
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2011

Parallel network protocol stacks using replication
Charles Donour Sizemore

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Sizemore, Charles Donour. "Parallel network protocol stacks using replication." (2011). https://digitalrepository.unm.edu/cs_etds/
15

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/15?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/15?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




Parallel Network Protocol Stacks Using
Replication

by

Charles Donour Sizemore

B.S., Mathematics, University of Chicago, 2003

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 13, 2011



c©2011, Charles Donour Sizemore

iii



Dedication

To those always looking to go a little faster

iv



Delayed Acknowledgments

Only years of collaboration make this work possible. Although one name has to go at
the top, this dissertation would not be complete without acknowledging a host of charac-
ters.

First and foremost, I thank my dissertation committee: Prof. Patrick Bridges, Prof.
Dorian Arnold, Prof. Jed Crandall, and Prof. Nasir Ghani. Their guidance and feedback,
throughout the process, has been essential. When I go off the deep end, they reel me back.

Thanks go to the entire Scalable Systems Lab at the University of New Mexico. It is no
stretch to call them my second committee. Thank you Barney Maccabe, Patrick Widener,
Wenbin Zhu, Eric Nelson, James Horey, Edgar Leon, Manju Venkata, Kurt Ferreira, Philip
Soltero, Taylor Groves, Zheng Cui, Ricardo Villalon, and Scott Levy.

I thank Intel and Sun Microsystems for their support: financial, professional, and per-
sonal. The Solaris Networking team at Sun, now Oracle, has been extremely supportive
of the work and of my career in general. Thank you Nicolas Droux, Markus Flierl, Sunay
Tripathi, Greg Lavender and Eric Cheng.

Finally, I thank my family for their unending love and support. Although we are spread
around the world, we are connected by our crazy ideas. Thanks Mom, Dad, Meg, and
Owen.

v



Parallel Network Protocol Stacks Using
Replication

by

Charles Donour Sizemore

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 13, 2011



Parallel Network Protocol Stacks Using
Replication

by

Charles Donour Sizemore

B.S., Mathematics, University of Chicago, 2003

Ph.D., Computer Science, University of New Mexico, 2011

Abstract

Computing applications demand good performance from networking systems. This

includes high-bandwidth communication using protocols with sophisticated features such

as ordering, reliability, and congestion control. Much of this protocol processing occurs

in software, both on desktop systems and servers. Multi-processing is a requirement on

today’s computer architectures because their design does not allow for increased processor

frequencies. At the same time, network bandwidths continue to increase. In order to meet

application demand for throughput, protocol processing must be parallel to leverage the

full capabilities of multi-processor or multi-core systems. Existing parallelization strate-

gies have performance difficulties that limit their scalability and their application to single,

high-speed data streams.

This dissertation introduces a new approach to parallelizing network protocol process-

ing without the need for locks or for global state. Rather than maintain global states,

each processor maintains its own copy of protocol state. Therefore, updates are local and

vii



don’t require fine-grained locks or explicit synchronization. State management work is

replicated, but logically independent work is parallelized. Along with the approach, this

dissertation describes Dominoes, a new framework for implementing replicated processing

systems. Dominoes organizes the state information into Domains and the communication

into Channels. These two abstractions provide a powerful, but flexible model for testing

the replication approach.

This dissertation uses Dominoes to build a replicated network protocol system. The

performance of common protocols, such as TCP/IP, is increased by multiprocessing single

connections. On commodity hardware, throughput increases between 15-300% depending

on the type of communication. Most gains are possible when communicating with un-

modified peer implementations, such as Linux. In addition to quantitative results, protocol

behavior is studied as it relates to the replication approach.

viii



Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Network Protocol Processing . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Multicore Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Moore’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Contribution of This Dissertation . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 11

2.1 Network Protocol Designs . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



Contents

2.1.1 OSI Stack Models . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Network Stack Implementations . . . . . . . . . . . . . . . . . . 13

2.1.3 Protocol Performance . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Protocol Offloading . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Protocol Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Other Replication Systems . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Replication in Operating Systems . . . . . . . . . . . . . . . . . 20

2.3.2 Replication in Distributed Systems . . . . . . . . . . . . . . . . . 21

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Replication Approach 23

3.1 Approach Strategy and Benefits . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Parallelizable vs. Sequential Work . . . . . . . . . . . . . . . . . 26

3.1.3 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Specialized Primaries . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.5 Consistency Management . . . . . . . . . . . . . . . . . . . . . 30

3.2 Dominoes Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Lock-Free Request Queue . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



Contents

3.2.4 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.5 Timer Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.6 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Dominoes Network Stack Implementation 44

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Scout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Network Routers . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Support Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Embedding Scout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Parallelizable Work Assignment . . . . . . . . . . . . . . . . . . . . . . 56

4.5 External Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Userspace Test Rigging . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Performance 62

5.1 Testing Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



Contents

5.2 Synthetic Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Request Processing Throughput . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Single Producer, Multiple Consumer . . . . . . . . . . . . . . . . 68

5.3.2 Multiple Producer, Multiple Consumer . . . . . . . . . . . . . . 69

5.4 IP Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Inline Data Processing . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.4 Specialized Primaries . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Analysis 80

6.1 Dominoes Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.2 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.3 Dynamic Configuration . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Stateless Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Stateful Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 TCP Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.2 TCP Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



Contents

6.3.3 Checksums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.4 RX/TX with Different Replicas . . . . . . . . . . . . . . . . . . 89

7 Conclusions 91

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Dominoes Improvements . . . . . . . . . . . . . . . . . . . . . . 92

7.2.2 Kernel Implementation . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.3 Selective Acknowledgements . . . . . . . . . . . . . . . . . . . 94

7.2.4 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 96

xiii



List of Figures

1.1 Historical Data of CPU and Network Speeds . . . . . . . . . . . . . . . 6

1.2 Replication Dividing a Stream Into Three Parts for Processing . . . . . . 8

2.1 Jacobsen’s “Standard Model” for Networking from BSD4.2 Implemen-

tation (figure taken from talk) . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Replication Approach to Work Distribution . . . . . . . . . . . . . . . . 25

3.2 Scheduler-generated Inconsistency; replica 2 could end up processing an

acknowledgement for a packet that it does not know has been sent. . . . 32

3.3 Example of Dominoes Architecture with Four CPUs . . . . . . . . . . . 34

3.4 Source Code for Dequeuing from a Replicated Ring Buffer . . . . . . . 35

4.1 Scout Router Graph of IP protocols with UDP/IP Path in Bold . . . . . . 47

4.2 Example Scout Path with a Common Protocol Stack . . . . . . . . . . . 48

4.3 Scout Path Similar to Figure 4.2, with Channels and Multiple Domains . 53

4.4 Dominoes Semaphore Wait Implementation . . . . . . . . . . . . . . . 55

xiv



List of Figures

4.5 The Ordering Manager controls access to a shared ringbuffer with a sen-

tinel array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Dominoes Test Program Architecture . . . . . . . . . . . . . . . . . . . 60

5.1 Simulation of Request Processing with Different Methods of Consistency

Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Simulation of Request Processing with Different Methods of Consistency

Management (continued) . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Dominoes Channel Single Producer Throughput Performance . . . . . . 69

5.4 UDP Throughput on Eight Processor Server . . . . . . . . . . . . . . . 72

5.5 TCP Receive Throughput with Varying MTU . . . . . . . . . . . . . . . 73

5.6 Scalability of Replication vs. Lock-based Linux . . . . . . . . . . . . . 75

5.7 TCP Send Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 TCP Receive Throughput, Performing 256-bit AES Decryption . . . . . 77

5.9 TCP Receive Throughput with Dedicated Payload Thread . . . . . . . . 78

6.1 Load Fluctuation of TCP Receiver with Five Processing Domains . . . . 83

6.2 TCP Receive Throughput on Intel Xeon E5410 . . . . . . . . . . . . . . 88

6.3 TCP Receive Performance with Software Checksumming for Shared-

cache Intel and Individual-cache AMD . . . . . . . . . . . . . . . . . . 89

6.4 Trace of Simple TCP Connection with Only One Side Sending Data,

Every Packet Contains Acknowledgment . . . . . . . . . . . . . . . . . 90

xv



List of Tables

2.1 OSI 7 Layer Protocol Model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 DoD 4 Layer Protocol Model . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 x86 Test Hardware Configuration . . . . . . . . . . . . . . . . . . . . . 63

5.2 Throughput for Multi-Producer Channels . . . . . . . . . . . . . . . . . 70

xvi



Chapter 1

Introduction

Networking is one of the most important services that any computing system provides.

Consumers now have access to streaming media on televisions, desktops, laptops, mobile

devices, and in their vehicles. Cloud storage systems allow users to retrieve data from

any Internet-connected device. Enterprise systems have large databases that often need to

be transferred for backup or to handle shifting workloads. All of these applications must

move data quickly.

Recent hardware developments require parallelized software to achieve good network-

ing performance. Good performance is crucial to enable current and future generations of

applications, as well as to reduce the costs associated with deploying these applications.

Fortunately, networking hardware performance continues to increase with Moore’s Law.

However, it is a major challenge to provide networking software that can keep pace with

hardware capabilities. Without the software support, application performance stagnates.

This dissertation presents a replication approach for parallelizing network protocols.

My thesis is that parallelizing the network protocol stack using replication increases through-

put on fast links and on multi-core systems. Replication allows for the full use of compu-

tational resources to achieve high throughput, even with single network connections. To

1



Chapter 1. Introduction

demonstrate the thesis, this work describes Dominoes, a replication-based framework for

operating system services. Dominoes allows the user to build traditional system services

with a novel, lock-free queuing system and explicit consistency management. Dominoes is

used to implement high-speed network protocol processing. This illustrates the strengths

and weaknesses of the replication approach as well advancing the state-of-the-art of net-

working.

1.1 Applications

There are many computing applications which demand high-performance networking, yet

are not able to fully exploit the hardware resources available. The applications vary in

that they span the breadth of computational domains, from consumer electronics to su-

percomputing. A common theme for these applications is that they require maximum

performance from the available hardware. This will continue as hardware gets faster. In

almost all cases, this requires significant computational capacity.

On example application is Network Attached Storage (NAS). NAS devices have begun

to displace local disks for storing large files. Sometimes these devices are accessed directly

from network clients. More often, they are accessed through file servers which provide

security, reliability, encryption, etc. Each of these features introduce heavy computational

demands on the network data stream. Like conversing through a translator, this processing

must keep up with the network or the applications will spend most of their time waiting.

Complicated data descriptions necessitate high-speed processing. On enterprise sys-

tems, large data warehouse applications such as Netezza, LexisNexis, and Greenplum

require high bandwidth, reliable network connections to synchronize and replicate their

backends. The storage systems are often specialized, but the communication system is

much the same as a local area network (LAN) environment. The systems use common

2



Chapter 1. Introduction

protocols like TCP/IP to ensure that the backend data arrives reliably and in order. On

high-performance computing (HPC) systems, systems like ADIOS [45] provide mecha-

nisms for users to attach programmatic functions to I/O operations. This can be used to

transform the data, perform diagnostics, or increase/decrease level of detail.

Perhaps the most compelling case for the increasing computational demand on net-

works is Quality of Service (QoS) processing. This includes bandwidth throttling, deep

packet inspection, network observability, and traffic monitoring. Such systems require

complex processing on very high bandwidth network links. Combining this with encryp-

tion or data compression results in a high per-packet processing cost. The performance of

these applications is critical to providing a user experience that is either useful or enjoy-

able.

1.2 Network Protocol Processing

Network protocols are the standardized rules for exchanging data (messages) between

computing systems. Protocols provide the features needed for distinct systems to com-

municate effectively. This may include addressing, routing, security, etc. A variety of

protocols exist because applications have varying requirements. A file server may require

that data arrive in strict ordering while a video game server may prioritize low latency.

Applications such as Skype [4], may require that all data is encrypted in order to protect

the privacy of its users. Without the protocol there is no method for marshalling the data

to transmit and decoding it when it arrives.

Network protocol processing is an important but often overlooked component of digital

communications. Many times, it is a computationally expensive component of a given

system. Application developers often consider it to be part of the networking infrastructure

while network designers consider it part of the application. Living in the operating system,

3



Chapter 1. Introduction

it sits somewhere in between. Consequently, a great deal of the processing occurs in

software.

Protocols can be divided into two broad categories: stateless and stateful. These cat-

egories have far reaching consequences for processing and performance. Both types are

abundant on local networks, on the Internet, and in research environments.

Stateless protocol traffic usually has no dependence between packets. This allows

multiple packets to be processed independently without coordination between processors.

These are often characterized as connection-less. Such data streams may contain messages

from multiple senders or for multiple recipients. Like a mailbox, the contents of connec-

tionless transmissions may be from a variety of sources. These messages are frequently

referred to as datagrams. Examples of stateless protocols include the User Datagram Pro-

tocol (UDP), Internet Control Message Protocol (ICMP), and the Hypertext Transfer Pro-

tocol (HTTP).

Stateful protocols, in contrast, contain session information that is updated when data

is sent or received, the network conditions change, or the application intervenes. These

are often referred to as connection-oriented protocols because the session refers to a con-

nection between multiple, distinct parties. An everyday example of a connection is a

telephone call. When two parties are connected over a telephone, only those two parties

participate. The connection is a powerful concept for efficient delivery or reliable and or-

dered data. However, the state introduces significant complexity – especially in regards to

parallel processing.

4



Chapter 1. Introduction

1.3 Multicore Implications

1.3.1 Moore's Law

Like the majority of the microelectronics industry, processor (CPU) performance has long

been propelled by Moore’s Law. For several decades, the growth in transistor counts trans-

lated to increasingly complex features, increased caches sizes, and above all, increased

clock rates. This allowed host processors to perform network protocol processing rang-

ing from cryptography to forward error correction to sophisticated acknowledgement and

window processing at network line-rate speeds.

This trend, unfortunately, has ended. Recent CPU designs from Intel, AMD, IBM,

and Sun, for example, have essentially the same clock speed and hardware architectures

as previous generations but place more cores on each die. Ethernet and Infiniband NICs,

however, continue to increase in speed, with 10 Gigabit NICs now common and 40 Gigabit

NICs (e.g., 4x QDR Infiniband) being deployed. Similarly, future processor roadmaps call

for more and more specialized but not faster cores, while network architects are already

planning for and designing 100 Gigabit Ethernet NICs.

Figure 1.1 presents the per-core clock-rates and theoretical throughputs of PC CPUs

and network interface cards (NICs). It illustrates the tremendous growth of both CPU

performance and networking throughput from the early development of the transistor up

to modern day. It is particularly striking to observe the clock-rate elbow that occurs circa

2006. The per-core performance shows very little gain, but the addition of cores guarantees

a steady increase in aggregate chip performance. Likewise, the networking performance

growth continues and is expected to continue into the foreseeable future.

Furthermore, Figure 1.1 presents a stark picture for software designers. It makes clear

the ever widening gap between network capacity and processor core speed. Applications

that are limited to a single core will not obtain meaningful speedups on future CPUs archi-

5



Chapter 1. Introduction

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1970  1975  1980  1985  1990  1995  2000  2005  2010  2015

F
re

q
u

e
n

c
y
 (

H
z
)

T
h

ro
u

g
h

p
u

t 
(b

p
s
)

Year

CPU Clockrate
CPU Clockrate*Core Product

Network Adapter Speed

Figure 1.1: Historical Data of CPU and Network Speeds

tectures. Instead, they must utilize the full chip capacity, in aggregate, to process massive

data streams that such systems are capable of delivering. That requires a solution that is

not just concurrent, but scalable.

1.3.2 Parallelization

Applications need strong scaling, where a fixed workload is executed more quickly with

increased core counts [16]. Multiple cores must closely coordinate activities and multi-

core system designs which rely on only intermittent synchronization will bottleneck on

inter-core synchronization. As a consequence, the resulting system performance can be

disappointing. Some work proposes a distributed systems-oriented approach, where data

structures are replicated or segregated between processors [5, 13]. These designs use a

multiple-instruction/multiple-data (MIMD) parallel execution model, and generally focus

6



Chapter 1. Introduction

on services for which coarse-grained synchronization is sufficient. Because of this, such

systems generally provide only weak scaling, where more cores can be used to handle a

larger workload (e.g., more TCP/IP connections) but cannot make an existing workload

(e.g., a single TCP/IP connection) run faster.

Stateful protocols naturally have inter-packet dependencies. In the most simple form,

a connection consists of initialization, data transmission, and termination. The ordering of

those events is important and they cannot overlap. Any system that attempts to process the

connection in parallel must keep track of the connection state and ensure that its operations

are valid and consistent. Complex features increase these dependencies. For example,

reliable data delivery requires senders to retransmit data if any is lost. In turn, this requires

keeping track of what has been received because the state changes with time. This makes

it difficult to parallelize the execution of such protocols.

Concurrently processing multiple packets that update the same state leads to contention

on that state. In order to avoid corruption, synchronization is needed. The most common

synchronization mechanism for shared data structures is the lock. Mutual exclusion lock

(mutexes), reader-writer locks, and the like are used in virtually every network proto-

col system that supports multiprocessing. They have been very successful in handling

unconnected network traffic as well as supporting many simultaneous connections. How-

ever performance for single connections has been a great challenge. Single connection

performance is vital because so many applications depend on the features that connection-

oriented protocols provide. As described in Chapter 2, this problem has been studied for

many years, but no solution has been developed. Like the classical memory wall problem,

this is a case of keeping the processor, indeed the entire system, fed with data.

