
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2010

Security in network games
Rustagi Navin

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Navin, Rustagi. "Security in network games." (2010). https://digitalrepository.unm.edu/cs_etds/13

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/13?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Security in Network games

by

Navin Rustagi

B.Sc., Chennai Mathematical Institute, 2002
M.Sc., Chennai Mathematical Institute, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2010

c©2010, Navin Rustagi

iii

Dedication

To my parents, for their support, encouragement, love and and undying devotion to

my education.

To my gurus at UNM and CMI, whose faith in my abilities is a huge source of

inspiration for me.

iv

v

Acknowledgments

I would like to thank many people without whom this dissertation would not be
possible. Foremost in the list is Jared. He suggested great problems to work on and
contributed to this work significantly with his advice, suggestions and insights. He
was also very helpful in inculcating in me an interest for theory. His patience with
my mistakes has been most helpful for the completion of this work.

I would like to thank James Aspnes and Jared Saia for their contributions to
work presented in Chapter 2. I would like to thank Josep Dı́az, Dieter Mitsche and
Jared Saia for their contributions to work presented in Chapter 4. I would like to
thank Jared for his contributions to work presented in Chapter 3. I would also like
to thank Amitabh amd Muyiwa for giving several useful suggestions for figures and
empirical work carried out in this dissertation. I thoroughly enjoyed collaborating
with Thomas Hayes, Jared Saia and Amitabh Trehan on a paper which is not part
of this dissertation and I thank them for it.

I would also like to thank Prof Deepak Kapur for showing to me the importance of
solving examples and to Prof K. Narayan Kumar from my undergraduate institution
for introducing me to the area of theoretical computer science. Cris and Sean, were
always available for any questions which I had, or advice which I needed. George
and Jeff from tech support, Lynne, Courtney and Lourdes have made my stay here
hassle free and comfortable. I thank all of them for helping me out from time to time.
Additionally I would like to thank Josep and Stefano for hosting me in Barcelona
and Rome respectively, which was one of the best times of my student life.

There were many friends, without whom the journey would have been very boring
and difficult. This list is too long to be enumerated fully. I thank Amitabh, Vaibhav,
Anuj, Arnab, Rajeev, Niranjan, Manju, Tom, Japji, Animesh, Mukesh, Dhaval,
Wenyun, Jack, Gaurav, Sourav, Krishna, Abhishek, Shailendra, Tamanna, Shweta,
Pallavi, Srijana and Amanda for encouraging me from time to time and the several
moments of enlightening discussions at Dhaka Bazaar and to Kaku and Kakima for
making it possible. There are many more in this list but rest assured, you will always
remain in my heart and mind.

Last but not the least I would like to thank my family for bearing with me on all
difficult times and always encouraging me to pursue challenges. At this moment the
contributions of my late father come to my mind, for helping me hone my abilities,
both emotional and professional and always coming up with great ways to encourage
me to pursue my dreams and recover my confidence after various failures. There is

vi

no ability which I have in greater measure than him, and in a way, this PhD is his. I
would also like to thank my mother for being with me in Albuquerque for the most
productive time of my research career. She contributed immensely with her excellent
cooking and emotional support. I would also like to thank my brothers and their
families for being available with their love and encouragement at all times.

vii

Security in Network games

by

Navin Rustagi

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2010

Security in Network games

by

Navin Rustagi

B.Sc., Chennai Mathematical Institute, 2002

M.Sc., Chennai Mathematical Institute, 2004

Ph.D., Computer Science, University of New Mexico, 2010

Abstract

Attacks on the Internet are characterized by several alarming trends: 1) increases

in frequency; 2) increases in speed; and 3) increases in severity. Modern computer

worms simply propagate too quickly for human detection. Since attacks are now

occurring at a speed which prevents direct human intervention, there is a need to

develop automated defenses. Since the financial, social and political stakes are so

high, we need defenses which are provably good against a worst case attacks and are

not too costly to deploy. In this dissertation we present two approaches to tackle

these problems.

For the first part of the dissertation we consider a game between an alert and

a worm over a large network. We show, for this game, that it is possible to design

an algorithm for the alerts that can prevent any worm from infecting more than a

vanishingly small fraction of the nodes with high probability. Critical to our result is

designing a communication network for spreading the alerts that has high expansion.

ix

The expansion of the network is related to the gap between the 1st and 2nd eigenvalues

of the adjacency matrix. Intuitively high expansion ensures redundant connectivity.

We also present results simulating our algorithm on networks of size up to 225.

In the second part of this dissertation we consider the virus inoculation game

which models the selfish behavior of the nodes involved. We present a technique for

this game which makes it possible to achieve the “windfall of malice” even without the

actual presence of malicious players. We also show the limitations of this technique

for congestion games that are known to have a windfall of malice.

x

Contents

List of Figures xv

1 Introduction 1

1.1 The Worm versus Alert game . 2

1.1.1 Our Model . 4

1.1.2 Contributions . 6

1.1.3 Related Work . 7

1.2 The Virus Inoculation game . 9

1.2.1 Motivating the game . 10

1.2.2 Mediators . 11

1.2.3 Contributions . 12

1.2.4 Related Work . 13

1.3 Structure of the Document . 14

2 Worm Vs Alert without Time to Live 15

xi

Contents

2.1 Chapter Layout . 15

2.2 Results Overview . 16

2.3 Alert versus worm in an expanding overlay network 17

2.3.1 Phase I . 19

2.3.2 Analysis of Phase II . 19

2.3.3 Analysis of Phase III . 25

2.4 Is expansion necessary? . 31

2.5 Empirical Results . 35

2.6 Conclusion . 37

3 Handling False Alerts in the Worm versus Alert Game 39

3.1 Chapter Layout . 40

3.2 Results Overview . 41

3.2.1 Theoretical Results Overview 41

3.2.2 Empirical Results Overview 43

3.3 Analysis Overview . 44

3.4 Proofs . 48

3.4.1 Large Step Round . 48

3.4.2 Phase 1 . 48

3.4.3 Lower bound on the number of Alerts 49

3.4.4 Phase 2 . 52

xii

Contents

3.4.5 Phase 3 . 54

3.4.6 Phase 4 . 57

3.5 Empirical Results . 59

3.5.1 Empirical Setup . 59

3.5.2 Results . 61

3.6 Conclusion . 63

4 On the power of Mediators 64

4.1 Layout of this Chapter . 65

4.2 Basic definitions and notation. 66

4.3 Virus Inoculation Game . 66

4.4 Impossibility Result . 73

4.4.1 Overview of Theorem 4.2 . 75

4.4.2 Proof of Theorem 4.2 . 76

4.5 The Possibility of Mediation . 81

4.6 Conclusion . 84

5 Future Directions 85

5.1 Future work on the Worm versus Alert game 85

5.2 Future work in designing mediators 87

5.2.1 Multiround Games . 87

xiii

Contents

5.2.2 Non-Responsive games and do Mediators help? 89

5.2.3 Mediators for congestion control protocol 95

References 97

xiv

List of Figures

2.1 (a) log of the network size versus fraction of nodes saved (b) contour

plot of α versus γ required to save 99%, 95% and 90% of the nodes. 36

3.1 (Best viewed in color)A sequence of 6 snapshots of the game at rounds

2, 4, 7, 12, 18 and 26. Red nodes are infected nodes, green are alerted

nodes and blue are neither infected nor alerted. 43

3.2 (Best viewed in color)A false alert spreading from a detector node

for τ = 3, α = 4. 44

3.3 Phase, # of alerted nodes at the end of the phase, # of infected

nodes at the end of the phase, duration of that phase 45

3.4 (a) contour plot of log of # of nodes vs fraction of nodes saved for

α = 2, 4, 6, 8, 10 (b)number of nodes saved/infected in each round . . 62

3.5 alpha vs fraction of nodes saved . 63

4.1 The
√
n × √n grid with two configurations C1, C2 for the virus in-

oculation game . 69

4.2 Examples where Theorem 4.2 applies 74

4.3 Congestion Games where mediation helps 83

xv

Chapter 1

Introduction

In recent times, it has become increasingly challenging to protect the internet from

attacks. They have exhibited several trends some of which are: (i) increases in

frequency: large-scale attacks are approximately doubling every year [53]; (ii) in-

creases in speed: the recent slammer worm infected 90% of vulnerable hosts within

10 minutes [37]; and (iii) increases in severity: the slammer worm had many unfore-

seen consequences including failures of 911 emergency data-entry terminals, network

outages, and canceled airline flights, [37, 16, 28, 25]. In addition, there has been a

broadening of motivations for attack to include extortion [55, 8]; phishing [21, 57, 29];

sending anonymous spam [31, 30]; and political reasons [43, 45]. Modern computer

worms simply propagate too quickly for human detection. Since worms spread at

a speed which prevents direct human intervention, there is a need to develop auto-

mated defenses. Since the financial, social and political stakes are so high, we need

defenses which are provably good against a worst case attacks.

In developing effective response mechanisms, one can follow several approaches,

some of which are: develop better technology for defense, commit more resources

to defenses, or collaborate more effectively with our allies, in our defenses. In this

1

Chapter 1. Introduction

dissertation, we focus on the third approach. We studied two problems, which are

motivated by the need for developing automated, fast, resource efficient, and provably

secure collaborative techniques.

The rest of the chapter is organized as follows: In section 1.1 we motivate the

first problem in this dissertation. We also give the model, results overview and

related work for the first problem in subsection 1.1.1, 1.1.2 and 1.1.3 respectively.

In section 1.2 we motivate our second problem. We present the model, results and

related works for this section in subsection 1.2.1, 1.2.3 and 1.2.4 respectively.

1.1 The Worm versus Alert game

Many worm containment systems are based on a network centric approach. In an

automatic version of this approach, packet classifiers are deployed which use filter

mechanisms dependent on automatically generated content signatures of worms. The

signatures are generated by identifying common byte strings in suspicious network

flows. However, automatic methods for generating content signatures fail to con-

tain polymorphic worms, as worms can use techniques such as encryption or code

obfuscation [56] to bypass any filters looking for specific byte strings.

In another approach, semantic or behavioral-based systems analyze behavioral

signatures [19, 15, 62, 59]. In particular, they may determine if similar data is being

sent from one machine to another [19]; if there is a suspicious sequence of systems

calls that is being executed by many machines in the network [62, 15, 14]; or whether

any incoming or outgoing network traffic exploits a known vulnerability [59].

Both of the above approaches do not take into account the application level

vulnerabilities which worms could exploit. Also both of them are prone to false

positives, which then becomes a bottleneck in the deployment of automatic worm

2

Chapter 1. Introduction

detection systems. Work done by Costa et al. in [15], addresses these concerns to

some extent by proposing a host centric approach. In their system, some nodes in the

network run instrumented software to automatically detect a worm, determine which

vulnerability the worm exploits, and then generate a short trace of the vulnerability

the worm exploits. These nodes are called detector nodes. The trace(or proof) is

called a self certifying alert(SCA’s). Because a SCA is short, it is easily propagated

through a network. A machine which has a SCA can generate a filter that blocks

infection by analyzing the exploit which the SCA proves exists. Because the SCA

focuses on the security flaw exploited by a worm, rather than the textual content

of the worm, SCAs can easily be created for polymorphic worms. This approach to

counter worms, certainly reduces the number of false negatives to a great extent, and

has a negligible rate of false alerts.

In the Vigilante system [14] SCAs can be generated, checked and deployed effi-

ciently. For example, it takes 18 milliseconds to generate a SCA for the Slammer

worm, the resulting SCA is 457 bytes long, the time to verify this SCA is 10 millisec-

onds, and the time to create a filter from the verified SCA is 24 milliseconds. These

times for SCA generation, verification and filter creation are on the same scale as

the time it takes a worm to infect a machine. Vigilante performs similarly for two

other Internet worms, Code Red and Blaster.

A crucial aspect of this approach that we focus on in this dissertation, is the

algorithm for diffusion of SCA’s through the network. There are certain character-

istics we desire in all such systems. Firstly, we want the identity of detector nodes

to be hidden from the worms, because then there is an easy worm strategy to infect

the network, which is to avoid attacking any of the detector nodes. Secondly, the

worms should not be able to use the alert propagation system to carry out Denial

of Service Attacks on the nodes of the network. In other words, it is necessary to

limit the number of SCA’s which an alerted node can flood into the network, and

3

Chapter 1. Introduction

the number of SCA’s which a node can receive in a single time step. This can be

achieved by making the alert propagation “polite”, i.e an alerted nodes can only send

SCA’s to their neighbors. The distribution of alerts in the Vigilante system satisfies

these constraints. The underlying overlay network used for propagating alerts in

Vigilante is the Pastry [47] peer-to-peer network. It is shown empirically for this

system, that a very small fraction of special detector nodes is enough to ensure that

a worm infects no more than 5% of the vulnerable population. While these initial

results are promising, several critical problems remain. First, Vigilante requires that

the nodes participating in the overlay network all be resistant to infection. Second,

Vigilante requires that the topology of the overlay network be hidden from the worm.

These two assumptions may hold true for an overlay network owned and operated

by a single company, but seem unlikely to hold for a large-scale open source peer-to-

peer network. Finally, while the Vigilante systems performs well empirically against

currently known worms, the system has no known theoretical guarantees against all

worms. In our work, we make none of these two assumptions.

On the other hand, worms are becoming increasingly sophisticated. There is

evidence of collaboration between online criminals [20, 53, 64]. In addition there

is evidence that worms can spread arbitrarily on the internet [60]. Therefore it is

reasonable to assume that the worms would be collaborating, and their propagation

would not be constrained by any underlying network.

We will now define the model we studied in this dissertation, which is inspired

by the discussion above.

1.1.1 Our Model

In our game initially no nodes are infected or alerted. Each node in the network

is a detector node independently with fixed probability γ. The game starts with a

4

Chapter 1. Introduction

single node becoming infected. In every round thereafter, every infected node can

send out no more than β worms to other nodes in the network. The alerted node

can send out alerts to no more than α neighbors. Here α and β are fixed positive

integers. Nodes in the network change state according to the following four rules:

1) If a worm is received by a node that is not a detector and is not alerted, that

node becomes infected; 2) If a worm is received by a node that is a detector, it is

not infected, instead it becomes alerted; 3) If an alert is received by a node that is

not infected, that node becomes alerted; 4) If a worm or an alert is received by a

node that is already infected or already alerted, then there is no change in the state

of that node. This is a synchronous game. i.e, any message sent out by any node is

received by the destination node in the same time step.

An infected node can choose any nodes in the network to send worm messages.

In contrast, an alerted node can send alert messages only through a previously de-

termined, overlay network. In other words, the alert-spreading algorithm is “polite”

in the sense that it does not bombard arbitrary nodes with alerts unless it knows

that they are interested in receiving them. A particularly sophisticated worm may

exploit the structure of the overlay network for its own purposes. An edge in this

overlay network represents an agreement between two nodes to accept SCAs from

each other.

Secondly, we assume that the infected nodes are intelligent, coordinated and

essentially omniscient. In other words, the infected nodes know everything except

for which nodes are detectors, and the alerted nodes’ random coin flips i.e. they know

the topology of the overlay network used by the alerts; which nodes are alerted and

which are infected at any time; where alerts and worms are being sent; the overall

strategy used by the alerted nodes; etc. Moreover, the worm is unconstrained in

which nodes it attacks. For example, it could always try to infect nodes which have

never been infected before. The alerted nodes are assumed to know nothing about

5

Chapter 1. Introduction

which other nodes are infected or alerted, where alerts or worms are being sent, or

the strategy used by the infected nodes.

For the rest of this dissertation we would call this game the Worm versus Alert

game.

1.1.2 Contributions

We start this section with a discussion on specific questions which motivated our

results. First consider the following strategy for worms: since the infected nodes

collaborate and are omniscient, they come to know of any detector nodes they might

have alerted. In the next time step they attack all the nodes adjacent to the alerted

detector node to cut off the spread of SCA’s through the network. Based on this

strategy the following questions arise. Is there a strategy the alerted nodes could

use, which not only will help protect against this possible strategy of the worm, but

also against other perhaps more devious strategies. What are the properties of the

overlay network, that would help protect the nodes?

Another natural question about this strategy is regarding the robustness of this

approach to malfunctioning detector nodes. In the event of a false alert, can we limit

the congestion in the network?

The work in this dissertation explores these questions in detail. Given below is a

chapter wise breakup of results regarding the Worm vs Alert game.

• Chapter 2: Let RANDOM be the algorithm where each alerted node sends to

α neighbors selected uniformly at random with replacement. In this chapter, we

show that if the alerts propagate on a d-regular graph with expansion constant

c, and if α
β(1−γ)

> 2d
c

, then RANDOM ensures, that with high probability,

all but a vanishing fraction of nodes get infected as the network size grows.

6

Chapter 1. Introduction

Intuitively, this shows that the infected nodes can never completely surround

the set of alerted nodes, because of the high expansion of the overlay network.

We also show that if the overlay network has poor expansion(i.e β(1−γ) ≥ d),

then there is a strategy where the worms can infect almost all of the non-

detector nodes. Next, we give empirical results that suggest that our algorithm

for the propagation of alerts combined with techniques like throttling will be

useful in current large-scale networks. This work appeared in Proceedings of the

Principles of Distributed Systems; 11th International Conference(OPODIS),

2007 [5].

• Chapter 3: False alerts are common in many worm detection systems. In this

chapter, we propose a new algorithm where each alert message has a time to

live(ttl) field which decides the distance to which an alert can spread. By giving

an appropriate value to the ttl parameter, we ensure that a single false alert

will not spread to more than polylogarithmic number of nodes. We present an

alert propagation algorithm in this chapter which uses a c0 log n regular overlay

network to spread, for c0 a constant. This algorithm has two guarantees: 1) it

ensures with high probability that under certain constraints on α, β and γ, all

but a small fraction of nodes will be alerted when attacked by a worm known

to have a lifetime of O(log n) rounds; and 2) any false alert will not spread

to more than polylogarithmic number of nodes. We complement our analysis

with empirical simulations of our algorithm against a fixed worm strategy over

networks of size about 225. The work in this chapter is under review.

1.1.3 Related Work

In work done in [38], Moore et al. outline three approaches for anti-worm systems:

1) preventing the attack by reducing the number of vulnerable hosts; 2) treatment

based approaches, e.g develop patches and distribute them to infected nodes; and 3)

7

Chapter 1. Introduction

containment based approaches, e.g using worm signatures etc. Since the vulnerable

population will always remain due to homogeneous software in hosts, and treatment

based approaches take too much time to implement, as they require distributing

patches, often with human involvement, containment based approaches seem to be

the most viable option.

A standard approach to containing worms, is to blacklist IP addresses which

belong to infected host, but this approach has become increasingly ineffective [41, 44].

It is also prone to false alerts. Content based automatic generation of worms is a

another alternative for containment of worms. There has been significant success

in developing signature generating systems(Vigilante [15, 14], Earlybird [51, 52],

Autograph [26], Polygraph [40] and Shield [59]).

We now describe work in distribution of alerts over an overlay network. Zhou et

al. [63] propose a system for distributing alerts over a network, but their system is

focused on confronting worms that can spread only through the same overlay network

through which the alert is spreading. Vojnovic and Ganesh [58] and Shakkottai and

Srikant [50] perform exhaustive analytical and empirical studies of the effectiveness of

different types of alert dissemination. In work by Vojnovic and Ganesh, they use an

hierarchical model for alert dissemination, as opposed to the flat model in Vigilante.

Shattokai and Srikant make a case for using P2P systems for patch dissemination,

given the exponential data dissemination capabilities of these system. However,

both the above works, focuses only on worms that spread uniformly at random in

the network.

