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Abstract

Bayesian belief aggregation is the process of forming a consensus model from the probabilistic

beliefs of multiple individuals. Preference aggregation attempts to find an optimal solution

for a population considering each individual’s beliefs, desires and objectives. Belief and

preference aggregation approaches that form a single consensus average away any diversity

in a population. In the process they may fail to uphold a set of mathematical properties for

rational aggregation defined by social choice theorists. This dissertation introduces a new

aggregation approach that maintains the diversity of a population and allows the competitive

aspects of a situation to emerge, enabling game theoretic analysis in large populations of

decision-makers. Each individual’s beliefs and preferences are represented by a Bayesian

network. Based on the result of inference on the networks, a population is separated into

collectives whose members agree on the relatively likelihood or desirability of the possible

outcomes of a situation. An aggregate for each collective can then be computed such that

the aggregate upholds the rationality properties. Game theoretic analysis is then applied

using “super-agents” that represent each collective as the game players. In this manner, the

set of Pareto optimal and Nash equilibrium solutions can be found, even in situations that

cause single consensus models to return non-Pareto or otherwise “irrational” solutions.
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Chapter 1

Introduction

Any community or organization that is interested in making decisions based on the opinions

of its members would benefit from the ability to form computational decision models from

the combined input of a potentially diverse population. A number of research areas have

addressed this goal. Social choice theory, which combines economics, voting and statistical

theories, has investigated the mathematical behavior of combining preferences to form a

single consensus, or social choice [1, 19, 56, 31, 5]. Bayesian belief aggregation is the process

of combining probability estimates from multiple individuals to form a single Bayesian belief

model representing all individuals’ contributions [52, 40, 48, 41, 53]. Collaborative filtering

attempts to target information to individuals based on the opinions of similar individuals

[24]. Dempster-Shafer theory extends probability theory with the concept of plausibility

and uses combining rules to aggregate the belief estimates of multiple experts [58]. Most of

these techniques aim to find a single “consensus” model or solution that combines everyone’s

beliefs and preferences, no matter how divergent those beliefs may be.

The research described in this dissertation crosses boundaries between computer science

and the social sciences. The research is relevant to social choice theory, Bayesian reasoning,

and other research areas that are confronted with the task of combining divergent information

or conflicting opinions. The potential of applying the approach to policy-making and political

science is demonstrated through examples.
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1.1 Motivation

The goal of this research is to combine the diverse beliefs and preferences of many individuals

to form graphical models for democratic decision-making. Computational models for social

decision-making have the potential to change the policy and decision-making paradigm in a

society. For example, there is promise in leveraging the rapid spread of information in pop-

ular social-networking tools to elicit opinions that form computational models for collective

decision-making. These collective intelligence models can communicate the diverse ideas,

beliefs and preferences of individual stakeholders to decision-makers so that community and

business representatives can form policy that best serves their constituency. In this manner,

these models will enable individuals to have a direct influence in the social, economic, and

political decisions that affect them. In addition, they can enable people to visualize how their

actions affect their own circumstances and their environment, taking into consideration the

simultaneous actions and goals of other community members. Finally, models of collective

belief will help increase understanding of human behavior and the origin of personal and

public opinion.

Existing motivations for forming a consensus model from multiple individuals fit into

two categories. First, one may be interested in building the most accurate model of a

domain or situation of interest from a set of experts or sensors with heterogeneous but

potentially overlapping specializations. This situation would be typical of an expert system

or data fusion [28, 62], which combines the output from a multiple input streams to improve

situation understanding. In this case the goal of the aggregation method may be to maximize

the quality and reliability of the information it receives and try to resolve any conflicts.

Information from reliable experts (or agents) may be given higher weight while contributions

from less reliable sources may be discounted.

Second, one may be interested in combining the opinions of the individuals to form a

solution that is representative of the potentially divergent beliefs of contributors. In this

case, each person’s opinion is considered equivalent, and no judgement about the accuracy

or quality of provided information is made. Instead, one may be interested in how accurately

the model represents the beliefs of the population. In other words, have all the opinions been

given equal consideration when forming the conclusion and does the conclusion distinguish
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the significant opinions of the population? Even when some judgement of quality is made on

beliefs, one may be interested in capturing a consensus model that maintains the diversity

of the elicited and inferred beliefs. This motivation has been addressed in social choice

theory and collaborative filtering techniques. Social choice theory is interested in finding one

solution for everyone, whereas collaborative filtering is interested in finding a personalized

solution for each individual.

The approach discussed in this dissertation combines the motivations of social choice

theory with the techniques of Bayesian networks. My goal is to build representative models

of a population similar to social choice theory. However, instead of considering opinions in

isolation, entire models are built that incorporate the reasoning behind each contributor’s be-

liefs. In particular, the decision models in the described approach consider the uncertainties,

context, and other factors that influence a decision. These models will enable one to make

predictions and decisions based on the state of the environment and will help decision-makers

understand the factors that contribute to the outcomes.

1.2 Challenges

The research discussed in this dissertation forms a mathematically sound approach towards

achieving social decision-making. Before models can be developed that societies can use to

make decisions and form policy, several theoretical, practical and philosophical issues must be

overcome that have inhibited progress in belief and preference aggregation. Research in areas

such as social choice theory and Bayesian belief aggregation reached their peak in previous

decades, partly because a number of “impossibility” theorems exposed the limitations of

finding a consensus model. This dissertation revisits these theories because the advent of

social networking tools and techniques such as crowdsourcing [8] and folksonomy [29] enable

many people to contribute to collaboratively solve a problem or classify information, yet

these techniques still lack consistent, theoretically sound methods to form consensus models

from diverse input.

Social choice and Bayesian theorists have stated that it is not possible to combine, or

aggregate arbitrary beliefs or preferences to build a consensus model that conforms to a
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set of mathematical principles of rationality for shared preference[1, 19, 56, 52]. Voting

theory, the study of combining votes or preferences to select an outcome, has found that

combining preferences using a rank order of the options can result in irrational behavior. In

particular, the economist Kenneth Arrow developed a theorem that states that there is no

mathematically sound way to aggregate a number of arbitrary votes when there are three or

more options to choose from [1]. In summary, the social choice function breaks a transitive

assumption that states if A is preferred to B by a majority of voters, and B is preferred to

C by a majority, then A should be preferred to C. A simple example shows that transitivity

cannot hold unless there is a dictatorship (one person’s vote is the rule).

In Bayesian reasoning, probabilities are used to represent an individual’s (or group’s)

belief in the likelihood of an event given the factors that influence the event, while utilities

indicate the value of an outcome given the inherent uncertainty. Early Bayesian theorists

showed that aggregating probabilistic beliefs and utilities can result in a social choice solution

that is preferred by no one [31, 56]. In other words, the solution is not Pareto optimal. A

solution is Pareto optimal if there is no other solution that provides a higher utility for an

individual without another individual having a lower utility [10]. A decade later, researchers

in Bayesian networks showed that opinion pool functions, used to aggregate probability

distributions, fail under relatively mild Bayesian assumptions [52]. They show that even

when all contributors agree on the structure of the network, that the aggregation methods

create dependencies between random variables that did not exist in the original network.

Complexity is always an issue when dealing with Bayesian networks and graphical models.

Using a well-known exact inference algorithm called variable elimination on a single network

of n nodes, inference is exponential in the network’s induced width w∗ (d) given a processing

order d of the nodes [15]. If one is interested in aggregating many individuals, one must also

consider the aysmptotic behavior of combining multiple probability distributions to form

consensus models. In the worst case, one would need to run inference on each individual’s

network, and then aggregate the results.

In addition to the theoretical limitations for Bayesian belief aggregation, existing aggre-

gation techniques do not capture the diversity of beliefs, motivations and preferences that

can be found in a representative sampling of a population. These approaches attempt to
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force a cooperative solution by forming one consensus that “averages away” the differences.

However, many decision problems have individuals and groups with opposing goals, there-

fore forcing consensus does not accurately represent the situation. As opinions become more

divergent, the average becomes less representative of the original beliefs, and information

loss increases.

1.3 Objectives

The following objectives summarize my hypotheses and the primary goals of the research

endeavors described in this dissertation.

1.3.1 Separation of Beliefs Into Representative Groups

If one were to elicit beliefs and preferences about a topic of interest from an arbitrary pop-

ulation of individuals, it is likely that the beliefs will be divergent. The described approach

discovers individuals that share similar beliefs and groups them accordingly. To this end, I

expected that:

• In some situations, groups will have consensuses that are in opposition to other groups

and that these opposing beliefs will not be accurately represented by the single con-

sensus approach

• The outcomes for some groups may be in direct opposition to the optimal outcome

found using a single consensus approach. In other words, the “optimal” result is the

worst case scenario for some individuals

• There will be situations in which the single consensus approach can generate a “social

choice” solution that is not preferred by any of the individuals in a group

• The developed approach will group individuals in such a way that their group consensus

more accurately reflects the beliefs of the group members than the single consensus

approach. In other words, the new models will be more representative of a population

than the single consensus models
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This objective is discussed further in Chapter 5.

1.3.2 Overcome Theoretical Limitations of Belief and Preference

Aggregation

Several impossibility theorems, discussed in Chapter 3, describe the limitations of using belief

and preference aggregation to form a single consensus model. The objective is to partition a

population into subgroups such that the aggregate of each of the subgroups will uphold the

mathematical principles of rationality defined by social choice theorists [1, 19, 56, 31]. This

will require defining the extent to which individuals in a subgroup must agree such that their

aggregate upholds rational behavior. This objective is discussed in Sections 4.3 and 5.5.

1.3.3 Enable decision and game theoretic analysis

Situations in which a population has opposing goals are not well represented using a sin-

gle consensus approach. An approach that allows the competition within the population

to emerge may represent these situations better. The objective is to enable game theoretic

analysis to be applied to the set of solutions formed from groups of individuals that meet ob-

jective 1.3.2. The set of Pareto optimal solutions is first extracted from the set of solutions,

even in situations for which the single consensus approach cannot. When appropriate, for

instance in strategic situations, additional game theoretic analysis may be applied, includ-

ing Nash equilibrium and minimax solutions that cannot be done using a single consensus

solution. This objective is discussed in Chapter 6.

1.3.4 Efficient discovery of collectives

An algorithm that automatically discovers the collectives within a population based on the

population’s beliefs and preferences will be developed. The algorithm will involve three

steps: inference on Bayesian belief networks, identification of the collectives and aggregation

of the collective beliefs. A goal is to reduce the asymptotic complexity of a brute force,

exact algorithm, while maintaining the integrity of the collectives. An understanding of the
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issues involved in designing algorithms for collective discovery and belief aggregation will be

applicable to engineering effective algorithms. The successes and challenges relating to these

objectives are discussed in Section 7.

1.4 Summary of Contributions

This dissertation describes a belief aggregation approach, called collective belief aggregation,

that combines the probabilistic beliefs of many individuals using Bayesian decision networks

to form collectives such that the aggregate of each collective, or collective belief has rational

behavior according to a set of properties defined by social choice theorists. Game theoretic

analysis is then applied to the set of collectives to enable social decision-making. This

dissertation will:

1. Show that partitioning a population into subgroups of individuals with similar beliefs

results in belief aggregation that reduces information loss and creates a more represen-

tative consensus model (Chapter 5).

2. Define characteristics for subgroups that will enable rationally consistent belief and

preference aggregation according to mathematical principles of rationality defined by

social choice theorists (Sections 4.3 and Chapter 5).

3. Demonstrate how game theoretic analysis can be applied to a set of consensus models,

including finding the set of Pareto optimal solutions for situations in which single

consensus models fail to generate rational results (Chapter 6).

4. Extend multi-agent influence diagrams with the CBA approach, enabling one to apply

further game theoretic analysis including finding the Nash equilibrium solutions and

minimax/maximin strategies (Section 6.4).

5. Introduce two algorithms to discover the collectives in a population. The first algorithm

will be an exact algorithm, guaranteeing that the collectives are rational according to

social choice theory. The second algorithm is an approximation, attempting to reduce

the runtime of the exact algorithm without rationality guarantees (Chapter 7).
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1.5 Outline of Dissertation

This dissertation is organized as follows:

• Chapter 2 discusses existing techniques for combining opinions and preferences.

• Chapter 3 continues this discussion with a focus on the theoretical foundations for the

described research.

• Chapter 4 defines notation and several key concepts that are used throughout the

dissertation.

• Chapter 5 presents the collective belief aggregation approach.

• Chapter 6 demonstrates how game theoretic analysis can be applied to a large popu-

lation using collectives.

• Chapter 7 describes and compares three algorithms for collective belief aggregation.

• Chapter 8 summarizes this dissertation’s contributions and lists several possible re-

search directions.
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Related Work

The research described in this dissertation deals with combining beliefs and preferences to

form consensus models. Beliefs in this case refer specifically to an individual or agent’s

perception of the uncertainty in the world. Beliefs will be given in the form of probabilities

or likelihoods. Preferences refer to the value an agent places on an outcome. This value

could be given as a preference order that indicates the relative preference between a set of

options, or it could be given as a numeric value for each option. Typically, each individual’s

beliefs and preferences will be represented by a Bayesian belief network or Bayesian decision

network. This section discusses these foundational computational models as well as existing

techniques for combining preferences, belief and evidence. I also provide a brief introduction

to game theory, which deals specifically with the behavior of individuals or groups acting

competitively or strategically.

2.1 Bayesian Networks

This research is based on a framework that is well-studied in Artificial Intelligence. Bayesian

networks, also known as belief networks, are a form of graphical model that integrate the

concepts of graph theory and probabilistic reasoning [50, 32, 44]. These networks define

dependencies (and independencies) between random variables that can represent causality,

implication or correlation. In a typical Bayesian network, random variables are represented
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by nodes and conditional relationships are represented by directed edges between the nodes.

A variable is conditioned on all of its parents, described by the expression P (X|Pax) where

Pax is the set of parents of X. The joint posterior probability of a network is the product

of local distributions at each node and is defined by the equation:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PaXi) (2.1)

Where n is the number of nodes (variables) in the network. If a node has no parent, then

its probability is its a priori or prior probability, or simply P (Xi). In discrete Bayesian

networks, the distribution at each node is represented by a conditional probability table

(CPT) that defines the probability of each possible value of a variable given all possible

values of each of its parents. The size of this CPT is dependent on the number of parents

and the number of values each variable can take on. For binary variables, the size of a CPT

is 2m+1 for m parents. Figure 2.1 shows a simple Bayesian network in which the grass being

wet can be caused by either rain or the sprinkler. The conditional probability of grass wet

is shown by the bottom table representing the expression P (Grass Wet | Sprinkler, Rain).

Figure 2.1: A simple Bayesian network with conditional probability tables at each node.

Inference on Bayesian networks is the process of determining the posterior probability

of a variable given all of its parents and any observations that have been made about the
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variables in the network [68, 15, 14, 50]. A Bayesian network provides the structure of

the relationships between variables in an uncertain environment, but in order to determine

the probability of a given outcome, for example a query on a particular variable, one must

perform inference on the network. The prior and conditional probabilities are propagated

throughout the network and each variable updates its posterior probability based on any

messages it receives from its parents and children. It then sends its posterior probability to

its neighbors.

Several inference algorithms exist for Bayesian networks. Bucket or variable elimination

sums out the effect of each variable from a list of factors, representing each “family” in the

network [68, 15]. A family is composed of a node and its parents. The clique tree or junction

tree propagation algorithm converts a Bayesian network into an intermediate structure in

which families of nodes are represented by a single node [32, 68]. The variable elimination

and clique tree algorithms are considered exact inference because they compute the posterior

probability of a variable exactly.

Other algorithms exist for approximate inference, in which some reduction in runtime

may be achieved, but the algorithm is not guaranteed to return the exact probability of a

variable [50, 16]. Judea Pearl’s loopy belief propagation algorithm [50] uses a very simple

message passing concept, in which each node passes its current probability estimate to its

neighbors, which then update their probability based on all their incoming messages. Over

multiple cycles, the network will converge upon the actual posterior probabilities for each

node. However convergence is not guaranteed to occur.

Bayesian networks can be extended to address decision problems using influence diagrams

[30, 59], also known as Bayesian decision networks. In addition to nodes representing random

variables (or chance nodes), influence diagrams contain decision nodes, representing a set

of decision alternatives; and utility nodes, representing the value or risk associated with a

possible outcome. Influence diagrams efficiently represent the uncertainty involved in real-

world decision problems. Inference on Bayesian decision networks involves incrementally

removing nodes [59] or converting the decision network to a Bayesian network [42, 35].
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Bayesian Belief Aggregation

Belief aggregation is the process of combining probability estimates to form a consensus

model from multiple human or software agents. Matzkevich and Abramson [40] cited two

different approaches to belief aggregation. The first was called posterior compromise, which

combines the beliefs after the network and probabilities have been defined and a query

has been made. In other words, one would query separate networks and then combine

the result. The authors introduced their alternative approach called prior compromise that

instead found a consensus network before inference was done to determine the result of a

query. This approach would involve fusing together networks that may also have different

structure, called topological fusion. Once networks were fused, they combined the beliefs on

local relationships using an approach called family aggregation [52].

Early researchers developed various opinion pool functions whose output was a numeric

result of the combination of a number of inputs. An opinion pool function is a mathe-

matical function to form a single aggregate value from multiple beliefs. Mathematically,

P0 = f(P1, P2, . . . , Pn) where each Pi is the probability estimation from the ith contributor

given N contributors. P0 is the consensus estimation. The two most commonly used opinion

pools are the linear opinion pool (LinOP) and the logarithmic opinion pool (LogOP). If the

world is composed of m possible binary events LinOP is a weighted arithmetic mean with

the following formula:

P0(x) =
N∑

i=1

αiPi(x) (2.2)

where αi is a non-negative weight assigned to each of the N contributors and
∑N

i=1 αi = 1.0.

LogOP is a weighted geometric mean with the following formula:

P0(wj) =

∏N
i=1[Pi(wj)]αi

∑2m

k=1

∏N
i=1[Pi(wk)]αi

(2.3)

Where wj and wk are each one of 2m possible events given m states of the world [52].

Given the potential for opinion pool functions to form consensus models by aggregating

multiple beliefs, Pennock and Wellman investigated whether consensus models maintain the

structural integrity of models that formed them. In [52] they answered this in the negative,
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Figure 2.2: Opinion pool function results in a new dependency between A1 and A2.

showing that even when agents are in agreement on the structure of a model, opinion pool

functions do not yield the same structure. They prove that it is not possible to maintain

consistent structures using an opinion pool. The authors list a number of properties which

must hold after aggregation in order for the structure to be maintained. These properties

include independence preservation properties.

The authors show that with LinOP, independence is not preserved in the most basic

case of two independent events A and B because P0(A)P0(B) %= P0(AB) when P (A)P (B) =

P (AB) for individual agents. Using LogOp, they show that even when all contributors agree

on the structure of the network, that the aggregation methods create dependencies that

did not exist in the original topology. For example, given the Bayesian network shown in

Figure 2.2 (from [52]), if two people supply beliefs on the probabilities of the same network,

the aggregate result using LogOP creates a dependency P (A2|A1) that did not exist in the

original network. In other words, the aggregate defies the rules of independence, causing a

dependency to arise between the two events.

Pennock and Wellman [52] show that no aggregation function can satisfy all of the con-

sistency properties in a Bayesian network. However, they prove that these assumptions can

hold with a Markov network because of a distinction between Bayesian and Markov net-

works. In particular, Markov networks include the axiom strong union, which states that

if P (Aj|Ak) = P (Aj) then P (Aj|WAk) = P (Aj|W ) for all W ⊂ Z. When strong union is

included, then independence is preserved in a consensus network. Therefore, the authors

show that by converting a BN to an MN, one will maintain consistent consensus structures.

Pennock and Wellman also introduced the market-based belief elicitation and aggregation
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approach which is intended to move individuals towards consensus. This approach requires

that individuals back up their beliefs by buying and selling stocks that indicate their con-

fidence in an event occurring [51, 53]. The consensus value is determined by the resulting

stock price. While this approach may improve accuracy when all agents have the same risk

tolerance, this case is highly unlikely. In general a market based approach increases the

subjectivity of the result as each individual has unequal desire to make a bet on their beliefs.

In addition, the assumption that beliefs will move towards consensus by placing a financial

risk on the humans ignores other non-market based factors that contribute to people’s be-

liefs. In particular, one’s background and experience play a strong role in political, religious

and other subjective beliefs. Despite these limitations, a number of other researchers have

followed in the competitive market-based approach to belief aggregation [48, 45, 41].

The Bayesian belief aggregation approach discussed in this dissertation does not attempt

to force consensus, but instead enables the representation of diverse beliefs. Situations in

which opinions will be polarized, such as in politics and policy-making are of particular

interest. These fundamental beliefs are not typically modified by market-based forces, but

rather they are defined by the diverse background and experiences of each individual.

2.2 Social Choice Theory

Social choice theory, also called social welfare theory, is a branch of research that has in-

volved researchers in voting theory, economics and statistics. Social choice theory analyzes

the manner in which one can determine a social choice, or collective decision based on the

opinions and preferences of a group of individuals. The area of research was launched by

economist Kenneth Arrow’s when he introduced his rationality properties for combining

preferences and theorems on the limitations of finding a social choice [1]. Many researchers

followed to analyze and expand upon his findings in deterministic and Bayesian environ-

ments [31, 57, 22, 19, 56]. In summary, theorists discovered that there is no single social

choice function that conforms to a set of mathematical principles for combining beliefs and

preferences in general. The findings of these authors are discussed in more detail in Chapter

3, as well as their relevance to the research described in this dissertation.
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Some researchers and theorists have introduced social choice methods that relax a partic-

ular constraint or demonstrate particular situations in which the rationality properties will

hold [57]. Duncan Black introduced a resolution when a condition called single peakedness

occurs [5]. If a set of alternatives can be ordered in a manner such that there is a logical

range between them the alternatives can be ordered on a single line from one end of the range

to the other. Given this order of alternatives, single peakedness will occur if an individual’s

most preferred alternative is placed highest on a the y axis of a graph, and all other alter-

natives fall away from the peak in a monotonically decreasing manner. If single-peakedness

holds for all individuals, then a rational aggregate can be found. However, this is a structure

of the alternatives that does not hold in general.

Other approaches include relaxing the requirement that the social choice function results

in a complete ordering over all the options [56]. In other words, each individual need not

have a complete preference order. Another option is to separate conflicting opinions into a

“neutral position.” Specifically, the authors discuss a method to group individuals into those

who have a strict preference between options and those who have conflicting beliefs [56].