7



Chapter 1. Introduction

1.4 Replication

This dissertation proposes a replication-based approach to multi-core network protocol

stack design and implementation. In this approach, connection and protocol state is repli-

cated across multiple cores, avoiding unnecessary locking, caching, and scheduling costs.

Replication provides an alternative to the lock-based mechanisms that limit the perfor-

mance of many system services, including networking. In this case, replication refers

to both data replication (state) and computational replication (request processing). The

replication approach allows for lock-free access to system resources and to the associated

control state. It also eliminates the caching issues associated with shared state.

Figure 1.2: Replication Dividing a Stream Into Three Parts for Processing

Rather than have a single copy of network connection state, the replication approach

creates many copies, one for each processor. The processors then process every incoming

and outgoing network request. This allows them to keep their states up-to-date. However,

there is an important distinction. Networking packets do not require full processing to

update the state. For most protocols, only the header needs to be used. The rest of the

processing, such as data delivery, does not have globally visible effects. Furthermore,

analysis has shown that for many protocols, header processing is a small percentage of the

overall computational load.

Replication systems are considerably more complex than single threaded (or single

8



Chapter 1. Introduction

processor) alternatives. Replicated states require careful management in order to ensure

that the separate copies remain consistent. Replication introduces new challenges such as

efficient and scalable data delivery, load balancing, reordering, and consistency manage-

ment.

To study and address these problems, this dissertation describes Dominoes, a frame-

work for constructing replicated system services. Dominoes provides the infrastructure to

study and solve many of these consistency problems. Network protocols are particularly

well suited to these issues because network are inherently unreliable. Consequently the

protocols must be robust and capable of recovering from errant behavior.

1.5 Contribution of This Dissertation

The contributions described in this dissertation are:

• A replication-based parallelization approach that improves the performance of net-

work protocol processing, even for single connections;

• A new framework for building scalable operating system services, Dominoes, that

provides a high-performance, replicated queue and the necessary infrastructure for

implementing replicated request processing

• A replicated network protocol stack, using Dominoes and the Scout research oper-

ating system:

* The behavior of the system, including consistency, is presented and analyzed.

* The performance and bottlenecks of the system are analyzed.

• An analysis of network protocols features based on their applicability to the replica-

tion approach.

9



Chapter 1. Introduction

1.6 Dissertation Outline

The remaining chapters of the dissertation are organized as follows. Chapter 2 discusses

related work. This includes network protocol processing in general, network performance,

other replication systems, and distributed systems. Chapter 3 introduces the replication

approach to parallel protocol processing, discusses the advantages, possible speedup, and

challenges. This chapter also introduces Dominoes, a framework for implementing the

approach. Chapter 4 describes a network implementation using the Dominoes architecture

as well as describing the construction of a replicated network protocol stack built with

the Scout research operating system. Chapter 5 gives a detailed analysis of performance.

Chapter 6 analyzes the limitations and drawbacks of the system as well as protocol features

that proved difficult to adapt. Chapter 7 concludes this document and discusses future

work.

10



Chapter 2

Related Work

This chapter discusses previous work on network protocol processing, replication systems,

and distributed systems in general. Section 2.1 describes earlier work on network protocols

and their performance. Section 2.2 surveys existing network parallelization techniques.

Section 2.3 discusses previous use of replication in computing systems. Lastly, section 2.4

summarizes how these approaches have addressed the problems from Chapter 1 and how

they compare to the approach discussed in this dissertation.

2.1 Network Protocol Designs

2.1.1 OSI Stack Models

Protocol processing involves a large range of operations, including data integrity checks,

re-ordering, routing, and flow control. At the lowest level, the networking wire, data

is almost always organized into fixed size parcels: packets. The protocols above give

the data the appearance of a stream or connection. The commonly accepted model for

protocol design is given by the International Organization for Standardization (ISO) in the

11



Chapter 2. Related Work

Open Systems Interconnection (OSI) model. The OSI model breaks down protocols into 7

categories, depending on their function. Table 2.1.1 enumerates the each layer and briefly

describes the function of that layer.

Data Unit Layer Function
Host Layers Data 7. Application Network process to applica-

tion
6. Presentation Data representation, encryp-

tion and decryption, convert
machine dependent data to
machine independent data

5. Session Inter-host communication
Segments 4. Transport End-to-end connections and

reliability, flow control
Media Layers Packet 3. Network Path determination and logi-

cal addressing
Frame 2. Data Link Physical addressing
Bit 1. Physical Media, signal and binary

transmission

Table 2.1: OSI 7 Layer Protocol Model

The 7 layer model has largely been displaced by a simpler, 4 layer model (Table 2.1.1);

an example of which is the Transmission Control Protocol (TCP) / Internet Protocol (IP)

suite. This simpler model better encapsulates the needs of most networked applications

and was championed by the the researchers who developed the Internet protocols.

Layer Function Example Proto-
col

Application Application-specific functions SMTP, HTTP
Transport Application rendezvous, flow control, reliability TCP
Network Addressing, routing IP
Network Access physical addressing and transmission Ethernet

Table 2.2: DoD 4 Layer Protocol Model

12



Chapter 2. Related Work

2.1.2 Network Stack Implementations

The advent of the local area network (LAN) brought an explosion of communication re-

search, including protocol design and performance analysis. The introduction of Ethernet

in the late 1970s brought high-speed communication capabilities to low-cost minicom-

puters. Accordingly, sophisticated network protocols started in software with mainstream

systems such as Unix [70].

AT&T released Unix SystemV R3 in 1983 with support for STREAMS [66, 69].

STREAMS introduced a modular approach to I/O systems and popularized the concept

of a processing “stack” where several functions were linked together and executed as a

sequence. In later versions of SystemV, STREAMS was used to implement complex pro-

tocols such as the Internet suite. Berkeley Software Distribution (BSD) 4.2 version of Unix

was also released in 1983. It included the first modern incarnation of the Internet proto-

cols as well as the Berkeley Sockets interface, which became the standard user interface

for network communication [72].

Jacobson [41] cites BSD4.2 with introducing the standard model of network processing

as shown in Figure 2.1. This model was used by most early network implementations and

is still followed by mainstream networking systems such as Linux. Data arrives from the

network in packets and is transferred to kernel buffers in interrupt context or by direct

memory access (DMA). These buffers are processed then converted to task level buffers

where they are marshalled into byte streams. The operation happens in reverse went data

is transmitted to the network.

About ten years later, the x-kernel [36, 37] aimed at creating an operating system

around network protocol processing. From the beginning, communication primitives were

available such as protocols, sessions, and messages. The x-kernel was created

as a vehicle to explore how protocol features can be separated and composed. Processing

occurred on a per-message basis, rather than per protocol. Messages passed through the

13



Chapter 2. Related Work

ISR SoftInt Socket read()

packet skb byte stream

Interrupt level Task level

System Application

Figure 2.1: Jacobsen’s “Standard Model” for Networking from BSD4.2 Implementation
(figure taken from talk)

protocol layers using the standard stack operations push and pop.

The Scout operating system used parts of the x-kernel’s networking infrastructure to

build a system that was scalable and provided predictable networking performance, even

under load [55, 57]. Scout organized all communications around the concept of a path.

Paths contained both the protocol-specific data necessary to process network requests as

well as scheduling primitives. This created a single target for resource management and

explicitly identified the control path and data path for network connections. It also avoided

situations where scheduling policy might interfere with I/O, such as at the user-kernel

boundary or between tasks. Building on the x-kernel, Scout provided a comprehensive set

of network protocol implementations, including the Internet protocols.

Scout’s performance predictability and single processor implementation make it ideal

for testing replication-based scalability. Chapter 4 describes how Scout is used to test the

behavior of replication on network protocol processing.

2.1.3 Protocol Performance

The performance of the network protocol stack has long been a concern for operating sys-

tem developers and application programmers. While there are vast number of application

14



Chapter 2. Related Work

specific, custom protocols, a few are general purpose and have received intense study.

Chief among these are the suite of Internet protocols, UDP/IP and TCP/IP [60, 63, 64].

The popularity of the Internet has driven a tremendous amount of research on TCP, which

is complex. This includes sophisticated congestion control [39, 15, 40, 48, 67], flow con-

trol and acknowledgements [49], and performance characterization [47, 20, 30].

Other work has focused on the memory requirements for high-performance network

protocol processing. The Berkeley Sockets interface incurs expensive copies and work

was done to bypass it [19]. The FBufs project reduces memory bandwidth requirements

by remapping pages [24].

Due to the tremendous growth in per-core, or per-thread, performance, computational

capacity has kept pace with increasing network speed. This has allowed for increased

workloads by either distributing across processors in the stateless model or increasing the

number of connections in the stateful model. As discussed in Chapter 1 network protocol

implementations must be parallel in order to get the best performance on current and pro-

jected multicore architectures. Researchers have tried a variety of approaches to increase

throughput and decrease latency. These include software parallelization and specialized

networking hardware. The success of both have been limited.

Recent work on scaling TCP/IP network stacks has focused primarily on scaling the

number of connections or flows that can be supported rather than on the data rate of in-

dividual connections. Corey, for example, uses a private TCP network stack on each

core [5, 13, 14], and RouteBricks segregates each IP flow to its own core [23]. These

approaches allow systems to scale to handle a large number of connections or flows, but

limit the data rate achievable on each flow to well below the throughput of modern network

cards.

In some cases, the computational load of the protocol stack is greatly increased by

Quality of Service (QoS) processing or packet filtering [54]. Operations such as decryption

15



Chapter 2. Related Work

or string matching greatly increase the per-byte costs of data delivery. This processing is

often performed as early as possible (e.g., in the kernel) to avoid memory copies for data

that is ultimately discarded.

2.1.4 Protocol Of�oading

Another proposed solution for increasing protocol processing speed is to offload the work

to dedicated hardware. The most common among these are the commercial TCP Offload

Engines [74, 26]. These devices combine a high-speed network device with an application-

specific integrated circuit (ASIC). The ASIC performs computationally expensive protocol

operations in hardware at high speed. The ASIC capacity is matched to the link speed in

order to achieve maximum line rate transmissions with minimal additional memory and

power requirements. Similar to a dedicated graphics processing unit (GPU), offloading

NICs relieve the computational burden from the CPUs.

A major obstacle for offloading engines in consumer hardware has been the cost.

Offloading NICs are roughy 10x more expensive than comparable “dumb” NICs. Un-

like GPUs, which have a clear and apparent affect on the user experience, the network

improvements have traditionally been marginal for consumer devices and certainly not

enough to justify the cost. Consequently, offload NICs are not able to take advantage

of the same economies of scale as GPUs are deployed less frequently in datacenters and

high-performance computing environments. More importantly, there are major limitations

to the offloading features that render them undesirable in these situations.

Because offloading NICs completely bypass the operating system network protocol

stack, they are less flexible than software solutions. They do not support complex firewall

rules, QoS filtering, and the traffic inspection features on which network servers have come

to rely. They do not support link aggregation features, such as 802.11ak. The hardware is

dedicated to a single protocol, usually TCP/IP, which limits their use in applications that

16



Chapter 2. Related Work

require custom networking features. Unless there is a substantial decrease in costs, these

devices are unlikely to see widespread adoption.

Some high-performance network fabrics also fall into this category [12, 17, 61]. Rather

than advertising themselves as offloading engines, they include complex protocol features

in the fabric itself. Infiniband [3] includes reliability in two of the four basic transfer

modes. In fact, the reliable-connected mode is the most commonly used and most opti-

mized in many vendors NIC firmwares. The end-to-end addressing, routing, reliability,

and ordering of Infiniband usually obviate the need for common layer 3 and 4 protocols

such as TCP/IP. The biggest tradeoffs are expensive networking hardware, non-standard

user APIs, and the need to re-encode traffic to and from other layer 2 networks. This

impedes such fabric from use in long-haul networks or for last-mile connectivity. More

generally, work has indicated that cost of providing features at a low level is higher the

value of implementing them in hardware [71].

A simpler strategy is used by some high-performance NICs. Instead of offloading the

full protocol, they perform data segmentation in hardware [31]. Often termed TCP Large

Segment Offload (LSO), the operating system generates large read and write requests (up

to 64 KB) and provides a template for the packet headers. The hardware then splits the data

into packet-sized segments and appends an appropriate header. Protocol processing still

happens in software, but is significantly reduced because there are more bytes of payload

per packet.

2.2 Protocol Parallelization

Very early in the development of network protocol stacks, work tried to improve perfor-

mance by introducing parallelization. The difficulties were identified as early as 1989 [33].

Stateless protocols naturally have no inter-packet dependencies and it has been straightfor-

17



Chapter 2. Related Work

ward to adapt them to parallel execution. The same has not been true for stateful protocols,

however. Several studies were conducted on the parallelized performance of UDP/IP and

TCP/IP.

Bjorkman [11] shows that locking is a significant cost of parallel protocol processing.

Stateless protocols, such as UDP/IP have low locking costs and scaled well and were

mostly unaffected by these costs. On the other hand, stateful protocols such as TCP/IP

incurred significant penalties because of lock contention. The cause of these delays was

the complex connection state.

In 1994, Nahum, Yates, Kurose, and Towsley studied TCP and UDP performance on

the x-kernel [58]. While much slower, their Silicon Graphics server looked much like

today’s multi-core architecture. It had eight cores, a shared memory bus, and roughly the

same ratio of network bandwidth to CPU cycles. For UDP, scaling was essentially lin-

ear and they achieved 1.8x speedup when doubling the number of CPUs. For TCP, they

showed that packet-level parallelism offered no performance benefit because the locking

costs are prohibitive. Send side TCP speedup was modest 2x at four CPUs and did not

increase at larger scales. The receive side attained no speedup. On the other hand, good

performance was attained for connection-level parallelism with TCP. With multiple con-

nections, a speedup of 1.8x was again attained when doubling the number of CPUs.

Willmann, Rixner, and Cox completed a similar study in 2006, this time with FreeBSD

and faster hardware [81]. They were able to find modest speedup at four CPUs, but the

locking and scheduling costs were still prohibitive in the case of packet-level parallelism

with TCP. Multiple connections were required to approach the maximum link speed.

Another project, Ensemble TCP, studied the performance benefits of caching and shar-

ing state between TCP connections [27]. By using historical data, the protocol imple-

mentation was able to make better congestion control choices and increase network link

utilization. Repeated network access were accelerated by up to 28% and access times

18



Chapter 2. Related Work

were, in some cases, reduced by 75%. Unfortunately the scalability implications were

limited. The tests involved short-lived connections with relatively expensive set-up and

tear-down costs. Large, high bandwidth network transfers tend to enter a steady state and

do not benefit from the Ensemble TCP approach.

Rather than speed up a single network connection, many mainstream operating sys-

tem implementations have focused instead on optimizing their protocol stack for a large

number of simultaneous connections. Linux and Solaris [75, 82] have well-studied im-

plementations and considerable effort went into ensuring high-performance for many con-

nections. This has been important for certain applications, such as web servers, which

have relatively short-lived connections and needed to support tens of thousands of con-

current clients. However, the limit of per-connection speed to a single CPU throughput is

particularly apparent in the architecture of chip multi-threaded (CMT) SPARC servers.

Applications such as GridFTP [2] increased throughput over TCP by opening multiple,

simultaneous connections. Each connection was then processed independently by separate

processors. Data was split before being sent to the network protocol stack. The data is

then reassembled on the receiving end by GridFTP. The resulting transfers are close to the

sum of the speed of each individual connection. This technique also has the advantage

of allowing transfers across multiple network or multiple links, similar to multi-homing

or Ethernet link aggregation [38]. In some cases this approach worked well, but it had

significant limitations.

Multiplexing a single network flow over multiple connections undermines the conges-

tion control mechanisms that were developed to provide fair access to network resources.

Routing and switching systems rely on these mechanisms to enforce network traffic poli-

cies and to avoid starvation [29, 44, 28]. More generally, this approach is not applicable

to all conditions. Using multiple connections shifts the reordering and reliability burdens

to the application, out of the network protocol stack. As a result, the application needs

to maintain state for these functions and the locking, caching, and scheduling issues from

19



Chapter 2. Related Work

parallel protocol processing return. Moreover, this solution is not scalable. Without coor-

dination, multiple TCP connections will compete which each other for network resources.

Again, coordination will lead to high locking, caching, and scheduling costs.

The BitTorrent protocol [21] provides increased throughput of a single data stream

by communicating with multiple peers at once. If a single peer is made to appear as a

group, then it can use multiple connections to transfer data and then do the reassembly at

the client. This leads to the same limitations as GridFTP. Furthermore, this breaks exist-

ing network resource allocation systems [65]. Multiple connections allow BitTorrent to

consume a greater share of network bandwidth than application using a single connection.

The results of this large body of work indicate that another approach is needed to suc-

cessfully parallelize stateful protocols such as TCP. As described in Chapter 3, replication

eliminates the locking costs that prohibit scalability while allowing high throughput on

single connections.

2.3 Other Replication Systems

2.3.1 Replication in Operating Systems

This dissertation is not the first use of a replication approach in operating systems. It is

similar to the fault tolerance mechanisms used in group RPC system [34, 35, 18]. However

those systems do not use this approach to increase throughput. Replication has been used

in the Hurricane and K42 operating systems to reducing locking and caching cost of shared

data. This technique has allowed key OS objects to be visible across systems with many

processors.

In developing the Hurricane OS, Unrau, Krieger, Gamsa, and Stumm used replication

to alleviate much of the locking cost on a large SMP system [77]. Hurricane arranged ker-

20



Chapter 2. Related Work

nel data structures using hierarchical clustering. Data that was read often was replicated

across different clusters and data that was written often was shared. The shared data could

migrate to a different cluster in order to exploit performance benefits from non-uniform

memory architectures (NUMA). The hierarchical structure was used to efficiently propa-

gate changes to replicated data.

