currently being detected[40]. In our signature-based detection

engine, it would be as if we had millions of patterns which are each active in proportion

to the currently active (or potential) threats. Indeed, a more refined implementation of

the Probabilistic Signature Activation approach could be used to emulate this behavior.

Rather than resources used for detection depending primarily on the signature, they are

dependent almost solely on the active or predicted threat. Indeed, as detection algorithms

150

Chapter 7. Impact, Conclusions, & Future Work

become more refined, it is likely that all signatures have essentially the same per-packet

cost. Biasing the detector in this way will become necessary.

Another characteristic which has been mentioned previously is that of safety, or as

Stephanie Forrest et al. described as “imperfect detection” in their 1997 article on Computer

Immunology[40]. It seems impossibly unlikely that biological immune systems perform

any type of “perfect” or “safe” pattern matching. Biological systems also make mistakes,

resulting in allergy and autoimmune disease. Yet with relatively few resources most threats

are identified and thwarted in time sufficient for an organism’s long-term safety. This is

paralleled within modern IDS in the sometimes high costs of false positives. These costs

can be internal to the IDS, such as a poor signature demanding resources which would be

better spent detecting more important threats, or external, such as a flood of duplicate alerts

which clutter the displays of a computer analyst.

In light of our exploration of various anticipatory optimizations, imperfect detection

is more than just an obstacle to overcome. It is also a tool which can be used to achieve

efficient detection. We might even suspect that biological systems have evolved to work in

imperfect ways exactly for the purposes of efficiency. The strategies which we use to “tune”

our detection engines need to consider how and when to allow the right kinds of mistakes.

Every possible way to give up safety may be an opportunity for more efficient detection. If

we choose to never make mistakes, we miss opportunities, and we will sometimes lack the

finesse necessary to succeed.

Criticisms

Reading the literature sometimes seems to suggest that we must always hold true to a

particular analogy when comparing biological systems and computing systems, but this

is not necessary. There are far too many fundamental differences for all of the details

to be relevant. Our desire for both perfection of design and the purity of our metaphors

151

Chapter 7. Impact, Conclusions, & Future Work

often make for good papers, but not necessarily good implementations. Instead, we are

left to learning about basic biological and cognitive mechanisms and applying and mixing

these mechanisms within our designs and implementations. While many of the approaches

discussed in this dissertation were presented in the context of a biological metaphor, there

was never a need to hold true to the metaphor in the implementation. It is hoped that the

reader accepts our need to be inspired rather than a need to model that which inspires.

The implementations presented are also fairly rudimentary prototypes. More work is

needed to expand the prototypes into useful augmentations of detection engines. One aspect

in particular which is missing from the prototypes is any type of online learning or adaptation.

While our tests did not assess learning approaches, they are clearly applicable. Future

prototypes will incorporate both online learning and adaptation as well as more sophisticated

statistical methods. As mentioned previously, there are a number of optimizations which

could be achieved if better distribution statistics were known. As usually begets the

experimentalist, we are limited by the datasets available to us. There are still many

uncharacterized trade-offs for future studies (such as the trade between detection cost

and increases in detection latency).

A final criticism deals with dataset characteristics. It seems intuitive that signature costs

and frequencies will often be non-uniformly distributed. In all signature-sets examined,

the signature costs and frequencies appear to follow power-law distributions. However,

whittle away long enough at a signature-set and we may be left with only the long tail

of the distribution, which will be difficult to optimize in the ways described. In the end,

the signature-based optimizations are limited by distributional characteristics and often

only apply in high load scenarios. Nonetheless, these optimizations are precisely what is

necessary to achieve the broader goals of increasing coverage and decreasing costs.

152

Chapter 7. Impact, Conclusions, & Future Work

Closing Thoughts

It should be obvious that existing detection approaches fall flat. We cannot always detect

what we need to detect when we need to detect it. The approaches we use are too safe,

but this safety costs us too many computing cycles. In a way, we should give up. We

should give up the guarantee of safety. We should detect what we can detect when it is

convenient. The leaves rustling in the forest do not mean anything to our detection systems

because they are not designed to consider the future. Our systems respond to threats. Our

systems sometimes react to threats. But our systems must instead predict threats, respond

proactively, and to choose what to detect on a hunch.

Modern detection systems are paralyzed by the mere possibility of predators, always

searching for the threat and not the precursor. We attempt to make them resilient to predators

by hardening software, by digitally signing our transmissions, and by dumbly performing

brute-force searches for viruses and malicious code. But quite often we are already in the

water with piranha. We did not notice the blood in the water before we dove in. We were

not looking for it. Because we do not proactively respond to potential threats, we will not

know about our fishy friends until they have already taken their first bite.

Many of us dream of a future in which our computing systems are as robust and

adaptable as biological organisms. We would like for our computing machines to be as

resilient as biological systems. Yet we often insist on protecting our systems with simple-

minded border security. During a human lifespan we are infected with billions of organisms

representing millions of different variations. If our skin were our only barrier to infection,

we would perish at the first infection, and our life would end in infancy.

It seems that our computing machines are at an impasse. Current systems have a kind

of bi-modal safety, all or nothing. We must abandon the fantasy of perfect security and

allow our systems to make acceptable errors. The expense of maintaining the facade of

bubble-boy security is eventual and certain failure.

153

Chapter 7. Impact, Conclusions, & Future Work

It would be nice to be able to claim that this research will revolutionize the way that IDS

is performed, indeed, how computer network defense is performed. However, this work

has been more exploratory than revolutionary. The problems examined and the solutions

championed are nothing new to the initiated. Most of the techniques for performing

anticipation are old hat to any artificial intelligence buff. However, we must change our

thinking about what it means to be secure. A secure system is not one that is unplugged

from the world. A secure system is one that is resilient in the face of countless threats while

being steeped in the milieu of rich computational and networking environments.

Just as a willow will bend in the force of a summer storm, our computing systems

must be capable of a pliable resilience in the face of this threat. Until we find the right

combination of techniques, technologies, and algorithms, we will continue to suffer the

consequences of our digital fragility.

154

Appendices

A Hardware & Software Configurations . 156

B Snort Configurations & Analysis . 164

C Issues & Confounding Factors . 172

D Scripts & Algorithms . 176

155

Appendix A

Hardware & Software Configurations

A.1 Test System Configuration

The principle test system was a Linux Ubuntu 11.04 system with kernel 2.6.35-30 SMP,

running with 28GB of main memory on a pair of 2GHz Dual-core AMD Opteron processors.

The system was configured with two consumer-grade Broadcom gigabit ethernet cards.

One network card was used for system management while the other was used for sniffing

and forwarding traffic. Table A.1 summarizes the system hardware and operating system

configuration. A secondary system was used to transmit traffic using the “tcpreplay”

command. This system was almost exclusively an Apple iMac Intel i7 running OSX 10.7

was configured with a standard gigabit ethernet card and 16GB of main memory.