Some researchers suggest rejecting the Pareto condition when the beliefs are in con-

flict [54]. For instance, [23] demonstrates a situation in which two individuals are deciding

whether to enter a duel that will be fatal for one individual. The Pareto choice is to duel, be-

cause they both believe the other individual will die. However, in reality one of their beliefs

is incorrect. While in this dramatic situation, conflicting beliefs mean that some individual

is incorrect, it also means that one would require an oracle to make a well-informed decision.

If individuals are acting under their own control and opinions then their tendency may be

to make a decision that maintains those beliefs. In many situations, beliefs cannot always

be tested. For instance, one’s belief about the existence or non existence of God and a vote

based on this belief cannot be objectively analyzed and dismissed.

Maes and Faber introduced an approach in which the social choice function is determined

probabilistically [39]. Specifically, the preference orders for a set of options is derived from

probabilistic inference. The final preference order is then determined using an update rule

similar in concept to Naive Bayes classification [64]. The approach described in this disserta-

tion also derives the preference order from probabilistic inference, but then forms collectives
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and applies game theoretic analysis to the collectives, as opposed to computing a likelihood

over the possible preference orders.

2.3 Game Theory

Game theory is the mathematical study of interacting agents, each with the self-interested

goal of improving their own situation [10, 37]. The value of a situation is determined by

the utility for each player. This is equivalent to the utility that is represented by Bayesian

decision networks [59]. Game theory describes many types of solutions and strategies that

are considered rational behavior in competitive and strategic environments. For instance,

a Pareto optimal solution is one such that no other solution is preferred by all players in

the game. A Nash equilibrium solution occurs if all players have taken on a strategy that

maximizes their own utility, given the strategies of the other players.

Game theory is in some ways in opposition to social choice theory. While social choice

theory attempts to find a solution that is best for the whole population, game theory analyzes

the quality of solutions for individuals or cooperative groups within a population. However,

it does enable one to objectively analyze a competitive situation and determine if a solution

is minimally acceptable by a population, meaning it is Pareto optimal. In many cases there

will be more than one Pareto solution. Social choice theory shows that in an attempt to

find a single best solution, it is possible that the solution found will not even be minimally

acceptable. Many situations for which social choice theory has been applied, such as a

community selecting a leader, have more in common with non-cooperative situations.

Game theoretic analysis is typically applied in situations in which a player represents

a single individual in a game. Coalition game theory analyzes the behavior of individuals

who form coalitions, in which the members must decide how to share a payoff [37]. Coali-

tions involve members forming agreements between them that improve the situation for all

members, even if they have competing goals [4]. Ortiz [47] introduced the concept of graph-

ical games for representing games with many players. To my knowledge, no approach has

grouped individuals according to their beliefs and preferences before applying game theory.
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2.4 Collaborative Decision-making and Prediction

Other techniques that are used to combine beliefs and evidence to form a prediction are now

summarized.

2.4.1 Collaborative filtering

Collaborative filtering is the process of making predictions from many individual opinions

on a given topic. Collaborative filtering algorithms are typically used to make a recommen-

dation to individuals by suggesting other items that individuals with similar interests have

enjoyed. Web etailers such as Netflix and Amazon use collaborative filtering in this manner

based on ratings supplied by customers and purchase history. Collaborative filtering is not

interested in finding a solution for the whole population, as in social choice theory, but forms

a customized solution based on personal preferences and the preferences of similar individ-

uals. Recent techniques include matrix factorization such as singular value decomposition

(SVD) and combining a number of algorithms into a hybrid approach. These techniques are

used by one of the leaders of the Netflix prize competition [3].

While the approach described in this dissertation is similar to collaborative filtering in

that a prediction is based on community input versus singular input, it advances existing

techniques by building entire models from community input instead of simply providing

a prediction on one item or one event. Collaborative filtering maintains the diversity of a

population, but predictions are based on shallow beliefs with no context or reasoning to back

them up. In contrast, the intention of the described approach is to elicit opinions that ask

contributors to consider the reasoning behind their beliefs, not just isolated beliefs without

context. This enables predictions at a much finer level of granularity, and allows one to

build complex causal and contextual models that can provide recommendations as well as

help decision-makers understand the possible outcomes as well as the factors that contribute

to the outcomes.
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2.4.2 Dempster-Shafer Theory

Dempster-Shafer theory is a branch of probabilistic reasoning that extends the theory of

probability with the concept of plausibility [60, 17, 58, 67]. The theory was created to

address situations in which one is not certain about the likelihood of an event. It was

intended to distinguish probabilities that are certain (such as an unweighted coin), from

probabilities that are given because the situation is unknown. Belief is similar to Bayesian

networks in that it is an estimate of the likelihood of an event. Plausibility is a second

measure indicating an upper bound on the probability. An individual will typically supply

both their belief (as a lower bound) and the plausibility as an upper bound.

Dempster-Shafer theory can be used to combine evidence from multiple individuals. Com-

bining multiple high-confidence belief estimates will result in a stronger confidence in an

event occurring [58]. However, aggregating opposing beliefs will result in zero probabil-

ity [67]. Therefore, Dempster-Shafer is not appropriate for handling diverging beliefs and

preferences.

2.4.3 Data and Sensor Fusion

Data fusion is an area of study dedicated to combining information from multiple sources

to produce a situation awareness of an environment [28]. Sensor fusion is essentially the

same concept as data fusion, however specifying that the data comes from a sensor net-

work. Data fusion typically occurs at multiple levels of abstraction, beginning from low-level

fusion that attempts to determine the objects in an environment; to high level fusion that

attempts to determine the intention of the entities in the environment [62]. Data fusion often

uses techniques discussed in this section including Bayesian networks and Dempster-Shafer

theory [34]. Kalman filters are mathematical approach used for low-level fusion that incor-

porate a representation of the noise in an environment to aggregate multiple noisy pieces of

information [33].
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Chapter 3

Theoretical Foundation

This chapter summarizes several decades of theoretical research related to combining be-

liefs and preferences of multiple individuals to form a consensus solution. I first discuss the

“rationality” principles for aggregation as they were defined by social choice theorists. I

then summarizes the impossibility theorems developed by theorists that show that no single

consensus approach combining an arbitrary set of beliefs and preferences can uphold all the

principles at once. The first theorem is related to qualitative preferences in a deterministic

environment. The remainder of the theorems address quantitative beliefs and preferences

in a Bayesian environment, in which there is uncertainty associated with events of inter-

est. Finally, this chapter discusses some additional observations on the challenges of belief

aggregation that extend the findings of prior theorists.

The reader may ask; “why does the author care about rationality?” To clarify, this

dissertation does not attempt to address the highly controversial and philosophical argument

about whether humans act rationally. Specifically, do humans take actions that maximize

their own (or their community’s) expected utility? This discussion is left to the fields of

psychology, philosophy and the other social sciences. There are many excellent dissertations

on the perceived irrationality and cognitive bias in humans [66, 12, 38, 21, 11, 6]. However,

a motivation of this work is the belief that if we could fully understand all the factors that

go into a human’s thought processes and behaviors, we may discover that humans do in fact

act rationally according to their own “internal” models. As stated succinctly by Maes and
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Faber, “it is, to a large extent, our professional duty to see to it that decision making is at

the same time (a) rational and (b) sensitive to the perception of the individuals at large.”

[38]

This dissertation presents a precise definition of rationality, introduced by social choice

theorists for the purpose of combining beliefs and preferences [1, 2, 19, 31, 56]. The goal

is to find one or more social choice solutions that uphold a set of principles for rational

aggregation based on the beliefs and preferences of a group of individuals. No judgment is

made about the correctness of the individuals’ beliefs. Nor are any assumptions made that

the individuals or group would act consistently with their beliefs and preferences.

This chapter discusses the principles of rationality that have been defined by social choice

theorists, and summarizes the challenges researchers and theorists have come across in their

attempts to form aggregate models that uphold these principles. The remainder of the

dissertation addresses an approach to enabling belief and preference aggregation for decision-

making that upholds these pre-defined properties for rational aggregation.

3.1 Rationality Principles for Aggregation

The collective belief aggregation approach splits a population of individuals with divergent

beliefs into groups of similar beliefs. The objective is to define a splitting function such

that the aggregate of beliefs within each group will have rational behavior according to a set

of mathematical principles of rationality with respect to combining the preferences, beliefs

and utilities of multiple individuals, as defined by theorists in the fields of voting, game and

probability theories. This section describes these principles. Well-known counter examples

that demonstrate the failure of aggregation methods are then summarized.

3.1.1 Preference Relations

The notation in table 3.1 is used to describe the pairwise preference relationships that de-

scribe the preference ranking between two alternative options x and y [1]. A combination of

these relations will form a preference order over a set of three or more options.
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x, y: alternative options
i, j: individuals
P : a preference relation representing strict preference
I: a preference relation representing indifference
R: a preference relation representing either strict preference or indifference
xPy: a group prefers x to y
xIy: a group is indifferent to x and y
xRy: a group prefers x to y or is indifferent to them
xPiy: an individual i strictly prefers x to y
xIiy: an individual i is indifferent to x and y (doesn’t prefer either)

Table 3.1: Pairwise preference relations

The following example illustrates the preference order relations in Table 3.1. Suppose

person A prefers vanilla ice cream to chocolate, and chocolate to strawberry. Their pairwise

preference orders would be vPac and cPas. Putting them together for all flavors results

in vPacPas. Suppose another individual B prefers vanilla to chocolate, but is indifferent

between chocolate and strawberry. B’s preference order could be vPbcIbs or vPbsIbc. Since

both individuals prefer vanilla to chocolate, we could make a generalization that states

vPcRs. However, we could not state that vPsRc because A strictly prefers chocolate to

strawberry.

The personal relation xRiy was included in the Arrow’s definition, however xRiy is not

considered in this discussion. An assumption is made that a person will either be indifferent

to two options x and y or prefer one option over the other. While in reality individuals’

preferences may vary over time, the described approach considers the answer at a single

point in time, given a finite set of factors for that selection. If a person sometimes picks x

and sometimes picks y, then they can safely be considered to be indifferent to the two. Or

they could provide only their preference for x and y at the time of elicitation.
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3.1.2 Arrow’s Axioms

The properties in Figure 3.1 were introduced by economist Kenneth Arrow in 1950 [1], and

later adapted by Arrow and other researchers [1, 2, 19, 56]. These social choice theorists

determined that these properties must hold for belief and preference aggregation to be con-

sidered rational. Specifically, any attempt to combine the beliefs and preferences of multiple

individuals to form a social choice should adhere to these properties. Some of the proper-

ties are mathematical in nature, for instance transitivity is a fundamental requirement for

order relations on natural numbers. The Pareto optimal requirement attempts to maximize

expected utility. The completeness property implies that an order must be returned from

any social choice function and that the order includes all options given. The remainder of

the properties serve to enable the fair consideration of all options and opinions— restricting

no options, orderings or individual beliefs.

Given a society of interest, S:

1. Universal Domain (UDP): All preference orders are allowed

2. Completeness (CP): Social choice function returns an order that includes all
relevant alternatives

3. Transitivity (TP): if S prefers A to B and B to C then S prefers A to C (also
replace “prefers” to “is indifferent to”)

4. Pareto optimality (should be at least weekly Pareto optimal):

(a) Weak Pareto principle (WP). For all x and y, if xPiy for all i, then xPy:

(b) Strong Pareto principle (SP). For all x and y, if xRiy for all i, and xPiy
for some i, then xPy:

5. Independence of irrelevant alternatives: (IIP) A society’s preference order over
a subset of options should be the same as the order over the whole set of options.

6. Non-dictatorship and non-imposition (NDIP). There is no dictator. Individual
i is a dictator if, ∀x and ∀y, xPiy → xPy. Non-imposition means that no order
has been pre-determined for any individual.

Figure 3.1: Rationality properties defined by Kenneth Arrow [1, 2, 19]
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3.1.3 Bayesian Rationality Principles

Hylland and Zeckhauser [31] added two properties for Bayesian inference:

1. Unanimity: (UP) If each individual i has the same probability estimate Pi, then the

aggregate Po should equal Pi.

2. Bayesian group decision: (BGP) The aggregate is a function of only the probability

estimates (P ) and utilities (U) supplied by the group of interest.

3.1.4 Rational Social Choice

An aggregation technique that upholds the properties defined in Figure 3.1 and Section

3.1.3 will be referred to as a rational social choice (RSC) in this dissertation. This is defined

formally in Section 4.3, Definition 6.

3.2 Impossibility Theorems

3.2.1 Arrow’s Impossibility Theorems

The remainder of this chapter discusses the impossibility theorems developed by social choice

theorists that show no social choice function conforms to all of the properties in Figure 3.1.

Rational social choice is first discussed in the context of individuals and groups considering

their preferences deterministically and symbolically. In other words they supply a precise

preference order over a set of options that is not based on the uncertainty of outcomes or

their perceived risk. A simple example [63] demonstrates a situation in which a social choice

function fails to conform to the transitivity principle. Table 3.2 shows three individual’s

preferences for ice cream, where a rank of 1 indicates that the flavor is the top choice for

the individual. When attempting to find a consensus order that combines all the individuals

given their ice cream preferences, one compares each pair of flavors in the following manner

using a majority vote:
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Individual Vanilla Chocolate Strawberry
X 1 2 3
Y 2 3 1
Z 3 1 2

Table 3.2: Table showing the preference orders for ice cream for three individuals. A rank
of 1 indicates the most preferred flavor.

• Two out of the three individuals prefer vanilla (v) to chocolate (c), so vPc.

• Two out of the three individuals prefer chocolate to strawberry (s), so cPs.

• Given the above preferences, if vPc and cPs, then vPs should hold (according to

transitivity (TP)). However, it can be seen that the majority actually prefers strawberry

to vanilla (sPv).

Thus, the transitivity principles cannot hold without relaxing another principle.

3.2.2 Bayesian Rational Social Choice

Rational social choice in the presence of uncertainty is now discussed. In this case, probabili-

ties are used to represent an individual’s (or group’s) belief in the likelihood of an event given

its causal factors, while utilities indicate the value of an outcome given the inherent uncer-

tainty. It is natural that the properties defined above for rationality in the non-deterministic

case also hold in probabilistic belief aggregation.

Hylland and Zeckhauser show that aggregating probabilistic beliefs and utilities sep-

arately can result in an aggregate that breaks the Pareto condition [31]. The following

example demonstrates their results using a Bayesian decision network. In the network in

Figure 3.2 there is a decision node A that has two possible options (a1 and a2), a binary

variable X and a utility node U that is dependent on A and X. U(A|X) represents the

utility of a decision option in A given the state of X.

Suppose there are two individuals who each supply their beliefs about U(A|X) and P (X)

(the probability of X). Individual 1’s probability distribution is P1(X = T ) = 0.25, P1(X =
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Figure 3.2: Bayesian decision network for a simple decision involving two possible actions in
A, a binary variable X and utilities U .

F ) = 0.75. Individual 2’s probability distribution is P (X = T ) = 0.75, P (X = F ) = 0.25.

Table 3.3 shows the conditional utility of A (rows), given X (columns) for the first and

second individuals. For example, individual 1 believes that utility of option a1 given that X

is false is 1.0, (represented by U1(A = a1|X = F )). The aggregate of U1(A|X) and U2(A|X)

using an arithmetic mean would generate the values in Table 3.4 for Uo(A|X).

U1 X
F T

A
a1 1.0 -1.2
a2 0.0 0.0

U2 X
F T

A
a1 -1.2 1.0
a2 0.0 0.0

Table 3.3: Conditional utilities U1(A|X) and U2(A|X) for two individuals.

X
F T

A
a1 -.1 -.1
a2 0.0 0.0

Table 3.4: The aggregate of the conditional utilities in Table 3.3.

The average probability, P0(X) = 0.5. The expected utility, U0(A) = U0(A|X)P (X), can

be found by marginalizing over the values of X, giving the following values:

U0(A = a1|X) = −.1 ∗ 0.5− .1 ∗ 0.5 = −.1
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U0(A = a2|X) = 0

In this situation it appears that the aggregate prefers a2 over a1. However, it is evident that

each individual actually prefers a1 to a2:

First individual:

U1(A = a1|X) = 1.0 ∗ 0.75− 1.2 ∗ 0.25 = 0.45

U1(A = a2|X) = 0 ∗ 0.75 + 0 ∗ 0.25 = 0.0

Second individual:

U2(A = a1|X) = −1.2 ∗ 0.25 + 1.0 ∗ 0.75 = 0.45

U2(A = a2|X) = 0 ∗ 0.25 + 0 ∗ 0.75 = 0.0

Thus, the aggregation result breaks the Pareto condition. Seidenfeld, et al., [56] extend

these findings to reiterate that there is no Bayesian social choice function that always returns

a Pareto optimal result when probabilities and utilities are aggregated separately. They show

that a small variation in belief can cause a situation in which no range of average expected

utility results in a shared preference. Nehring [46] extends the results of [31, 56], showing

that aggregation of separable factors (for example independent events) in the computation

of expected utility can result in a non-Pareto solution.

3.3 Additional Observations and Distinctions

This section discusses some additional situations that arise from belief and preference aggre-

gation, based on the author’s observations. First, a distinction is made between prior and

posterior aggregation.

3.3.1 Prior versus Posterior Aggregation

The results described in Section 3.2.2 refer to separate aggregation of probabilities and

utilities before computing expected utility. This is equivalent to prior aggregation, discussed

in [40]. In contrast, posterior aggregation means that each individuals’ expected utility is

computed first, and the aggregate is a function of these expected utilities. Formally, given
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two individuals, prior aggregation finds:

U0 = f(g(U1(A|X), U2(A|X)), g(P1(X), P2(X))) (3.1)

Where g is an aggregation function and f finds the expected utility. In contrast, posterior

aggregation finds:

U0 = g(f(U1(A|X), P1(X)), f(U2(A|X), P2(X))) (3.2)

Aside from the aggregation formula, other differences exist between prior and posterior

aggregation. Prior aggregation attempts to form a consensus representation of a belief model,

including all of the variables in the model. Given a consensus model, one could query the

consensus distribution of any node in the network. In contrast, posterior aggregation is

only interested in the posterior value of a given node, ignoring the possible variation in

dependencies represented by the node’s network. In other words, individuals may agree

on an outcome but disagree on the factors involved in the outcome. The determination of

which aggregation approach is “best” may depend on the desired goals of a set of decision

makers. If one would like to determine which decision option to select, or which probabilistic

outcome is more likely, one could use posterior aggregation. If one wanted to maintain a

model from which to make queries about many variables, then prior aggregation may be

most appropriate. A potential benefit of prior aggregation is that complexity improvements

may be possible. In posterior aggregation, one assumes that inference is run on each of m

networks, representing the beliefs of m individuals in a population. In prior aggregation, the

number of consensus networks that inference is performed on is potentially less than m.

3.3.2 Dictatorship with Bayesian Beliefs

I now demonstrate an additional failure of Bayesian belief aggregation. An interesting prop-

erty of probabilistic beliefs is that a single individual can skew aggregation such that the

result sways his direction. Given this phenomenon, it is possible for a person to observe

the beliefs of others and intentionally set his beliefs to override the majority. Thus, I have

extended theoretical findings described previously to show that in a Bayesian situation, it is

possible for the non-dictatorship (ND) principle to be broken.
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Consider a Bayesian treatment of the ice cream preference example used to describe

Arrow’s theorems. Suppose we have a group of three individuals who are going to a birthday

party. They are trying to decide which flavor of ice cream to bring given the flavor of cake

that will be served at the party. The possible ice cream and cake flavors are chocolate, vanilla

and strawberry. The individuals agree that each flavor of cake is equally likely (33.33̄%),

but they have different opinions on the quality of combinations of cake and ice cream. In

addition, one person really likes chocolate so he plans on skewing the model so he can get

chocolate ice cream no matter what the others prefer. He also hates vanilla and plans to skew

the model so his preference order over all ice cream flavors wins. Imagine that this person

is compiling the model, so he can see the other individuals’ utility values before supplying

his own.

The following table indicates the utilities of the ice cream flavor given the cake flavor of

two individuals. Both individuals happen to have identical opinions and therefore this table

is an average of their utilities. In the table, rows = cake and columns = ice cream. Cell(i, j)

represent the utility of ice cream flavor j given cake flavor i. While utility selection can be

somewhat arbitrary in that there are no bounds set on the values supplied in general, in this

case utilities are restricted to the range [0, 20].

Chocolate Vanilla Strawberry

Chocolate 0 10 5

Vanilla 10 0 10

Strawberry 5 10 3

The probability distribution for cake flavor is:

[Chocolate= .333̄; Vanilla=.333̄; Strawberry=.333̄]

Given the opinions of these two individuals, it can be seen that vanilla wins and strawberry

is second, with the overall social preference order of vPsPc:

Utility of chocolate ice cream:

0.333̄ ∗ 0 + 0.333̄ ∗ 10 + 0.333̄ ∗ 5 = 5.0

Utility of vanilla ice cream:

0.333̄ ∗ 10 + 0.333̄ ∗ 0 + 0.333̄ ∗ 10 = 6.67
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Utility of strawberry ice cream:

0.333̄ ∗ 5 + 0.333̄ ∗ 10 + 0.333̄ ∗ 3 = 6.0

Now imagine that the third individual sees these results, and thinks to himself “Hmm.., now

I only need to set my utilities so that chocolate wins and vanilla loses’.’ He then selects the

following utilities:

Chocolate Vanilla Strawberry

Chocolate 20 0 0

Vanilla 20 0 5

Strawberry 20 0 0

The next utility table is the mean of the three individuals:

Chocolate Vanilla Strawberry

Chocolate 6.67 6.67 3.33

Vanilla 13.33 0 8.33

Strawberry 10 6.67 2.0

The result of adding his utilities to the mix causes chocolate to win by a landslide and vanilla

to be scorned, yielding the social preference order cPsPv:

Utility of chocolate ice cream:

0.333 ∗ 6.67 + 0.333 ∗ 13.3 + 0.333 ∗ 10 = 9.98

Utility of vanilla ice cream:

0.333 ∗ 6.67 + 0.333 ∗ 0 + 0.333 ∗ 6.67 = 4.44

Utility of strawberry ice cream:

0.333 ∗ 3.33 + 0.333 ∗ 8.83 + 0.333 ∗ 2.0 = 4.72

As defined in Fig. 3.1, an individual i is a dictator if ∀x, y : xPiy → xPy. It can be seen

that this is the case in this scenario, as the pairwise preferences of the two individuals have
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been reversed. The pairwise preferences for the first two individuals are: vPs, sPc, vPc.

The pairwise preferences for the society are identical to the the dictator: sPv, cPs, cPv.