Replication allowed Hurricane to bound lock contention and increase total lock band-

width but it did incur additional checks in the case where a lock or data structure was not

on the local cluster. In this case lock acquisition required fetching data from a remote

cluster, an RPC operation [43, 42].

Work at IBM and the University of Toronto took replication further with clustered

objects throughput the operating system [32, 22]. These clustered objects allowed data

to be replicated and partitioned for quicker memory access on NUMA machines. The

objects communicated through the Protected Procedure Call mechanism which concisely

encapsulated the required locking semantics. The work showed that the clustered objects

reduced lock contention which in turn greatly reduced the locking overhead. Pagefault

and stat() operations were shown to scale well on eight or sixteen-way SMP machines

with nearly flat service times in multiple tests.

2.3.2 Replication in Distributed Systems

The problems associated with shared state or copies of shared state have along been of in-

terest to distributed system research. Distributed OSes, distributed filesystems, databases,

and batch scheduling systems have encountered similar issues with locking performance

and consistency management. Work such as Ramen [68] advocates using a distributed

resource management strategy to achieve high throughput. In this work, a classified ad-

vertisements mechanism is designed to take advantage of weak consistency requirements.

Baumann [6] argued that modern architectures look much like a distributed system

21



Chapter 2. Related Work

and should be treated as such. Their project, Barrelfish, advocated the use a multi-kernel

design, in which multiple copies of the operating system executed, each on a single proces-

sor. These copies then coordinated using an asynchronous messaging system. Replication

consistency issues were resolved with single-phase commits over the lightweight URPC

protocol. The authors readily admitted that this was an extreme approach and intended to

raise questions about heterogeneous architectures. Barrelfish performance was ultimately

limited because it did not leverage sharing in architectures that are fundamentally still

shared multi-processors.

Distributed systems such as ISIS [8, 9] use replication to provide fault tolerance. Some

components of the system are replicated and failover gracefully. This allows for a more

robust system that can withstand both software and hardware failure while still exploiting

parallelism. Ensemble [10] provides a set of communication tools to build distributed

applications using these techniques.

2.4 Summary

Exploiting the full capabilities of future high-speed NICs on commodity multi-core pro-

cessors requires an approach to network protocol stack design that avoids the locking

and caching costs that limit current systems. Such an architecture must support both a

large number of connections and individual connections with bandwidth and protocol pro-

cessing requirements beyond what can be handled by a single commodity processor core.

Without this support, applications that demand extremely high bandwidths will not be able

to fully utilize emerging network interfaces. Replication provides a viable alternative to

exists parallelization techniques, but has not yet been explored as strategy for processing

network protocols.

22



Chapter 3

Replication Approach

To address the scalability of network protocol stacks on multi-core systems, this disserta-

tion introduces a replication-based approach to multi-core network protocol stack design.

This approach uses replication to avoid the synchronization, scheduling, and caching costs

that have limited scaling in network stack parallelization, as described in Chapter 2. Repli-

cation allows for an entirely new method of network protocol parallelization by making

all common operations lock-free.

This chapter is divided into two parts. The first section describes the approach, ben-

efits, and possible drawbacks. An analysis of possible speedup is included. The second

section describes Dominoes, a framework for implementing replicated request processing.

Dominoes is a generic replication system and is independent of networking in general. In

subsequent chapters, it is used to construct a replicated network protocol implementation.

23



Chapter 3. Replication Approach

3.1 Approach Strategy and Bene�ts

3.1.1 Overview

The goal of the replication approach is to increase performance by parallelizing a given

computation that requires accessing and updating state. This approach gives every pro-

cessing thread its own copy of the state which can be updated without locks. For this to

operate properly, every replica (i.e., thread) must process every update. In the networking

context, this requires processing every packet. The cost of this stream of updates is de-

creased because the global effects, such as data copying, are split between replicas. The

total cost of the computation increases because many redundant updates are performed,

but the per-replica cost decreases.

Given a stateful connection and a set of processors, every incoming packet is sent to

every processor. Each processor maintains a local, exclusive copy of the state. For each

packet, some processor is marked the primary. The primary processor is tasked with fully

processing the packet and delivering the data to the application. Other processors only

partially process the packet and update their connection state. Speedup is attained by

reducing the cost of most of the incoming data stream. Notice that replication refers to

both the state itself and to the operations on the state.

For every outgoing packet, a primary processor is designated. This processor is tasked

with delivering data to the network. Other processors update their state and set local time-

outs, if necessary. When acknowledgements are received, the incoming packet mechanism

ensures that each processor resets these timers correctly or generates additional network-

ing traffic as needed.

Because each processor accesses only its local state, no locking or synchronization is

needed on a per-packet basis. For each incoming message, the processor has complete

information without communicating with the other replicas. This eliminates many of the

24



Chapter 3. Replication Approach

parallelization costs that hindered earlier work. The state replicas have the added effect

of improving cache performance because there is no write contention for shared memory.

If desired, each replica can be on its own cache line. Processors do not write to state

information on the other, external replicas. The notion of global vs. local updates provides

a powerful model for describing the replicated processing system.

Figure 3.1 illustrates how this approach might distribute a load of four packets across

four processors. One packet gets marked for full processing by each processor, marked in

red. The other packets, marked in blue, are used to update state, then discarded. In the case

where state updates are free, speedup is 4x. In the case of more typical network processing,

state updates comprise approximately 10% of the work. Accordingly, the speedup would

be 3.08x, as discussed in section 3.1.3.

Packet 1

Packet 2
Packet 3
Packet 4

Processor
1

Packet 1

Packet 2

Packet 3
Packet 4

Processor
2

Packet 1
Packet 2

Packet 3

Packet 4

Processor
3

Packet 1
Packet 2
Packet 3

Packet 4

Processor
4

Figure 3.1: Replication Approach to Work Distribution

As an example, consider the reception of four packets by a replicated TCP stack. Each

TCP replica would process every request to update its sliding window and other acknowl-

edgement state. However, each replica would copy only the data for its primary requests

into the application’s receive buffer, and only half of the replicas would enqueue acknowl-

edgements to be sent by the network device using the standard TCP delayed acknowl-

edgement protocol. One replica may also have to start a delayed acknowledgement timer,

but that timer can be local to the replica as its firing does not result in a change in con-

nection state; other timers that do impact connection state such as retransmission timers,

however, would have to be handled by every replica. Note that this example assumes that

25



Chapter 3. Replication Approach

the NIC can offload packet data checksumming, a common feature on all modern NICs,

as otherwise this expensive processing might have to be replicated.

The primary goal of the replication approach is to increase the throughput of a stream

of CPU-bound requests. There are other metrics possible for network performance such

as latency or per-byte computation costs. For some applications, those are the character-

istic measurements. However, this work focuses on high throughput and the associated

computational difficulties.

3.1.2 Parallelizable vs. Sequential Work

The central concept of replicated processing is that there are two types of operations: se-

quential and parallelizable. Sequential work updates the replicated state and this approach

allows it to be processed concurrently on all processors. Parallelizable work is any opera-

tion that has side effects, such as delivering memory buffers to the application or expiring

timers. For network protocol processing, parallelizable operations tend to be more expen-

sive than sequential ones. Therefore, they are only performed on the primary processor.

For network protocol processing, the following operations are parallelizable:

• Reading/writing data from the application; for most systems this is encapsulated in

the Sockets programming interface [72].

• Sending/receiving data from the network interface; examples include dequeueing

incoming packets and generating acknowledgements.

• Handling catastrophic events that result in connection failure; examples include

reset-generating data and networking link failure.

• Synchronizing replicas

• Timer expiration

26



Chapter 3. Replication Approach

These are the principal parallelizable operations that every non-trivial network proto-

col implementation must perform. Transferring data between both the application and the

network is possible using novel queuing techniques that are discussed later. This includes

assigning the primaries, which can be done independently, therefore concurrently. Specific

protocols may include features that have global effects not in this list, but most fall into

one of these categories. For example, a TCP implementation may require that acknowl-

edgements be coalesced before transmitting them to the network. This can be performed

after queuing functions, thus concurrently or out-of-band with protocol processing.

A few of these operations are both global in effect and inherently serial. Connection

setup and teardown as well as connection failure require state creation and destruction.

This requires writing to demultiplexing tables as well as general system configuration

access which in turn leads to contention on shared resources. Fortunately, these operations

have fixed costs and lie outside the bounds of normal processing. While connection setup

costs are expensive, they happen only once and for a high-bandwidth connection they

incur a very small fraction of the total computational costs. In this work, parallelization

techniques are a performance optimization and the setup/teardown costs are not significant.

In fact, the costs are so small that no attempt is made to parallelize them, although many

production systems focus on reducing such costs.

3.1.3 Speedup

The replication approach requires every incoming request (i.e packet) be processed by

every replica. Speedup is attained by reducing the cost of a portion of these requests –

preferably the majority. Partially processing requests is less expensive than fully process-

ing them because the system does just enough work to update state. The minimum cost is

attained when full processing is split most evenly between processors. This results in the

least amount of parallelizable work for a given processor.

27



Chapter 3. Replication Approach

For a given stream of N packets and number of processors P , the fraction of pack-

ets marked primary for each processor is N
P

. Without loss of generality, assume the full

processing cost of a packet is one (1). The remaining NP−N
P

packets are partially pro-

cessed. This partial processing is some fraction of the full processing cost. Representing

the sequential cost as a fraction of the parallelizable cost, L, the cost of processing the data

stream is given by the expression:

N

P
+ L

(
NP −N

P

)
=
N + LNP + LN

P

From this expression we can calculate the speed with P processors:

speedup =
N(

N+LNP+LN
P

)

and the maximum theoretical speedup:

speedupmax = lim
P→∞

N
N+LNP+LN

P

=
N

0 + LN + 0
=

N

LN
=

1

L

Therefore the speedup will be dictated by the ratio of parallelizable to sequential work.

For typical network protocol processing, sequential costs are near 10%. This gives a value

of L = 0.1 and a theoretical speedup of 10x. This analysis shows an important trend.

Increasingly complex features that do not require additional state updates provide an ex-

cellent opportunity for parallelization. Demanding tasks such as encryption can be paral-

lelized effectively. Indeed, any feature that requires more parallelizable work than sequen-

tial presents additional possibility for speedup. This result is equivalent with Amdahl’s

Law where the parallel portion of the program is 9
10

of the total.

One crucial assumption is implicit in this analysis: that all packets have equal process-

ing costs. This is certainly not true in practice as packets can arrive in various sizes and

28



Chapter 3. Replication Approach

from various sources. Packets that arrive in bundles tend to be more efficient than ones

that arrive separately because of architecture issues such as interrupt coalescing.

3.1.4 Specialized Primaries

The core idea of the replication approach is that the primary replica performs all operations

that are globally visible. This centralizes all side-effects and operations that might have to

wait, such as delivering data to a busy network device. Conceptually, this is the simplest

way of assigning work to the replicas, but more advanced techniques are possible.

Speedup is attained by parallelizing the sequential portion of processing. However,

some of the parallelizable operations may be processed concurrently as well. Further per-

formance improvements may be possible by selecting individual operations and assigning

them to different primaries. This depends heavily on the specific protocol and types of

operations available.

Two common operations are data copying and acknowledgement generation. In-kernel

protocol implementations must perform at least one copy because data is processed in ker-

nel memory but is accessed by the application in user memory. Acknowledgements are

required for reliable data delivery and use by common protocols such as TCP. These two

operations can be performed concurrently. Using the simplest method of work assignment,

both of these operations are performed serially on the same replica. Alternatively, the sys-

tem could assign these operations to different replicas. This allows for parallel processing

of different packets and of single packets.

29



Chapter 3. Replication Approach

3.1.5 Consistency Management

Connection State Consistency

The replication approach introduces new challenges to network protocol implementation.

Because there are many copies of the connection state, concurrency issues can cause these

states to diverge. This divergence cannot be allowed to cause erroneous protocol behav-

ior, so it must be managed. If the same operation is performed multiple times but with

inconsistent state, the system performance may degrade or worse the connection may fail

altogether.

Network protocol designs can be resilient to inconsistency. Networks are inherently

unreliable. Data gets lost, routes change, and packets can arrive out of order. Such behav-

ior is not just recoverable, but common [7]. Protocols like TCP are designed to behave

well in bad conditions. This allows for a relaxed consistency model, something not typi-

cally seen in traditional replication work. It is important to identify what consistency must

be maintained before studying how such a relaxed model affects the protocol behavior.

Anomalous inconsistency can come from two sources: ordering and timing effects.

Ordering

The order of the requests into the protocol processing system affects how the state changes

over time. When first considered, packet ordering seems irrelevant to consistency man-

agement. Reliable protocols have mechanisms for reordering data after it arrives at the

destination. They must be able to cope with reordering performed by the networking fab-

ric. Some work [27] targets exactly such behavior in the context of multi-path routing.

However, interaction with other protocol features causes problems.

Taking TCP as an example, packet ordering affects the flow control and congestion

control mechanisms. Consider an implementation with two state replicas that process

30



Chapter 3. Replication Approach

incoming packets (segments in TCP parlance). If one replica processes segments out of

order then it will generate duplicate acknowledgements. The sender interprets this as

network congestion and reduces its window size in half [64]. On the sending side, replicas

responsible for sending different packets and acknowledgements can enqueue packets to

the device out of order. Receiving packets or acknowledgements out of order unnecessarily

can have significant impact on protocol performance.

If separate queues are used for incoming and outgoing requests, processing requests

in different orders can result in catastrophic protocol failure. Figure 3.2 shows a case

where processing separate queues in different orders can cause inconsistency, in this case

one replica processing an acknowledgement for an outgoing packet that it has not yet pro-

cessed. Three packets are queued for transmission and two replicas are available to service

them. Replica 2 is marked primary for Packet 1 and Replica 1 is primary for

Packet 2 and Packet 3. Packet 2 and Packet 3 are processed normally, but

Replica 2 stalls and does not run for a few milliseconds. Meanwhile, Packet 2 and

Packet 3 arrive at their destination and an acknowledgement for them arrives from the

network. This acknowledgement is delivered to both replicas. Replica 1 processes the

acknowledgement normally. When Replica 2 is rescheduled, it must process Packet

1 first. If it processes the incoming data in a timely fashion, then it will register an ac-

knowledgement for data that has not been marked as sent. Standard behavior in such a

case is to send a reset and close the connection.

Timing Effects

Figure 3.2 raises another issue of consistency, timing. The ordering dilemma is magnified

because one processor (or thread) stalls and is de-scheduled. This can also delay the

expiration of timers or the servicing of packets before timers expire. Expiring a timer

in one replica without expiring it in another may result in unnecessary retransmissions,

spurious duplicate acknowledgements, or connection failure.

31



Chapter 3. Replication Approach

Replica
1

Replica
2

network

Packet1

Packet3

Packet2

Replica
1

Replica
2

network

Packet2

Packet3

Replica
1

Replica
2

network

Ack2

stalled

Packet1

Packet3

Packet2

Packet1

Packet3

Packet2 Packet3

Packet2

Figure 3.2: Scheduler-generated Inconsistency; replica 2 could end up processing an ac-
knowledgement for a packet that it does not know has been sent.

3.2 Dominoes Framework

3.2.1 Overview

This section describes the architecture of Dominoes, a software framework for building

replicated system services. In the simplest terms, it is a high-performance request pro-

cessing system. Included are the philosophy behind the design, the several parts of the

system, and how these parts interact. It frees the programmer from the details of lock-free

queuing/dequeuing as well as the threading and scheduling intricacies to support them.

The design is intended to allow the construction of virtually any system service, not just

the networking examples given in this dissertation. Many traditionally tedious features are

already built so that the user may quickly get to the task of defining how replication will

function for a given service and proceed to implement it.

Dominoes consists of three key mechanisms :

1. A high-performance, multi-producer, multi-consumer, lock-free queue,

32



Chapter 3. Replication Approach

2. channels, which abstract queues and control access, and

3. domains, which abstract threads and process channels.

Domains encapsulate both concepts of replication: the thread which performs repli-

cated work and state that is replicated across processors. Channels provide the mecha-

nisms for feeding data in and out of domains quickly and in a lock-free manner. Domains

process channel data through a subscription mechanism. The combination of channels

and domains provides flexibility in the framework. Because domains are very general pro-

cessing primitives, they can be adapted easily. Likewise, channels allow domains to be

connected in various ways to provide not only high throughput, but processing control and

synchronization.

Figure 3.3 demonstrates how these components can be used to build a hypothetical

processing system. In this example there are four domains, each mapped to one of the

available four processors. Two channels are created, one for incoming requests and one

for outgoing messages. Each domain subscribes to the incoming channel and can publish

data to the outgoing channel. The domain takes care of processing requests and performing

sequential and parallelizable operations. The channels ensure that the correct data is de-

livered to the replicas and maintains reference counts on the data. When the data becomes

unused, the channel frees it.

A third channel is presented in Figure 3.3 to manage consistency between the replicas

(e.g., domains). The Consistency Manager controls the interface to the channels as well

as resolving inconsistency, when it occurs. These operations happen out-of-band with

normal request processing and the computational overhead is low. This component is

the most specialized because it depends entirely on the behavior of the specific protocol

implemented.

The following sections discuss how each part of Dominoes is constructed and how they

can be used together to build a replication system.