Many automatic signature based systems assume that worms would be designed

to spread very fast. A slow worm may exploit this vulnerability of the detection

system. In [49], an approach is discussed for containing both slow and fast worms.

In [61], a throttling based approach to slow down the spread of worms is discussed.

8

Chapter 1. Introduction

1.2 The Virus Inoculation game

In today’s world, many large scale networks, are constituted of selfish components

that are controlled by different authorities. In such a scenario, each node in the

network is selfish and tries to reduce its cost. For the game we discuss in this section,

we will assume that the players are selfish, as opposed to the game in the previous

section, where players were altruistic. Unfortunately, such a scenario may lead to a

large social cost1 for the whole network and may eventually prove disastrous for each

individual node as well. From a game theoretic perspective this phenomenon is often

called the Tragedy of Commons effect [23]. To illustrate this effect more concretely,

we first begin with some necessary definitions.

Definitions: A game consists of a set of n players, {1, . . . , n}. For each player i

there is a set of possible strategies or actions Si. We use s = (s1, . . . , sn), where

si ∈ Si to denote a configuration or strategy vector of the game and S = ×iSi is the

universal set of all possible configurations. Let s−i be the n − 1 dimensional vector

of strategies played by all players other than i. There is a cost function ci for each

player i which is a function from S to R. A pure strategy Nash equilibrium of this

game is a strategy vector s = (s1, . . . , sn), s.t ci(si, s−i) ≤ ci(s
′
i, s−i) for all alternate

strategies s′i of player i. If each player i picks a strategy according to a distribution

on Si, such a choice is called a mixed strategy. There is a notion of mixed strategy

Nash equilibrium or simply called Nash Equilibrium, where we assume that players

are trying to minimize their expected costs. Every pure strategy nash equilibrium is

a mixed strategy nash equilibrium. The social cost of the game is the sum of costs of

all individual players. An optimal solution for a game is when a benevolent dictator

decides strategies for each player which minimizes the social cost of the game. The

ratio of the social cost in the worst nash equilibria to the social cost in the optimal

solution is called the Price of Anarchy [27] or PoA. Intuitively, POA measures the

1the sum of individual costs

9

Chapter 1. Introduction

Tragedy of Commons effect.

We now present a concrete example which exhibits the Tragedy of Commons

effect. As an example of this effect consider the one round pollution game where

there are n players, each of which decide to pollute, which costs zero or to not

pollute which costs one. Each player incurs an additional cost equal to the number

of players that decide to pollute. In this game it is clear that a Nash equilibria occurs

when all the players decided to pollute. The social cost of the game in this case is n2.

On the other hand the best possible solution for this game is when each of players

decide not to pollute. Then social cost is then n. The PoA of the pollution game is

n.

In this dissertation we study a technique for reducing the PoA in a network

security game. We define and motivate our game in the next section.

1.2.1 Motivating the game

How costly is it to deploy an anti-virus system over a network? In networks where

there is no centralized authority and nodes are free to choose to inoculate or not, the

incentive for the general population to inoculate decreases. Nodes may rely on the

fact that many of their neighbors have decided to inoculate.

We study this problem in the context of a virus inoculation game. This game

was first presented by, Aspnes, Chang and Yampolskiy in [4]. Since then this game

has been studied extensively in the computer science community [34, 35, 33, 24, 22].

Virus Inoculation Game: This game is played out on a graph G=(V,E), which

is a two dimensional torus. Each node is a player in this game. Each player has two

strategies to choose from, either to inoculate or to not inoculate. The cost incurred

to inoculate is 1, and there is no cost of not inoculating. After all the players have

10

Chapter 1. Introduction

decided which actions to perform, a virus attacks one node chosen uniformly at

random in G. All nodes which can be reached by this infected node, along paths

consisting entirely of uninoculated nodes, are infected with the virus. Every node

that gets infected pays a cost of L.

In work done by Moscibroda et al in [39], the price of anarchy for this game

is shown to be (n/L)1/3, where n = |V |. Since n is expected to be much larger

than L, this game has a high price of anarchy. Now suppose there are some nodes

which turn malicious. The malicious players are not concerned with their welfare

and their aim is to always degrade the performance of this game, in this case it

is too increase the social cost of this game. They can do this by communicating

to non-malicious nodes that they are inoculated, even though they are not. The

non-malicious players know the existence of malicious players, but do not know the

identity of malicious players. Surprisingly in [39], it is shown that the presence of

malicious players may decrease the social cost of the game. Intuitively, this holds

since non-malicious players choose their actions based on the perceived threat from

the malicious players, and so are likely to inoculate. This phenomenon is called the

W indfall of Malice. In this dissertation, we show that we can achieve the windfall of

malice effect without the actual presence of malicious players. To achieve this result,

we use the concept of mediators described below.

1.2.2 Mediators

We first motivate the notion of a correlated equilibrium which will be necessary

for defining mediators. A correlated equilibrium is a probability distribution over

strategy vectors that ensures that no player has an incentive to deviate. In other

words, players have access to a global coin toss in deciding their strategies when

implementing a correlated equilibrium.

11

Chapter 1. Introduction

A mediator in a strategic game is a probability distribution D(C) over a finite set

of different configurations C that implements a correlated Nash equilibrium. It pub-

licly broadcasts D(C) together with the corresponding configurations to all strategic

players. Moreover, depending on the particular game, to any strategic player it sends

a private message containing the proposed strategy for that player.

As an example of a mediator, consider a mediator for the multi round version of

the pollution game described earlier in this section. Let the number of rounds be

finite but unknown. A valid mediator for this game, can be designed as such: ask all

the players to not pollute to begin with and as soon as any one player violates these

instructions, ask all the players to start polluting.

The cost of obeying the mediator is one per round for each player and n per round

thereafter. So it is in the selfish interests of all the players to follow the mediators

advice.

1.2.3 Contributions

We have seen in section 1.2.2 that there is a mediator for multi round games. Can a

mediator be designed for single round games?

The virus inoculation game shows an improvement in social cost when there are

malicious players in the network. As was described in section 1.2.1, this phenomenon

is called the “Windfall of Malice”. Can we design mediators in such a way that there

is a threat of malicious players, without malicious players being present?

In our research, we address some of these questions. We cover the technical details

of our results in Chapter 4.

Chapter 4: In this chapter, we present a mediator which decreases the social cost

of the virus inoculation game. In particular we achieve a social cost that is asymp-

12

Chapter 1. Introduction

totically optimal. We also show a negative result: our technique cannot be used to

decrease PoA in a certain subset of games. The work presented in this chapter was

published in the fifth Workshop on Internet & Network Economics(WINE 09) [18].

1.2.4 Related Work

The concept of a mediator is closely related to that of a correlated equilibrium, which

was introduced by Aumann in [6]. In particular, if a mediator proposes actions to

the players such that it is in the best interest of each player to follow the mediators

proposal, then the mediator is said to implement a correlated equilibrium. There are

several recent results on correlated equilibrium and mediators. The authors in [42]

give polynomial time algorithms that can optimize over correlated equilibria, via a LP

approach, for a large class of multiplayer games that are “succinctly representable”

in the sense that the set of possible strategy vectors over all players is polynomial.

Christodoulou et al. [12] study the price of anarchy and stability in congestion games

where each edge has a linear cost function with positive coefficients. They show that

in such a setting, the price of anarchy for pure equilibrium is almost the same as

the price of anarchy of correlated equilibrium: a difference of no more than 1.4%.

Balcan et al. [9], describe techniques for moving from a high cost Nash equilibrium

to a low cost Nash equilibrium via a “public service advertising campaign”. They

show that in many games, even if not all players follow instructions, it is possible

to ensure such a move . While their result does not explicitly consider mediators,

it is similar in flavor to ours in the sense that an outside third party is acting to

improve social welfare. A major motivation of our use of a mediator is recent work

by Abraham et al. [2], where they shows that it is possible to implement mediators

just by having the players talk amongst themselves. In other words, there exists a

distributed algorithm for talking among the players that enables the simulation of a

mediator. Moreover, they show it is possible to achieve this in a robust manner, even

13

Chapter 1. Introduction

with up to linear size coalitions and up to a constant fraction of adversarial players.

Several recent results study the use of mediators that may act on behalf of a

player(see for example [48]). In other words, these results consider the situation

where if a player decides to use the mediator, it first communicates any relevant

information to the mediator and then the mediator acts for the player, without the

player having the opportunity to change the mediators action.

1.3 Structure of the Document

There are four chapters in this dissertation. Chapter 2 and Chapter 3 are self con-

tained presentations of the technical results regarding the Worm vs Alert game.

Chapter 4 is a self contained presentation of our results regarding the virus inocula-

tion game. Chapter 5 concludes and suggests areas for future work.

14

Chapter 2

Worm Vs Alert without Time to

Live

In this chapter, we present our results about the game described in Section 1.1.1

in Chapter 1. In the algorithm used to propagate alerts in this chapter, we assume

that once a node is alerted, it continues to send out alerts throughout the game.

This is different from the algorithm for propagating alerts presented in the next

chapter, where alerts have a time to live associated with them. For this chapter, we

assume that the detection mechanism is not prone to false alerts, as even a single

false alert by a detector node will spread throughout the network, thereby congesting

the network.

2.1 Chapter Layout

The model of the the Worm versus Alert game is the same as is given in Sec-

tion 1.1.1, and so is omitted here. An overview of our results is described in 2.2.

We distribute the main technical work of this chapter in two sections. In section 2.3,

15

Chapter 2. Worm Vs Alert without Time to Live

we present our upper bound result. In section 2.4, we show that good expansion

is a desirable property for the overlay network, and if the overlay network has bad

expansion then there is a strategy for the worms, which would almost infect all of

the non detector nodes in the network. We then present empirical results in sec-

tion 2.5 which use our algorithm for propagating alerts. We finish this chapter with

conclusions in section 2.6

2.2 Results Overview

In our results, we make use of a d-regular overlay network with node expansion c. As

a concrete example, a random d-regular graph has node expansion c = d/5− 1 with

high probability1. Throughout this chapter, we use the phrase with high probability

(w.h.p) to mean with probability at least 1−1/nε for some fixed ε > 0. Let RANDOM

be the algorithm that has each alerted node in each round send out alerts to α nodes

selected uniformly at random without replacement from its neighbors in the overlay.

Our main theoretical results are stated below as the following two theorems which

are proven in Sections 2.3 and 2.4 respectively.

Theorem 2.3: If d ≥ α and α
β(1−γ)

> 2d
c

, then the algorithm RANDOM ensures that,

w.h.p, only o(n) nodes are ever infected.

Theorem 2.6: If the overlay network has bounded degree d and β(1 − γ) > d, then

any alert algorithm in expectation will save a fraction of non-detector nodes that

approaches 0 as n gets large

Our empirical results, presented in Section 2.5, show that if the overlay network

is a d-regular random graph, as n grows large, the algorithm RANDOM saves an

1see [13] for an algorithm for sampling from random d-regular overlay networks in a
distributed manner

16

Chapter 2. Worm Vs Alert without Time to Live

increasingly large fraction of the nodes against a worm that spreads uniformly at

random. For example, for n = 106, d = 100, β = 1, α = 5 and γ = .02, we were able

to save 99% of the nodes on average.

In this work we note that if a detector node generates a single false alert, it

propagates throughout the network. We address this problem to some extent in

Chapter 3.

2.3 Alert versus worm in an expanding overlay

network

In this section, we focus on d-regular graphs for our overlay network. We show that

for a suitable choice of parameters and a particular type of overlay network, we are

able to save most of the nodes from getting infected with high probability. More

precisely, at the end of the process only o(n) nodes get infected, and all other nodes

get alerted.

The essential idea is that we want the long-run growth rate of the set of alerted

nodes to be higher than the rate for the infected nodes. The rate for infected nodes

is easy to calculate; assuming an optimal choice of targets, each infected node infects

on average an additional β(1 − γ) nodes per round. The rate for alerted nodes is

trickier, as alerted nodes are limited by the structure of the overlay network. But we

can get a lower bound on the expected rate during the early parts of the protocol

by observing that A alerted nodes will between them have at most dA neighbors, of

which at least cA will not already be alerted, where c is the expansion parameter of

the network. It follows that each alerted node will attempt to alert on average at

least α(c/d) unalerted nodes at each step. In the absence of the worm, this would

give the growth rate of the alerted nodes; with M infected nodes, we must subtract

17

Chapter 2. Worm Vs Alert without Time to Live

these from the pool of new alerted nodes (using the simplifying assumption that the

worm successfully concentrates itself on the boundary of the set A). Fortunately

these lost infected nodes are compensated for somewhat by the boost of γβM new

alerted nodes from triggered detectors.

This overview ignores three important details. Because we want a high-probability

bound, it is not enough simply to consider expected growth rates. And because the

expansion factor applies only for sets with n/2 or fewer elements, we must consider

separately the case where the set of alerted nodes is larger. To our knowledge, a

differential equation will not be able to model this process, since we are dealing with

an adaptive adversary and it can work against any assumption about the growth

rates of the processes involved.

We handle both problems by dividing the execution into three phases. Phase

I starts with a single infected node and ends when lnn worm messages have been

received by nodes in the network. During this phase we ignore the spread of alerts

and content ourselves with getting only the Θ(γ lnn) alerted nodes that result from

successful detections. Phase II starts at the end of of Phase I. During this phase

we use the fact that the number of infected and alerted nodes are both Ω(log n)

to show that both the worm and the SCA propagate at close to the expected rate

with high probability; the key point is that when the populations of both are large

enough, Chernoff bounds apply to the increases. Phase II ends when n/d2 nodes

have been alerted by the SCA; at this point we can no longer rely on the expansion

properties of the network and must resort to a different analysis. Note that there are

expansion properties till the end of Phase II. For this analysis, done in Section 2.3.3,

we show that in constant number of steps, we would alert n/2 nodes and then after c

log(log(n)) further steps we would have only o(n) not alerted or not infected nodes.

Thus we would have shown that only o(n) nodes could have been infected and θ(n)

nodes have been alerted.

18

Chapter 2. Worm Vs Alert without Time to Live

In the remainder of this section, all lemmas that bound a random variable’s value

for t rounds hold with probability greater than or equal to 1 − t/nc for some fixed

constant c > 0. Also for all the remaining lemma’s in this section, d ≥ α.

2.3.1 Phase I

Let Z be the set of nodes that receive the first lnn worm messages; i.e., the set of

nodes that receive worm messages in Phase I.

We write At for the number of nodes alerted at time t, counting from the end of

Phase I; thus A0 is the number of nodes alerted in Z.

Lemma 2.1. At the end of Phase I, (a) the expected number of alerted nodes E [A0]

is at least γ lnn; and (b) for any c > 0, there exists a constant δ ≤ 1/2, such that

with probability greater than 1− 1/nc, (1− δ)E [A0] ≤ A0

Proof. For each v ∈ Z, let Xv be the indicator random variable for the event that

v is alerted in Phase I and let Yv be the event that v is a detector node. While the

Xv are not necessarily independent, we do have that Xv ≥ Yv for all v, and thus

A0 =
∑

v∈Z Xv ≥
∑

v∈Z Yv. It follows that E [A0] ≥ ∑ E [Yv] = γ|Z| = γ lnn. The

second part is an immediate application of Chernoff bounds.

It follows that A0 is Θ(lnn) with high probability.

2.3.2 Analysis of Phase II

For the second phase, begin by comparing the number of infected nodes in the actual

process with the number of infected nodes in an infinite graph where the SCA has no

effect on the spread of the worm. The process in the latter graph has the advantage

19

Chapter 2. Worm Vs Alert without Time to Live

of being much easier to analyze; and, as we show, it gives an upper bound on the

outcome of the original process.

Formally, let Mt be the number of infected nodes at time t in the original graph,

where as before we count rounds from the start of Phase II. Let M ′
t be the number of

infected nodes at time t in an infinite graph under the assumptions that (a) no alert

messages are ever sent out by the detector nodes, even though they are alerted by

worm messages, and (b) each infected node spreads the worm to β unique, previously

uninfected nodes in the network at each round. Where no confusion will result, we

also use Mt and M ′
t to refer to the set of nodes infected in each case.

Observe that the assumptions for M ′
t only increase the number of infected nodes;

so that M ′
t stochastically dominates Mt in the sense that ∀ k ≥ 0, Pr(M ′

t ≥ k) ≥
Pr(Mt ≥ k), no matter what strategy the worm applies in the original graph.

Let M0 and M ′
0 count the nodes infected by the end of Phase I, in their respective

simulations. From Lemma 2.1, we have that M0 ≤ |Z| − A0 ≤ lnn.

Lemma 2.2. For all t ≥ 0, the expected value of the random variable M ′
t at time t

is equal to (1 + β(1− γ))tM0.

Proof. By our assumption about the number of messages sent by the infected nodes

and the fraction of detector nodes, the expected number of new infected nodes is

β(1 − γ)E [M ′
t], where (1 − γ) is the probability that a given node is not a detector

node. Hence the recurrence relation for E [M ′
t] is E [M ′

t]=(1+β(1−γ))E [M ′
t−1]. Hence

E [M ′
t] = (1 + β(1− γ))tM0.

We now show that M ′
t remains closely bounded around its expected value, thus

giving an upper bound on the variable Mt.

Lemma 2.3. For any c > 0 and fixed β and γ, there exists a constant k such that,

for sufficiently large n and any t, it holds that M ′
s ≤ kE [M ′

s] for all s ≤ t

20

Chapter 2. Worm Vs Alert without Time to Live

Proof. We prove the bound for M ′
t , and the bound for Mt follows from the fact that

M ′
t dominates Mt.

Let St = min(n −M ′
t−1, βM

′
t−1) be the number of nodes that receive the worm

message at step t, assuming that no alert messages are ever sent. Let X(v, t) = 1

if node v becomes infected for the first time at time t, 0 otherwise. Then for each

v in St, Pr[X(v, t) = 1] = 1 − γ. Define Yt = M ′
t −M ′

t−1, or the number of bad

nodes that have been infected at time step t. Clearly Yt = Σi∈StX(i, t), and thus

(conditioned on St) Yt has a binomial distribution with expectation St(1 − γ) and

variance Stγ(1− γ).

Fix some c′ > 0; from Chernoff’s inequality, there exists a constant a such that

Pr[Yt > St(1− γ) + a
√
Stγ(1− γ) log n] < n−c.

So with probability at least 1− n−c, we have

M ′
t = M ′

t−1 + Yt

≤M ′
t−1 + St(1− γ) + a

√
Stγ(1− γ) log n

= M ′
t−1(1 + β(1− γ)) + a

√
M ′

t−1βγ(1− γ) log n. (2.1)

Observe that the bound (2.1) is an increasing function in M ′
t−1. It is thus maxi-

mized by maximizing M ′
t−1, and having an upper bound on M ′

t−1 is sufficient to get

a (high-probability) upper bound on Mt.

We now proceed by induction on t. Our goal is to show that, with probability at

least 1− tn−c, for all s ≤ t,

M ′
s ≤M0(1 + β(1− γ))s ·

s−1∏
i=0

(
1 +

b√
(1 + β(1− γ))i

)
, (2.2)

where b =
a
√
βγ(1−γ)

1+β(1−γ)
= O(1). Note that the first two factors give the expected value

21

Chapter 2. Worm Vs Alert without Time to Live

of M ′
t from Lemma 2.2; the product arises from the error term in (2.1). The base

case is t = 0, where M0 ≤M0 with probability 1.

Now suppose that (2.2) holds with probability at least 1 − (t − 1)n−c for t − 1;

we wish to show that the probability that it suddenly fails for t is at most n−c. First

divide (2.2) by E [M ′
t|M ′

t−1] = M ′
t−1(1 + βγ(1− γ)) to get

M ′
t

E[M ′
t|M ′

t−1]
≤ 1 +

a

1 + β(1− γ)
·
√
βγ(1− γ) log n

M ′
t−1

= 1 + b

√
log n

M ′
t−1

≤ 1 + b

√
log n

M0(1 + β(1− γ))t−1

= 1 + b

√
1

(1 + β(1− γ))t−1
,

where b is as in (2.2).