Snort required some additional options to enable access to the PF RING data-acquisition
(DAQ) module:

Listing A.3: Snort configuration options used for compilation

./configure LIBS="-lpthread -lpfring -lpcap"

--with-libpfring-includes=/usr/src/pf_ring-4

--with-libpfring-libraries=/usr/local/lib

--with-daq-includes=/usr/local/include

156

Appendix A. Hardware & Software Configurations

System Component Description
Server System mainboard Tyan S3992
Server CPU 2x Dual-Core AMD Opteron 2212
Server Main memory 28GB
Server Operating System Ubuntu 11.04
Server Linux Kernel 2.6.35-30-generic #61-Ubuntu SMP x86 64
Server Network Interface 2x Broadcom NetXtreme BCM5780 Gigabit Ethernet
Network iMac Broadcom BCM57765

Table A.1: System Hardware Configuration

Software Version
Snort 2.9.1.2 IPv6 GRE (Build 84)
libpcap 1.1.1
libdnet 1.12
tcpreplay 3.4.4 (build 2450)
PCRE 8.12 2011-01-15
ZLIB 1.2.3.4
PF RING SVN version 5074

Table A.2: System Software Configuration

--with-daq-libraries=/usr/local/lib/daq

--enable-ipv6

--enable-zlib

--enable-normalizer

--enable-perfprofiling

Additionally, when running Snort using the PF RING Data Acquisition (DAQ) module,
pointing the running instance to the location of the DAQ module was necessary:

Listing A.4: Snort command using the PF RING data acquisition module

snort -i eth0 -c /usr/local/etc/snort/etc/snort.conf

--daq-dir /usr/local/lib/daq

--daq pfring

However, for many tests the PF RING /glsdaq was not used due to automated filtering

mechanisms cleverly implemented to allow whitelist and blacklist IP addresses based on

157

Appendix A. Hardware & Software Configurations

Snort alerts. The basic command used in most experiments is shown in Listing A.5. See the

Snort man pages for information about the options used. Basically this configuration uses

a Unix socket for output, uses Coordinated Universal Time (UTC) time stamps, disables

binary output, and sets an instance number for alert IDs.

Listing A.5: Snort command for experiments

snort -i eth0 -c <snort.conf> -N -U -A unsock -G <instance>

On the network machine the tcpreplay command was run with options to modify the

packets transmitted per second. The total number of packets transmitted was determined by

the total size of the packet capture file being read. For most experiments delaying packet

transmissions for 60 seconds prior to transmitting packets was sufficient for startup of

the IDS. A similar amount of time was provided to allow the system to settle after the

experimental run. During these “rest” period, system performance was monitored. This

provided an indication of baseline, startup, and stopping costs.

Listing A.6: TCPReplay command

tcpreplay -i <interface> -l <packet_rate> <file>

A.2 Training and Test Data

In general, network traffic training data is extremely difficult to obtain. The datasets which

are readily available have a number of significant issues which generally preclude their

use in experiments. The 1998 dataset, for example, consists of generated traffic which

represents an arbitrary selection of network scans and attacks. The distribution of attack

traffic to normal traffic is not realistic, which is necessary for showing that under realistic

conditions, anticipatory bias can be gainfully applied. Other researchers have found similar

issues with the DARPA dataset[20, 21, 45]. This dataset was used for testing and limited

158

Appendix A. Hardware & Software Configurations

experimental purposes, and in particular for determining if dataset had an affect on scaling

performance. Results are consistent with results using a corporate dataset, but have generally

been excluded from analysis.

Experiments to date have used several sets of corporate network traffic, which represents

hundreds of gigabytes, yet still presents a number of outstanding challenges. The dataset

was collected on the outside of our corporate firewall, representing all connections made to

external computers and networks. Internal traffic is not part of the data collected and as

such, many types of insider attacks are not present at all. The benefit of this collection is

that it does not limit attacks to those that are able to pass through our firewall. Even when

an attack is stopped at the firewall, the packet traces remain. An unsuccessful attack on

one port will often lead to a series of attacks on adjacent ports or portions of our corporate

domain. Many of these useful correlations would not be seen if data were collected inside

our corporate firewall.

Another issue with the current corporate dataset is that all web traffic is seen through a

web-proxy that resides inside the firewall. As such, not every request made even passes

through the proxy, being served by the proxy itself. Those connections that do require

sending requests to external servers are all requested from the single internal IP of our

web-proxy. This is not a problem when the full 5-tuple of a TCP connection is used to define

a connection. However, it is useful to expand the definition of connection using the 3-tuple

of protocol,source IP, and destination IP. Most TCP connections are short-lived, resulting in

short-lived predictions. Using a broader definition for connections allows correlations to be

seen outside of a single TCP connection. Statistics can be collected which allow temporally

adjacent TCP connections between the same pair of IP addresses to be used for prediction.

The corporate dataset was partitioned into chunks representing approximately 10 min-

utes each (several gigabytes in size). This was done in order to run training and testing

on datasets which were adjacent in time, while maintaining the ability to easily run an

experiment for many trials with the same or differing parameters. For the experiments in

159

Appendix A. Hardware & Software Configurations

this paper, the first 10 minutes of traffic were used for training and segments from 10-20

and 20-30 minutes were used for testing. The transmitted packet rate was modified via a

parameter passed to the TCPReplay command line program. Issues with any corrupted data

were ignored as they would occur in both the experimental and control setups.

A.2.1 DARPA 1998 Training Data

Because the dataset was available, some initial tests used the dataset for software testing.

In particular, prior to proposing this research some time was spent generating Naive

Bayes predictors using the first week of DARPA training data from the original 1999

DARPA Intrusion Detection Evaluation[62, 63]. These initial tests are included here for

completeness and in order reference within other chapters of this dissertation. There are a

number of issues with this dataset which have been widely publicized within the last decade.

Although illustrative in limited cases, the dataset presents an unrealistic distribution of

network traffic, individual connections, traffic characteristics (such as Time to live (TTL)

being characteristic for attacker traffic), and other traffic patterns[20, 22, 38, 67].

sid! sid Occurrences Description
469! 469 13997 ICMP PING NMAP! ICMP PING NMAP

1620! 1620 478128 Non-Standard IP protocol! Non-Standard IP protocol
1620! 13949 123893 Non-Standard IP protocol! Spoof of domain
1620! 15934 48766 Non-Standard IP protocol! DNS for 172.16/12
1620! 15935 13821 Non-Standard IP protocol! DNS for 192.168/16
13310! 2925 17638 Apache DOS attempt!Web bug 1x1 gif attempt

13310! 13310 138106 Apache DOS attempt! Apache DOS attempt
13948! 1620 24901 DNS cache poisoning! Non-Standard IP protocol
13949! 1620 109765 Spoof of domain! Non-Standard IP protocol

13949! 13948 24888 Spoof of domain! DNS cache poisoning
15934! 1620 54953 DNS for 172.16/12! Non-Standard IP protocol
15935! 1620 14923 DNS for 192.168/16! Non-Standard IP protocol

1,049,782

Table A.3: High Occurrence Alert Sequences for the 1998 Dataset

Figure A.1 shows a stochastic matrix generated from 360,591 alerts from Snort’s

specialized preprocessors prior to clustering. The first column of this matrix represents

events for which no subsequent event was seen. The first row represents events for which no

160

Appendix A. Hardware & Software Configurations

prior event was seen. The diagonal represents events which predict sequences of identical

events (e.g. scans, malformed packets, ICMP activity, statistical threshold violations, etc.).