33



Chapter 3. Replication Approach

CPU 1

Domain
1

Subsc
1

CPU 4

Domain
4

Subsc
4

Incoming
Channel

Outgoing
Channel

Incoming
Requests

Outgoing
Messages

Consistency
Manager

CPU 2

Domain
2

Subsc
2

CPU 3

Domain 
3

Subsc
3

Figure 3.3: Example of Dominoes Architecture with Four CPUs

3.2.2 Lock-Free Request Queue

At the heart of any request processing system is a robust, high-performance queue. Domi-

noes requires that these queues support multiple producers and multiple consumers. In

addition, the queues must be lock-free [51] to provide good performance with replication.

The default Dominoes queue is a fixed size FIFO, implemented as a ringbuffer. The

ringbuffer is split into cells corresponding to the size of the requests that will pass through.

In turn each cell contains a reference count to indicate when it becomes active and the

34



Chapter 3. Replication Approach

int RingbufferRemove(ringbuffer_t ∗rb, void ∗∗item)
{

ringbuffer_cell_t ∗∗thr_head, ∗curr ;

thr_head = pthread_getspecific ( rb−>key);

if ((∗ thr_head) == rb−>tail) return −1;

/∗ Dequeue the nesxt item we want and advance the per−thread head. ∗/
∗item = (∗thr_head)−>value;
curr = ∗thr_head;
∗thr_head = ∗thr_head + 1;
if (∗thr_head >= rb−>end) ∗thr_head = rb−>buf;

/∗ Update the cell refcount and maybe global head ∗/
if ( atomic_dec_atomic((atomic_t ∗)(&curr−>refc)) == 0)

rb−>head = ∗thr_head;

return 0;
}

Figure 3.4: Source Code for Dequeuing from a Replicated Ring Buffer

remaining number of consumers that need to process it. The queue heads and tail are

indicated as pointers to cells in the ringbuffer. A single tail is used for insertion, but there

is a distinct head for each consumer. Consequently, the number of consumers must remain

fixed after the ringbuffer is created. Figure 3.4 illustrates the behavior of the dequeue

operation.

Concurrent access to the head and tail pointers is implemented using the compare-

and-swap operation (CAS), which is guaranteed to be atomic by the hardware. The CAS

operation updates memory locations by taking a crucial third argument, the old value. The

update is completed only if the current value matches the old value. This obviates the

need for costly software locks. Failure of this operation results in neither a corrupt queue

35



Chapter 3. Replication Approach

state nor context switch. Aggressively retrying1 failed CASs results in high throughput

with zero chance of queue corruption. Channel throughput performance is presented in

Chapter 5.

The novelty of this lock-free queue is the key component to enabling the replication ap-

proach because it allows for simultaneous, high-speed access to the incoming data stream.

Traditional synchronization primitives, such as mutexes and semaphores, would severely

limit the queue throughput. Such an approach would effectively move the locking bottle-

neck from the connection state, as seen in earlier work, to the queue interface. This system

is able to do away with locks altogether.

3.2.3 Channels

To separate the logistics of controlling request streams from the queuing implementation, a

further abstraction is introduced, the channel. Dominoes channels allow the user to create

and manipulate streams of requests without needing to know the details of the underly-

ing queuing mechanism. Depending on the how they are constructed, a channel can be

ordered, unordered, FIFO, LIFO, or a user-defined stream type.

Most importantly, channels control who can publish (enqueue) or subscribe (dequeue)

from a given queue. This allows concurrency without having to manually control the

number of heads for a multi-consumer queue or manage reference counts. Each channel

has a Publish() function to add new requests to the queue. Removing these requests is

handled through Subscriptions, which are described in section 3.2.4.

The channel data-structure is abstract and must be subclassed to be used. Combined

with the lock-free queue, a RingChannel object is provided as a ready-made channel.

RingChannels are the fundamental data structure of the Dominoes framework and are

controlled by an API of six principal functions.

1In this case the application only waits a few processor cycles.

36



Chapter 3. Replication Approach

• int RingChannelInit()

• int RingChannelDestroy()

• int RingChannelEnqueue()

• int RingChannelDequeue()

Functions to insert/remove items from Channels. RingChannel queue elements are

are a generic Request type.

• int ChannelSubscriptionActivate()

Enable a single path of delivery for a channel.

• int ChannelSubscsriptionDeactivate()

Disable a single path of delivery for a channel.

The data in channels is carried by a special Dominoes Request type. In addition to a

payload pointer, reference count, and deallocator, each request designates one domain as a

primary. The primary domain for a request is tasked with completing parallelizable work

in addition to sequential work. It must fully process the request as described in Chapter 3.

3.2.4 Domains

To process channels, scheduling and context information is collected into domains. Do-

mains also contain local state, which is replicated in each instance. Thus domains are

the primary tool for implementing replicated services. Users can specify what data is lo-

cal, how it gets updated, and how the processing is scheduled. In other words, request

processing occurs in domains. Everything else exists to feed data in/out.

37



Chapter 3. Replication Approach

Typically, a domain is analogous to a thread and is mapped one-to-one with system

threads. This makes the domain implementation somewhat uninteresting because thread-

ing models are well developed and understood [59, 1, 36]. However performance require-

ments often lead to several domains within a single OS thread. Consider a Dominoes

implementation of the select() system call which searches through a list of Subscrip-

tions for one with live data. A context switch for each domains is expensive, but with them

all in a single thread the cost is simply a function call.

Domains consist of the following fields and methods:

• Thread context

The thread context allows the domain to interact with the system scheduler. For a

kernel space service, this will correspond to a kernel thread context. In the case

of a user space service, a wrapper is provided for the common Pthreads library.

Contexts are sometimes shared between domains. The context object must provide

a scheduling routine when multiple domains share the context. Context sharing is

appropriate for low priority domains or a set of domains that are mutually exclusive,

such as threads competing for access to a hardware device.

• Replicated state

The state object is a generic pointer to a protocol (or implementation) specific ob-

ject that will be replicated across all domains. For common network protocols, as

TCP, this is the connection state. Practical coding necessity makes the domain the

simplest and fastest location for storing this information because it allows domains

to access their state quickly, without list manipulation or hash table lookups.

• Subscription list

A list of active subscriptions is needed to process incoming requests.

• Domain ID

38



Chapter 3. Replication Approach

The domain Identifier is a user provided field. It is not used within Dominoes itself,

however request processing code may use it to identify which domain(s) is running.

This can be used to implement domain specific state updates or special consistency

management policies.

• Scheduler callback

The scheduler callback is a user supplied function that determines how active sub-

scriptions are serviced. A simple scheduler may only call subscription->next

to implement round-robin access to the subscribed channels. More complicated po-

lices are possible such as a priority scheduling.

This callback does not affect scheduling of the thread contexts, nor does it affect how

domains are scheduled within a single context. Thread context scheduling depends

heavily on the service type and implementation. For this reason system scheduling

is isolated in the context object and does not interact directly with domains.

• Subscribe/Unsubscribe callbacks

Special callbacks are provided to add and remove items from the subscription list.

• Run callback

The Run() function is called whenever the domain’s context is scheduled. It pro-

cesses a single request and returns. Servicing all the requests on a channel, or ser-

vicing multiple channels, requires multiple calls to Run(). The pseudocode in

Algorithm 1 describes the behavior.

An important distinction of the Run() implementation is that it greedily assigns a

primary if one is not already set before the request is processed. The first domain to

attempt processing will automatically become the primary. This behavior is easily

overridden by manually specifying the primary before publishing the request to the

channel.

39



Chapter 3. Replication Approach

Algorithm 1 Behavior of domain Run()

subscription← Scheduler()

request← subscription.Dequeue()

if request 6= ∅ then

CAS(req.primary, ∅, domain)

subscription.Callback(request)

end if

ReleaseReference(request)

Subscriptions

A system built with Dominoes will often have many domains and many channels simul-

taneously. The mapping of which domains read from which channels requires careful

management to ensure that replicas all receive the same stream of data. This many-to-

many mapping is managed by a Subscription structure. Subscriptions provide a simple

way of querying which channels a domain is watching as well as which domains consume

a given channel’s data.

Subscription and un-subscription is synchronous. No data is delivered while updates

occur. This is one of very few system-wide, serial operations. It guarantees that sequences

of subscribe→ publish→ unsubscribe operations occur in the desired order. For network

protocol processing, it turns out that the serial processing penalty of this operation is neg-

ligible. The subscribe/unsubscribe cost is subsumed into the connection setup/teardown

operations, which are already serial. Once a connection has commenced processing, Sub-

scriptions do not need to be altered. The costs for other types of services, which may

require this, are not studied here.

40



Chapter 3. Replication Approach

3.2.5 Timer Channels

Network timeouts are beyond the scope of normal data-driven events. While it is not

always necessary for timeouts to preempt an ongoing process, they should be handled

out of band with regular traffic. Certainly, a long series of send requests should not be

completed if the first send times out.

Timer management is abstracted by a TimerChannel. TimerChannels use timer wheels

[78] to provide timer start and cancel inO(1) time. TimerChannels allow timers to be used

in one of two modes: each domain can have its own channel to which it subscribes and

services timeouts. Otherwise a third party can subscribe to the TimerChannel and publish

timeout requests to the domain’s main channel when they occur. Instead of the timeouts

being processed as normal requests with the push/pop interface, the request handler calls a

special timeout handler that operates similarly to the signal handler of a traditional timeout.

3.2.6 Dif�culties

The combination of channels and domains provides flexibility in the framework. Domains

can be chained together with channels as the glue and complex interactions can be cap-

tured. This complexity can quickly become a determent if it is not carefully managed.

Choosing when to use channels and when to delivery data directly has important perfor-

mance implications. The publish/subscribe model includes an implicit handoff of memory

buffers. Research on STREAMS has shown these handoffs to be expensive if done often

or needlessly.

Because channels are built with finite hardware limitations, they are bounded in length.

When they provide data for domains, it introduces an explicit load balancing problem. In

the case where there are many domains processing a network stream, all requests processed

by the most advanced domain, but not by the trailing domain, must be buffered. Therefore

41



Chapter 3. Replication Approach

the memory requirements are directly proportional to this progressing gap. For a real

implementation there must be both bounds for the gap and a way to enforce it. In other

words, the implementation must ensure that one replica does not get “too far behind”. If

one replica falls behind then it cannot process its share of the requests in a timely manner.

This requires either extra work to help the lagging replica catch up or the other replicas

must wait. Either way, careful planning is required to ensure that the replication approach

actually increases throughput.

3.3 Summary

This chapter introduced the replication approach to parallel network protocol processing.

The approach allows for concurrent processing of stateful protocols by replicating the state

across many processors. Thorough study of the literature has revealed no work on applying

such an approach to networking or to high-throughput system services in general, beyond

that described in Chapter 2.3.

The replicas allow for local access to state information without expensive synchroniza-

tion mechanisms such as locks or transactional updates on a per-packet basis. Speedup is

attained by distributing the parallelizable work between processors and reducing the per

processor cost for the data stream. This introduces more work by processing the same

stream many times, but accelerates throughput because each replica executes more quickly.

The maximum theoretical speedup is given by the ratio of parallelizable to sequential work.

For example, a ratio of 10:1 can expect a speedup of 10x under the best circumstances.

Consistency management is a significant challenge in adapting this approach because

of the difficulties in maintaining a globally consistent model of time and providing rea-

sonable ordering semantics for data delivery. A key insight is that networking protocols

are naturally tolerant of unreliable systems. This is advantageous when implementing the

42



Chapter 3. Replication Approach

approach. Chapter 4 describes the architecture and implementation that was developed to

explore these problems and possible solutions.

This chapter also describes Dominoes. Dominoes provides a framework for imple-

menting replicated request processing. It focuses primarily on system services, but the

framework is general enough to allow for many types of systems. It significantly re-

duces the cost of adapting network protocols to the replication approach by centralizing

the queue management and scheduling routines. The channel and domain abstractions are

lock-free and provide intuitive interfaces for building replication systems.

43



Chapter 4

Dominoes Network Stack

Implementation

The approach described in Chapter 3 has never been addressed by any existing network

protocol implementations. Former parallel protocol stacks have locks as a core tenet and

synchronization primitives permeate their design. Additionally, general-purpose replica-

tion systems are not available for building operating system services, such as networking.

In order to test this approach, a new architecture must be developed.

This chapter discusses adapting the Scout networking system to the Dominoes frame-

work. The combination of these parts provides a comprehensive system for testing the

replication approach and for evaluating the suitability of various networking features to

the approach. As much as possible, an effort is made to separate the replication mecha-

nisms from the protocol details. Some concessions are necessary and are described when

they appear.

44



Chapter 4. Dominoes Network Stack Implementation

4.1 Overview

The Dominoes framework does not contain any network specific functionality. This sec-

tion focuses on using Dominoes to construct a replicated network protocol processing

system. Rather than reinvent the wheel, this work takes existing protocol implementations

and adapts them to Dominoes.

Choosing the protocols to implement is straightforward. The Internet protocol suite (IP,

TCP, UDP) is well established as the de facto standard for providing addressing, routing,

reliability, and ordering on high-speed networks. IP runs on virtually every type of device

and every type of network: wide area or local, wired or wireless, terrestrial or satellite.

Chapter 2 illustrates the massive amount of previous work in understanding the behavior

of IP as well as the performance limitations. Thirdly, widespread deployment of IP means

that performance improvements will have the greatest possible impact on real applications.

At the end of the day, application performance is driving this work.

There are many IP implementations extant and choosing one is difficult. Performance

is critical, so the work must start with an implementation that already provides good single

core performance. Because Dominoes is a lock-free system, any locking primitives need to

be removed. Many IP implementations, such as Linux [80], Solaris [50], and BSD, have

complex synchronization mechanisms because they are built to run many simultaneous

connections and on multiprocessors. This is compounded by the fact that such systems

support a wide variety of hardware and have complex interfaces to their device drivers.

This work uses the Scout [55] networking system to perform protocol processing. The

Scout networking stack provides a number of advantages for this purpose, including:

• A simple, modular, open-source design and implementation that eases integration

with Dominoes

• A focus on uniprocessors, eschewing the complicated locking mechanisms of high-

45



Chapter 4. Dominoes Network Stack Implementation

performance network stacks

• Performance tuning and optimizations not available in other simple open-source

stacks such as lwIP [25]

• Early demultiplexing, allowing Dominoes to easily determine the set of replicas to

which each packet should be assigned

Rather than implement the replicated networking system as a stand-alone operating

system, Scout is adapted to run as a library. This allows for easy testing by linking with

userspace applications. It also leverages existing OSes, such as Linux, for scheduling, I/O,

and device drivers. For performance reasons, it is sometimes desirable to have protocol

processing occur inside the kernel in order to avoid a needless data copy. This is also

possible because Scout can run as separate system, independent of third-party libraries.

This flexibility allows the system to be run in a variety of environments. An example

testing environment is described in Chapter 5.

4.2 Scout

4.2.1 Overview

The principal abstractions in Scout are routers, stages, and paths. Routers are protocol

classes that are arranged in a graph, with edges between routers indicating connections be-

tween protocols. Stages are instances of routers generally associated with a single network

connection, while paths are sequences of stages along with queues containing requests to

be processed by those stages. Paths constitute the primary entity for scheduling and state

encapsulation, as processing of a request along a path is essentially atomic - the Scout

scheduler removes a request for one path queue, runs that request to completion through

the path, and then chooses a new path to schedule.

46



Chapter 4. Dominoes Network Stack Implementation

Each protocol, such as Ethernet, IP, or ARP, is implemented as a router with a standard

interface. Scout draws much of its protocol code from the x-kernel and data is transferred

between these routers by stack-like push() and pop() functions. To add a new proto-

col, a programmer simply builds a new router and attaches it to some point in the router

graph. Figure 4.1 shows the router graph for a simple suite of protocols, including IP. An

application that wants to use UDP/IP creates a path (shown in bold) which traverses the

graph. Each node in the path then gets a specific instance for that application – a stage.

Hardware 
Driver

Ethernet

IP

UDP TCP

ARP

Figure 4.1: Scout Router Graph of IP protocols with UDP/IP Path in Bold

When the application sends and receives data on this path, it goes only through those

stages. The path itself is better illustrated with Figure 4.2. Once the path is created, it

behaves very much like a queue. Data is enqueued, processing happens internally, then

data arrives at the end to be dequeued. Some protocols are bi-directional, which requires

paths have two entry and two exit points, one at either end. When paths are created, they

require a participant list to know what kind of stages to create. Items in the participant list

47



Chapter 4. Dominoes Network Stack Implementation

include IP addresses, UDP ports, etc. The participant helps determine if data is appropriate

for a given channel or whether is should be discarded (i.e., dropped).

Ethernet 
Stage

IP
 Stage

UDP 
Stage

Driver 
Stage

Scout Path

push() pop()

Figure 4.2: Example Scout Path with a Common Protocol Stack

4.2.2 Network Routers

Scout provides routers for a variety of common network protocol such as the Address

Resolution Protocol (ARP), Ethernet, Internet Protocol (IP), etc. This work chooses a

subset of these to implement with Dominoes. Implementing the entire set of routers would

be both time consuming and wasteful because not all the services would benefit from

replication. The following protocols are supported in the Dominoes implementation.

• Device driver, Ethernet, IP, ARP, UDP, and TCP

The device driver router is needed to communicate with the network. Without the abil-

ity to send and receive traffic, the protocol system has no data to process. Scout supports

a limited range of networking hardware, dating from its origins in the mid 1990s. None of

these include modern, high-speed NICs. The driver router has been replaced by a generic

system that can hook into the native operating system’s I/O infrastructure. In userspace, it

supports standard APIs such as libpcap [46] or Infiniband Verbs. Inside the kernel, it can

be attached to a native device driver. The driver router operates independently of any on-

the-wire data format. A separate router is provided to parse and generate Ethernet headers.