Now use the upper bound on M ′
t−1 from the induction hypothesis to get, with

probability at least 1− tn−c,

M ′
t ≤

(
M0(1 + β(1− γ))t−1 ·

t−2∏
i=0

(
1 +

b√
(1 + β(1− γ))i

))
·

(1 + β(1− γ))

(
1 + b

√
1

(1 + β(1− γ))t−1

)

= M0(1 + β(1− γ))t ·
t−1∏
i=0

(
1 +

b√
(1 + β(1− γ))i

)

as claimed.

To obtain the stated bound, take the logarithm of the correction term in (2.2) to

get

22

Chapter 2. Worm Vs Alert without Time to Live

s−1∑
i=0

log

(
1 +

b√
(1 + β(1− γ))i

)
≤

s−1∑
i=0

b√
(1 + β(1− γ))i

≤ b

1− 1√
(1+β(1−γ))

= O(1).

Since the constant does not depend on s, we have M ′
s ≤M0(1+β(1−γ))seO(1) =

dE [M ′
s] for all s ≤ t with probability at least 1− tn−c.

We now turn to alerted nodes. Let At be the number of nodes that are in the

alerted state at time t. For any set of vertices A, let N(A) be the set of neighbors

of nodes in A in the overlay network that are not themselves in A. Let the random

variable Zt be equal to the number of nodes in N(At−1) that receive an alert message

at time step t.

Lemma 2.4. For all t ≥ 0, At ≥ At−1 + Zt- M
′
t

Proof. Out of the unalerted nodes which receive alert messages, at most M ′
t−1 nodes

could be infected nodes. Hence the lower bound result holds true.

Lemma 2.5. For all t ≥ 0, E(Zt) ≥ (cα/d)At−1.

Proof. Let St−1 be the set of nodes that are alerted at time t − 1 and let n′ =

|N(St−1)|. Number the nodes in N(St−1) from 1 to n′. Let Xi,t = 1 if the i-th such

node is alerted at time step t for the first time, and 0 otherwise. Then Zt ≥
∑n′

i=1 Xi,t.

By linearity of expectation, E [Zt] ≥
∑n′

i=1 E [Xi,t]. Observe that each node counted

in At−1 sends an alert to fixed neighbor with probability α/d; it follows that for each

node i in N(St−1), Pr[Xi,t = 1] ≥ α/d. We thus have E [Zt] ≥ n′α/d ≥ (cα/d)At−1,

where c is the expansion factor.

Lemma 2.6. For all t ≥ 0 At ≥ At−1 + (1/2)E(Zt)−M ′
t.

23

Chapter 2. Worm Vs Alert without Time to Live

Proof. We now imagine that the alerted nodes use the following process to decide

where to send out their α alert messages. They randomly permute all of their

neighbors and then send out alerts to the first alpha nodes in this random per-

mutation. Imagine further that some alerted node j determines its random per-

mutation by assigning a random variable Xj,i to each node i that is a neighbor

of j. This random variable takes on a value uniformly at random in the real in-

terval between 0 and 1. The nodes that the alert is sent to are thus determined

by finding the α random variables among the d whose outcomes are closest to

0. For each node i and j, there is a separate such random Xj,i and we note

that these random variables are all independent. Let f be a function such that

Zt = f(X1,1, X1,2, . . . , Xm,d). We note that f satisfies the Lipchitz condition, i.e

|f(X1,1, X1,2, . . . , Xl,p, . . . , Xm,d) − f(X1,1, X1,2, . . . , X
′
l,p, . . . , Xm,d)| ≤ 1. This is the

case since a change in the outcome of a single Xi,j will at most cause one new node to

receive an alert and one old node to not receive an alert. Hence we can use Azuma’s

Inequality to say that Pr(|Zt − E(Zt)|) ≥ (1/2)E(Zt) ≤ 2e
− (1/4)E(Zt)

2

2At−1d . Since by the

previous lemma E(Zt) ≥ (cα/d)At−1, the right hand side is less than or equal to

2e
− ((cα/d)At−1)2

8At−1d which is O(1/nk
′
) for some constant k′ > 0 since At−1 is θ(lnn). The

lemma then follows by a simple Union bound.

Let k be the multiplicative constant of the expectation, in the statement of lemma

2.3.

Lemma 2.7. For all t ≥ 0, At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn

Proof. From Lemma 2.5 and Lemma 2.6 we get that the number of nodes alerted

at round t follows the inequality At ≥ At−1 + (1/2)((cα/d)At−1)−M ′
t . Hence At ≥

(1 + (αc)/(2d))At−1 −M ′
t . By Lemma 2.2 and Lemma 2.3 we know that M ′

t is no

more than k(1 + β(1− γ))t lnn for t rounds, with probability at least 1-t/nc. Hence

replacing the upper bound value of Mt in the above expression yields the inequality

24

Chapter 2. Worm Vs Alert without Time to Live

At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn.

Let p = (1 + (αc)/(2d)), q = (1 + β(1 − γ)). Hence the recurrence relation as

given in the last lemma is At ≥ pAt−1 − kqt lnn.

Lemma 2.8. For all t ≥ 0, At ≥ ptA0 − k(qt + pqt−1 + . . . pt) lnn

Proof. Proof is by induction on t. It is easy to see that the base case holds. Assume

that the claim holds for all rounds less than or equal to t-1. Hence At ≥ p(pt−1A0 −
k(qt−1 + . . . pt−1) lnn) − kqt lnn. Expanding the algebraic expression, we get the

expression in the claim.

Let κ = p/q. Then At ≥ pt lnn− ptk(1 + 1/κ+ . . . (1/κ)t) lnn. Or

At ≥ pt(lnn− k(1 + 1/κ+ . . . (1/κ)t) lnn). (2.3)

2.3.3 Analysis of Phase III

In this phase, we make use of a graph with two types of expansion. We show below

that a random d-regular graph has the types of expansion that we need.

Theorem 2.1. Let d ≥ 30 and ε > 0, then with high probability, a random d-regular

graph G has the following properties

1. For any set S such that ε log n ≤ |S| ≤ n
d2

, |N(S)| ≥ |S|(d
5
− 1).

2. For any set S such that n
d2
≤ |S| ≤ n

2
, |N(S)| ≥ |S|

2
.

Proof. Recall the following procedure for constructing a graph G that is a random

d-regular graph over n nodes. We create a bipartite graph with n nodes of G on the

left hand side L and copies of these n nodes of G on the right hand side R. Now

25

Chapter 2. Worm Vs Alert without Time to Live

assume that we add edges to this graph by finding d/2 random perfect matchings

(permutations) over n. Finally if merge each node in L with its copy in R, keeping

all edges incident to either the node or its copy, we obtain a random d-regular graph

over n nodes.

We now analyze the properties of a graph created according to this process. Let

S ⊆ L be such that s = |S| ≤ α
n
. For fixed S and T , let XS,T denote the event that

all edges from the set S go to the set T. Therefore probability of XS,T is no more

than
(
t
n

)sd/2
, where t = |T |. To see this, order the edges incident to S and note that

the probability that the first of these edges falls in T is t/n . Then given that this

first edge falls in T , the probability that the second edges falls in T is t−1
n−1
≤ t

n
and

so forth. Let Xs be the event that all edges from any set S of size s go to any set T

of size no more cs. We can bound this probability as follows.

Pr(Xs) ≤
(
n

s

)(
n

cs

)(cs
n

)ds/2
≤

(ne
s

)s (ne
cs

)cs (cs
n

)ds/2
≤

[(s
n

)d/2−c−1

e1+ccd/2−c
]s

Simplify for the fact that s ≤ 1
d2
n we have

Pr(Xs) ≤
[(

1

d2

)d/2−c−1

e1+ccd/2−c

]s
≤

[(c
d2

)d/2
(d2e)c+1

]s

26

Chapter 2. Worm Vs Alert without Time to Live

Setting c to be d/5, we get that

Pr(Xs) ≤
[(

1

5d

)d/2
(d2e)d/5+1

]s
<

[
d−d/2+(2/5)d+2

]s

Let r = d−d/2+(2/5)d+2 and note that for d ≥ 21, r < 1. We thus obtain that

∑
ε logn≤s≤n/d2

Pr(Xs) ≤
∑

ε logn≤s≤n/d2
rs

= O(n−ε
′
)

Where the last line hold for some ε′ > 0 and for sufficiently large n since the

summation is a decreasing geometric sum and the largest term is rε logn.

We next show that the second property holds w.h.p. For n/d2 ≤ s ≤ n/2, we

again get that

Pr(Xs) ≤
[(s
n

)d/2−c−1

e1+ced/2−c
]s

Simplifying for s ≤ n/2 we have

Pr(Xs) ≤
[(

1

2

)d/2−c−1

e1+ccd/2−c

]s
≤

[(c
2

)d/2
(2e)c+1

]s

27

Chapter 2. Worm Vs Alert without Time to Live

Setting c to be 3/2, we get that

Pr(Xs) ≤
[(

3

4

)d/2
(2e)5/2

]s

Let r =
(

3
4

)d/2
(2e)5/2 and note that for d ≥ 30, r < 1. We thus obtain that

∑
n/d2≤s≤n/2

Pr(Xs) ≤
∑

n/d2≤s≤n/2

rs

= O(n−ε
′
)

Where the last line hold for some ε′ > 0 and for sufficiently large n since the

summation is a decreasing geometric sum and the largest term is rn/d
2
. A final

union bound over shows that both the first and second property hold with high

probability.

The following theorem assumes that the overlay network has expansion properties

as given in the Theorem 2.1.

Theorem 2.2. Assume that at some point, the number of alerted nodes is at least

n/d2 and that the number of infected nodes is no more than n1−ε for some ε > 0.

Then w.h.p, at the end of the process, all but o(n) nodes will be alerted.

Proof. We call a node a virgin node if it is neither alerted or infected. We will show

that if initially there are at least n/d2 alerted nodes and no more than n1−ε infected

nodes, that for some fixed constant C, after C ln lnn rounds, there will be o(n) virgin

nodes. The number of infected nodes increases by no more than a β + 1 factor in

28

Chapter 2. Worm Vs Alert without Time to Live

each round. Thus, after C ln lnn rounds, the number of infected nodes is no more

than (β + 1)C ln lnnn1−ε = n1−ε′ for some 0 < ε′ < ε. Thus, if we can show there are

o(n) virgin nodes after C ln lnn rounds, then it must be true that all but o(n) nodes

are alerted.

Our analysis will occur in two phases, first we will show that we need a constant

number of rounds to have at least n/2 alerted nodes. Then we will show that in

Θ(ln lnn) further rounds, the number of virgin nodes will be only o(n).

We first show that the first phase will, w.h.p., take no more than a constant

number of rounds. Let A be the set of alerted nodes. By the coupon collectors

analysis, we expect any particular node in this set to send out an alert to all of its

neighbors in less than d ln d rounds. Thus, by Markov’s inequality, the probability

that a particular node in this set has not sent out the alert to all its neighbors

in 3d ln d rounds is no more than 1/3. Hence, by a simple application of Chernoff

bounds, w.h.p., at least half of the nodes in A will send out alerts to all their neighbors

in 3d ln d rounds. Let A′ be this set of nodes that send out alerts to all of their

neighbors. Since |A′| ≤ n/2, we know that N(A′) ≥ |A′|/2. Since every node can

receive alerts from at most d unique nodes, this implies that the number of unique

non-alerted nodes that receive alert messages is at least |A′|/2d. Moreover, since the

number of infected nodes is no more than n1−ε′ ≤ |A′|
6d

, the number of virgin nodes

that receive alert messages is at least |A
′|

3d
≥ |A|

6d
. Thus, while |A| ≤ n/2, in every

3d ln d rounds, the number of alerted nodes increases by a factor of 1 + 1
6d

. Since |A|
is initially at least n/d2 and d is a fixed constant, we can say that in O(1) rounds,

|A| will be greater than n/2.

We now show that the second phase will, w.h.p., take no more than Θ(ln lnn)

rounds. Let V be the set of virgin nodes at some round during this phase. Note that

|V | ≤ n/2 since the number of alerted nodes is now greater than n/2. We further

assume that |V | ≥ n/ lnn since if this is not the case, then there are only o(n) virgin

29

Chapter 2. Worm Vs Alert without Time to Live

nodes and the second phase is thus completed. By the expansion properties of the

overlay network, we can thus say that N(V) ≥ 1
2|V | . Further, at least 1

3|V | of the

nodes in N(V) must be alerted nodes since the number of infected nodes is only

n1−ε′ . Again using the coupon collectors analysis, Markov’s inequality and Chernoff

bounds, we can say that, w.h.p., in 3d ln d rounds, at least half of these alerted nodes

will have sent out alerts to all their neighbors. Thus, after 3d ln d rounds, at least

1
6
|V | alerted nodes will send alerts to nodes in V . Since each node in V can receive

alerts from at most d unique neighbors, the number of virgin nodes that receive alert

messages must be at least 1
6d
|V |. Thus, while |V | ≥ n/ lnn, in every 3d ln d rounds,

the number of virgin nodes decreases by a factor of 1− 1
6d

. After r rounds, the number

of virgin nodes will thus be no more than
(
1− 1

6d

) r
3d ln d (n/2) ≤ e

−r
18d2 ln d (n/2). This

last quantity will be less than n/ lnn provided that r = (18d2 ln d) ln lnn. Thus, we

have shown that in C ln lnn rounds, the number of virgin nodes will be o(n), the

number of infected nodes will be o(n) and all other nodes in the network will be

alerted.

The next theorem is the main result of this section.

Theorem 2.3. If d ≥ α and α
β(1−γ)

> 2d
c

, then the algorithm RANDOM ensures

that, w.h.p, only o(n) nodes are ever infected.

Proof. Since α
β(1−γ)

> 2d
c

, therefore αc
2d
> β(1−γ). Hence 1+αc

2d
> 1+β(1−γ), or p/q >

1. From equation 2.3 it is clear that At ≥ ptlnn− 3k lnn. Hence At ≥ pt. Hence

for t ≥ logpn, At ≥ Ω(n). Hence in Phase II, the process cannot last for more that

logp(n) steps. Hence from Lemma 2.3, we know that Mlogp(n) ≤ k(1+β(1−γ))logp(n)

with probability greater than 1− logp(n)/nc. Hence Mlogpn < k qlogp(n). Since p > q,

clearly Mt = o(n) at the end of Phase II. Further it is O(n1−ε). Now, from Theorem

2.2 , we know that if we have o(n1−ε) infected nodes at the end of Phase II , we

would have at most o(n) infected nodes at the end of the Phase III.

30

Chapter 2. Worm Vs Alert without Time to Live

2.4 Is expansion necessary?

In this section, we consider what happens in graphs with poor expansion properties.

In particular, we look at the growth rate of the number of nodes at distance k from

some initial point of infection, and show that if this growth rate is small, the worm

successfully infects almost every node that does not detect it itself.

For the purposes of this lower bound, we adopt a simplified deterministic version

of the model. We proceed in a sequence of rounds starting from the time at which

the worm is first detected, and think of the graph as organized in layers V0, V1, . . .,

where V0 contains the initial a0 alerted and b0 infected nodes, and each Vi is the set

of nodes at distance i from this initial set.

We ignore the structure of the interconnections between layers; instead, we allow

an SCA that has already alerted ai nodes in layer Vi to alert any αai nodes in

layer Vi+1 in one round. Because the worm can spread without regard to the layer

structure, we assume that it can attempt to infect these nodes first; a round thus

consists of the worm attempting to infect nodes in layer Vi+1 followed by the SCA

attempting to alert any nodes that are left.

Let bi be the total number of infected nodes in layer i after round i and let

Bi =
∑i

j=0 bj be the total number of infected nodes after round i without regard to

what layer they are in. The worm can attempt to infect up to βBi nodes in round

i+ 1; of these, γβBi will trigger detectors.

If we similarly let ai be the number of alerted nodes in layer Vi after round i,

then the SCA can attempt to alert αai nodes in layer Vi+1. But because the worm

goes first, there may not be any nodes left to alert.

The overall pattern in round i+ 1 is thus:

31

Chapter 2. Worm Vs Alert without Time to Live

1. The worm attempts to infect up to βBi nodes in layer Vi+1, of which

(1− γ)βBi become infected and γβBi become alerted.

2. The SCA spreads from layer Vi to layer Vi+1, yielding an additional

min(αai, |Vi+1| − βBi) alerted nodes.

This gives us the recurrence

bi+1 = (1− γ) min (|Vi+1|, βBi)

ai+1 = γmin (|Vi+1|, βBi) + min (αai, |Vi+1| − βBi)

Theorem 2.4. Define ai, bi, and Vi as above. Let |V0|, |V1|, . . . be such that, for all

i ≥ 0,

|Vi+1| ≤ β(1− γ)
i∑

j=0

|Vi|.

Let b0 ≥ (1− γ)|V0|. Then bi ≥ (1− γ)|Vi| for all i.

Proof. Straightforward induction on i. The base case is given. For the induction

step suppose the claim holds for i. Then we have

bi+1 = (1− γ) min (|Vi+1|, βBi)

= (1− γ) min

(
|Vi+1|, β

i∑
j=0

bj

)

≥ (1− γ) min

(
|Vi+1|, β(1− γ)

i∑
j=0

|Vj|
)

= (1− γ)|Vi+1|.

32

Chapter 2. Worm Vs Alert without Time to Live

In other words, if the growth rate of the graph is small enough and the initial

set of alerted nodes is small enough, then the SCA has no effect beyond the original

detection sites.

For a large enough graph, a higher initial growth rate or lower initial worm

numbers can be compensated for in the limit. For simplicity, we consider an infinitely

large graph that is again organized into layers V0, V1, . . . as above.

Theorem 2.5. Let ai, bi, Vi be as in Theorem 2.4. Let b0 > 0 and let

lim sup
i→∞

|Vi+1|∑i
j=0 |Vi|

< (1− γ)β. (2.4)

Suppose further that |Vi+1| ≥ |Vi| for all i. Then

lim
i→∞

bi
|Vi| = (1− γ).

Proof. We assume that α is sufficiently large that at the end of round i, any node

in layer i that is not infected is alerted. This assumption only hurts the worm, so if

the assumption is violated the result only improves.

From (2.4), there exists some ε, i0 such that for all i > i0,

|Vi+1| ≤ (1− ε)(1− γ)β
∑i

j=0 |Vj|. Let ri = Bi/
∑i

j=0 |Vj| and compute, for i > i0,

33

Chapter 2. Worm Vs Alert without Time to Live

bi+1 = (1− γ) min (|Vi+1|, βBi)

= (1− γ) min

(
|Vi+1|, βri

i∑
j=0

|Vi|
)

= min

(
(1− γ)|Vi+1|, riβ(1− γ)

i∑
j=0

|Vi|
)

≥ min

(
(1− γ)|Vi+1|, ri

1− ε |Vi+1|
)

= min

(
1− γ, ri

1− ε
)
|Vi+1|.

Unless ri = 1−γ, we expect bi+1/|Vi+1| to be larger than ri; in particular we have

bi+1/|Vi+1| ≥ min((1 − γ), (1 + ε)ri). The new ratio ri+1 is a weighted average of ri

and bi+1/Vi+1. Under the assumption that |Vi| is nondecreasing, the weight on the

second term is at least 1/(i+ 1). Thus we have

ri+1 ≥ i

i+ 1
ri +

min(1− γ, εri)
i+ 1

= ri +
min((1− γ)− ri, εri)

i+ 1
.