The built-in event generators for Snort represent many of these classes of events. For the

purposes of this research, we can ignore these stateful detectors (and stream processors)

and focusing on the non-stateful detection which represents the bulk of the signature-set

and computing cost.

�129, 19⇥�129, 16⇥�129, 15⇥�129, 12⇥�129, 8⇥�129, 7⇥�129, 5⇥�129, 3⇥�128, 4⇥�125, 8⇥�123, 8⇥�120, 3⇥�119, 19⇥�0, 0⇥

�129, 19⇥�129, 16⇥�129, 15⇥�129, 12⇥�129, 8⇥�129, 7⇥�129, 5⇥�129, 3⇥�128, 4⇥�125, 8⇥�123, 8⇥�120, 3⇥�119, 19⇥�0, 0⇥
�0,0⇥

�0,0⇥
�119,

19
⇥

�119,
19
⇥

�120,
3⇥

�120,
3⇥

�123,
8⇥

�123,
8⇥

�125,
8⇥

�125,
8⇥

�128,
4⇥

�128,
4⇥

�129,
3⇥

�129,
3⇥

�129,
5⇥

�129,
5⇥

�129,
7⇥

�129,
7⇥

�129,
8⇥

�129,
8⇥

�129,
12
⇥

�129,
12
⇥

�129,
15
⇥

�129,
15
⇥

�129,
16
⇥

�129,
16
⇥

�129,
19
⇥

�129,
19
⇥

Figure A.1: Stochastic matrix set showing Snort’s built-in preprocessors

This matrix was generated using the DARPA 1998 training dataset and Snort’s default alert generators (genid,sid) and the Next

temporal semantics. The y-axis are event priors and the x-axis the consequents. The first row and column are events with no priors and

events with no consequent respectively.

Figure A.2 represents a stochastic matrix produced over the entire DARPA 1998 training

dataset. This dataset represents approximate 3GB of capture packet data (13,620,149

packets) which results in 1,096,099 packet-level Snort alerts using a recent release of

the Snort VRT signature-set (ignoring stream and specialized preprocessor alerts).1 Of

particular interest are the events which show a high correlation with future alerts for the

same connection tuple. Table A.3 describes all sequences which occur more than 10,000

times.

These events account for 95% of the alerts. At least for the dataset, we have a small set

of superb predictors which account for almost the entire set of alerts and predict temporal

1http://www.snort.org/snort-rules - Snort Homepage (SourceFire R� “VRT” signature-set - Retrieved on Oct. 17,
2011

161

http://www.snort.org/snort-rules

Appendix A. Hardware & Software Configurations

Figure A.2: Example stochastic matrix using the entire set of available signatures

This figure is similar to Fig. A.1 except using all available signatures released with the version of Snort tested. For clarity, this plot is

shown using using a fixed value for all events matching the temporal constraint. The bottom right box is the same as that in Fig. A.1

correlations with relatively high degree of confidence. The extent to which the predictor

events cover the packet events also gives the upper bound on performance speedups when

each distinct signature is an equivalence class. For the DARPA dataset, with perfect

predictors this would result in at best 1049782

13620149

= 7.7% of the events being predicted and

detected with a O(1) computing cost (assuming equivalence classes containing only a single

signature).

It is interesting to note that there are a large number of symmetries in the stochastic

matrix. These symmetries account for 50% of the correlations in the testing dataset and 62%

of the correlations in the corporate sample dataset. For the sample dataset the significantly

higher symmetry is most likely due to the short time-frame (6 minutes) over which the

sample extends. These symmetries may also represent an artifact of the SnortIDS processor

or signature-sets. Further analysis is needed to determine the underlying meaning of the

symmetries. The sample dataset also exhibits similar power-law event frequency distribution.

162

Appendix A. Hardware & Software Configurations

This implies that even for the case where the signature-set is kept constant that some gains

might be achieved by utilizing trivial predictors over small sets of noisy alerts.

The relatively small proportion of alerts to packets also elucidates one of the primary

performance issues with these types of detection systems and a thesis of this work. Over

90% of the information gained in using the decision procedure against incoming packet

data is discarded. Since no alert fires, any features extracted (either real or potential) cannot

be used for future optimizations. Each packet passes through the decision procedure. If new

signatures were added to provide better predictors over the set of packets not associated

with an alert, then the performance gains which might be achievable might span a larger

portion of the dataset. Clearly, even when a dataset is highly biased, best-case performance

gains using existing signature-sets is difficult to achieve.

163

Appendix B

Snort Configurations & Analysis

B.1 Basic Snort Configuration File

In general, the default Snort configuration (for version 2.9.1.2) was used, but with all

secondary detection engines disabled or suppressed. The detection engine (with generator

ID 1 was enabled for all tests). Any generator or preprocessor which was necessary for a

detection signature was enabled. This included stream5, http inspect, frag3, rpc decode,

smtp, ssh, and dcerpc2. All other generators or preprocessors which were not needed were

disabled. A significant deviation from traditional testing of IDS is the introduction of a

randomly generated signature-set. This was necessary in order to test the performance of

the system beyond the scale and scope of available signature-sets. The statistics used to

generate random signatures was generated from the official SourceFire R� provided “VRT”

signature-set downloaded on Oct. 17, 2011. When a traditional signature-set was used,

Snort was also configured using this signature-set.

164

Appendix B. Snort Configurations & Analysis

B.2 Snort Signature Profiling & Tuning

In order to produce a reasonable optimization of active signatures a signature-set needs to be

assessed in the context of a given dataset. The built-in profiler for the Snort IDS provides a

wealth of information which is particularly relevant to probabilistic signature activation and

related techniques. An excellent guide written by Leon Ward of SourceFire Inc. provides

a thorough overview of the profiling methods for tuning Snort signature-sets[91]. The

following definitions reproduced directly from [91] are relevant when discussing Snort’s

detection engine profiler:

1. Checks: The number of times rule options were checked after the fast pattern match

process (yes, that bit is bold because it is important).

2. Matches: The number of times all rule options match, therefore traffic matching the

rule has been found.

3. Alerts: The number of times the rule generated an alert. Note that this value can be

different from “Matches” due to other configuration options such as alert suppression.

4. Microsecs: Total time taken processing this rule against the network traffic.

5. Avg/Check: Average time taken to check each packet against this rule.

6. Avg/Match: Average time taken to check each packet that had all options match (the

rule could have generated an alert).

7. Avg/Nonmatch: Average time taken to check each packet where an event was not

generated (amount of time spent checking a clean packet for bad stuff).