The Ethernet router carries over from Scout, unmodified.

48



Chapter 4. Dominoes Network Stack Implementation

The IP router is far more complicated than the previous two. IP provides addressing,

routing, and fragmentation. The replicated version of IP requires several major changes

from the original scout code, as described in the next section. Only IP version 4 is ported

over. The IPv6 Scout functionality is unsupported. Because the IP implementation will be

carried over Ethernet, the ARP [62] protocol is also required.

ARP translates IP addresses, which are global, to Ethernet MAC addresses, which are

only routed to the local network. Internally, ARP consists of a hash table that maps IP

address to Ethernet addresses. Implementing ARP in Dominoes is more complicated than

Ethernet, because it is stateful, but still very simple because the ARP table is updated very

infrequently. By its nature, ARP is sensitive to latency, but not throughput. Replication is

not performed for ARP processing.

IP provides host-level addressing. To deliver data to application, two higher level

protocols are used: TCP and UDP. These protocols provide application-level (port) ad-

dressing. UDP is stateless protocol. It is a good study of maximum throughput for the

replication approach because the sequential work is nearly zero. As shown in Chapter 2,

UDP achieves good speedup with traditional packet-level parallelization techniques. To

be successful, replication will need to duplicate these results.

TCP provides much more sophisticated protocol features such as data ordering, relia-

bility, flow control, and congestion control. The TCP connection state provided the funda-

mental bottleneck for traditional lock-based parallelization methods. With the replication

approach, the TCP router is adapted to use a per-domain state rather than per-router one.

This state is stored in the domain’s user field. The TCP code is adapted to use replicated

processing by performing domain lookups rather than simple state access.

49



Chapter 4. Dominoes Network Stack Implementation

4.2.3 Support Libraries

To support the network routers, a large portion of the Scout infrastructure is required. Most

functions are available inside Scout as libraries. The significant libraries are:

• Type library

Scout contains a number of specialized types such as the AnyType object. Rather

than trying to duplicate these types using system libraries, the Scout type objects are

included.

• Attributes

Attributes are name/value pairs that communicate data, usually control data, along

a path. The name is an integer index and the value is an AnyType object. Attributes

are used during path creation and destruction.

• Heap

The heap library is Scout’s built-in dynamic memory allocator. The interface is pre-

served, but its implementation has been replaced with the system’s allocator. In this

case the underlying functions are replaced with Dominoes’ specific ContextMalloc()

and ContextFree().

• Checksum

Several checksumming routines are provide to perform the protocol specific check-

sum operations. This code is sufficiently generic to be used unmodified. It is thread

safe and recurrent.

• Msg / buffer

The Scout message library provides an efficient system for manipulating and de-

livering messages. Messages are constructed as a list of buffers that allows for

efficient fragmentation/reassembly and for quickly altering headers. Here, Scout

50



Chapter 4. Dominoes Network Stack Implementation

draws heavily from the x-kernel to provide a flexible message object. Similar

objects are used extensively for high-speed networking protocol implementations

such as Linux, Solaris, and BSD. The message library provides one crucial feature

that enables replication. Duplicate messages can be created through the use of a

msgInitWithMsg() function that creates another set of control structures, but

uses a shared buffer. This allows domains to quickly create a copy of the message

to process locally.

• Buffer, lifo

The message objects is augmented with a Dominoes-specific control field. This

allows the message to be embedded inside a Dominoes request. In turn, this

allows Scout code to access domain information such as the primary. Along with the

message object, there is a special buffer library that allows fast message allocation

from a pool of pre-constructed buffers. The buffer management code requires a lifo

queuing mechanism, which is also provided. The internal reference counting code

is not thread safe and has been reengineered to use CAS operations.

• Map

The map library is a highly-tuned hash table system. Maps are used for demulti-

plexing incoming packets, so they are performance critical. Analysis of the Scout

map performance and behavior is available [56]. The map code functions essentially

unchanged.

• Semaphore

The Scout semaphore object is needed for protocols that have to “wait”, such as

TCP. Scout semaphores operate slightly different than POSIX semaphores, but the

native Scout objects do not function without Scout scheduling. Internally Scout

semaphores are replaced with system native version, although the API remains in-

tact.

51



Chapter 4. Dominoes Network Stack Implementation

• Tracing, debugging, misc

A few other, small library functions are needed in order to use Scout router objects.

This includes the Scout network interface API, the option handling mechanism, and

the debugging macros. The tracing code is also provided because most of the Scout

code is already instrumented. A single trace source file gives access to a wealth of

data, easily.

All of these functions are collected together to form a library called scoutbase. The

scoutbase library encompasses a large range of functionality that is stand-alone and can

operate inside a Dominoes system with little or no modification. On its own, scoutbase

is a large framework, but the development effort was proportionally low because the code

had already been written and tested in Scout.

4.3 Embedding Scout

Building a replicated network stack with Scout is best described as embedding Dominoes

into a Scout path. Adapting Scout to use Dominoes is a significant engineering challenge,

requiring some major changes. Unmodified Scout paths contain protocol data as well

as the thread information needed to schedule the path. In this case, Dominoes can do

the scheduling itself. In Scout, the path is scheduled explicitly. Dominoes moves the

scheduling functionality to the domain. Dominoes channels replace the queues on both

ends of the path. Additionally, the pathCreate() function is modified to create Stage

objects for each domain.

Figure 4.3 shows the result of this embedding. Scout’s uniprocessor ringbuffer path

queues are replaced with Dominoes’ replicated channels and the sequence of stages asso-

ciated with Scout paths are replicated into multiple domains. This structuring preserves the

same protocol implementation API on Scout paths while supporting replication internally

52



Chapter 4. Dominoes Network Stack Implementation

through the use of Dominoes channels and domains.

Demux
Domain

Ethernet 
Stage

IP
 Stage

UDP 
Stage

Driver 
Stage

Dominoes Domain

Ethernet 
Stage

IP
 Stage

UDP 
Stage

Driver 
Stage

Dominoes Domain

Ethernet 
Stage

IP
 Stage

UDP 
Stage

Driver 
Stage

Dominoes Domain

Scout Path

Incoming
Channel

Outgoing
Channel

Figure 4.3: Scout Path Similar to Figure 4.2, with Channels and Multiple Domains

Each replica on a Scout path processes the same set of requests (from the shared chan-

nel) while preserving scheduling and state independence (within a Dominoes domain).

Demultiplexing, which in Scout is performed by the low-level device driver in interrupt

context, is done in a separate Dominoes domain that queues demultiplexed packets to the

appropriate path’s channel.

A single domain handles all incoming packets on a given interface. The performance is

sufficient because the domain only performs a demux operation, then publishes the packet.

For outgoing packets, two methods can be used. A second domain, mirroring the demux

domain, can be used to write data on the outgoing channel. If the data being sent is small,

such as acknowledgements, the path domains can deliver the data themselves via the driver

stage.

An additional channel is present, but not shown in Figure 4.3. The context Run()

function, which schedules domains, is supplied by the user and is configurable. Therefore,

external functions are not allowed to directly alter that scheduling queue. In order to add or

remove domains from a given context, a special control channel is provided. The contexts

53



Chapter 4. Dominoes Network Stack Implementation

periodically check this channel for changes to their scheduling policy. For example, at

startup an application can create a set of contexts to use for processing. When domains are

created they can automatically schedule themselves by publishing a request to the desired

context’s control channel.

4.3.1 Semaphores

Semaphores present an interesting problem for this architecture. The current Dominoes

implementation does not allow for pre-emption of threads. More importantly, the semaphore

objects are often local within a stage. When a given domain waits on a semaphore, the

same domain needs to process the request that wakes it up. However a sleeping thread

cannot process any requests. An example of this behavior occurs during the TCP three-

way handshake.

When a TCP server receives a connection request (SYN), it generates a response

(SYN+ACK), then waits for a response (ACK). While waiting for the response, it moni-

tors a semaphore, indicating the connection setup is complete, before it transitions to the

established state. In Scout, the incoming response generates an interrupt which will force

processing of the new data and wake up the sleeping thread. In the Dominoes implemen-

tation, the interrupt only publishes a request to the appropriate channel. The domain that

needs to process the packet is sleeping and the system has no way of pre-empting it.

Several possible solutions to this problem exist. Dominoes could explicitly pre-empt

the running domain with a request that it knows to be of higher priority, although this

requires that all requests be prioritized. Alternatively, domains could designate a peer

to process their requests while sleeping. This would require inter-domain state visibility.

Both solutions require storing the call stack while a request is in flight. A third solution is

used here.

A special semaphore wait function is provided for domains. This function trampolines

54



Chapter 4. Dominoes Network Stack Implementation

back into the domain scheduler to check if new packets or new channel management re-

quests have arrived. This function leverages the fact that the domain scheduler processes

a single request per call. It is vital to process requests only up to releasing the semaphore,

then let the call stack return to normal. The original scheduler may have work to do before

processing subsequent requests. If no requests are present in the wait function, it checks

the semaphore and loops. Figure 4.4 describes the behavior of semaphore waiting.

void semaphoreWait_dominoes(Semaphore s, context_t ∗c)
{

int rc = sem_trywait(&s−>sem);
while(rc != 0){

if ( c){
ContextRunCtrl(c);
ContextRunSingleDomain(c);

}
rc = sem_trywait(&s−>sem);

}
}

Figure 4.4: Dominoes Semaphore Wait Implementation

This code imitates the pre-emptive behavior of Scout, but requires no changes in Domi-

noes. The disadvantage of this approach is that resources must be released in the same

order that they are requested. There is no method to resume the original function, immedi-

ately, when the first semaphore is signaled. In the case where a sending domain must wait

for buffer data to be available, Dominoes provides the ability to temporarily deactivate

a Subscription. This allows the domain to process other requests, such as acknowledge-

ments, while waiting for the semaphore. The distinction is important. The semaphore

wait allows other contexts to be scheduled, not just domains. Thus different paths can be

executed on the same processor. For example, IP may have to wait while an ARP request

resolves.

55



Chapter 4. Dominoes Network Stack Implementation

4.3.2 Timers

Two modes are possible using Dominoes TimerChannels. Domains can have their own

TimerChannels, which they setup and handle as timeouts occur. Alternatively, a single

TimerChannel can be configured to publish timer expiration to specified channel. This al-

lows multiple domains to see the same order of events, such as send requests and timeouts.

Two of the protocols in Scout need timeouts to function properly, ARP and TCP.

The ARP protocol is not sensitive to a performance because the number of requests it

must service is very low. The typical TCP connection needs to make only a single ARP

lookup because the resulting mapping (IP address to Ethernet address) is valid for several

minutes. Either method of TimerChannel handling is sufficient for ARP, but this imple-

mentation restricts ARP to a single processing domain. Therefore the simplest solution is

to have that domain manage its own channel and handle the timeouts directly.

TCP is more complicated. The receive side is event driven and not dependent on

timeouts for flow control or to maintain consistency between replicas. However, the send

dynamics to handle lost data. A send timer indicates fires when an appropriate acknowl-

edgement has not arrived for sent data. This happens fairly infrequently on high throughput

connections because subsequent packets will trigger a duplicate acknowledgement which

also notifies the sender of lost data. A persist timer is set when a receiver advertises an

empty receive window. This avoids deadlock in the case that an updated, open receive

window notification is lost.

4.4 Parallelizable Work Assignment

Using the replication approach, only the primary replica executes parallelizable operations.

The system must differentiate between parallelizable and sequential operations, a distinc-

tion that does not exist in the original Scout implementation. This requires evaluation of

56



Chapter 4. Dominoes Network Stack Implementation

each protocol.

IP uses local state only when performing fragmentation/de-fragmentation. In Scout,

fragmentation is considered the slow path through IP. It occurs as a result of errant network

behavior such as failure to detect the path MTU. The Dominoes implementation does

not support replicated processing of fragmented IP packets. Without fragmentation, IP is

stateless. All work is parallelizable and can be executed concurrently. Likewise UDP is

stateless and has no sequential work.

TCP has two types of operations with global effects: delivering data to the applica-

tion and delivering data to the network. Delivery to the application requires marshalling

data from receive buffers and copying the data to application buffers. Delivery to net-

work includes sending data, re-sending data, and sending acknowledgements. Both types

of operations benefit from concurrent execution and are designated parallelizable. All

other operations (explicit state updates, timer expiration events, etc.) affect only the local

replica’s state.

4.5 External Interface

A replicated Scout path has two important routers that serve as end interfaces. An applica-

tion wrapper (Appwrap) router provides hooks for application to receive and transmits data

to the path. A driver router behaves like a generic network interface for communicating

with the network.

The Appwrap router provides a push() and a pop() function, like all Scout routers.

Pushed data is delivered to path. The pop() function is empty. It is a hook for applica-

tions to attach their own receive functions. When linking with the Dominoes Scout library,

a programmer must provide a function named appwrap_pop(). This function is auto-

matically configured as the delivery function when a replicated path is created. Using this

57



Chapter 4. Dominoes Network Stack Implementation

interface, the path behaves like a queue with replication happening invisibly.

The driver router operates in a similar fashion, but at the other end of the path. It pro-

vides read() and write() functions to deliver data to the network. This is a departure

from other Scout device drivers, which are interrupt driven. The read() function per-

forms a demultiplex to select the correct path for delivery. It then publishes the incoming

data on the path’s receive channel. Because domains are explicitly scheduled and cooper-

atively multithreaded, the driver system is event driven. These events may be interrupts if

the driver is connected directly to a device driver’s TX and RX functions, but they are not

required to be. The driver can be connected to a communication library such as libpcap

to perform data transfer.

Some protocols, such as TCP, guarantee ordered data delivery. This can be difficult

when many domains are pushing messages to the application, simultaneously. They main-

tain this ordering a thin layer is included in the data delivery functions. This Ordering

Manager controls how data is copied into application buffers. The Ordering manager

works by allocating a fixed size buffer for the application, then dividing that buffer into

cells. Each of these cells is marked by a sentinel array which indicates how much data is

available in each cell. This is shown in Figure 4.5. It allows the application to read the

incoming data, in order, while several domains are writing it. As long as the data buffer is

larger than the available data, such as the TCP window, separate domains cannot overwrite

each others data. When data is read, the sentinel value is set to zero and writer domains

will not update new cells until they see a clear sentinel.

Alternative to the Ordering Manager implementation exist. Lock-free priority queues [73]

provide this function along with good performance. Some protocols may require their use,

but the simpler mechanism has proven sufficient for this work.

58



Chapter 4. Dominoes Network Stack Implementation

0 0 0 2 2 1 8 3 0 0 0 0
Data Buffer

Sentinel Array

Read
Domain

Write
Domain

Figure 4.5: The Ordering Manager controls access to a shared ringbuffer with a sentinel
array.

4.6 Userspace Test Rigging

The Dominoes Scout implementation provides a flexible tool for testing because the entire

system is structured as a programming library. Using the driver router, the system can be

plugged into userspace libraries for direct NIC access. The standard tool for this on Linux

is libpcap.

libpcap provides an API for capturing and injecting raw network traffic from a

physical interface. Because Ethernet is a broadcast medium, libpcap allows software to

communicate using a different address space than the host. The native network implemen-

tation, in this case Linux, simply drops those packets. This eliminates any interference

from the host. libpcap also introduces some difficulty. Data arrives from the network

and is placed directly into a kernel buffer, but protocol processing occurs in userspace.

This necessitates a copy in the Scout driver. This copy additional overhead and is not

incurred by in-kernel implementations. Additionally, high-performance network device

drivers coalesce interrupts to improve system response. An effect is that packets are co-

alesced into bundles and the number of overall network requests that the protocol system

has to process is lower. libpcap does not capture this behavior. Instead, data is delivered

and sent one packet at a time. A system call is needed for each incoming packet, which has

59



Chapter 4. Dominoes Network Stack Implementation

a similar performance impact as one interrupt per packet. The performance improvements

given later are achieved despite these disadvantages.

Operating System

Hardware

libpcap

RX Channel

Demux Domain TX Handler

PPD

TC

PPD

TC

PPD

TC

PPD

TC RXRX

Ordering Manager TX Domain

TX Channel

TX TX

Application

TransmitReceive

PPD: Protocol Processing Domain
TC: Timer Channel TX, RX: send, receive functions

RX
Callback

Timer
Channel
Callback

Ethernet

IP

TCP or 
UDP

Inline
Data

Processing

Control
Channel
Callback

TX
Callback

ARP

Protocol Processing
Domain Detail

Figure 4.6: Dominoes Test Program Architecture

Figure 4.6 illustrates the complete test system’s processing model. In this case, the

application is simply an aggressive network use thread (i.e., a tight loop around either

read() or write()). This ensures maximum possible usage of the network resources.

The system can operate in either transmit or receive mode. The architecture is slightly

different between the two code paths.

Transmits require the application to publish data to a TX channel. All processing

60



Chapter 4. Dominoes Network Stack Implementation

domains are subscribed to this channel. When data has been processed and is ready for

transmission, the domains then call a special TX handler function which interfaces with

libpcap. This allows many domains to send simultaneously. Receive operates similarly,

but in reverse. Incoming packets are published to a special RX channel by the demux

domain that monitors libpcap. The processing domains then complete their work before

delivering the data to the application by a call to the Ordering Manager. The Ordering

Manager is needed to ensure that concurrent deliveries do not introduce data reordering.