Observe that the first term in the minimum is decreasing and the second increas-

ing. As long as εri < (1− γ)ri, we have ri+1 ≥ ri
ε
i+1

. So ri+k ≥ ri

(
1 + ε

∑k−1
j=i

1
j+1

)
;

as the series diverges, eventually ri+k must be large enough that the first term takes

over. But then let si = (1− γ)− ri, and compute si+1 = (1− γ)− ri+1 ≤ si − si
i+1

=

si
i
i+1

, from which it follows via a telescoping product that si+k ≤ si
i

i+k
, which goes

to zero in the limit.

The proof of the following theorem follows directly from the above.

Theorem 2.6. For a graph with bounded degree d, we have |Vi+1| ≤ d
∑i

j=1 |Vj|+ 1.

So if (1− γ)β > d we expect almost no non-detector nodes to be alerted.

34

Chapter 2. Worm Vs Alert without Time to Live

2.5 Empirical Results

We simulated the spread of a worm and an alert through a network to empirically

determine the fraction of nodes saved.2 We performed our experiment using a random

d-regular graph as the overlay network and set each node in the network to be a

detector node independently with probability γ. In addition, we fixed the worm

strategy such that each infected node, in each round, sent out the worm to β unique

nodes selected uniformly at random, and we fixed the alert strategy such that each

alerted node sent out the alert to α unique nodes selected uniformly at random

among its neighbors in the overlay network. We note that the worm strategy we

used in these experiments is not necessarily the best possible worm strategy, but

we selected this strategy for concreteness. Our d-regular random graph was created

using the configuration model method proposed in [10].

In each round we iterate through the set of vertices, allowing each infected or

alerted node to send the worm or alert to the appropriate number of other nodes

in the network. There are several possible strategies for resolving the status of a

virgin (i.e. neither alerted or infected) node that gets both a worm message and an

alert message in the same round. In our previous theoretical analysis, we assumed

that if a node receives just one worm message it becomes infected. However, in our

experiments, we used the somewhat more relaxed and realistic assumption that the

probability that the node gets infected equals the number of worm messages received

divided by the total number of messages received, and that the probability the node

becomes alerted is 1 minus this quantity. We note that this assumption is equivalent

to assuming that the messages all arrive in the node’s message queue according to

some random permutation.

Figure 2.1(a) illustrates our results when γ = 0.1, β = 1, α = 1 and d = 10, where

2All of the code necessary to replicate these experiments is available at http://www.
cs.unm.edu/~navin/worm.html.

35

Chapter 2. Worm Vs Alert without Time to Live

(a)

(b)

Figure 2.1: (a) log of the network size versus fraction of nodes saved (b) contour plot
of α versus γ required to save 99%, 95% and 90% of the nodes.

we varied the value of n from 210 to 220, multiplying at each step by 2. To remove

noise in the simulation, each data point represents the average over 100 trials. The

36

Chapter 2. Worm Vs Alert without Time to Live

best result we obtained was saving only 45% of the nodes for n = 220. Even though

this final data point is somewhat disappointing, we do observe a clear increasing

trend in the fraction saved as n increases.

Given these results, it seems for current network sizes, there is not much hope

for the alert when α = β. We thus next considered the case where α > β. In prac-

tice, this condition may hold since the alerts are traveling through a predetermined

overlay network and a technique such as throttling can ensure that alert messages

received through the overlay are given priority over types of messages. To explore

this scenario, we conducted experiments where we fixed β at 1. We then determined

necessary values of γ for each α ranging from 2 to 10, that would ensure that we

save 90%, 95% and 99% of the nodes (Figure 2.1(b)). The values of n and d used in

the experiment were 106 and 100 respectively. The results of these experiments were

much more encouraging. In particular, for α = 2, we were able to save 99% of the

nodes with γ = .14. When α = 5, we required a γ of .018 to save 99% of the nodes,

and when α = 10, we required a γ of only .001 to save 99% of the nodes. These

results suggest that our algorithms for spreading alerts might be most effective in

conjunction with other techniques (like throttling) that would enable the alerts to

spread more quickly than the worm.

2.6 Conclusion

We have described a simple distributed algorithm for spreading alert messages through

a network during a worm attack and have proven that this algorithm protects all but

a vanishingly small fraction of the network provided that the alerts spread through

an overlay network with sufficiently good node expansion. Our algorithm is provably

good no matter what strategy the worm uses to spread through the network. We have

demonstrated empirically that this algorithm works effectively against a randomly

37

Chapter 2. Worm Vs Alert without Time to Live

spreading worm under conditions that may be reasonable for modern computer net-

works. Finally, we have shown that if the overlay network has poor expansion, then

the worm will likely infect almost all of the non-detector nodes in the network.

38

Chapter 3

Handling False Alerts in the

Worm versus Alert Game

There has been significant success in developing signature generating systems(Vigilante [15,

14], Earlybird [51, 52], Autograph [26], Polygraph [40] and Shield [59]), but there

has been little focus on designing distributed algorithms for effective deployment of

worm signatures. In this chapter, we present an algorithm which can be used for

distributing many types of worm signatures. In particular, this algorithm that can be

used with any of the above signature generation systems. Moreover, our algorithm

can be used in a network where many different signature generation systems are

being used concurrently. We argue that this last property is particularly important,

since a network with many different signature generation systems is more likely to

catch new worms. Finally, our algorithm has provable guarantees on how quickly the

signatures will be deployed, no matter what strategy the worm uses to try to infect

the network (see Section 3.2).

A critical problem in creating a signature deployment algorithm is the problem

of false alerts. Many worm signature systems sometimes falsely generate signatures

39

Chapter 3. Handling False Alerts in the Worm versus Alert Game

for traffic that is not malicious. Propagating such a false alert through the entire

network consumes significant network resources and so is extremely undesirable.

There are several conceivable ways of dealing with false alerts. In this chapter, we

take a dampening approach. We assume that periodically any particular detector

node may misfire and generate a false alert. Our goal is to minimize how far these

false alerts can propagate. In particular, we demand that every time that a particular

detector node misfires and sends out a false alert, that that false alert will spread to

no more than a polylogarithmic1 number of other nodes in the network.

A weakness of our approach is that if there are faulty detector nodes in the

network, we do not completely prevent those detectors from sending false alerts.

However, we do constrain the network so that the false alerts are only spread to the

nearby neighbors of a faulty detector. Arguably, it is easier for these nearby neighbors

to track down and fix the faulty detector than for nodes that are further away in

the network. A strength of our approach is that it allows for many different types of

detector nodes. In particular, for any given worm, if some constant fraction of the

nodes in the network are detector nodes that are able to recognize that particular

worm, then our algorithm has provable guarantees for protecting the network.

3.1 Chapter Layout

The rest of the chapter is organized as follows. The model for the game is the same

as is given in Section 1.1.1 in Chapter 1 and is therefore omitted here. We then give

an overview of our results in section 3.2. We give detailed proofs of our theoretical

results in section 3.4 with an overview of our analysis in section 3.3. We then present

our empirical results in section 3.5. We end this chapter with conclusions and future

1Polylogarithmic means O(logc n) for some constant c. We stress that this value is quite
small, for example, it is asymptotically much less than O(

√
n).

40

Chapter 3. Handling False Alerts in the Worm versus Alert Game

work in section 3.6

3.2 Results Overview

Throughout this chapter, we use the phrase with high probability (w.h.p) to mean

with probability at least 1 − 1/nc for some fixed c > 0. Our main algorithm for

propagating an alert is presented as Algorithm 1. In this algorithm all nodes and

all alerts messages have a time to live(ttl) field. Intuitively, the ttl field of an alert

bounds how far that alert can propagate, and the ttl of a node v determines how

long v will propagate alerts. The parameter τ in Algorithm 1 is a user specified

parameter giving the maximum value of any ttl field.

Our theoretical and empirical results suggest that our algorithm for spreading

alerts is most effective in conjunction with techniques like throttling that enable

alerts to be sent more quickly than worms, that ensure that α > β. The fact that

alerts spread only through the special overlay network, where they can be given

priority over other messages, might facilitate a throttling approach.

3.2.1 Theoretical Results Overview

The main theorem of this chapter is stated below and proved in the section 3.4.

Algorithm 1 will be used to achieve this result.

Theorem 3.1. Let α, β, γ be fixed constants, with α, β ∈ Z and assume that the

overlay network is a c0 log n regular graph, for some c0 ≥ 5, and alerts propagate

according to Algorithm 1. Let p = (1 + α((c0 logn)/5−1)
2c0 logn

) and q = (1 +β(1−γ). Then if

• p ≥ 2q2

41

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Algorithm 1 Alert propagation for a node v

ttl(v)← 0

for each round do

ttlmsgs← Maximum ttl in all msgs received.

ttl(v)←Max(ttlmsgs, ttl(v))− 1

if v is a detector node and it received a worm then

ttl(v)← τ

end if

if ttl(v) > 0 then

send out messages with ttl field equal to ttl(v) to α neighbors chosen uniformly

at random in the overlay network.

end if

end for

• τ = c2 log log n for some fixed constant c2 to be determined later.

then

• w.h.p in O(log n) steps after the start of the an infection only o(n) nodes will

be infected.

• Each false alert propagates to at most polylogarithmic number of nodes.

Note that with τ = θ(log log n), the false alerts cannot spread to more than

polylogarithmic number of nodes.

42

Chapter 3. Handling False Alerts in the Worm versus Alert Game

3.2.2 Empirical Results Overview

We empirically evaluated our algorithm for networks of size approximately equal

to 225. We considered a worm strategy where each infected node chooses β nodes

uniformly at random from the network to send a worm message in each round and

the alerts follow algorithm 1. A sequence of 6 snapshots of the game as played out

for 500 nodes with degree 10 and α = 4, γ = 0.15, β = 1 and τ = 3 is shown in

Figure 3.1.

Figure 3.1: (Best viewed in color)A sequence of 6 snapshots of the game at rounds
2, 4, 7, 12, 18 and 26. Red nodes are infected nodes, green are alerted nodes and
blue are neither infected nor alerted.

In this particular run of the game, the spread of alerts from a specific detector

node is captured in Figure 3.2. The root of this tree is the detector node and each

edge is labeled by the ttl values that the alert message carries. In the first round

after being alerted the detector node is successful in alerting four neighbors. In the

next round it alerts two more nodes with alert messages with ttl value two. The

right most node at depth two in the tree had been alerted with ttl value two, but all

43

Chapter 3. Handling False Alerts in the Worm versus Alert Game

the neighbors it chose to send alerts to in successive rounds were already infected,

hence it could nor propagate the alerts any further.

3 33 32 2

22 21 1 2 22 2 2

1

1 2 2 2

1

1 1 1 11 11 11 11 1 11 1 1 1 1

Figure 3.2: (Best viewed in color)A false alert spreading from a detector node for
τ = 3, α = 4.

In section 3.5 we describe results from simulations for network sizes as large as

225. For n = 107, γ = 0.02, β = 2, α = 10, τ = 4, Algorithm 1 is able to save 93% of

the nodes in the network.

3.3 Analysis Overview

In [5], we present an algorithm and constant degree overlay network, which under

certain conditions w.h.p ensures that at most o(n) nodes are infected by any worm.

However this past result suffers from the weakness that a single false alert can prop-

agate through the entire network. In contrast, in this chapter, any false alerts can

only spread to at most a polylogarithmic number of nodes.

Unfortunately, with the restriction imposed by the ttl mechanism on the alerts,

we cannot use the lower bound on the number of alerts in [5], as any alert stops

propagating once its ttl expires. However for τ rounds from the time a detector has

been alerted, we can adapt the analysis for the lower bound on the growth of alerts

44

Chapter 3. Handling False Alerts in the Worm versus Alert Game

over a θ(log n) degree network from the corresponding lower bounds given in [5]. We

divide our analysis in four phases and the number of nodes alerted, infected at the

end of each phase and the duration in that phase are given in the table in Figure 3.3.

In the remainder of this section, we outline our analysis of the four phases given

in this table. In this table we let q = (1 + β(1 − γ) be an upper bound on the

expected rate of increase of infected nodes. We let p = (1 + α((c0 logn)/5−1)
2c0 logn

). We let

p1 = (1 + (1− e−α)/4). Let r = logp1 q The constants p and p1 are the lower bounds

on the expected rate of spread of alerts in Phase 2 and Part 1 of Phase 3 respectively.

Phase Alerted Infected Duration
1 θ(n

log2r+2 n
) θ(n

log2r+1 n
), O(log n)

2 ≥ n/(3λ) O

(
n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
n

)
θ(log log n)

3 ≥ n/2 O

(
n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
−r

n

)
θ(log log n)

4 n− o(n) O

(
n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
−r

n

)
θ(1)

Figure 3.3: Phase, # of alerted nodes at the end of the phase, # of infected nodes
at the end of the phase, duration of that phase

We now outline our analysis of Phase 1. We define nodes which are neither

infected nor alerted to be virgin nodes. We define a small step round to be a round

when the number of virgin nodes that receive worm messages is no more than 1
logp1 n

times the number of infected nodes at the end of the previous round. A round which

is not a small step is called a large step round. It is clear(see lemma 3.1) that for a

worm to take over the network in O(log n) time steps, there has to be a large step

round after n
log2r+1

p1
n

nodes have been infected and before κ0
n

log2r+1
p1

n
nodes have been

infected, where κ0 is a the constant used in Lemma 3.1. Phase 1 is defined to end

at the end of the first large step round which occurs after n
log2r+1

p1
n

nodes have been

infected. In our subsequent analysis we show that the number of detectors nodes

45

Chapter 3. Handling False Alerts in the Worm versus Alert Game

alerted in the last round of Phase 1, will be successful in alerting all but n − o(n)

nodes in the network in τ more rounds. Since we start counting the number of alerted

nodes at the end of Phase 1, we define our rounds to begin at the end of Phase 1. Let

Ai and Mi be the number of alerted nodes and infected nodes at the end of round i.

Let the vertex expansion in Phase 2 be called λ. In Phase 2, we use the fact

that our c0 log n regular network has the following property w.h.p: for sets of size

less than n/(3λ), there is θ(log n) vertex expansion. The alerted nodes uses this high

expansion and the fact that p > 2q2 to catch up and then overtake the number of

infected nodes. We adapt Lemma 8 in [5] to get the following lower bound on the

set of alerted nodes At at round rt:

Lemma 3.4. W.h.p for all t ≥ 0, s.t At−1 < n/(3λ), At≥pt(A0 −K) for some fixed

constant K.

We then use the above lemma to get an upper bound on the number of rounds

spent in Phase 2. We prove that, with θ(log n) expansion, the alerts need less than τ

rounds to alert n/(3λ) nodes, whereas in the same number of rounds the worm can

infect asymptotically fewer nodes.

In Phase 3, we do not have the same guarantees on vertex expansion as in Phase

2, since the number of nodes that have been alerted exceeds n/(3λ). We now make

use of the following property(Lemma 3.7) which holds w.h.p: for sets S of size less

than n/3, the number of edges with one endpoint in S, and one outside S is greater

than or equal to (|S|c0 log n)/4. We break our analysis of Phase 3 in 2 parts. The

first part begins immediately after the end of Phase 2. We show in Lemma 3.9, that

for this part the expected rate of spread of alerts is at least p1 ≥ (1 + (1− e−α)/4).

Then by an analysis similar to that of Phase 2, we show that the maximum number

46

Chapter 3. Handling False Alerts in the Worm versus Alert Game

of rounds taken in Part 1 of Phase 3 is not enough for the infected nodes to break

that o(n) barrier. Part 1 is defined to end at the first round when the number of

alerted nodes is at least n/3. Part 2 of Phase 3 begins immediately after Part 1 ends.

The main lemma of part 2 is the following

Lemma 3.13. On a random d-regular graph, if the number of infected nodes is o(n)

and the number of alerted nodes is greater than n/3, then the maximum number of

rounds required for the number of alerted nodes to exceed n/2 is a constant w.h.p.

To prove this lemma, we show that in each round a constant fraction of the total

number of nodes are being newly alerted w.h.p. Phase 3 is defined to end at the

round when the number of alerted nodes is at least n/2.

At the beginning of Phase 4, there are less than n/2 virgin nodes, and greater

than n/2 alerted nodes. In our analysis in Phase 4 we make use of the high edge

expansion from Phase 3. We make use of the fact that once at least half of the nodes

in the network have been alerted, then due to the high edge expansion from the set

virgin nodes, a constant fraction of virgin nodes will become alerted in each round.

Thus w.h.p, it takes constant number of steps to alert all but n-o(n) nodes.

The proof of our main theorem, i.e Theorem 3.1 is derived from Lemma 3.2,

Lemma 3.6, Lemma 3.12, Lemma 3.13, and Lemma 3.14.

47

Chapter 3. Handling False Alerts in the Worm versus Alert Game

3.4 Proofs

3.4.1 Large Step Round

In this section we present detailed proofs of the analysis discussed in the previous

section.

In the next two sections we present the detailed analysis of the first phase.

Lemma 3.1. Let t be the first round when the number of infected nodes is at least

n
log2r+1

p1
n

.

If the worm infects θ(n) nodes within O(log n) rounds, there must be a large step

round after round t and before κ0
n

log2r+1
p1

n
nodes are infected, for some constant κ0.

Proof. Suppose not. Then the number of infected nodes is bounded by β n
log2r+1

p1 n
(1 +

1/ logp1 n)O(logn)−t ≤ β n
log2r+1

p1
n
(1 + 1/ logp1 n)O(logn) ≤ β n

log2r+1
p1

n
e
O(logn)
logp1

n ≤ κ0
n

log2r+1
p1

n

for some constant κ0. This last quantity is clearly o(n).

We define Phase 1 to end at the first large step round after round t.

For the sake of simplicity, henceforth we will call the i th round after the end of

phase 1 as round ti. Let the number of nodes alerted by the end of this round be

called Ai.

3.4.2 Phase 1

Lemma 3.2. At the end of Phase 1, (a) the expected number of alerted nodes E[A0]

is at least γ(n
β log2r+2

p1
n
); and (b) for any c > 0, there exists a constant δ ≤ 1/2, such

that with w.h.p, A0 ≥ (1− δ)E(A0).

48

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Proof. We note that the number of infected nodes at the beginning of the last round

of phase 1 is at least n
β log2r+1

p1
n
. Let Z be the nodes which are sent worm messages

during the last round of Phase 1. The number of such nodes is greater than n
β log2r+2

p1
n
,

because the last round is a large step round. For each v ∈ Z, let Yv be the event

that v is a detector node. Thus A0 =
∑

v∈Z Yv. It follows by linearity of expectation

that E[A0] ≥ ∑E[Yv] ≥ γ|Z| = γ(n
β log2r+2

p1
n
). The second part of the lemma is an

immediate application of Chernoff bounds.

We now present the lower bound on the number of alerts which would be used in

the analysis of Phase 2.

3.4.3 Lower bound on the number of Alerts

For the sake of brevity in representation we let d=c0 log n. These lemmas will be

used for proofs in Phase 2 and Phase 3.

Let N(S) be the set of neighbors for set S.

Lemma 3.3. Let d ≥ 30 and ε > 0, then with high probability, a random d-regular

graph G has the following properties

1. For any set S such that ε log n ≤ |S| ≤ n
3λ

, |N(S)| ≥ |S|(d
5
− 1).

2. For any set S such that n
3λ
≤ |S| ≤ n

2
, |N(S)| ≥ |S|

2
.

Proof. The proof of the above lemma is very similar to the proof of Theorem 2.1 in

Chapter 2, however for completeness we redo the proof with the appropriate changes.