In many cases tests took a long time to complete for large datasets or large signature

sets. Using Snort’s built-in profiling engine exposes the incredible variability in signature

165

Appendix B. Snort Configurations & Analysis

costs. Signature cost generally correlated with signature length. This is often due to lack

of constraints on a string match or the use of complex regular expressions. For some tests

costly signatures were eliminated (from both control and experimental setups) simply in

order to speed up the time it took to perform a series of experiments. In other tests, high-cost

signatures are used as motivation for anticipatory methods.

alert tcp $EXTERNAL_NET any -> $HOME_NET [80,1830]

(msg:"ORACLE Server Overflow Attempt"; flow:to_server,established;

content:"GET "; depth:4; pcre:"/ˆGET [ˆ\r\n]*\x3F([ˆ\r\n]*\x26)*[ˆ\x3D\r\n]{1025}/Osmi";

sid:4677; rev:6;)

Listing B.7: High-cost signature 4677 reproduced from a Snort IDS signature-set

Figure B.1 shows the top 10 signatures as ordered by cost-per-check (Avg/Check) as

output by the detection engine profiler for the signature-set provided with Snort 2.9.0.3 and

a test dataset (see App. A.2.) This signature-set was modified by removing all high-cost

signatures except for signature 4677. This was done both to decrease the time taken to

run experiments and to simplify the experimental approach to be able to show that even

when abnormally costly signatures are removed that our approach is still valid. The most

frequently checked, highest cost signature in the set is signature 4677. The relevant options

for this signature are shown in Fig. B.7.
Top Ten (cost-relevance)

SID Rev Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/
Nonmatch

4677
9631
13216
7980
11324
11620
16067
16301
16300
17166

6 123930 4 2 1.075E+09 8674.2 15763.9 8673.9
5 2 0 0 8036 4018.1 0.0 4018.1
5 901 0 0 2921937 3243.0 0.0 3243.0
8 30 0 0 68446 2281.5 0.0 2281.5
4 870 0 0 1580006 1816.1 0.0 1816.1
4 2 0 0 2977 1488.7 0.0 1488.7
2 81 0 0 94034 1160.9 0.0 1160.9
1 431 86 59 355885 825.7 1115.4 753.5
1 32 28 16 22863 714.5 816.5 0.1
1 3623 0 0 1815128 501.0 0.0 501.0

Figure B.1: A Snort signature-set profile of top 10 signatures (Avg/Check)

166

Appendix B. Snort Configurations & Analysis

The high cost of signature 4677 is primarily due to very frequent checks (relevance)

due to the packet header matching the signature’s header criteria (port, protocol, and IP

addresses). The high innate cost of the signature is due to the use of regular expression

applied to the first 1024 bytes of the packet and use of the “O” option which disables the

recursion depth limits for regular expression matches (in this case allowing any number of

newlines between values up to 1024 bytes in length). The other problem with this signature

is that the only other check performed is a comparison of the first 4-bytes of every qualified

packet with a string to match HTTP GET requests. As a result, the regular expression match

will occur for every GET request seen by the IDS. The signature is also written without use

of the available HTTP preprocessor provided session state, but this may be intentional as it

may be that the attack can be performed irrespective of the state of the HTTP connection.

The traditional tuning methodology would suggest that signature 4677 be modified to

reduce its cost or simply removed from the signature-set due to its high cost. However,

modification of a signature may not be possible due to the skill required or due to the

innate requirements of detecting a particular event (perhaps requiring high-cost regular

expressions or exhaustive search of a large portion of individual packets).

In cases where a signature cannot be easily modified and acceptable performance

cannot be achieved, removal of a signature is currently the only available option. This

may be acceptable when the event is not relevant for the network, target hosts, or targeted

services, but it guarantees that the associated events will be missed. It is not clear from

Fig. B.1, but signature 4677 accounts for the vast majority of the computing cost of the

signature-set. The signature performs terribly and should certainly be disabled if it cannot

be modified. However, for purposes of argument, we will use this signature in particular

to show experimentally that abnormally expensive signatures do not necessarily need to

be removed in order to achieve acceptable performance. We also examine experimental

evidence that even when such signatures are disabled there are still optimizations based on

167

Appendix B. Snort Configurations & Analysis

probabilistic signature activation which can improve performance if packets are still being

lost.

B.2.1 0min-10min Signature Profiles
Performance Totals

SID GID Rev Checks Matches Alerts Microsecs Avg/
Check

Avg/
Match

Avg/
Nonmatch

8701 1 2 151173 0 0 7260819 48.0 0.0 48.0
17512 1 3 106341 0 0 6163985 58.0 0.0 58.0
14990 1 1 52365 0 0 4898394 93.5 0.0 93.5
2707 1 3 3525113 1255 201 4128901 1.2 7.6 1.2

16014 1 2 149959 0 0 3290514 21.9 0.0 21.9
17513 1 3 201014 0 0 3082106 15.3 0.0 15.3
13216 1 5 903 0 0 2913315 3226.3 0.0 3226.3
12183 1 3 2978094 0 0 2187487 0.7 0.0 0.7
17166 1 1 3621 0 0 1830787 505.6 0.0 505.6

Total 93,446,968 78,541,173

Table B.1: Top 10 signatures in terms of total CPU-time in microseconds

B.2.2 0min-10min Cost Policy Signature Profile

We can run the same profiler against a signature-set which is using a set of activation

probabilities for high-cost signatures. The total CPU-time used for all signatures with the

activation probabilities for Test 38-2K is 67.983 seconds, a modest 13% decrease from

78.541 seconds of CPU-time. Oddly, when directly comparing both checks and CPU-time

between the control setup and the experimental setup, we note in Table B.3 that there is

a significant decrease in CPU-time but a larger number of signature checks. Interestingly

the number of checks was increased by 1.5 million times. It is unclear why, but could be

related to the use of new flowbits for the signatures.

168

Appendix B. Snort Configurations & Analysis

Performance Totals
SID GID Rev Checks Matches Alerts Microsecs Avg/

Check
Avg/

Match
Avg/

Nonmatch
2707 1 3 4655669 202 190 3578613 0.8 9.8 0.8
623 1 7 9078531 0 0 3019473 0.3 0 0.3

13216 1 5 1169 0 0 2679802 2292.4 0 2292.4
14990 1 1 65770 0 0 2550712 38.8 0 38.8
17513 1 3 171454 0 0 2524635 14.7 0 14.7
16014 1 2 174697 0 0 2418601 13.8 0 13.8
12183 1 3 3036831 0 0 2414838 0.8 0 0.8
17512 1 3 54721 0 0 2256843 41.2 0 41.2

624 1 8 9183604 0 0 2127341 0.2 0 0.2

Total 96,704,555 67,983,590

Table B.2: Top 10 signatures in terms of total CPU-time using a Cost policy

Table 14

SID
No OptimizationNo Optimization Cost PolicyCost Policy DifferenceDifference

Checks Microseconds Check Microseconds Checks Microseconds
8701
17512
14990
2707
16014
17513
13216
12183
17166
630

Totals

151173 7260819 208596 1062796 57423 -6198023
106341 6163985 54721 2256843 -51620 -3907142
52365 4898394 65770 2550712 13405 -2347682

3525113 4128901 4655669 3578613 1130556 -550288
149959 3290514 174697 2418601 24738 -871913
201014 3082106 171454 2524635 -29560 -557471

903 2913315 1169 2679802 266 -233513
2978094 2187487 3036831 2414838 58737 227351

3621 1830787 4295 1740004 674 -90783
8947581 1785615 9334371 1907309 386790 121694