Some data, such as acknowledgements are consumed by the domains and are not passed

to subsequent levels.

With this design, each processing domain services one TX channel, one RX channel,

one timer channel, and several low traffic service channels that are used to setup Scout

paths and perform Subscription management. This requires significant computational re-

sources. Most domains require a dedicated context for best performance, although the TX

domain and the application can often share a thread or processor. For an eight processor

system, this leaves six processors for protocol work.

4.7 Summary

The replicated implementation of Scout networking is built to be as simple as possible,

while preserving the semantics of the IP, UDP, and TCP protocols. Using Dominoes,

this implementation provides a standard compliant protocol stack that uses replication

for processing, where appropriate. Following the goal of the replication approach, the

design targets a throughput increase for CPU bound protocol processing. Chapters 5 and

Chapter 6 discuss the performance of the implementation along with the drawbacks of

using replication for this type of processing.

61



Chapter 5

Performance

This chapter presents performance results of the replication approach, the Dominoes frame-

work, and the replicated Scout networking stack. The performance results of software sys-

tems are dependent on the platform in which they are examined. Therefore, this chapter

describes both the testing hardware and software environments. This chapter combines

performance figures with description of testing methodology as well as analysis of the

performance results.

5.1 Testing Platform

Empirical results are especially sensitive to variation in the testing environment. All the

tests in this chapter maintain a consistent testing platform to provide fair performance

comparisons. The tests in this chapter use two types of machines. Both contain 64-bit x86

processors with configurations as shown in Table 5.1. One configuration uses processors

from Intel and the other AMD. The performance characteristics of the two platforms are

remarkably similar, with both generating nearly identical throughput numbers for network

send and receive. The differences in configuration produce almost no variation in the per-

62



Chapter 5. Performance

formance of network protocol processing. Both configurations run Linux and a standard

set of system software.

Intel AMD
Processor Xeon E5410 @ 2.333 GHz Opteron 2376 @ 2.311 GHz

Core count 4 cores × 2 sockets 4 cores × 2 sockets
Cache size 12 MB L2 512KB × 4 L2, 6MB L3
Bus speed 1333 MHz Parity FSB 1000 MHz Hypertransport
Memory 8 GB DDR2-667 ECC 32 GB DDR2-667

Network Interface Sun Dual XFB 10GbE Intel NetEffect NE020 10GbE
Transceivers Intel SR XFP Finisar FTLX1471D3BCL

Bus speed PCIe 8× PCIe 8×
Switching Hardware Fujitsu XG2000 10GbE

Disk SAS 500GB network booted
7200 RPM, 16MB cache

Operating System Ubuntu Server 10.04 Fedora 10
Kernel Linux 2.6.32 Linux 2.6.27

Compiler gcc 4.4.3 gcc 4.4.3
Libraries libpcap 1.1.1 libpcap 1.1.1

glibc 2.11.1 glibc 2.9
openssl 0.9.8 openssl 0.9.8

Table 5.1: x86 Test Hardware Configuration

Throughout this chapter, experiments are run without debugging symbols present and

with a GCC optimization level of O2. This provides parity when testing different par-

allelization strategies or when comparing against off-the-shelf implementations such as

Linux. Hand tuning the generated code is not likely to produce significant performance

increases because production networking stacks must provide good throughput in a vari-

ety of environments. The networking implementations discussed here already optimize

load/store behavior when allocating memory. Unless otherwise noted, all the tests in this

chapter use the Intel machine to generate the performance results and the AMD hardware

as the network peer.

63



Chapter 5. Performance

5.2 Synthetic Test

This section tests the feasibility of the replication approach with a synthetic workload.

Synthetic tests evaluate the general approach. They also indicate which types of workloads

are best suited to replication. They remove all networking and architectural issues from

the computation and allow direct measurement of the scalability of replication.

The tests use a simple computation kernel that performs memory accesses based on

a specified parallelization strategy. Time is split between doing sequential work concur-

rently and performing parallelizable operations. There are three strategies, each differen-

tiated by the type of parallelizable operation.

1. Coarse-grained locking

Parallelizable operations require access to shared state. A single mutex is used to

serialize access to the state. The computation kernels acquire the mutex, complete

their work, and then release it.

2. Atomic operations

This strategy is similar to coarse-grained, except that updates are performed with

hardware atomic operations. All threads update a single shared state.

3. Replication

Strategy 3 uses a replicated global state. No locking is needed because each replica

has complete information. The state is assumed to remain consistent based on per-

thread computation only. No coordination occurs between replicas.

Each of these strategies is tested with different ratios of parallelizable to sequential

work. Figures 5.1 and 5.2 illustrate the results of a simple, synthetic scaleability test. In

this case, the AMD test machine is used. It has eight processing cores, but the tests are run

64



Chapter 5. Performance

with up to sixteen threads. The additional cores test the performance of the strategy as the

system becomes over-committed.

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 0  2  4  6  8  10  12  14  16

R
e

q
u

e
s
ts

 p
e

r 
S

e
c
o

n
d

Number of Threads

Replication
Locking
Atomic

(a) 100:1 Sequential to Parallelizable Work

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  2  4  6  8  10  12  14  16

R
e

q
u

e
s
ts

 p
e

r 
S

e
c
o

n
d

Number of Threads

Replication
Locking
Atomic

(b) 10:1 Sequential to Parallelizable Work

Figure 5.1: Simulation of Request Processing with Different Methods of Consistency
Management

65



Chapter 5. Performance

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  2  4  6  8  10  12  14  16

R
e

q
u

e
s
ts

 p
e

r 
S

e
c
o

n
d

Number of Threads

Replication
Locking
Atomic

(a) 2:1 Sequential to Parallelizable Work

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  2  4  6  8  10  12  14  16

R
e

q
u

e
s
ts

 p
e

r 
S

e
c
o

n
d

Number of Threads

Replication
Locking
Atomic

(b) 1:2 Sequential to Parallelizable Work

Figure 5.2: Simulation of Request Processing with Different Methods of Consistency
Management (continued)

At 100:1, almost all of the processing is parallelizable and scalability is very good for

all strategies. 10:1, in figure 5.1(b), is of particular interest, because it matches closely

66



Chapter 5. Performance

with the expected performance of network protocol processing. Replication allows for a

speedup of 4-5x, which far outpaces the locking mechanisms. This is roughly 50% of the

theoretical maximum, but still encouraging. Architectural issues cause the performance

elbow at four cores. The dual socket test machine has shared cache for CPUs 0-3 and

for CPUs 4-7. Stepping over the 4 processor boundary causes a fixed performance hit,

but maintains scaling. This closely mimics the scalability problems of common protocols

which were described in Chapter 2. In particular, the traditional locking scheme (coarse-

grained) shows virtually no speedup at any scale.

At 2:1, the ratio of parallelizable work is quite small. Performance using replication

is slightly better than expected from the theoretical results. Additional CPUs allow access

to more cache and additional memory bandwidth. Locking techniques provide no perfor-

mance benefit as the additional cores spend their entire execution time waiting to run. 1:2

is an even more extreme example. In this case the portion of parallel work is only 33%.

Meaningful speedup is not possible.

One drawback of replication is the projected poor performance when over-committed.

Additional threads in the locking simulation incur additional waits on the locks, but do not

generate computational burden when they are sleeping. Replication increases the workload

with each replica because of additional, redundant work. In the case where there are

more than eight replicas, the added threads are performing more work, but provide zero

performance benefit because they do not increase parallelism; their work simply becomes

scheduler overhead. Locking or atomic strategies do not increase the amount of work as

the number of threads increases. Additional threads are simply scheduler overhead.

While the results from this test strongly support a replication approach, they illus-

trate the importance of properly mapping the computational resources to the task. Over-

committing the system can lead to performance collapse.

67



Chapter 5. Performance

5.3 Request Processing Throughput

As described in Chapter 3, the ringbuffer-based channel provides the crucial function of

delivering data in and out of Dominoes. This section evaluates the throughput of Domi-

noes in two configurations: single producer / multiple consumers and multiple producers /

multiple consumers. The framework must handle high throughput in order for the system,

as a whole, to process high-bandwidth data.

5.3.1 Single Producer, Multiple Consumer

The single producer case tests the framework’s suitability for high-performance network-

ing. At a minimum, channels should provide sufficient throughput – with reasonably sized

packets – to saturate a modern network link. With standard 1500 byte Ethernet frames,

this requires 8.33×105 requests/sec to achieve 10 Gb/s. While this is not a hard limit, it

provides a baseline to evaluate channel performance.

Figure 5.3 shows the per-core and aggregate dequeue rates from a ringbuffer channel.

In this case, one core is dedicated to handling “interrupts” and publishes data to the chan-

nel. Up to seven domains subscribe to this channel and dequeue the data. The green line

shows the total number of requests than can be enqueued by the publisher. It decreases

as the number of subscribers increases, but it does not drop off linearly. The green line

shows the total number of successful dequeues from the system. This is also the product of

enqueues and subscribing threads. The 8.33×105 request/sec threshold is shown in blue.

Aggregate throughput increases to the maximum number of CPUs, indicating effective use

of hardware resources.

68



Chapter 5. Performance

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 1  2  3  4  5  6  7

R
e

q
u

e
s
ts

/s
e

c

Subscribing Cores

Per-Replica Throughput
Aggregate Request Throughput

Packets/sec  10 Gbps

Figure 5.3: Dominoes Channel Single Producer Throughput Performance

5.3.2 Multiple Producer, Multiple Consumer

Dominoes channels also support multi-producer channels, which is important for deliver-

ing data from domains to the network. Table 5.2 shows throughput with varying numbers

of simultaneous publishers. Only a fully loaded system with seven publishers drops below

the target throughput of 8.33×105 req/sec with a single subscriber. This is sufficient for a

10 Gb/s link with multiple domains sending data.

As an implementation target, 8.33×105 req/sec is artificially pessimistic. This assumes

that the maximum message size matches the maximum transmission unit (MTU) of the

network link. For high-speed links, the number of requests is far fewer due to interrupt

coalescing [53] on data receipt or segmentation on transmission. The data travels through

the protocol stack as bundles of dozens to hundreds of packets. This greatly decreases the

required number of channel requests. For example, coalescing receive-side (RX) interrupts

69



Chapter 5. Performance

Throughput (req/s)
# Publishers 1 subscriber 2 subscribers 4 subscribers
1 1693833.9 1294543.1 915600.0
2 1780225.3 1376557.2 894457.0
3 1191606.3 1086043.6 805401.6
4 1037426.9 851383.2 645373.6
5 871464.8 849827.1 -
6 847435.4 639468.0 -
7 660352.2 - -

Table 5.2: Throughput for Multi-Producer Channels

to a frequency of 100µs reduces the required number of requests to approximately 104.

This is well within the performance capabilities of any publisher/subscriber combination.

Interrupt frequencies in this range are well below round-trip times (RTT) and are realistic

for existing hardware.

5.4 IP Suite

While the synthetic test results are important validation of the replication approach, stan-

dard protocols are the true measure of its effectiveness. Many performance features of real

networks are difficult to capture with simulation. These features include memory archi-

tectures, link delays, and operating system noise. The approach must perform well in this

environment in order to deliver increased throughput to applications.

This section evaluates two protocols: UDP/IP and TCP/IP. UDP most closely matches

the synthetic test because it is stateless. Because it is widely deployed, it accurately mea-

sures how replication increases throughput to applications that use stateless protocols.

TCP is stateful and considerably more complicated. TCP performance illuminates the

strengths and weaknesses of the replication approach when managing connection state.

The tests process each protocol with varying number of domains and report the through-

70



Chapter 5. Performance

put and thus the scalability.

5.4.1 UDP

The UDP/IP protocol provides a real-world implementation that closely matches the model

of the synthetic test. Processing Ethernet, IP, and UDP headers requires significant per-

packet processing, but UDP is stateless. There is no parallelizable portion of the protocol

processing. Unlike the synthetic benchmarks, the protocol allows testing with real appli-

cations and networks.

The per-packet costs of UDP processing are quite low. Together with IP, the total

header length for both protocols is only twenty bytes and the payload portion of the packet

does not need to be inspected for delivery. Because UDP is stateless, virtually every imple-

mentation allows multiple packets with the same source-destination pair to be processed

concurrently. This gives near linearly scalability for production implementations such as

Linux and Solaris.

Figure 5.4 shows receive throughput of the UDP protocol with the Dominoes Scout

implementation. Without unmodified UDP processing it quickly scales to the performance

ceiling of the libpcap driver system: 3 Gbs. This is shown in red. More importantly,

it also scales well when an artificial load is applied. In the example, a QoS type load of

four memory operations per byte received are introduced into the processing stream. This

corresponds to the cost of a typical string search. The throughput is shown in green. At

six processors, performance approaches the bandwidth peak of the driver again.

5.4.2 TCP

The following tests shows the throughput of the TCP receive and send operations with

multiple processing domains. TCP/IP presents a greater challenge for the replication ap-

71



Chapter 5. Performance

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
s
)

Number of Receive Processors

UDP Throughput
UDP Throughput - QoS Load
Linear Speedup - QoS Load

Figure 5.4: UDP Throughput on Eight Processor Server

proach because there is significant local state. Sequential work includes flow control and

ordering operations, which can vary in cost, depending on the networking environment.

Because the TCP receive window has a fixed maximum size, one replica may be limited

by the processing speed of another. All replicas must progress in order for the window

to be advanced. Nevertheless, TCP receive throughput – which has traditionally been

the computationally expensive side of protocol processing – benefits from the replication

approach.

The test systems have eight free cores when an application and driver/publisher are

running. This leaves six CPUs for the testing. All tests vary the number of domains from

one to six. The NIC supports hardware checksumming, which is enabled.

72



Chapter 5. Performance

TCP Receive

Figure 5.5 shows the throughput with varying number of cores and different incoming

message sizes. Smaller messages require more header computation per payload byte. The

sequential component of the request processing is thus higher for small messages and scal-

ability is more limited. The additional per-byte cost also slows the connection, regardless

of scaling issues. Nevertheless, replication provides repeatable performance gains for all

message sizes. These improvements fall short of the project goals, but are still substantial.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of Receive Processors

256 byte MTU
512 byte MTU

1024 byte MTU
1500 byte MTU

Figure 5.5: TCP Receive Throughput with Varying MTU

In Figure 5.5, the six core case is a statistical outlier because the it represents a slightly

overcommitted system. In addition to the six processing domains, there is a domain for

handling driver events as well an application thread. That results in near complete utiliza-

tion of the eight available hardware threads. Other system load such as instrumentation

and I/O must compete against the test framework for resources. While this does not result

in catastrophic performance loss, as in the synthetic test, it does cause measurable decrease

73



Chapter 5. Performance

in aggregate performance.

Figure 5.6 compares the scalability of the replication approach to the TCP implemen-

tation in an unmodified Linux 2.6.32 kernel. This was performed with 1500 byte packets

and no additional processing. The Linux implementation locks the TCP connection state

in the event that two or more CPUs attempt to process different packets, from the same

connection, concurrently. The Linux implementation is in-kernel. Consequently, its single

threaded performance is higher than Dominoes’ userspace implementation. With multiple

processors, the Linux performance degrades while Dominoes increases. The raw through-

put numbers are higher for Linux, but the scalability differences are clear when the results

are normalized.

As seen in Chapter 2, the locking approach provides no scalability because processing

threads are mutually exclusive. Linux performance degrades as more processors become

available because the cost of the lock increases when it is no longer available in L1 cache.

Alternatively, replication scales as seen in previous figures. When normalized scalability

becomes clear.

TCP Send

Figure 5.7 shows the result of replication on TCP send performance. Unlike receive, send

is not able to benefit from replication and throughput degrades rapidly as processors are

added. There are multiple reasons for the performance decrease. Ordering semantics re-

quire excessive serialization of transmitted packets and the TCP send buffer code requires

synchronization between domains.

When multiple domains process packets simultaneously, they may deliver the data

to the network device out of order. This results in the data being transmitted and then

delivered out of order. The result is two types of tests: a test where the data is sent

asynchronously and a test that synchronizes send packets and the associated buffers. A

74



Chapter 5. Performance

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of Processors

Linux (locks)
Dominoes-Scout (replication)

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(N

o
rm

a
liz

e
d

 t
o

 S
in

g
le

 P
ro

c
e

s
s
o

r)

Number of Processors

Linux (locks)
Dominoes-Scout (replication)

(b) Normalized Throughput

Figure 5.6: Scalability of Replication vs. Lock-based Linux

more detailed analysis of the problems with send are discussed in Chapter 6.

Performance with a single processor is in line with receive results. Single core through-

75



Chapter 5. Performance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  2  3  4

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of Processors

TCP Send with Buffer Synchronization
TCP Send without Buffer Synchronization

Figure 5.7: TCP Send Throughput

put is approximately 900 Mbps. Adding the second processor incurs so much overhead

that performance drops below 200 Mbps and degrades further as more processors are

added. In fact the eight processor case is not shown here because throughput is very

low and the results are unpredictable due to frequent timeouts. Without synchronizing the

sent buffer performance is worse; throughput is negligible with multiple replicas.

5.4.3 Inline Data Processing

The ratio of parallelizable to sequential work affects the scalability of the system. Inline

data processing increases the sequential portion and increases the scalability. The perfor-

mance using replication improves when the system must do additional, inline processing.

One common example of inline processing is encryption/decryption. The following tests

adds additional load to the TCP receive operations to test this behavior.