Recall the following procedure for constructing a graph G that is a random d-

regular graph over n nodes. We create a bipartite graph with n nodes of G on the

49

Chapter 3. Handling False Alerts in the Worm versus Alert Game

left hand side L and copies of these n nodes of G on the right hand side R. Now

assume that we add edges to this graph by finding d/2 random perfect matchings

(permutations) over n. Finally if we merge each node in L with its copy in R, keeping

all edges incident to either the node or its copy, we obtain a random d-regular graph

over n nodes.

We now analyze the properties of a graph created according to this process. Let

|S| = s. For fixed S and T , let XS,T denote the event that all edges from the set S go

to the set T. Therefore Probability of XS,T is no more than
(
t
n

)sd/2
, where t = |T |.

To see this, order the edges incident to S and note that the probability that the

first of these edges falls in T is t/n . Then given that this first edge falls in T , the

probability that the second edges falls in T is t−1
n−1
≤ t

n
and so forth. Let Xs be the

event that all edges from any set S of size s go to any set T of size no more λs. We

can bound this probability as follows.

Pr(Xs) ≤
(
n

s

)(
n

λs

)(
λs

n

)ds/2
≤

(ne
s

)s (ne
λs

)λs(λs
n

)ds/2
≤

[(s
n

)d/2−λ−1

e1+λλd/2−λ
]s

Simplify for the fact that s ≤ 1
3λ
n we have

50

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Pr(Xs) ≤
[(

1

3λ

)d/2−λ−1

e1+λλd/2−λ

]s

≤
[(

1

3

)d/2−λ−1

(e)λ+1λd/2−λ−d/2+λ+1

]s
≤

[(
3

3d/2−λ

)
3λ+1λ

]s
= 3λe

1

3

d/2−2λ

Setting d = 5λ, we get that Pr(Xs) tends to zero for sufficiently large n.

We next show that the second property holds w.h.p. For n/3λ ≤ s ≤ n/2, we

again get that

Pr(Xs) ≤
[(s
n

)d/2−λ−1

e1+ced/2−λ
]s

Simplifying for s ≤ n/2 we have

Pr(Xs) ≤
[(

1

2

)d/2−λ−1

e1+λλd/2−λ

]s

≤
[(

λ

2

)d/2
(2e)λ+1

]s

Setting λ to be 3/2, we get that

Pr(Xs) ≤
[(

3

4

)d/2
(2e)5/2

]s

51

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Let r =
(

3
4

)d/2
(2e)5/2 and note that for d ≥ 30, r < 1. We thus obtain that

∑
n/d2≤s≤n/2

Pr(Xs) ≤
∑

n/d2≤s≤n/2

rs

= O(n−ε
′
)

Where the last line holds for some ε′ > 0 and for sufficiently large n since the

summation is a decreasing geometric sum and the largest term is rn/d
2
. A final

union bound over shows that both the first and second property hold with high

probability.

The proof of the following lemma derives from lemma 3.3. Also this lemma is an

adaptation of statement 2.3 and is stated here without proof.

Lemma 3.4. W.h.p for all t ≥ 0, s.t At−1 < n/(3λ), At≥pt(A0 −K) for some fixed

constant K.

Lemma 3.5. If r1 > 0 with Ar1−1 < n/(3λ), then w.h.p r1≤ dlogp1(
Ar1
A0−K)/ logp1 pe

for some constant K.

Proof. Since |Ar1−1| < n/(3λ), we know from lemma 3.4 that w.h.p Ar1≥ pr1(A0 −
K)) for some fixed constant K. Therefore, w.h.p r1≤ dlogp1(

Ar1
A0−K)/ logp1 pe.

We present the detailed analysis of Phase 2 below.

3.4.4 Phase 2

By Lemma 3.2, the number of alerted nodes at the beginning of Phase 2 w.h.p is

lower bounded by (1− δ)γ n
β log2r+2

p1
n
. Let Phase 2 be defined to end at the first round

52

Chapter 3. Handling False Alerts in the Worm versus Alert Game

when the number of alerted nodes is at least n/(3λ).

Lemma 3.6. W.h.p the number of infected nodes at the end of Phase 2 is O

 n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
p1

n

.

Proof. Let r1 be the last round in Phase 2. Note that Ar1−1 < n/(3λ). By lemma 3.2,

we also note that w.h.p A0 ≥ (1 − δ)γ n
β log2r+2

p1
n
. Note that number of rounds spent

in Phase 2 is r1. Therefore by application of lemma 3.5, we get that w.h.p r1 is less

than or equal to logp1

(
αn/(3λ)
A0−K

)
/ logp1 p where K is the constant in the statement of

lemma 3.4. Expanding the expression for the upper bound on r1 we get,

r1 ≤ 1

logp1 p

(
logp1

αn/(3λ)

A0 −K
)

=
1

logp1 p

(
logp1 (αn/(3λ))− logp1 (A0 −K)

)
=

1

logp1 p

(
logp1 (αn/(3λ))− logp1 (A0(1−K/A0)

)
=

1

logp1 p

(
logp1 (αn/(3λ))− logp1 A0 − logp1 (1−K/A0)

)
≤ 1

logp1 p
((2r + 1) logp1 logp1 n+ C0)

where C0 is some constant. The last step follows by noting that A0 ≥ γ(n
β log2r+2

p1
n
).

Therefore by using lemma 2.3, w.h.p the number of infected nodes is less than or

equal to q`M0 = θ

 n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
p1

n

.

We present the detailed analysis of Phase 3 below.

53

Chapter 3. Handling False Alerts in the Worm versus Alert Game

3.4.5 Phase 3

We divide the analysis of this phase into two parts. The first part begins immediately

after Phase 2 has ended. The first part ends at the round when the number of alerted

nodes is at least n/3. Let p1 be the lower bound on the expected growth rate of the

number of alerted nodes in this part of the phase. First we show in the following

lemma that there is a θ(log n) edge expansion which will be used in proofs of Phase

3 and Phase 4.

Lemma 3.7. For any random d-regular graph and any set S with size less than n/2,

let ξ(S) be the set of edges with one endpoint in S and one outside S. Then w.h.p

ξ(S) ≥ |S|d/4.

Proof. S has d|S| edges incident on it. The expected number of incident edges with

one endpoint not in S is at least (|S|d)/2. For each vertex i in S, let X(i,ik) de-

note the random variable which is 1 when the kth edge incident on i falls outside

S. Let Z(S) denote the total number of edges which have exactly one endpoint

outside S. Therefore Z(S) = f(X(1,10), . . . , X(i,ik), . . . , X(|S|,|S|d)), for some func-

tion f . Note that each of the random variables are independent. Moreover the

function satisfies the Lipchitz condition, i.e |f(X(1,10), . . . , X(i,ik), . . . , X(|S|,|S|d)) −
f(X(1,10), . . . , X

′
(i,ik), . . . , X(|S|,|S|d))| ≤ 1, therefore by Azuma’s inequality Pr(|Z(S)−

E(Z(S))| ≥ 1/2E(Z(S))) ≤ 2e−
1/4(|S|d/4)2
|S|d ≤ 1/2θ(n). A union bound over all possible

S gives the required result.

The next two lemma’s are used to compute p1. We call an edge coming out of an

alerted node as an alerted edge.

Lemma 3.8. Let f(x) = 1−Cx
x

. For C < 1, and 1 ≤ x ≤ d, the minimum occurs at

the largest possible value of x.

54

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Proof. Note that df
dx

= −1−Cx
x2 − Cx logC

x
. Setting the value to zero, we get that a local

minima or maxima occurs only when x0 = 1−Cx0
Cx0 log 1

C

. Plugging the value for x0 into

f , we get that f(x0) = Cx0 log (1
C

). This last quantity is minimized for x0 as large

as possible, i.e x0 = d. Note that f(1) = 1 − C and f(d) = 1−Cd
d

. Finally we show

that 1− C ≥ 1−Cd
d

.

Note that 1−C ≥ 1−Cd
d

iff 1−C ≥ (1−C)(1+C,...,+Cd−1)
d

iff d ≥ 1+C+C2+, . . . ,+Cd−1.

The last inequality holds since Ci ≤ 1 for all i.

Lemma 3.9. W.h.p, p1 ≥ (1 + (1− e−α)/4), as n goes to infinity.

Proof. Let r1 be the first round when the number of alerted nodes is at least n/(3λ).

Thus Ar1 ≥ n/3λ. By Lemma 3.7 the number of alerted edges at the end of round

r1 is nd
4(3λ)

. If the number of alerted edges on each virgin node is at most x, the

number of nodes which have a possibility of being alerted in round r1 + 1 is at least

nd
4(3λ)x

. The probability that a virgin node with at most x alerted edges gets alerted

in round r1 + 1 is at least (1− (1− α
d
)x). Therefore the expected number of alerted

nodes in round r1 + 1 is at least nd
4(3λ)

1
x
(1− (1− α

d
)x). Substituting (1− α

d
) for C in

the statement of lemma 3.8, we see that f(x) is minimized at x = d, since d is the

largest possible value for x in this context. So the number of new alerted nodes at

round r1 + 1 is at least nd
4(3λ)

1
d
(1− (1− α

d
)d) ≥ nd

4(3λ)
1
d
(1− e−α). Therefore the number

of nodes in Ar1+1 is at least Ar1(1 + (1− e−α)/4)

The next two lemma’s are used to compute the maximum number of rounds spent

in this phase.

The following lemma is an adaptation of statement 2.3 and is presented here

without a proof.

Lemma 3.10. Let r1 be the first round when the number of alerted nodes is at least

n/(3d). For all r2 > r1, s.t |Ar2−1| < n/3, w.h.p |Ar2| ≥ pr2−r11 (n/(3d) − K ′) for

55

Chapter 3. Handling False Alerts in the Worm versus Alert Game

some constant K ′.

Lemma 3.11. Let r1 be the first round when the number of alerted nodes is at least

n/(3λ). If r2 > r1 and Ar2−1 < n/3, then w.h.p r2 − r1 ≤ dlogp1 (
Ar2

n/(3λ)−K′)e where

K ′ is the constant in the statement of lemma 3.10.

In the following lemma we estimate the upper bound on the number of infected

nodes at the end of the first part of Phase 3.

Lemma 3.12. Let r1 be the first round when the number of alerted nodes is at

least n/3. The number of infected nodes at the end of the r1th round is w.h.p

O

 n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
−r

p1
n

.

Proof. By definition, the number of alerted nodes at the beginning of Phase 3 is

at least n/3λ. By Lemma 3.11, the number of rounds taken to to reach at least

n/3 alerted nodes is w.h.p upper bounded by logp1 logp1 n + C ′0, where C ′0 is some

constant. Then by application of lemma 2.3 the number of infected nodes is no more

than O

 n

log
r+1+(1− r+1

logp1
p

)r− r2
logp1

p
−r

p1
n

. Note that this is o(n).

We define the second part of the phase to begin when the first part ends. For the

second part of this phase we make use of the following lemma.

Phase 3 is defined to end at the first round when at least n/3 nodes have been

alerted. We show in the following lemma that the number of rounds spent in the

second part of this phase, is w.h.p a constant.

Lemma 3.13. On a d-regular graph, if the number of infected nodes is o(n) and the

number of alerted nodes is greater than n/3, then the maximum number of rounds

required for the number of alerted nodes to exceed n/2 is a constant w.h.p.

56

Chapter 3. Handling False Alerts in the Worm versus Alert Game

Proof. By lemma 3.7, w.h.p the number of alerted edges, incident on virgin nodes is

greater than or equal to dn/12. Let x be the number of virgin nodes that each have

greater than or equal to εd,0 < ε ≤ 1 alerted edges incident on them. By definition

of x, xd+ (n− n/3− x)εd ≥ (dn)/12, or x ≥ n
(1−ε)(

2ε+1
12
− ε).

The probability that a virgin node with εd alerted edges gets alerted in the next

time step is at least 1 − e−αε. Therefore by a linearity of expectation argument

the total number of nodes which receive alerts in the next time step is at least

(1− e−αε) n
(1−ε)(

2ε+1
12
− ε). We can find an ε s.t (1− eαε) n

(1−ε)(
2ε+1

12
− ε) is greater than

n/c′′ for some constant c′′ > 1.

Then by an application of Azuma’s inequality, we show that the expected number

of new nodes alerted is tightly bounded around the expectation w.h.p. Thus in the

second part of Phase 3, θ(n) nodes are being alerted in each round. This proves that

w.h.p it takes constant number of rounds for the number of alerted nodes to reach

n/2 from the beginning of the second part of Phase 3.

Corollary 1. The number of infected nodes at the end of Phase 3 is w.h.p upper

bounded by o(n).

Proof. By lemma 3.12 the number of infected nodes at the end of part 1 of Phase 3

is o(n). Lemma 3.13 says that it take θ(1) rounds to reach the end of Phase 3. The

number of alerted nodes at the end of Phase 3 is w.h.p qθ(1)o(n) which is o(n).

Finally we present the detailed analysis of the last phase of our analysis.

3.4.6 Phase 4

At the beginning of Phase 4, there are at least n/2 alerted nodes, o(n) infected nodes

and less than n/2 virgin nodes. Let the set of virgin nodes be called V with size v.

57

Chapter 3. Handling False Alerts in the Worm versus Alert Game

We can assume that all the edges which go out of V, go to the set of alerted nodes,

as the number of infected nodes is o(n). For the sake of analysis let us assume that

the number of alerted nodes at the beginning of Phase 4 is exactly equal to n/2

Lemma 3.14. If there are at least n/2 alerted nodes and at most o(n) infected

nodes, it takes only a constant number of steps w.h.p, for the number of virgin nodes

remaining to be o(n).

Proof. We know by lemma 3.7 that the number of edges with one end point in V

and one end point outside V is at least |V |d/4. Let x be the number of virgin nodes

with greater than or equal to εd alerted edges, where 0 ≤ ε < 1. The value of ε

will be assigned later to suit our needs. Therefore (v − x)εd + dx ≥ dv/4. Hence

(1 − ε)x ≥ v/4 − εv, or x ≥ v
(1−ε)(1/4 − ε). If a virgin node has at least εd alerted

edges incident on it, the probability that it does not receive an alert from an alerted

neighbor is (1 − α/d)εd ≤ e−αε. The probability that it does receive an alert from

any of its neighbors is 1-e−αε. Please note that this analysis assumes no multi-edges

. Hence, by the linearity of expectation argument, the number of new alerted nodes

in each round is v
(1−ε)(1/4− ε)(1−e−αε), which is greater than v/c′ for some constant

c′ > 1.

Then by Azuma’s inequality we can show that the number of new alerted nodes

is closely concentrated around its expected values, by an analysis similar to that

shown in the proof of Lemma 3.13. Thus in constant number of steps, the number

of alerted nodes is n− o(n), whereas by an application of Lemma 2.3 the number of

infected nodes remain o(n).

58

Chapter 3. Handling False Alerts in the Worm versus Alert Game

3.5 Empirical Results

We simulated the spread of a worm and an alert through a network to empirically

determine the fraction of nodes saved.2

3.5.1 Empirical Setup

For all the experiments, we fixed the worm strategy such that each infected node, in

each round, sends out the worm to β unique nodes selected uniformly at random, and

we fixed the alert strategy according to Algorithm 1. We note that the worm strategy

we used in these experiments is not necessarily the best possible worm strategy, but

we selected this strategy for concreteness. We stress that our theoretical results hold

for any worm strategy.

We performed experiments on two kinds of networks. For the first network, we

use a random d-regular directed graph as the overlay network. Our d-regular directed

random graph was created on the lines of the configuration model proposed in [54].

We have an array of nodes id’s containing d stubs each for every one of the n node

id’s. This nd size array is in increasing order. We take a random permutation of

this array and map the corresponding elements of the first array and the permuted

array to get a d-regular directed graph. We ignore self loops and multi-edges in this

implementation. We call this network a random network

For the second network we make use of the pairwise independent hash functions

described in [36]. In this model, node id i maps to (ai+b) mod n, where n is a prime

and 0 < a ≤ n− 1, 0 ≤ b ≤ n− 1. We find 50 distinct values of a chosen uniformly

at random between 1 and n− 1. We find 50 values of b chosen uniformly at random

2All of the code necessary to replicate these experiments is available at http://www.
cs.unm.edu/~navin/false-alerts.html.

59

Chapter 3. Handling False Alerts in the Worm versus Alert Game

between 0 and n − 1. This gives us 50 pairwise independent hash functions which

map a node i to 50 other nodes in the network. We call this network a pseudo-random

network.

The relative advantage in the implementation of the pseudo-random network over

the random network is in not having to store explicitly the graph in the memory.

We compute the neighbors of a node in real time when we need to access them. The

implementation of the default mod function was computationally intensive. To make

this operation more efficient we store 2i mod p, 0 < i < log2 p in one preprocessing

step and access the stored values throughout the simulation. All multiplications

between integers is reduced to multiplications between powers of two. For the rest

of this section we give sizes of the network in this network model in terms of the

largest power of two smaller than the prime number representing the actual size of

the network. In our experiments we use hash table primes given at [1].

There are several possible strategies for resolving the status of a node that gets

both a worm message and an alert message in the same round and is neither infected

nor alerted before that round. In our theoretical analysis, we assumed that if a node

receives just one worm message it becomes infected. However, in our experiments, we

used the somewhat more relaxed and realistic assumption that the probability that

the node gets infected equals the number of worm messages received divided by the

total number of messages received, and that the probability the node becomes alerted

is 1 minus this quantity. We note that this assumption is equivalent to assuming

that the messages all arrive in the node’s message queue according to some random

permutation.

Our first experiment measured the fraction of nodes saved when we varied both

α and n. In our second experiment we measured the fraction of nodes alerted and

infected at each round of the algorithm. To further explore the role of α in our

model, in our third experiment, we measured the fraction of nodes saved as α varies.

60

Chapter 3. Handling False Alerts in the Worm versus Alert Game

In this experiment we ensure that the τ value is always adjusted so that the number

of nodes which can be alerted due to a false alert is always 104. So τ = blogα 104c.

3.5.2 Results

To remove noise in our experiments, each data point was averaged over 100 trials.

Figure 3.4(a) shows a contour plot of log of the number of nodes in the network

vs the fraction of nodes saved for the first experiment. The values of the other

parameters were as follows; β = 2, γ = 0.02, τ = 5 and α takes on all even values

between 2 and 10. Since it is easier to carry out simulations for much larger values of

n on the pseudo-random network, we vary the number of nodes for this network from

212.58 to 225.58. The size of the regular network varies from 212 to 222. We observe

that there is a very small increase in the fraction of nodes saved in the pseudo-

random network as n crosses 218.58, so in all our other experiments we have limited

the network size of the pseudo-random network to the size of the random network.

These results suggest that our algorithms for spreading alerts might be most effective

in conjunction with other techniques (like throttling) that would enable the alerts to

spread more quickly than the worm. There is a very small increase in the fraction of

nodes saved as n grows larger, implying that the results may be better for very large

values of n.

For the second experiment, we plotted the fraction of nodes saved/infected in

each round for both kind of networks. The network sizes considered were of the

order of 107 nodes. Here γ = 0.02, β = 2, α = 10 and τ = 5. For runs of the

simulation where the number of rounds is less than the other runs, we repeat the

final values to compensate for the missing rounds, while calculating the average of

100 trials. In Figure 3.4(b) we see results for the second experiment. We are able to

save about 93% and 91% of the nodes for the random and pseudo-random networks

61

Chapter 3. Handling False Alerts in the Worm versus Alert Game

 0

 0.2

 0.4

 0.6

 0.8

 1

 12 14 16 18 20 22 24

fr
ac

tio
n

of
 n

od
es

 s
av

ed

log of # of nodes in the network

 random
psuedo-random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

fr
ac

tio
n

of
 n

od
es

round number

saved
infected

saved
infected

(a) (b)

Figure 3.4: (a) contour plot of log of # of nodes vs fraction of nodes saved for
α = 2, 4, 6, 8, 10 (b)number of nodes saved/infected in each round

respectively. Notice that the value of α is five times that of β. In practice, this

condition may hold since the alerts are traveling through a predetermined overlay

network and a technique such as throttling can ensure that alert messages received

through the overlay are given priority over other types of messages. The number of

nodes saved in the pseudo-random network is less than the number of nodes saved

for the random network in all of our experiments. That is expected as the expansion

of the pseudo-random network may be worse than the expansion of the random

network.