16,116,164 37,541,923 17,707,573 23,134,153 1,591,409 -14,407,770

Table B.3: Cost policy performance differences in total CPU-time and checks

169

Appendix B. Snort Configurations & Analysis

B.3 Custom Snort Signatures

B.3.1 Detection Rules

HTTP Detection

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"HTTP Protocol Detect GET";

flow:to_server,established;

content:"GET"; depth:5;

sid:2000001; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"HTTP Protocol Detect POST";

flow:to_server,established;

content:"POST"; depth:6;

sid:2000002; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"HTTP Protocol Detect HEAD";

flow:to_server,established;

content:"HEAD"; depth:6;

sid:2000003; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"HTTP Protocol Detect HTTP Response";

flow:to_server,established;

content:!"GET"; depth:5;

content:!"POST"; depth:6;

content:!"HEAD"; depth:6;

content:"HTTP"; depth:100;

sid:2000004; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"HTTP Content Detect HTTP URI";

flow:to_server,established;

content:"http://"; nocase;

sid:2000005; rev:1;)

Listing B.8: Simple HTTP activity detection signatures

170

Appendix B. Snort Configurations & Analysis

TCP Detection

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"Alert on any TCP packet

flow:to_client,established";

flow:to_client,established;

flowbits:set,checked.2090001;

sid:2090001; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"Alert on any TCP packet

flow:to_server,established";

flow:to_server,established;

flowbits:set,checked.2091002;

sid:2091002; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"Alert on any TCP packet

flow:established";

flow:established;

flowbits:set,checked.2092003;

sid:2092003; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"Alert on any TCP packet";

flowbits:set,checked.2092004;

sid:2092004; rev:1;)

Listing B.9: TCP Detection Signatures

171

Appendix C

Issues & Confounding Factors

C.1 Event Suppression

One issue with live configurations is that many potential events may be suppressed through

Snort’s event processing tuning mechanisms (i.e. “detection”, “rate”, and “event” filters and

event “suppression”)[79]. Thresholding is highly data and load dependent. A high-rate IP

sequence that results in duplicate events in a small time window will result in high filtering

rates of output events. The same network load but with a different alert may not result

in any filtering. If Snort is configured using default thresholding and event suppression,

then live traffic processing coverage may be less than the coverage measured in an offline

test. However, since the filtering occurs at the output of the IDS, each packet still sees the

entire signature-set, and gains via anticipatory bias are still relevant. Further, if coverage

is measured on a live system, this would result in an underestimate of packet coverage by

some constant factor and thus an underestimate of any performance gains to be had.

Interestingly, packet coverage also appears to follow a power-law distribution in respect

to event type. A relatively small number of event types account for a significant portion of

172

Appendix C. Issues & Confounding Factors

qualified events. This is potentially advantageous for a predictive system as is shown in the

next chapter based on an analysis of the performance of the Snort IDS on a test system.

C.2 Packet Loss

Packet losses only occur when hardware or software buffers fill and data can no longer be

stored while it is waiting to be processed. In the case of a network IDS, the hardware buffer

resides on the network interface card. In the NAPI, if the userspace Snort process is unable

to retrieve a packet in time, it is overwritten in the network interface card’s incoming ring

buffer. Because there is no userspace buffering or caching of network traffic, the packet

losses incurred are due to CPU contention between the thread which is performing IDS

detection and the thread which is copying packets from the network interface card. In some

cases, buffer sizes can be expanded to accommodate packet loss issues. However, in the

experiments being performed, packet loss will eventually occur not matter how large the

buffers are made as signature-set size is increased.

In order to test packet loss two separate experiments were performed: line saturation, and

line capacity. In initial experiments, packets were transmitted from the same machine as they

were being received. This was shown to have little impact on the scaling performance. When

packets were transmitted between two separate machines the performance characteristics

were very similar. In all two-machine experiments the secondary machine was an Intel i7

Macbook Pro (as described in Appendix A.1). Packets were transmitted from the network

machine using the open source tcpreplay application.

In all scaling performance experiments a single Snort process is configured to listen

on the connected interface device and to log packet-processing statistics once per second.

The signature-set size was varied from 1, 000 to 40, 000 in increments of 10, 000 signatures

with 10 trials per signature-set size. The sending machine was configured to delay packet

173

Appendix C. Issues & Confounding Factors

transmission according to the expected startup time for the Snort IDS (see Sect.4.2.1).

Two independent sets of data were run to determine if the dataset would play a role in

performance (see Appendix A.2). See Appendix A.1 for information about tcpreplay

configuration options.

The line saturation test sends the packets as fast as possible without dropping packets

upon transmission using the -t (–topspeed) option of tcpreplay. At the receiving end, packets

are processed normally by a single Snort process listening to the connected interface device

configured in promiscuous mode (forwards all packets regardless of source or destination).

C.2.1 I/O Costs from Alert Output

The use of randomly generated signatures resulted in a concern of whether I/O costs would

play a role. It was expected that the randomly generated signatures may produce a greater

number of alerts and consume a significant amount of CPU-time writing alert events to

disk. A single experiment was run on the test platform which disabled all alert output. The

slopes of the respective CPU-time scaling curves differed by about 5%, from 103634 (no

alert output) to 109755 (with alert output). However, the number of alerts produced by

the random signature-set is actually significantly less than the default signature-set for the

same dataset. This characteristic actually serves to decrease the apparent per-signature

cost. As was learned from experiments with high-coverage signatures, I/O costs can play

a significant role in system performance when the portion of packets resulting in event

output is large. This finding is demonstrated in Chapt. 6.2 and is the basis for the use of

Probabilistic Signature Activation as described in Chapt. 3.2.

174

Appendix C. Issues & Confounding Factors

C.2.2 I/O Costs from Packet Replay

All of the scaling performance tests were run on a single machine with one process transmit-

ting data on a virtual interface and a separate IDS process receiving data on the same virtual

interface1. This was done primarily to eliminate issues on the network in which a random

subset of packets would be dropped prior to being seen by the IDS. It was important to

measure the IDS dropping packets and not the hardware in between the sending machine

and the receiving user process. The use of a virtual interface means that packets are buffered

in kernel memory.

1http://vtun.sourceforge.net/tun/ - TunTap Project (Source Code - Retrieved Aug. 12, 2012)

175

http://vtun.sourceforge.net/tun/

Appendix D

Scripts & Algorithms

D.1 Packet Wrangler

Listing D.10: Packet Wrangler: predictEquivalenceClasses(Alert Set Ai,Connection Ci)

Require: Set E of equivalence classes ⇠

Require: Alert Set Ai which is to be mapped into likely equivalence classes

Require: A stochastic matrix T determining likely future equivalence classes for each alert

Calculate anticipated set of equivalence classes Ei = {(⇠, P (⇠) 2 E)} using T

Call updateFilters(Ci,Ei)

Listing D.11: Packet Wrangler: updateAllFilters

Require: Set E of equivalence classes ⇠

Require: k instances of Snort and an input filter for each ⇠

Require: ⇠0 defined as the global equivalence class (union set of equivalence classes)

Require: hashmap H mapping each ⇠ to relevant connections (Address1$ Address2)

for all ⇠ 2 E do

ConnectionList = list of connections associated with ⇠

Remove all filter expressions for Snort⇠
for all Connection 2 ConnectionList do

f filter expression for Connection

Add f to filter set for Snort⇠
Remove f from filter set for Snort⇠0 (filter set for global ⇠)

end for

end for

Ensure: Each Snorti is running with input filters for connections associated with ⇠i

176

Appendix D. Scripts & Algorithms

Listing D.12: Packet Wrangler: updateFilter(Connection Ci,Equivalence classes Ei)