The same outcome is observed using posterior aggregation, showing a situation in which

posterior aggregation breaks one of the principles defined in Figure 3.1:

Utility of chocolate ice cream:

(5.0 ∗ 2 + 20)/3 = 10.0

Utility of vanilla ice cream:

(6.67 ∗ 2)/3 = 4.45

Utility of strawberry ice cream:

(6.0 ∗ 2 + 1.67)/3 = 4.56

Thus, this example extends the findings by Bayesian theorists to demonstrate that

Bayesian belief aggregation can break the non-dictatorship principle. I conclude that there

is no Bayesian social choice that maintains the social choice principles, even when using

posterior aggregation.

3.3.3 Inconsistency between the individual and the social choice

Many of the examples in this chapter describe discrepancies between the social optimum,

derived from the average expected utility, and the individual optima, derived from each

individual’s expected utility. The following example demonstrates a situation in which an

outcome predicted by the average expected utility is not the one that is preferred by the

majority of the population. Suppose we have three individuals and two options, A and B.

The expected utility for the options for each individual are shown in the following table.

1 2 3 Votes

A 0.8 1.0 0.8 1

B 1.0 0.5 1.0 2

The majority of the individuals would select B based on their expected utilities. However,

the average expected utility would select A. The following table shows the arithmetic and

geometric means for the above expected utilities:
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Arithmetic mean Geometric mean

A .867 .83

B .86 .79

Technically this result does not break the principles of rationality defined in Figure 3.1

since not every individual prefers B to A. However it does demonstrate an unexpected effect

of comparing individual preferences with the social choice. Based on the individual expected

utilities, the majority would choose one option, while the average expected utility would

choose another. In this case one may ask which is the appropriate option to select? This

phenomenon may be related to the game theoretic concept of the price of anarchy, which is

the difference in the utility if everyone acts for the social good, versus if everyone acts for

their own selfish good [49]. Section 6.5 discusses the inconsistency in more detail.
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Formal Definitions

This chapter introduces notation and definitions that will be used throughout the disser-

tation. The building-blocks that form the foundation for the collective belief aggregation

approach will be defined and validated. The reader should refer to this chapter when notation

and definitions are referenced by other chapters.

32



Chapter 4. Formal Definitions

4.1 Notation

P A population of m individuals
i, j, q, r, s individuals in P
P, Q Belief estimates in the form of probability distributions
P (X) A probability distribution for a variable X
P ′(X) A posterior probability distribution for a variable X
U(X) A utility for a variable X
P (Y |X) A conditional probability for a variable Y given the value of variable X
U(Y |X) A conditional utility for a variable Y given the value of variable X
EU(X) The expected utility for variable X
B(∗) A belief where B could be any of P, U,EU and * could be a variable or

a conditional relationship
Bi(∗) A belief belonging to an individual or specified group i
B0(∗) A consensus (mean) probability distribution for a group
C A set of k subgroups such that each element of a population is in exactly

one subgroup
Cj A single subgroup (cluster or collective) in a population
T A partition of a population into collectives where T = C if C is a set

of collectives
φj A collective belief for a collective j
Φ A set of collective beliefs for a partition T
O A set of r options
R A rank order over a set of options
Xi, Xj variables (nodes) in a Bayesian network containing n nodes
Pai The parents of node Xi

P (Pai) The belief in the probability of Xi’s parents
P (Xi|Pai) The belief in the conditional probability of Xi given its parents
PTq A probability distribution (prior, conditional or joint) representing an

individual or group q’s beliefs
Fi The family of a node Xi in a network, containing a node and its parents

Table 4.1: This notation is used throughout the dissertation. The terms in italics are defined
later in this chapter.
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4.2 Kullback-Leibler (K-L) divergence measure

The Kullback-Leibler divergence measure, also known as relative entropy, measures the dif-

ference between two probability distributions P and Q. Specifically, it measures the number

of extra bits it would take to encode samples from P using samples from Q [36]. The K-L

divergence measure has been used to compare the parameters in multiple Bayesian models

[65], as it will be used to compare consensus models in this dissertation. Given a “target”

or “actual” distribution P and an estimate Q, the K-L divergence of Q from P over n data

points is:

KL(P ||Q) =
n∑

i=1

P (i)log
P (i)

Q(i)
(4.1)

A number of examples in this dissertation will measure the K-L divergence of a consensus

distribution formed from a partition of a population from the distribution of all individuals’

beliefs. The distributions were computed from a histogram of n bins over the range of

values provided by the population, which could be probability estimates or utilities. K-L

divergence may be measured for one or more variable’s distributions. Each individual will

provide probability or utility values B(Xi) for each variable Xi in a set of beliefs X. Each

belief estimate will fit into one of the n bins. PIi(b) is the probability that an individual in

a population provided a belief value for variable Xi that fits into bin b. For each subgroup

Cj and each variable Xi, the mean likelihood, B0j(Xi) is defined in eq. 4.2.

B0j(Xi) =
1

|Cj|

|Cj |∑

l=1

Bl(Xi) (4.2)

PCi(b) is the probability that an individual’s belief for variable Xi is in bin b assuming that

each individual assigned to subgroup Cj provides the belief B0j(Xi). Given a set of beliefs

X and the set C of k subgroups, the K-L divergence between PI , the distribution of the

individuals, and PC , the distribution of the set of subgroups is computed as follows:

KL(PI(Xi)||PC(Xi)) =
n∑

b=1

PIi(b)log
PIi(b)

PCi(b)
(4.3)

KL(PI ||PC) =
|X|∑

i=1

KL(PI(Xi)||PC(Xi)) (4.4)
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4.3 Collectives and Collective Beliefs

The following definitions form the foundation for the collective belief aggregation approach.

The first definition is based on a concept from social choice theory, variously called a “prefer-

ence profile” [19], “preference ranking” [56], “preference pattern” [1] and “preference order”

[20].

Definition 1. Rank Order: A rank order R is a partial order ρ1 ≤ ρ2 ≤ ... ≤ ρr over a set

of options O containing r options o1..or, where ρi is some oj. A rank order R over O is an

order such an item ρi is preferred to (or indifferent to) ρj if and only if ρi is before ρj in R.

For example, given O = {a, b, c}, if b is preferred or indifferent to c (bRc), and c is preferred

or indifferent to a (cRa), then the rank order over O is R = b ≤ c ≤ a.

The term “collective” is often used in the study of society and social behavior and has

many different sociological definitions. The Wikipedia definition states that “a collective

is a group of people who share or are motivated by at least one common issue or interest,

or work together on a specific project(s) to achieve a common objective.” (wikipedia.org

12/26/09) The Merriam Webster definition states that a collective is “marked by similarity

among or with the members of a group” and “involving all members of a group as distinct

from its individuals” (m-w.com 12/26/09). The second definition implies that there is some

generalization that is “distinct” from the specifics of its individuals. Thefreedictionary.com

(3/7/10) includes the definition “forming a whole or aggregate.”

The goal is to provide a more rigorous definition of a collective that captures the impli-

cations of these English language definitions in a mathematical or set theoretic form. Since

such a definition has not been found in the literature, the following definition has been cre-

ated. A collective is a group such that a specific generalization of the group holds for all

members of the group. In set theory, this is simply a subset of a set, with the generalization

being the property that defines the subset.

Definition 2. Collective: A collective C w.r.t. a property A is a subset of a population P

(C ⊆ P) s.t. A holds for all members of C. If A holds for an individual p ⊆ P then p is a

member of C. A null set ∅ with respect to property A indicates that the generalization does

not hold for any member of P.
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A collective is not a “hive mind” and its members do not necessarily agree on all issues.

Typically a common interest or set of interests defines a collective. Likewise, the set theoretic

definition of collective has a single common property. In theory A could be a non-empty set

of common properties.

Arrow’s theorem shows that there is no rational social choice that can hold for an arbitrary

group and their preferences [1, 19, 56]. In other words, there is no generalization that can be

made about an arbitrary population based only on their preferences. However, if a group of

individuals happens to have an identical rank order of their preferences, then we can make

a generalization about that group based on this rank order. If the options are taken from a

discrete set of values, and an individual i’s rank order Ri is identical to another individual

j’s rank order Rj then a generalization R0 can be made about the individuals i and j, such

that R0 = Ri = Rj. The following example illustrates this: if O = {A, B, C} and Ri = BCA

and Rj = BCA, then clearly R0 = BCA. Thus, if a group of individuals G shares a rank

order R over a set of discrete valued options O then R can define a collective C.

Definition 3. Rank Order Collective: If Rj is a rank order over a set of options O, and

Cj is a subset of a population P s.t. ∀p ∈ Cj, Rp = Rj and ∀q %∈ Cj, Rq %= Rj, then Cj is a

collective defined by the property Rj and is called a rank order collective.

Bayesian outcomes will now be mapped to the rank order concept. The terms variable and

node will be used interchangeably in this dissertation when referring to Bayesian networks.

Each variable Xi in a Bayesian network has a number of possible values ({xi1, xi2, ..., xir}),
where r is the arity of Xi. The posterior probability of a variable in a Bayesian network

being a specific value (xij) is derived through inference. Given the posterior probabilities

of the values of a variable, there will be an order from most likely to least likely for these

possible values. For example, given a binary variable X, with a probability distribution

P (X = T ) = 0.25, P (X = F ) = 0.75, the order of values is FT. This order is analogous

to the rank order in Definition 1. In the case of a Bayesian decision network, the result of

inference is a set of expected utilities for the possible decision options [30, 59]. The decision

options can be ranked by order of highest expected utility to lowest expected utility, or best to

worst option. Given a Bayesian network, the rank order can be determined for an arbitrary

variable or decision in the network.
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Definition 4. Bayesian Rank Order: A Bayesian rank order R∗ with respect to a variable X

in a Bayesian network is a rank order over the posterior probabilities (P(X = x1),P(X = x2),

..., P(X = xr)) of the values of X. In a Bayesian decision network, R∗ is the rank order of

the expected utilities (U(o1), U(o2), ..., U(or)) of the options of D, where U(oi) is the expected

utility of decision option oi.

Before a collective is defined in terms of the Bayesian rank order, it must be shown that

an aggregate of m > 1 equivalent Bayesian rank orders R over the probabilities of a variable

X, or the utilities of a decision D, results in the same rank order, R. For example, given

two sets of probability estimates for a variable that are in the same Bayesian rank order

X : P1(X) = [0.25, 0.75], P2(X) = [0.3, 0.7], will the mean of the two probability estimates

result in the same Bayesian rank order? This can be illustrated by showing that the mean

of m > 1 arbitrary sets of n ordered values in R results in an ordered set of values.

Proposition 1. The sum of m > 1 sets of n real valued (r ∈ R), ordered numbers will result

in an ordered set.

Proof 1. This is proven by contradiction. Imagine that there are m = 2 sets of n cups (C1

and C2) that are ordered from left to right such that a cup contains at least as much liquid as

the cup to its left. Now consider that the liquid in each of C2’s cups is added in order to each

of C1’s cups. So the liquid in the ith cup in C2 (c2i) is added to the ith cup in C1 (c1i). The

amount of liquid in the cups in C1 will remain in order. If this were not the case, then cup

c2j would have had to have more in it than cup c2i (where i is farther left than j). However,

this would mean that C2 was not in order, which would be a contradiction. If m > 2, this

applies for combining all sets of cups.

The arithmetic mean of the values added to each cup is found by dividing the amounts of

liquid in each cup c1i by the same amount (m). Therefore finding the mean will not effect the

rank order. The geometric mean ( n
√

c11 ∗ c12 ∗ ... ∗ c1k) is not additive but is multiplicative.

However, the same result can be shown with a slight change. When finding the product

of two values ≥ 0, the result of x ∗ y1 will always be less than or equal to the result of

x ∗ y2 where y1 ≤ y2. When aggregating values < 0, simply add the absolute value of the

minimum value provided to all values. The cup demonstration is equivalent to the utility or
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probability values for a collective. Each set of cups represents the probabilities of the values

of a variable P (X = x). Finding the mean of the distributions for a collective is equivalent to

finding the mean of the probabilities of each value of X. For example, given the probability

distributions X : P1(X) = [0.25, 0.75], P2(X) = [0.3, 0.7], the arithmetic mean of P1(X) and

P2(X) is [0.275, 0.725], resulting in the same rank order as the original values.

The definition of Bayesian rank order is based on the relative likelihood of a probabilistic

variable’s possible values or the relative expected utility of a set of decision options. The

collective belief of a collective is the aggregate of the probabilities or utilities that define the

Bayesian rank order for the collective.

Definition 5. Collective Belief: If R∗ is a Bayesian rank order over the posterior proba-

bilities of a variable X, (or the expected utilities of a decision D), and C is a rank order

collective s.t. ∀ci ∈ C, the Bayesian rank order of ci is R∗, then the collective belief φ of C is

the aggregate of the k probability distributions (or expected utilities) supplied by the members

of C.

Definition 6. Rational Social Choice: A collective belief φ is a rational social choice if it

conforms to the properties for rational belief aggregation defined in Figure 3.1 and Section

3.1.3. This is shown in Section 4.3.4.

The following definitions define the set of rank order collectives for a population P .

Definition 7. Partition: A partition T of a population P is a set of collectives such that all

individuals in P are in exactly one collective Cj. A partition will be either weak or strong as

defined below.

Definition 8. Strong Partition: A strong partition Ts of a population P is a partition such

that each individual i ∈ P can be assigned to one and only one collective Cj. In other words,

there is a unique partition Ts for the population P.

Definition 9. Weak Partition: A weak partition Tw of a population P is a partition such

that each individual i ∈ P could fit into multiple collectives, but is assigned to one collective

Cj.
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Definition 10. Collective Belief Model: A collective belief model CBM = (T, Φ) is composed

of a partition T containing k collectives Cj ∈ T, and each collective’s collective belief φj ∈ Φ

for a given set of options O.

4.3.1 Rank Order Relations

The rank order collectives are formed from the pairwise preference order relations defined

in Section 3.1. In particular, the society relations are relevant to collectives, which are

generalizations about a society, population, or in this case, a collective (C):

1. xPy: C prefers x to y. xPy is equivalent to x < y.

2. xIy: C is indifferent to x or y. xIy is equivalent to x ≤ y or y ≤ x.

3. xRy: C prefers x to y or is indifferent to them (is P or I). xRy is equivalent to x ≤ y.

A preference order among more than two options can be made up of any combination of the

R, P and I relations. The rank order for each rank order collective will be a preference order

formed in this manner. The following is a list of characteristics of specific relations.

• By the definition of collective, it is not possible for a collective to be both indifferent

to x and y and strictly prefer x over y, therefore between any two options x and y,

relations I and P are mutually exclusive.

• I and P are exhaustive, meaning that a preference order made from a combination of

I and P relations can represent any relationship between two or more options.

• Given the previous characteristic of the I and P relations, all individuals in a pop-

ulation can provide a rank order over a set of options O. Therefore a partition of

an arbitrary population can be discovered using rank orders formed from the above

relations that will include all individuals in the population.

• A strong partition can be formed from rank orders defined by the P and I relations

since the relations are mutually exclusive and exhaustive. Given a set of options O, an
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individual i will only have one rank order Ri over O formed from the P and I relations.

Thus that individual can be placed in one and only one collective defined by the P and

I relations.

• If the R relation is used to define a pairwise relationship in a population, then only a

weak partition can be created. For example, if x and y represent two possible options,

and a collective C believes that both are equally likely (P (x) = 0.5 and P (y) = 0.5)

then the relations xRy and yRx could both hold. In other words, the collective rank

order for a collective C could be xRy or yRx, and therefore a partition made using the

R relation would not be unique.

• The number of collectives in a partition is dependent on the size of the set of options

(O) and the set of relations allowed (Ψ). If r = |O| and ψ = |Ψ|, then there will be

r! ∗ ψr−1 possible collectives, since there are r! permutations of r options and ψr−1

combinations of relations between the r options in each rank order.

• If Ψ is the set of allowed relations and O is the set of options, then Γ(O, Ψ) is the set

of r! ∗ ψr−1 possible rank order relations.

4.3.2 Collective Choice Function

Finally, a social choice function that discovers a partition for a given population is defined

as follows.

Definition 11. Collective Choice Function: Given a population P and a set of r options O,

over which each individual i in P provides a rank order Ri:

i Select Ψ, the set of rank order relations allowed. If only P and/or I are selected, then

a strong partition will be formed. If R is allowed, then a weak partition will be formed.

ii Separate a population P into m ≤ r! ∗ ψr−1 groups, each group representing a unique

ordering Rj ∈ Γ(O, Ψ), such that each individual i in group Gj provides a rank order

Ri = Rj over the r options in O.

iii Each group Gj becomes a collective Cj defined by its collective rank order Rj.
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iv In a Bayesian environment, use an opinion pool function (e.g. arithmetic or geometric

mean) to compute each collective Cj’s collective belief.

4.3.3 Rational Social Choice Properties

The following properties defined by Kenneth Arrow [1, 2] were introduced in Section 3.1.2

and are reiterated here for reference.

1. Universal Domain (UDP): All preference orders over a set of options O are allowed

2. Completeness (CP): Social choice function returns an order that includes all relevant

alternatives

3. Transitivity (TP): if a society S prefers A to B and B to C then S prefers A to C (also

replace “prefers” to “is indifferent to”)

4. Pareto optimality (should be at least weekly Pareto optimal):

(a) Weak Pareto principle (WP). For all x and y, if xPiy for all i, then xPy:

(b) Strong Pareto principle (SP). For all x and y, if xRiy for all i, and xPiy for some

i, then xPy:

5. Independence of irrelevant alternatives: (IIP) If the society has a preference order

xPyPz, then xPy and yPz also hold. Also, a change in preference from wPz to zPw

does not affect the preference order xPyPz.

6. Non-dictatorship and non-imposition (NDIP). There is no dictator. Individual i is a

dictator if, ∀x and ∀y, xPiy → xPy. Non-imposition means that no order has been

pre-determined for any individual.

Bayesian social choice theorists Hylland and Zeckhauser added the following properties

for Bayesian social choice functions [31].

1. Unanimity (UP): If each individual i has the same probability estimate Pi, then the

aggregate Po should also be equivalent.
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2. Bayesian group decision (BGP): The aggregate is a function of only the probability

estimates (P ) and utilities (U) supplied by the group of interest.

4.3.4 Enabling a Rational Social Choice Using Collectives

This section shows that the collective choice function upholds the RSC properties by creating

a partition T , such that each property holds for each collective in T . The collective choice

function creates a partition and model based on a snapshot of a situation, composed of the

options O, a population P , and each member of P ’s beliefs about O. No claims are made

about the rationality of human behavior over time or in different situations, only about the

the mathematical properties of a snapshot of the beliefs provided at a single point in time.

The properties are

Proposition 2. A rational social choice can be formed from a rank order collective: The

properties defined in Section 3.1 hold for a rank order collective as defined in Definition 3.

Proof 2. Each property is discussed separately below:

1. Universal Domain (UDP): If all preference (rank) orders were not allowed, then there

would be some rank order R ∈ Γ(O, Psi) that would not be allowed to form a collective.

However, each of the r! ∗ψr−1 orders in Γ(O, Ψ) could be submitted by the members of

a population P . By definition of the collective choice function (Def. 11), any unique

rank order submitted by an individual will form a collective. Thus all rank orders over

O can be represented by a collective within a partition and no rank order is disallowed.

2. Completeness (CP): If completeness did not hold, then some option o ∈ O would not be

included in a cluster’s rank order. As defined in Def. 11, each collective Cj is defined

by its ordering Rj over all options o ∈ O, thus all o are included in Rj.

3. Transitivity (TP): Since there is only one rank order Rj per collective over a set O of

r options, and since a rank order is partial order (by Def. 1), then transitivity holds

for each collective by the properties of a partial order.
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4. Weak Pareto principle (WP): The weak Pareto principle is upheld by the definition of

rank order collective. For all individuals i ∈ Cj, if the rank order for i = Ri and the

rank order for Cj = Rj then Ri = Rj. Thus, for all options x and y and all i ∈ Cj,

if xPiy then xPjy for the collective Cj. Seidenfeld, et al. [56] also state this finding

when there is consensus among the preference order of expected utilities.

5. Independence of Irrelevant Alternatives (IIP): If IIP did not hold, then the consider-

ation of a new option o′ %∈ O would change the rank order between the options o ∈ O,

or the removal of an option o′′ ∈ O would change the rank order for the options

O′ = O − o′′. A partition T as defined in Def. 7 is based on a model formed from a

given set of options O and a population P ’s beliefs about those options. If a new set of

options O′ is given that is either missing an option that was in O or has an additional

option not in O, then a new model will be formed, from which a new partition T ′ will

be discovered. T ′ is not guaranteed to be the same as T, however T ′ will also not affect

the original partition T nor the rank orders that represent the collectives in T . In other

words, a partition and its collectives is dependent only on the set of options and beliefs

about the options used to form it. Thus, any rank orders from T will be maintained,

regardless of the rank orders in T ′.

6. Non-dictatorship (NDIP): By the definition of rank order collective (Def. 3), if an

individual i is in collective Cj then xPjy → xPiy. However, if i supplied a different

rank order such that his belief Ri %= Rj, then i will no longer be in Cj, and would

instead be in a Ck such that Ri = Rk. Thus, xPjy → xPiy, does not imply that the

complement xPiy → xPjy applies.

7. Unanimity (UP): This property states that the aggregate (or opinion pool) function

used to combine probabilistic beliefs must result in P (X) = p if all i in Cj provide

P (X) = p. This property holds for both the arithmetic and geometric means.

8. Bayesian group decision (BGP): This property states that the aggregate of a group is

a function of only the beliefs and utilities supplied by the individuals in a group. By

the definition of collective belief (Def. 5), the collective belief φj of a collective Cj is

an aggregate of only the beliefs and utilities supplied by the members of Cj.
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4.4 Game Theoretic Concepts

A preference relation, D, for dis-prefers is added that is the complement of P : xPy = yDx.

Given alternative options x, y and individuals i, j: xDiy: Person or group i dis-prefers x to

y (= yPix).

4.4.1 Game theoretic definitions

Definition 12. Weak Pareto optimal solution: A solution or strategy s is a weak Pareto

optimal solution if there is no other strategy s′ such that all game players a ∈ A prefer s′ to s

when only strict preference is considered. Mathematically, s is weakly Pareto optimal if and

only if there exists no s′, s.t. ∀a ∈ A, ua(s′) > ua(s) [56, 37].

Definition 13. Strong Pareto optimal solution: A solution or strategy s is a strong Pareto

optimal solution if there is no other strategy s′ such that all game players A are either indif-

ferent to s′ and s, or prefer s′ to s. Mathematically, s is strongly Pareto optimal if and only

if there exists no s′, s.t.∀a ∈ A, ua(s′) > ua(s), and there exists some j ∈ A s.t. uj(s) > uj(s′).