For our third experiment the number of nodes are fixed at 223(223.58 for the pseudo-

random network). Here β = 2 and γ = 0.02. The value of τ is always adjusted so

that the number of nodes which can be alerted due to a false alert is always 104. So

τ = blogα 104c. In this experiment we find an improvement of around 20% in the

fraction of nodes saved for values of α between three and seven for both the network

models. The results of this experiment are given in Figure 3.5. We note that there

is a decrease in the number of nodes saved when we go from α = 6 to α = 7. We

62

Chapter 3. Handling False Alerts in the Worm versus Alert Game

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 n

od
es

 s
av

ed

alpha

random
psuedo-random

Figure 3.5: alpha vs fraction of nodes saved

believe this happens because the value of τ at α = 6 is five and at α = 7 it decreases

to four.

3.6 Conclusion

In this chapter we have described an alert propagation algorithm which under certain

conditions, w.h.p saves all but o(n) nodes from a worm attack, and limits the spread

of false alerts to polylogarithmic number of nodes. We make use of a θ(log n) regular

network for distributing alerts. We have demonstrated empirically that this algo-

rithm works effectively against a randomly spreading worm under conditions that

may be reasonable for modern computer networks.

63

Chapter 4

On the power of Mediators

In the previous chapters, we assumed that the nodes in a network were altruistic. In

this chapter we present a game, in which players are selfish.

Recent results show that malicious players in a game may, counter-intuitively,

improve social welfare [39, 7, 46]. For example, in [39] it is showed that for a virus

inoculation game, the existence of malicious players may actually lead to better

social welfare for the remaining players than if such malicious players are absent.This

improvement in the social welfare with malicious players has been referred to as the

“windfall of malice” [7]. The existence of the windfall of malice for some games leads

to an intriguing question: Can we achieve the windfall of malice even without the

actual presence of malicious players?

In this chapter, we show that the answer to the previous question is sometimes

“Yes”. How do we achieve the beneficial impact of malicious players without their

actual presence? Our approach is to use a mediator. Informally, a mediator is a

trusted third party that suggests actions to each player. The players retain free will

and can ignore the mediator’s suggestions. The mediator proposes actions privately

to each player, but the algorithm the mediator uses to decide what to propose is

64

Chapter 4. On the power of Mediators

public knowledge. The contributions of this chapter are the following: We introduce

a general technique for designing mediators that is inspired by careful study of the

“windfall of malice” effect. In our approach, the mediator makes a random choice

of one of two possible configurations, where a configuration is just a set of proposed

actions for each player. The first configuration is optimal: the mediator proposes

a set of actions that achieves the social optimum (or very close to it). The second

configuration is “fear inducing”: the mediator proposes a set of actions that leads

to catastrophic failure for those players who do not heed the mediators advice. The

purpose of the second configuration is to ensure that the players follow the advice

of the mediator when the optimal configuration is chosen. Thus, the random choice

of which configuration is chosen must be hidden from the players. We show the

applicability of our technique by using it to design a mediator for the virus inoculation

game from [39], that achieves a social welfare that is asymptotically optimal.

We also show the limits of our technique by proving an impossibility result that

shows that for a large class of games, no mediator will improve the social welfare

over the best Nash equilibrium. In particular, this impossibility result holds for the

congestion games that in [7] it s shown to have a windfall of malice. Thus, we show

that some games with a windfall of malice effect can not be improved by the use of

a mediator.

4.1 Layout of this Chapter

In Section 4.2 we give a few basic definitions which are common to all games. Then,

in Section 4.3 we consider the virus inoculation game in detail. Section 4.4 and 4.5

then contain results about the network congestion games, and finally in Section 4.6

we conclude with some open problems.

65

Chapter 4. On the power of Mediators

4.2 Basic definitions and notation.

A correlated equilibrium is a probability distribution over strategy vectors that en-

sures that no player has incentive to deviate. We define a configuration for a given

game to be a vector of pure strategies for that game, one for each player. We define a

mediator for a game to be a probability distribution D(C) over a finite set of different

configurations C. The set of configurations C and the distribution D(C) are known

to all players. However, the actual configuration chosen is unknown, and the advice

the mediator gives to a particular player based on the chosen configuration is known

only to that player. We say that a mediator is valid if all players are incentivized

to follow its advice. In this case, the mediator implements a correlated equilibrium.

From a distributed computing viewpoint, the major difference between a correlated

equilibrium and a Nash equilibrium is that in a correlated equilibrium, players share

a global coin, but in a Nash equilibrium, players only have access to private coins.

Throughout this chapter, we will only consider mediators that treat all players

equally, i.e., once having decided (by a random experiment according to D(C)) which

is the configuration the mediator is choosing from, all players have the same proba-

bility to be proposed a particular strategy. Also, throughout the chapter we assume

that the number of strategic players, n, is very large (tending to infinity). Finally, we

will use the notation a(n) ∼ b(n) if a(n) = b(n)(1± o(1)). We also use the notation

[n] = {1, . . . , n}.

4.3 Virus Inoculation Game

We now describe the virus inoculation game from [39, 4]. There are n players, each

corresponding to a node in a square grid G. Each player has two choices: either to

inoculate itself (at a cost of 1) or to do nothing and risk infection (which costs L).

66

Chapter 4. On the power of Mediators

After the decision of the nodes to inoculate or not, one node selected uniformly at

random is infected with a virus. A node v that chooses not to inoculate gets infected

by the virus if either the virus starts at v or the virus starts at another node v′ and

there is a path of not inoculated nodes connecting v and v′.

We define the attack graph Ga to be the graph induced on G by the set of all nodes

that do not inoculate. Aspnes et al. [4] proved that in a pure Nash equilibrium every

component of the attack graph has size n/L. The social welfare achieved in such an

equilibria is thus Θ(n). However, Moscibroda et al. [39] proved that the minimum

social cost is Θ(n2/3L1/3) for the grid, which occurs when the components in Ga

are of size (n/L)2/3. Moreover, they show that the existence of enough Byzantine

players, who can never be trusted to inoculate, ensures that the social welfare of any

Nash equilibria is slightly better than Θ(n).

Based on the result from [39], we observe that the main problem in this game is

that the individual players do not have enough fear of being infected. In particular,

they are unable to achieve the optimal social welfare because they form connected

components in Ga that are too large. Thus, we design a mediator that randomly

chooses between two configurations (see Figure 4.1). The first configuration is op-

timal: all components in Ga are of size (n/L)2/3. The second configuration is “fear

inducing”: any node that does not inoculate in this configuration has probability

about 1/2 of being infected. The only purpose of the second configuration is to

ensure that the selfish players follow the advice of the mediator when the optimal

configuration is chosen.

Clearly, we only want to choose the fear inducing configuration with very small

probability. The critical fact that enables us to do this is the fact that for a given

player, when that player is advised to inoculate, the posterior probability that the

mediator is in the second configuration increases significantly over the prior prob-

ability. This is the case because so many more nodes are told to inoculate in the

67

Chapter 4. On the power of Mediators

second configuration. Thus, players that are told to inoculate are more likely to be

infected. Finally, we also note that nodes that are told not to inoculate are more

likely to be in the first configuration and thus not to be attacked.

We now formally describe the mediator for this game.1 The mediator will choose

randomly between one of the following two configurations C1 and C2.

Configuration C1: The mediator proposes a pattern of inoculation such that 1)

all nodes that do not inoculate are in one giant component in Ga; 2) each node has

equal probability of being chosen to inoculate; and 3) the probability that a fixed

node inoculates is 1
2
− 1

2
√
n
. The mediator accomplishes this in the following manner:

1. The mediator flips a coin. If it comes up heads, it proposes that all nodes in

even columns do not inoculate. If it comes up tails, it proposes that all nodes

in odd columns do not inoculate.

2. The mediator chooses a random integer, x, uniformly between 1 and
√
n. For

each of the columns that have not already been told not to inoculate, the

mediator proposes that each node in that column inoculate except for the x-th

node in that column.

Configuration C2: The mediator proposes a pattern of inoculation that ensures

that 1) each component in Ga is of size no more than (n
L

)2/3; 2) each node is chosen to

inoculate with equal probability; and 3) the probability that a fixed node inoculates

is at most 2(L/n)1/3. It does this as follows.

1. The mediator chooses integer x uniformly at random in the range 1 to (n/L)1/3.

1For ease of analysis, we assume that both
√
n and (nL)1/3 are integers. Also,

√
n should

be an integer multiple of (nL)1/3 (this assumption can be removed easily without effecting
our asymptotic results)

68

Chapter 4. On the power of Mediators

(n/L)1/3

√
n

C2 C1

Figure 4.1: The
√
n×√n grid with two configurations C1, C2 for the virus inoculation

game

2. For every node v in row r and column c, if one of the following two conditions

hold, the mediator proposes v to inoculate: 1) r ≡ xmod((n/L)1/3); or 2)

c ≡ xmod((n/L)1/3). Otherwise the mediator tells v not to inoculate.

For these two configurations C1 and C2 we now define the probability distribution

D({C1, C2}) with p1 = cL−2/3n−1/3 and p2 = (1− cL−2/3n−1/3), where c > 0 can be

chosen to be any small constant satisfying c > 2L/(L−1) (in particular c = 4 always

suffices).

We can now prove the main theorem of this section which shows that D({C1, C2})
is asymptotically optimal.

Theorem 4.1. D({C1, C2}) is a mediator with social welfare Θ(n2/3L1/3).

Proof. To prove the statement, we need a few definitions. Define by E jI the event

that the mediator advises player j to inoculate and define by E j
Ī

the event that the

mediator advises player j not to inoculate. Since all players are to be treated equally

by the mediator, we will omit the index j. Define also by EA the event that a not

inoculated node gets infected by the virus, and denote by CA the infection cost of a

69

Chapter 4. On the power of Mediators

not inoculated node. We also use the notation CI to denote the cost of inoculation

(clearly CI = 1). We first need to show that D({C1, C2}) indeed yields a mediator.

That is, we have to verify the following conditions of a correlated Nash equilibrium:

E [CA|EI] ≥ E [CI |EI] = 1

E [CA|EĪ] ≤ E [CI |EĪ] = 1,

which is equivalent to showing that

Pr (EA|EI) ≥ 1/L (4.1)

Pr (EA|EĪ) ≤ 1/L, (4.2)

since for any event E with Pr (E) > 0, we have that E [CA|E] = LPr (EA|E). We

denote furthermore by Ei, i = 1, 2, the event that configuration Ci, i = 1, 2 is chosen.

Note that Pr (EA|E1) = 1. To prove (4.1), first observe that

Pr (E1|EI) = Pr (E1, EI)/Pr (EI)
∼ p1(1/2− 1/(2

√
n))

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

,

and similarly for Pr (E2|EI). Now, plugging in the values of p1, p2 and using that

70

Chapter 4. On the power of Mediators

L ∈ o(n) we get 2

Pr (EA|EI) = Pr (EA, E1|EI) + Pr (EA, E2|EI)
= Pr (EA|E1, EI)Pr (E1|EI) + Pr (EA|E2, EI)Pr (E2|EI)
≥ Pr (E1|EI) +

1

L2/3n1/3
Pr (E2|EI)

∼ p1(1/2− 1/(2
√
n))

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

+ (L−2/3n−1/3)
2p2(L/n)1/3

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

∼ (c/2)L−2/3n−1/3 + 2L−1/3n−2/3

(c/2)L−2/3n−1/3 + 2(L/n)1/3

=
2cL2/3n2/3 + 4Ln1/3

2cL2/3n2/3 + 4L5/3n2/3

∼ c

c+ 2L
,

which is greater than 1/L for c > (2L)/(L− 1). Similarly, to prove (4.2), note that

Pr (E1|EĪ) = Pr (E1, EĪ)/Pr (EĪ)
∼ p1(1/2 + 1/(2

√
n))

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

,

2if L = θ(n), then any pure Nash equilibria is trivially asymptotically optimal

71

Chapter 4. On the power of Mediators

and analogously for Pr (E2|EĪ). Hence,

Pr (EA|EĪ) = Pr (EA, E1|EĪ) + Pr (EA, E2|EĪ)
= Pr (EA|E1, EĪ)Pr (E1|EĪ) + Pr (EA|E2, EĪ)Pr (E2|EĪ)
≤ Pr (E1|EĪ) +

1

L2/3n1/3
Pr (E2|EĪ)

∼ p1(1/2 + 1/(2
√
n))

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

+ (L−2/3n−1/3)
p2(1− 2(L/n)1/3)

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

∼ (c/2)L−2/3n−1/3 + L−2/3n−1/3

(c/2)L−2/3n−1/3 + 1

∼ c+ 2

2L2/3n1/3
,

which is smaller than 1/L since L ∈ o(n). Thus, we have shown that D({C1, C2})
indeed is a valid mediator in that players will follow its advice. We next compute

the social cost for this mediator. Let I1 (Ī1) be the set of nodes that inoculate

(respectively do not inoculate) in C1, and let I2 (Ī2) be the set of nodes that inoculate

(respectively do not inoculate) in C2. Then the social cost for the mediator can be

written as

p1(|I1|+
∑
v∈Ī1

LPr (EA|E1, EĪ)) + p2(|I2|+
∑
v∈Ī2

LPr (EA|E2, EĪ))

∼ c

L2/3n1/3
(n/2 + (n/2)L) + (2n2/3L1/3 + nL

1

L2/3n1/3
)

= (3 + (c/2))n2/3L1/3 + (c/2)(n/L)2/3 = Θ(n2/3L1/3).

72

Chapter 4. On the power of Mediators

4.4 Impossibility Result

In light of the results in the previous section, a natural question is: Is it possible

to design a mediator that will always improve the social welfare in any game for

which there is a windfall of malice? Unfortunately, the answer to this question is

“No”, as we show in this section. In particular, we show that the congestion games

which Babaioff, Kleinberg and Papadimitriou have proven have a windfall of malice

effect [7] do not admit a mediator that is able to improve the social welfare. In fact,

we prove a stronger impossibility result, showing that for any non-atomic, symmetric

congestion game where the cost of a path never decreases as a function of the flow

through that path (of which class of games, the examples in [7] are special instances),

no mediator can improve the social optimum. In the rest of this section, we first define

the congestion games we consider and then prove our impossibility result for these

games.

A non-atomic, symmetric congestion game (henceforth, simply a congestion game)

is a specified by a set of n→∞ players; a set of E facilities (or edges); A ⊂ 2E ac-

tions (or paths); and finally, for each facility e a cost function fe associated with that

facility. A pure strategy profile A = (A1, . . . , An) is a vector of actions, one for each

player. The cost of player i for action profile A is given by Fi(A) =
∑

e∈Ai fe(xe(A))

where xe(A) is the fraction of players using e in A. As in [7], we assume that the

game is non-atomic: since n→∞ the contribution of a single player to the flow over

a facility is negligible; and symmetric: all players have the same cost functions.

For an action a and a flow x ∈ [0, 1], let Fh(a, x) be the maximum possible cost

of following action a when the total fraction of players following this action is x,

where the maximum is taken over all ways that the remaining flow of 1 − x can

be distributed over other actions. Similarly, let F`(a, x) be the minimum cost of

following action a when the total fraction of players following this action is x.

73

Chapter 4. On the power of Mediators

s t

a

b f

e

hd

gc

s t

a

b

Figure 4.2: Examples where Theorem 4.2 applies

We prove the following theorem for congestion games where the cost function

of every action is always non-decreasing in the fraction of players performing that

action. The theorem says that for such games, coordination between the agents in

order to establish a correlated equilibrium will not decrease the social cost.

Theorem 4.2. Consider a non-atomic, anonymous congestion game. If for all a ∈ A
and 0 ≤ x ≤ x′ ≤ 1, Fh(a, x) ≤ F`(a, x′) then the smallest social cost achieved by

a correlated equilibrium is no less than the smallest social cost achieved by a Nash

equilibrium.

We give an overview of the proof of this theorem in subsection 4.4.1 and then the

detailed proof in subsection 4.4.2

Figure 4.2 gives examples of congestion games for which Theorem 4.2 applies. In

these graphs, if the costs of all edges are non-decreasing in flow, then the smallest

social cost achieved by a correlated equilibria is no better than the smallest social

cost achieved by a Nash equilibria. In both examples, all players must travel from the

source node s to the sink node t, so the set of allowable actions are just the set of all

paths from s to t. The graph on the left is a specific example of a more general class

of graphs for which all paths are disjoint and edge costs are non-decreasing, for which

Theorem 4.2 applies. The graph on the right is a generalization of the congestion

game from [7], which they show has a positive windfall of malice for certain non-

decreasing cost functions. In the next section and in Figure 4.3 described therein,

74

Chapter 4. On the power of Mediators

examples of congestion games for which Theorem 4.2 does not hold are given.

4.4.1 Overview of Theorem 4.2

In this section we give a high level sketch of how we prove Theorem 4.2. We will

fix a non-atomic, anonymous congestion game G with q actions, a1, . . . , aq, and n

players. We define a configuration, C, for such a game to be a partitioning of the set

of players across the q actions. We note that the number of possible configurations

is finite; in particular, qn. We next fix a mediator, M , for this game. We assume the

mediator uses ` different configurations C1, . . . , C`; that 0 ≤ xi,j ≤ 1 is the fraction

of the players in configuration Cj assigned to action ai; and that ci,j ∈ R is the cost

in configuration Cj for action ai. We further assume that for all j ∈ [`], pj is the

probability with which the mediator M chooses Cj.

For any two actions a, a′ we define the a posteriori cost of a given a′ as the

expected cost for a player of performing action a when action a′ is suggested by

the mediator M ; formally, POST (a, a′) = E [Ca|Ea′], where Ca is a random variable

(over the configuration chosen by the mediator) and Ea′ is the event that action a′

is recommended by the mediator. We define the a priori cost of action a as the cost

of a player completely ignoring what the mediator suggests and always performing

action a; formally, PRI (a) :=
∑`

j=1 pjci,j.

The sketch behind our proof for this theorem is as follows. First, we show in

Lemma 4.1 that for all actions a, if the cost of a is non-decreasing in the flow through

a, then POST (a, a) ≥ PRI (a). We show this by repeated decompositions of terms

in summations for the a priori and posterior costs. Next, let Y be the cost of a player

listening and following the advice of the mediator, and let X be the cost of the player

if she just ignores the advice of the mediator and always chooses the action a that

minimized PRI (a). In Lemma 4.2 we show that it must be that E(Y) ≤ E(X). This

75

Chapter 4. On the power of Mediators

lemma is shown by summing up inequality constraints on the mediator. Finally, we

use these two lemmas to show the main theorem by showing that if Lemma 4.1 holds,

then E(Y) > E(X). The main technical challenge is the fact that we must show that

E(Y) > E(X) even though Lemma 4.1 does not necessarily give a strict inequality.

We address this problem by a subtle case analysis in the proof of the main theorem,

and by augmenting Lemma 4.1 to show that in some cases, the inequality it implies

is strict.