Require: Set E of equivalence classes ⇠

Require: An instance of Snort and associated input filter running for each ⇠

Require: ⇠0 defined as the global equivalence class (union set of equivalence classes)

Require: hashmap G mapping each connection to previous set of ⇠

Require: hashmap H mapping each connection to a set of anticipated ⇠

Require: A connection Ci

Require: A set of anticipated equivalence classes Ei

F G(Ci), set of all equivalence classes previously associated with Ci

for all ⇠ 2 F do

Remove filter for Ci from IDS instance Snort⇠

end for

if H is empty then

Add filter for Ci to Snort0

Return

end if

Remove filter for Ci from Snort0

for all ⇠ 2 H do

Add filter for Ci to IDS instance Snort⇠

end for

Ensure: Each Snorti is running with input filters for connections associated with ⇠i

D.2 Gain Curve Calculations

In respect to anticipation the usable coverage of a particular signature-set is proportional to

the total number of packets which produce alerts and the number of these which belong

to the smaller equivalence class, Ap and Ar. Although it is possible for a single event to

make multiple predictions, we currently only care about the minimum we might be able to

achieve. If we assume that each event can only be used once for a single prediction, then

we can get an upper bound on our gain given that each event is used for prediction at most

once. Written in Mathematica, Listing D.13 shows the setup and listings D.14 and D.15

show evaluation for calculating a family of constant gain curves. It is important to reiterate

that the curves are particular to the computing system signature-set. Many different factors

can play a role in scaling performance specifics and the resulting gain estimates are only

177

Appendix D. Scripts & Algorithms

representative examples and may not apply to different architectures, detection systems, or

configurations.

Listing D.13: Setup for gain curve computation in Mathematica

Ar[Ap_, Aq_] := Ap*Aq

Ctime[n_] := 103634 n + 4.01621 10ˆ9

Closs[n_] := 0.9417 - 1.0392ˆ(-0.008 n)

Cost[n_] := Ctime[n]/Max[0, (1 - Closs[n])];

Cprimary[Ar_, n_, k_] := Cost[n]

Csecondary[Ar_, n_, k_] := Cost[k] Ar

Cbootstrap[Ar_, n_, k_] := Cost[n] (1 - Ar)

Cdelta[Ar_, n_, k_] := Cprimary[Ar, n, k] - (Csecondary[Ar, n, k] + Cbootstrap[Ar, n, k])

G[Ar_, n_, k_] := Cprimary[Ar, n, k]/(Csecondary[Ar, n, k] + Cbootstrap[Ar, n, k]) - 1

Gtime[Ar_, n_, k_] := Ctime[n]/(Ctime[n] (1 - Ar) + (Ctime[k] Ar)) - 1

Gloss[Ar_, n_, k_] := Closs[n]/(Closs[n] (1 - Ar) + (Closs[k] Ar)) - 1

Cprimary is the cost of running the primary IDS without any type of forwarding or

anticipatory method. Cboostrap is the primary instance but with traffic shunted to a secondary

instance based on predictions. Csecondary is the secondary IDS instance which processes

only forwarded traffic with a smaller signature-set.

Listing D.14: Gain curves computation for n=4320, G in {1,10,20,...,100}

Evaluate[Plot[

Table[FindRoot[G[Ar, 4320, k]*100 - Overhead, {Ar, 0.216}][[1,2]],

{Overhead, 1, 100, 10}],

{k, 1, 4300},

PlotRange -> {0, 1},

AxesLabel -> {"k", "Ar"},

PlotLabel -> StringJoin["Ar(k) for G in {1,10,20,...,100}%, n=4320"]

]]

Listing D.15: Gain curves computation for n=100000, G in {1,10,20,...,100}

Evaluate[Plot[

Table[FindRoot[G[Ar, 100000, k]*100 - Overhead, {Ar, 0.216}][[1,2]],

{Overhead, 1, 1000, 100}],

{k, 1, 100000 - 100},

178

Appendix D. Scripts & Algorithms

PlotRange -> {0, 1},

AxesLabel -> {"k", "Ar"},

PlotLabel -> StringJoin["Ar(k) for G in {1,100,200,...,1000}%, n=100,000"]

]]

179

References

[1] T Abraham, IDDM: Intrusion detection using data mining techniques, Tech. report,
Defense Science Technology Organisation, January 2001.

[2] A Agah, S.K Das, K Basu, and M Asadi, Intrusion detection in sensor networks: a
non-cooperative game approach, Proceedings of Third IEEE International Symposium
on Network Computing and Applications (NCA), 2004, pp. 343–346.

[3] Alfred V Aho and Margaret J Corasick, Efficient string matching: an aid to biblio-
graphic search, Communications of the ACM 18 (1975), no. 6, 333–340.

[4] E Albin and N C Rowe, A Realistic Experimental Comparison of the Suricata and
Snort Intrusion-Detection Systems, Proceedings of 26th International Conference on
Advanced Information Networking and Applications Workshops (WAINA), IEEE
Computer Society, 2012, pp. 122–127.

[5] Adeeb Alhomoud, Rashid Munir, Jules Pagna Disso, Irfan Awan, and A Al-Dhelaan,
Performance Evaluation Study of Intrusion Detection Systems, Procedia Computer
Science 5 (2011), 173–180 (English).

[6] J Allen, A Christie, W Fithen, J McHugh, J Pickel, and Ed Stoner, State of the prac-
tice of intrusion detection technologies, Networked Systems Survivability Program,
Technical Report CMU/SEI-99-TR-028 (2000), 1–219.

[7] T Alpcan and T Basar, A game theoretic approach to decision and analysis in network
intrusion detection, Proceedings of 42nd IEEE Conference on Decision and Control,
2003, pp. 2595–2600.

[8] N Amor, S Benferhat, and Z Elouedi, Naive bayes vs decision trees in intrusion
detection systems, Proceedings of the 2004 ACM symposium on Applied Computing
(2004), 420–424.

180

References

[9] Anderson, D Engelhardt, and D Marriott, Event handling system, US Patent Office
(2003), no. 12/004,980.

[10] M Anderson and D Engelhardt, Data processing architecture, WIPO (2002), no. WO
02/088988AI.

[11] Mark Anderson, Dean Engelhardt, Damian Marriott, and Suneel Randhawa, Data
view of a modelling system, US Patent Office (2006), no. 7,027,055 B2.

[12] Mark Anderson, Dean Engelhardt, Damion Marriott, and Suneel Randhawa, Ge-
ographic View of a Modelling System, US Patent Offic (2009), no. 7,250,944 B2,
1–67.

[13] Mark Sephen Anderson, Dean Engelhardt, Damian Marriott, and Singh Randhawa,
Data processing and observation system, US Patent Office (2006), no. 7,085,683.

[14] S Axelsson, Research in Intrusion Detection Systems: A Survey, Tech. Report 98-17,
Chalmers University of Technology, 1999.

[15] , Intrusion detection systems: A survey and taxonomy, Depart. of Computer
Engineering (2000), 1–27.

[16] , The base-rate fallacy and the difficulty of intrusion detection, ACM Transac-
tions on Information and System Security (2000), 186–205.

[17] I Balepin, S Maltsev, J Rowe, and K Levitt, Using specification-based intrusion
detection for automated response, Proceedings of Recent Advances in Intrusion
Detection (2003), 136–154.