76



Chapter 5. Performance

Figure 5.8 demonstrates scalability when performing inline data decryption. For this

example, each incoming message is decrypted using the Advanced Encryption Standard

(AES) cipher with a 256-bit key [52]. This operation is performed using the standardized

EVP_DecryptInit_ex() and EVP_DecryptUpdate()API from the OpenSSL [79]

libraries. The additional load reduces the throughput with a single processor by approxi-

mately 60%. However, scalability improves because the additional work is only perfomed

on the primary. With five or more replicas, 1 Gbps is easily attained for a TCP connection

with software data decryption.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of Receive Processors

TCP Stream with AES Decryption
Linear Speedup

Figure 5.8: TCP Receive Throughput, Performing 256-bit AES Decryption

5.4.4 Specialized Primaries

TCP includes two principal operations that have global effects: data delivery to the ap-

plication/network and acknowledgement generation. Although timeouts also have global

77



Chapter 5. Performance

visibility, they occur far less frequently. Throughout this work, the replication approach

assigns all parallelizable work to a primary domain for each this request. This results in

the performance improvements that we have seen in previous sections. Another strategy

exists.

Rather than assign parallelizable work to the primary, the two operations could be split

between two processors. One domain handles all payload operations (data delivery, inline

processing, etc.) and another generates acknowledgments. This specialized adaptation of

the protocol cannot produce large speedups because only two processors are used. How-

ever, it is simple to understand and relatively easy to implement. It is only possible because

the replication approach gives lock-free access to the connection state.

 0

 200

 400

 600

 800

 1000

1500 Byte

M
TU

512 Byte

M
TU

AES Decryption

T
h
ro

u
g

h
p

u
t 

(M
b

p
s)

Single Receive Thread
Dedicated Data Delivery Thread

Figure 5.9: TCP Receive Throughput with Dedicated Payload Thread

In Figure 5.9, TCP receive throughput is tested with data delivery and acknowledge-

ments assigned to different domains. With standard 1500 byte packets the gains are moder-

ate: approximately 15%. With smaller packets, the marginal gains are much higher. Linear

78



Chapter 5. Performance

speedup (i.e., doubling) is not possible here because the two operations do not have the

same cost. The third result shows the performance with AES decryption added to the data

delivery function and 1500 byte packets used. The performance is much lower than the

first test, but the gains are larger. This indicates that the cost of generating acknowledge-

ments is expensive enough to be worth separating computationally. As an added benefit,

the ordering manager is not needed in this test because a single domain copies all bytes to

the application buffer.

5.5 Summary

This chapter presents the results from a spectrum of performance tests. The x86 testing

platform is capable of high-speed networking with minimal hardware offloading. This

matches a vast number of deployments from home PCs to enterprise environments and

commodity HPC clusters. The Dominoes framework is able to serve millions of requests

per second with many simultaneous subscribers.

The replication approach provides encouraging results on tests with synthetic loads. It

achieves speedup of 5x with parallelizable to sequential work ratios of 10:1. Full protocol

implementations also benefit. UDP performance scales well, although a single publishing

domain can become a bottleneck at high speeds. TCP receive performance is improved,

but TCP send has issues that make it unworkable.

79



Chapter 6

Analysis

The performance results from Chapter 5 illustrate both the success and failure of replica-

tion in providing scalable, high-bandwidth networking performance. Some results match

the design expectations. Others give new insight to effectiveness of replication, the Domi-

noes framework, and the network protocol implementation.

This chapter analyzes the behavior of replication systems when applied to network

processing. The first section discusses how Dominoes is effective in implementing repli-

cated systems and where it proved to be a performance or design limitation. The following

two sections discuss stateless and stateful protocol behavior.

6.1 Dominoes Framework

6.1.1 Overview

The complete system used to generate the results in Chapter 5 is a large code base, with

approximately 35,000 lines of ANSI C. The Dominoes framework effectively isolates non-

80



Chapter 6. Analysis

replicated functionality by encapsulating the replication mechanisms for resource alloca-

tion, scheduling, etc. This allows for quick and easy changes to the replication behavior

by adjusting the framework or changing how the framework is used from within Scout.

The performance of the framework is very good. While there is room for improve-

ments, channel throughput has shown to be adequate for both this research and for a pro-

duction network protocol stack. Domains are sufficiently thin wrappers around scheduling

functions that they provide good responsiveness to networking events as well as fast pro-

cessing. They fall short of a full kernel thread because they do not gracefully yield the

processor when no work is available. This could easily be added, but it is not the focus of

this work.

There was considerable effort to develop and test Dominoes before work could begin

on the network protocol implementation. This was rewarded with decreased effort in de-

bugging the whole system as well as decreased time between experiments. For example,

load distribution measurement, such as Figure 6.1, required only simple changes while

instrumentation that is not at an API boundary is much more involved. Applying Domi-

noes to a networking implementation with real protocols revealed some shortcomings in

its design.

6.1.2 Semaphores

Semaphores are an unexpected difficulty. The solution with Scout, given in Chapter 4, is

not optimal. If a domain must wait because of a pending semaphore, the code trampolines

back into the context scheduling routine. This allows other domains on the same context to

continue servicing requests, such as signaling the semaphore. This solution is not generally

applicable because recursive calls can lead to unrecoverable scheduling dependencies or

even deadlock. It would be better to save the calling stack of a sleeping domain and

designate another domain to handle the subscribed channels. This is very close to the

81



Chapter 6. Analysis

behavior of a full process control system and has larger engineering scope than the initial

Dominoes implementation. The current context model is too simple.

6.1.3 Dynamic Con�guration

The framework is not dynamic. Domains and channels are setup once and cannot be

easily reconfigured. This may seem appropriate in a research environment where the entire

system can be reset for any type of failure. However, the system cannot adapt to network

events. For example, it might be advantageous to reduce the number of replicas after a

timeout occurs. Dominoes cannot change the number of subscribers once a channel is

running. New network connections require full initiation of the framework as well as new

channels and new domains. This is sufficient for throughput testing but likely increases

the setup time for the connection. A more efficient system would reuse domains in the

same way that web server reuses threads.

6.1.4 Load Balancing

Dominoes uses simple strategies to assign primaries, which is effectively load balancing.

The publisher of a request can specify the primary directly. This is useful when directing a

series of requests to a single domain, such as during connection setup in TCP. The default

behavior chooses the first available domain as the primary. A domain that finishes requests

more quickly will receive a high percentage of primary requests.

Figure 6.1 illustrates fluctuation of the load on the processing domains. The data is

sampled every 27400 requests, which corresponds to time intervals of 100-200 ms. This

is sufficiently long to capture several scheduling time slices. Primaries are assigned on a

first come, first served basis. A domain will service more requests if it completes previous

requests more quickly. In this example, the load is not distributed evenly across all five

82



Chapter 6. Analysis

processors. CPU 1 tends to be very slow and is assigned as the primary for fewer requests.

 0

 5000

 10000

 15000

 20000

 25000

 0  20  40  60  80  100  120

N
u
m

b
e
r 

o
f 

P
ri

m
a
ry

 R
e
q

u
e
st

s

Timestep (sampled every 27400 requests)

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Figure 6.1: Load Fluctuation of TCP Receiver with Five Processing Domains

Figure 6.1 shows that “greedy” behavior distributes the work from the channel without

starving any domains. This distribution is dynamic. The portion of work for each domain

changes based on how much processing time is available – how many times it is first in line

to dequeue a request. However, this is not a comprehensive study of the load balancing

problem. Further work on domain load balancing is discussed in Chapter 7.

6.2 Stateless Protocols

The performance behavior of stateless protocols, such as UDP/IP, mirrors the Dominoes

framework. The sequential work is essentially zero and each packet can be processed

independently. Replication provides speedup similar to the traditional threading methods

that are used in almost all mainstream implementations. More importantly replication does

83



Chapter 6. Analysis

not incur heavy overhead for this type of system. It can be used with small penalty, even

if the throughput considerations do no merit it.

For performance, stateless protocols are not able to take advantage of the principal

strengths of the replication approach. With no state, there is nothing to replicate and the

system behaves as a multithreaded request processor with a centralized, although lock-

free, queuing structure. For a single application, this does not provide a compelling reason

for the added complexity. However, it does allow for simple out-of-band processing, such

as a traffic monitoring.

6.3 Stateful Protocols

Stateful protocols show performance gains that are not possible using synchronization

techniques such as locks. TCP sending is inherently more difficult than receiving, al-

though receive processing tends to be more expensive. Overall, the approach achieves

better scalability than other network protocol parallelization techniques. Careful manage-

ment of request ordering maintains consistency in some cases but is not sufficient to allow

speedup of all operations.

The Dominoes channel object guarantees ordered delivery of requests. Initially, this

seems like a small benefit because data can be reordered by the network fabric. The

real power of this guarantee is that all domains will see requests in the same order. As

a result, all state updates happen in the same order. Local states may be inconsistent

because of scheduling variance or unbalanced processing load but they do not diverge.

This inconsistency is bounded by the length of the channel queue. When the length is one,

all the replicas must contain the same state because they have processed the same set of

requests. For TCP, this queue length can never be larger than the receive window.

Given that the sequence of state updates produce the same effect, the replicas generate

84



Chapter 6. Analysis

the same response to events. If an arriving packet is out of order, then it is out of order for

all replicas. Each replica makes the appropriate state changes (such as congestion window

reduction) and generates a response, if necessary. These semantics are sufficient to keep

the local state functional. Unfortunately, they fall short of providing good performance in

all cases.

6.3.1 TCP Receive

Incoming TCP processing receives a significant performance benefit from replicated pro-

cessing. Ordered delivery to the application is slightly delicate, but the rest of the process-

ing functions well when the channel ordering semantics are maintained.

Scalability misses the target of 10x speedup from the theoretical maximum. This is

not surprising as the theoretical result ignores all architectural considerations. The test ar-

chitecture requires several memory copies for each incoming packet, which are expensive.

6.3.2 TCP Send

TCP send performance does not take advantage of replication as easily as receive. Two

issues cause performance collapse as the number of processors is increased. The Domi-

noes architecture introduces a race condition for network sends and the buffer management

code in Scout is not thread safe.

Out of Order Transmits

When multiple domains process packets simultaneously, more than one packet may be

ready for transmission at the same time. This results in a race among the domains for ac-

cess to the networking hardware. The API for libpcap allows concurrent access and will

85



Chapter 6. Analysis

serializes send requests. However, Dominoes does not provide a mechanism to guarantee

ordering. If packets are sent in the wrong order, TCP interprets this as lost traffic and re-

quests a retransmit by generating a duplicate acknowledgement. The unsynchronized send

test from Chapter 5 (Figure 5.7) shows the poor performance in this scenario.

With more than one thread, reordering happens so often that the effective congestion

window size is only one MTU. The small window reduces the throughput to only a few

kilobytes per second. This problem can be mitigated using a technique similar to the order-

ing manager, where each domain waits until all previous bytes are sent before it generates

a transmit. However, the results of that test are limited by another synchronization issue

in the buffer management system.

Buffer Management

TCP semantics requires buffering for all outgoing data. After data has been sent, it must

be saved to handle the case where the corresponding packet is lost and needs to be re-

transmitted. TCP is a byte stream protocol. To minimize protocol overhead, the protocol

sends as many bytes as possible with each packet, typically the link MTU. The application

can perform send operations of any size and these writes are rarely the same length as the

MTU. Therefore, the send buffer performs the secondary function of segmenting sent data.

The Scout buffer management code is not designed to handle replication processing.

It is implemented as a list of message fragments. Concurrent access to the list of buffers

can cause corruption. Straightforward adaptions are not sufficient to correct the problem.

If multiple domains try to access the same buffer with explicit synchronization (such as

a lock), the throughput drops dramatically. This is seen in Figure 5.7 from Chapter 5.

The alternative is to provide a per-domain replica of the buffers. Unfortunately, the send

requests from the application do not directly correspond to transmitted packets.

Primaries are assigned to send requests, which correspond to write() calls from the

86



Chapter 6. Analysis

application. This indicates who is responsible for delivering the data to the network the

first time. If the data needs to be retransmitted, that event is triggered by an incoming

duplicate acknowledgement, on a different channel. There is no way to indicate who

was initially responsible for the packet. This also leads to performance collapse because

multiple domains can be sending the same packet at the same time. To correct these

problems, the buffer management code needs to be designed for replicated processing.

6.3.3 Checksums

Checksum calculation may seem like a likely candidate to benefit from replicated process-

ing. It is required by many protocols and depends only on local data. In fact it is one

of the few operations that has been successfully offloaded to dedicated hardware. Yet,

checksumming has requirements that make it difficult to replicate.

A simple strategy for replicated checksums would be to include the calculation only

as part of the primary work. This means that the checksum is only calculated on one

processor and that each processor only generates checksums for a fraction of the total

packets. This performs well, so long as the checksums are correct. If a checksum is

not correct, then errors are not detected by most replicas. This breaks the semantics of

checksum routines. This leaves two options. Checksumming can be performed by every

replica – which eliminates any benefit of parallelization – or the primary can notify other

replicas of the result of each checksum calculation.

Checksumming Cache Performance

All incoming TCP packets include a checksum on the header and payload. Scout per-

forms this check in software, but many high-performance NICs can provide this feature

in hardware. Figure 6.2 illustrates TCP receive throughput with and without hardware

87



Chapter 6. Analysis

checksumming. Recall that the Intel Xeon processor has a shared L2 cache for each set of

four hardware threads. Using this memory model, the software checksum routine is quite

expensive. It requires that every replica inspect every byte of data. The overhead is low,

so long as all the replicas share the same cache. When the number of replicas increases to

require a second socket 1, performance drops significantly because of additional memory

bandwidth requirements and cache thrashing.

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
s
)

Number of Receive Processors

Software TCP Checksum
Hardware TCP Checksum

Figure 6.2: TCP Receive Throughput on Intel Xeon E5410

Figure 6.3 illustrates the performance difference between the Intel Xeon E5410 with a

shared L2 cache and the AMD Shanghai CPU with individual caches. The slower clock

and bus frequencies of the AMD processor result in poor performance with a single replica,

but it is able to outperform the Intel architecture when caching effects become dominant.

Hardware checksumming avoids this problem. It reduces memory lookup for non-

1Four receive replicas plus one driver thread result in �ve total threads.

88



Chapter 6. Analysis

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1  2  3  4  5  6

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of Receive Processors

Intel Xeon
AMD Shanghai

Figure 6.3: TCP Receive Performance with Software Checksumming for Shared-cache
Intel and Individual-cache AMD

primary replicas to header data only2. It allows speedup, even without shared cache. Sub-

sequent results in this chapter are given with hardware checksumming enabled, as virtually

every 10 Gigabit Ethernet NIC provides this feature.

6.3.4 RX/TX with Different Replicas

TCP connections are bidirectional. TCP headers contain both a sequence number for

identifying the sent data and an acknowledgment number for received data. An acknowl-

edgement bit is provided in the TCP header flag field to indicate whether the acknowl-

edgement number is significant, although the convention is to always set the bit after the

initial connection handshake. The result is an essentially useless flag bit as well as an

acknowledgement in every sent packet. Figure 6.4 illustrates this behavior between two

2The primary must copy each byte of the payload to the application

89



Chapter 6. Analysis

Linux hosts. Viewing the resulting trace with the Wireshark [76] tool shows that only one

side of the connection sends data, but the ACK field is set in every packet.

No | Source | Desintation | Info
----------------------------------------------------------------------------------------
1 192.168.2.2 -> 192.168.2.3 51484 > 1234 [SYN] Seq=0 Win=5840 Len=0
2 192.168.2.3 -> 192.168.2.2 1234 > 51484 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0
3 192.168.2.2 -> 192.168.2.3 51484 > 1234 [ACK] Seq=1 Ack=1 Win=5888 Len=0
4 192.168.2.2 -> 192.168.2.3 51484 > 1234 [ACK] Seq=1 Ack=1 Win=5888 Len=2896
5 192.168.2.2 -> 192.168.2.3 51484 > 1234 [PSH,ACK] Seq=2897 Ack=1 Win=5888 Len=1200
6 192.168.2.3 -> 192.168.2.2 1234 > 51484 [ACK] Seq=1 Ack=1449 Win=8704 Len=0
7 192.168.2.2 -> 192.168.2.3 51484 > 1234 [ACK] Seq=4097 Ack=1 Win=5888 Len=2896
8 192.168.2.3 -> 192.168.2.2 1234 > 51484 [ACK] Seq=1 Ack=2897 Win=11648 Len=0
9 192.168.2.2 -> 192.168.2.3 51484 > 1234 [ACK] Seq=6993 Ack=1 Win=5888 Len=2896
10 192.168.2.3 -> 192.168.2.2 1234 > 51484 [ACK] Seq=1 Ack=4097 Win=14592 Len=0

Figure 6.4: Trace of Simple TCP Connection with Only One Side Sending Data, Every
Packet Contains Acknowledgment

Likewise, the sequence number field cannot be marked insignificant and will always

indicate the current, expected data segment – even when packets are sent purely for ac-

knowledgement. This leads to the requirement that every outgoing packet must contain

both the current sequence number and current acknowledgement. However, regular data

segments and acknowledgment packets are generated by different sources.

Acknowledgements are driven by data from the network while new, outgoing data

originates at the application. Performance might be increased by splitting the send and

receive processing between processors. One set of cores may handle incoming data and

another set handles outgoing. This optimization is not possible with TCP because senders

and receivers must access the same state.

Small changes to the protocol could allow parallelization based on data flow direction.

For example, an additional flag bit could indicate whether the sequence number field is

valid. Combined with a convention to only use the acknowledgement bit when needed,

this would allow a processing thread to only maintain half of the processing state. Another

thread could maintain the other half independently.