We now present the detailed proof of Theorem 4.2

4.4.2 Proof of Theorem 4.2

Observe that the condition for all a ∈ A and 0 ≤ x ≤ x′ ≤ 1, Fh(a, x) ≤ F`(a, x′)
implies that for all i ∈ [m], ∀j, k ∈ [`] we have that xij ≤ xik implies cij ≤ cik, and

so the conditions of the following lemma are satisfied. We begin with Lemma 4.1.

Lemma 4.1. Given ` ≥ 2 configurations C1, . . . , C`, with corresponding probabilities

pr > 0, r ∈ [`]. If for i ∈ [m], ∀j, k ∈ [`] we have that xij ≤ xik implies cij ≤ cik,

then POST (ai, ai) ≥ PRI (ai). Moreover, if for any i ∈ [q], not all cij, j ∈ [`] are

the same, then POST (ai, ai) > PRI (ai).

Proof. Consider without loss of generality action a1. During this proof we use the

notation of xi for x1i and ci for c1i, i ∈ [`]. Assume also without loss of generality

that the configurations are ordered in such a way that x1 ≤ x2 ≤ . . . ≤ x` and

thus c1 ≤ c2 ≤ . . . ≤ c`. Note that POST (a1, a1) = 1P`
i=1 pixi

(
∑`

i=1 pixici) and

PRI (a1) =
∑`

i=1 pici. Thus we must show that:∑̀
i=1

pixici ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pixi).

If all xi are the same, then we clearly have equality and in this case POST (a1, a1) =

PRI (a1). Otherwise, we will show that this inequality is true by decomposing the xi

76

Chapter 4. On the power of Mediators

terms into x1 and εi terms, εi ≥ 0 (and there exists at least one j with εj > 0). For

any i ∈ {2, . . . , `} we write xi = x1 + ε1 + . . .+ εi−1. Consider only the summands in

the above inequality that contain the term x1. If x1 = 0 then clearly the inequality

holds for such summands. If x1 > 0, we get the following chain of inequalities for

the summands containing x1:

∑̀
i=1

pix1ci ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pix1)

∑̀
i=1

pici ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pi)

∑̀
i=1

pici ≥
∑̀
i=1

pici,

so this inequality holds.

Now consider the summands in the inequality containing εj for 1 ≤ j ≤ ` − 1.

We get the inequality:

∑̀
i=j+1

piεjci ≥ (
∑̀
i=1

pici)(
∑̀
i=j+1

piεj).

If εj = 0, the inequality holds. If εj > 0, for that j showing the previous inequality

is equivalent to showing

∑̀
i=j+1

pici ≥ (
∑̀
i=1

pici)(
∑̀
i=j+1

pi).

To show that this inequality is true, we decompose the ci terms into c1 plus δi terms.

That is, ci = c1 + δ1 + . . . + δi−1, for i = 1, . . . , ` − 1. Consider first the c1 term. If

77

Chapter 4. On the power of Mediators

c1 = 0, again the inequality holds trivially. If c1 > 0, we get the chain of inequalities

∑̀
i=j+1

pic1 ≥ (
∑̀
i=1

pic1)(
∑̀
i=j+1

pi)

∑̀
i=j+1

pi ≥ (
∑̀
i=1

pi)(
∑̀
i=j+1

pi)

∑̀
i=j+1

pi ≥
∑̀
i=j+1

pi,

which holds. Next we consider the δk terms for k ≤ j + 1. If δk = 0, the inequality

clearly holds for summands containing this term. If δk > 0, we get the inequality

chain:

∑̀
i=j+1

piδk ≥ (
∑̀
i=k+1

piδk)(
∑̀
i=j+1

pi)

∑̀
i=j+1

pi ≥ (
∑̀
i=k+1

pi)(
∑̀
i=j+1

pi)

which also holds. In particular, since p1 > 0, we have that (
∑`

i=j+1 pi) < 1, and so

if δk > 0, the inequality is strict. Finally, we consider the δk terms for k > j + 1. If

δk = 0, the inequality holds trivially. If δk > 0 we get the inequality chain:

∑̀
i=k

piδk ≥ (
∑̀
i=k

piδk)(
∑̀
i=j+1

pi)

∑̀
i=k

pi ≥ (
∑̀
i=k

pi)(
∑̀
i=j+1

pi),

which also holds.

Now, we note that if not all ci are the same for i ∈ [`], it must be the case that

there exists some j such that δj > 0, and it follows that we must also have that εj > 0.

78

Chapter 4. On the power of Mediators

As shown above, in such a situation, we obtain a strict inequality over the summands

containing the term δj, and so the entire inequality, POST (a1, a1) > PRI (a1) must

be strict.

Define by apri := argminaPRI (a). Given a mediator over a fixed set of con-

figurations, let X be the random variable denoting the cost of an arbitrary player

when he decides to use action apri, i.e., E [X] =
∑`

j=1 pjcaprij. Denote also by Y

the random variable of the cost when following the advice of the mediator, i.e.,

E [Y] =
∑m

i=1 POST (ai, ai) Pr (Ei) =
∑m

i=1

∑`
j=1 pjxijcij. We have the following

relationship between Y and X.

Lemma 4.2. For any mediator we have E [Y] ≤ E [X].

Proof. Assume without loss of generality that action a1 is the action with apri.

The constraints for a correlated Nash equilibrium are that for all actions ai and

aj, E [Cai |Eai] ≤ E
[Caj |Eai]. These constraints imply that

∀i:2≤i≤q :
∑̀
j=1

pjxijcij ≤
∑̀
j=1

pjxijc1j.

Summing all of these q− 1 inequalities together gives the single inequality, which we

can rearrange as follows to show our result:

79

Chapter 4. On the power of Mediators

q∑
i=2

∑̀
j=1

pjxijcij ≤
q∑
i=2

∑̀
j=1

pjxijc1j ⇐⇒

∑̀
j=1

m∑
i=2

pjxijcij ≤
∑̀
j=1

pjc1j

q∑
i=2

xij ⇐⇒

∑̀
j=1

q∑
i=2

pjxijcij ≤
∑̀
j=1

pjc1j(1− x1j) ⇐⇒

∑̀
j=1

q∑
i=1

pjxijcij ≤
∑̀
j=1

pjc1j ⇐⇒

E [Y] ≤ E [X].

We are now ready to prove Theorem 4.2.

Proof. Denote by apost := argminsPOST (s, s) the action with minimum a posteriori

cost. We will consider two cases.

Case 1: Not all actions have the same a posteriori cost. Then, we have:

E [Y] > POST (apost, apost)

≥ PRI (apost) by Lemma 4.1

≥ PRI (apri) = E [X].

Case 2: All action have the same a posteriori cost. In this case, we make use of

the fact that there always must be some action that does not have equal costs in

each configuration. Assume not. Then the cost of each action is the same in every

configuration, and so any particular configuration must be a Nash equilibrium that

achieves social cost equal to the social cost of the correlated equilibrium. Thus, we

80

Chapter 4. On the power of Mediators

let ax be some action that does not have the same cost in all configurations. Then

we have:

E [Y] = POST (ax, ax)

> PRI (ax) by Lemma 4.1

≥ PRI (apri) = E [X].

In both cases we have E [Y] > E [X]. This however contradicts Lemma 4.2, hence

there can not exist a correlated equilibrium achieving social cost less than the optimal

Nash equilibrium.

4.5 The Possibility of Mediation

We end this chapter on a positive note, by describing a simple congestion game where

we can show that a mediator will improve the pure nash equilibrium solution. This

simple game gives additional insight into why our mediator for the virus inoculation

game works.

The game we consider is a variant of the El Farol game [3, 17, 11, 32]. El Farol

is a3 tapas bar in Santa Fe. Every Thursday night, a population of people decide

whether or not to go to the bar. If too many people go, they will have a worse time

than if they stayed home, since the bar will be too crowded. In our variant of the

problem, we also assume that if too few people go, they will have a worse time than

if they stayed home, because the bar will be too boring. We can model this as a

non-atomic, symmetric congestion game as follows. There are two facilities e1 and

e2, and two actions a1 = {e1} and a2 = {e2}. For all 0 ≤ x ≤ 1, fe1(x) = 1/2 and

fe2(x) = |1− 2x|.

We observe that the social cost in our game is minimized when the flow over both

edges is 1/2, in which case, the social cost is 1/4. This configuration, however, is not

3very tasty

81

Chapter 4. On the power of Mediators

a Nash equilibrium. Pure Nash equilibria occurs when the top flow is 1/4 or the top

flow is 3/4, for a social cost of 1/2. We now describe a mediator that improves upon

the social welfare of the pure nash equilibrium.

Configuration C1: The mediator advises all players to perform action a1.

Configuration C2: The mediator advises half of the players to perform action a1,

and advises the other half to perform action a2.

For these two configurations C1 and C2 consider now the probability distribution

D({C1, C2}) with p1 = 1/3 and p2 = 2/3.

Observation 4.1. D({C1, C2}) is a mediator with social welfare 1/3. Moreover, 1/3

is the optimal value that can be obtained by a mediator.

Proof. Define by Esi , i = 1, 2, s = 1, . . . , n, the event that the mediator proposes to

player s to go on the i’th edge and define by Csi , i = 1, 2, s = 1, . . . , n, the cost for

player s of going on the i’th edge. Since the mediator treats all players equally, we

will leave out the index s. Therefore, for a mediator to implement a correlated Nash

equilibrium, the following inequalities must hold:

E [C2 | E1] ≥ E [C1 | E1], (4.3)

E [C1 | E2] ≥ E [C2 | E2]. (4.4)

For the particular choice of p1 = 1/3 and p2 = 2/3, it is easy to see that both (4.3)

and (4.4) are satisfied.

Now we show that 1/3 is the optimal value that can be obtained by any mediator.

Let x1 be the flow on e1 and x2 be the flow on e2. The argument is as follows:

for (4.3) to be satisfied, a configuration with x1 ∈ [0, 1/4]∪ [3/4, 1] has to be chosen,

and among all these the configuration C1 of the previous example is the one which

has minimum total cost and the same time allows for the highest probabilities for

82

Chapter 4. On the power of Mediators

1

0
1/2

a2 :

x

F!(a2, x) = Fh(a2, x)

s t

a1

a2

s t

L

0
1/2

a1

a2

x
F!(a2, x)

Inoculate

~Inoculate

Fh(a2, x)
a2 :

Figure 4.3: Congestion Games where mediation helps

configurations outside this interval. For the remaining values of x1 ∈ [1/4, 3/4], C2

minimizes the total cost.

Figure 4.3 illustrates the two games we have described for which mediation helps.

The left subfigure portrays our variant of the El Farol game, where the cost of the

top path a1 is always 1/2 and the cost of the bottom path varies as shown in the plot

below the graph. The values of F`(a2, x) and Fh(a2, x) are equal, since in this game,

when the flow through the top path is known, the cost of the bottom path is exactly

determined. The two x’s on the plot show the configurations used by the mediator.

As implied by Theorem 4.2, for mediation to be effective, one of these x’s must be

below and to the right of the other on the plot. The right subfigure in Figure 4.3

portrays virus inoculation as a congestion game. The cost of the top path a1 for

this game is always 1. The cost of the bottom path, a2, is any point in the polygon

shown in the plot. We now have a polygon, rather than a line, because for a fixed

number of nodes that do not inoculate, the cost of not inoculating varies depends on

how the inoculated nodes are positioned on the grid. F`(a2, x) is the bottom border

of this polygon and Fh(a2, x) is the top border. Again the two x’s on the plot show

the configurations used by the mediator, and again it is critical that one of these x’s

be below and to the right of the other. For the virus inoculation problem, we needed

83

Chapter 4. On the power of Mediators

a clever arrangement of the inoculated nodes in one of the configurations to achieve

this.

4.6 Conclusion

We have shown that a mediator can improve the social welfare in some strategic

games with a positive windfall of malice. We have also shown the limitation of this

technique for certain games.

84

Chapter 5

Future Directions

This chapter is organized in two sections. In section 5.1 we describe some open

problems regarding the Worm versus Alert game. In section 5.2 we describe some

open problems, and some preliminary research on some of the problems which we

have been working on.

5.1 Future work on the Worm versus Alert game

In our research in Chapters 3 and 4, the overlay network is a regular graph. We

conjecture that our results can be generalized to many graphs in which the maximum

degree a node can have is bounded by a constant d. Many other open problems

remain in the Worm versus Alert game including: (1) tightening the upper and

lower-bounds for the expansion needed in the overlay network to save almost all

of the nodes; (2) developing other models for the spread of a dynamic process and

its inhibitor over a network, and finding provably good strategies in these models;

(3)finding out an alert spreading algorithm to handle worms which are not limited to

infecting the network in θ(log n) rounds, where false alerts spread to polylogarithmic

85

Chapter 5. Future Directions

number of nodes.

For bullet 3, consider the following strategy which the worms could use against

the alert spreading algorithm. Assume that the worm has already been successful in

infecting log n number of nodes in the network, without alerting any detector nodes.

After that in each round the worm infects only one node. If it turns out to be a

detector node, in the next round it takes over nodes in the neighborhood of this

detector node to contain the spread of alerts. Let us assume that the time when the

first detector node has been alerted is 0. Let Zi be a random variable, giving the

number of alerted nodes at time step i. So by assumption, Z0 = 1. We can show the

following

Lemma 5.1. If (dγ < 1), then ∃n0, s.t Pr(Zn = 0) = 1 for all n ≥ n0.

Proof. To prove the theorem, we reason that this process is a Galton-Watson Branch-

ing Process. Each time the worm tries to take over the children of a alerted detector

node, it can alerted a random number of detector nodes. The probability that each

of them turn out to be a detector node is γ. Let µ represent the expected number

detector nodes which are children of a detector node. We know that µ = dγ. From

[5] we know that

E[Zn] = µn.

Since µ < 1 , E[
∑∞

n=0 Zn] = 1/(1− µ) <∞. This implies that the probability of

extinction is 1, or there exists an n0 at which the number of detector nodes alerted

will be zero.

Note that if the precondition of this lemma holds, then only detector nodes will be

alerted by this worm strategy. Assuming that τ is θ(log log n), the worm can resume

its previous strategy of infecting only one node in each time step after TTL expires.

86

Chapter 5. Future Directions

In our future attempts to solve this problem, we need to find an alert algorithm

to counter this particular worm strategy, or prove that the current alert strategy is

sufficient to counter this strategy for slow worms.

Another important direction of work, is to find algorithms for alerts which would

prevent large scale infection of nodes in other kinds of networks.

5.2 Future work in designing mediators

In Chapter 4 we describe a technique using mediators to decrease the social cost of

a well studied game with a high price of anarchy. Several open questions remain

including the following. First, can we determine necessary and sufficient conditions

for a game to allow a mediator that improves social welfare over the best Nash?

In particular, can we find such conditions for general congestion games? What

about arbitrary anonymous games? Second, for games where each player can choose

among k actions, can we say how many configurations are needed by any mediator?

Preliminary work in this direction shows that for 2 actions, sometimes more than 2

configurations are needed.

In the sections given below we present some very preliminary work on designing

mediators for some problems which we have pursued.

5.2.1 Multiround Games

In this section we describe mediators for a multiround game where the number of

rounds is finite but determined by a geometric random variable. Let us consider

the multiround pollution game. In this game, in each round, each player can either

choose to pollute and pay a cost of one or to not pollute and pay nothing. Each

87

Chapter 5. Future Directions

player pays an additional cost equal to the number of players who have decided to

pollute in that round. The mediator, suggests actions to each player in each round,

and comes to know of the strategies played out by the players in each round. Let

there be at least n players where n > 2. After every round, let the probability that

the game is over in the next round be p.

The optimal social cost for this game is n. We design a mediator, which is as

follows: Ask all the players to not pollute,and if any one disobeys, ask every player

to pollute after that in all the rounds.

The expected number of rounds the game will last is 1/p. So the expected cost

of not listening to the mediator is (1/p)(n-1). The expected cost of listening to the

mediator is just 1 + (1/p). So for all p such that (1 + (1/p)) ≤ (1/p)(n− 1) , there

is no reason not to listen to the mediator.

Another example of a multi-round game is the multi-round bandwidth sharing

game. This game has n players. Each player has an infinite set of strategies. Let

each player send xi units of flow along a channel where xi = [0, 1]. If Σjxj exceeds

the channel capacity, then no player get any benefit. If Σjxj < 1, then the utility of

the player i is xi(1−Σjxj). In other words the utility of each player decreases as the

flow in the channel increases.

It is also easy to see that for the multi-round bandwidth sharing game played over

infinite rounds, a punitive deterministic multi-round mediator improves the optimal

solution. The mediator at each round asks one player chosen uniformly at random

to send 1/2 and all the other players to send 0. If ever any player decides not to

follow the advice of the mediator, then in every successive round the mediator asks

every player to send 1/(n+1), thus reducing the utility of this player for all successive

rounds. For every rational player, the expected utility when listening to the player

is 1/4· (probability that it is chosen). The utility when not listening to the mediator

88

Chapter 5. Future Directions

is 1/(n+ 1)2. The optimal solution without a mediator is 1/(n+ 1)2 for each player

in each round.

We would like to point out that a punitive multiround deterministic mediator

does not help the multi-round pollution game over finite number of rounds where

the number of rounds is known to every player. The basic idea is as follows. Every

player would pollute in the last round, because there are no repercussions to not

following the mediator in the last round. Since every player is selfish, it would thus

try to minimize its cost in the last but one round by polluting. Thus every player

would pollute in the last but one round as well. This analysis can be carried for

every round with the result that every player pollutes in every round.

This raises the question, are there other multiround games with a finite number of

rounds but the number of rounds being distributed according to distributions other

than the geometric distributions, where mediators can help?

5.2.2 Non-Responsive games and do Mediators help?

In work in Chapter 4, we had the restriction of bad nodes not being players in the

network. What if the bad players also have a choice of infecting nodes. In this

section we predict the probabilities of infection and inoculation on some network

topologies, for which there is a nash equilibria. In other words, for what probability

values of infection and inoculation will we achieve a nash equilibria. We are exploring

the question of using mediators in improving the social welfare in such equilibrium

situations. The notation remains the same for all the network topologies covered in

this section.

89

Chapter 5. Future Directions

Complete Graph

Model:In our model we consider a complete graph on n vertices. The cost of good

nodes is C1 to inoculate and L to get infected where C1 ≤ L. A virus pays a cost of

C2 to create a virus minus the number of infected nodes. In this section we try to find

the values of pg and pb for which there is a Nash equilibria with the following strategy

where each good guy inoculates with probability pg and each bad guy creates a virus

with probability pb and if it does, the virus infects a node in the network u.a.r and

all nodes reachable from it which are not inoculated. There are a total of n nodes in

the network. Let G be a r.v giving the utility of a good node and B be a r.v giving

the utility of a bad agent. Let the expected utility of a good guy be E(G), and for

a virus be E(B). Also let Qi=1/n(1 + (n− 1)(1− pg)) = 1/n(n− (n− 1)pg).

Lemma 5.2. E(G) = C1pg + (1− pg) · pb · L ·Qi.

Proof. The probability that the virus infects this node is pb · Qi, as this node is

attacked with probability pb/n and any other node among the n-1 nodes is attacked

successfully with probability pb/n · (1− pg). Since it is a clique, this node could get

a virus from any of the n− 1 nodes.

Lemma 5.3. E(B) = C2pb − pb · (1− pg)nQi.

Proof. The probability that a node is infected is (1 − pg)pbQi, by arguments given

above. There are n such nodes, so the expected number of nodes infected is (1 −
pg)pbnQi. .

Let C(G,p) be the expected cost of a good node when pg = p. Let ∆(G, ε) be

C(G, pg) − C(G, pg + ε). Similarly let C(B,p) be the expected cost of a node when

pb = p. Let ∆(B, ε) be C(B, pb − C(B, pb + ε).