[56, 37].

Definition 14. Normal form game: From [37], a normal-form game is tuple (N, D∗, u),

where:

• N is a finite set of n players;

• D∗ = D1 ×D2 × ...×Dn, such that Di is the finite set of actions (or decisions) that

player i can take on;

• u = (u1, u2, ...un), where u is a real-valued utility function for player i

A normal form game is typically represented by an n−dimensional matrix, where each di-

mension is the vector of actions Di for each agent i. Each cell represents the utility for each

of the players, where each agent takes on the actions specified by the cell.

Definition 15. Strategy: A strategy si is the action that a player i will take given the actions

that the other players take (s−i) [37].
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Definition 16. Strategy profile: A strategy profile σ = (s1, s2, ...sn) is the set of actions that

each player will take given the actions that the other players takes [37].

Definition 17. Nash equilibrium: A strategy profile σ is a Nash equilibrium if, for all

players i, si ∈ σ is the best action (maximizes ui) given the actions of the other players (s−i)

[37].

Definition 18. Minimax and maximin strategies: A minimax strategy for players −i against

a player i is one such that players −i act to minimize the maximum payoff of i. A maximin

strategy for a player i is the complement of the minimax strategy, it is the strategy si for

player i that maximizes i′s minimum payoff in the event that players −i play a minimax

strategy [37].

4.4.2 Multi-agent influence diagrams

Definition 19. A Multi-agent Influence Diagram (MAID), defined by Koller and Milch [35]

is an influence diagram (Bayesian decision network) that represents the beliefs, actions of

preferences of multiple-agents.

MAIDs can be used to represent games in which each agent is a player. In MAIDs, the

following notation is used:

i. D: A decision, represented by a decision node in a MAID

ii. A: The set of agents, a ∈ A, represented by a MAID

iii. Di: The set of decisions that agent i will take on

iv. Pa(D): The set of variable and decision nodes that affect a decision D

v. σ: A strategy profile for all agents in a game, indicating the decision option that

each agent will take given the decisions that the other agents will take.
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4.4.3 Graph Theoretic Concepts

These definitions will be used in chapter 7

Definition 20. Node width: The width of a node w(d) in a graph is the number of nodes

preceding it in a tree decomposition of a graph [14].

Definition 21. Width of an ordering: The width of an ordering is the maximum node width

given an ordering d of the graph in a tree decomposition [14].

Definition 22. Treewidth or induced width: Treewidth or induced width, w ∗ (d) or w, is

the width of the ordering in an optimal tree decomposition of a graph, where an optimal

decomposition minimizes treewidth [7, 14].

Definition 23. Poly-tree: A poly-tree is a graph in which the unlabeled graph (directed edges

converted to undirected edges) contains at most one path between any two nodes i and j [50].
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Collective Belief Aggregation

This chapter provides an overview of the collective belief aggregation approach to Bayesian

belief aggregation and social decision-making. Two significant limitations of existing be-

lief and preference aggregation approaches are that they (1) can form consensus models

that under-represent divergent beliefs and (2) they may result in an irrational social choice

solution in the presence of divergence.

This chapter will demonstrate two aggregation approaches that address these limitations.

Section 5.1 introduces an example that will demonstrate the potential of utilizing this ap-

proach for policy-making. Section 5.2 revisits the irrationality results described in Chapter

3 with a simple but realistic decision network. I first show that averaging contradicting

beliefs can cause a social choice solution to be selected over a more preferred solution. I

then show that a single individual can sway the social choice solution to his benefit, against

the preferences of all other individuals. Section 5.3 will highlight the differences in behavior

of prior and posterior aggregation. Section 5.4 presents an approach that partitions a pop-

ulation into clusters before aggregation. The consensus clusters increase the representation

of diverging beliefs. Section 5.5 introduces a more refined aggregation approach that parti-

tions a population into collectives whose consensuses will uphold the rational social choice

properties defined in Figure 3.1 and Section 3.1.3. By forming collectives whose members

agree on the relative likelihood or desirability of an outcome, the two situations described

in Section 5.2 can be avoided. Finally, Section compares prior and posterior collective belief
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aggregation and shows that only posterior aggregation can guarantee collectives that uphold

the RSC properties.

5.1 A Motivating Example

Policy-making and politics are fields that exemplify the challenges and rewards of combining

diverse and often conflicting beliefs. Diversity can result in harmonious policy decisions

that consider everyone’s point of view, or it can cause polarization and increase feelings

of detachment from a community. My goal is to enable policy-making that represents all

significant beliefs, and enables groups to objectively cooperate to achieve a goal without

attempting to force consensus. To this end, the examples in this dissertation address various

political and policy-making situations.

I begin with a situation that can be generalized to other policy decisions. Suppose there

is a logging interest that would like to clear a forest to sell the lumber or to sell the land

for development. The public may be opposed to the logging, due to the effects it has on the

environment, or they may support the loggers because it will bring jobs and commerce into

the area. The public could also be ambivalent, in which case they do not support or oppose

the loggers, or they see equivalent benefits of both situations. If the government were to get

involved in the decision of whether to log or not, policy could be developed that is either

pro-logging interest or pro-environment.

The decision network shown in Figure 5.1 represents a group decision about whether a

vote should be held to introduce new policy. If no vote occurs then no policy will be enacted.

Each individual in the group has a utility for each policy decision. Each individual also has

a belief in which policy would win if a vote is held. In Figure 5.1, the oval represents the

conditional probability of Policy given the V ote decision, represented by P (Policy|V ote).

Policy will be one of [E,L, N ], where E= environmental, L= logging, N = none. The utility

of each policy option will be in the range [−2, 2]. Inference on the network will determine

the expected utility of the decision options— to vote or not to vote.
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Figure 5.1: A decision network representing a decision to put a new policy to vote.

5.2 Irrational Social Choice Results Revisited

This section revisits the impossibility theorems discussed in Sections 3.2.2 and 3.3.2 using

the network in Figure 5.1.

5.2.1 A Non-Pareto Optimal Solution

If the individuals in a group making the vote decision have opposing beliefs and utilities, it

is possible that the aggregate of their beliefs will result in a non-Pareto optimal solution (as

defined in Figure 3.1). In other words, all individuals prefer one vote option, but the social

choice is the other option. This is demonstrated in the following example. Suppose there are

two individuals i1 and i2. The individuals’ conditional probability tables for P (Policy|V ote)

are shown in Figure 5.2. In this case, if there is a vote the policy will be either E or L. If no

vote is held, then there will be no policy, therefore P (Policy = N |V ote = NoV ote) = 1.0.

The individuals’ utilities for each policy decision are shown in Table 5.1.

The results of applying an arithmetic mean to find the consensus probability distribution,

P0(Policy|V ote), is shown in Table 5.2. The consensus on policy utilities, U0(Policy), is
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shown in Table (Y). The geometric mean will result in similar values.

P1(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.75 0.0
L 0.25 0.0
N 0.0 1.0

P2(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.25 0.0
L 0.75 0.0
N 0.0 1.0

Figure 5.2: Conditional probabilities Pi(Policy|V ote) for two individuals i1 and i2.

U1(Policy)
E L N
1.0 -1.2 0.0

U2(Policy)
E L N

-1.2 1.0 0.0

Table 5.1: Utilities U(Policy) for policy options for two individuals i1 and i2.

P0(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.5 0.0
L 0.5 0.0
N 0.0 1.0

Table 5.2: Consensus conditional probability table for P0(Policy|V ote) computed using the
arithmetic mean.

U0(Policy)
E L N

-0.1 -0.1 0.0

Table 5.3: Consensus utilities U0(Policy) for the policy options computed using the arith-
metic mean.

The expected utility of each decision option is found using the following formula:

EU(V ote) = P (Policy|V ote)U(Policy) (5.1)

50



Chapter 5. Collective Belief Aggregation

Table 5.4 compares the results of applying the formula to each individual’s beliefs and utilities

with the results of applying the formula to the consensus beliefs and utilities. The best option

for each individual and the consensus is shown in bold. We can see that the consensus favors

the opposite decision option as both individuals. In other words, the consensus option is not

Pareto optimal. While in this situation the group was composed of only two individuals,

the same outcome will arise if all members of a group prefer one option, but their consensus

results in the same or similar values as Tables 5.2 and 5.3.

V ote NoV ote
EU1(V ote) 0.45 0.0
EU2(V ote) 0.45 0.0
EU0(V ote) -0.1 0.0

Table 5.4: Expected utilities of each individual and their consensus. The options with the
highest expected utility are shown in bold. Note that the consensus results in the option
that neither individuals preferred.

5.2.2 Dictatorship

Section 3.3.2 demonstrated how a single individual can skew the consensus solution in his

favor using quantitative beliefs and utilities. According to Arrow’s axioms for preference

aggregation, this is considered a dictatorship [1]. The more general phenomenon that is

occurring is that the mean of a set of quantitative values can be skewed by a small number

of highly divergent values. In addition to the dictatorship situation, this can cause the

consensus to “lose” the representation of some of the values. In other words, as a set of

values becomes more divergent, the set’s consensus will become less similar to the original

values.

The next example demonstrates a dictatorship situation using the decision network in

Figure 5.1. Suppose that the table on the left of Figure 5.3 contains the conditional proba-

bilities for a group g of three individuals who all happen to have the same beliefs. The table

on the right of Figure 5.3 contains the probabilities for an individual d who waits to supply

his values until the others supply theirs. Since he can see their values, he can compute what
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he needs to provide in order to skew the vote decision in his direction. The consensus of the

group composed of g ∪ d is shown in Table 5.5. The utilities U(Policy) are identical for all

individuals and are shown in Table 5.6.

Pg(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.4 0.0
L 0.6 0.0
N 0.0 1.0

Pd(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.9 0.0
L 0.1 0.0
N 0.0 1.0

Figure 5.3: The table on the left contains conditional probabilities for a group g of three
individuals with identical beliefs. The table on the right shows the conditional probabilities
for a single individual d.

P0(Policy|V ote) Vote
V ote NoV ote

Policy
E 0.525 0.0
L 0.475 0.0
N 0.0 1.0

Table 5.5: The consensus conditional probabilities of the group composed of g ∪ d.

U0(Policy)
E L N
1.0 -1.0 0.0

Table 5.6: Consensus utilities U0(Policy) for the policy options computed using the arith-
metic mean.

Table 5.7 shows the expected utility for the group g, the dictator d and their combined

consensus computed using equation 5.1. Again the best option for the group or individual

is shown in bold. We see that in this situation, the dictator is able to flip the preference of

the other individuals by a slim margin.
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V ote NoV ote
EUg(V ote) -0.2 0.0
EUd(V ote) 0.8 0.0
EU0(V ote) 0.05 0.0

Table 5.7: Expected utilities of a group EUg(V ote) of three individuals, an individual
EUd(V ote) and their consensus EUg(V ote). Individual d is able to sway the decision in
his favor by a slim margin.

5.3 Prior Versus Posterior Aggregation

Section 3.3.1 introduced some distinctions between prior and posterior aggregation. To

review, prior aggregation occurs when the beliefs for each variable or utility in a network are

aggregated before inference is performed on the network. In other words a consensus network

is formed. Posterior aggregation occurs when inference is run on each individual’s network

separately, and the results of inference are then aggregated. A “belief” can represent either

an a priori probability estimate for a variable in the Bayesian network, or a conditional

probability estimate for a child given the probability of its parents. It can also refer to an

inferred belief, or the posterior probability of an outcome.

Prior and posterior aggregation do not always result in the same consensus values or

even the same solutions. Both examples in Section 5.2 used prior aggregation. If posterior

aggregation is used on the example in Section 5.2.1 the consensus solution is the Pareto

optimal option (the average of the individual’s expected utility for V ote is 0.45). However the

results of the dictatorship example in Section 5.2.2 are the same with posterior aggregation.

In fact, the dictatorship example could occur with a range of group sizes and expected

utilities for the vote decision. If we assume that the expected utility for V ote = NoV ote

is always 0 for all individuals, any sets of values for which the Eq. 5.2 is met will cause a

single individual to override the beliefs and preferences of the other individuals. If there are

x individuals in a group g who lean towards V ote = NoV ote and one “dictator” who leans

the other direction, then the following equation holds.
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1

x + 1

(
x∑

i=1

EUi(V ote = V ote) + EUd(V ote = V ote)

)
> 0

x∑

i=1

EUi(V ote = V ote) + EUd(V ote = V ote) > 0 (5.2)

x∑

i=1

EUi(V ote = V ote) > −EUd(V ote = V ote)

While using posterior aggregation may avoid some irrational social choice results that are

specific to prior aggregation, it will not eliminate all issues. The next sections will introduce

an approach that addresses the challenges described thus far in this chapter.

5.4 Clusters of Consensus

The first approach to partitioning a group of individuals uses a clustering algorithm to detect

groups of individuals with similar beliefs. The following example will show that clustering

and then aggregating the beliefs within each cluster forms a set of consensus models that are

more representative of the original population’s beliefs than a single consensus. The k-means

clustering algorithm is used to discover the clusters. The k-means clustering algorithm is

simple, commonly used, and does well on linearly separated data. Given an input parameter

k, the algorithm works as follows:

1. Select k random points as cluster centers

2. Assign each point to its closest center using Euclidean distance metrics

3. Compute the center of each cluster and re-assign the center

4. Repeat until clusters have stabilized

The input to the clustering algorithm is a matrix containing a row for each individual

in a population. In this case, the population contained 10,000 individuals with randomly

generated beliefs. The row is composed of the individual’s beliefs used to form the network
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in Figure 5.1. Figures 5.4-5.6 show histograms of expected utilities for the V ote option,

comparing the original population distribution with a single mean (k = 1) and cluster means

(k = 2, 4, 8). The distribution of the original data shows the percent of individuals that fit

into each bin. Each bar that represents a k value shows the percent of individuals that fit

in each bin if each individual were to provide the mean of their cluster. Each consecutive

graph shows increased divergence in the original expected utilities, measured by standard

deviation.

The Kullback-Leibler divergence measure measures the difference between two probability

distributions P and Q [36]. A low divergence means that the distributions have a high

degree of overlap or similarity. Thus, it can be used to measure how well a consensus

represents a population’s beliefs. In this case, the K-L divergence of the cluster consensus

distribution from the distribution of the population’s expected utilities is compared with the

K-L divergence of the single consensus (mean of all expected utilities) from the population’s

distribution. The K-L divergence measure is defined formally in Section 4.2. Equation 4.1

was used in which X contains one variable— the expected utility of V ote. The K-L divergence

of each consensus distribution from the original distribution is shown in the bottom right of

each graph in Figures 5.4-5.6.

Figure 5.4: A histogram of expected utilities comparing the original population distribution
with a single mean (k=1) and cluster means (k=2,4,8). The expected utilities in this graph
had a standard deviation of 0.88. The x axis shows the range of expected utility: [-2.0, 2.0].
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Figure 5.5: A histogram of expected utilities comparing the original population distribution
with a single mean (k=1) and cluster means (k=2,4,8). The expected utilities in this graph
had a standard deviation of 0.97. The x axis shows the range of expected utility: [-2.0, 2.0].

Figure 5.6: A histogram of expected utilities comparing the original population distribution
with a single mean (k=1) and cluster means (k=2,4,8). The expected utilities in this graph
had a standard deviation of 1.11. The x axis shows the range of expected utility: [-2.0, 2.0].

All graphs show that clustering reduces the K-L divergence of the consensus distribution.

Figure 5.6 illustrates that clustering works particularly well for modeling divergent beliefs. In

two of the three graphs a larger number of clusters decreased the K-L divergence. However,

K-L divergence of k = 8 was higher than k = 4 in Fig. 5.5. This indicates that in some

cases, no additional representational gain can be made by continuing to increase k. K-L

divergence could be in this manner to determine the optimal number of clusters.
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5.5 Collective Belief Models

The previous section demonstrated a first approach at partitioning a population before ag-

gregation. While the clusters of consensus increased the representation of the original pop-

ulation, there is no guarantee that individuals placed in clusters would have selected the

consensus solution of their cluster. In other words, while the mean of a cluster could prefer

the V ote option, an individual in the cluster could actually prefer the NoV ote option.

This section introduces the collective belief aggregation approach to partition a population

into groups that agree on the relative likelihood or desirability of an outcome, determined

by the Bayesian rank order of the posterior probabilities or expected utilities. The Bayesian

rank order is formally defined in Section 4.3. In summary, in a decision network it is the

preferred order of the decision options based on the decreasing order of the options’ expected

utilities. For example, if the expected utility for the V ote option is -1.2 and the expected

utility for the NoV ote option is 0.0, then the decreasing order of their expected utilities

is [0.0,−1.2] and the Bayesian rank order (or just rank order) is NoV ote, V ote. In a rank

order, the most preferred option is first, followed by the less preferred options and ending

with the least preferred option. Using the preference relations defined in Section 3.1.1, the

relation would be NoV otePV ote, meaning NoV ote is preferred over V ote. A Bayesian rank

order could also include indifference if the expected utilities of two options are equivalent.

The new partitioning approach forms collectives from individuals who have the same

Bayesian rank order of the decision options. Collectives are also formally defined in Section

4.3. In the previous examples all individuals with the rank order NoV otePV ote would be

placed in one collective and all the individuals with the rank order V otePNoV ote would

be placed in another collective. If all individuals have a strict preference, then in the vote

decision there would only be two collectives. However, the number of collectives is dependent

on the number of decision options. If there are d decision options, then there are O(d!)

possible collectives. The number of actual collectives in a population is the number of

unique rank orderings that the individuals in the population provide.

Since all members of a collective provide the same rank ordering, the consensus (mean)

of the collective will also have the same rank ordering. The proof for this is demonstrated by

57



Chapter 5. Collective Belief Aggregation

Proposition 1 in Section 4.3. The consensus of each collective, called the collective belief, is

the mean of all members’ expected utilities. The benefit of a collective maintaining the same

rank ordering as its members is that no individual member can prefer a different solution than

the collective’s consensus solution. This fact means that the aggregate of a collective will

uphold the rational social choice properties defined in Section 4.3, Definition 6 (demonstrated

in Proposition 2).

The collective belief aggregation approach partitions a population into collectives and

finds the aggregate of each collective. The result is that there will be multiple consensus

solutions if there is any disagreement on the rank order of the decision options. If all the

consensus solutions happen to be the same, then there will be one solution that suits the

whole population. Otherwise there will be competing solutions that will need to be resolved

through other means (such as through the game theoretic analysis discussed later in this

chapter). In summary, a single consensus approach may result in an irrational social choice

when there is a stalemate or significant divergence in belief. In these situations, the collective

belief aggregation approach will result in a set of rational social choice solutions.

5.5.1 Revisiting Non-Pareto Optimal Solutions

This section revisits the irrational social choice result demonstrated in Section 5.2.1 to show

that the collective belief aggregation approach returns a Pareto optimal solution when the

single consensus aggregation approach returns a non-Pareto optimal solution. The example

in Section 5.2.1 used prior aggregation, therefore this example will also use a form of prior

aggregation (called incremental aggregation) that is discussed in detail in Section 7. In

summary, collectives can be formed for the prior distribution of any variable in a decision

network. During inference multiple variables are combined through propagation. A new

collective will be formed from the intersection of each variable’s collectives. For example, if

there are two collectives for U(V ote), and two collectives for P (Policy|V ote), then a new set

of collectives for EU(V ote) = P (Policy|V ote)U(V ote) will be formed from the intersections

of the original variables’ collectives.

Revisiting the example in Section 5.2.1 using incremental collective belief aggregation,

each individual will be placed in her own collective for each variable. This will also result
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in each individual being placed in her own collective for the expected utility. The preferred

solution for each collective is then the V ote option, which is the Pareto optimal solution.

It is important to note that while the example in Section 5.2.1 results in a Pareto optimal

solution using incremental collective belief aggregation, this is not the case in general. Only

posterior collective aggregation can guarantee a rational social choice, as discussed in Section

5.5.3.

5.5.2 Revisiting Dictatorship

This section revisits the dictatorship example in Section 5.2.2. Regardless of whether prior

or posterior aggregation is used, the collective belief aggregation approach will form separate

collectives for the group of individuals who prefer the NoV ote option and the individual who

prefers the V ote option. In this case, each collective’s solution has equal representation and

the would-be dictator can no longer “flip” the result in his favor. The more general result

of this observation is that all unique preference orders will be represented in the output of

the collective belief aggregation approach. Therefore the quantitative aspects of averaging

divergent values cannot change the structure of the collectives, although it can change the

consensus values. However, since each collective maintains the rank order of its members,

the relative preferences between options are always maintained.

5.5.3 Prior Versus Posterior Collective Belief Aggregation

As with traditional belief aggregation, collective belief aggregation can be preformed such

that the collectives are discovered prior to inference or the collectives are discovered based

on the posterior results of inference. Prior collective belief aggregation uses clustering to

make an initial guess at how the collectives will form based on the population’s expected

utilities. However, prior aggregation does not have the same RSC guarantees that poste-

rior aggregation has. In other words, it is possible that an individual will be placed into a

collective whose posterior rank order is different than the consensus rank order. The distinc-

tions between prior and posterior collective belief aggregation are discussed in more detail

in Section 7.1.
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Figures 5.7- 5.8 compare prior collective belief aggregation with posterior collective belief

aggregation using similar belief data as the examples in Section 5.4. The bars for Prior and

Posterior show the size and mean of each collective. For example, the Posterior bar on the

left of Fig 5.7 represents the collective whose rank order was NoV otePV ote. The collective

contained just under half the population. The figures show that the collectives are a better

representation of the original beliefs when the expected utilities are more divergent. The

percent value in the bottom right of each figure shows the percent of individuals that prior

collective aggregation placed in their correct collective. In other words, they have the same

rank order of the vote options as their collective. The accuracy of the prior aggregation

approach varies. In Fig. 5.8 prior aggregation was almost the same as posterior. This is

probably due to having the majority of the population in two small but relatively tight peaks.

Figure 5.7: A histogram of expected utilities comparing the original population distribution
with prior and posterior collective belief aggregation. The expected utilities in this graph
had a standard deviation of 0.88. The x axis shows the range of expected utility: [-2.0, 2.0].
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Figure 5.8: A histogram of expected utilities comparing the original population distribution
with prior and posterior collective belief aggregation. The expected utilities in this graph
had a standard deviation of 0.97. The x axis shows the range of expected utility: [-2.0, 2.0].

Figure 5.9: A histogram of expected utilities comparing the original population distribution
with prior and posterior collective belief aggregation. The expected utilities in this graph
had a standard deviation of 1.05. The x axis shows the range of expected utility: [-2.0, 2.0].