90



Chapter 7

Conclusions

7.1 Summary

This dissertation applies replication to network protocol processing. The replication ap-

proach provides an alternative to classical parallel programming models which use explicit

synchronization techniques such as locks. Locking techniques limit the scalability of par-

allel networking protocol processing. Replication allows for lock-free processing for data

on high-speed networking links.

To implement replicated protocol processing, this dissertation introduces the Domi-

noes framework. Dominoes provides the basic mechanisms for replicated request process-

ing. It provides replicated queuing through the channels abstractions. Domains provide

scheduling and state management. Dominoes supports millions of requests per second on

commodity x86 hardware.

Dominoes is combined with the networking system from the Scout research operating

system to create a replicated network stack that supports the standard IP suite of protocols.

Replication increases the throughput of the protocols in some cases. Receive performance

91



Chapter 7. Conclusions

for UDP/IP and TCP/IP is substantially improved by replication-based parallel processing.

Addition loads such as AES decryption also show good scalability. Some operations,

especially TCP send, are not able to take advantage of parallelization as it is available in

this system.

7.2 Future Work

7.2.1 Dominoes Improvements

Dominoes was developed to test the viability of replication for protocol processing, but

there are still many open questions about improving the framework. Dominoes is divorced

from any networking specific code and can be used to implement replication for other

applications or system services. This is being explored currently.

The RingChannel object is used throughout this work to manage request queues. Its

reference counter is updated with CAS operations. More sophisticated reference count-

ing techniques such as sloppy counters [14]) could potentially improve the scalability of

this implementation. The results of Chapter 5 show that while channel performance is

sufficient for networking, it may not be for other applications.

The domain subscribe/de-subscribe operation is globally synchronous. When domains

are added or removed from a channel, all data delivery stops. This prohibits dynamic

domain assignment. For example, the system cannot add additional domains to a TCP

connection as the throughput increases. An alternative is to add subscribe operations in a

control channel queue and perform the operation when scheduling occurs. Conceptually,

the idea is simple but requires heavy re-architecting of the system.

Dominoes uses a first-come, first-serve policy to assign primary domains to requests.

This allows the system to quickly adapt to domains that stall. Greedy algorithms have the

92



Chapter 7. Conclusions

benefit of being easy to implement and they rely only on local information. A compre-

hensive study of load balancing/assignment may result in better strategies. Several other

strategies exist and the greedy algorithm can be changed to operate on groups of requests

or groups of domains.

7.2.2 Kernel Implementation

The userspace test framework has a number of drawbacks. Most importantly it requires

additional copies that in-kernel networking implementations do not. Kernel implementa-

tions can process data directly, in the same buffer that the hardware DMA system uses to

store incoming network traffic. This copy is required by the semantics of POSIX Sockets,

that libpcap uses to read and write data. This requires three copies of the packet.

1. Kernel to userspace sockets

2. libpcap buffer to the Scout message

3. Scout to the ordering manager/app

Adapting the Dominoes-Scout implementation to run in the kernel will eliminate two

of these copies and should significantly increase throughput at all scales. A zero-copy

sockets implementation or direct NICs access could achieve similar results. This would be

the first major step towards using this system with production applications.

A kernel implementation may abandon Scout and use mainstream protocol implemen-

tation such as Linux or Solaris. This has the benefit of additional development and opti-

mization for modern networks. Production IP implementations have been tested by large

teams of developers, something that is not possible for research vehicles such as Scout.

The biggest drawback of using implementations like Linux is that there are complex lock-

ing systems that much be removed in order to use replication.

93



Chapter 7. Conclusions

7.2.3 Selective Acknowledgements

RFC 2018 [49] provides selective acknowledgements for TCP. Rather than generate du-

plicate acknowledgements that indicate the last segment received, selective acknowledge-

ments allow the receiver to indicate receipt of discontinuous blocks of data. This feature

is designed to reduce the number of transmits when compared to the original cumulative

acknowledgement strategy.

With large window sizes, selective acknowledgements reduce the number of required

retransmits when a segment is lost or arrives out of order. Selective acknowledgements

may reduce the need to order packets inside a single window when transmitting. This

ordering currently limits scalability for the TCP send operation. Scout does not support

TCP selective acknowledgements. Therefore, this function will have to be added or testing

must be done with an alternative protocol implementation.

7.2.4 Latency

The Dominoes publish/subscribe mechanism increases latency because data is delivered

asynchronously. Publishers cannot immediately notify subscribers that new data is avail-

able on a channel. There is also no way to preempt a domain with higher priority requests.

This effect on latency tends to be less important with high-throughput systems because

many, many requests are handled quickly. However, it is important for other systems that

must handle small, short lived connections quickly. It is also important for communicating

for distant links and for high-performance computing.

Some protocols, such as TCP, provide mechanisms for delivering urgent data out-of-

band with normal messages. If the replication approach can be adapted to provide latency

numbers that are competitive with existing network implementations, then this work can be

used to test speedup of urgent message delivery. Replicas provide an appealing approach

94



Chapter 7. Conclusions

for urgent message delivery because they provide the ability to work independently on a

separate part of a given workload.

95



References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
new foundation for UNIX development. In Proceedings of the Summer 1986 USENIX
Conference, pages 93–112, 1986.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Tuecke, S. O. T.
Memo, L. Liming, and S. Tuecke. GridFTP: Protocol extensions to FTP for the Grid.
GWD-R (Recommendation), page 3, 2001.

[3] I. T. Association. Infiniband architecture specification. Technical report, 2004.

[4] S. Baset and H. Schulzrinne. An analysis of the Skype peer-to-peer internet telephony
protocol. CoRR, abs/cs/0412017, 2004.

[5] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The multikernel: a new OS architecture for scal-
able multicore systems. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pages 29–44. ACM, 2009.

[6] A. Baumann, S. Peter, A. Schupbach, A. Singhania, T. Roscoe, P. Barham, and
R. Isaacs. Your computer is already a distributed system. why isnt your OS? In Pro-
ceedings of 12th Workshop on Hot Topics in Operating Systems (HotOS'09), 2010.

[7] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not pathological
network behavior. IEEE/ACM Trans. Netw., 7:789–798, December 1999.

[8] K. P. Birman. Replication and fault-tolerance in the Isis system. In Proceedings
of the 10th ACM Symposium on Operating System Principles, pages 79–86, Orcas
Island, WA, 1985.

[9] K. P. Birman and R. Cooper. The Isis project: Real experience with a fault-tolerant
programming system. Operating Systems Review, 25(2):103–107, 1991.

96



References

[10] K. P. Birman, R. Renesse, and W. Vogels. The Ensemble distributed communication
system. http://simon.cs.cornell.edu/Info/Projects/Ensemble/, 1996.

[11] M. Björkman and P. Gunningberg. Locking effects in multiprocessor implementa-
tions of protocols. In SIGCOMM '93: Conference proceedings on Communications
architectures, protocols and applications, pages 74–83, New York, NY, USA, 1993.
ACM.

[12] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W.-K. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating system for
many cores. In Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, 2008.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich. An analysis of Linux scalability to many cores. In Proceedings
of the 2010 USENIX Symposium on Operating System Design and Implementation,
2010.

[15] L. Brakmo, S. O’Malley, and L. L. Peterson. TCP Vegas: New techniques for con-
gestion detection and avoidance. In Proceedings of ACM SIGCOMM '94, 1994.

[16] P. G. Bridges, D. Sizemore, and S. Levy. Exploiting MISD performance opportuni-
ties in multi-core systems. In Proceedings of the 13th Workshop on Hot Topics in
Operating Systems (HotOS XIII), Napa, CA, May 2011.

[17] R. Brightwell, M. Levenhagen, A. B. Maccabe, and R. Riesen. A performance com-
parison of Myrinet protocol stacks. In Proceedings of Third Linux Clusters Institute
Conference on Linux Clusters, St. Petersburg, FL, 2002.

[18] S. T. Chanson, D. W. Neufeld, and L. Liang. A bibliography on multicast and group
communications. ACM Operating Systems Review, 23(4):20–25, 1989.

[19] J. Chu and S. Inc. Zero-copy TCP in Solaris. In Proceedings of the USENIX 1996
Annual Technical Conference, pages 253–264, 1996.

[20] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing
overhead. IEEE Communications, June 1989.

[21] B. Cohen. The BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep_0003.html.

97



References

[22] D. DaSilva, O. Krieger, R. W. Wisniewski, A. Waterland, D. Tam, and A. Bau-
mann. K42: an infrastructure for operating system research. SIGOPS Oper. Syst.
Rev., 40(2):34–42, 2006.

[23] M. Dobrescu, N. Egi, K. Argyraki, B. gon Chun, K. Fall, G. Iannaccone, A. Knies,
M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting parallelism to scale soft-
ware routers. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, 2009.

[24] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-domain transfer fa-
cility. In Proceedings of the 14th ACM Symposium on Operating Systems Principles
(SOSP'93), pages 189–202, 1993.

[25] A. Dunkels. Full TCP/IP for 8-bit architectures. In MobiSys '03: Proceedings of
the 1st international conference on Mobile systems, applications and services, pages
85–98, New York, NY, USA, 2003. ACM.

[26] A. Earls. TCP offload engines finally arrive. Storage Magazine, 2002.

[27] L. Eggert, J. Heidemann, and J. Touch. Effects of Ensemble-TCP. ACM Computer
Communication Review, 30(1):15–29, January 2000.

[28] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
internet. Networking, IEEE/ACM Transactions on, 7(4):458 –472, Aug. 1999.

[29] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Trans. Netw., 1:397–413, August 1993.

[30] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier. TCP performance re-
visited. In Proceedings of the 2003 IEEE International Symposium on Performance
Analysis of Systems and Software, pages 70–79, 2003.

[31] D. Freimuth, E. Hu, J. Lavoie, R. Mraz, E. Nahum, P. Pradhan, and J. Tracey. Server
network scalability and TCP offload. In In Proceedings of the 2005 USENIX Annual
Technical Conference, pages 209–222, 2005.

[32] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: Maximizing locality
and concurrency in a shared memory multiprocessor operating system. In Proceed-
ings of the 3rd USENIX Symposium on Operating Systems Design and Implementa-
tion, pages 87–100, 1999.

[33] D. Giarrizzo, M. Kaiserswerth, T. Wicki, and R. C. Williamson. High-speed parallel
protocol impementation. In Proceedings of the IFIP W 6.1 /WG 6.4 1st International
Workshop on Protocols For High-Speed Networks, pages 164–180, 1989.

98



References

[34] M. A. Hiltunen and R. D. Schlichting. Constructing a configurable group RPC ser-
vice. Technical Report 94-28, Department of Computer Science, University of Ari-
zona, Tucson, AZ, 1994.

[35] M. A. Hiltunen and R. D. Schlichting. Constructing a configurable group RPC ser-
vice. In Proceedings of the 15th International Conference on Distributed Computing
Systems, pages 288–295, Vancouver, BC, Canada, 1995.

[36] N. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

[37] N. Hutchinson, L. L. Peterson, S. O’Malley, and M. Abbott. RPC in the x-kernel:
Evaluating new design techniques. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pages 91–101, Litchfield Park, AZ, 1989.

[38] IEEE. IEEE802.1ax: Standard for Local and Metropolitan Area Networks – Link
Aggregation, 2008.

[39] V. Jacobson. Congestion avoidance and control. In Proceedings of ACM SIGCOMM
'88, pages 314–332, 1988.

[40] V. Jacobson, R. Braden, and D. Borman. RFC 1323: TCP extensions for high per-
formance, 1992.

[41] V. Jacobson and R. Felderman. A modest proposal to help speed up & scale up the
linux networking stack. Seminar, Linux.conf.au, 2006.

[42] O. Krieger and M. Stumm. HFS: A flexible file system for large-scale multiproces-
sors. In In Proceedings of the 1993 DAGS/PC Symposium, pages 6–14, 1993.

[43] O. Krieger and M. Stumm. HFS: A performance-oriented flexible file system based
on building block composition. ACM Transactions on Computer System, 15(3):286–
321, 1997.

[44] D. Lin and R. Morris. Dynamics of random early detection. SIGCOMM Comput.
Commun. Rev., 27:127–137, October 1997.

[45] J. Lofstead, F. Zhang, S. Klasky, and K. Schwan. Adaptable, metadata rich IO meth-
ods for portable high performance IO. In Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS'09), Washington,
DC, USA, 2009. IEEE Computer Society.

[46] M. G. Luis. TCPDump/libpcap public repository @MISC. http://www.tcpdump.org/,
Feb. 2011.

99



References

[47] C. Ma and K.-C. Leung. Improving TCP reordering robustness in multipath net-
works. In LCN '04: Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks, pages 409–410, Washington, DC, USA, 2004. IEEE
Computer Society.

[48] J. Martin, A. Nilsson, and I. Rhee. Delay-based congestion avoidance for TCP.
IEEE/ACM Transactions on Networking, 11(3):356–369, 2003.

[49] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgment
options. RFC 2018, 1996.

[50] J. Mauro and R. McDougall. Solaris Internals (2nd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2006.

[51] M. M. Michael and M. L. Scott. Fast and practical non-blocking and blocking con-
current queue algorithms. In Proc. 15th ACM Symp. on Principles of Distributed
Computing, 1996.

[52] F. P. Miller, A. F. Vandome, and J. McBrewster. Advanced Encryption Standard.
Alpha Press, 2009.

[53] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-
driven kernel. ACM Transactions on Computer Systems, 15(3):217–252, 1997.

[54] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet filter: An efficient mecha-
nism for user-level network code. In In Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles, pages 39–51, 1987.

[55] A. B. Montz, D. Mosberger, S. O’Malley, L. L. Peterson, T. A. Proebsting, and J. H.
Hartman. Scout: A communications-oriented operating system. In Proceedings of
the 1st USENIX Symposium on Operating System Design and Implementation, 1994.

[56] D. Mosberger. Scout: Map library design notes. Technical Report TR97-18, Dept of
Computer Science, University of Arizona, 1997.

[57] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout operating sys-
tem. In Proceedings of the 2nd USENIX Symposium on Operating Systems Design
and Implementation, pages 153–168, 1996.

[58] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley. Performance issues in
parallelized network protocols. In Proceedings of the First Symposium on Operating
Systems Design and Implementation, November 1994.

[59] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 1996.

100



References

[60] D. of Defense. Internet protocol. RFC 760, 1980.

[61] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie. Performance evaluation of the
Quadrics interconnection network. Journal of Cluster Computing, 6(2):125–142,
2002.

[62] D. Plummer. An ethernet address resolution protocol. RFC 826, 1982.

[63] J. Postel. User datagram protocol. RFC 768, 1980.

[64] J. Postel. Transmission control protocol. RFC 793, 1981.

[65] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-
peer networks. In Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 367 – 378. ACM
Press, New York, 2004.

[66] S. A. Rago. UNIX System V network programming. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1993.

[67] K. K. Ramakrishnan and S. Floyd. A proposal to add Explicit Congestion Notifica-
tion (ECN) to IP. RFC 2481, 1999.

[68] R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed resource man-
agement for high throughput computing. In Proceedings of the Seventh IEEE Inter-
national Symposium on High Performance Distributed Computing, 1998.

[69] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories Technical
Journal, 63(8):311–324, 1984.

[70] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Bell Systems
Technical Journal, 57(6):1905–1929, 1978.

[71] J. H. Saltzer, D. A. Reed, and D. D. Clark. End-to-end argument in system design.
ACM Transactions on Computer Systems, 2(4):277–288, 1984.

[72] W. R. Stevens. Advanced Programming in the UNIX environment. Addison Wesley,
1992.

[73] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-
thread systems. In Proceedings of the 17th International Parallel and Distributed
Processing Symposium, page 84. IEEE press, 2003.

[74] The Linux Foundation. TCP offload engines and the Linux kernel, 2009.
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe.

101



References

[75] S. Tripathi, N. Droux, T. Srinivasan, K. Belgaied, and V. Iyer. Crossbow: a vertically
integrated QoS stack. In Proceedings of the 1st ACM Workshop on Research on
Enterprise Networking, WREN ’09, pages 45–54, New York, NY, USA, 2009. ACM.

[76] E. W. Ulf Lamping, Richard Sharpe. Wireshark user’s guide.
http://www.wireshark.org/docs/wsug_html_chunked.

[77] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Experiences with locking in a
NUMA multiprocessor operating system kernel. In OSDI Symposium, pages 139–
152, 1994.

[78] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: data structures
for the efficient implementation of a timer facility. In Proceedings of the eleventh
ACM Symposium on Operating systems principles, SOSP ’87, pages 25–38, New
York, NY, USA, 1987. ACM.

[79] J. Viega, M. Messier, and P. Chandra. Network security with OpenSSL. O’Reilly
Media, Inc, 2002.

[80] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. Linux Network Architec-
ture. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[81] P. Willmann, S. Rixner, and A. L. Cox. An evaluation of network stack paralleliza-
tion strategies in modern operating systems. In Proceedings of the USENIX Annual
Technical Conference, pages 91–96, June 2006.

[82] H. Zou, W. Wu, Z.-H. Sun, P. DeMar, and M. Crawford. An evaluation of parallel
optimization for OpenSolaris network stack. In Proceedings of the 35th Conference
on Local Computer Networks, Denver, 2010.

102


	University of New Mexico
	UNM Digital Repository
	7-1-2011

	Parallel network protocol stacks using replication
	Charles Donour Sizemore
	Recommended Citation


	sig-sheet
	paper