[18] Pere Barlet-Ros, Gianluca Iannaccone, Josep Sanjuàs-Cuxart, and Josep Solé-Pareta,
Predictive resource management of multiple monitoring applications, IEEE/ACM
Transactions on Networking (TON) 19 (2011), no. 3, 788–801.

[19] Matt Bishop, Computer Security: Art and Science, Addison-Wesley, January 2003.

[20] C Brown, A Cowperthwaite, A Hijazi, and A Somayaji, Analysis of the 1999
DARPA/Lincoln Laboratory IDS evaluation data with NetADHICT, Proceedings of
IEEE Symposium on Computational Intelligence for Security and Defense Applica-
tions (CISDA) (2009), 1–7.

[21] ST Brugger and Jedadiah Chow, An assessment of the DARPA IDS Evaluation Dataset
using Snort, Tech. report, UCDAVIS Department of Computer Science, November
2005.

181

References

[22] Terry Brugger, KDD Cup ’99 dataset (Network Intrusion) considered harmful, KD-
nuggets News 18 (2007), no. 4, 1–2.

[23] D Brumley, J Newsome, and D Song, Theory and techniques for automatic generation
of vulnerability-based signatures, IEEE Transactions on Dependable and Secure
Computing 5 (2008), no. 4, 224–241.

[24] D Brumley, J Newsome, D Song, Hao Wang, and S Jha, Towards Automatic Genera-
tion of Vulnerability-Based Signatures, Proceedings of IEEE Symposium on Security
and Privacy (S&P’06), IEEE, January 2006, pp. 2–16.

[25] J Caballero, Z Liang, P Poosankam, and D Song, Towards generating high cover-
age vulnerability-based signatures with protocol-level donstraint-guided exploration,
Proceedings of Recent Advances in Intrusion Detection (2009), 161–181.

[26] J Cannady and J Harrell, A comparative analysis of current intrusion detection tech-
nologies, Proceedings of Technology in Information Security Conference (1996),
212–218.

[27] D Dasgupta and F Gonzalez, An intelligent decision support system for intrusion
detection and response, Proceedings of the International Workshop on Mathematical
Methods, Models and Architectures for Computer Networks Security (2001), 1–14.

[28] D Day and B Burns, A performance analysis of snort and suricata network intrusion
detection and prevention engines, Proceedings of The Fifth International Conference
on Digital Society (ICDS) (2011), 187–192.

[29] H Debar, M Dacier, and A Wespi, Towards a taxonomy of intrusion-detection systems,
Computer Networks 31 (1999), no. 8, 805–822.

[30] , A revised taxonomy for intrusion-detection systems, Annals of Telecommu-
nications 55 (2000), no. 7, 361–378.

[31] D Denning, An intrusion-detection model, IEEE Transactions on Software Engineering
SE-13 (1987), no. 2, 222–232.

[32] L Deri, High-speed dynamic packet filtering, Journal of Network and Systems Man-
agement 15 (2007), no. 3, 401–415.

[33] Vassilis Dimopoulos, Ioannis Papaefstathiou, and Dionisios Pnevmatikatos, A
Memory-Efficient Reconfigurable Aho-Corasick FSM Implementation for Intrusion
Detection Systems, Proceedings of International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, IEEE, 2007, pp. 186–193.

182

References

[34] H Dreger, A Feldmann, V Paxson, and Robin Sommer, Predicting the resource
consumption of network intrusion detection systems, Proceedings of Recent Advances
in Intrusion Detection, January 2008, pp. 135–154.

[35] I Dubrawsky and R Saville, SAFE: IDS Deployment, Tuning, and Logging in Depth
Authors, CISCO SAFE Whitepaper (2003), 1–58.

[36] F C Eigler, V Prasad, W Cohen, H Nguyen, M Hunt, Jim Keniston, and Brad Chen,
Architecture of systemtap: a Linux trace/probe tool, Tech. report, RedHat, 2005.

[37] D Engelhardt and M Anderson, A distributed multi-agent architecture for computer
security situational awareness, Proceedings of Sixth International Conference of
Information Fusion 1 (2003), 1–8.

[38] Vegard Engen, Jonathan Vincent, and Keith Phalp, Exploring discrepancies in findings
obtained with the KDD Cup ’99 data set, Intelligent Data Analysis 15 (2011), no. 2,
251–276.

[39] W Fan, W Lee, S Stolfo, and M Miller, A multiple model cost-sensitive approach
for intrusion detection, Lecture Notes in Computer Science (LNCS) 1810 (2000),
142–154.

[40] Stephane Forrest, Steven A Hofmeyr, and Anil Somayaji, Computer immunology,
Communications of the ACM 40 (1997), no. 10, 88–96.

[41] J Frank, Artificial intelligence and intrusion detection: Current and future directions,
Proceedings of the 17th National Computer Security Conference (1994), 1–12.

[42] J Friedman, R Kohavi, and Y Yun, Lazy decision trees, Proceedings of the Association
for the Advancement of Artificial Intelligence (1996), 1–8.

[43] Sunny Fugate, Visual Representations of Flow Data and the Value of Visual Language,
FloCon 2008, January 2008.

[44] C Geib and R Goldman, Plan recognition in intrusion detection systems, DARPA
Information Survivability Conference (2001), 1–10.

[45] J Haines, R Lippmann, D Fried, and M Zissman, 1999 DARPA intrusion detection
evaluation: Design and procedures, Tech. report, MIT, January 2001.

[46] J Hellerstein and F Zhang, A statistical approach to predictive detection, Computer
Networks (2001), 77–95.

[47] A Herzog, N Shahmehri, and C Duma, An ontology of information security, Interna-
tional Journal of Information Security and Privacy 1 (2007), no. 4, 1–23.

183

References

[48] K Jackson, Intrusion detection system (IDS) product survey, Tech. report, Los Alamos
National Laboratory, January 1999.

[49] P Kabiri and A A Ghorbani, Research on intrusion detection and response: A survey,
International Journal of Network Security 1 (2005), no. 2, 84–102.

[50] Rohana J Karunamuni and Shunpu Zhang, Empirical Bayes detection of a change
in distribution, Annals of the Institute of Statistical Mathematics 48 (1996), no. 2,
229–246 (English).

[51] RA Kemmerer and Giovanni Vigna, Intrusion detection: a brief history and overview,
Computer 35 (2002), no. 4, 27–30.

[52] TM Khoshgoftaar, Predicting software development errors using software complexity
metrics, IEEE Journal on Selected Areas in Communications 8 (1990), no. 2, 253–261.

[53] C Kruegel and T Toth, Using decision trees to improve signature-based intrusion
detection, Lecture Notes in Computer Science (LNCS) 2820 (2003), 173–191.

[54] S Kumar, Classification and detection of computer intrusions, Purdue University
(1995), 1–165.

[55] LJ LaPadula, Compendium of anomaly detection and reaction tools and projects, Tech.
Report MP 99B0000018R1, MITRE, January 2000.

[56] W Lee, W Fan, M Miller, SJ Stolfo, and E Zadok, Toward cost-sensitive modeling for
intrusion detection and response, Journal of Computer Security 10 (2002), 5–22.

[57] W Lee, SJ Solfo, and Kui W Mok, Adaptive intrusion detection: A data mining
approach, Artificial Intelligence Review 14 (2000), 553–567.