5.6 Summary

The examples in this chapter demonstrate two different approaches to partitioning a pop-

ulation prior to belief aggregation. Clustering greatly increased the representation of the

original beliefs. It may be more appropriate if the data has many different “peaks” and if
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one is not concerned about upholding rational social choice principles or accurately placing

individuals in collectives that matched their preferences. Posterior collective aggregation is

more appropriate when one needs to guarantee that individuals are not placed in the wrong

collective according to their preferences. This would be particularly important if a policy de-

cision were to be made based on the members of a collective. In this case the members would

want to be certain that they were placed in the collective that represents their preferences.

The next chapter demonstrates how one can form a “super-agent” from each collective that

will represent the collective in a decision-making game.

This chapter successfully demonstrated the first two objectives described in Section 1.3.

The examples illustrate situations in which the individuals in a population had diverging

beliefs, in some situations resulting in a solution that was in complete opposition to the pref-

erences a subgroup of the population. Section B shows a situation in which the diverging

opinions occur using beliefs elicited from humans. The chapter then showed that partitioning

the population into clusters or collectives before aggregation resulted in more representative

consensus models. The collective belief aggregation approach forms collectives whose aggre-

gate will uphold rational social choice principles defined by social choice theorists. This is

verified in Section 4.3.
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Applying Game Theoretic Analysis

The previous chapter introduced the collective belief aggregation approach and discussed how

collectives can be formed from a population that uphold rational social choice properties.

This chapter will demonstrate how to form decision-making games in which each player is

a “super-agent” derived from a collective. Game theory has its own definitions for rational

behavior, defined by its many solutions and equilibria [37]. Applying game theoretic analysis

to the set of collectives will enable decision-makers to discover the rational solutions for

a population in the context of competitive game theory. The this will allow the natural

competition between individuals with divergent objectives to emerge. In this manner, game

theoretic analysis, including finding Pareto optimal and Nash equilibrium solutions, can be

applied within a large population.

This chapter first shows how the Pareto optimal solutions for a population can be found

from the set of collective beliefs. I then expand the decision network in Figure 5.1 to

demonstrate a more complex decision situation from which several collectives will emerge.

The normal form games that represent the relative utilities and actions of the different

collectives are then discussed. Finally, I demonstrate how multi-agent influence diagrams

(MAIDs) [35] can be used to find Nash equilibrium solutions and the maximin strategy [37]

in strategic situations. When a MAID represents the decisions of a large population, the

agents may be super-agents that emerge from collectives.
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6.1 Extracting the Pareto Optimal Solutions

The goal of social choice theory is to find one Pareto optimal solution for a population.

In reality, there may be more than one solution that meets the Pareto condition. After

partitioning a population into collectives, a logical next step in the social decision-making

process might be to find the set of Pareto optimal solutions for the population. In the games

described in this section, each “player” will be a super-agent whose belief is the collective

belief of a collective. Each player’s preferences are represented by its collective’s shared rank

order of the options. Discovery of the Pareto solutions involves eliminating the solutions that

are preferred by no one (or no collective). In other words, there is always another solution

that everyone prefers, therefore a rational social choice function will not select a non Pareto

solution. Mathematically, a Pareto optimal solution is one in which no players can do better

(have a higher utility) without another player doing worse [37].

An algorithm was developed to extract the Pareto solutions from a strong partition Ts,

given the rank orders from the resulting collectives. A strong partition, as defined in Def. 8

in Section 4.3, is a partition that is derived from collectives defined using rank order relations

containing only preference or indifference. The algorithm finds the set of options that uphold

the strong Pareto condition by first finding those that do not. The algorithm is described in

Appendix A.

6.2 An Expanded Decision Network

In the examples in Chapter 5 only two collectives were formed from the decision options;

those who preferred the V ote option and those who preferred the NoV ote options. More

collectives will arise when multiple decision options are given. In Figure 6.1 the decision

network in Fig. 5.1 has been expanded to include more decision options, variables and

utilities. Suppose that the groups using the previous network decided to go ahead and

put the policy to a vote. Each individual now must decide whether to vote for the pro-

environment policy, pro-logging policy, or not to vote. The expected utility of each option

is dependent on two variables and three utilities. The utility Effort represents the amount
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of “effort” an individual associates with voting. Environment and Jobs are the utilities

assigned to the quality of environment and effect on jobs, consecutively, if the loggers decide

to log. The logger’s decision is represented by a variable node and is dependent on the policy

that is enacted by the government. This policy is dependent on the votes of the community.

Figure 6.1: An expanded decision network representing a decision to vote for a specific policy
based on the utility of logging and the utility of “making an effort”. The utility of logging
is a sum of the utilities for the environment and jobs given logging.

In this example the V oteAction decision variable has three different options: E = vote

pro-environment, L = vote pro-logging and N = no vote. Since there are three different

options there will 3! = 6 possible strict preference orderings. Therefore six possible collectives

can emerge from the population. A simulation was created that computes the expected utility

of each individual and discovers the collectives in a population given randomly generated

beliefs and utilities. Table 6.1 shows the collectives that emerge from a population in which

approximately half the population leans towards not voting and the other half is split evenly

towards voting pro-environment and pro-logging. The left column shows the rank order

representing the collective. The middle three columns show the collective belief, or average

expected utility, for each collective. The right column shows the percent of the population

that the collective contains. All but one of the possible collectives (ELN) is seen in this

simulation. Adjusting the ratio of vote tendencies in the simulation will change the relative

size of the collectives and their collective beliefs.

This logging policy example used simulated beliefs and preferences. A similar example

demonstrating collectives using beliefs elicited from humans is shown in Appendix B.
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Collective Collective Belief Percent of
Rank Order E L N Population

NEL -0.11 -0.16 1.8 0.256
NLE 1.6 3.9 5.0 0.247
LNE 3.2 7.9 5.9 0.247
ENL -2.4 -5.9 -4.4 0.242
LEN 5.2 5.0 7.8 0.008

Table 6.1: The collectives that emerge from a population based on the expected utility of
the decision variable V oteAction.

6.3 Normal Form Games

This section demonstrates how a normal form game (Section 4.4, Def. 14) can be formed

from the collectives in Table 6.1. A normal form game compares the utility for each player

given the action of all other players. It can be used to find the Pareto optimal solutions

and Nash equilibrium solutions in strategic situations. Figure 6.2 shows the normal form

matrices for two pairs of collectives. A full normal form matrix would contain k dimensions,

one dimension for each collective. Figure 6.2 shows only two of six dimensions, using two

different pairs of collectives. The matrix on the left of figure compares ENL to LNE, the

two collectives in direct opposition to each other. Their utility indicates that they both prefer

opposing actions. In this case, each action is a Pareto solution. The normal form matrix on

the right of the figure compares the collectives ENL and NEL. If the public were composed

of only these two collectives, then the pro-logging vote action would not be Pareto optimal.

However, since all collectives must be considered, then each option is a Pareto solution.
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Figure 6.2: Two partial normal form matrices showing the utility of each action for two
pairs of collectives. The left matrix compares opposing collectives ENL (rows) and LNE
(columns). The matrix on the right shows two less opposing collectives, ENL and NEL.

6.4 Finding Nash Equilibria with Multi-agent Influ-

ence Diagrams

This section demonstrates how a concept developed by Koller and Milch in [35] forms the

basis for more extensive game theoretic analysis with collectives. The authors introduced

multi-agent influence diagrams (MAIDs) that represent strategic situations between multiple

agents. MAIDs are defined formally in Section 4.4.2. In the MAIDs, each agent a represented

in the scenario will have a decision rule for each of its decisions D ∈ Da that is a probability

distribution over the options in D given Pa(D), where Pa(D) is the set of decision and

variable nodes that affect D.

A strategy profile σ is an assignment for all agents of decision rules to all decisions in

a MAID. A strategy profile σ is a Nash equilibrium solution, if for all agents a ∈ A, Da is

optimal given the strategy profile. In other words each agent has selected the option for each

decision that optimizes their expected utility given the strategy of the other agents. The

MAID in [35] assumes that an agent represents a single entity. This chapter demonstrates

that an agent can be a super-agent representing a collective as defined in Section 4.3.
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6.4.1 Model

This section extends the network in Figure 6.1 to form a MAID that represents a strategic

situation between a community and a logging interest. In addition to the agents representing

each emergent collective from the previous example, the players in the game will include a

logger agent. As in the MAIDs in [35], the dashed lines represent decisions or variable nodes

that affect a decision. These are the parents of a decision D, or Pa(D). In the expanded

MAID the variable node Log is a decision node, because the logging interest will make the

decision to log or to not log, based on the which policy wins the vote. The loggers also

have the option to lobby the policy-makers, which may increase the likelihood of pro-logging

policy. However, lobbying is also associated with a cost. In addition, logging is associated

with a profit for the logging interest, depending on the policy. A pro-logging policy allows

for a positive profit, whereas a pro-environment policy results in a loss (or negative profit)

for the logging interest.

Figure 6.3: A MAID that extends Fig. 6.1 with the decisions and utilities of the logging
interest. The dashed edges represent the values that an agent considers when he makes a
decision.
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6.4.2 Game theoretic analysis

This section demonstrates how to find the Nash equilibrium solutions and minimax/maximin

strategies using the MAID in the previous section. Figure 6.4 shows the partial normal form

for two agents, the ENL collective and the logger. As in the simpler MAID, a full normal

form matrix would contain a dimension for each agent, however only two dimensions are

shown for simplicity. The matrix in fig. 6.4.a shows the utility of each agent given both

agent’s decisions. The ENL agent’s highest expected utility is to vote for the environmental

policy because the vote will decrease the likelihood of pro-logging policy and increase the

agent’s utility for the environment. In this example the logging interest also decides to lobby,

therefore the utility of the don’t log action is negative.

The gray cell in the matrix shows the Nash equilibrium solution for this scenario. Given

the logger’s strategy of logging, the best strategy of the ENL collective is to vote pro-

environment. Likewise, given the combined strategies (or strategy profile) of all the collec-

tives, the logger’s best action in this situation is to log. The logger’s utility for logging is

derived from the expected action of each of the collectives. Specifically, the probability dis-

tribution of vote action, P (V oteAction = d) is derived from the collective’s preferred actions

using the following formula:

∀d ∈ D : P (D = d) =
∑

j∈Cd

|Cj|
N

Where D = VoteAction, d ∈ {E,L, N}, and Cd is the set of collectives that prefer action

d. The logger then computes the likelihood of pro-logging policy given the probability

distribution of vote action. In this particular situation in which only about 25% of the

population votes pro-environment, policy is likely to lean in the logger’s favor and the loggers

will make a profit. The normal form matrices in Figure 6.2 that compare the collective agents

will not change with the additional consideration of the logger’s utility and actions.

I now discuss the maximin strategy, defined as the strategy for an agent a that maximizes

the payoff given that the other agents’ aims are to minimize a’s payoff [37]. In other words,

it is the best choice for a given his worst case scenario. The table in Figure 6.4.b shows

the logger’s utility of logging given hypothetical situations in which the public leans 100%

towards one of the actions. The worst case scenario for the loggers is the case in which all
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Figure 6.4: (a.) A normal form for the MAID comparing the logging interest to the ENL
collective, whose preferred action is to vote pro-environment. The Nash equilibrium solution
is the shaded cell in the matrix. (b.) Table showing the logger’s utility of logging given
situations in which the public leans 100% towards one of the actions.

collectives prefer to vote pro-environment. Since the E action is the strategy that minimizes

the logger’s utility, the maximin strategy for the logging interest is to not log, since pro-

environment policy will result in a loss if they log. The minimax strategy is the complement

of the maximin strategy. One could consider voting pro-environment to be a minimax

strategy for the public because it would minimize the payoff for the logger if the public were

to “gang up” on the logging interest [37].

The previous example results in a Nash equilibrium solution in which the logging interest

logs. If the input parameters are changed, the Nash equilibrium solution for the logging

interest may also change. Figure 6.5 shows the best strategy for the logging interest if the

vote ratio of the community is changed. The amount of potential loss is also varied, where

potential loss is the percent of potential profit that the logger’s experience if policy is pro-

environment. The figures show the logger’s decision to log or to not log, given the loss in

rows, and ratio in columns and the logger’s decision to lobby. A white cell containing 0

indicates that the loggers best option given the input parameters is always to not log. A

dark gray cell containing 1 indicates that the loggers best option is always to log. A light

gray cell containing 1/0 means that the best option was to log when lobby = true and to not

log when lobby = false. Therefore the light gray options show the effect of lobbying.
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Figure 6.5: A table showing the logger’s Nash equilibrium solution to log (1) or to not log
(0), varying three options: the loss for loggers (rows represent the possible loss as the percent
of possible profit), the ratio of vote actions (columns represent the ratio of the community
that leans towards vote actions [E, L, N]), and the decision to lobby. The light gray cells
containing (1/0) show the effect of lobbying. Not logging is preferred when the logger does
not lobby, while logging is preferred when the logger decides to lobby.

6.5 Sequential Games and Imperfect Information

Section 6.3 described the approach to form multi-agent influence diagrams from collectives to

enable game theoretic analysis. The logging simulation was essentially a single action game,

in which the strategy of each player was known or assumed before each agent analyzed his

decision options. In real world situations, the strategy of the other players is not always

immediately apparent [37]. In many cases players will not admit their strategy to the other
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players, thus strategy must be inferred over multiple moves. Alternatively, players may

switch strategies depending on the actions taken by the other players over multiple plays. In

these situations it may take time for a game to settle into a state in which a Nash equilibrium

solution can be determined. As defined, the MAIDs represent only the known strategies with

a dashed line from the known decision for agent ai, to the corresponding decision for agent

aj. A possible extension to the MAID would be to represent decisions as a probabilistic

variables until they are known with a high degree of certainty.

Appendix C describes an an election polling simulation that demonstrates game theoretic

analysis in a sequential game. In a sequential game the moves of each player depend on

the moves of the other players in the previous time step [37]. In addition, the strategy

of each individual may change or may not be immediately evident to all other players.

In the described situation the Nash equilibrium solution is found only after the game had

stabilized to the extent that individuals stopped changing their strategies. I also discussed an

interesting phenomenon in which the average expected utility of the population predicted an

outcome that was different than the outcome indicated by the individuals’ expected. This

result may be relevant the price of anarchy, defined as the difference between individuals

acting to maximize the social optimum and individuals acting to maximize their own utility

[55].

6.5.1 Summary

This chapter demonstrated how to apply game theoretic analysis using the collectives gen-

erated with the collective choice function. Section 6.1 introduced an algorithm to extract

the Pareto optimal solutions from the collective beliefs of each collective. It demonstrated

that the algorithm will return a set of Pareto optimal solutions in situations that fail using a

single consensus approach. Section 6.3 discussed normal form games and showed the normal

form matrices for pairs of collectives. The remainder of the chapter expanded the concept

of multi-agent influence diagrams to form agents in a game from a set of collectives. The

game-playing agents with potentially competitive goals emerged from the collectives that

were derived from the MAIDs. The MAIDs were used to find Nash equilibrium solutions

and the minimax and maximin strategies.
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This chapter demonstrated a general approach to applying game theoretic analysis using

collectives and therefore successfully achieved the objective described in Section 1.3.3. The

findParetoSet algorithm will find the Pareto solutions given a set of collective beliefs in

situations that can be described with a Bayesian network. The extended MAIDs can be used

to find Nash equilibrium solutions in strategic situations between agents and super-agents

that can be described with a MAID. The logging simulation highlights the applicability of

my approach in policy and decision- making on a large scale. By considering the beliefs,

preferences and behavior of a population, we can see the possible effects of public action on

policy, as well as the effects of public action and policy on the actions of corporations and

other organizations.
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Chapter 7

Algorithms for Collective Belief

Aggregation

This dissertation has discussed an approach to social decision-making using collective belief

models and game theoretic analysis. I have described how this approach achieves the first

three objectives set forth in Section 1.3. I now present an algorithmic approach to discov-

ering collectives, detailing the collective choice function discussed at a high level in Section

4.3. The algorithms discussed are combined aggregation and inference algorithms, differing

only in the order of aggregation and inference. Specifically, I discuss and compare three

different algorithmic approaches to inference: prior aggregation, posterior aggregation, and

my incremental aggregation approach. Posterior aggregation will serve as the exact, brute

force algorithm according to the collective choice function. Posterior aggregation performs

inference, based on a query, on each individuals’ Bayesian network prior to performing ag-

gregation on their results. Prior aggregation attempts to aggregate the individuals to form

consensus networks, on which inference is then performed. Incremental is a hybrid between

prior and posterior aggregation. This chapter discusses the algorithms, then compare their

complexity. Finally runtime and accuracy of the approaches are compared using simulated

models and data. This chapter address the final objective, defined in Section 1.3.4.
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7.1 Incremental Collective Discovery

This section discusses an algorithm for discovering a partition of an elicited population

including the collectives and their collective beliefs. The intuition for the alternative ag-

gregation approaches is first given. A formal description of the incremental algorithm is

then provided. Since any Bayesian decision network can be converted into a Bayesian net-

work [42, 35], the inference algorithm for a Bayesian network is discussed. The collective

choice function defined in Section 4.3 utilized the inferred belief in a queried variable, Xi,

also known as its posterior probability P ′(Xi). Thus, the inference algorithm introduced in

this dissertation will be for the posterior belief assessment of a variable P ′(Xi) given Xi’s

network. The network could contain prior distributions for Xi’s ancestors and observations

about Xi’s descendents.

Since I am interested in the inferred collectives, the exact, brute force algorithm is simply

to 1) query each individual’s network, 2) run an inference algorithm on each network and

return the result of the query, and 3) run a binning algorithm to place each individual into

a collective based on their inferred beliefs. I will call this approach the posterior aggrega-

tion algorithm (after posterior compromise [40]) because it does aggregation after inference.

While this algorithm will result in collectives that accurately represent the Bayesian rank

orders P (Xi), no benefits in using aggregation to reduce runtime will be seen.

Another algorithmic approach would be to form the consensus networks before running

inference on them. In other words one forms the collectives based on the individuals’ a priori

beliefs and conditional distributions. I call this approach the prior aggregation algorithm

(after prior compromise [40]). This algorithm could result in reduced runtime over the

posterior algorithm because the computationally intensive inference will occur on a smaller

number (k) of consensus networks than the m individual networks in the posterior algorithm.

However, since the collectives are formed based on the inferred beliefs, the prior aggregation

approach may not guarantee that the collectives will represent the inferred Bayesian rank

orders for the population accurately. Essentially, the prior aggregation algorithm would be

making a guess about the posterior probability P (Xi) based on simply observing the a priori

probability distributions. If this could be done accurately, then the inference algorithm

would not be needed!
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The prior aggregation algorithm can be compared to a classification algorithm. A classi-

fication algorithm attempts to determine the class of an object based on the object’s features

[64]. Similarly, the prior aggregation algorithm attempts to classify the Bayesian rank order

and therefore the collective (class) that an individual (object) belongs to based on his prior

distributions (features). Classification algorithms are measured by their accuracy. If an

algorithm is able to correctly classify each object correctly, it is be considered 100% accu-

rate. Likewise, If an aggregation algorithm is able to correctly determine each individual’s

collective, as does the posterior aggregation algorithm, then that algorithm is 100% accu-

rate. Therefore, an algorithm’s ability to determine the posterior Bayesian rank order will

be referred to as its accuracy.

An approach that balances runtime and accuracy would provide the most flexibility. In

other words, it should have a lower runtime than the posterior aggregation algorithm, but a

higher accuracy than the prior aggregation algorithm. I introduce a combination of the two

approaches, that I call the incremental aggregation approach. The incremental aggregation

algorithm uses the classification guesses of the prior aggregation algorithm to “bootstrap” the

algorithm, but finds the posterior collectives for each variable Xj during inference. The result

is a set of collectives for each variable in Xi’s network. The algorithm cannot guarantee that

the collectives reflect the true rank order of each individual for each variable. However, it is

expected that the algorithm’s accuracy will be higher than the prior aggregation approach.

The incremental aggregation algorithm is integrated with a Bayesian inference algorithm

(to be discussed later). It returns the collectives and collective beliefs for the posterior

probability of a given query P (Xq), where Xq is the variable of interest. The algorithm

works intuitively as follows:

Bootstrap step:

The algorithm finds the set of collectives and collective beliefs for the prior distributions

of all variables in the network for which individuals have supplied prior probability distri-

butions, PC(Xi), and the conditional probability distributions, PC(Xi|Pai) for all variables

with parents.

Inference step:

For the purpose of this introduction, assume that the posterior probability of a node has been
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computed or is available before it is passed to its children. The algorithm computes the col-

lective posterior probability PC(Xi) of each node using the collective beliefs for the posterior

distributions of Xi’s parents, PC(Pai), and the collective beliefs for the prior distributions

of PC(Xi|Pai). Thus, PC(Xi), the posterior probability is computed as follows:

PC(Xi) = PC(Xi|Pai)PC(Pai) (7.1)

The potential benefits of the incremental algorithm are derived by reducing the number of

values being propagated for each node. Instead of propagating each individual’s probability

distributions throughout the network, the algorithm propagates the collectives’ distributions.

This results in propagating k ≤ m values instead of m values, where m is the population size

and k is the number of collectives. First, the bootstrap step jump-starts aggregation so the

algorithm begins with ki collectives and their means for the prior or conditional probability of

each node Xi. The algorithm then updates the collectives for each node Xi during inference,

after computing Xi’s posterior probability, P ′(Xi). The mean posterior probabilities of

these collectives are then propagated to Xi’s neighbors instead of each individual’s posterior

probabilities.

An existing Bayesian inference algorithm was extended to develop the incremental ag-

gregation algorithm. The well-known variable elimination algorithm, developed by Zhang

and Poole [68] and Dechter [15], was chosen because it returns an exact posterior probability

distribution and because it is simpler than the junction tree algorithm by Jensen [32] that

requires a Bayesian network to be converted into an intermediate structure [13].