Fact 5.1. ∆(G, ε)= ε(C1 − LpbQi).

90

Chapter 5. Future Directions

Fact 5.2. ∆(B, ε) = ε(C2 − (1− pg)(n− (n− 1)pg).

Fact 5.3. If C2 = (n− 1)p2
g− (2n− 1)pg +n and C1 = (1/n)Lpb(n− (n− 1)pg) then

the system is in a Nash equilibria.

Fact 5.4. In a Nash equilibria, pg = (2n−1)±
√

4nC2−4C2+1
2(n−1)

= θ(n−
√
nC2

n
)

Lemma 5.4. In a Nash equilibria, pb = θ(C1
√
n

L
√
C2

)

Proof. From fact 5.3 we get

pb =
nC1

L(n− (n− 1)pg)

= θ(
C1

L(1− pg))

= θ(
C1

L(1− n−
√
nC2

n
)
)(Substituting pg from fact 5.4)

= θ(
C1

√
n

L
√
C2

)

Let the social welfare of the grid be denoted by SW(Grid)

Lemma 5.5. In a a Nash equilibria SW(Grid)=θ(
√
nC2C1) + θ(n−√nC2)

Proof. The expected cost due to the bad nodes is pb(1− pg)n(1− pg)L.

The expected cost due to the good nodes is npg.

Substituting the values of PB and PG from fact 5.4 and 5.4, we get

91

Chapter 5. Future Directions

SW (Grid) = θ(
C1

√
n

L
√
C2

)(1− (
n−√nC2

n
))2n.L+ θ(n−

√
nC2)

= θ(
C1

√
n

L
√
C2

)
C2

n
nL+ θ(n−

√
nC2)

= θ(
√
nC2C1) + θ(n−

√
nC2)

Here we state the main theorem of this section.

Lemma 5.6. As n→∞ , pg → 1 and pb → 1.

Proof. Solving for pg in the quadratic equation in fact 5.3, we get pg = (2n−1)±
√

4nc2−4c2+1
2(n−1)

which tends to 1 as n→ 0. Similarly solving for PB we get nC1

L
which tends to ∞ as

n→∞, or pb = 1.

Corollary 2. If C2 = θ(n), then pb = C1

L
.

It is a corollary of lemma 5.4.

Lemma 5.7. For n=1, there is a nash equilibria for pb = C1/L and pg = 1− c2.

Proof. From lemma 5.2, 5.3, 5.1 and 5.2 we know that

• E(G) = pgC1 + (1− pg)pbL

• E(B) = pbC2 − pb(1− pg)

• ∆(G, ε) = ε(C1 − pbL)

92

Chapter 5. Future Directions

• ∆(B, ε) = ε(C2 − (1− pg))

Setting ∆(G, ε) and ∆(B, ε) equal to zero, we get pb = c1/l and pg = (1 − c2)

respectively

Grid

In this section, we find the values of pg and pb for which we achieve a Nash equilibria

when the game is carried out on a Grid. The notations carry over from the previous

section. The grid has n nodes, therefore the number of rows and columns in the grid

is
√
n. The size of a connected component of uninoculated nodes is α consisting of

√
α rows and columns. Therefore every (

√
α + 1)th row/column is a row/column of

inoculated nodes.

Lemma 5.8. E(B) = pbC2 − pb(1− (1√
α+1

)2) · α.

Proof. Number of inoculated rows/columns =
√
n√

α+1
.

Number of nodes in the inoculated rows/columns =
√
n√

α+1

√
n.

Number of nodes inoculated = number of nodes inoculated in rows + number of

nodes inoculated in columns - the nodes which have been over counted because they

were in the intersection of rows and columns, or

Number of nodes inoculated=
√
n√

α+1

√
n +

√
(n)

√
α+1

√
n -

√
n√

α+1
·
√
n√

α+1
= n√

α+1
(2− 1√

α+1
).

Therefore the probability that a node is inoculated = 2√
α+1
− 1

(
√
α+1)2

.

Therefore the probability that a node is uninoculated = (1− 1√
α+1

)2.

Since the total number of nodes in an uninoculated component is α,

E(B) = pbC2 − pb(1− 1√
α+1

)2α.

Fact 5.5. ∆(B, ε) = ε(C2 − (1− 1√
α+1

)2)α.

Fact 5.6. If ∆(B, ε) = 0, then α = θ(C2).

93

Chapter 5. Future Directions

Lemma 5.9. For an uninoculated node the expected cost of choosing to not inoculate

is pb
2αL
n

.

Proof. If an inoculate node decided to not inoculate then it would be connecting 2

connected component of uninoculated nodes. The bad agent can infect this large

connected component with probability pb
2α
n

. Since the cost of infection is L, the

expected cost is pb
2αL
n

.

Lemma 5.10. For an uninoculated node, the expected cost to remain uninoculated

is pb
Lα
n

.

Proof. The probability of getting infected by the bad agent is pb
α
n
. So the expected

cost is pb
Lα
n

.

Lemma 5.11. For a nash equilibria to hold, pb
2αL
n
> C1 > pb

Lα
n

.

Proof. We get pb
2αL
n
> C1 from lemma 5.9 and C1 > pb

Lα
n

from lemma 5.10.

Lemma 5.12. If ∆(B, ε) = 0, pb = θ(C1L
C2L

).

Proof. From fact 5.6 we know that α = θ(c2). Substituting these values in the

inequalities of lemma 5.11, we get pb >
C1n

θ(C2)L
and pb <

C1n
θ(C2)L

. Therefore pb =

θ(C1n
C2L

).

Corollary 3. For α = θ(C2), there is a nash equilibria on the grid.

Proof. This result is a corollary of lemma 5.12.

Lemma 5.13. If α = θ(C2), the social welfare of nodes on the grid is θ(C1n).

Proof. The probability that the uninoculated nodes have been hit by a bad agent is

pb(1− (1√
α+1

)2) . The total loss in that component is αL. The number of inoculated

94

Chapter 5. Future Directions

nodes is n(2√
α+1
− 1

(
√
α+1)2

). So the cost due to nodes which have inoculated is

n(2√
α+1
− 1

(
√
α+1)2

)C1. Therefore the social welfare is pb(1− (1√
α+1

)2) ·αL + n(2√
α+1
−

1
(
√
α+1)2

)C1. Substituting the value of pb from lemma 5.12 in the previous expression

we get the social welfare as θ(C1n)θ(1 − 1√
C2

) + θ(nC1√
C2

). In this expression θ(C1n)

dominates.

In conclusion we would like to add that we have not found any evidence of the

mediator coming to our rescue for the virus inoculation game played in chapter 4.

We also could not find a way for a mediator to help when there are m bad players

who attack the network with the spoils divided equally among all of the players. An

important future direction in this area would be to find games which improve the

social welfare in the the case of non responsive players, and to explore the case of

multiround games between non-responsive players.

5.2.3 Mediators for congestion control protocol

In this section, we decided to ascertain if the congestion control protocol as described

below, has a high price of anarchy. We describe our preliminary results in some detail

below.

Model: There are n agents who are competing to send a bit of information

through a shared channel. Time consists of discreet time slots. If more than one

agent tries to send there is a collision. A player leaves the game once it is successful in

sending the bit. A strategy of a player is the probability of sending a message at that

round. We assume that this game is non-blocking. i.e the transmission probability

for every player is less than one. We assume that this game is time independent

and symmetric, i.e the transmission probability in each round is dependent only on

the number of remaining players in that round and not the round number, and the

transmission probability is the same for all players. In our model the utility of any

95

Chapter 5. Future Directions

player decreases exponentially by a factor of α < 1 in each successive round. The

utility of sending it in the first round is 1. Let p be the nash equilibrium probability

when there are k players remaining in the game. Let Vk be the expected cost for a

player when there are k players remaining in the game.

Analysis: Suppose a player decides to deterministically send in every round.

The expected cost in that case is

V (k) = (1− p)k−1 · 1 + [1− (1− p)k−1]αV (k) (5.1)

If this is a nash equilibrium it should be the case that the value of V (k) when

probability is 0, 1 or p should be the same and all of them should be best responses.

Also

V (k) = (k − 1)p(1− p)k−2αV (k − 1) + [1− (k − 1)p(1− p)k−2]αV (k) (5.2)

The first term on R.H.S calculates the probability of some player other than the

player being considered being able to send through the channel. The second term

on R.H.S considers the probability that no player is able to send.

Theorem 5.7. 1
α(k−1)

=
[

1
1−α)V (k)1/k−1(1−α(V (k))1−1/(k−1)

]
(V (k − 1)− V (k)).

Proof. Equation 5.1 and 5.2 imply the identity

Let V ∗ (k) be the optimal value of V (k). Therefore V ∗ (k)=1/k(Σk−1
i=0 α

i). For

α = 1− 1/100 our empirical results suggested a high price of anarchy for this model.

96

References

[1] Good Hash Table Primes. http://planetmath.org/encyclopedia/GoodHashTablePrimes.html.

[2] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halper. Lower bounds on
implementing robust and resilient mediators. In IACR Theory of Cryptography
Conference(TCC), 2008.

[3] Brian Arthur. Bounded rationality and inductive behavior (the el farol problem).
American Economic Review, 84:406–411, 1994.

[4] James Aspnes, Kevin Chang, and Aleksandr Yampolskiy. Inoculation strate-
gies for victims of viruses and the sum-of-squares partition problem. In ACM
Symposium on Discrete Algorithms (SODA), 2005.

[5] James Aspnes, Navin Rustagi, and Jared Saia. Worm Vs Alert: Who wins in a
battle for control of a Large Scale Network. In Proceedings of the Principles of
Distributed Systems; 11th International Conference(OPODIS), 2007.

[6] Robert J. Aumann. Subjectivity and correlation in randomized games. Mathe-
matical Economics, 1:67–96, 1974.

[7] Moshe Babaioff, Robert Kleinberg, and Christos H. Papadimitriou. Congestion
games with malicious players. In ACM Conference on Electronic Commerce,
2007.

[8] Stephen Baker and Brian Grow. Gambling Sites, This Is A Holdup, 2005.
http://www.businessweek.com/magazine/content/04 32/b3895106 mz063.htm.

[9] Maria-Florina Balcan, Arvin Blum, and Yishay Mansour. Improved equilib-
ria via public service advertising. In ACM Symposium on Discrete Algorithms
(SODA), 2009.

[10] Bela Bollobas. Random Graphs. Academic Press, 1985.

97

References

[11] Damien Challet, Matteo Marsili, and Gabriele Ottino. Shedding light on el farol.
Physica A: Statistical Mechanics and Its Applications, 332:469–482, 2003.

[12] George Christodoulou and Elias Koutsoupias. On the price of anarchy and
stability of correlated equilibria of linear congetion games. In Proceedings of the
European Symposium on Algorithms(ESA), 2005.

[13] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs
and a peer-to-peer network. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete algorithms (SODA), 2005.

[14] Manuel Costa, Jon Crowcroft, Miguel Castro, Anthony Rowstron, Lidong Zhou,
Lintao Zhang, and Paul Barham. Vigilante: End-to-end containment of internet
worms. In Symposium on Operating System Principles (SOSP), 2005.

[15] Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron. Can we
contain internet worms? In Proceedings of the 3rd Workshop on Hot Topics in
Networks (HotNets-III), 2004.

[16] Aaron Davis. Computer Worm Snarls Web, 2004.
www.bayarea.com/mld/mercurynews/5034748.html.

[17] M. de Cara, O. Pla, and F. Guinea. Competition, efficiency and collective
behavior in the “el farol” bar model. The European Physics Journal B, 10,
1998.

[18] Josep Dı́az, Dieter Mitsche, Navin Rustagi, and Jared Saia. On the power
of mediators. In WINE ’09: Proceedings of the 5th International Workshop
on Internet and Network Economics, pages 455–462, Berlin, Heidelberg, 2009.
Springer-Verlag.

[19] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A
behavioral approach to worm detection. In WORM ’04: Proceedings of the
2004 ACM workshop on Rapid malcode, pages 43–53, New York, NY, USA,
2004. ACM.

[20] Jason Franklin, Vern Paxon, Adrian Perrig, and Stefan Savage. An inquiry into
the nature and causes of the wealth of internet miscreants. In CCS ’07: Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pages 375–388, New York, NY, USA, 2007. ACM.

[21] Martin Garvey. Phishing Attacks Show Sixfold Increase This Year, June 2005.
http://www.informationweek.com/story/showArticle.jhtml?articleID=164302582.

98

References

[22] Marina Gelastou, Marios Mavronicolas, Vicky Papadopoulou, Anna Philippou,
and Paul Spirakis. The power of the defender. In ICDCSW ’06: Proceedings of
the 26th IEEE International ConferenceWorkshops on Distributed Computing
Systems, page 37, Washington, DC, USA, 2006. IEEE Computer Society.

[23] Garret Hardin. The tragedy of the commons. Science, xx:1243–47, 1968.

[24] Libin Jiang, Venkat Anantharam, and Jean Walr. 1 efficiency of selfish invest-
ments in network security.

[25] Robert O’Harrow Jr. Internet Worm Unearths New Holes, 2003.
www.securityfocus.com/news/2186.

[26] Hyanh-Ah Kim and Brad Karp. Autograph: Toward automated, distributed
worm signature detection. In Proceedings of the 13th Usenix Security Symposium
(Security 2004), 2004.

[27] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In in
Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, pages 404–413, 1999.

[28] Robert Lemos. Slammer Attacks May Become Way of Life for the Net, 2003.
http://www.news.com/2009-1001-983540.html?tag=fd lede2 hed.

[29] John Leyden. Phishers Tapping Botnets to Automate Attack, 2004.
http://www.theregister.co.uk/2004/11/26/anti-phishing report/.

[30] John Leyden. ISPs urged to throttle spam zombies, 2005.
http://www.theregister.co.uk/2005/05/24/operation spam zombie/.

[31] Dan Liet. Most Spam Generated by Botnets, Says Expert, 2004.
http://news.zdnet.co.uk/internet/security/0,39020375,39167561,00.htm.

[32] Hilmi Lus, Cevat Onur Aydin, Sinan Keten, Hakan Ismail Unsal, and Ali Rana
Atiligan. El farol revisited. Physica A: Statistical Mechanics and Its Applica-
tions, 346:651–656, 2005.

[33] Marios Mavronicolas and Vicky Papadopoulou. A graph-theoretic network se-
curity game. In Proceedings of the First International Workshop on Internet
and Network Economics, pages 969–978. SpringerVerlag, 2005.

[34] Marios Mavronicolas and Vicky Papadopoulou. A network game with attacker
and protector entities. In Proceedings of the 16th Annual International Sympo-
sium on Algorithms and Computation, pages 05–13. Springer, 2005.

99

References

[35] Marios Mavronicolas, Vicky Papadopoulou, Anna Philippou, and Paul Spirakis.
A network game with attackers and a defender. Algorithmica, 51(3):315–341,
2008.

[36] Michael Mitzenmacher and Eli Upfal. Probability and Computing, chapter 13:
Pairwise Independence and Universal Hash Functions, pages 314–335. Cam-
bridge, 2006.

[37] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. Inside the Slammer Worm. IEEE Security and Privacy
journal, 1(4):33–39, 2003.

[38] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Inter-
net quarantine: Requirements for containing self-propagating code. 2003.

[39] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When selfish
meets evil: Byzantine players in a virus inoculation game. In Principles of
Distributed Computing(PODC), 2006.

[40] James Newsome, Brad Karp, and Dawn Song. Polygraph:automatically gener-
ating signatures for polymorphic worms. In Proceedings of the IEEE Symposium
on Security and Privacy, 2005.

[41] Commtouch 2006 Spam Trends Report: Year of the Zombies.

[42] Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equi-
libria in multi-player games. J. ACM, 55(3):1–29, 2008.

[43] Roberto Preatoni. Prophet Mohammed protest spreads on the dig-
ital ground. Hundreds of cyber attacks against Danish and west-
ern webservers spreading rage in the name of Allah, February 2006.
http://213.219.122.11/en/news/read/id=205987/.

[44] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. Filtering spam
with behavioral blacklisting. In CCS ’07: Proceedings of the 14th ACM con-
ference on Computer and communications security, pages 342–351, New York,
NY, USA, 2007. ACM.

[45] Paul Roberts. Al-Jazeera hobbled by DDOS attack, 2003.
http://www.infoworld.com/article/03/03/26/HNjazeera 1.html.

[46] Aaron Roth. The price of malice in linear congestion games. In Workshop on
Internet and Network Economics(WINE), 2008.

100

References

[47] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, 2001.

[48] Ola Rozenfeld and Moshe Tennenholtz. Strong and correlated strong equilibria
in monotone congestion games. In Proceedings of the Workshop on Internet and
Network Economics (WINE), 2006.

[49] Vyas Sekar, Yinglian Xie, Michael K. Reiter, and Hui Zhang. A multi-resolution
approach forworm detection and containment. In DSN ’06: Proceedings of the
International Conference on Dependable Systems and Networks, pages 189–198,
Washington, DC, USA, 2006. IEEE Computer Society.

[50] Srinivas Shakkottai and Rayadurgam Srikant. Peer to peer networks for defense
against internet worms. In Proceedings of the 2006 workshop on Interdisciplinary
systems approach in performance evaluation and design of computer and com-
munications sytems, 2006.

[51] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. The early-
bird system for real-time detection of unknown worms, 2003. Technical Report
CS2003-0761, University of California, San Diego.

[52] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm ngerprinting. In Proceedings of the 6th ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI), 2004.

[53] Eugene Spafford. Exploring Grand Challenges in Trustworthy Computing.
http://digitalenterprise.org/seminar/spafford2.html.

[54] Agelika Steger and Nicholas C. Wormald. Generating random regular graphs
quickly. In Combinatorics, Probability and Computing, 1999.

[55] Will Sturgeon. Denial-of-service-attack victim speaks out, 2005.
http://www.zdnetasia.com/insight/business/0,39044868,39233051,00.htm.

[56] Péter Ször and Peter Ferrie. Hunting for metamorphic. In In Virus Bulletin
Conference, pages 123–144, 2001.

[57] Chris Talbot. Phishing Attacks Up More Than 200% in May, says IBM, 2005.
http://www.integratedmar.com/ecl-usa/story.cfm?item=19703.

[58] Milan Vojnovic and Ayalvadi Ganesh. On the effectiveness of automatic patch-
ing. In ACM Workshop on Rapid Malcode (WORM), 2005.

101

References

[59] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulnerability exploits.
In Proceedings of the 2004 conference on Applications, technologies, architec-
tures, and protocols for computer communications, pages 193–204. ACM, 2004.

[60] Martyn Williams. http://www.pcworld.com/article/109163/slammer was fastest spreading worm yet.html.

[61] Matthew M. Williamson. Throttling viruses: Restricting propagation to defeat
malicious mobile code. 2002.

[62] Vinod Yegneswaran, Jonathan T. Giffin, Paul Barford, and Somesh Jha. An
architecture for generating semantics-aware signatures. In Proceedings of the
14th USENIX Security Symposium, pages 97–112. Baltimore, MD, USA, 2005.

[63] Lidong Zhou, Lintao Zhang, Frank McSherry, Nicole Immorlica, Manuel Costa,
and Steve Chien. A first look at peer-to-peer worms: Threats and defenses. In
International Symposium on Peer-to-peer Systems (IPTPS), 2005.

[64] Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui Han, and
Wei Zou. Studying malicious websites and the underground economy on the
chinese web. informatik. Technical report, on the Chinese web. Workshop on
the Economics of Information Security (WEIS, 2007.

102

	University of New Mexico
	UNM Digital Repository
	7-1-2010

	Security in network games
	Rustagi Navin
	Recommended Citation

	tmp.1469198166.pdf.dr3Ob