[58] Wenke Lee, João B D Cabrera, Ashley Thomas, Niranjan Balwalli, Sunmeet Saluja,
and Yi Zhang, Performance adaptation in real-time intrusion detection systems,
Lecture Notes in Computer Science (LNCS) 2516 (2002), no. Chapter 14, 252–273.

[59] K Levitt, Intrusion detection: current capabilities and future directions, Proceedings
of the 18th Annual Computer Security Applications Conference (2003), 365–367.

[60] X Li, A scalable decision tree system and its application in pattern recognition and
intrusion detection, Decision Support Systems 41 (2005), no. 1, 112–130.

[61] X Li and N Ye, Decision tree classifiers for computer intrusion detection, Parallel and
Distributed Computing Practices 4 (2001), no. 2, 179–190.

184

References

[62] R Lippmann, D Fried, I Graf, J W Haines, K R Kendall, D McClung, D Weber,
D Wyschogrod, R K Cunningham, and M A Zissman, Evaluating intrusion detection
systems: The 1998 DARPA off-line intrusion detection evaluation, DARPA Informa-
tion Survivability Conference and Exposition 2 (2000), 12–26.

[63] R Lippmann, J Haines, D Fried, J Korba, and K Das, The 1999 DARPA off-line
intrusion detection evaluation, Computer Networks (2000), 579–595.

[64] Y. Liu, H. Man, and C. Comaniciu, A game theoretic approach to efficient mixed
strategies for intrusion detection, Proceedings of the IEEE International Conference
on Communications (ICC) 5 (2006), 2201–2206.

[65] E Lundin and E Jonsson, Survey of intrusion detection research, Tech. report,
Chalmers University of Technology, January 2002.

[66] T F Lunt, A Tamaru, F Gilham, R Jagannathan, C Jalali, P G Neumann, H S Javitz,
A Valdes, and T D Garvey, A real time intrusion detection expert system (IDES), Tech.
Report 6784, SRI International, 1990.

[67] M V Mahoney and P K Chan, An analysis of the 1999 DARPA/Lincoln Laboratory
evaluation data for network anomaly detection, Proceedings of Recent Advances in
Intrusion Detection, January 2003, pp. 220–237.

[68] Marc Norton, Optimizing Pattern Matching for Intrusion Detection, Tech. report,
SourceFire Inc, June 2004.

[69] Lies Notebaert, Geert Crombez, Stefaan Van Damme, Jan De Houwer, and Jan
Theeuwes, Signals of threat do not capture, but prioritize, attention: A conditioning
approach., Emotion 11 (2011), no. 1, 81–89 (English).

[70] J Novak and Steve Sturges, Target-Based TCP Stream Reassembly, Tech. report,
SourceFire Inc, 2007.

[71] A. Papadogiannakis, M Polychronakis, and E.P. Markatos, Improving the accuracy
of network intrusion detection systems under load using selective packet discarding,
Proceedings of the Third European Workshop on System Security (2010), 15–21.

[72] Vern Paxson, Bro: A System for Detecting Network Intruders in Real-Time, Computer
Networks: The International Journal of Computer and Telecommunications 31 (1999),
no. 23-24, 2435–2463.

[73] S Peddabachigari, A Abraham, and J Thomas, Intrusion detection systems using
decision trees and support vector machines, International Journal of Applied Science
and Computations (2004), 118–134.

185

References

[74] M Pollak, Optimal Detection of a Change in Distribution, The Annals of Statistics 13
(1985), no. 1, 206–227.

[75] J Quinlan, Discovering rules by induction from large collections of examples, Expert
Systems in the Micro-electronic Age (1979), 168–201.

[76] , Induction of decision trees, Machine Learning 1 (1986), 81–106.

[77] , Learning logical definitions from relations, Machine Learning 5 (1990),
239–266.

[78] M Roesch, Snort-lightweight intrusion detection for networks, Proceedings of the
13th USENIX Systems Administrators Conference (LISA) (1999), 229–238.

[79] Martin Roesch and Chris Green, SNORT Users Manual 2.8.6, Tech. report, SourceFire
Inc, April 2010.

[80] Sebastian Roschke, Feng Cheng, and Christoph Meinel, A new alert correlation
algorithm based on attack graph, Proceedings of the 4th international conference on
Computational Intelligence in Security for Information Systems (CISIS), Springer-
Verlag, June 2011, pp. 58–67.

[81] K Salah and A Kahtani, Improving snort performance under linux, Communications,
IET 3 (2009), no. 12, 1883–1895.

[82] Nabil Schear, David R Albrecht, and Nikita Borisov, High-Speed Matching of Vulner-
ability Signatures, Proceedings of Recent Advances in Intrusion Detection (Richard
Lippmann, Engin Kirda, and Ari Trachtenberg, eds.), Springer Berlin Heidelberg,
2008, pp. 155–174.

[83] V Shen, T Yu, SM Thebaut, and L R Paulsen, Identifying error-prone software—an
empirical study, IEEE Transactions on Software Engineering SE-11 (1985), no. 4,
317–324.

[84] Steven R Snapp, James Brentano, T L Goan, T Grance, L Heberlein, C Ho, KN Levitt,
B Mukherjee, D Mansur, K Pon, and S E Smaha, Intrusion Detection Systems (IDS):
A Survey of Existing Systems and a Proposed Distributed IDS Architecture, UC Davis,
Report No. CSE-91-7 (1991), 1–18.

[85] Natalia Stakhanova, Samik Basu, and Johnny Wong, A taxonomy of intrusion response
systems, International Journal of Information and Computer Security 1 (2007), no. 1/2,
168–184.

186

References

[86] C Strasburg, N Stakhanova, S Basu, and JS Wong, Intrusion response cost assess-
ment methodology, Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security (2009), 388–391.

[87] H Teng, K Chen, and Stephen Lu, Adaptive real-time anomaly detection using induc-
tively generated sequential patterns, Proceedings of the 1990 IEEE Symposium on
Research in Security and Privacy (1990), 278–284.

[88] Tung Tran, Issam Aib, Ehab Al-Shaer, and Raouf Boutaba, An evasive attack on
SNORT flowbits, Proceedings of Network Operations and Management Symposium
(NOMS) (2012), 351–358.

[89] T Verwoerd and R Hunt, Intrusion detection techniques and approaches, Computer
Communications 25 (2002), 1356–1365.

[90] L Vespa, M Mathew, and N Weng, Predictive Pattern Matching for Scalable Net-
work Intrusion Detection, Lecture Notes In Computer Science: Information and
Communications Security 5927 (2009), 254–267.

[91] Leon Ward, Improving your custom Snort rules, Tech. report, Sourcefire, November
2011.

[92] Zhenwei Yu, Jeffrey Tsai, and Thomas Weigert, An adaptive automatically tuning
intrusion detection system, ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 3 (2008), no. 3, 10:1–10:25.

[93] Y Zhang, X Fan, and Y Wang, Attack grammar: A new approach to modeling
and analyzing network attack sequences, Proceedings of Annual Computer Security
Applications Conference (2008), 215–224.

[94] B Zhu and A Ghorbani, Alert correlation for extracting attack strategies, International
Journal of Network Security (2006), 1–28.

187