7.2 Algorithms

I will now summarize the original variable elimination (also known as bucket elimination)

algorithm for belief assessment of a query Q. The algorithm below summarizes Kevin Mur-

phy’s implementation of the algorithm from his Matlab toolkit [43]. Further discussion of

the algorithm can be found in [68, 14].
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Procedure variableElim:

• Inputs:

– PTs: A PT for all variables Xi ∈ X, including observations

– d: an ordering over those variables

– Q: a query

• Outputs: P ′(Q), the posterior probability distribution of Q

1 variableElim(PTs, Q, d)

2 for each node Xi

3 initialize Xi’s bucket with its PT and its family’s PTs

4 compute the product of the PTs assigned to each bucket (a JPT)

5 end

6 place Q at the beginning of d

7 for each node Xi in reverse order of d

8 marginalize last bucket containing Xi to sum it out

9 place result in the previous bucket containing Xi

10 find product of PTs in bucket

11 end

12 the first bucket will contain P ′(Q)

13 end

The next algorithm, binPT(PTs), discovers the collectives for a population based on the

PTs provided for a variable. The population is either composed of a set of individuals, each

with his own PT; or a set of collectives, each of which has a collective PT. The algorithm

“bins” each individual into a new collective based on the symbolic order of the values in each

PT. If the input is a set of collectives and their PTs, then each individual in a collective is

binned based on his collective’s PT. The findPTOrder(PT) procedure is a helper procedure

that returns the rank order of a single PT, formed by appending the order of the conditional

probabilities for each combination of parent values. Symbolic orders are discussed in depth
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in Section 7.3. Procedure computeCollectiveBelief(PTs,IDs) finds the mean of PTs using

the function in eq. 7.2 if IDs is a set of individuals, or the weighted mean function in eq.

7.3 if IDs is a set of collectives, each containing the IDs of its members.

Procedure binPT(PTs, IDs):

• Inputs:

– PTs– A set of PTs for a variable X

– IDs– The IDs associated with each PT; could be a single ID or a set of IDs for

each PT

• Outputs: A set of collectives for X’s PT

1 binPT(PTs)

2 /* each individual or collective has a cpt in PTs */

3 for all cpt in PTs

4 order=findPTOrder(cpt)

5 place owner of cpt in a collective defined by order

6 end

7 find mean PT for each collective

8 end

Procedure findPTOrder(PT):

• Inputs: PT— A single PT

• Outputs: The symbolic order of the values in the PT

1 findPTOrder(PT)

2 /* append the order of vals for each parent combination */

3 order = empty

4 allParentCombos = enumerate all combinations of parent values

5 for each combo of values in allParentCombos
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6 o=find order of node’s values given node’s parents in PT

7 append o and combo to order

8 end

9 end

Procedure computeCollectiveBelief(PTs,IDs):

• Inputs: PTs— A set of PTs; IDs the IDs for a set of individuals, or a set of collectives

• Outputs: The mean of the PTs. If PTs belong to collectives, then result is a weighted

mean of the PTs

1 computeCollectiveBelief(PTs,IDs)

2 if IDs contains a set of separate individuals

3 collective belief is computed as in e.q. 7.2

4 else IDs contains a set of collectives

5 new collective belief is computed as in e.q. 7.3

6 end

1

|IDs|
∑

i

PTi (7.2)

∑

j

PTj ×
|PTj|
|P | (7.3)

I now discuss the extension to the variable elimination algorithm, variableElimAgg(PTs,

Q, d), which also performs incremental aggregation. Aggregation is performed when prob-

ability distributions are combined to form a joint distribution or the posterior distribution

of a node. This will occur when the PTs in a bucket are multiplied to find the new PT

for the bucket. This is the propagation step in inference, in which one finds the product

of two probability distributions. The helper procedure, productOfIntersectingBins(...)

performs the aggregation, but first it must combine two sets of collectives, representing the

collectives for two different distribution tables. When the two sets of collectives are com-

bined, the product of only the overlapping collectives is found. The process is illustrated
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in Figure 7.1. The A and B nodes represent two sets of collectives, which are the two sets

of PTs being combined in a bucket. Collective Ai’s collective belief will be in PTai and

collective Bj’s will be in PTbj. The first step in productOfIntersectingBins(...) is to

find the cartesian product of all collectives in A, with all collectives in B. For all Ai and all

Bj, a temporary collective Tij = Ai∩Bj is found, represented by the small ovals attached to

the edges in Fig. 7.1. If Tij is non-empty, then PTij will be the product of PTai and PTbj,

the collective belief of Ai and Bj, respectively. If T is the set of non-empty intersections,

then |T | ≤ m. In other words there can be no more than m non-empty intersections– one

for each individual in P .

The overall result of productOfIntersectingBins(...) is that it finds the product of

the groups of individuals that agree on the preference order between two PTs. A side effect

is that the runtime of inference can potentially be reduced in the cases when the number of

non-empty intersections is less than m, compared to exact inference which does propagation

on all m networks. After finding T , the algorithm re-bins T into a new set of collectives by

calling binPTs(PTT ,T ), where PTT contains the products of the intersections. In the bucket

elimination algorithm, PTT could contain conditional probability tables or joint probability

tables, depending on the PTs that are combined.

Procedure variableElimAgg(PTs, Q, d):

• Inputs:

– PTs– A PT for variable all variables Xi ∈ X, for all m individuals

– d– an ordering over all variables Xi

– Q- a query

• Outputs: A set of approximate collectives based on Q and the posterior probability

distribution of Q for each collective

1 variableElimAgg(PTs, Q, d)

2 for each node Xi

3 call binPT(PTs) to find collectives for Xi
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Figure 7.1: Illustration of the process of combining two sets of collectives during propagation.

4 find PTij: the collective belief for each collective Cj

5 end

6 for each node Xi

7 initialize Xi’s bucket with each collective’s PT and the PTs ←↩

8 of Xi’s family

9 call productOfIntersectingBins( Binsa, Binsb, PTsa, PTsb) ←↩

10 to compute the products of the PTs assigned to each bucket

11 place result in bucket

12 end

13 place Q at the beginning of d

14 for each node Xi in reverse order of d

15 for each collective in last bucket b containing Xi

16 marginalize the bucket to sum Xi out

17 place result in the previous bucket b′ containing Xi

18 end

19 call productOfIntersectingBins( Binsa, Binsb, PTsa, PTsb) ←↩

20 to compute the new product of the PTs in the bucket b′
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21 place result in bucket b′

22 end

23 the first bucket will contain P ′(Q) for each collective

24 end

Procedure productOfIntersectingBins(Binsa, Binsb, PTsa, PTsb)

• Inputs:

– Binsa and Binsb: The collectives for the two PTs to be multiplied;

– PTsa, PTsb: The PTs for each collective

• Outputs: New collectives and PTs for the product of the two sets of PTs

1 productOfIntersectingBins( Binsa, Binsb, PTsa, PTsb)

2 for all bins Bini in Binsa and Binj in Binsb

3 Tij = the intersection of Bini and Binj

4 if intersection is non-empty

5 PTij = the product of PTi and PTj

6 place PTij in Prods

7 end

8 end

9 call binPTs(Prods, T) to bin the results into new collectives

10 end

As with many algorithms that attempt to approximate the results of an exact, brute

force algorithm, the incremental aggregation algorithm balances efficiency with accuracy. An

unfortunate side effect of the algorithm is that it may inaccurately predict the final collective

for an individual, since it propagates the means of collectives instead of each individual’s

PTs. This phenomena is an effect of computing a product of probability distributions,

which can result in a different preference order than the products of an individual’s PTs.

The following example illustrates this situation. Suppose we have two individuals A and B

with the following probability tables for P (Y |X) and P (X):
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A B

P (Y |X) X

F T

Y
F .49 .99

T .51 .01

P (X)

F .75

T .25

P (Y |X) X

F T

Y
F .01 .51

T .99 .49

P (X)

F .75

T .25

A and B both have the same preference orderings for both tables: P (Y |X) = FTTF and

P (X) = FT , however, the product of these tables does not yield the same preference order

for P (Y ):

PA(Y = T ) = .51 ∗ .25 + .01 ∗ .75 = .135 → FT (7.4)

PB(Y = T ) = .99 ∗ .25 + .49 ∗ .75 = .615 → TF (7.5)

Clearly combining the mean of the two individual’s probability tables indicates that one

individual’s preference order will not be equivalent to the mean’s preference order. This

phenomenon was proven in general in [56]. They showed that it is not possible to find a

rational social choice solution using prior aggregation. Only posterior aggregation, used in

the exact aggregation algorithm, can guarantee accurate collectives, in which each individual

in a collective has the same preference order for the posterior belief in a query as the collective

to which she belongs.

While the prior aggregation can result in incorrect estimation of collectives, the incre-

mental algorithm uses a combination of prior and posterior aggregation. Prior aggregation

is used in the initialization step to aggregate each PT and posterior aggregation is used after

combining PTs in buckets. It is expected that the incremental aggregation algorithm will

correctly predict the appropriate collective (preference order) for an individual in a popula-

tion more often than a full prior aggregation approach. A full prior aggregation approach

is one in which the individuals are aggregated to find consensus networks prior to inference.

Other belief aggregation techniques use this approach to form a single consensus network

[52, 40]. Prior aggregation can also be used to form multiple consensus networks. In this

case individuals are first clustered based on their CPTs and then a consensus network is

formed for each cluster. This approach was used in 5.4. In Section 7.3 I will compare the

accuracy and runtime of three aggregation approaches: prior, incremental and posterior.
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7.3 Complexity

Bayesian inference is equivalent to SAT in the worst case. The variable elimination al-

gorithms I have described are used to assess belief in a Bayesian network to compute the

posterior probability of a queried variable P (Xq). There are approximations for belief assess-

ment, such as belief propagation, that can achieve improved space and runtime [50, 16]. The

complexity of Bayesian network inference is highly dependent on the structure of the net-

work, in particular the degree of the nodes in the network. Researchers show that Bayesian

inference is exponential in the induced width (see Def. 22) [13]. Therefore runtime of the

bucket elimination algorithm is highly dependent on the order in which nodes are processed.

An optimal ordering would be one in which a node’s parents always precede it in the ordering

[14].

The time and space complexity for finding the posterior probability of a queried variable

P (Xq) using bucket elimination is O(n · exp(w ∗ (d)), where w ∗ (d) is the induced width of

an optimal ordering d and n is the number of variables in the network [14]. I will refer to

w ∗ (d) as w in further discussions. Thus, the complexity of inference on a single network

is O(n · exp(w)). In other words, O(exp(w)) computations are required to compute the

posterior probability of each node in the network.

In the case of a poly-tree, the induced width is equivalent to |F |, the maximum family

size (node and its parents). In order to compare the complexity of the exact aggregation

algorithm with the incremental aggregation algorithm I will assume a poly-tree because

family size is a key factor in the complexity of the incremental algorithm.

The complexity of inference on a poly-tree is now analyzed in more detail. At each node

Xi, one must consider two important components:

• |Pai|: the number of incoming nodes, or parents

• ri: the arity of the each of the variables, including Xi and Pai, r will be the maximum

arity considered

The size of the conditional probability table (CPT) for the probability of a variable

Xi given its parents Pai, representing the values for P (Xi|Pai) will be O(r|Pai|+1), which is
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equivalent to O(r|Fi|). This is also equivalent to the time to compute the posterior probability

P (Xi) = P (Xi|Pai)P (ai). Assuming a poly-tree, this results in the runtime of inference as

described above: O(n · exp(|F |)). I have simply specified exp() to be r. Thus, for purposes

of comparison, I describe the runtime of inference on a poly-tree as O(n · r|F |).

7.3.1 Complexity of exact algorithm

The exact combined aggregation and inference algorithm runs inference on m networks, one

for each individual in a population, and then “bins” the individuals into collectives based on

the rank order of the individual’s belief. Assuming each individual has an identical poly-tree,

the runtime of the exact algorithm is O(mn · r|F |) plus the runtime of binning. Binning and

finding the means of the collectives will be O(m), and therefore will not affect the asymptotic

runtime.

7.3.2 Complexity of incremental algorithm

My objective is to reduce the asymptotic runtime of approximate inference. I now analyze

the complexity of the incremental algorithm to see under which conditions this is possible.

The algorithm is split into two steps:

1. Initialization: Finds the set of collectives for the prior or conditional probability

table for each variable Xi in a network. Uses the procedures binPT(PTs, IDs),

findPTOrder(PT) and computeCollectiveBelief(PTs,IDs)

2. Inference: Computes the posterior probability of each variable Xi in the network

using the collectives beliefs discovered in the initialization step. In the process the

approximate collectives for each bucket are incrementally updated. The inference al-

gorithm returns the collectives and collective beliefs for a query Q. Inference uses

the variableElimAgg(PTs, Q, d) and productOfIntersectingBins(Binsa, Binsb,

PTsa, PTsb) procedures as well as the procedures used in the initialization step.

I first analyze the number of possible collectives for the value P (Xi) (or P ′(Xi)). If Xi

has r possible values then there are r! possible orderings on those values, each of which is a
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potential collective. For example, if Xi is binary, then there are 2! = 2 possible collectives

representing the orderings TF and FT .

I now analyze the number of possible collectives for the CPT of a variable Xi if Xi has

parents. In this case, each variable in Xi’s family will have up to r possible values. The

possibility that there is a different ordering for each combination of parent values must be

considered. For instance, if a variable Xi has one parent Xj, then the following orderings

(followed by their symbolic representation) are possible:

1. Xi = TF |Xj = T and Xi = TF |Xj = F (TFTF )

2. Xi = TF |Xj = T and Xi = FT |Xj = F (TFFT )

3. Xi = FT |Xj = T and Xi = TF |Xj = F (FTTF )

4. Xi = FT |Xj = T and Xi = FT |Xj = F (FTFT )

Unfortunately, the number of possible collectives grows super-exponentially with the

number of parents. The following table shows only four of the 16 possible collectives if Xi

gains a second parent, Xk:
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Xi Xj Xk Ordering

TF T T

TFTFTFTF
TF T F

TF F T

TF F F

TF T T

TFTFTFFT
TF T F

TF F T

FT F F

TF T T

TFTFFTTF
TF T F

FT F T

TF F F

TF T T

TFTFFTFT
TF T F

FT F T

FT F F

...

In general, the number of collectives, given r and |Pa| is O(r!r
|Pa|

), since there are r|Pa|

combinations of parent values and r! possible orderings of P (Xi) for each combination.

Fortunately, variables are often binary or at least r will be small, bounding the factorial

growth of r! to a constant. The number of collectives is also bound by the population size

m. In the worst case, each individual will be in his own collective. Therefore, the upper

bound on the collectives is O(min(m, r!r
|Pa|

)).

I now analyze each step of the incremental algorithm to determine the asymptotic behav-

ior. First the initialization step is analyzed. In the binPT(PTs, IDs) procedure in Section

7.2, each individual is placed in a collective for P (Xi|Pai). Each individual j will have a PT

for each node Xi. While there are |Ci| possible collectives for each Xi, this number will only

be reached if each possible ordering is seen and m ≥ |Ci|. The findPTOrder(PT) procedure

determines the ordering of a single PT and the collective in which its owner belongs. The
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ordering is derived by appending the order of P (Xi) given each combination of its parent’s

values. The number of combinations of parent values for Xi is r|Pai|. For each combination

combo, the r possible values of Xi are sorted (in line 13), and then appended to the whole

ordering (line 14). The sort will require O(r · log(r)) operations, but since r is likely to be

small, this value is a constant. Thus, the runtime of the findPTOrder(PT) procedure is

O(r|Pa|). The binPT(PTs, IDs) procedure will run findPTOrder(PT) on each individual’s

PT. If there are m individuals and n PTs in a network, then the runtime for the initialization

step is:

O(mn · r|Pa|) (7.6)

Finding the mean of each collective takes an additional O(m) time and is dominated by the

runtime of binning. The runtime of the initialization step is only slightly lower than the

runtime of the exact inference algorithm because |Pa| = |F | − 1, however, recall that the

estimate for the exact inference algorithm is only considering poly-trees. In general graphs,

the runtime is O(mn · rw), where |F | ≤ w. The runtime of the incremental algorithm’s

initialization is for a general, possibly multiply-connected graph. Therfore, the runtime of

binning is in general asymptotically lower than the runtime of exact inference.

I now analyze the inference step. The incremental algorithm attempts to improve effi-

ciency by propagating the collective beliefs throughout the networks instead of each indi-

vidual’s value. The collective beliefs were discovered in the initialization step, and they now

serve to bootstrap the algorithm. Like the original bucket elimination algorithm, complex-

ity of variableElimAgg(PTs, Q, d) is dominated by the time to process each bucket. In

the original algorithm this is bounded by O(exp(w)), where w is the induced width of the

optimal ordering. In Murphy’s implementation of the algorithm the parents of node Xi will

be processed before Xi [43]. Therefore the order is near optimal.

The runtime of the variableElimAgg() algorithm is also affected by the number of

possible collectives for each probability distribution, which was previously shown to be

O(min(m, r!r
|Pa|

)). The productOfIntersectingBins(...) procedure finds the intersec-

tion of two sets of collectives, thus if we let c = r!r
|Pa|

, then there are O(min(m, c2)) possible

collectives for each bucket. The algorithm then bins the results of the intersections into

new collectives, at a runtime of O(r|Pa|) per bucket. Since r|Pa| ≤ exp(w), then this means
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each bucket requires O(2 · min(m, c2) · exp(w)) operations. The factor of two is added be-

cause the process occurs twice, between lines 6-12 and 14-22. Thus, the runtime of the

variableElimAgg(PTs, Q, d) is:

O(n · min(m, c2) · exp(w)) (7.7)

This runtime dominates the initialization step when min(m, c2) = m and exp(w) ≥ r|Pa|,

which is likely in any general, multiply-connected network. The asymptotic complexity

is equivalent to the exact inference algorithm, whose runtime is O(mn · exp(w)), when

min(m, c2) = m. If c2 < m then the incremental algorithm will be faster. Thus, we can see

that the incremental algorithm is highly dependent on the number of possible collectives,

which is based on the size of the probability tables, and is a factor of the number of parents

each node has. Note that the upper bound on the number of possible collectives is not

always reached in practice. Reduced runtime would occur in situations in which there is a

high degree of agreement across multiple probability tables. In other words, a reduction in

the number of non-empty intersections would reduce the number of actual collectives.

Reduced complexity could also be derived from re-structuring the network to reduce

the maximum number of parents [13] or by using combining rules such as the noisy-OR

gate, in which each parent-child relationship is considered independent of the others [50,

18, 68]. This would eliminate the exponential growth on the size of the conditional and

joint probability tables. In fact, since the belief networks are derived from beliefs elicited

from people, combining rules would also be a more natural way for individuals to provide

their beliefs on conditional probabilities. For instance, it seems more natural for a human

to describe the effect of one factor in the outcome of a situation than the effect of all factors

combined. Extending noisy-OR gate inference is a natural future extension of the work.

However, I have described the complexity using general Bayesian inference for completeness.

7.4 Experiments

This section discusses several experiments that measure the runtime and accuracy of the

variable elimination algorithm. Three aggregation approaches are compared:
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• Posterior aggregation: runs inference on each individual’s belief network based on a

query Q and bins the posterior probability, P ′(Q) into collectives.

• Incremental aggregation: runs inference using the incremental algorithm described in

Section 7.2

• Prior aggregation: uses the Weka k-means clusterer [64] to cluster individuals based

on their prior and conditional probability tables into k clusters. Consensus networks

are then formed from the clusters and inference is run on them to find P ′(Q). The

clusters that formed the consensus networks are then binned into collectives based on

their rank orders.

The section focuses on comparing posterior aggregation with the incremental aggregation

algorithm. The accuracy of prior aggregation is poor enough to not make it a contender for

practical use, at least without significant modification.

7.4.1 Metrics

The experiments in this section test three metrics: runtime, accuracy and representation.

Runtime is as it sounds, simply measuring the time (in seconds) to complete a combined

aggregation and inference task. In most of the experiments, a single task is composed

of computing the collectives and collective beliefs for a query, given a Bayesian network

structure and a population of individuals with randomly generated parameters. Accuracy

specifically refers to correctly predicting the preference order of an individual’s posterior

belief, which in turn indicates the collective to which an individual belongs. The actual

preference order is the preference order derived from posterior aggregation. Thus, posterior

aggregation has 100% accuracy. To measure accuracy of incremental and prior aggregation, I

compare the results of running aggregation and inference on the same network using posterior

aggregation. If Ĉr is the collective to which an individual r has been found to belong using

posterior aggregation and Cr is the collective to which the same individual has been found

to belong using a different aggregation technique T , then the accuracy of the technique, αT
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given the set of collectives C derived from T is measured as:

cr =

{
1 if Cr = Ĉr

0 otherwise

αT (C) =
1

|P |

|P |∑

r=1

cr (7.8)

Finally, representation is a measure of how well the aggregation technique represents

the population’s beliefs. As discussed in Section 5.4, Kulback-Leibler (K-L) divergence is

a measure of how divergent a distribution Q is from a distribution P . Given a “target” or

“actual” distribution P and an estimate Q, the K-L divergence of Q from P over n data

points is:

KL(P ||Q) =
n∑

i=1

P (i)log
P (i)

Q(i)
(7.9)

If the K-L divergence of a distribution Q from P is near zero, then the distributions are

very similar. In this case Q is considered a “good” representation of P . My hypothesis is that

the collective beliefs are more representative of a population than a single consensus model.

The following measure uses K-L divergence to measure the divergence of the collective’s

belief distribution from the distribution of all individuals’ beliefs. This is compared to the

K-L divergence of the mean of all beliefs in a population. The distributions are computed

from a histogram of n bins over the values in [0, 1]. Inference on each individual r’s network

results in a posterior probability P ′
r(Xq = T ) for a queried binary variable Xq, the value of

which will fit into one of the n bins. PIq(i) is the probability that any individual’s network

resulted in a posterior probability P ′
r(Xq) = T that fits in bin i. For each collective Cj in

C, P ′
0j(Xq = T ) is the collective belief derived from aggregation and inference. PCq(i) is the

probability that an individual’s belief is in bin i if each individual in collective Cj provides

the belief P ′
0j(Xq). Given the set C of k collectives, I compute the K-L divergence between

PI , the distribution of the individuals and PC , the distribution of the set of collectives as

follows:

KL(PI ||PC) =
n∑

i=1

PIq(i)log
PIq(i)

PCq(i)
(7.10)
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Equation 7.10 is also used to find the K-L divergence of the single consensus model

(mean of all individual’s posterior beliefs) from the individual’s posterior beliefs, in which

case there is only one value for P ′
0(Xq = T ). Finally, K-L divergence is used for a second

measure of accuracy. This measure indicates how similar the collective beliefs derived from an

approximate aggregation algorithm are from the exact algorithm. I compute the divergence of

the collective beliefs P ′
C(Xq); derived from the prior and incremental aggregation algorithms,

from the collective beliefs P ′
Ĉ
(Xq); derived from the posterior aggregation algorithm using

the following formula:

KL(P ′
Ĉ
(Xq)||P ′

C(Xq)) =
∑

xq

P ′
Ĉ
(Xq = xq)log

P ′
Ĉ
(Xq = xq)

P ′
C(Xq = xq)

(7.11)

7.4.2 Models and data

The Bayesian networks structure for the experiments are randomly generated DAGs with

the following parameters:

• Number of nodes: number of nodes in the network

• Max parents: maximum indegree for a node

• Max children: maximum outdegree for a node

The parameters for the networks were randomly generated using the Matlab Bayes

Net Toolkit [43]. The probability distributions for each node in the network were sam-

pled using a Gaussian mixture model, shown in Figure 7.2, centered around the means

[0.0, 0.25, 0.5, 0.75, 1.0] and adjusted to fall in [0, 1]. Since I am simulating elicited beliefs

from humans, I used the Gaussian mixture model instead of a uniform distribution, since

humans may be more likely to provide probability estimates near a common set of proba-

bilities. Tools previously developed for belief elicitation used English terms such as “very

unlikely,” “unlikely,” “fifty-fifty,” “likely,” “very likely,” and converted the terms into these

numeric values [27, 26, 25].
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Figure 7.2: Gaussian mixture model used to generate probability tables for randomly gen-
erated networks; σ = 0.1, µ = {0.0, 0.25, 0.5, 0.75, 1.0}.

7.4.3 Runtime

I now discuss experiments comparing the runtime of posterior aggregation with incremental

aggregation, varying input parameters for Bayesian networks and population size. Since

many of the experiments show the results of only one run with a given set of input parameters,

I first show that runtime varies minimally when the same network structure and input

parameters are used. The bottom table in Figure 7.3 shows runtime over five runs, the

average of all runs, and the standard deviation. The top table shows the input parameters

used for the experiments. Many of the following figures will contain this table, showing the

input parameters used. Node depth of query refers to the maximum path length to a root

node from the queried node. This value has an impact on the runtime of the aggregation

algorithm. The columns in Figure 7.3 refer to the following runtimes:

• binSpeed : the runtime of the initialization step of the incremental algorithm. In this

step each individual’s probability table for each node is “binned” into a collective for

the node. This is the runtime of the binPT(PTs, IDs) algorithm in Section 7.2.

• infSpeed : the runtime of the inference step of the incremental algorithm. This is the

variableElimAgg(PTs, Q, d) described in Section 7.2.

• incSpeed : the total runtime for the incremental algorithm = binSpeed + infSpeed.

• postSpeed : the total runtime of the posterior aggregation algorithm, or

variableElim(PTs, Q, d) + binPT(PTs, IDs).
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Figure 7.3: The bottom table shows the standard deviation of runtime over five runs using
the same network structure. The input parameters are shown in the top table.

The runtime values in Figure 7.3 show that the incremental algorithm is slower than the

aggregation algorithm in some cases. In particular, the runtime is highly affected by the

maximum number of parents, as discussed in Section 7.3. The table in Figure 7.4 shows

the runtime when varying the maximum number of parents (and children). The runtime

of the incremental algorithm is lower than the posterior aggregation algorithm when there

is a maximum of two parents and children per node, but with the given input parameters,

overtakes the runtime of the posterior algorithm with just three parents.

Figure 7.4: Comparison of runtimes when varying the maximum number of parents.
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Figure 7.5: Runtime of algorithms when varying the population size, using a network with
a maximum of two parents. Runtime was measured in population size increments of 1000.

Figure 7.6: Runtime of algorithms when varying the population size, using a network with
a maximum of three parents.
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Figure 7.7: Runtime of algorithms when varying the number of nodes in a network as well
as the depth of the queried node.

The graph in Figure 7.5 shows the results of varying the population m, from 1000-11000 in

increments of 1000. The graph shows that the runtime of the incremental algorithm is lower

and has a lower growth rate than the posterior algorithm when a maximum of two parents

are allowed. The graph in Figure 7.6 shows that the initial runtime of the posterior algorithm

is lower, but has a higher growth-rate than the incremental algorithm. The runtime of the

posterior algorithm overtakes the inference step of the incremental algorithm at a population

of around 10,000. Eventually the runtime of the posterior algorithm will overtake the total

incremental runtime, given the growth-rates indicated by the graph. The slower growth rate

is likely due to the cap on the number of possible collectives having been reached. While the
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population may be higher, the number of collectives reaches a limit based on the number of

parents each node has.

The graphs in Figure 7.7 compare the runtimes over different networks when varying

the number of nodes in the network. The randomly generated networks also resulted in

varying topologies. The depth of the queried node is shown in the middle graph, and the

sum of the node depths of each node in the network is shown in the bottom graph. The

networks with a higher sum depth are more “stringy” than “bushy.” Five experiments

were run for each network size, between 10 and 80 nodes (shown in the horizontal axis). It is

evident that the node depth has a strong effect on the runtime of the incremental aggregation

algorithm. For most runs, the runtime of incremental inference (dashed line) is far lower

than the runtime of the posterior algorithm (dotted line). However, when the query depth

or sum depth spikes, much higher runtimes are seen. This is specific to the behavior of the

variable elimination algorithm. In deeper networks, the number of probability tables added

to each bucket is larger. While this has a minimal effect on the original variable elimination

algorithm, it increases the size of the joint probability tables created during inference, and

therefore increases the number of collectives.

Aside from the expected increase in runtime of the incremental aggregation algorithm

with higher numbers of parents, the algorithm is also susceptible to the general topology

of the network. Deeper networks are more problematic because the size of the probability

tables. The number of possible collectives increases exponentially. I conclude that a different

inference algorithm, such as belief propagation [50], may be more appropriate as an aggrega-

tion and collective discovery algorithm for general networks. This is because the size of the

probability tables is only dependent on each node’s immediate family, not its entire ancestry.

Re-structuring the networks, as in [9] would also be a possible solution in the general case.

Again, potential benefits to using the noisy OR-gate [50, 18, 68] or similar method to reduce

the size of the probability tables can be seen.

7.4.4 Accuracy

I now compare the accuracy of the incremental aggregation algorithm with the exact posterior

aggregation algorithm. Again, accuracy is the classification accuracy of the approximation
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algorithm, in which the approximation algorithm attempts to predict the collective to which

each individual in a population belongs, based on a query. Equation 7.8 was used to measure

accuracy in the following experiments. Figure 7.8 shows the accuracy of the incremental

aggregation algorithm for a 20-node network with a maximum of three parents per node,

and a population size of 1000. Select nodes were queried, and the accuracy of the query is

shown next to the node. An accuracy of 0.81 or 81% means that 810 of the 1000 individuals

were placed in their appropriate collective according to their posterior belief. Again, it is

evident that node depth has a strong effect on the accuracy of the network. Nodes with a

higher depth require propagation of collective beliefs along a longer path, decreasing accuracy

at each node. It can be seen that the number of parents affects accuracy. For instance, the

node labeled 18 has a higher accuracy than its single parent, who has three parents.

I was curious about the characteristics of the correctly versus incorrectly classified indi-

viduals. My theory was that individuals whose belief estimates hovered around 0.5 (often

coined “on the fence”) would be harder to classify because a small variance in belief has

the potential to “flip” them from one preference order to another. Conversely, people whose

beliefs tended to be more extreme, or “opinionated,” would be easier to classify. To test this

theory, two measurements were made of each individual’s set of probability distributions:

1. Distance from 0.5 : The average distance from 0.5 of each individual’s probability

estimate, over all n variables: 1
n

∑n
i=1 |P (Xi|Pai)− 0.5|

2. Entropy : Entropy is a measure of uncertainty of a variable [61]. Since binary values

were used, values towards 0.5 would be considered more “random” and have a higher

entropy.

Figure 7.9 compares these measurements for incorrectly and correctly classified individ-

uals using a two-node network. In this experiment, 92% of the individuals were correctly

classified. It can be seen from the top graphs in the figure that incorrectly classified indi-

viduals always had a distance of ≤ 0.35 from 0.5 and an entropy of ≥ 1.25. Conversely, all

individuals with the complement of these values were correctly classified. The histograms in

the bottom of figure 7.9 show the distribution of correctly classified individuals for 11 bins

over the range of distances. The line across the histogram approximates the rate of correctly
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Figure 7.8: A 20 node network with up to three parents per node. The accuracy of the
algorithm querying select nodes is shown next to the nodes.

classified individuals. Any of the bins that have values higher than the bar contain indi-

viduals that were classified correctly more often than average. Any bins with values below

the bar contain individuals that were classified incorrectly more frequently than the average.

Figure 7.9 shows that the values closer to 0.5 were classified incorrectly more frequently.

The same conclusions can be made for the histogram over the entropy values. Figure 7.10

shows the same measurements for a four node network, whose accuracy was 82%. While the

separation of always-correctly classified individuals was not as distinct in the larger network,

more extreme probability estimates tend to be classified correctly more frequently.
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Figure 7.9: Measurements of the characteristics of individual’s beliefs who were correctly
classified versus incorrectly classified. A two-node network was used for these graphs.

These results demonstrate the validity of my hypothesis. I conclude that a potential ag-

gregation approach that leverages these characteristics would be able to separate a population

into groups based on the characteristics of their beliefs. Then one could apply incremental

aggregation to the high distance groups, and posterior aggregation to those who are more

difficult to classify.

High Dist Med Dist Low Dist total

size of group 225 453 322 1000

number correct 203 373 252 828

% correct 0.90 0.82 0.78 0.83

7.4.5 Prior Aggregation

I now compare the runtime and accuracy of the prior aggregation algorithm to the incre-

mental and posterior aggregation algorithms. Figure 7.11 shows the results of varying k in

the k-means clusterer. The posterior and incremental measurements are shown as horizontal

101



Chapter 7. Algorithms for Collective Belief Aggregation

Figure 7.10: Measurements of the characteristics of individual’s beliefs who were correctly
classified versus incorrectly classified. A four-node network was used for these graphs.

lines in all graphs. The bottom two graphs only show lines for the incremental and prior

aggregation algorithms because they are being measured against the posterior algorithm.

The bottom graph shows the K-L divergence of the posterior probabilities for each collec-

tive, using equation 7.11. This is a second measure of accuracy and shows how similar the

posterior probabilities from the estimated collectives are from the actual collectives. It can

be seen that with lower values of k, the runtime of the prior algorithm is much lower than

the other algorithms. However, the accuracy of prior aggregation is also much lower than

incremental aggregation. Runtime and quality increase with the value of k, however, higher

values of k can no longer be considered prior aggregation. For example, given a population

of 1000, k = 512 is roughly equivalent to “aggregating” pairs of individuals and then running

posterior aggregation on the set of pairs. In addition, the clustering algorithm has a restric-

tively high space requirement and hit memory limitations sooner than the incremental and

posterior aggregations. The clustering algorithm considered all values in each individual’s

probability tables, therefore the dimensionality of the feature space was very large.
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Figure 7.11: Runtime, classification accuracy, and K-L divergence accuracy of prior, incre-
mental and posterior algorithms. The number of clusters k was varied and is shown in the
horizontal axis.

7.4.6 Representation

The final experiment demonstrates that the collective belief aggregation approach is more

“representative” of a population than a single consensus model. Figure 7.4.6 compares the

K-L divergence, measured using equation 7.10, of the incremental aggregation algorithm (KL
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inc), the prior aggregation algorithm (KL prior), and the mean of all individuals (KL mean

all), from the posterior probability of all individuals considered separately. The standard

deviation of posterior beliefs varied from 3.5 to 44.7. In the experiments a high deviation

indicates that the population is more polarized. The graph in Figure 7.4.6 shows that the

K-L divergence of the incremental algorithm (in the dotted line) is always lower than or equal

to the K-L divergence of the mean of all individuals (solid line). The K-L divergence of the

prior aggregation approach is often lower, and never higher than the mean of all individuals.

This graph demonstrates that the described approach results in a belief model that is a better

representation of a population than a single consensus model. Figure 7.4.6 shows histograms

of this experiment over the posterior probabilities in [0, 1]. The graphs are ordered from

highest standard deviation of the posterior probabilities (highly polarized) to lowest (strong

consensus). It can be seen from these graphs that the collective belief aggregation approach

is more effective for representing polarized beliefs than the single consensus model. They

also show that the approach is effective even in situations in which there is high consensus.
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7.5 On Prior versus Posterior Aggregation

This section compared prior aggregation with incremental and posterior aggregation, show-

ing that prior aggregation results in very poor accuracy on queries. Nearly all previous

aggregation methods discussed in this dissertation have used prior aggregation. The bene-

fit is that a single model can theoretically represent a group or population of individuals.

However, my research leads me to question the necessity of attempting prior aggregation

over posterior aggregation. We see that posterior aggregation is more effective when one is

interested in aggregating the beliefs of a group of individuals to determine the outcome of a

situation. This is logical if one considers that different factors may play a role in the outcome

of a situation. Shared belief in a final outcome does not mean that individuals agreed on all

the factors that contributed to the outcome.

If one is still interested in forming consensus models from the posterior beliefs, they

could work backwards from the queried variable, highlighting the similarities and differences

between individuals that result in a shared belief in the outcome. Figure 7.5 shows an

example of the collectives that emerge from varying beliefs on a relationship X → Y . Each

node represents a collective for a belief and is labeled with the preference order of the node’s

collective. The relative size of the nodes indicates the relative size of the collectives. The

visualization was created by beginning at the collectives for the posterior belief in P ′(Y ),

represented by the nodes at the bottom, and moving towards the roots of the graph to show

the collectives for the intermediate nodes. The middle nodes represent the collectives for the

CPT of P (Y |X). The top nodes represent the collectives for P (X). This visualization of the

collective belief model reveals interesting information about the agreement and disagreement

between individuals. Divergence on beliefs that cannot be explained by the given model could

expose hidden nodes indicating factors that should be included in the model.

Distributing the aggregation process may eliminate the need to find an efficient algorithm

for aggregation. For example, I envision that the collective discovery approach will be used

to aggregate the beliefs of a population elicited in a distributed environment. In this case,

inference on each individual’s network could be run at each node in the computer network,

and the posterior results could be sent to another node (or nodes) to be aggregated.
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7.6 Summary

This chapter described the incremental aggregation algorithm that approximates a posterior

aggregation approach. Posterior aggregation means that collectives are formed after inference

is run on each individual’s network. Posterior aggregation results in a set of collectives that

conform to the rational social choice properties defined in Section 4.3. The incremental

algorithm was an attempt to create a more efficient algorithm. The variable elimination

algorithm [68, 15] was extended because it is an exact inference algorithm and is relatively

simple. Analysis showed that the incremental algorithm is highly susceptible to the structure

of the network, in particular the number of parents each node has and the depth of the

network. I conclude that a different inference algorithm, such as belief propagation [50] or

utilizing combining rules such as the noisy OR-gate [18] may result in improved runtime.

Alternatively, the networks could be restructured to reduce the number of parents each node

has.

I discussed the loss in classification accuracy that is a result of incremental aggregation

using some prior aggregation. I showed that even if two groups share a preference order

over two sets of prior beliefs, finding the product of those beliefs can result in a different

preference orders for the two groups. I analyzed the characteristics of individuals who were

incorrectly classified— meaning that the collective they were estimated to belong to was not

the same collective discovered using posterior aggregation. Analysis showed that individuals

whose beliefs tended to be close to 50/50, indicating a lack of strong opinion, were mis-

classified more often than more opinionated individuals. This indicates that analyzing these

individuals separately using posterior aggregation may improve overall accuracy and runtime.

Finally, I discussed the possibility that posterior aggregation may be sufficient and prefer-

able in many situations, particularly if there is conflict in the beliefs and preferences. Dis-

tributed computing could replace the need for an efficient algorithm to run inference and

aggregation on all individuals at once. This chapter successfully achieved the fourth and

final objective of this dissertation, discussed in Section 1.3.4.
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Figure 7.12: Histogram of the distribution of posterior probabilities, comparing the dis-
tribution over [0, 1] for all individuals considered separately (all individuals), the collectives
derived from incremental aggregation (Incremental), the collectives derived from prior aggre-
gation (prior) and the single consensus model (mean all). The graphs are ordered vertically
first and then horizontally, from high variance in the posterior probabilities, to low variance.
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Figure 7.13: A visualization of the collectives for a small network representing X → Y .
The figure shows the posterior collectives for P ′(Y ) and the collectives that formed the
intermediate nodes.
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Summary and Future Work

8.1 Summary

This dissertation describes a new approach to aggregating the beliefs and preferences of

many individuals to form collective belief models that capture the diversity of a population

and enable game theoretic analysis for decision-making in a large population. Super-agents

are formed from collective belief models that represent the preferences of all collective mem-

bers in decision-making games. By allowing the competitive nature of a situation to emerge

instead of “averaging away” the differences, the collective belief aggregation approach en-

ables decision-making that conforms to mathematical principles of rationality defined by

social choice and game theorists. Belief aggregation approaches that average the beliefs and

preferences of all individuals may return inconsistent or irrational social choice solutions

when faced with conflicting opinions. In contrast, the described approach elegantly handles

these situations by returning a set of solutions that the collectives can evaluate using game

theoretic analysis and negotiation. The following steps summarize the approach to social

decision-making described in this dissertation.

1. Elicit beliefs and preferences from a population of individuals and form Bayesian belief

or decision networks from these beliefs.

2. Extract the symbolic preference order used in social choice theory from the inferred
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Bayesian beliefs.

3. Form collectives from the groups who share a preference order and compute their

collective belief, which is the aggregate of the beliefs of the individuals in the collectives.

It was shown that if a group of individuals share a preference order, their aggregate

will uphold principles of rationality defined by social choice theorists.

4. Form a decision-making game in which each of the “players” is derived from one of

the collectives. Game theoretic analysis can then be applied to find Pareto optimal

solutions, Nash equilibria and other solutions and strategies.

The four objectives set forth in Section 1.3 were successfully achieved. Section 5.4 demon-

strated that the high-level approach to separating a population of individuals based on their

beliefs and preferences before performing aggregation. This caused opposing objectives to

emerge that were not represented by the consensus model. Kullback-Leibler divergence was

used to show that the described approach forms a more representative model than the single

consensus approach.

Section 4.3 defined the building blocks of a new type of consensus model called collective

belief models. Rank order collectives were defined to be groups of individuals that share the

same preference order over a set of symbolic or Bayesian options. A collective choice function

was then defined that will form a consensus belief model from a population of individuals. It

was shown that the aggregate, collective belief of each collective upholds the rational social

choice principles defined by social choice theorists.

Section 6 described decision-making games formed from “super-agents” that represent

each collective that emerges from a population. I introduced an algorithm to find the Pareto

optimal solutions given a set of collectives and their collective beliefs. I demonstrated that

the set of Pareto optimal solutions can be found using collectives even in situations in which

the single consensus approach returned results that were not Pareto optimal solutions. Multi-

agent influence diagrams were extended with the collective choice function to show the Nash

equilibrium solutions and minimax strategies.

Section 7 discussed the differences between prior and posterior aggregation and intro-

duced a hybrid approach called incremental aggregation. It was shown that the incremental

110



Chapter 8. Summary and Future Work

aggregation algorithm’s runtime can be lower than the brute force (posterior aggregation)

algorithm given certain constraints on the structure of the networks.

8.2 Future Work

The research described in this dissertation forms the foundation for continued research in the

area of social decision-making. With continued research into game theory and negotiation

techniques I hope to invigorate research into decision- and policy- making techniques that

incorporate the beliefs and preferences of stakeholders.

The described research originates from computer science, artificial intelligence and prob-

abilistic reasoning, but crosses disciplinary boundaries into the social sciences— particularly

sociology, political science and economics. Continued research relevant to computer scientists

includes utilizing collective belief models to combine evidence from multiple sources. This is

relevant to sensor networks, robotics, multi-agents and any automated techniques that com-

bine heterogeneous knowledge sources. In addition, investigating the nature of divergence

could have implications for causal inference and learning the structure of large networks. For

example, hidden nodes may be revealed by observing that a single node has varying effects

on another.

Continued research relevant to the social sciences includes expanding collective belief

models to incorporate the factors that contribute to human beliefs and preferences. In

particular social scientists may be interested in the variations in backgrounds that describe

divergent beliefs and the commonalities that form a common ground between individuals.

Economists may be interested in utilizing computational models to analyze the competitive

and cooperative behavior of societies. Political scientists could use collective belief models

to more fully understand the preferences of voters and to analyze the behavior of voters over

time, including factors that cause individuals to switch preferences. Policy-makers could

use my approach to analyze the effects of policy changes on populations and organizations.

Organizations could use the techniques described to make decisions given the direct input of

their members. Corporations could expand awareness of their customers and competitors.

Finally, greater understanding of human behavior and a more structured approach to social

111



Chapter 8. Summary and Future Work

decision-making could improve global relations and help resolve conflicts.

The following list enumerates some potential research directions:

• Combining belief aggregation, structure learning and elicitation techniques may help

capture the factors that contribute to beliefs and preferences and form more complete

and robust models. Expanding the models may reveal that apparent irrationality in

human behavior can be explained by not fully representing all the factors in human

decision-making. In addition, stabilizing the belief models so that they capture the

temporal effects of public opinion such as group-think, hype and panic may improve

understanding and decision-making.

• In the approach described in this dissertation preference (rank) orders are deterministic.

Investigating probabilistic preference orders that would form a distribution over all

possible preference orders may help capture the inconsistencies in human belief over

time and in different situations. In addition, probabilistic preference orders would help

differentiate individuals who lean towards indifference from those with strong opinions.

• A hybrid approach using clusters of consensus and collectives may be appropriate in

situations where a set of rational social choice solutions is desired as well as a good

representation of the population’s beliefs. One could first discover the collectives and

then find any significant clusters within each collective. The drawback would be an

increased number of collectives and a less concise representation for game theoretic

analysis.

• Further investigation into the different outcomes that arise from the average expected

utility and individual utilities, discussed in Sections 3.3.3 and 6.5 may be relevant to

the game theoretic concept called the price of anarchy. Putting a “price” on selfish

behavior seems to imply that the social optimum is more desirable than selfish behavior.

However, in this dissertation I have demonstrated the dangers of relying only on the

social optimum. Perhaps collective belief models offer a compromise between altruism

and selfishness.

• While the approaches described in this dissertation utilized probabilistic beliefs and

preferences, the collective belief aggregation approach could also be used for determin-
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istic preferences. Further research into voting and social choice theories might reveal

additional areas where the approach can be applied.

• The decision networks and examples in this dissertation did not take into consideration

the effect of an individual’s community on their own beliefs and desires. For example,

a family member might adjust his preferences in order to please another family mem-

ber. The richness of models could be greatly increased by connecting the networks of

individuals to those in their communities. Belief propagation could occur across the

individuals’ networks, and the results of inference could be aggregated after conver-

gence. In this manner, one could model the naturally occurring consensus that occurs

in social groups before discovering collectives.

• Investigation into negotiation techniques could enable collectives to come to an agree-

ment and make decisions when conflict arises. By observing the similarities and dif-

ferences between collectives that emerge from multiple issues, one may gain a deeper

understanding of conflict and consensus in societies. These issues may indicate the

decisions that require the most attention, and where negotiation techniques could have

the most effect. In addition, the size of the collectives could play a significant role in

negotiation techniques.
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An Algorithm to Find Pareto Optimal

Solutions

The procedure findParetoSet(T, Φ, O) finds the set of options in O that meet the strong

Pareto condition by first finding the solutions that do not. An option oa does not meet the

condition if there exists an option ob such that someone prefers ob to oa and no one prefers

oa to ob. The following requirements, defined by [56], are for options that do not meet the

strong Pareto condition. They are used to guide the algorithm.

Definition 24. Strong Pareto Condition: An option oa does not meet the strong Pareto

condition if and only if there is another option ob such that:

1. Everyone either prefers ob to oa or is indifferent to them (∀i, obPioa or obIioa), and

2. Someone strictly prefers ob to oa (∃i s.t. obPioa)

The findParetoSet(T, Φ, O) algorithm, emulates this definition by finding the set of

options that do not meet the strong Pareto condition. The complement of this set is the set

of strong Pareto optimal solutions. The pairwise relation D was added to mean dislikes,

the opposite of P (prefers), as defined in Section 4.4. R contains the preference relations

between a candidate option oa and another option ob for each collective. The test in the line

marked with (1) in the findParetoSet(T, Φ, O) algorithm will determine if the option oa

does not meet the strong Pareto condition.
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Procedure findParetoSet(T, Φ, O):

• Inputs:

– T : a partition containing a set of collectives

– Φ: a set containing each collective’s collective belief

– O: the set of options

• Outputs: The set of Pareto optimal solutions for the partition

/* relations = the possible pairwise relations:

P = strict preference, D= dis-preference, I= indifference*/

relations={P , D, I}

Snp = findParetoSet(T, Φ, O)

/* Snp is the set of non- Pareto options*/

Snp = {}
for each option oa in O

for each option ob in O (a %= b)

/* R will store each collective’s preference

relation for ob to oa*/

R = {}
for each collective Cj in T

/*place Cj’s preference between ob and oa in R*/

R(j)= preference(φj, ob, oa)

end

/*Check the conditions for oa not to be Pareto

(P ∈ R) means someone prefers ob to oa

(D %∈ R) means no one prefers oa to ob*/

if (P ∈ R) and (D %∈ R) (1)

Snp = Snp ∪ oa; break

end
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end

end

/*The options that meet the Pareto condition are

those in O that are not in Snp*/

Ssp = O − Snp

end

Procedure preference(φ, o1, o2) is a helper function for findParetoSet(T , Φ, O):

• Inputs:

– φ: a collective belief

– o1, o2: two options to be compared in φ

• Outputs: The relation indicating preference for o1 compared to o2

/*returns collective C ′s preference between options o1 and o2*/

function r = preference(φ, o1, o2)

if o1 < o2 in φ /* o1Po2 */

r = P

else if o2 < o1 in φ /* o2Po1 */

r = D

else

r = I

end

end

The findParetoSet() procedure creates an r × r × k matrix, for r options and k col-

lectives. The cell (a, b, j) indicates collective C ′
js preference relation for oa and ob. If Cj

prefers oa to ob, then oaPjob and cell (a, b, j) = P . Otherwise, if collective Cj prefers ob to

oa, then cell (a, b, j) = D. If Cj is indifferent to the options, then cell (a, b, j) = I. The

algorithm determines if oa is non-Pareto by comparing oa to each other option ob. If the
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column (b, a, ∗) does not contain D and it contains at least one P , then ob is always preferred

or indifferent to oa, meaning that oa is not Pareto. The set of Pareto solutions is the com-

plement of the set of non-Pareto solutions. Since the strong Pareto solution is a superset of

the weak Pareto solution, the algorithm can be used to find either one. Note that a Pareto

optimal solution cannot be extracted from a weak partition Tw using this approach, because

one cannot distinguish preference and indifference.
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A Decision Model for Stem Cell

Research

This appendix describes an experiment applying the clustering and collective belief aggrega-

tion approaches to actual human beliefs. The beliefs and utilities were elicited from people

using Mechanical Turk, a website for hiring people to do simple online tasks for very low

cost. The issue of stem cell research was selected because of the issue’s polarizing effect

on individuals with diverse backgrounds and motivations. The hypothetical decision in this

experiment is whether the (US) government should fund embryonic stem cell research, adult

stem cell research, both, or neither based on opinions collected from an online survey.

B.1 Decision Model and Data

The stem cell dataset is composed of opinions elicited from 293 people using Mechanical

Turk and Survey Monkey (surveymonkey.com). Fig. B.1 shows the questions and their

options that composed the survey. Individuals were asked to select one of the options for

each question. The answers provided by the individuals were used to form the Bayesian

decision network in Fig. B.2. The Key in Fig. B.1 indicates the corresponding node in the

decision network.

118



Appendix B. A Decision Model for Stem Cell Research

Figure B.1: Elicited beliefs for stem cell research model.

Fig. B.3 shows the probability distribution for each question (also referred to as belief)

given all individuals surveyed. Each cluster of bars represents one belief and its options. For

instance, the first belief labeled with GF indicates the preferred options for the question

“Should the government fund stem cell research?” The first bar to the left is the probability

for decision option a in Fig. B.1. The second bar corresponds to option b and so on. There

is one bar for each option provided in a question. For consistency, the distribution for each

question was over five options. However, not all questions had five options. In this case, the

non-options are represented by cells containing the probability 0.0001.

The first observation is that there is significant divergence across most of the decision

options. In particular, the question labeled, EI, representing ethical issues with stem cell

research, has a relatively normal distribution across all of its options. On the other hand,
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Figure B.2: An influence diagram for the stem cell research issue.

questions such as the one labeled GI, representing the importance of government research

investment, strongly favors one option over the other. This indicates that there is more

consensus on GI than EI.

This experiment first clustered the individuals based on the options they selected for the

questions using the k-means clustering algorithm. Figures B.4- B.7 show the probability

distribution for each cluster. Each cluster has been labeled with its defining characteristic.
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Figure B.3: The probability distribution for each belief given all individuals surveyed. The
beliefs are shown in the x axis, with each color indicating a different option. The abbrevia-
tions under each cluster of bars correspond to the key in Fig. B.1

Figure B.4: The probability distribution for the first cluster, indicating strong support for
embryonic research and a high personal stake in the outcome.
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Figure B.5: The probability distribution for the second cluster, which overwhelmingly sup-
ports private funding for research.

Figure B.6: The probability distribution for the third cluster, preferring that the government
only fund adult stem cell research.

B.2 Inference

The next step in the experiment was to run inference on each of the individuals’ networks

within a cluster to find the expected utility of each decision option for each individual. The

final step was to aggregate the expected utilities in a cluster to determine the cluster con-

sensus. Before inference, each option selected by an individual in the survey was converted

into a numeric value (shown next to each option in Fig. B.2). Appropriate utility values

were determined from experimentation. The inference algorithm was run on each individ-
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Figure B.7: The probability distribution for the fourth cluster, favoring funding for both
types of research, but with a lower personal stake than in cluster 1.

ual’s supplied beliefs given a set of candidate utility values. If the decision option that the

individual had selected matched the highest utility option, this was considered a correct

prediction. A number of candidate utility values were tested until the highest number of

correct predictions was reached.

Once each individual’s selected options were converted to their numerical counterparts,

the expected utility of each decision was computed through inference, as described in [59].

Finally, the consensus belief (aggregate) for each cluster was computed as the arithmetic

mean of the expected utilities for each individual in the cluster.

B.3 Comparing single consensus versus consensus clus-

ter results

The average expected utilities for all individuals is shown in Table B.1. According to these

values, the social choice is to “fund both embryonic and adult stem cell research.” While the

single consensus approach determines the optimal social choice option given the averages of

the beliefs, it does not represent a deep understanding of the underlying opinions. In fact,

there is a significant subset of the population (8%) who believe that the government should

not fund any research according to Fig. B.3. While a majority of the surveyed population

123



Appendix B. A Decision Model for Stem Cell Research

Decision option Utility
Fund embryonic and adult stem cell research 16.3
Fund embryonic stem cell research only 6.1
Fund adult stem cell research only 13.8
Do not fund any research 3.8

Table B.1: Average expected utility for each decision option.

may believe that the government should fund both embryonic and adult stem cell research,

policy-makers may also be interested in who is likely to oppose such measures.

Figure B.8: Overall utility results using belief clusters and some characteristics of the clusters.

Fig. B.8 shows each cluster’s expected utility for each decision option. I make several

observations about these results:

• The optimal solution for the whole population is in fact the worst case scenario for a

significant minority (15%) of the population.

• Cluster 2 is in complete opposition to the social choice.

These observations successfully demonstrate two expected situations, listed in objective

1.3.1. The clustering approach also enables one to visualize the Pareto optimal solutions.
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The single consensus approach, represented by the average expected utility in Table B.1 is

unable to distinguish these solutions. Nor does the social choice function distinguish the

opposition that occurs in this relatively simple experiment.

B.4 Measuring the representation of a population

Finally, the K-L divergence measure was utilized to determine whether the consensus clusters

more accurately represent the beliefs of a population than the single consensus approach.

Figures B.9-B.12 show the K-L divergence of the expected utility for each decision option.

These graphs represent histogram over the range of expected utilities from lowest (left) to

highest (right). Each cluster of bars represents the number of individuals whose expected

utility fit into that bin. The K-L divergence of the single consensus approach (mean) was

compared to the K-L divergence of the cluster consensuses using four and eight clusters.

As in the example described in Section 4.2, K-L divergence is a measure of how much the

distribution of the consensus diverges from the distribution of all individuals’ expected utility.

In each figure, the bars labeled All are the distribution of all individuals over the range of

expected utility. The bar labeled mean is the single consensus, or average expected utility.

The bars labeled 8 clusters and 4 clusters are the distributions of the cluster consensuses.

K-L divergence of each group from All is shown in the bottom right of each figure. In most

cases, a greater number of clusters typically reduces the K-L divergence. However, in Figure

B.10, the K-L divergence of four clusters was slightly lower than eight clusters. This may

be an indicator that additional clustering fails to discover more significant divergence. Also,

Figure B.12 shows that the mean actually has a lower K-L divergence than four clusters

and is quite close to that of eight clusters. In this case there is a fairly strong consensus

on the expected utility, indicating that clustering may not be required to achieve a good

representation.
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Figure B.9: Histogram of the expected utilities for the decision option Fund Both over the
range of expected utilities. K-L divergence of 8, 4 and 1 cluster from the distribution of all
individuals is shown in the bottom right.

Figure B.10: Histogram of the expected utilities for the decision option Fund Embryonic
Only over the range of expected utilities. K-L divergence of 8, 4 and 1 cluster from the
distribution of all individuals is shown in the bottom right.
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Figure B.11: Histogram of the expected utilities for the decision option Fund Adult Only over
the range of expected utilities. K-L divergence of 8, 4 and 1 cluster from the distribution of
all individuals is shown in the bottom right.

Figure B.12: Histogram of the expected utilities for the decision option Fund Neither over
the range of expected utilities. K-L divergence of 8, 4 and 1 cluster from the distribution of
all individuals is shown in the bottom right.
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B.5 Stem Cell Collectives

Finally, the posterior collective belief aggregation algorithm was run on the expected utilities

for the decision options. The rank order for each collective uses the following symbols to

represent each decision option:

Symbol Decision Option

B Fund both embryonic and adult

E Fund embryonic only

A Fund adult only

N Fund neither

Table B.2 shows that ten out of the 24 possible collectives emerged from the population

and their collective beliefs. The majority of the population fit into the top five collectives,

with a few stragglers in their own collectives. Each collective is guaranteed to accurately

reflect the relative preferences of its members. For instance, the table shows that all decision

options are Pareto optimal, since there is no option that everyone prefers over another. In

contrast, the clustering approach inaccurately inferred that everyone preferred A over E (see

Figure B.8). In a real situation, one could elicit beliefs from a larger population and use the

collectives to apply game theoretic analysis and negotiation techniques to help form policy.
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Collective Collective Belief Collective
Rank Order B E A N Size

BAEN 28.2 13.4 18.6 3.8 144
ABNE 10.3 -1.2 14.2 2.8 45
NAEB 7.4 7.3 20.7 26.3 45
BEAN 31.5 19.9 15.2 3.6 37
ANBE -1.6 -8.9 9.0 1.7 15
NABE -18.9 -24.9 -7.2 1.8 2
BNAE 8.1 -3.6 -0.17 3.1 2
BANE 16.3 -6.5 13.5 5.7 1
BENA 23.2 8.2 4.2 4.3 1
NBAE -1.5 -7.5 -7.5 1.5 1

Table B.2: The collectives that emerge from a population based on the expected utility of
the stem cell decision options.
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An Election Polling Simulation

The experiment in this section demonstrates an election polling simulation, in which the

strategy of an individual is to support the candidate she intends to vote for. In this simple

simulation, an individual may change her strategy depending on the expected utility of the

candidates. The expected utility will be dependent in part on an individual’s belief in the

candidate’s likelihood of winning, which depends on how many people plan to vote for each

candidate. In this simulation, the Nash equiliqrium solution is determined only after the

game has “stabilized.” Stability is reached only when individuals cease to change strategy

for a number of moves.

In the election polling simulation there are three candidates, two sharing a majority of

the vote within a few percentage points of each other, while a third has a small minority.

The simulation shows that the collective choice function is a better predictor of the voting

behavior of a population than a social choice function that finds a single consensus. In

fact, the social choice function incorrectly predicts the outcome of the election in a contrived

(but believable) situation. In particular, the social choice, or average expected utility, does

not predict the same outcome as would the individuals voting for the candidate with the

highest personal expected utility. This phenomenon was discovered in this simulation, and

was discussed in general in Section 3.3.3. The cause of this situation may be related to the

game theoretic concept, the price of anarchy. The price of anarchy is the difference in the

utility if everyone acts for the social good, versus if everyone acts for their own selfish good
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Figure C.1: A Bayesian decision network for an election simulation in which the rectangle
represents the decision options (candidates), the oval labeled Win represents the belief that
each of these candidates will win and the diamond represents the conditional utility of the
winner. Win is also dependent on Stubbornness, which is the probability that an individual
will be resistant to changing beliefs.

[49]. Mathematically, it is the ratio of the social optimum to the Nash equilibrium solution

[55].

Given a simulated population, the election polling simulation computes each individual’s

expected utility for each candidate using a simple decision network, shown in Figure C.1.

Each individual will provide a conditional utility for each candidate that represents the utility

of a candidate given that the candidate wins. It is possible that an individual may prefer one

candidate, but believe that the likelihood of him winning is low that the expected utility of

the individual’s second favorite candidate may actually be higher. An individual’s belief that

each candidate will win is also dependent on her “stubbornness.” The more stubborn an

individual is, the more likely she is to believe that her preferred candidate will win, despite

receiving evidence to the contrary. Finally, each individual will declare her vote based on

her highest expected utility.
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C.1 Initialization

Notation:

P : a population of voters

O: a set of candidates

P (W ): the likelihood of each candidate winning

U(O|W ): a conditional utility for each candidate given the candidate wins

P (S): the likelihood of a given individual being stubborn

The simulation is initialized with a population P of individuals and a set O of candidates.

Each simulated individual will provide: U(O|W ), P (W ), and P (S). P (S) = 1.0 means that

the individual is completely resistant to changing her belief. The simulation then repeats a

“polling” process until convergence occurs. Convergence occurs if no individual has switched

votes for a specified number of repetitions. Convergence is intended to detect stability in

the simulation and is not guaranteed to occur.

Simulation Parameters:

• weights: contains a weight for each candidate to indicate the initial lean of the popu-

lation towards that candidate

• N , the population size

• C, the number of repetitions to test for convergence. The simulation must meet the

requirement for convergence for C steps in order to be considered “converged.”

Each of the N individuals is randomly assigned a preferred candidate based on the

weights parameter. Each individual will set the conditional utilities for each candidate based

on her preference. The candidates are on a range from “left” to “right,” such that an

individual that prefers the leftmost or rightmost candidate will give second preference to the

middle candidate (not the opposing candidate). The stubbornness value for each individual

is assigned randomly between 0.5 and 1.0. Each individual initializes her Win beliefs based

on the candidate’s utility and her stubbornness. Every individual will consider her preferred

candidate more likely, but a more stubborn individual will overwhelmingly favor her preferred
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candidate. Each individual will then compute her expected utility for each candidate o ∈ O

using the following formula:

U(o) = U(o|w) ∗ P (w) (C.1)

The individual will then set her initial “vote” to the candidate with the highest expected

utility. The initial vote count is the count of votes to each candidate for the whole population.

C.2 Social choice functions

This simulation compares a single consensus social choice function and the collective choice

function. The single consensus choice function is an average of all individuals’ expected

utility for each candidate:

∀o ∈ O, U0(o) =
1

n

n∑

i=1

Ui(o) (C.2)

Where O is the set of candidates and n is the population size. The collective choice function

will find the expected utility for each candidate, for each collective Cj:

∀Cj,∀c ∈ C, Uj(o) =
1

mj

mj∑

i=1

Ui(o) (C.3)

Where mj is the number of individuals in collective Cj.

C.3 Results

At each time-step of the simulation, each individual will update her beliefs based on the

vote count, which is provided to all individuals, and her stubbornness. She will then update

her expected utility and select the candidate with the highest expected utility as her “vote.”

After all individuals have updated their belief, a new vote count will be determined. The

simulation was run several times with different initialization parameters to observe the final

results after convergence.
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Simulation parameters:

weights: {0.05, 0.46, 0.49}
N : 10,000

C: 100

In this run, the leftmost candidate begins with a small portion of the votes, while the right-

most candidate has the highest proportion of the votes by a small margin. The simulation

was repeated with these parameters several times and always had results similar to the fol-

lowing. Convergence, where C = 100 typically occurs after about 250 repetitions, meaning

individuals stopped switching at around 150 repetitions. Table C.1 shows the final vote

count and the single consensus social choice, determined by the average expected utility of

each candidate.

Left Center Right
Final vote count 314 4692 4994
Expected utility -0.13 1.52 1.27

Table C.1: Final vote count and the single consensus social choice of each candidate.

Table C.2 shows each collective’s average expected utility. Each collective is defined by

its rank order, shown in the left column. The second column shows the collective’s size

and the remaining columns show the collective belief, or average expected utility for each

candidate for that collective, followed by the variance in parentheses. Note that the average

expected utilities for each candidate over the whole population P can be derived from these

results using the formula, with Uj(o) derived as in eq. C.3:

U(o) =
k∑

j=1

Uj(o) ∗
|Cj|
|P | (C.4)

Where k is the number of collectives.

After the simulation has converged, the results of this simulation imply the Nash equi-

librium solution for this election simulation. Each individual– and therefore each collective–

has decided their strategy with the awareness of the vote count, which represents the strategy

of the rest of the population. During the simulation, individuals may change their strategy
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RO Size Left Center Right
CLR 3601 -0.12 (0.030) 4.13 (0.36) -2.86 (1.94)
RLC 2901 -0.23 (0.006) -2.30 (1.40) 4.51 (0.12)
RCL 2093 -0.13 (0.015) 1.50 (0.94) 4.51 (0.09)
CRL 1091 -0.08 (0.030) 4.17 (0.24) 1.46 (1.02)
LCR 313 0.32 (0.120) -2.22 (1.70) -3.54 (1.35)
LRC 1 5.38 (0.000) -1.11 (0.00) -0.91 (0.00)

Table C.2: Average expected utility (collective belief) for each candidate for each collective
followed by the variance in parentheses. The collectives are defined by their rank order
(RO).

to maximize their expected utility given the vote count. However, once individuals have

stopped switching votes, they have settled on a strategy that maximizes their utility given

the strategies of the rest of the population. Each collective in Table C.2 reflects the strategy

of its members through its expected utility.

C.4 Inconsistency in Average Expected Utility

An interesting discovery in this simulation is that the candidate with the highest average

expected utility is not always the candidate with the highest vote count, even though each

individual is voting according to her highest expected utility. Figure C.2 illustrates the range

of start weights that results in inconsistent results. The y axis shows the start weights for

Center and Right. Left was always 0.05. In the legend, U is the highest expected utility

and O is the highest vote count. The x axis indicates the number of runs (5 total) of the

simulation using the same input parameters. In the graph in fig. C.2, the middle, light

colored, start weights always resulted in inconsistent behavior, while the top and bottom,

darker colored, weights were accurately predicted. Interestingly, the most inconsistent results

occur when the weight ratio is Right = Left + Center.

This result may be related to the price of anarchy. Mathematically, the price of anarchy

is the ratio of the social optimum to the Nash equilibrium solution. If each individual votes

according to their highest expected utility given the situation, then the results shown in
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Figure C.2: Comparison of highest expected utility and vote count. The light gray bars
indicate runs for which the option with the highest average expected utility was different
than the vote outcome.

Table C.1 are the social choice of a Nash equilibrium solution. The open question in this

case is what defines the social optimum and is it relevant in this situation? This dissertation

demonstrates the risks in assuming a social optimum by way of average expected utility. My

approach takes on a middle ground between social optimum and selfishness that may result

in new implications for comparing selfish and altruistic behavior. I defer further discussion

of this topic to future investigation.

While the average expected utilities over P incorrectly predicts the outcome, the aver-

age expected utility of each collective’s preferred candidate results in collective beliefs that

accurately reflect the outcome of the election (Right is highest and Right wins), shown in

table C.3. In the context of the price of anarchy, this may be due to the fact that the

collectives are a representation of the selfish goals of each individual, albeit possibly shared

by a community.

Left .0313*.32+.0001*5.38 = 0.011
Center .3601*4.13+.1091*4.17 = 1.94
Right .2901*4.51+.2093*4.51 = 2.25

Table C.3: The average collective belief correctly reflects the outcome of an election if each
individual votes according to their highest expected utility.
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Appendix C. An Election Polling Simulation

C.5 Predicting Voter Behavior

The rank order of the individuals that switch votes is a useful predictor of voter behavior.

In the run described, 180 individuals switched votes during the simulation because their

candidate with the highest expected utility changed. All of the individuals that switched

moved from the collective represented by the rank order LCR, to the collective represented by

the rank order CLR. The fact that all individuals who switched were from the same collective

is evidence that the collective choice function is a better predictor of voting behavior than

the single consensus social choice function. This social choice function does not distinguish

these potential “vote switchers” from the rest of the population. As we might expect, the

individuals that switched collectives and votes had expected utilities that indicated that

they were nearly indifferent to their first and second preferred options. As in a real election,

“swing votes” prove to be particularly important. The election simulation demonstrates how

my approach allows the competition between opposing collectives to emerge, resulting in a

more predictable situation than the single consensus social choice function allows.
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